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To all underpaid workers,
all undercredited researchers,
and everybody who is selflessly working

to make this universe a better place to live in.



In the beginning, there was nothing easy . ..
and Arkan said: “let there be polarization” ...
and there was polarization . ..

and every channel was made easier . ..



Abstract

Information theory is the field in which we study the fundamental limitations of
communication. Shannon proved in 1948 that there exists a maximum rate, called
capacity, at which we can reliably communicate information through a given chan-
nel. However, Shannon did not provide an explicit construction of a practical
capacity-achieving coding scheme. Polar coding, invented by Arikan, is the first low-
complexity coding technique that achieves the capacity of binary-input memoryless
symmetric channels. The construction of these codes is based on a phenomenon
called polarization. The study of polar codes and their generalization to arbitrary
channels is the subject of polarization theory, a subfield of information and coding
theories.

This thesis consists of two parts. In the first part, we provide solutions to several
open problems in polarization theory. The first open problem that we consider is to
determine the binary operations that always lead to polarization when they are used
in Arikan-style constructions. In order to solve this problem, we develop an ergodic
theory for binary operations. This theory is used to provide a necessary and sufficient
condition that characterizes the polarizing binary operations, both in the single-user
and the multiple-access settings. We prove that the exponent of a polarizing binary
operation cannot exceed % Furthermore, we show that the exponent of an arbitrary
quasigroup operation is exactly % This implies that quasigroup operations are
among the best polarizing binary operations.

One drawback of polarization in the multiple-access setting is that it sometimes
induces a loss in the symmetric capacity region of a given multiple-access channel
(MAC). An open problem in MAC polarization theory is to determine all the MACs
that do not lose any part of their capacity region by polarization. Using Fourier
analysis, we solve this problem by providing a single-letter necessary and sufficient
condition that characterizes all these MACs in the general setting where we have an
arbitrary number of users, and each user uses an arbitrary Abelian group operation
on his input alphabet.

We also study the polarization of classical-quantum (cq) channels. The input
alphabet is endowed with an arbitrary Abelian group operation, and an Arikan-
style transformation is applied using this operation. We show that as the number of
polarization steps becomes large, the synthetic cq-channels polarize to deterministic
homomorphism channels that project their input to a quotient group of the input
alphabet. This result is used to construct polar codes for arbitrary cq-channels and
arbitrary classical-quantum multiple-access channels (cq-MAC).

In the second part of this thesis, we investigate several problems that are related

iii



iv Abstract

to three orderings of communication channels: degradedness, input-degradedness,
and the Shannon ordering. We provide several characterizations for the input-
degradedness and the Shannon ordering.

Two channels are said to be equivalent if they are degraded from each other.
Input-equivalence and Shannon-equivalence between channels are similarly defined.
We construct and study several topologies on the quotients of the spaces of dis-
crete memoryless channels (DMC) by the equivalence, the input-equivalence and
the Shannon-equivalence relations. Finally, we prove the continuity of several chan-
nel parameters and operations under various DMC topologies.

Keywords: Polar codes, ergodic theory, quasigroup, multiple-access channels,
Fourier transform, classical-quantum channels, channel ordering, input degraded-
ness, Shannon ordering, topology.



Résumé

La Théorie de I'Information est le domaine qui définit les restreintes théoriques
sur la communication. En effet, en 1948, Shannon démontre I'existence d’un débit
maximal de transmission fiable d’information: la capacité. Cependant, Shannon
ne présente pas de construction explicite d’un systeme de codage pratique permet-
tant d’atteindre celle-ci. Le code polaire, inventé par Arikan, est le premier de ces
codes atteignant la capacité des canaux symmétriques sans-mémoire a entré binaire.
L’étude des codes polaires ainsi que leur généralization a des canaux arbitraires con-
stitue ce qu’on nomme la théorie de la polarisation, un sous-domaine des théories
des codes et de I'information.

Cette these se compose de deux axes. En un premier temps, nous présentons des
solutions pour de plusieurs problemes ouverts en théorie de la polarisation. Le pre-
mier de ces problemes consiste a déterminer les lois de composition internes menant a
une polarisation lorsqu’elles font parties de constructions similaires a celle d’Arikan.
Afin de résoudre ce probleme, nous développons une théorie ergodique pour les lois
de composition internes. Cette théorie nous donne une condition nécessaire et suff-
isante qui caractérise les lois de composition internes polarisantes dans les deux
sytemes d’acces: simple et multiple.

Toutefois, la polarisation d’un canal a acces multiple (CAM) induit une perte
dans la région de capacité symmétrique. Un probleme ouvert en théorie de la po-
larisation des CAMs consiste a déterminer les CAMs pour lesquels la polarisation
n’aboutit a la perte d’aucune partie de leurs régions de capacité symmétrique. En
utilisant I'analyse de Fourier, nous résolvons ce probleme en introduisant une con-
dition nécessaire et suffisante qui caractérise tous ces CAMs dans le cas général;
ol nous supposons un nombre quelconque d’utilisateurs et chaque utilisateur utilise
une loi arbitraire d’un groupe abélien sur ’alphabet d’entrée.

Toujours dans le premier axe, nous étudions aussi la polarisation de canaux
classiques quantiques. Dans ce cas, 'alphabet d’entrée est doté d’une loi arbitraire
d’un groupe abélien et cette derniere est utilisée pour appliquer une transformation
similaire a celle d’Arikan. Nous démontrons que pour un grand nombre d’étapes
de polarisation, les canaux classiques quantiques synthétiques se polarisent en des
canaux déterministes qui ne sont que des homomorphismes projetant ’entrée du
canal sur un groupe quotient de ’alphabet d’entrée. Nous utilisons ce résultat pour
construire des codes polaires pour des canaux classiques quantiques et des canaux
classiques quantiques a acceés multiples quelconques.

En un deuxieme temps, nous investiguons plusieurs problemes reliés a trois classi-
fications des canaux de communication: dégradation, dégradation d’entrée et la clas-



Vi Résumé

sification de Shannon. Nous proposons plusieurs caractérisations pour la dégradation
d’entrée et la classification de Shannon.

De plus, deux canaux sont équivalents s’ils sont dégradés I'un de I'autre. De fagon
similaire, nous définissons 1’équivalence d’entrée et 1’équivalence de Shannon. Nous
construisons et nous étudions plusieures topologies sur les quotients des espaces des
canaux discrets sans mémoire par les relations d’équivalence, d’équivalence d’entrée
et d’équivalence de Shannon. Finalement, nous démontrons la continuité de plusieurs
parametres et opérations des canaux sous divers topologies des quotients des espaces
des canaux discrets sans mémoire.

Mot-clés: Codes polaires, théorie érgodique, quasigroupe, canaux a acces mul-
tiples, transformation de Fourier, canaux classiques quantiques, classification de
canaux, dégradation d’entrée, classification de Shannon, topologie.
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Introduction

The digital revolution that the world has witnessed over the past few decades is
the result of over a century of technological! and theoretical? developments. Claude
Shannon is credited for laying out the foundations of digitization (at least in the
areas of communication and storage) in his seminal paper “A Mathematical Theory
of Communication” [1]. In his pioneering paper, Shannon formalized the problem of
(digital) communication and provided clear answers to a number of questions about
what is possible and what is not possible to achieve in communication.

The publication of Shannon’s paper established a new field in applied mathe-
matics, known as information theory. This field is the study of the fundamental
limitations of communication. The channel coding theorem [1] shows that for every
communication channel W, there exists a positive number C(W) > 0 that charac-
terizes the highest rate of information® that can be reliably communicated through
this channel. More precisely, for every R < C(W) and every € > 0, there exists a
channel coding scheme of a rate of at least R and whose probability of error is at
most €. Whereas, for every R > C(W) there exists eg w > 0 such that every coding
scheme of rate of at least R has a probability of error of at least epyw. C(W) is
called the capacity of the channel W.

The channel coding theorem means that the probability of error can be made
arbitrarily small if and only if we communicate at a rate that is below the capacity
of the channel. In order to show the existence of good codes for rates below capacity,
Shannon used a non-constructive proof. Information and coding theorists needed
sixty years to find an explicit construction of low-complexity capacity-achieving
codes. This was possible due to the discovery of channel polarization by Arikan [2]

!Technological advances that lead to the digital revolution include: the telegraph and Babbage’s
analytical engine (19th century), transistors (1947), microprocessors (late 1960s), digital mobile
phones (1990s) and the internet.

2Theoretical advances that contributed to the digital revolution include: the sampling theorem,
Turing’s foundation of computer science (1936), and Shannon’s foundation of communication and
information theory (1948).

3The rate of information that is communicated through a channel is the average number of bits
that is transmitted per channel use. The rigorous definition can be found in Section 1.1.
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in 2008.

In this thesis, we provide answers to several questions in two areas of information
theory: polarization and channel ordering®. In Section 1.1, we provide a brief de-
scription of the communication problem. The main purpose of Section 1.1 is to make
this thesis accessible to readers who are not familiar with information theory. Read-
ers already familiar with information theory may skip ahead to Section 1.2 where
we discuss channel polarization and the construction of polar codes. We explain the
channel orderings that we studied in this thesis in Section 1.3. We summarize the
contributions of this thesis in Section 1.4.

1.1 The Communication Problem

Imagine that there is a source of information® that produces a sequence of symbols
Ui,...,U,,...that take values in a set U/ that we call the source alphabet. Shannon
modelled the source as a sequence of random variables® (U,,),>1 taking values in U.
The probability distribution of the sequence (U, ),>1 is assumed to be known.

A party has access to the source and wants to communicate the symbols (Uy,)n>1
with another party. The former party is called a transmitter and the latter is called
a receiver’. In order to achieve this communication, the transmitter and the receiver
use a channel, which is a physical medium that they share. The channel can be a
piece of paper, a magnetic tape, an electrical wire, an optical fiber, radio waves,
or any other physical medium. We can think of the channel as a black box that
takes symbols from the transmitter and produces symbols that are observed by the
receiver. The symbols produced at the receiver’s side depend on the symbols that
were transmitted in a stochastic way. The set X of symbols that the transmitter
can send is called the input alphabet of the channel, and the set ) of symbols that
the receiver can observe is called the output alphabet of the channel.

For example, consider the case of an electrical wire. By using some electronic
device, the transmitter can control the voltage at one end of the wire; and the re-
ceiver can measure (using another electronic device) the voltage at the other end
of the wire. Assume that the transmitter’s device can only produce voltages that
are between —V and V, and assume that the receiver’s device can only read volt-
ages that are between —2V and 2V. In this case, the input alphabet is the interval
[V, V] and the output alphabet is the interval [—2V,2V]. In practice, the output
cannot be perfectly predicted from the input due to the interference with the am-
bient electromagnetic noise and due to the imperfections of the electronic devices.
Therefore, for all practical purposes, we can assume that the output depends on the
input in a stochastic way.

4A channel ordering is a partial order on the set of communication channels.

5The source can be an image, a video, a sound wave, the text of a book, the speech of a senator,
the temperature measurements in a room, etc ...

SEven if the symbols (U, )n>1 are generated according to a deterministic procedure, we do not
usually have all the details of the generating procedure. Therefore, for all practical purposes, we
can assume that (Un)n>1 is a sequence of random variables following a probability distribution that
we can measure by collecting data and studying their statistics.

"The transmitter and the receiver can be the same party but at two different instants of time,
e.g., storage can be seen as a communication between a person and his older self.
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One simple model of such a channel is “the additive noise” model: If X € [-V, V]
is the input that is determined by the transmitter and if Y € [—2V, 2V] is the output
that is observed by the receiver, we can model the relation between X and Y as
follows:

Y=X+7,

where Z is a random variable that might depend on X. Z represents the random
noise that is added by the channel to the input.

In general, the channel is described by specifying the input alphabet X', the
output alphabet ), and the probabilistic relation between the input and the output,
ie., for every x € X, we have to specify a probability distribution Py, on the
output alphabet ). Note that for every y € ), Py |,(y) represents the conditional
probability of observing y at the output, given that z was the input. In the rest of
this thesis, we consider only channels with finite input and output alphabets.

Formally, we can define a channel W as a 3-tuple (X,), py ), where X and Y
are two finite sets that represent the input and output alphabets respectively, and
pw : X x Y — [0,1] is a mapping that satisfies pr(x,y) =1 for all z € X.

yey

For every (x,y) € X x ), we denote py (z,y) as W(y|x) and we interpret it as the
conditional probability of receiving y at the output of the channel given that x was
the input. We write W : X — ) to denote that W is a channel with input alphabet
X and output alphabet ). Note that we use the long arrow (—) in the notation
W : X — Y and not the short arrow (—) that we only use to describe mappings.
For example, W : X — ) denotes a channel, and V : X — ) denotes a mapping
from X to V.

Example 1.1. The binary symmetric channel with crossover probability € is the
channel W : X — Y satisfying X = Y = {0,1}, W(0]|0) = W(1|]1) = 1 — € and
W(1]0) = W(0|1) = €. In other words, there is a probability of € that the input bit
will be flipped by the channel, and there is a probability of 1 — e that the input bit
will remain intact. This channel is denoted as BSC(e).

1—¢

€

€

1—¢

Figure 1.1 — Binary symmetric channel BSC(e).

The binary erasure channel with erasure probability € is the channel W : X — Y
satisfying X = {0,1}, ¥ = {0,1,7}, W(0|0) = W(1|1) = 1 — € and W(?|0) =
W (?|1) = e. If we observe 0 (respectively 1) at the output, then we are certain that
the transmitted symbol was 0 (respectively 1). Whereas, if we observe the symbol 7
at the output, then there is an equal probability that the transmitted symbol was 0 or
1 (we say that the transmitted bit was erased). This channel is denoted as BEC(e).
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Figure 1.2 — Binary erasure channel BEC(e).

As the source alphabet U might be different from the input alphabet X’ of the
channel W, the transmitter has to transform the sequence (U,),>1 to a sequence
of symbols chosen from & in order to be able to transmit over the channel W. On
the other end, the receiver observes a sequence of symbols in ), and using these
observations, the receiver has to estimate the sequence (U, )n>1.

Now we are ready to mathematically formulate the communication problem: A
communication scheme for transmitting the source symbols (U, ),>1 through the
channel W is a 4-tuple (K, N, f,g), where K and N are two positive integers, f :
UK — &N is the transmitter’s encoder, and g : YV — UX is the receiver’s decoder.
The communication scheme is implemented as follows:

e The transmitter observes K source symbols Uy,...,Uk.
e The transmitter computes (X1,...,Xn) = f(Ui,...,Uk).

e The transmitter sends the symbols Xi,..., Xx to the receiver by using the
8

channel N times®.
e The receiver observes the output of the channel W and receives N output
symbols Y7,...,Y,,.

e The receiver computes (U, ...,Ux) = g(Y1,...,Yn).

This procedure can be repeated as many times as needed in order to transmit the
subsequent source symbols.

The performance of the communication scheme can be assessed according to
various performance parameters:

e The speed of transmission:

K
S—N.

S is the average number of source symbols that are transmitted per channel
use. A higher speed corresponds to a more efficient use of the channel.

8We assume that the channel W is memoryless, in the sense that different uses of the channel
are statistically independent. More precisely, for every z1,...,xny € X and every y1,...,yn € Y,

we have
N

PY1 ,,,,, Yn[X1,.-s XN(y17ayN‘thTN):HW(y’le’L)
=1
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e The probability of error:

~

P, =P{(Uy,...,Ug) # (U1,...,Uk)}].

A smaller probability of error corresponds to a more reliable communication
scheme.

e The blocklength N of the communication scheme. A smaller blocklength cor-
responds to a smaller delay in the transmission.

e (. and C; which are the computational complexity of the encoder and the de-
coder, respectively. Obviously, lower computational complexities are preferred.

The study of the trade-off between all these performance parameters is one of the
main goals of information theory. In [1], Shannon was interested in specifying the
largest possible speed of transmission in a reliable communication scheme, regardless
of the blocklength or the computational complexity of the encoder or the decoder.

A speed S > 0 is said to be achievable if for every 6,¢ > 0, there exists a
communication scheme of speed of at least S — § and of probability of error of at
most €. The main question that Shannon answered in [1] was, what is the largest
possible achievable speed of transmission?

Shannon solved this problem in two particular cases and then used his two solu-
tions to provide an answer to the general question. The two scenarios that Shannon
considered are as follows:

e The noiseless channel case: The distribution of the source is arbitrary but the
channel is noiseless, i.e., X =) and W (y|z) = 1y,_, for every z,y € &

e The noisy channel with a uniformly distributed source: An arbitrary discrete
memoryless channel (DMC) W is considered, but the source symbols are in-
dependent and uniformly distributed in U.

1.1.1 The Noiseless Coding Theorem

We consider a source that is memoryless® in the sense that it produces independent
and identically distributed random variables (U,),>1. We also assume that the
channel is binary and noiseless, i.e., the channel can transmit bits without any error.
In such a communication scheme, the encoder f transforms the source symbols into
a sequence of bits, and the decoder g “reconstructs” the source symbols from the
same sequence of bits. A higher speed of transmission S = % corresponds to using
fewer bits to represent the same number of source symbols.

This procedure is also known as source coding, because we are trying to represent
the source symbols as efficiently as possible without any concern about the channel.
We define the source code rate R as the average number of bits per source symbol,
ie.,

r=N_1
K S
We say that R > 0 is an achievable source code rate if the speed % is achievable.
The main question that we are trying to answer can now be reformulated as follows:

What is the lowest possible achievable source code rate?

“Note that Shannon also studied sources that are not memoryless [1].
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Theorem 1.1. (The noiseless coding theorem!® [1]) Let (Uy,)n>1 be a sequence
of independent and identically distributed random variables that take values in the
source alphabet U. The lowest achievable source code rate is equal to

H(U) == Py(u)logy Py(u),
uel

where U is a random variable that has the same probability distribution as any of
the random variables Uy, ..., Uy, ... We adopt the convention that 0log, 0 = 0.

The quantity H(U) is known as the entropy'! of the random variable U. The
noiseless coding theorem (also known as the source coding theorem) provides an
operational interpretation of the entropy of a random variable: It is equal to the
lowest average number of bits that we need to describe one instance of the random
variable reliably. Intuitively, this can be interpreted by saying that H(U) represents
the amount of information contained in U.

The entropy of U can also be interpreted as being the amount of uncertainty or
the amount of randomness that is contained in U. This interpretation is reinforced
by observing that the entropy is equal to zero when U is deterministic (i.e., no
uncertainty nor randomness) and is maximal when U is uniformly distributed (i.e.,
maximum uncertainty and randomness). This “uncertainty interpretation” might
seem to be inconsistent with the previous “information interpretation”: How can
information and uncertainty represent the same thing?

This apparent inconsistency disappears when we realize that the uncertainty
about a random variable before observing it is the same as the amount of information
that we gain after observing it. If there is no uncertainty about the random variable
before observation, then we do not learn any new information by observing it!?.

1.1.2 Basic Information Theoretic Quantities

Let (X,Y) be a pair of random variables that might not be independent. Assume
that X takes values in X and Y takes values in ). The joint entropy of X and Y
is defined as
H(X)Y)=—- Z Z Px y(x,y)logy Pxy(x,y).
zeX YeY
This is exactly equal to the entropy of the pair (X,Y’) when it is seen as one random
variable that takes values in X x ). H(X,Y) represents the amount of information
that is gained after observing both X and Y. The joint entropy of more than two
random variables can be defined similarly.
For every y € Y, define

H(X]Y =y) = — Z Pxy (z|y) logy Pxy (z[y).
zeX

"The noiseless coding theorem that Shannon proved in [1] considered variable-length source
coding. Variable-length source codes have the advantage that they can achieve the entropy without
making any errors.

"Notice that the entropy is a function of the probability distribution of the random variable.

2Formalists might find these arguments informal, unnecessary, confusing and/or meaningless.
We reassure the reader that such arguments are never used to prove theorems in information
theory (which is as formal and rigorous as any other field of mathematics). These interpretations
and arguments are used only to provide intuition.
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This is equal to the amount of information that we gain by observing X, assuming
that we already know that Y = y. The conditional entropy of X given Y is defined
as

HX|Y)=> Pr(HXY =y)=->_ Y Pxy(x,y)log, Pxy(z]y).
yey TeX yey

This is equal to the (average) amount of information that we gain after observing X,

assuming that we already know the value of Y. H(X|Y) is also equal to the amount

of uncertainty about X which remains after observing Y (and before observing X).
The mutual information between X and Y is defined as

I(X;Y) = H(X) — HX|Y).

If H(X) is the amount of uncertainty about X before observing it, and H(X|Y) is
the amount of uncertainty about X which remains after observing Y, then I(X;Y) is
the amount of uncertainty about X which is removed by observing Y. Equivalently,
I(X;Y) represents the amount of information about X which we can infer from Y.

Now let X,Y and Z be three random variables taking values in X',) and Z,
respectively. The conditional mutual information between X and Y given Z is
defined as

I[(X;Y|2) = H(X|Z) — H(X|Y, Z).

This is equal to the amount of information about X, which we can infer from Y,
assuming that we already know Z.

The following properties are well-known [3]:

e If U is a random variable taking values in I/ then:

(a) 0 < H(U) < log, [U|.
(b) H(U) =0 if and only if U is deterministic.
(¢c) H({U) = log, [U| if and only if U is uniform in U.

Chain rule for entropy: H(X,Y)=H(Y)+ H(X|Y)=H(X)+ H(Y|X).

Conditioning reduces entropy: H(X|Y) < H(X).

H(X|Y) =0 if and only if X can be written as a function of Y.
o I(X;Y)=I1(YV;X)=H(X)+H(Y)-H(X,Y)>0.

e I(X;Y)=0if and only if X and Y are independent.

o I(X;Y|Z2)=1(Y;X|Z)>0.

e Chain rule for mutual information: I(X;YZ2) = I(X;2) + I(X;Y|Z).}3

13I1(X;Y Z) is the mutual information between X and (Y, Z). A clearer notation that is used for
this quantity is 1(X;Y, Z). As products of random variables almost never appear in information
theory, the notation I(X;Y Z) is much more common because it is simpler.
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1.1.3 The Noisy-Channel Coding Theorem

The channel coding problem is about reliably communicating a random message
through a noisy channel W. The message is assumed to be uniformly distributed in
a set M that is called the message set.

A channel coding scheme for a channel W : X — Y is a 4-tuple (M, N, f, g).
M is the message set, N is the blocklength, f : M — X" is the (channel) encoder
and g : YV — M is the (channel) decoder. The scheme is implemented as follows:

e A random message M is uniformly chosen from M.

e The transmitter computes (X1,...,Xy) = f(M).

e The transmitter sends Xi,..., Xy to the receiver by using the channel N
times.
e The receiver observes N output symbols Y7,..., Yy.

The receiver computes an estimate of the transmitted message as

M:g(Yl,...,YN>.

The probability of error of the coding scheme C = (M, N, f, g) when it is used for
the channel W is given by

P.(C,W) = P[M # M].

Remark 1.1. If we have a memoryless source that produces symbols uniformly dis-
tributed inU, then a (K, N, f,g) communication scheme can be seen as a (UX, N, f, g)
channel coding scheme.

The rate of the channel coding scheme (M, N, f,g) is defined as R = 10g27]\|[./\/l|'
This is equal to the number of bits that are transmitted per channel use. A higher
rate corresponds to a higher speed of transmission.

A rate R > 0 is said to be achievable for a channel W if for every 9, e > 0, there
exists a channel coding scheme of rate of at least R — ¢ and whose probability of
error is at most €. The highest achievable rate is called the capacity of the channel
W, and we denote it as C(W).

Theorem 1.2. (The noisy-channel coding theorem [1]) Let W : X — Y be a
discrete memoryless channel. The capacity of W is given by the following formula:

C(W)= sup I(X;Y),
PxeAy
where Ay is the set of probability distributions on X, X is a random variable in X
which is distributed as Px, and Y is the output of the channel W when X is the
input, i.e., for every (z,y) € X x Y, we have Pxy(z,y) = Px(x)W (y|z).

The above characterization of the channel capacity is consistent with the intuitive
interpretation of mutual information: If 7(X;Y) is the amount of information about

X which we can infer from Y, then sup I(X;Y) is the highest number of bits
PxeAy
that can be transmitted through the channel W.



1.2. Channel Polarization 9

It is easy to see that for every channel W with input alphabet X', we have
0 < C(W) <logy|X|. If C(W) = 0, then the output of the channel W is always
independent of the input. Whereas, if C(W) = log, |X|, then we can show that the
input of W can be written as a function of the output'*. In other words, if the
capacity is maximal, then the channel is perfect; in the sense that we can determine
the input from the output without errors.

1.1.4 Solution to the Communication Problem

The noiseless coding theorem and the noisy-channel coding theorem provide a solu-
tion to the communication problem that was formulated at the beginning of Section
1.1:

e Using the noiseless coding theorem, we can find a good source code whose rate
is arbitrarily close to H(U) bits per source symbol.

e Using the noisy channel coding theorem, we can find a good channel coding
scheme whose rate is arbitrarily close to C(W) bits per channel use.

By composing the source code with the channel code, we obtain a reliable com-
.. Lo S c(W)

munication scheme whose speed of transmission is arbitrarily close to AU source

symbols per channel use. Conversely, Shannon showed that it is not possible to

achieve a better speed of transmission.

This is known as the source-channel separation theorem: Any achievable speed
of transmission can be realized by composing a source code with a channel code.
The purpose of the source code is to represent the source symbols with as fewer
bits as possible (i.e., combat the redundancy of the source), and the purpose of the
channel code is to combat the noise of the channel.

1.2 Channel Polarization

Polar coding, invented by Arikan [2], is the first low-complexity coding technique
that achieves the symmetric capacity (defined below) of binary-input memoryless
channels. Polar codes rely on a phenomenon that is called polarization: The process
of converting a set of identical copies of a given binary-input channel into a set of
“almost extremal channels”, i.e., either “almost perfect channels”, or “almost useless
channels”.

Definition 1.1. Let W : X — Y be a discrete memoryless channel of input alpha-
bet X and output alphabet Y. The symmetric capacity of W, denoted as I(W), is the
quantity 1(X;Y) where X is a uniform random variable in X and Y is the output
of W when X is the input. Clearly, I(W) < C(W) for every discrete memoryless
channel W .

et Px be the capacity-achieving input distribution. We have
log, [X| = C(W) = I(X;Y) < H(X) < log, |X].

This shows that H(X) = log, |X| (which means that X is uniform) and H(X|Y) = H(X) —
I(X;Y) = 0, which implies that X can be written as a function of Y.
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If a channel W satisfies some symmetry conditions, then the capacity of W can
be shown to be equal to I(W). An example of channels that satisfy C'(W) = I(WW)
is the well-known family of binary-input memoryless symmetric channels:

Definition 1.2. Let Fy := {0,1} be the binary field and let W : Fy — Y be
a binary-input channel. We say that W is a binary-input memoryless symmet-
ric (BMS) channel if there exists a bijection © : Y — Y satisfying 7' = 7 and
W(yl0) = W(n(y)|1) for every y € Y. BSC(e) and BEC(€) are examples of BMS

channels.

As C(W) = I(W) for every BMS channel, we can see that polar codes achieve
the capacity of all BMS channels.

1.2.1 Polarization of Binary-Input Channels

We start by an informal introduction to the polarization of binary-input channels.
Formal and rigorous statements will be provided at the end of this subsection.
We can distinguish, among all binary-input channels, two that are extremal:

e Useless channels where the output is always independent of the input. Such
channels satisfy C(W) = I(W) = 0.

e Perfect channels where the input can be determined from the output with
probability 1. Such channels satisfy C(W) = I(W) = 1.

It is very easy to achieve the capacity of extremal channels: In the case of a use-
less channel, we can transmit a (frozen) bit that is already known to the receiver.
Whereas, in the case of a perfect channel, we can transmit an information bit'® and
the receiver can decode it without error.

Now let W : F — Y be an arbitrary binary-input channel. If there is a
way to transform a collection of independent and identical copies of the channel W
into a collection of extremal channels while preserving the total symmetric capacity,
then by transmitting frozen bits through the useless channels and information bits
through the perfect channels, we can use this procedure to achieve the symmetric
capacity. Arikan proposed a method to do this by applying a basic transformation
recursively.

Arikan’s basic transformation is illustrated in Figure 1.3. U; and U are two
independent and uniformly distributed bits. Let X1 = Uy @ Us and Xo = Us, where
@ denotes the XOR operation (i.e., addition modulo 2). It is easy to see that X,
and X are independent and uniform in Fo. We transmit X; and Xy through two
independent copies of the channel W. Let Y; and Y5 be the outputs corresponding
to X7 and X respectively.

Consider applying a successive cancellation decoder to estimate (Up,Us) from
(Y1,Y3): We first compute an estimate Uy of Ui, based on the output (Y7,Y3).
After that, we compute an estimate Uy of Us, based on (Y7, Yo, Ul) This procedure
motivates us to study the following two synthetic channels:

5 An information bit is a random variable that is uniformly distributed in Fo and not initially
known to the receiver.



1.2. Channel Polarization 11

U1 —‘c

)
S

L >V,

Us W =Y

Figure 1.3 — Arikan’s basic transformation.

e The channel W~ whose input is U; and whose output is (Y1, Ys). Uz is con-
sidered as noise.

e The channel W™ whose input is U and whose output is (Y7, Ya, Uy).

We have:
IW™)+I(WH) = I(U; Y1Y2) + 1(Uz; Y1 YaUh) @ I(Uy; Y1Ya) + 1(Uz; Y1Y2|Ur)
= [(U1Uy; V1Ys) = I(X 1 Xo; Y1Y2) = I(X1; Y1) + 1(X2; Y2)
—20(W),

where (a) follows from the fact that I(U;;Uz) = 0. This shows that the total
symmetric capacity is preserved by Arikan’s basic transformation. Furthermore, we
have

I(WJr) == I(UQ; Y1Y2U1) Z I(UQ; }/2) - I(XQ; YQ) == I(W)

This shows that 0 < I(W~) < I(W) < I(W™) < 1. In other words, W™ is closer to
the useless channel and W™ is closer to the perfect channel. Therefore, Arikan’s basic
transformation makes us closer to the desirable extremal channels. By applying this
transformation recursively, we expect that we will get closer and closer to extremal
channels. Figure 1.4 shows how we can implement two polarization steps:

Uy O—O— W — Y1
Us D W Y
Us O W Y3
U, | e 1

Figure 1.4 — Two polarization steps.

We apply the following successive cancellation decoder:

1. We compute an estimate Uy of U1, based on the observation (Y7,Y2,Ys, Y)).
This corresponds to decoding the synthetic channel whose input is U; and
whose output is (Y1, Y2, Y3, Yy). It is easy to see that this is equivalent to the
channel W=~ := (W™)~.
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2. We compute an estimate (73 of Us, based on (Y7,Y2,Ys,Yy, Ul) This corre-
sponds to decoding the synthetic channel whose input is Us and whose output

is (Y1,Ys,Y3, Yy, Uyp). It is easy to see that this is equivalent to the channel
Wt = (W)t.

3. We compute an estimate Uz of Uy, based on (Y7, Y3, Y3, Yy, Ul, Ug) This corre-
sponds to decoding a synthetic channel that is equivalent to W+~ := (W)™,

4. Finally, we compute an estimate Uy of Uy, based on (Y1,Y2,Y3,Y), Uy, Us, Ug)
This corresponds to decoding a synthetic channel that is equivalent to W+ :=
(WH)*.

It is easy to see that after n polarization steps, we obtain 2" synthetic channels
{Ws: s € {—,+}"}. Arnkan showed that as n becomes large, almost all the
synthetic channels become either very close to a useless channel or very close to
a perfect channel. In other words, for the vast majority of s € {—,+}", we have
either I(W?#) ~ 0 or I(W?*) ~ 1. Let I be the set of indices s € {—, +}" satisfying
I(W*) =~ 1.

Polar codes are constructed as follows:

e For each s € I, send an information bit over the channel W¥. Hence, we send
a total of |Ig| bits.

e For each s ¢ Ig, send a frozen bit over the channel W*5. A frozen bit is
a random symbol that is assumed to be known to the receiver. Hence, no
information is being sent over W* for s ¢ I¢.

On one hand, as information bits are only sent through channels that are almost
perfect, the polar coding scheme is reliable (i.e., it has a low probability of error).
On the other hand, as we are sending a total of |I5| bits over 2" uses of the channel
W, we can see that the rate of the polar coding scheme is equal to 'g—g' bits per
channel use.

As Arikan’s basic transformation preserves the total symmetric capacity, we have

'I(W) = Y I(W?).

56{_7+}n

Therefore,

(W) = 2% > 1w Y 2% > IW) ~ itel

an
se{—,+}" s€lg

where (a) follows from the fact that for almost all the indices s € {—,+}", we either
have s € Ig or I(W?#) =~ 0. We deduce that the rate of the aforementioned polar
coding scheme is close to the symmetric capacity of the channel.

Arikan showed that all the above approximations become arbitrarily good as n
becomes large. This implies that we can construct polar codes with a probability of
error that is arbitrarily small and a rate that is arbitrarily close to the symmetric
capacity I(W). Furthermore, this can be achieved using an encoder and a decoder
of complexity O(N log N), where N = 2" is the blocklength of the code (see [2] for
details). We conclude that polar codes can achieve the symmetric capacity of any
binary-input channel using low-complexity encoder and decoder.
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Formal Description of Channel Polarization

Definition 1.3. Let W : Fy — Y be a binary-input memoryless channel. We define
the two channels W~ :Fo =Y x Y and WT :Fy — Y x Y x Fy as follows:

1
W= (y1,y2lun) = 5 > Wiyrlur & u)W (yafus),

ug €Fo

1
W (y1, y2, ur|ug) = §W(y1|u1 ® u2) W (y2|uz).
Moreover, for all s = (s1,...,8,) € {—,+}", we define
We = (We)%2..)%n.

Theorem 1.3. [2] Let W : Fo — Y be a binary-input memoryless channel. For
every § > 0, we have

3 1 n S
Jim s e {— 4" 6 <I(W) <1-d}|=0.

Any construction that is similar to the one given in Definition 1.3 and Figure 1.3
is called an Arikan-style comstruction. If such construction exhibits a polarization
phenomenon, then the code obtained by this construction is called a polar code
(the concepts of “polarization phenomena” and “Arikan-style constructions” will be
formally and rigorously defined in Chapter 3).

1.2.2 Polarization for Arbitrary Discrete Memoryless Channels

Any attempt to generalize Arikan’s technique to channels having a non-binary input
alphabet X has to replace the XOR operation by a binary operation * on the input
alphabet X'. The first operation that was investigated is the addition modulo g,
where ¢ = |X| and X is endowed with the algebraic structure Z,. Sasoglu et al. [4]
show that if ¢ is prime, then the addition modulo ¢ leads to the same polarization
phenomenon as in the binary input case.

Park and Barg [5] show that if ¢ = 2" with » > 0, then the addition modulo
q leads to a polarization phenomenon which is different from the polarization in
the binary input case, but it can still be used to construct capacity-achieving polar
codes. They show that we have a multilevel polarization: Although we do not
always have polarization to “almost perfect” or “almost useless” channels, we always
have polarization to channels that are easy to use for communication. Sahebi and
Pradhan [6] show that multilevel polarization also happens if an arbitrary Abelian
group operation on the alphabet X is used. This enables the construction of polar
codes for arbitrary discrete memoryless channels (DMC) since any alphabet can be
endowed with an Abelian group structure.

Polar codes for arbitrary DMCs were also constructed by Sasoglu [7] using a
special quasigroup operation that ensures two-level polarization.

1.2.3 Polarization for Multiple-Access Channels

So far we have only considered discrete memoryless channels. These channels have
exactly one transmitter and one receiver. There exists another kind of channels
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that allow more than one user to transmit information to a single receiver. Such
channels are called multiple-access channels'® (MAC). The polarization phenomenon
can be generalized to MACs: If W is an m-user MAC, we can apply an Arikan-style
construction on W by using a binary operation on the input alphabet of each user.

Sasoglu et al. constructed MAC-polar codes for a two-user MAC with an input
alphabet of prime size [8]. Abbe and Telatar used matroid theory to construct
MAC-polar codes for an m-user MAC with binary inputs [9].

1.3 Channel Ordering

The ordering of communication channels was first introduced by Shannon [10]. A
channel W’ is said to contain another channel W if W can be simulated from W’ by
randomization at the input and the output using a shared randomness between the
transmitter and the receiver. More precisely, W' : X’ — )’ contains W : X — Y
if there exist an integer n and three sequences (oq)1<i<n, (17)1<i<n and (R;)i<i<n
such that:

e (y is a positive number for every 1 <[ <n, and

n
Z Q) = 1.
=1

In other words, (oq)1<i<pn forms a probability distribution on {1,...,n}.

For every 1 <1 <n, T; is a channel of input alphabet X and output alphabet
X',

For every 1 <[ < n, R, is a channel of input alphabet ) and output alphabet
V.

For every (z,y) € X x ), we have

Wiyle) =Y o Y D T |e)W' (|2 ) Rulyly).-
1

= z'eX y'ey!

Assume that a transmitter and a receiver share a random variable L taking values
in {1,...,n}, and assume that L is distributed as (a;)i<j<y. If the transmitter and
the receiver have access to the channel W’ they can use the random variable L in
order to simulate the channel W as follows: In order to transmit a symbol X € X
through the simulated channel W, the transmitter first observes the random variable
L and then applies the random mapping!” 77, on X. Let X’ € X’ be the (random)
output of 77,. The transmitter sends X’ through the channel W’. Let Y’ € )’ be
the output of the channel W’. The receiver observes the random variable L and
applies the random mapping Ry, on Y’. Let Y be the output of Ry. It is easy to
see that the channel from X to Y is equivalent to W.

16See Chapter 4 for the formal definition of multiple-access channels.
17A discrete memoryless channel can be seen as a random mapping from the input alphabet to
the output alphabet.
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Shannon showed in [10] that if W’ contains W, then the existence of a coding
scheme of blocklength N, rate R and probability of error € for the channel W
implies the existence of a coding scheme of blocklength N, rate R and probability
of error of at most € for the channel W’. This shows that C(W) < C(W’) and
P.(N,R,W') < P.(N,R,W) for every integer N and every positive real number
R > 0, where P.(N,R,W) is the smallest probability of error among all coding
schemes of blocklength N and of rate of at least R, assuming that the schemes are
used for the channel .

Another ordering that has been well studied is the degradedness between chan-
nels. A channel W is said to be degraded from another channel W’ if W can be
obtained from W' by composing it with another channel. In other words, W is de-
graded with respect to W’ if W can be simulated from W’ by a randomization at the
output. In Part II of this thesis, we will refer to degradedness as output-degradedness
in order to distinguish it from the notion of input-degradedness that we introduce
in Chapter 10. It is easy to see that output-degradedness is a special case of Shan-
non’s ordering. We can trace the roots of the notion of output-degradedness to the
seminal work of Blackwell, in the 1950s, about comparing statistical experiments
[11]. Note that in the Shannon ordering, the input and output alphabets need not
be the same, whereas in the output-degradedness definition, we have to assume
that W and W’ share the same input alphabet X’ but they can have different out-
put alphabets. A characterization of output-degradedness is given by the famous
Blackwell-Sherman-Stein (BSS) theorem [11, 12, 13].

1.4 Outline and Contributions of this Thesis

This thesis consists of two parts. In the first part (Chapters 2-9), we provide
solutions to several problems related to channel polarization. We summarize the
main results of Part I in Section 1.4.1. Part Iis concluded in Chapter 9. In the second
part (Chapters 10-13), we investigate several problems related to channel orderings.
We present the main results of Part II in Section 1.4.2. Part II is concluded in
Chapter 13.

1.4.1 Part I: Channel polarization
An Ergodic Theory for Binary Operations

In Section 1.2.2, we saw that Abelian group operations are polarizing in the sense
that they always lead to a (multilevel) polarization phenomenon when they are
used in Arikan-style constructions. An open problem in polarization theory is to
characterize all the polarizing binary operations (in the general multilevel sense).
Chapters 2 and 3 solve this problem by providing a necessary and sufficient condition
for a binary operation to be polarizing. In Chapter 2, we develop an ergodic theory
for binary operations. This theory will be used in Chapter 3 to characterize the
polarizing operations.

In Chapter 2, we define uniformity preserving, irreducible, ergodic and strongly
ergodic operations and we study their properties. We introduce the concepts of a
stable partition and the residue of a stable partition. We show that an ergodic
operation is strongly ergodic if and only if all its stable partitions are their own
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residues. We also study the products of binary operations and the structure of their
stable partitions. We show that the product of a sequence of binary operations is
strongly ergodic if and only if all the operations in the sequence are strongly ergodic.

Polarizing Binary Operations

Let * be a binary operation on a finite set X'. We say that = is polarizing if for every
discrete memoryless channel W with input alphabet X', the recursive application of
the Arikan-style construction that is based on * transforms a collection of indepen-
dent and identical copies of W into a collection of “easy channels”. In Chapter
3, we provide rigorous definitions for the concepts of easy channels and polarizing
binary operations. We show that a binary operation is polarizing if and only if it is
uniformity preserving and its right-inverse is strongly ergodic.

We define the exponent F, of a polarizing binary operation x. We show that if
x is a polarizing operation on a finite set X', then for every channel W with input
alphabet X, every 8 < E, and every 0 > 0, there exists ng = no(W, 3,0, ) > 0 such
that for every n > ng, there exists a polar code of blocklength N = 2™ and of rate
of at least I(W) — § such that the probability of error of the successive cancellation
decoder is at most 2=V”. In other words, the probability of error of polar codes that
are constructed using * decays faster than 2=V for any € > 0.

MAC Polarization Theory

Let Xy, ..., X, be m finite sets and let %1, ..., *,, be m binary operations defined on
X1, ..., Xy, respectively. We say that the sequence (%1, ..., %) is MAC-polarizing if
every MAC of input alphabets X7, ..., X}, can be polarized by applying an Arikan-
style transformation that is based on the binary operations %1, ..., *,,. In Chapter
4, we show that a sequence of binary operations is MAC-polarizing if and only if
every binary operation in the sequence is uniformity preserving and its right inverse
is strongly ergodic.

We define the exponent Ei, . ., of a MAC-polarizing sequence (xi,...,%p).
We show that if *i,...,*,, are binary operations on A7, ..., X, respectively, and if
(1, -« .y %) 18 MAC-polarizing, then for every MAC W of input alphabets X7, ...,
X, every B < Ey, . ., and every § > 0, there exists

no :nO(W76757*17"'7*m) >0

m

such that for every n > ng, there exists a MAC-polar code of blocklength N =
2" and of sum-rate of at least I(W) — § such that the probability of error of the
successive cancellation decoder is at most 2=V”. In other words, the probability of
error of MAC-polar codes that are constructed using 1, ..., *,, decays faster than
9= Nrtmm = gy any € > 0.

We also show that if we use special binary operations (namely, the addition
modulo the size of the input alphabets), the MAC-polar code construction becomes

simpler.

Error Exponents

In Chapter 5, we study the exponents of polarizing binary operations and the
exponents of MAC-polarizing sequences of binary operations. We show that the
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exponent of a polarizing binary operation cannot exceed % We provide a sufficient
condition for a polarizing operation to have a zero exponent. We prove that the
exponent of a quasigroup operation is exactly % This implies that quasigroup
operations are among the best polarizing binary operations.

We show that the exponent of a MAC-polarizing sequence of binary operations
is upper bounded by the exponent of the product of all the binary operations that
are present in the sequence, which in turn is upper bounded by the exponent of
every binary operation in the sequence. Furthermore, we prove that the exponent
of a sequence of quasigroup operations is exactly %

Fourier Analysis of MAC Polarization

One drawback of MAC-polar codes (i.e., codes that are based on MAC polariza-
tion) is that they might not achieve the entire symmetric-capacity region'®. The
reason behind this problem is that MAC polarization sometimes induces a loss in
the symmetric-capacity region.

Chapter 6 provides a single-letter necessary and sufficient condition that char-
acterizes the set of MACs that do not lose any part of their symmetric-capacity
region by polarization. The characterization that we provide relies on Fourier anal-
ysis, and works in the general setting where we have an arbitrary number of users
and each user uses an arbitrary Abelian group operation on his input alphabet. We
show that the reason why a given MAC W loses parts of its symmetric-capacity re-
gion by polarization is because its transition probabilities are not “aligned”, which
makes W “incompatible” with polarization. The “alignment” condition is expressed
in terms of the Fourier transforms of the transition probabilities of W.

Erasure Schemes Using Generalized Polar Codes

One possible way to enhance the performance of polar codes is through decoding
with erasure; it is sometimes desirable to allow the receiver not to decide which
message was transmitted, especially when there is a feedback from the receiver to
the transmitter: If a confusing string of symbols was received (in the sense that
there is a high probability of a decoding error to occur, no matter which message
the receiver chooses as the decoded message), the receiver can ask the transmitter
to resend the message, in the hope that the received string will not be confusing in
the next transmission.
There are two types of error when we allow decoding with erasure:

e If the receiver decides on the transmitted message and makes an error, we say
that an undetected error occurs.

e If the receiver does not decide, we say that an erasure occurs.

In Chapter 7, we study the tradeoff between the probability of undetected error
and the erasure probability for generalized polar (GP) codes'®. We derive a closed-
form formula for the zero-undetected-error capacity I§'Y (W) of GP codes for a given

18The definition of the symmetric-capacity region can be found in Chapter 4.
9 Generalized polar codes are a family of codes that contains, among others, the standard polar
codes of Arikan and Reed-Muller codes.
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binary-input memoryless symmetric channel W under the low-complexity successive
cancellation decoder with erasure. We show that for every ¢ > 0 and every R <
ISP (W), there exists a generalized polar code of blocklength N and of rate of at
least R where the undetected-error probability is zero and the erasure probability is

1 —€
less than 27V? °. Conversely, we show that for any € > 0 and any GP code of rate

I§Y (W) < R < I(W) and blocklength N, the undetected error probability cannot

e
be made less than 2~V2 " unless the erasure probability is close to 1.

Polar Codes for Arbitrary Classical-Quantum Channels

The polarization phenomenon can be generalized to the setting where the input of
the channel is classical and the output is a quantum state. In Chapter 8, we prove
polarization theorems for arbitrary classical-quantum channels (cq-channel). The
input alphabet is endowed with an arbitrary Abelian group operation and an Arikan-
style transformation is applied using this operation. We show that as the number of
polarization steps becomes large, the synthetic cq-channels polarize to deterministic
homomorphism cq-channels that project their input to a quotient group of the input
alphabet. This result is used to construct polar codes for arbitrary cq-channels and
arbitrary classical-quantum multiple-access channels (cq-MAC). The encoder can
be implemented in O(N log N) operations, where N is the blocklength of the code.
We propose a quantum successive cancellation decoder for the constructed codes.
Furthermore, we show that the probability of error of this decoder decays faster
than 2~V for any < %

1.4.2 Part Il: Channel ordering
Characterizations of Various Channel Orderings

In Chapter 10, we introduce the input-degradedness as a novel channel ordering. A
channel W is said to be input-degraded from another channel W’ if W can be simu-
lated from W’ by randomization at the input. We provide a necessary and sufficient
condition for a channel to be input-degraded from another one. We show that any
decoder that is good for W' is also good for W. We provide two characterizations for
input-degradedness, one of which is similar to the Blackwell-Sherman-Stein (BSS)
theorem.

We also study the Shannon ordering of communication channels in Chapter 10.
We show that W’ contains W (in the Shannon ordering sense) if and only if W is the
skew-composition of W’ with a convex-product channel. We use this fact to derive
a characterization of the Shannon ordering that is similar to the BSS theorem. The
characterization that we provide is given in terms of blind randomized in the middle
(BRM) games?°.

Topological Structures on DMC Spaces

A topology on a given set is a mathematical structure that enables us to formally talk
about the neighborhood of a given point of the set. This makes it possible to define
continuous mappings and converging sequences. Topological spaces generalize metric

20The definition of BRM games is given in Chapter 10.
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spaces which are mathematical structures that specify distances between the points
of the space. Links between information theory and topology were investigated in
[14].

Two channels are said to be output-equivalent if they are output-degraded from
each other. Input-equivalence and Shannon-equivalence between channels are simi-
larly defined. In Chapter 11, we construct and study several topologies on the
quotients of the spaces of discrete memoryless channels (DMC) by the output-
equivalence, the input-equivalence and the Shannon-equivalence relations. In Chap-
ter 12, we show that many channel parameters and operations are continuous under
the constructed topologies.

The space of output-equivalent channels with input alphabet X and output al-
phabet ) can be naturally endowed with the quotient of the Euclidean topology
by the output-equivalence relation. We show that this topology is compact, path-
connected and metrizable. A topology on the space of output-equivalent channels
with fixed input alphabet X and arbitrary but finite output alphabet is said to be
natural if and only if it induces the quotient topology on the subspaces of output-
equivalent channels sharing the same output alphabet. We show that every natural
topology is o-compact, separable and path-connected. Whereas, if |X| > 2, we prove
that a Hausdorff natural topology is not Baire and it is not locally compact any-
where. This implies that no natural topology can be completely metrized if |X| > 2.
We show that the finest natural topology, which we call the strong topology, is com-
pactly generated, sequential and Ty. However, if |X| > 2, we prove that the strong
topology is not first-countable anywhere, hence it is not metrizable. We show that
in the strong topology, a subspace is compact if and only if it is rank-bounded and
strongly-closed. We provide a necessary and sufficient condition for a sequence of
channels to converge in the strong topology.

We introduce a metric distance on the space of output-equivalent channels which
compares the noise levels between channels. We show that the induced metric topol-
ogy, which we call the noisiness topology, is natural. We also study topologies that
are inherited from the space of meta-probability measures by identifying channels
with their Blackwell measures. We show that the weak-x topology is exactly the
same as the noisiness topology and hence it is natural. We prove that if |X| > 2, the
total-variation topology is not natural nor Baire, hence it is not completely metriz-
able. Furthermore, we show that it is not locally compact anywhere. Finally, we
prove that the Borel o-algebra is the same for all Hausdorff natural topologies on
the space of output-equivalent channels.

We then study the topologies that can be constructed on the spaces of input-
equivalent channels. The space of input-equivalent channels with input alphabet X
and output alphabet ) can be naturally endowed with the quotient of the Euclidean
topology by the input-equivalence relation. We show that this topology is compact,
path-connected and metrizable. A topology on the space of input-equivalent chan-
nels with a fixed output alphabet ) and arbitrary but finite input alphabet is said
to be natural if and only if it induces the quotient topology on the subspaces of
input-equivalent channels sharing the same input alphabet. We show that every
natural topology is o-compact, separable and path-connected. Whereas, if |Y| > 3,
we prove that a Hausdorff natural topology is not Baire and it is not locally com-
pact anywhere. We show that the finest natural topology, which we call the strong
topology, is compactly generated, sequential and Ty. However, if || > 3, we prove
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that the strong topology is not first-countable anywhere, hence it is not metrizable.
We introduce the similarity metric on the space of input-equivalent channels, and
we prove that its induced topology is natural.

Some of the above results can also be shown for the spaces of Shannon-equivalent
channels. The space of Shannon-equivalent channels with input alphabet X and out-
put alphabet ) can be naturally endowed with the quotient of the Euclidean topol-
ogy by the Shannon-equivalence relation. We show that this topology is compact,
path-connected and metrizable. A topology on the space of Shannon-equivalent
channels with arbitrary but finite input and output alphabets is said to be natural if
and only if it induces the quotient topology on the subspaces of Shannon-equivalent
channels sharing the same input and output alphabets. We show that every natural
topology is o-compact, separable and path-connected. We show that the finest nat-
ural topology, which we call the strong topology, is compactly generated, sequential
and Ty. We introduce the BRM metric on the space of Shannon-equivalent channels,
and we prove that its induced topology is natural. The definition of the BRM metric
relies on the characterization of the Shannon ordering in terms of BRM games.

Continuity of Channel Parameters and Operations

In Chapter 12, we study the continuity of many channel parameters and opera-
tions under various topologies on the space of output-equivalent channels, the space
of input-equivalent channels, and the space of Shannon-equivalent channels. The
continuity of channel parameters and operations might be helpful in the following
two problems:

e If a parameter (such as the optimal probability of error of a given code) is
difficult to compute for a channel W, one can approximate it by computing
the same parameter for a sequence of channels (W,,),>0 that converges to W
in some topology where the parameter is continuous.

e The study of robustness of a communication system against the imperfect
specification of the channel.

We show that mutual information, channel capacity, Bhattacharyya parameter,
the probability of error of a fixed code, and the optimal probability of error for
a given code rate and blocklength, are continuous under various topologies on the
space of output-equivalent channels. We also show that channel operations such
as sums, products, interpolations, and Arikan-style transformations are continuous
under these topologies.

As for the space of input-equivalent channels, we show that the channel capacity,
the probability of error of a given decoder, and the optimal probability of error for
a given code rate and blocklength, are continuous under the strong topology. We
also prove that channel sums and products are continuous under both the strong
and similarity topologies.

Finally, we study the continuity of channel parameters and operations on the
space of Shannon-equivalent channels. We show that the channel capacity and the
optimal probability of error for a given code rate and blocklength are continuous
under the strong topology. We also prove that channel sums and products are
continuous under the strong topology.
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An Ergodic Theory of Binary
Operations

In this chapter!, we develop an ergodic theory for binary operations. This theory
will be used in Chapter 3 to provide a necessary and sufficient condition for a binary
operation to be polarizing.

In Section 2.1 we introduce the notion of uniformity-preserving operations. A
uniformity-preserving operation * on X is a binary operation for which the mapping
fe 1 X2 — X? defined as fi(z,y) = (x * y,y) is bijective. It is called uniformity-
preserving since for any pair of random variables (X1, X3) in X2, (X1 * Xo, Xo) is
uniform in X2 if and only if (X1, X2) is uniform in X2. As we will see in Chapter
3, if % is not uniformity-preserving, then the Arikan style construction that is based
on * does not conserve the symmetric capacity. Hence being uniformity-preserving
is a necessary condition to be polarizing. On the other hand, being a quasigroup
operation is a sufficient condition [17]. Therefore, a necessary and sufficient condition
must be a property that is stronger than uniformity-preserving and weaker than
quasigroup. A reasonable strategy to search for a necessary and sufficient condition
is to relax the quasigroup property while keeping the uniformity-preserving property.

The difference between a quasigroup operation and a uniformity-preserving op-
eration is that in the case of a quasigroup operation, any element is reachable from
any other element by one multiplication on the right. This property does not always
hold for a uniformity-preserving operation.

One possible relaxation of the quasigroup property is to consider uniformity-
preserving operations where all the elements are reachable from each other by mul-
tiple multiplications on the right. Irreducible and ergodic operations — which are
defined and studied in Section 2.2 — satisfy this property. The concepts of irre-
ducible and ergodic operations are very similar to the concepts of irreducible and
ergodic Markov chains. The reason why we consider such binary operations is be-
cause of their good connectability properties: If the elements of X are well connected
under %, this will create strong correlations between the inputs of the synthetic chan-
nels, which should ultimately lead to a polarization phenomenon.

Although ergodic operations seem to have good connectability properties, this

'The material of this chapter is based on [15, 16].
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is not enough to ensure polarization as we will see in Chapter 3. It turns out that
we need a stronger notion of ergodicity. In order to define this stronger notion of
ergodicity, we first need to define stable partitions. Section 2.3 introduces balanced,
periodic and stable partitions and investigates their properties. Stable partitions
are a generalization of the concept of quotient groups. In Section 2.4, we introduce
and study the notion of the residue of a stable partition and in Section 2.5 we define
and investigate strongly ergodic operations. We show that an ergodic operation
is strongly ergodic if and only if each stable partition is its own residue. Strong
ergodicity is a novel concept and has no analog in the ergodic theory of Markov
chains. We will show in Chapter 3 that a binary operation is polarizing if and only
if it is uniformity-preserving and its right-inverse is strongly ergodic.

Generated stable partitions are introduced and studied in Section 2.6. This
concept is needed to show that the strong ergodicity of the right-inverse operation
is a sufficient condition for polarization.

The products of binary operations are defined in Section 2.7 and the structure
of their stable partitions is studied. We show that the product of a sequence of
binary operations is strongly ergodic if and only if every operation in the sequence
is strongly ergodic. As we will see in Chapter 4, the products of binary operations
and their stable partitions are important for the study of MAC polarization theory.

2.1 Uniformity-Preserving Operations

All the sets that are considered in this chapter are finite.

Definition 2.1. A uniformity-preserving operation * on X is a binary operation
such that the mapping f. : X* — X2 defined by f.(z,y) = (x*y,y) is bijective. It is
called uniformity-preserving since for any pair of random variables (X1, X2) in X2,
(X1 % Xo, Xo) is uniform in X? if and only if (X1, X2) is uniform in X2.

Remark 2.1. It is easy to see that * is uniformity-preserving if and only if it satisfies
the following condition:

e The multiplication-on-the-right mappings 7, : X — X defined by mp(x) = z b
are bijective for all b € X. We denote 7rb_1(a) as a/*b. The binary operation
/* is called the right-inverse of .

It is easy to see that if * is uniformity-preserving then /* is uniformity-preserving
as well.

Definition 2.2. A uniformity-preserving operation is said to be a quasigroup oper-
ation if it also satisfies the following:

e The multiplication-on-the-left mappings ny : X — X defined by ny(x) = b*x x
are bijective for all b € X. We denote 77b_1(a) as b\«a. The binary operation
\« 1s called the left-inverse of *.

It is easy to see that if * is a quasigroup operation then /* and \. are quasigroup
operations as well.

Note that for a general quasigroup operation *, we may find a,b € X such that
7rb_1(a) =a/*b# b\va = nb_l(a). This is why we use different notations for left and
right inverses.
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Notation 2.1. Let A and B be two subsets of X. We define the set:
AxB:={axb: a€ A bec B}.
For a,b € X, we denote {a} * B and A x {b} by ax B and A x b respectively.

It is easy to see that if x is uniformity-preserving and B is non-empty, then
|Ax B| > |A|. On the other hand, the relation |Ax B| > | B| does not hold in general
unless * is a quasigroup operation and A is non-empty.

2.2 Irreducible and Ergodic Operations

In this section and throughout the chapter, * is always a uniformity-preserving
operation.

Definition 2.3. Let x be a uniformity-preserving operation on a set X. We say that
a € X is x-connectable to b € X in [-steps if there exist | elements xg,...,x;_1 € X

satisfying (... ((axxg) *x1)...*xx;-1) = b. We denote this relation by a g,

We say that a is *-connectable to b if there exists | > 0 such that a Hhop, We
denote this relation by a — b.

Definition 2.4. A uniformity-preserving operation * is said to be irreducible if all
the elements of X are x-connectable to each other. If x is irreducible, we define the

period of an element a € X as per(x,a) :=ged{l >0: a N a}, and we define the
period of x as:

per(x) := ged {per(*,a) : a € X'} chd{l ~0: Jac X,a*—’l>a}.

Definition 2.5. If there exists | > 0 such that all the elements of X are x-connectable
to each other in | steps, we say that the operation x is ergodic. In this case, we call
the minimum integer I > 0 which satisfies this property the connectability of the
operation *, and we denote it by con(x), i.e.,

con(*):min{l>0: Va,b e X, a*—’l>b}.

Remark 2.2. In order to justify our choice of terminology in the previous definition,
consider a sequence (X, )n>0 of independent and uniformly distributed random vari-
ables in X. Define (X )n>0 recursively as follows: Xo = X( and X, = X1 * X,
forn > 0. It is easy to see that (X,)n>0 is a stationary Markov chain. We have the
following:

o x is irreducible if and only if (Xy)n>0 ts irreducible.
o x is ergodic if and only if (Xy)n>0 15 ergodic.

The following proposition shows the important properties of irreducible and er-
godic operations. These properties will be used in Chapter 3 to show that every
polarizing operation is ergodic.

Proposition 2.1. We have the following:



26 An Ergodic Theory of Binary Operations

1. FEvery quasigroup operation is ergodic, and every ergodic operation is irre-
ducible.

2. If % is uniformity-preserving but not irreducible, there exists two disjoint non-
empty subsets A1 and As of X such that Ay UAy = X, A1 x X = Ay and
AQ * X = Ag.

3. If x is irreducible, we have per(x,a) = per(x) for all a € X.

4. If x is irreducible, there exists a partition € of X containing n = per(x) subsets
Hy, ..., Hy—1 such that H; x X = H;1 1 mod n for all 0 < i < n. Moreover, we
have |Hy| = ... = |Hp—1].

5. If x is irreducible, there exists an integer d > 0 such that for every 0 < i <mn =
per(x), every element of H; is x-connectable to every element of Hi+qmod n 0
d steps. We call the least integer d > 0 satisfying this property the connectabil-
ity of the irreducible operation x and we denote it con(x) (This definition is
consistent with the definition of the connectability of ergodic operations. Le.,
the connectability of an ergodic operation when it is seen as an irreducible oper-
ation is the same as its connectability when it is seen as an ergodic operation).

6. If x is irreducible, then for every s > con(x) and every 0 < i < n = per(x),
any element of H; is x-connectable to any element of H;ysmodn in S steps.

7. If % is irreducible, per(x) = 1 if and only if x is ergodic.

8. If x is ergodic, all the elements of X are x-connectable to each other in s steps
for any s > con(x).

9. If % is ergodic, then con(x) = 1 if and only if x is a quasigroup operation.
10. If * is irreducible (resp. ergodic), then /* is irreducible (resp. ergodic) as well.

Proof. See Appendix 2.8.1. O

2.3 Balanced, Periodic and Stable Partitions
Notation 2.2. Let H be a set of subsets of a set X, we define the following:

o [[Hlir = min [H].
o [#llv = max |HJ.

Definition 2.6. A partition H of a set X is said to be a balanced partition if all
the elements of H have the same size. We denote the common size of its elements
by |H||. The number of elements in H is denoted by |H|. Clearly, |X| = |H| - ||H||
and ||H|| = ||H||n = [|[H]||v for such a partition.

Definition 2.7. Let H be a partition of a set X. We define the projection onto H
as the mapping Projy, : X — H, where Projy(x) is the unique element H € H such
that x € H.
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Notation 2.3. Let A and B be two sets of subsets of X. We define AxB as follows:
AxB={AxB: Ac A, B € B}.

Definition 2.8. Let H be a set of subsets of X, and let * be a uniformity-preserving
operation on X. We define the set H* = H+H = {Ax B : A B € H}, and we
define the sequence (H"™*),>o recursively as follows:

o HO* =H.
o H™ = (H ) = HO= D s H (=D for alln > 0.

Definition 2.9. A partition H of X is said to be a periodic partition of (X, *) if
there exists n > 0 such that H™ = H. In this case, the minimum integer n > 0
which satisfies H™ = H is called the period of H, and it is denoted by per(H).

A partition H of X is said to be a stable partition of (X, ) if H is both balanced
and periodic.

Throughout the chapter, we write that # is a periodic (resp. stable) partition
of X if the binary operation * is clear from the context.

Example 2.1. Let Q = Zyp X Ly, define (x1,y1)*(x2,y2) = (x1+y1+22+y2, y1+Y2)
which is a quasigroup operation. For each j € Z, and each 0 < i < n, define
Hij={(+ikk): kel Let H; ={H;;: j € ZLn} for 0 <i < n. Itis easy
to see that H = Hip1 for 0 <i <n—1 and H),_; = Ho. Therefore, H :==Hy is a
periodic partition of (Q,*) and per(H) = n. Moreover, H is balanced with |H|| = n,
hence H is a stable partition.

Proposition 2.2. Let H be a periodic partition of (X,*). For every n > 0, we
have:

1. H™ is a periodic partition and has the same period as H, i.e., per(H™) =

per(H).
2. |H™| = |H|.
Proof. see Appendix 2.8.2. O

Lemma 2.1. [H*[ly > [[H[lv and [[H*[[x = [[H][-

Proof. Let A € H be such that A = ||H||y, then A% A € H*. Thus, ||[H*||, >
A Al > A] = [H]v.

Now let B and C be two elements of H such that |B x C| = ||H*||». We have
|B x C| > |B| > ||H]||x. This implies that [|[H*||x > ||H]A- O

Proposition 2.3. Let H be a stable partition of (X,x). For every n > 0, H™ is a
stable partition satisfying per(H™) = per(H) and |H™| = ||H]||.

Proof. Proposition 2.2 shows that H™" is a periodic partition of period per(H™) =
per(H). It remains to show that H™* is balanced and that ||H"™*| = ||H|. Let p > 0
be the smallest multiple of per(?) which is greater than n, i.e.,

p =min{k -per(H): k>0, k-per(H) > n}.

We have HP* = H since per(H) divides p. By Lemma 2.1 we have:
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o [H] = IHlr < NH* A

IN

e S H A < S P = A = (-
o [HI=1H]v <[H v <... <[H™[lv <... <[[H"]lv = [[H]lv = [[#]]

Therefore, [|[H™*||x = |H™|lv = ||H]|, which means that for every A € H"* we
have |A| = ||H]|. We conclude that H™" is balanced and |H™| = ||H]. O

Lemma 2.2. If x is ergodic then every periodic partition is stable.

Proof. Let H be a periodic partition of X'. We only need to show that H is balanced.

Let n = per(H) and m = min{kn : k£ > 0 and kn > con(x)}. Clearly, H"™* = H.
Moreover, statement 8 of Proposition 2.1 shows that all the elements of A are *-
connectable to each other in m steps. Let H € H be chosen such that |H| is maximal

and let H' be any element of H. Let h € H and &/ € H'. We have h =25 h/ so there
exist m elements xg, ..., 2,1 € X satisfying (... ((h*z) * x1) ... % Typ_1) = 1.
Since M covers X, then each of H*, H?*, ..., and H™ D* covers X as well.
And so there exist Xy € H, X1 € H*, ..., and X,,_1 € K" D* guch that z¢ € Xy,
x1 € X1, ..., and Zy—1 € Xyp—1. Now since (... ((h*xzo) * x1)... % Tpp1) = I
and since h € H, we have h' € H" := (... ((H * Xo) * X1)...* X;n—1). From the
definition of H”, we have H" € H™ = H. Moreover, h' € H' N H", so H = H"
since H is a partition. We conclude that H' = (... ((H * Xo)* X1)...* X;,—1) which
implies that |H'| > |H|. On the other hand, we have |H| > |H’| since H was chosen
so that |H| is maximal. We conclude that |H'| = |H]| for all H' € H, hence H is
balanced. 0

Remark 2.3. The ergodicity condition in the previous lemma cannot be replaced by
irreducibility. Consider the following irreducible (but not ergodic) operation:

[«[lofz][2]3]
0] 2] 3] 2] 2
1 3[2]3]3
AIAE
s 1[1]1]0

Although the partition H = {{0,1},{2},{3}} is not balanced, we have H** = H.

The following proposition shows that the concept of periodic partitions general-
izes the concept of quotient groups:

Proposition 2.4. Let (G, *) be a finite group, and let H be a periodic partition of
(G, x). There exists a normal subgroup H of G such that H is the quotient group of
G by H (denoted by G/H ).

Proof. Since every group operation is ergodic, Lemma 2.2 implies that H is stable,
i.e., it is also balanced.

Let H be the element of H containing the neutral element e of G. For every
H' € H, we have |H'| = |H* H'| = |H' « H| = |H|| since H+« H' € H*, H' x H € H*
and |H*|| = ||H||. On the other hand, we have H = ex H C H « H and H' =
H' xe C H x H. We conclude that H x H' = H' x H = H'. Therefore,

e Hx H=H, hence z xy € H for every x,y € H.
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e Forevery z € H, we have |H x| = |H|. On the other hand, Hxx C HxH = H.
Therefore, H * x = H which implies that e € H x x and so there exists 2’ € H
such that 2’ x x = e. We conclude that the inverse of every element of H is
also in H.

e Forevery x € G let H, € ‘H besuchthat x € H,. Wehave xxH C H,xH = H,

and |z x H| @ |H| = |Hg|, where (a) follows from the fact that = is a group
operation. Therefore, x «x H = H,. Similarly, we can show that H x x = H,.
Hence z * H = H x x = H, for every x € G.

We conclude that H is a normal subgroup of GG, and H is the quotient group of G
by H. O

Definition 2.10. A periodic partition Hi is said to be a sub-periodic partition of
another periodic partition Ho if for every Hi € Hy, there exists Ho € Ho such that
Hy C Hy. We denote this relation by Hi = Ha, and we say that Hq is finer than
Ho.

If Hy and Ho are two stable partitions satisfying Hq1 = Ho, we say that H1 is a
sub-stable partition of Ha (in such case, we clearly have ||H1|| divides ||Hz]| ).

Remark 2.4. Let (G,*) be a group and let Hi be a sub-periodic partition of a
periodic partition Ho. If Hyy, and Hyy, are the normal subgroups associated with Hq
and Ho respectively, then Hyy, is a normal subgroup of Hyy,.

Definition 2.11. For any two partitions Hy and Ha of a set X, we define:
Hi ANHy = {Hl NHy: H € Hi, Hy € Ho, H N Hy #Q}

Proposition 2.5. If Hy and Ho are periodic partitions then Hqi N\ Ho is a periodic
partition of period of at most lem{per(H1),per(Hz2)}. Moreover, we have (Hi A
Ho)™ = HY* NHE* for every n > 0.

Proof. See Appendix 2.8.2. O

Corollary 2.1. Let * be an ergodic operation. If H1 and Ho are two stable partitions
then H1 A Ha is a stable partition of period of at most lem{per(H1), per(H2)}.

Proof. The corollary follows from Proposition 2.5 and Lemma 2.2. 0

Remark 2.5. Let (G, x) be a group. If Hi and Ho are two periodic partitions of
(G, %), then Hyyynny = Hygy, O Hy, .

Remark 2.6. The ergodicity condition in Corollary 2.1 cannot be replaced by irre-
ducibility. Consider the following irreducible (but not ergodic) operation:

| [2]3] 4]

[617]

S RSN RSN SRS N RN AN RSN

1 5
5 4
4 5
7 6
6 7
0 1
1 0
2 3
3 2

S SIS RS E N ESIESS
Co| 0| ~| S|ae| v | <
S S ENESI RIS SRS
~| | Wl | | | |
S| ~| o] o| | | T v~

[ | il e ~| || *
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Define:
Hi = {{Ov 1},{2,3},{4,5}, {6, 7}})
Ho = {{07 2}7 {13 3}> {4a 5}7 {67 7}}
While both Hi and Ho are stable partitions of periods 1 and 2 respectively, the

partition Hy A Ha = {{0}, {1}, {2}, {3},{4,5},{6,7}} is periodic but it is not stable
as it is not balanced.

2.4 The Residue of a Stable Partition

Let H be a stable partition. Let H € H and = € H. For any sequence (Xp,)n>0
satisfying X,, € H™ for all n > 0, define the sequences (Ay)n>0 and (Hp)p>0
recursively as follows:

e Ay ={x}and Hy=H.
® An:An—l*Xn—l :(<(x*X0)*X1)*Xn_1)
e Hy=H, 1x X1 =(..(H*xX0)*X1)...x Xp—1).

Since x € H, we can show by induction on n that A, C H, € H™ and so |A,| <
|Hy| = ||H™|| = ||H|| for all n > 0. Therefore, |H,| is constant. On the other hand,
|An| > |Ap—1] since A, = A,—1 * X,,—1. Hence, |A,| is increasing and it is upper
bounded by [|H]|.

Does | A, | reach || H|| or does |A,| remain strictly less than ||#|| for all n > 07 In
other words, do we have A,, = H,, for some n > 0 or does A,, remain a strict subset
of Hy, for all n > 0? The answer depends of course on the sequence (X,,),>0, S0 one
can ask: Is it possible to choose at least one sequence (X,,)n>0 for which |A,| = || H||
and A,, = H,, for some n > 07

What are the stable partitions H for which it is always possible to reach a set in
H™ for some n > 0 starting from an arbitrary singleton in X and then recursively
multiplying on the right by sets chosen from H* (0 <i < n)?

It is easy to see that for the trivial stable partition H = {X'}, the above condition
is equivalent to ergodicity. Therefore, satisfying the above condition for every stable
partition is a stronger notion of ergodicity. Strong ergodicity turns out to be impor-
tant for polarization theory as we will see in Chapter 3. In this section, we introduce
the notions and concepts that are necessary to understand strong ergodicity.

Notation 2.4. Let X = (X;)o<i<k be a sequence of subsets X; of X. We denote the
length k of the sequence X by |X|.

For every A C X, we denote (... ((AxXo)xX1)...)xX_1) by AxX. If A ={a},
we write a x X to denote {a} * X.

The n'* power of the sequence ¥ = (Xi)o<i<k is the sequence X™ = (X])o<i<kn,
where X! = X; mod k for 0 < i < kn. Le., X™ is obtained by concatenating n copies
of X.

Definition 2.12. Let H be a stable partition of (X,*) where  is uniformity-
preserving. A sequence X = (X;)o<i<k is said to be H-sequence if Xg € H, X1 € H*,
ooy Xp—1 € HED* If we also have that per(H) divides |X| = k, we say that the
sequence is H-repeatable.
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An H-repeatable sequence X is said to be H-augmenting if A C A x X for all
ACX.

Remark 2.7. If X is H-repeatable, then X! is an H-sequence for every | > 0. This
is not necessarily true if X is an H-sequence which is not repeatable.

If a sequence is H-augmenting then it is also H-repeatable by definition. There-
fore, whenever we need to show that a sequence is H-augmenting, we have to show
first that it is H-repeatable.

If X is H-augmenting then X! is H-augmenting for every 1 > 0.

Theorem 2.1. Let H be a stable partition of (X, *) where * is ergodic. There exists
a unique sub-stable partition Ky of H such that:

e For every K € Ky and every H-sequence X, we have K x X € JCpy X1
o For every K € Ky and every x € K, there exists an H-augmenting sequence
X such that x x X = K.

e For every K € Ky, every v € K, and every H-augmenting sequence X', we
have z * X' C K.

Ky is called the first residue of the stable partition H. We also have Ky = Kqqi
for all 1 > 0.

Proof. See Appendix 2.8.3. O

Remark 2.8. Theorem 2.1 implies that an ergodic operation is strongly ergodic if
and only if Ky = H for every stable partition H of X. This will be explained and
proven in detail in Section 2.5.

Remark 2.9. [t is possible to prove a more general theorem for the periodic parti-
tions of an arbitrary uniformity-preserving operation:

Let H be a periodic partition of (X,*) where *x is an arbitrary uniformity-
preserving operation. There exists a unique sub-periodic partition Ky of H such
that:

o For every K € Ky and every H-sequence X, we have K x X € JCqy X1
o For every K € Ky and every x € K, there exists an H-augmenting sequence
X such that x x X = K.

e For every K € Ky, every v € K, and every H-augmenting sequence X', we
have z * X' C K.

KCyy is called the first residue of the periodic partition H. We also have Ky"* = Koy
for all1 > 0.

We will not prove this general theorem here since Theorem 2.1 is sufficient for
our purposes. The proof of the general theorem is more complicated but follows
similar steps as the proof of Theorem 2.1.

Note that if the operation x is not ergodic, Ky may not be a stable partition
even if H is a stable partition. Consider the following irreducible (but not ergodic)
operation:
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(= of1][2][3]4][5][6]7]
01 4191415141444
1514151415555
26171676666
sl 716l 767|777
il 22222323
51313333232
6llololololol1]0]1
711111010

Let H = {{0,2},{1,3},{4,5},{6,7}}, which is a stable partition of period 2. The
reader can check that Ky = {{0}, {1}, {2}, {3},{4,5},{6,7}} which is periodic but
not stable as it is not balanced.

Definition 2.13. Let H be a stable partition of (X, *) where x is ergodic. For every
n >0, we define the n'" residue R,,(H) of H recursively as follows:

o RO(H) =H.
o Ri(H) = Kx.
® Rot1(H) = Ri(Ru(H)) = Kr, () for everyn > 1.

The residual degree degp(H) of H is the smallest integer n > 0 that satisfies
Rn+1(H) = Ru(H). The residue of H is defined as R(H) := Raeg, 2)(H). Clearly
RA(R(H)) = Ky = R(H) and R(R(H)) = R(H).

Remark 2.10. In the application to polarization theory, we will only need the first
residue. We just note here that for everyn > 0, there exists an ergodic operation and
a stable partition H of residual degree n. In other words, there are stable partitions
of arbitrary residual degrees.

2.5 Strongly Ergodic Operations

Definition 2.14. A uniformity-preserving operation * is said to be strongly ergodic
if for every stable partition H and for every x € X, there exists an integer n =
n(xz,H) such that for every H € H™, there exists an H-sequence X, g of length n
such that x * X, g = H.

Theorem 2.2. We have the following:
1. If % is strongly ergodic then it is ergodic.

2. If x is strongly ergodic, there exists an integer d > 0 such that for every s > d,
every stable partition H, every x € X and every H € H%*, there exists an
H-sequence Xy of length s satisfying v+ X, g = H. If d is minimal with this
property, we call it the strong connectability of %, and we denote it by scon(x).

3. If x is ergodic, then x is strongly ergodic if and only if Ky = H for every
stable partition H (i.e., every stable partition H is its own residue, and so the
residual degree is zero).
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4. If % is a quasigroup operation then it is strongly ergodic.

Proof. 1) Suppose that * is strongly ergodic and consider the trivial stable partition
{X}. For every z € X, there exists ny > 0 such that z * (X')" = X. This shows
that for every y € X, x oy y which shows that x is irreducible. Let n = per(x)
and let Hy,..., H,_1 be the equally sized subsets of X given by the fourth point of
Proposition 2.1.

Let x € Hy. We have X =z (X)" C Hy* (X)™ = H,,_ mod n, Wwhere the last
equality follows from the fourth point of Proposition 2.1. Therefore, H;,, modn = X
which implies that n = 1 since {Hy, ..., H,—1} is a partition. Therefore, per(x) = 1
and so * is ergodic by the seventh point of Proposition 2.1.

2) Let % be strongly ergodic, and define d = mg{xn(x,%), where n(xz,H) is
xX

as in Definition 2.14. Now fix x € X and fix a stable partition H. Let s > d
and fix H € H¥. If s = n(z,H), there is nothing to prove. Now suppose that
s >n = n(x, H), then there exists H' € H™ and an H"™*-sequence X of length s —n
such that H' « X = H. Moreover, there exists an H-sequence X, g+ of length n such
that =« X, g» = H'. We conclude that z * (X, g, X) = H.

3) Let H be a stable partition of (X, %) where * is strongly ergodic, and let
x € X, K € Ky and H € H be chosen so that x € K C H. Let s = scon(x) - per(H).
We have H** = H since per(H) divides s. Now since s > scon(x) and H € H = H**,
there exists an H-sequence X, y of length s such that x x X, y = H. We have
reH=xxX, g C KxX; g,s0x € KX, g which implies that KN (K*X, i) # ¢
(since we also have z € K'). On the other hand, Theorem 2.1 implies that K «X, i €
Ky** = Ky. Therefore, K * X, g = K since Ky is a partition. We conclude that
H =xxX; gy C K+xX; g = K which implies that H = K since we also have K C H.
Therefore, ||yl = ||| and so Ky = H.

Now suppose that x is an ergodic operation which satisfies Ky = H for every
stable partition H. Let z € X and let H be a stable partition. Let k£ = con(x) -
per(H) > con(x), and for each H € H fix xg € H and let Xy be an H-augmenting
sequence such that zg « Xy = H (such Xp exists due to Theorem 2.1). Define
n(x,H) =k+ Z |X | and define X’ to be the H-augmenting sequence obtained by

HeH
concatenating all the X 7 sequences (the order of the concatenation is not important).

It is easy to see that xy * X’ = H for all H € H: We have zg x X’ € H from
Theorem 2.1. On the other hand, H C zg * X’ follows from the fact that X’ is the
concatenation of a collection of H-augmenting sequences containing Xy and that
xg* Xy = H. We also have |X'| = Z |Xr7|. Now since k > con(x), it follows from

HeH
Proposition 2.1 that for every H € H there exists a sequence xq, . .., x_1 satisfying
(...((xxmg)*x1)...%x—1) = . Let Xy = (Xo,...,X,_1) be an H-sequence of

length k such that z; € X; for all 0 <14 < k. Clearly, xy € = x X/;. It is easy to see
that the sequence X%, = (X;, X’) is of length n(z, H) and satisfies H C x*X’;. Now
let H, € H be chosen so that z € H,. Since H, € H = K4, Theorem 2.1 implies
that we have H, * X7, € Kyjn(e2« = Ky = H (note that HM®H)* = H since per(H)
divides n(z,H)). We conclude that H C z « X}, C H, * X, € H, which implies
that H = x « X/}, = H, = X/, since we have H € H and H is a partition. Therefore,
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for every H € H = H™®H)* there exists an H-sequence X, of length n(z,H) such
that x « X, = H. Thus, = is a strongly ergodic operation.

4) Let H be a stable partition of a quasigroup operation *. For every K € Ky
and every = € K, there exists an H-augmenting sequence X = (X;)o<i<k such that

(a)
K = x % X, which implies that |K| = |z x X| = |(:U * (Xi)0§i<k_1) * Xk—l‘ >

| Xk—1| = ||H||, where (a) is true because x is a quasigroup operation. We conclude
that [[ICx|| = ||H|| which implies that Ky = H. O

Remark 2.11. While every strongly ergodic operation x is ergodic, the converse is
not true. Consider the following operation:

[+ flolz]2]3]
0 2]2]0]0
133 1]1
2 1]1]3]3
AREE

The first residue of the stable partition H = {{0,1},{2,3}} is

IC’H = {{O}v {1}7 {2}7{3}} 7é H.

Also, a strongly ergodic operation need not be a quasigroup operation, here is an
example:

W=D || D
| D =] of| ~
|~ D ol e
| =D || Lo

2.6 Generated Stable Partitions

Definition 2.15. Let A and B be two sets of subsets of X. We say that A is finer
than B (or B is coarser than A) if for every A € A there exists B € B such that
A C B. We write A X B to denote the relation “A is finer than B”.

Let A be a set of subsets of X'. Is it possible to find a periodic partition of (X, %)
which is coarser than A and finer than every other periodic partition that is coarser
than A7 Similarly, is it possible to find a stable partition of (X, *) which is coarser
than A and finer than every other stable partition that is coarser than A7 The
following answer these two questions.

Proposition 2.6. Let x be a uniformity-preserving operation on X, and let A be a
set of subsets of X. There exists a unique periodic partition (A) which satisfies the
following:

o A< (A).

e [or every periodic partition H of X, if A X H then (A) < H.
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In other words, (A) is the finest periodic partition that is coarser than A. (A) is
called the periodic partition generated by A.

Proof. Define
(A) = A H. (2.1)

H is a periodic partition

A=H

Proposition 2.5 implies that (A) is a periodic partition. Moreover, it follows from
(2.1) and from the definition of the wedge operator (Definition 2.11) that for every
periodic partition #H satisfying A < H, we have (4) < H.

Now let A € A. We have:

o If A=g, then A C B for every B € (A).

e If A # ¢, then for every periodic partition H satisfying A < H, choose By € H
such that A C By. Define

B = N By,.

H is a periodic partition
A=SH

Clearly, A C B which implies that B # ¢ and so B € (A) (see Definition 2.11).
We conclude that for every A € A, there exists B € (A) such that A C B. Therefore,
A=< (A).

Now let H’ be a periodic partition satisfying the conditions of the proposition.
Le.,

e A<H.
e For every periodic partition H of X, if A < H then H' < H.

Since A < (A), we have H' < (A). Similarly, since A < H' we have (4) < H'
Therefore, H' = (A) and so (A) is unique. O

Remark 2.12. It is possible to show that (A)™ = (A™) for every n > 0, bul we
will not prove this here since we do not need this property for our purposes.

Corollary 2.2. Let * be an ergodic operation on X, and let A be a set of subsets of
X. There exists a unique stable partition (A) which satisfies the following:

o« A=< (A).
e For every stable partition H of X, if A <X H then (A) X H.

In other words, (A) is the finest stable partition that is coarser than A. (A) is called
the stable partition generated by A.

Proof. The corollary follows from Proposition 2.6 and from the fact that if % is an
ergodic operation on X then every periodic partition is stable (see Lemma 2.2). [
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Remark 2.13. The ergodicity condition in Corollary 2.2 cannot be replaced by irre-
ducibility. Consider the irreducible (but not ergodic) operation x of Remark 2.6, and
let A= {{0,1},{2,3}}. Notice that there is no stable partition that is both coarser
than A and finer than every stable partition that is coarser than A. Therefore, if *
s not ergodic, the concept of “generated stable partitions” is not always well defined.

Let A be a set of subsets of X which covers X and does not contain the empty set
as an element. We have A < (A) which implies that A™ < (A)"™* for every n > 0.
Can we find n > 0 for which A™ = (A)"*? The rest of this section is dedicated to
show that the answer to this question is affirmative if * is strongly ergodic. This
property of strongly ergodic operations turns out to be important for polarization
theory as we will see in Chapter 3.

Definition 2.16. Let A be a set of subsets of X. We say that A is an X-cover if
0¢ Aand X = U A.

AcA
We say that an X-cover A is periodic if A™ = A for some n > 0. The least

integer n > 0 satisfying A™ = A is called the period of A, and it is denoted by
per(A).

We say that an X -cover A is balanced if for every Ai, As € A we have |A;| =
|As|. An X-cover A is said to be stable if it is both periodic and balanced.

Proposition 2.7. If x is a strongly ergodic operation on a set X, then every stable
X -cover is a stable partition.

Proof. See Appendix 2.8.4. O

Remark 2.14. The strong ergodicity condition in Proposition 2.7 cannot be replaced
by ergodicity. Consider the following ergodic (but not strongly ergodic) operation:

(xJof1]2][3]4]5)]
o 3|3|3|10]0]0
7 7111111
216156152122
3| 1111|555
401 21212[3]3]|83
sTololo0l 41414

The set {{0,1},{0,2},{1,2},{3,4},{3,5},{4,5}} is a stable X-cover of period 1,

but it is not a partition.

Definition 2.17. Let A be a set of subsets of X. The core of A is defined as
core(A) = {A € A: |A] = |All} = {A cA: |Al= Bé‘ﬁ‘B’}'

Lemma 2.3. Let x be a uniformity-preserving operation on X and let A be a periodic
X-cover. We have | A™ ||y = ||A|lv for everyn > 1.

Proof. Let p = min{k - per(A) : k-per(A) > n}. Lemma 2.1 implies that
[Allv < A%V <. < [AY v < < [lAP = (LAl
Therefore, [|A™ ||y = [|A|v. O
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Proposition 2.8. Let x be an ergodic operation on X. If A is a periodic X-cover,
then core(A) is a stable X-cover and per(core(A)) divides per(A). Moreover, we
have core(A)™ = core(A™) for every n > 1.

Proof. See Appendix 2.8.5. O

Proposition 2.9. Let x be a strongly ergodic operation on X. If A is a periodic
X -cover, then (A) = core(A).

Proof. Proposition 2.8 implies that core(.4) is a stable X-cover and per(core(.A))
divides per(.A). On the other hand, Proposition 2.7 implies that core(A) is a stable
partition.

Fix a € A € Aand let B € core(A) be such that a € B. Theorem 2.1 implies the
existence of a core(.A4)-augmenting sequence X such that a* X = B. Since a € A, we
have B = a* X C AxX. On the other hand, we have A * X € A™, where n = |X]|.

This means that |A x X| < [|A™||y @ | Allv = |B|, where (a) follows from Lemma
2.3.

Now since B C Ax X and |A *x X| < |B|, we must have A X = B. On the other
hand, since X is core(.A)-augmenting, we have A C Ax X = B.

We have just shown that for every A € A, there exists B € core(A) such that
A C B. Therefore, A < core(.A), which implies that (A) < core(A). On the other
hand, since core(A) C A, we have core(A) < A, which implies that core(A) < (A).
We conclude that (A) = core(A). O

Remark 2.15. The strong ergodicity condition in Proposition 2.9 cannot be replaced
by ergodicity. Consider the ergodic operation x* of Remark 2.14, and consider the
the X -cover

A={{0,1},{0,2},{1,2},{3,4},{3,5},{4,5}}.
core(A) = A is not a partition, hence core(A) # (A).

Theorem 2.3. Let % be a strongly ergodic operation on a set X. For every X -cover
A, there exists an integer n < 22 such that (A) = core(A™) and per((A)) divides
n, i.e., (A) = (A)™ = core(A™) C A™.

Proof. 21%! is the number of subsets of X, and 22*! ig the number of sets of subsets
of X. Thus, the sets A™ for 0 < i < 22* cannot be pairwise different. Therefore,
there exist at least two integers 0 < ny < ng < 922* quch that A™* = A"2*. Define
p=mno —nq and let 0 < ng < p be such that ng = —ny mod p. Define n = nq + ns.
We have n < nj; +p=mng < 22 On the other hand, since n = 0 mod p, it follows
that p divides n.

We have

(An*)p* _ A(n1+n3+p)* _ A(TL2+TL3)* _ (Ang*)ng* _ (A?’Ll*)ng* _ An*7

which shows that 4™ is a periodic X-cover and per(A™) divides p. But p divides
n, so per(A™) divides n.

Proposition 2.8 shows that core(A™) is a stable X-cover and per(core(.A™"))
divides per(A™*). This implies that per(core(A™*)) divides n. On the other hand,
Proposition 2.7 implies that core(A™) is a stable partition.
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Now let A € A and let a be an arbitrary element of X. Define the mapping
m: X — X as m(z) = x x a. Since 7 is a permutation, there exists k£ > 0 such that
7F(z) = x for every x € X. Now for every 0 < i < kn, let X; € A™ be such that
a € X; and let X = (X;)o<i<kn. We have:

o AxX e Aknr,
e A C AxXsince n""(x) = x for every x € X.
o AFrx = (A (=D — An* gince per(A™) divides n.

We conclude that A € A*x X € A™. Therefore, A < A™. On the other hand,
Proposition 2.9 implies that A™* < core(A™). Therefore, A < core(A™).

Now since core(A™) is a stable partition (hence it is also periodic), we must
have (A) < core(A™) by Proposition 2.6. On the other hand, we have:

e Since A < (A) then A"P* < (A)"P* where p = per({.A)).

o A" = (A™)p—nx @ A™ where (a) follows from the fact that per(A™)
divides n.

o (A)"P* = (A) since p = per((A)).
Therefore, A™ < (A). But core(A™) C A™, which implies that core(A™) < A™,
hence core(A™) < (A). We conclude that core(A™) = (A) as we have already
shown that (A) < core(A™). O

Remark 2.16. The strong ergodicity condition in Theorem 2.3 cannot be replaced
by ergodicity. Consider the ergodic operation * of Remark 2.1/, and consider the
the X -cover

A= {{0,1},{0,2},{1,2},{3,4},{3,5},{4,5} },

which is not a partition. We have the following:
e [t is easy to see that core(A™) = A™ = A for every n > 0.
e Since A is not a partition, core(A™) = A is not a partition for any n > 0.

Therefore, core(A™) # (A)™ for every n > 0.

2.7 Product of Binary Operations

Definition 2.18. Let Ay,..., &, be m sets, and let *i,..., %, be m binary op-
erations on Xi,..., Xy, respectively. We define the product of *1,..., %y, denoted
* = %1 Q... QR %y, as the binary operation x on X1 X -+ X X, defined by:

(x1, @9, .y m) * (2,5, .. 2)) = (21 %1 2, 0 %0 Ty oo Ty % ).

Proposition 2.10. Let xq,...,%,, be m binary operations on Xi,...,X,, respec-
tively. Let X = X1 X --- X X and x = %1 @ ... ® *p,. We have:

1. x is uniformity-preserving if and only if *1, ..., %, are uniformity-preserving.
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2. If % is irreducible then x1, ..., %, are irreducible. The converse is not neces-
sarily true.

3. x is ergodic if and only if %1, ..., %, are ergodic. Moreover,
con(x) = max{con(xy),...,con(kmy)}.
Proof. 1) Suppose that #1,...,*,, are uniformity-preserving. Fix

b= (b1,....bm) €X

and define the mapping 7, : X — X as m(z) = b for all z € X. Now let
y = (Y1,...,ym) € X. For every 1 < i < m, *; is uniformity-preserving and so
there exists x; € X; such that z; *; b; = y;. Define x = (z1,...,2,). We have
mp(z) = x+xb = y. Therefore, m, is surjective which implies that it is bijective. Since
this is true for every b € X', % is uniformity-preserving.

Conversely, suppose that * is uniformity-preserving and let 1 <i < m. Fix b; €
AX; and define the mapping m, : X; — X as m, (z;) = x; %; b; for all z; € X;. Now let
y; € X; and choose arbitrarily y; € X for each j # i. Define y = (y1,...,ym) € X.
Since * is uniformity-preserving, there exists z = (x1,...,2;,) € X such that y = xxb
which implies that y; = x; *; b;. Therefore, 7, is surjective which implies that it is
bijective. Since this is true for every b; € X, *; is uniformity-preserving.

2) Suppose that = is irreducible and fix 1 < i < m. Let a;,b; € &; and choose
arbitrarily a;,b; € X; for each j # i. Define a = (a1,...,a,,) € & and b =
(b1,...,by) € X. Since x is irreducible, a is *-connectable to b and so there exists
[ >0 and zg,...,2y—1 € X such that b = (...((a*z9) *x1)...*x2;_1). For each
0<k<lletzy = (T1 k..., Tmp) and so x;, € X;. It is easy to see that we have
bi = (... ((ai *; 2i,0) *i Ti1) ... % i j—1). Therefore, a; is *;-connectable to b; for all
a;,b; € X;, hence #; is irreducible.

In order to see that the converse is not necessarily true, let X3 = Xy = {0,1}
and define x %1 y = xx9y = x @ 1 for every z,y € {0,1}. It is easy to see that %,
and x9 are irreducible and per(x1) = per(x2) = 2. Let x = %1 ® *9. It is easy to see
that (0,0) is not *-connectable to (0,1). Therefore, * is not irreducible.

3) Suppose that *1,...,*,, are ergodic and let
d = max{con(xy),...,con(x,)}.

Let a = (a1,...,am) € X and b = (by,...,by) € X. For each 1 < i < m, since
d > con(*;) there exist x;,...,%; 41 € & such that b; = (... ((@i*;Ti0) *iTi1) .. %
Zid—1). For each 0 < k < d define z, = (z1k,...,Zm i) € X. It is easy to see
that b = (...((a * z9) * x1)... * £4_1). Therefore, all the elements of X are *-
connectable to each other in d steps. We conclude that x is ergodic and con(x) <
d = max{con(xy),...,con(x,,)}.

Conversely, suppose that * is ergodic and let 1 < i < m. Let a;,b; € X; and
choose arbitrarily a;,b; € X; for each j # i. Define a = (a1,...,a,) € X and b =
(b1,...,by) € X. Since * is ergodic, a is *-connectable to b in con(x) steps. It follows
that a; is #;-connectable to b; in con(x) steps (we use the same argument that we
used for the irreducible case). Since this is true for every a;, b; € X;, we conclude that
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*; 1s ergodic and con(x;) < con(*). We conclude that max{con(xy),...,con(*y)} <
con(*) which implies that

con(x) = max{con(x1),...,con(*,,)}
since we have con(x) < max{con(x1),...,con(,,)} from the previous paragraph. [J

Definition 2.19. Let Hi,...,Hnm be m stable partitions of (Xi,%1),...,(Xm,*m)
respectively. The product of Hi, ..., Hm, denoted H = H1 ® ... ® Hy, is defined as

”H:{Alx...xAm: A1€H1,...,Am€Hm}.

It is easy to see that H is a stable partition of (X1 X -+ X X, %1 @ ... Q%p,) of period
per(H) = lem{per(Hi),...,per(Hm)}.

Theorem 2.4. Let %1 and *9 be two ergodic operations on X1 and Xo respectively.
Let X = X1 x Xy and * = %1 ® %o (thus, = is ergodic). Let H be a stable partition
of X. There exist two unique stable partitions L1 := L1(H) and Uy := Uy (H) of Xy
and two unique stable partitions Lo := Lo(H) and Us := Ua(H) of Xo such that:

o L1 XU, Lo XUy and ”%i” = HZZ{EH =n for some integer n > 0.

o L1®Ly 2 H U @Us.
o [or every H € H, there exist n disjoint sets Hy1,...,Hy, € L1 and n disjoint
sets Hy1,...,Hay € Lo such that:
— Hl,IU---UHl,n € U;.
— HgJU...UHQm € Us.
— H = (H171 X H271) U...u (Hl,n X H27n).

Therefore, | H|[ = n-[[L1]l - L2l = [[La]] - [Itho]l = [[tda]] - [ £2]l-

The integer n is called the correlation of H and is denoted by cory, .,(H).
We also have Li(H)™ = Li(H™), La(H)™** = Lo(H™), Uh(H)™ = U (H™)
and Uz (H)*2 = Uz (H™) for every i > 0.

Proof. See Appendix 2.8.6. Ol

Remark 2.17. If H = H1 @ Ha, then L1(H) =Ur(H) = Hi, Lo(H) = U (H) = Ho
and cory, 4, (H) = 1.

Example 2.2. Figure 2.1 shows an element H of a stable partition H of correlation
N = COTy, «,(H) = 3. H is represented by the regions that are enclosed in thick lines.

Example 2.3. Let X1 = Xy = {0,1} and define x; and *2 as x x1 y = T *9
y = x @y for every x,y € {0,1}. Let X = X1 x Xy, * = %1 @ %9 and H =
{{(0,0), (1,1)},{(0,1),(1,0)}}. It is easy to see that H is a stable partition of
(X,*). We have:

o Li(H)=Lo(H) = {{0},{1}}



2.7. Product of Binary Operations 41

Hy1UH| 2UHy 3 €U (H)

Hs 2 € L2(H) { Hip x Hyp

Hj 3 € Lo(H) { H173 X H273 Ha1UHj2UHs>3 € Ux(H)

Hz 1 € L2(H) { Hl,l X H271

Hi1€Li(H) Hip2€ Li(H) Hiz€ Li(H)

Figure 2.1 - H = (H171 X HQJ) U (HLQ X H2y2) @] (H173 X Hg,g) eH.

o Ui(H) =Us(H) = {{0,1}}.
® N = COTy, 4, (H) = 2.
For H={(0,1),(1,0)} € H, we have:
e Hi1={0}, Hio={1} and H 1 UH; 2 ={0,1} € U1 (H).
o Hyy ={1}, Hyo ={0} and Ha1 UHz5 ={0,1} € Us(H).
o (Hi1 x Hy1)U(Hi2 x Hyp)={(0,1),(1,0)} = H.
Theorem 2.4 shows that the stable partitions of the product of two ergodic

operations have a very particular structure. This structure will be useful to prove
the following theorem:

Theorem 2.5. Let %1,...,%, be m > 2 binary operations on Xi,..., X, respec-
tively. Let X = Xy X -+ X X and * = %1 Q@ ... ® *,,. Then x is strongly ergodic if
and only if 1, ..., %, are strongly ergodic.

Proof. See Appendix 2.8.6. O
Notation 2.5. Let *1,...,%, be m > 2 ergodic operations on Xi,..., Xy, respec-
tively. Define X = X1 X -+ X Xy and * = %1 @ ... ® *p,. Let A and B be two
non-empty subsets of I, := {1,...,m} which form a non-trivial partition (i.e.,

AUB =1In, ANB =0, A# ¢ and B # ¢). Letii <...<ij4 and j1 <...<jg
be such that A = {i1,...,ij4} and B = {j1,....jip|}. Define Xy = Xj; x -+ x X}, ,
XB:le X"'XXj\BV *A:*h@"‘@*im\ and*B:*ﬁ@--'@*j‘B" Deﬁne the
mapping fap: X — Xy X Xp as

fA,B(xly ‘e ’xm) = (($i1v s 7$i\A|)7 (1']'1’ s 7xj|B\))'

Clearly, fap s a bijection. We call fa p the canonical bijection between X and
XA X Xp. Throughout this chapter, we identify (X,*) with (X4 X Xp, %4 ® *p)
through the canonical bijection fa p.

Let H be a stable partition of (X,*). Since x4 and xg are ergodic, there are two
unique stable partitions La(H) 2 Ua(H) of (Xa,*a) and two unique stable partitions
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Lp(H) = Up(H) of (Xp,*B) and ng = cory, «z(H) = cory, ., (H) = np > 0
satisfying the conditions of Theorem 2.4. We adopt the convention thatUs, (H) = H.

If A = {i} contains only one element i, we denote Ly (H) and Uy (H) as Li(H)
and U;(H) respectively.

Notation 2.6. For each A C B C I,, = {1,...,m} we define the mapping Pp_ 4 :
Xp — X4 as Ppoa(zj,,... ,:cle‘) = (ziy,. .. ’xiw)f where A = {i1,...,ia} C
{1} = B, i1 < ... <dpq and j1 < ... < jig|- If A contains only one
element i, we denote Pp_,(;y by Pp_y;.

Now for each A C B C I, = {1,...,m}, each xp\ 4 € Xp\ 4 and each Xp C Xp,
we define the set PB—)A\zB\A(XB) = {ra € Xa: (za,zp\a) € Xp} C Xa. IfA
contains only one element i, we denote PB_,{Z-}|$B\{Z,}(XB) by PB_N-‘J;B\Z_ (XB).

It is easy to see that if AC B C C C {l,...,m} then we have Pg_,4 0 Po_,p =
Po_yy. Similarly, if A C B C C C {1,...,m}, then for each Xc C Xc, each
zo\p € Xo\p and each xp\ 4 € Xp\ 4, we have

PB—)A‘J?B\A (PC—)B‘:EC\B(XC)) = PC—)A‘(IC\B,.Z’B\A)(XC)‘

Here we have (zcn\p, Tp\a) € Xo\a since we are identifying Xe\ 4 with Xonp X Xp\ 4
through the canonical bijection.

Remark 2.18. Let H be a stable partition of (X, %) = (X1 X+ X X, x1 Q... Q% ),
where x is ergodic. If A C I, = {1,...,m}, we have from Definition 2.25:

UA(H) = {P[mﬁA(H) : He H}
Furthermore, if A C I, = {1,...,m}, we have from Definition 2.26:

La(H) ={Pr, A1z, ) HEMH, xr,\a € X \a5 Prsape, 4 (H) # 0}
(a)
= {Pr,Ala;, o H) 2 HEH, x1,04 € Prsp,\a(H)}

(a) follows from the fact that Pr, 5 Az, (H) # ¢ if and only if

rraA € Pr,opaa(H).

Proposition 2.11. Let *q,...,%, be m > 2 ergodic operations on Xi,...,X,, re-
spectively. Define X = X X -+ X Xy and * = 1 @ ... @ *,. Let H be a stable
partition of (X,x) and AC B C I, = {1,...,m}. Then Ua(Up(H)) = Us(H) and
La(Lp(H)) = La(H).

Proof. From Remark 2.18 we have:

UA(UB(H)) ={Pp_a(Hp): Hp e Up(H)}
= {PBHA(PIm%B(H)) : He 7‘[}
(P a(H): HeM) =Ua(H).
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On the other hand, we have:

La(Lp(H))

(a
o {Ppsalp . (HB) : Hp € LB(H), xp\a € Xp\as Ppajey ,(HB) # 0}

()
= {PB—>A|a:B\A (me—>B|x,m\B(H)) :
HeH, zr,\p € X\, PL,~Bl2;, ) # 0,

Tp\a € Xp\a;, Ppoajag, 4 (meaBmm\B(H)) # 0}

—

c

= {PBeA\xB\A (le—>B\:va\B(H)) : HeH, xp,\B € Xp,\B:

N2

Tp\a € Xp\a, Ppoajog 4 (meaBmm\B(H)) # 0}

—
=

- {me—)A‘(Wm\Bva\A)(H) P HeH, xp,\B € AL,\B, T\ € AB\a,
PIm_)AKﬂCIm\B»IB\A)(H) 7é Q}

© {Pr, Az, 1 (H): HEMW, zr,0a € X1,\a5 Prae, . (H) # o0}
=LA(H).

(a) and (b) follow from Remark 2.18. (c) follows from the fact that

PB—)A‘;EB\A (PIm—>B\:va\B (H)) # (Zs

entails Pr Bl 5 (H) # ¢. (d) follows from the fact that

PB—>A|(EB\A (le—>B|l']m\B (H)) = PIm%A‘(IIm\B,(EB\A)(H)

(e) follows from the fact that I,, \ A = (I, \ B)U(B\ A) and so &7, \ 4 is identified
to le\BXXB\A' O

Definition 2.20. Let *1,...,%,, be m > 2 ergodic operations on Xi, ..., Xy, respec-
tively. Let X = X1 X --- X X, and * = %1 ® ... Q@ xp,. Let H be a stable partition of
(X,%). The canonical factorization of H is the sequence (H;)1<i<m defined as:

o My =Unm(H).
e For each 1 <i<m, H; :Z/IZ-(EIZ.(H)), where I; = {1,...,i}.

Lemma 2.4. Let *1,..., %, be m > 2 ergodic operations on Xy, ..., X, respectively.
Let X = X) X -+ X Xy and * = %1 @ ... Q %y, Let H be a stable partition of (X, *).
If (Hi)1<i<m is the canonical factorization of H, then (H;)1<i<m—1 s the canonical
factorization of L1, ,(H), where Iy,—1 ={1,...,m —1}.

Proof. For each 1 <1i <m,define I; = {1,...,i}. Let {H,}1<i<m—1 be the canonical
factorization of Ly, ,(H). We have:

o H! um—l(ﬁfm—1(/H)) = Hm-1.

m—1—
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e For each 1 <i < m — 1, we have

My = Us (L1, (L1, (M) D Uy (L1, (H)) = Hs,

where (a) follows from Proposition 2.11.
U

Definition 2.21. Let H be a partition of a set X. A section of H is a subset C C X
such that:

e |C|=H.

o For each H € H, there exists a unique x € C such that x € H. In other words,
the mapping Projy, restricted to C, is a bijection between C and H.

Lemma 2.5. Let %1 and xo be two ergodic operations on X1 and Xo respectively.
Let X = X1 X Xy and x = %1 @ %o (thus, * is ergodic). Let H be a stable partition of
X. If Cy and Cy are sections of L1(H) and Us(H) respectively, then C = Cp x Cy
is a section of H.

Proof. Let fcy : C — H be the mapping Projy, restricted to C, ie., foy(z) =
Projy(x) for every z € C.

Let H € H and I, = {1,2}. We have Py, ,o(H) € Uz(H) by Remark 2.18. Now
since Cy is a section of Us(H ), there exists a unique xzg € Cy such that xo € Pr,_o(H).

Since w9 € Pr,2(H), we have Pr,_,q,,(H) € L1(H) by Remark 2.18. But 4
is a section of L£1(H), so there exists a unique x1 € Cy such that x1 € Pr,_15, (H),
which means that (z1,z2) € H. Therefore, there exists (z1,z2) € C; x Cy = C such
that fou(x1,22) = Projy (21, 22) = H. We conclude that fcy is surjective.

On the other hand, we have |C| = |Cy x Ca| = |C1]|C2| = |L1(H)|-[Ua(H)| = |H|,
where the last equality follows from Theorem 2.4. Therefore, fc 3 is bijective since
fon : C — H is surjective and |C| = |H|. Hence, C' = C} x Cy is a section of H. [

Proposition 2.12. Let *1,...,%, be m > 2 ergodic operations on Xi,..., X, re-
spectively. Let X = X1 X -+ X Xy and * = %1 @ ... R *,,. Let H be a stable partition
of (X,%) and (Hi)1<i<m be the canonical factorization of H. We have:

o [H|=1[Ha|x - x[Hpml|.

o If C; is a section of H; for every 1 < i < m, then C = Cy X --- x Cp, is a
section of H.

Proof. For each 1 <i < m, we define I, = {1,...,i}. We will prove the proposition
by induction on m. If m = 2, we have:

o Hi=U (L (H)) =Ui(L1(H)) = L1(H) and Ho = Us(H).
e By Theorem 2.4, we have [H| = |L1(H)| - [Uz(H)| = |H1| - [H2]-

e If Cy and Cy are sections of Hy = L1(H) and Ho = Uz (H) respectively, then
Lemma 2.5 shows that C' = C} x (s is a section of H
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Therefore the proposition is true for m = 2.
Now let m > 2 and suppose that the proposition is true for m — 1. By Lemma
2.4, (Hi)1<i<m—1 is the canonical factorization of Ly, ,(H). We have:

o [H|=|Lyp, ,(H)| [Un(H)| = |L1,, . (H)||Hm| by Theorem 2.4. On the other
hand, we have |Ly,, ,(H)| = [H1| %X |Hm—1] from the induction hypothesis.
Therefore, |H| = [H1| % -+ X [Hp].

e For every 1 <i < m, let C; be a section of H;. From the induction hypothesis
we get that C1 x---xCy,—1 is asection of L1, (H). Now since Cy x - - - x Cp,_1
and Cy, are sections of L£;, () and U, (H) respectively, Lemma 2.5 implies
that C = Cy x --- x (), is a section of H.

Therefore, the proposition is also true for m. We conclude that the proposition is
true for every m > 2. O

2.8 Appendix

2.8.1 Proof of Proposition 2.1

1) Trivial: For a quasigroup operation, all the elements of X' are x-connectable to
each other in one step.

2) Suppose that * is uniformity-preserving but not irreducible. There exist two
elements a; and az of X such that a; is not #-connectable to as. Let A; = {x €
X:oa x} and Ag = X'\ A;. Clearly, a1 xa; € Ay and ag € Ay. Therefore, Ay
and Ao are two disjoint non-empty sets such that A; U Ay = X. Moreover, we have
Ay x X C A; from the definition of A;. Now since |A; * X| > |A1|, we must have
A1 * X = Al.

For every x € X, define 7, : X — X as my(a) = axz for all @ € X. Since x* is
uniformity-preserving, 7, is bijective for all z € X'. Therefore, |7,(A;1)| = |Ai]. On
the other hand, 7,(A1) = A1 *x C A1 * X = Aj. This means that m,(A;) = Aj,
which implies that 7, (Ag) = 7, (X \ A1) = X \ (A1) = X\ A = Ay since 7, is
bijective. Therefore, Ao x x = Ay for every x € X, hence Ay x X = As.

3) Suppose that * is irreducible, and let a,b € X. Since * is irreducible, there

. 1 1 J1+l .
exist l1,ls > 0 such that a N pand b 25 a, so a *UH2  which means that per(x,a)

.. . o N/ J1 I
divides [1 +l2. Now for any integer [ > 0 satisfying b LN b, we have that a A

This shows that per(x,a) divides I; + lo + [, which implies that per(*,a) divides I
since we have just shown that per(x,a) divides [; 4+ l3. But this is true for every
[ > 0 that satisfies b % b. We conclude that per(*,a) divides per(x,b). Similarly,
we can show that per(x,b) divides per(x,a). Therefore, per(x,a) is the same for all
a € X. Now since per(x) = ged{per(*,a) : a € X'}, we have per(x) = per(x,a) for
all a € X.

4) Suppose that * is irreducible and let n = per(x). Fix a € X and for every

0<1<n, deﬁneHi:{xeX: dl > 0, a*—’l>mandlEimodn}. We have the
following:
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7la,x . . . o1
o If x € X, then a ¢ o for some integer lg,; > 0 because of irreducibility.

n—1
This shows that for every x € X', we have x € Hj, , modn C U H;. Therefore,
i=0
n—1 n—1 '
X c |JHi cX, hence | JH =X
i=0 i=0

’l(LII) . .
e Let x € H; and y € H;. We have a 248 4 for some laz > 0 satisfying

. *alz,a *7la,z+lz,a
la,w =1 mod n. Moreover, x —> a for some [, , > 0,andsoa ~— " a. The
definition of per(x) implies that n divides lg 4 + I3 4 and so I o = —i mod n.

’la, . . .
Now since y € H;, we have a oy y for some I, > 0 satisfying I, , = j mod n.

7l.’l‘ . .
We conclude that  —-2¥ y, where I =l o +lqy = j — ¢ mod n.

e Suppose there exist ¢ # j such that H; N H; # ¢ and let x € H; N H;. From

*7ll‘ x . .
the previous paragraph we have x —% z, where [, , = j —¢ # 0 mod n. The
definition of per(x) implies that n divides [, , which is a contradiction since
lzx # 0 mod n. We conclude that H; N H; = ¢ for all ¢ # j.

e For every 0 < ¢ < n and every y € H; x X, there exist x € H; and z € X
such that y = x % z, which implies that y € H;11 mod n- Therefore H; x X' C
Hi-i—l mod n» and so |Hi+1 modn’ > |H1 *X‘ > |Hz’ ThUS, |HO| > |Hn71| >
... > |Hi| > |Ho|, which implies that |Hy| = |H1| = ... = |Hp—1].

Therefore, {Hy, ..., H,_1} is a partition of X' satisfying |Ho| = |H1| = ... = |Hp—1].
Now let 0 < i < n. We have shown that H; * X C H;y1 modn. On the other
hand, we have |H; x X| > |H;| = |H;+1 mod n|- Therefore, H; * X = H; 11 mod n-

5) For every x € X and every j > 0 define
Kx,j:{yEX: J:ﬂﬂy}

Since K, j11 = K, ; * X and since the number of subsets of & is finite, there exists
d, > 0 such that the sequence (K ;)j>q, is periodic. Let per, be the period of
(K1,j)j>d,- Now since K, j11 = K, j * X, we have | K, j41| > | K, ;|. Therefore, the
sequence (| K j|)j>a, is both periodic and non-decreasing, which implies that it is
constant.

.. N/
Fix 5 > d,, and let [ > 0 be such that x =% 2. For every 2/ € K, ; we

*,] . . . *,14j . *,1
have x —% 2’ which implies that % 2/ (since z —= z) and so @’ € K, j.

Therefore, K, ; C K, j4;, which implies that K, ; = K, j; (since we know that
|Ky ;| = |Kyj+1|). Now since this is true for every j > d,, we conclude that per,

divides every [ > 0 satisfying « *—l> x. Therefore, per, divides ged{l > 0: =z *—l>
x} = per(*,x) = n. Hence,

K. ;= Ky jiin forall j > d, and all & > 0. (2.2)

For every © € X, let i, be the unique index 0 < i, < n satisfying =z € H;,.
Clearly, Ky ;j C Hi,+j modn- Now let 2’ € K, ; and 2" € H;, 1 mod n, where j > d,.
Since both 2’ and 2" are in H;, 4 j mod n, we know from the discussion of the fourth
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*,lz/ 2!

point that we have 2/ —= 2" for some I, ,» = 0 mod n. Since n divides I .,

*,ZI/ 2!

we have Ky, , = Kgj from (2.2). Now since ' € K, ; and 2/ —3 2", we
have z” € Ky jti, ,» = Ko j. But this is true for every 2’ € H;,+j mod n. Therefore,
H;, +jmodn C Kgj, which implies that K, ; = H; {jmodn as we already have
Kx,' - Hiz—i-j mod n-

Define d = ma/%(dl,. Let 0 <i <mnandx € H;. We have i, =i (since x € H;) and
S

d > d,. Therefore, from the above discussion we have H; 14 modn = Hi,+dmodn =

*,d
K, 4. Hence, for every y € H;{qmod n, We have y € K, 4 and so vz — 3.

6) We will prove the claim by induction on s > con(x). If s = con(x), the claim
follows from 5). Now let s > con(x) and suppose that the claim is true for s — 1. Let
0<i<n,ze€ H;and y € Hi1smodn- Since H;1smodn = Hits_1modn * X, there

. o1 . .
exists ¥’ € Hiis 1 mod n sSuch that ¢/ LN y. Now since 3y € H;1 s 1 mod n, it follows
. . . k) -1 ’
from the induction hypothesis that x s y'. Therefore, x LN 1.

7) Let * be an irreducible operation of period per(x) = 1. Let &, be the partition
defined in 4). Since per(x) = 1, the partition £, contains only one element H which
must be X'. Now 5) implies that there exists d > 0 such that any element of X = H|
is *-connectable to any element of Hyygmod1 = Ho = X in d steps. Therefore, * is
ergodic.

Conversely, if x is ergodic, let d = con(x) and n = per(x). Define & =
{Ho,...,Hp—1} as in 4) and let a € Hy. Since a 2 for all z € X, then
X C Hgmod n which implies that X = Hyoqn. Now since |Hp| = ... = |Hp—1| =
|Himod n| = |X|, then Hy = ... = H,_1 = X and &, = {X}. Therefore, per(x) =
n =& =1.

8) If * is ergodic, then per(x) = 1 by 7). Therefore, £, contains only one element
Hp which must be X. Now 6) implies that for every s > con(x), any element of
X = Hy is #-connectable to any element of Hyysmoq1 = Ho = & in s steps.

9) and 10) are trivial.

2.8.2 Proofs for Section 2.3

Proof of Proposition 2.2 (1). For every k > 0 and every sequence Hy € H, Hy € H*,
e, Hp 4 € 'H(kfl)*, define

Heto, oty y = (.. (H*Ho)* Hy)...« Hy_1): He M} (2.3)
We have:
U X={J(..((HxHo)xHy)...x Hy1)
Xe€Hmuy,....,H,_4 HeH
= ( <<< U H) *Ho) *H1)...*Hk_1)
HeH
Therefore, Hp,,... i, , covers X for any sequence Hy € H, Hy € H*, ..., Hp_; €

HE=D* Moreover, it is easy to see from (2.3) that Hp,,. . , C #** which implies
that H** covers X.
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Fix n > 0 and suppose that H"™* is not a partition. Since we have shown that
H"™* covers X, there must exist X, X] € H™ such that X; N X| # ¢ and X; # X].
We may assume without loss of generality that |X;| < |X{|. If X]\ X1 = ¢ then
X{ C X which implies that X{ = X; (because | X1| < |X{|) which is a contradiction.
Therefore, we must have X| \ X1 # 0.

Since X7 € H™, there exists H € H and a sequence Hy € H, Hy € H*, ...,
H,_ 1 € H™ V% such that X; = (... ((H * Hy) * Hy) ... * H,_1) which implies that
X1 € Hu,,...H,_,- Now since we have shown that Hp, . g, , covers X and since
X1\ X1 # o, there must exist Xo € Hp,,.. g, , such that Xo N (X7 \ X1) # 0.
Clearly, X1 # X since X1 N (X]\ X1) =0 and Xo N (X7 \ X1) # 0.

Let p > 0 be the smallest multiple of per(#) which is greater than n, i.e.,

p =min{k -per(H): k>0, k-per(H) > n}.

We have HP* = H since per(H) divides p. Fix H, € H™ H,. € HOHD*
H, € HP=D* and define:

e B=(...((Xo*x Hyp)*xHpp1)...x Hy,_1) € HP* =H.
o C=(...((X]*Hy) % Hyp1) ... x Hy1) € H* =H.

We have X1 N X| # ¢ and Xo N X| # ¢, which imply that AN C # ¢ and
BN C # ¢. Now since A, B,C are members of H which is a partition (i.e., the
elements of H are non-empty, disjoint and cover X), we must have A = B = C. We
conclude that

(..(Xi*xHp)*Hpp1)...xHp1) = (..(XoxHy) * Hygq) ... x Hp1). (2.4)
We have:

e Huy,..H, , C HP* from the definition of Hp,,  m, , (see (2.3)). We have
shown that Hp, .. g, , covers X and we know that HP* = H is a partition.
Therefore, we must have Hp, . m, , = H* =H.

-----

e The mapping Hpy,,..n,_, — HH,,.. 1, , defined by X — (... ((X * Hy,) *
H,11)...% H,_1) is surjective but not injective because of (2.4). This implies
that ‘%H0,~~-,Hp—1| < |/HH07-~7Hn—1|'

e The mapping H — Hp,,.. H, , defined by H — (... (H*xHo)*Hy)...xHp_1)
is surjective. Therefore, |Hpu, . m, .| < |H|

We conclude that |H| = [Hm,,... 1, .| < |HH,...H,_ 1| < |H| which is a contradiction.
Therefore, 1™ must be a partition. On the other hand, we have, (F™*)Per(H)*
(HPer(H)F )y — 3{* which implies that ™" is a periodic partition of period per(#™*
< per(H). But since H = HP* = (H™)P~* we must also have per(H)
per(HP*) < per(H™*). Therefore, per(H"™") = per(H) for every n > 0.

~—

ol

Lemma 2.6. Let H be a periodic partition of (X, x). For every Ha € H, we have

H*:H*{HQ}:{Hl*HQZ HleH}.
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Proof. For every Hy € H, we have:

X:X*HZ:( U H1>*H2: U (Hy + Ha).
HieH HieH

Therefore, the set {Hy x Hy : Hy € H} covers X and it is a subset of H* which is
a partition of X by Proposition 2.2 (1). Therefore, we must have H* = {H; * Hy :
H, € H} O

Proof of Proposition 2.2 (2). For every [ > 0, Proposition 2.2 (1) shows that H* is a
periodic partition. If we fix Hy € H'*, then we have H(+1* = {H1*Hy: H; € Hl*}
by Lemma 2.6. Therefore,

(HUTD = [{Hy =« Hy : Hy € H")

< ’{le Hy € H>}| = 1. (2.5)
Now fix n > 0 and let p > 0 be the smallest multiple of per(#) which is greater
than n, i.e., p=min{k - per(H): k>0, k-per(H) > n}. From (2.5) we have
M| = M7 < [ HPD << M << AL

Therefore, |[H™| = |H| for every n > 0. O

Proof of Proposition 2.5. Since H1 and Ha are two partitions of X', it is easy to see
that 71 A Ha is also a partition of X. Now let Hy, H] € H; and Ho, H) € Ha. If
Hy N Hy # ¢ and H| N H) # ¢, we have:

(H1 N HQ) * (Hi N Hé) C (H1 * Hi) N (HQ * Hé) S HT VAN H; (26)

Fix H| € H; and H) € Ha such that Hi N H) # ¢. Lemma 2.6 implies that
t={Hy*H|: Hy € H1} and H = {Ho* H) : Hy € Hs}. Since H} and H} are

partitions of X', we have:

Xl= ) JANAf= ) [(HixH])N(Hyx Hy)l,
AreHT, AseHS HyeHq1,HocHo

which implies that

X1> D [(Hux Hy) N (Ha x Hy) (2.7)

HieH1,HaeH:
HiNHa#9

> > |(Hun Hy) s (H{ N Hy)l, (28)
Hi€EH1,HoEH:
HiNH>#¢
where (2.8) follows from (2.6). Now since Hj N H) # ¢, we have

|(H1ﬁH2)*(H{ﬂH§)| > ‘HlﬁHQ‘. (29)
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Therefore,
> \(Hy, N Hy) % (H, N Hb)| > > |Hy N Hy|. (2.10)
HieEH1,HoEH: HieEH1,HoEHo:
HiNHa#0 HiNHa#g

Now since H; and Hs are two partitions of X', we have

> |Hy N Hy| = |X]. (2.11)
Hi€H1,HaEHo:
HiNHa#¢

We conclude that all the inequalities in (2.7), (2.8), (2.9) and (2.10) are in fact equal-
ities because if one of them were a strict inequality, we would have a contradiction
with (2.11). Therefore, for all Hy € H; and Hy € Hy satisfying Hy N Hy # ¢, we
have |(Hy N Hg) * (H] N HY))| = |(Hy = Hy) N (H2 % H})|. Equation (2.6) now implies
that (Hy N Hy) = (Hy N HY) = (Hy = H{) N (Ha *x H)). We conclude that for every
Hi,H| € Hy and Hs, H), € Hy satistying H; N Hy # ¢ and H{ N H) # ¢, we have
(HiNHo)*(H{NH)) = (Hi+H{)N(HoxHY) € HiAH5. Hence (HiAH2)* C HIAHS.
We have the following:

o (Hi AHa)* covers X since Hq A Ha covers X.
e Hi AHj is a partition of X.
o (HiAHa)* CH] NHS.

Therefore, we must have (Hi A Ha)* = Hi N H5.

It follows by induction that (Hi; A Ha)™ = HP* A HE* for all n > 0. In
particular, for [ = lem(per(H;),per(Hs)), we have (Hi A Ha)* = HY A HY =
H1 A Ho, which implies that Hq A Hs is a periodic partition of period of at most
lem(per(H1), per(Ha)). O

2.8.3 Proof of Theorem 2.1
In order to prove Theorem 2.1, we need several lemmas:

Lemma 2.7. For every stable partition H, and for every H-repeatable sequence X,
there exists an integer | > 0 such that X' is H-augmenting.

Proof. Let X = (X;)o<i<k and let x; € X; for 0 < i < k. Consider the mapping
m: X = X defined by 7w(z) = (... ((x*x0)*21)...)*xx_1). Since 7 is a permutation,
there exists an integer [ > 0 such that 7'(z) = z for all x € X. For every A C X,
we have A = 7!(A) € A * X!. Therefore, X! is H-augmenting. O

Definition 2.22. Let A C X. We say that an H-augmenting sequence X connects
A if for every a € A we have A C a x X.

Lemma 2.8. If there exists an H-augmenting sequence that connects a set A C X,
then there exists H € H such that A C H.

Proof. Let X be such an H-augmenting sequence. Let a € A and H' € H be such
that a € H'. Define H = H' x ¥ € HIXI*. Since X is H-augmenting, |¥| divides
per(H) and so HIX* = 3{. Therefore, H € H. On the other hand, X connects A, so
we have ACaxX C H' xX =H. O]
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Lemma 2.9. Let x € X and let X be an H-augmenting sequence. For everyy € x*xX,
there exists an H-augmenting sequence X' which connects {x,y}.

Proof. Lety € xxX = (... ((x%X0)*xX1)...)*Xk_1). Thereexist z; € X; (0 <i < k)
such that y = (... ((z * »g) * x1)...) * xx—1). Define the mapping 7 : X — X as
m(a) = (... ((axxo)*x1) ...)*xx)_1) for every a € X. Clearly, 7 is a permutation. The
fact that y = m(x) implies that  and y belong to the same cycle of the permutation
7. Therefore, there exists s > 0 such that x = 7°(y). Let X’ = X°. It is easy to see
that X’ is H-augmenting. Moreover, we have:

e v € yx X' because x = 75(y), and y € y *x X’ because X’ is H-augmenting.
Therefore, {z,y} C y* X'.

e y € xx X by assumption and x € x x X since X is H-augmenting. Therefore,
{x,y} C z * X. On the other hand, z * X C (x * X) x X*7! since X*! is
H-augmenting. Hence {z,y} C (z* X) * X571 = 2 % X.

We conclude that X’ connects {z,y}. O

Lemma 2.10. [f there exists an H-augmenting sequence that connects a set A C X,
and if there exists an H-augmenting sequence that connects another set B C X such
that AN B # ¢, then there exists an H-augmenting sequence that connects AU B.

Proof. Let X be an H-augmenting sequence that connects A, and let X’ be an H-
augmenting sequence that connects B. Let X" = (%, X', X) be the H-repeatable se-
quence that is obtained by concatenating X, X’ and X. Clearly, X" is H-augmenting.
Fix z € AN B and let y € AU B. We have the following;:

o Ifyec A, then A C y*X. In particular, z € y * X. Now since x € B and since
X’ connects B, we have B C x x X'. Therefore, B C (y x X) * X'.

o If y € B, then y € y * X since X is H-augmenting. Now since y € B and since
X' connects B, we have B C y x X'. Therefore, B C (y « X) x X'.

We conclude that for every y € AU B, we have B C (y * X) * X’. This implies that:
e BC ((yxX)*X')*X =y=X" since X is H-augmenting.

e Since B C (y*X) * X', we have z € (y* X) x X'. Now since z € A and since X
connects A, we have A C x x X. Therefore, A C ((y*xX)* X" )« X =y X".

We conclude that AUB C y* X" for every y € AUB. Hence X" connects AUB. [

Definition 2.23. For every stable partition H of (X, %), define the connectivity
relation Ry of H on X as follows: aRyb if and only if there exists an H-augmenting
sequence that connects {a,b}.

Lemma 2.11. For every stable partition H, Ry is an equivalence relation.

Proof. Clearly, Ry is symmetric. Lemma 2.10 shows that Ry is transitive. In order
to show that Ry is reflexive, let € X, and let X be an arbitrary H-repeatable
sequence. Lemma 2.7 implies that there exists I > 0 such that ¥! is H-augmenting.
We have = € zx X! and so X! connects {z}. Therefore, x Ryx for every z € X', hence
Ry, is reflexive. We conclude that Ry, is an equivalence relation. ]
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Notation 2.7. For every stable partition H, we denote the set of equivalence classes
of its connectivity relation Ry by Ky.

Lemma 2.12. Let ‘H be a stable partition and let K € K. We have:
e For every x € K and every H-augmenting sequence X', x x X' C K.
e There exists an H-augmenting sequence X satisfying x X = K for all x € K.

Proof. For every K € Ky, every x € K, every H-augmenting sequence X', and
every y € x x X', we have xRy y because of Lemma 2.9, so y € K. This shows that
zxX' C K.

Now fix K € Ky and let K = {ai,...,a,} where r = |K|. For each 1 <i <,
define K; := {a1,...,a;}. Since a; Ry a1 there exists an H-augmenting sequence that
connects K1. Now let 1 < ¢ <7 and suppose that there exists an H-augmenting se-
quence that connects K;_1. Since a;_1 Ry a;, there exists an H-augmenting sequence
that connects {a;_1,a;}. Now since K;_1N{a;—1,a;} = {a;—1} # 9, Lemma 2.10 im-
plies that there exists an H-augmenting sequence that connects K; 1 U{a;—1,a;} =
K, and so the claim is true for 7. By induction we conclude that the claim is true
for every 1 <4 < r. In particular, there exists an H-augmenting sequence X that
connects K, = K.

Let x € K. Since X connects K, we have K C x*X, which implies that x+X = K
as we already have x x X C K. O

Lemma 2.13. If % is an ergodic operation on X, then for every stable partition H,
we have the following:

o [Cypuv is a balanced partition and ||IKCyu-|| = ||ICx || for all 1 > 0.

o Foreveryl >0, K1 € Ky, Ko € Kyi+, and every a € Ky, there exists an H-
sequence X4 g, such that | X, k,| =l modn and Ko = axXq k, = K1 *Xq K, -

Proof. Let Ki € Ky, Il > 0 and Ky € Kyu«. Let n = per(H), ki = con(x)n + [
and ko = con(x)n + (—l mod n). Choose a € K; and b € Ky. Since x is ergodic
and since k1 > con(x) and kg > con(x), it follows from Proposition 2.1 that there
exist xo,...,Tk—1 € X such that b= (... ((a*zg) *x1)...* Tg,—1) and there exist
Y0, - Yko—1 € X such that a = (... ((b*yo) * y1) ... * Yk,—1). Let X1 = (Xi)o<ick,
and X2 = (Y;)o<i<k, be such that z; € X; € H* for 0 < i < ky and y; € Y; € HUFD*
for 0 <i < ky. Clearly, b € a* X; and a € b* X9. The concatenation X = (X1, X2)
is an H-repeatable sequence since n divides k1 + ko. Lemma 2.7 implies that there
exists an integer s > 0 such that X* is H-augmenting. Lemma 2.12, applied to Ky,
implies the existence of an H*-augmenting sequence X’ such that b x X' = Ko.
Consider the sequence X" = (X1,X’, X2, X571). It is easy to see that X" is H-
augmenting and so K1 C K; * X”. On the other hand, since X" is H-augmenting,
Lemma 2.12 shows that for every x € K; we have x * X” C K1, which means that
K +X" C Ky. Therefore, K1 = K1 *X". Moreover, since b € ax X1 and b* X' = K>,
we have
Ko C(axX1)*X C (Ky*X)*X, (2.12)

which implies that |[Ky| < [(K7 * X1) * X/| < |[(((K1 * X1) * X') % X2) * X571 =
|K1 « X'| = |Ky|. By exchanging the roles of K; and Kj, we get |Ki| < |Kj|.
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Therefore, |Ko| = |K1| for every K; € Ky and every Ky € Ky.. We conclude that
both Ky, and s« are balanced partitions and ||[ICy || = [[KCqy-||.

Now define X, x, = (X1,%’). Since X, k, is an initial segment of X", we have
| K1 % Xq K, < |K1%X"|. But we have shown that K7 X" = K and | K| = | K>/, so
we must have |K7 * X k,| < |K2|. Moreover, we have Ky C a* Xq k, C K1 * X4 K,
from (2.12). We conclude that Ky = a * X, k, = K1 * X4 K, - O

Lemma 2.14. Let H be a stable partition of (X,*) where * is ergodic. For every
K € Ky and every H-sequence X, we have |K x X| = | K| = ||[Cy||.

Proof. Let K' = K + X and | = |X], and let X’ = (X])o<j<(—1 mod n) D€ an arbitrary
H*-sequence of length (—I mod n). Clearly, (X,X’) is H-repeatable. Lemma 2.7
implies that there exists an integer s > 0 such that (X, ¥')® is H-augmenting. We
have K C K*(X,X')*. On the other hand, Lemma 2.12 implies that Kx(X,X’)* C K.
Therefore, K = K x (X,X)s = K’ » (X, (X,X')*!) which implies that |K'| < |K]|.
We also have |K| < |K'| since K’ = K x X. Thus, |K'| = |K| = ||Ky]|- O

Lemma 2.15. Let H be a stable partition of (X, x) where x is ergodic. Let K € Ky
and 1 > 0. If X = (X;)o<i<i is an H-sequence, then K x X € Ky..

Proof. Let K' = K * X. Fix z € K" and let K" € IC;;. be chosen so that z € K”.
Lemma 2.12 implies the existence of an H!*-augmenting sequence X” such that
zx X" = K". We have K" ¢ K' * X" since x € K’', and K’ C K’ * X" since X" is
H>-augmenting. Therefore, K’ U K” C K’ X”. On the other hand, we have the
following:

o |[K'| =|K xX| =|K|=||Ky| from Lemma 2.14.

e (X,X") is an H-sequence, so Lemma 2.14 implies that |K * (X,X")| = |K| =
ICx]|. Now since K’ * X" = K x (X, X"), we deduce that |K' x X"| = || yx]|.

e Lemma 2.13 implies that ||yl = ||ICop- ||, so |K"| = || Ko || = || Cel-

Therefore, |K"| = |K'| = |K'«X"| = ||Ky|| and K’ UK” C K’ « X", hence K' = K"
and K’ € Kyp-. O

Lemma 2.16. Let H be a stable partition of (X,*) where x is ergodic. Ky is a
sub-stable partition of H and Ky = K™ for all 1 > 0.

Proof. We will prove that Ky = K4, by induction on I > 0. The statement
is trivial for [ = 0. Now let [ > 0 and suppose that K, q-1). = K U=D% Let
K e /Cq.tl* = (/CH(FI)*)* = (ICH(zA)*)*. There exist K1, Ky € Kya-1) = ’Cy(lfl)*
such that K = K1+ K. Let Hy € HU=D* he chosen such that Ky C Hy (Lemma 2.8
guarantees the existence of Hy). From Lemma 2.15, we have K; x Hy € Ky and

so | K7 x Ha| = || ICyp- @ 1ICsa-1)+|| = |K1]|, where (a) follows from Lemma 2.13.
We have Kq * Ko C K7 * Hy and |K1| < |K1 * K2| < ’Kl * HQ’ = |K1| Therefore,
K = K1 x Ky = K xHy which implies that K € Ky/.. This shows that Kyl C Kygie,
which implies that Ky = K1+ since K™ covers X and K+ is a partition of X.

We conclude that Kyt = Kqg- for all 1 > 0. In particular, Ky = Cyns = Kyy,
where n = per(#H) so Ky is periodic. Moreover, Lemma 2.13 shows that Ky is
balanced. Therefore, K is a stable partition. Lemma 2.8 now implies that Ky is a
sub-stable partition of H. O
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Proposition 2.13. Let H be a stable partition of (X, *) where x is ergodic, and let
IC be a partition of X which satisfies the following two conditions:

o For every K € K and every x € K, there exists an H-augmenting sequence X
such that x x X = K.

o For every K € K, every x € K, and every H-augmenting sequence X', we have
rx X CK.

Then K = Ky.

Proof. Fix x € X and let K1, € Ky and K3, € K be chosen such that z € K1, and
z € Ko ,. Lemma 2.12 implies the existence of an H-augmenting sequence X1 such
that +X; = K ,, and the first condition of the proposition implies the existence of
an H-augmenting sequence X such that x* X2 = K ;. The second condition of the
proposition implies that x * X1 C K2 ., and Lemma 2.12 implies that x x Xo C K ;.
Therefore, K1, C Ko, and K3, C K1, which implies that K, = K5 .. Since this
is true for all x € X', we conclude that K = Ky. Ol

Now we are ready to prove Theorem 2.1:

Proof of Theorem 2.1. Lemma 2.16 shows that Ky is a sub-stable partition of H
satisfying Ky = Ky« for all I > 0. Moreover, we have:

e For every K € K3 and every H-sequence X, we have K * X € Kyjxj« = JCpy Xl
by Lemma 2.15.

e For every K € Ky and every z € K, Lemma 2.12 shows that there exists an
H-augmenting sequence X such that =« X = K.

e For every K € Ky, every v € K, and every H-augmenting sequence X', we
have z « X’ C K by Lemma 2.12.

This shows the existence part of Theorem 2.1. The uniqueness follows from Propo-
sition 2.13. O

2.8.4 Proof of Proposition 2.7

Definition 2.24. Let A be an X-cover. Define the relation P4 on X as follows:
x Py if and only if there exists a finite sequence (A;)1<i<n Such thatx € Ay, y € Ay,
A e Aforalll <i<mn, and A; NAj1 # ¢ for all 1 < i <n. Clearly, Py is an
equivalence relation on X. The set of equivalence classes of P4 (denoted by P(A))
is called the partition of X generated by A.

Lemma 2.17. Let A be an X-cover. For every B € P(A), there exists a finite

sequence (A;j)1<i<n Such that B = U A, Ay € Aforalll <i<mn, and AjNA;11 # 0
i=1
for all1 <i<n.
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Proof. Let B € P(A) and let x € B. We say that a sequence (A;)1<i<p is (x, A)-
connected if x € A1, A; € Aforalll <i<mn,and A;NA;11 Foforalll <i<n. If

(Ai)1<i<n is such a sequence, we clearly have x Py for every y € U A;. Therefore,
i=1

LnJAiCB.

1
Let A; € A be such that x € A;. The sequence (Ap) of length 1 is (z,.A)-
connected. Therefore, there exists at least one (x,.A)-connected sequence. Now

n
consider an (z,.A)-connected sequence (A;)i<i<n such that U A; is maximal. If
i=1

n n
A; # B, there exists y € B such that A;. Let o’ € A,,. Since o',y € B,
Yy Y Yy
i=1 =1
#' P4y and so there exists a sequence (A})1<;<m such that 2/ € A}, ye A/, Al e A
for all 1 <4 < m, and A; N A}, # ¢ for all 1 <4 < m. Consider the sequence
" 3 " __ . - " __ / N
1Snr+m T = — — = = .
(A)1<i<ntm defined by A = A; for 1 <i<nand A) = A, forn+1<i<n+m
Since o' € A, N A} = A N A, (AY)i<i<ngm i (x, A)-connected. We have

n n-+m n+m n
U A © U Al since y € U Al and y ¢ U A;. This contradicts the maximality

i=1 i=1 i=1 =1

n n
of U A;. Therefore, we must have U A; = B. ]
i=1 i=1

Lemma 2.18. Let % be a uniformity-preserving operation on a set X, and let A be
an X -cover. For everyn > 0 and every A € A™, there exists B € P(A)™ such that
A CB.

Proof. We will show the lemma by induction on n. The lemma is trivial for n = 0.

Now let n > 0 and suppose that the lemma is true for n — 1. Let A € A™*, there
exists A1, Ay € AM=D* quch that A = Ay * Ay. The induction hypothesis implies
the existence of two sets By, By € P(A)"~D* such that A; C By and Ay C By. We
have A = A; * Ay C By * By and By x By € P(.A)n* ]

Lemma 2.19. Let x be a uniformity-preserving operation on a set X, and let A be
an X-cover. For everyn >0, we have P(P(A)™*) = P(A™).

Proof. We will show the lemma by induction on n. The lemma is trivial for n = 0.

Now let n > 0 and suppose that P(P(A)"~D*) = P(AM=D*) which means
that for every =,y € X', we have 2P 4(n-1).y if and only if xPp(A)(n_l)*y.

Let z,y € X be such that xPp(4yn-y. There exists a sequence (Dj)1<j<m such
that: « € Dy, y € Dy, Dj € P(A)™ for 1 < j < m, and D; N Dj1 # ¢ for
1 < j < m. Define z; = x and 41 = y, and for each 2 < j < m, choose
zj € Dj_1 N Dj. For every 1 < j < m, we have z;,zj41 € D; and D; € P(A)"™".
We are going to show that x; Pgn«xj11 for every 1 < j < m which will imply that
TP gn+y.

Fix j € {1,...,m}. Since D; € P(A)", there exist D}, D} € P(A)"~D* such

that D; = D’ D;-’. Moreover, since xj,zj41 € D; there exist a;-,b;-H € D;-
and a7, b7, € DY such that x; = a * a] and x;11 = b, *b], ;. We have

@} Pp(gyn-1+bj 1 and af Ppay(n-1+b7 ;. Therefore, from the induction hypothesis
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we have a}PA(n_U*b}H and a‘/]!PA(n—l)*b‘;!+1. There exist two sequences (Aé)lgigm;.
and (A;,)lgigm;.’ such that:

o af €AV €A, A€ An=D% for 1 < i < mf, and A} N A}, # ¢ for

1§i<m;.

o a € AT, V], € A’T;;,, A" e AU for 1 < i < m/, and A7 N Al | # o for

70
1§i<m;-’.

Now consider the sequence (Az‘)lgz'gm;.er;’ defined as A; = A} * Af for 1 <i <m/,
and A; = A;n;_ * A;’_m; for m’ +1 <4 < m; + mj. The sequence (Ai)lgigm;.er;/
satisfies the following: z; = a} * af € Ay, xj1 = Uy * V], € Amg+m;’ and
A, e A% for 1 < < m; + m;’. Moreover, it is easy to see that A; N A;11 # o for
1 <i < mf+mj. Therefore, x;Pan-x;11. Now since this is true for all 1 < j < m, we
have x1 Pgn+Zpm1 and so xPygn«y. We conclude that for every x,y € X, xPp( gy
implies P gn+y.

Now let z,y € X’ be such that xPyn-y. There exists a sequence (E;);<;<) such
that: © € F1, y € Ep, E; € A for 1 <i <k, and E;NE;y1 #¢ for 1 <i < k.
Now for every 1 < i < k, we can apply Lemma 2.18 to get a set F; € P(A)™* such
that E; C F;. Clearly, we have x € Fy, y € Fj, F; € P(A)™ for 1 < i < k, and
FiNFip #o¢for 1 <i<k. Thus, 2Pp(4)n-y.

We conclude that for every x,y € X, x Pp(4)n+y if and only if 2 Pgn+y. Therefore,

P(P(A)™) = P(A™). O

Lemma 2.20. Let % be an ergodic operation on a set X. If A is a periodic X -cover,
then P(A) is a stable partition.

Proof. Let n = per(A) - con(x). Since per(A) divides n, we have A™ = A. Let
A € P(A) be chosen so that |A| is maximal, and let B € P(A). We clearly have
|B| < |A]. We also have B € P(A™) since A™ = A. From Lemma 2.19 we have
P(P(A)™) = P(A™), and so B € P(P(A)™) = P(A™) = P(A).

Fix 2z € Aand y € B. Since n > con(x), there exists a sequence xg, ..., Tp—1 € X
such that y = (... ((z * o) * 1) ... * xp—1). Now choose Xy,...,X,_1 such that
z; € X; € P(A)™ for 0 < i < n. Define C := (... ((A%X)*X1)...xX,_1). Clearly,
y € C € P(A)™. Now since y € B € P(P(A)™) and y € C € P(A)™, we must
have C' = (... ((A* Xp)* X1)...* X,_1) C B and so |A| < |C| < |B|, which implies
that |A| = |B| = |C| since we already have |B| < |A|. Therefore, C' = B and so
B € P(A)™ for every B € P(A), from which we conclude that P(A) C P(A)"™*. On
the other hand, since |A| = |B| for every B € P(A), P(A) is a balanced partition.

Now for every C' € P(A)™*, there exists a set D € P(A) and a sequence
X0y, Xp—1 such that X; € P(A)™ and C = (... ((D * Xo) * X1)... * Xp_1).
We have |D| < |C|. On the other hand, Lemma 2.18 (applied to the X-cover
P(A)™) implies the existence of a set B € P(P(A)"™) such that C C B. There-
fore, |[D| < |C| < |B|. Now since P(P(A)™) = P(A™) (by Lemma 2.19) and
A™ = A, we have B € P(P(A)™) = P(A™) = P(A). Therefore, |D| = |B|
since D, B € P(A) and since P(A) was shown to be a balanced partition. Thus,
|B| = |C| = |D| which implies that C'= B € P(A) since C C B. We conclude that
C € P(A) for every C € P(A)™. Therefore, P(A)"* C P(A). This means that
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P(A)™ = P(A) since we already have P(A) C P(A)™. We conclude that P(A) is
a stable partition. O

Lemma 2.21. Let x be a uniformity-preserving operation on a set X. If A is a
stable X -cover, then for every i > 0, every A € A and every B € A™, we have
Al = |B.

Proof. Fix i > 0, and let p = min{k - per(A) : k- per(A) > i}. Clearly, AP* = A.
Let A € A and B € A*. We have

(a) ®) ik % © pk (d)
Al = [IA[A < AT][A < [B] < AT [lv < A ]lv = [Allv = [A],

where (a) and (d) follow from the fact that A is a balanced X-cover. (b) and (c)
follow from Lemma 2.1. This shows that |A| = |B]. O

Lemma 2.22. Let % be a uniformity-preserving operation on a set X, and let A be
a stable X -cover. For every A,B,C € A, if BNC # ¢ then Ax B=AxC.

Proof. We have A x B € A*, and from Lemma 2.21 we get |A x B| = |A|. On the

other hand, since * is uniformity-preserving, we have |A x x| = |A| for every z € X.
Now since A * B = U A x b, and since |A xb| = |A| = |A * B| for every b € B, we
beB

must have A x B = Ax b for every b € B. Similarly, A« C = A x ¢ for every c € C.
We conclude that Ax B = A % C since BNC # ¢ (for any x € BN C, we have
AxB=Axxz=Ax(C). O

Lemma 2.23. Let x be a uniformity-preserving operation on a set X, and let A be
a stable X -cover. For every A € A and every B € P(A), we have Ax B € A*.

Proof. According to Lemma 2.17 there exists a finite sequence (A;)1<;<; such that
l

B:UAi, A;e Aforall 1 <i<l[,and A;NA;11 # o forall 1 <i<][. Lemma

i=1
2.22 shows that Ax A} = Ax Ay = ... = Ax A;. Therefore, AxB = AxA; € A*. O

Lemma 2.24. Let x be an ergodic operation on a set X, and let A be a stable
X-cover. For every A € A and every P(A)-sequence X, we have A x ¥ € ARXI*,

Proof. We will prove the lemma by induction on k = |X| > 0. Lemma 2.23 implies
that the statement is true for £ = 1. Now let £ > 1 and suppose that the lemma is
true for |X| = k— 1. Now let X = (X;)o<i<k be a P(A)-sequence of length k. Define
X = (Xi)0§i<k—1~ We have:

o A= Axx e A*D* from the induction hypothesis.

e Lemma 2.20 shows that P(A) is a stable partition, and so P(A)*~D* is also a
stable partition. In particular, P(A)#~1D* is a partition and so P(A)*+-D* =
P(P(A)*=1*). On the other hand, Lemma 2.19 shows that P (P(A)*~D*) =
P(AK=D*). Therefore, P(A)F-D* = P(A*-1*). We conclude that X;_; €
P(AF=D*) since we have X;_; € P(A)F-D*,
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e Since (ARD5)m = (Am)E-Dr = AG=D* (where n = per(A)), A®D* i
a periodic X-cover. On the other hand, Lemma 2.21 implies that A®F—D* ig
balanced. Therefore, A*—D* ig a stable X-cover.

Now since A’ € AFD* and X;_; € P(A*D*), and since A*~D* is a stable
X-cover, we can apply Lemma 2.23 to obtain A’ x X;_; € (AF—D*)* = A We
conclude that AxX = A’ X;,_; € A" which completes the induction argument. [

Now we are ready to prove Proposition 2.7:

Proof of Proposition 2.7. Let x be a strongly ergodic operation on X and let A be
a stable X-cover. Lemma 2.20 shows that P(A) is a stable partition. Let n =
per(A).scon(x). We have the following:

o P(A)"™ =P(P(A)™) since P(A) is a stable partition.
o P(P(A)™) =P(A™) by Lemma 2.19.
o A™ = A since per(A) divides n.

Therefore, P(A)™ = P(A™) = P(A).

Fix A € A. From Lemma 2.18 there exists B € P(A) such that A C B. Fix
a € A. Since a € B € P(A) = P(A)™ and since n > scon(x), we can apply
Theorem 2.2 to get a P(.A)-sequence of length n such that a*X = BxX = B. Since
B=axXCAxXC B*xX=D0B, we have A*x X = B. Now from Lemma 2.24, we
have B = A x X € A™ = A. This means that |A| = |B| because A, B € A and A is
stable. Therefore, A = B since we have A C B and |A| = |B|.

We conclude that A € P(A) for every A € A. Now since P(A) is a partition, we
have AN A" = ¢ for every A, A’ € A satisfying A # A’. On the other hand, A is an
X-cover. This shows that A itself is a partition, hence A = P(A). Therefore, A is
a stable partition. O

2.8.5 Proof of Proposition 2.8

Lemma 2.25. Let x be a uniformity-preserving operation on X and let A be a
periodic X -cover. We have core(A)™ C core(A™) for every n > 1.

Proof. Let A € core(A)™. There exist Ay, Af, € core(A), A} € core(A)*,..., Al _, €
core(A)™~D* such that A = (... ((Ag* A)) * A})...x A_|). We have

nx (a) nx
[A™ v > [A] = [(... (Ao * Ag) * A7) ... x Ay _1)| > [Ao| = [ Allv = [[A™ v,

where (a) follows from Lemma 2.3. Therefore, |A| = || A™*||y and so A € core(A™).
We conclude that core(A)™ C core(A™). O

Lemma 2.26. Let x* be a uniformity-preserving operation on X and let A be a
periodic X -cover. We have | core(A)™| > | core(A)| for every n > 1.
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Proof. Fix by € By € core(A),by € By € core(A)*,...,by_1 € B,_1 € core(A)—1*,
Let m : X — X be defined as 7(z) = (... ((x *by) * by)...*b,—1). Clearly, 7 is a
bijection because * is uniformity-preserving.

For every A € core(A), we have (... ((A* By) * By)...* By_1) € core(A)™.
Lemma 2.25 now implies that (...((A* By) * By)...* By,_1) € core(A™) and so

(.. (A% Bo) % By)... * By _1)| = [lA™||v £ ||4] = 4],

where (a) follows from Lemma 2.3. Now since m(A) = (... ((A*bg)*b1)...xby_1) C
(...((A%*Bp)* B1)...xBp_1) and |[(... ((Ax Bg) * B1)...x Bp_1)| = |A| = |7n(A)],
we have (...((A* By) * By)...* B,_1) = m(A). Therefore, 7(A) € core(A)™* for
every A € core(A). We conclude that

| core(A)™| > [{m(A) : A € core(A)}| @ {A: A € core(A)}| = | core(A)],
where (a) follows from the fact that 7 is a bijection. O

Lemma 2.27. Let x* be a uniformity-preserving operation on X and let A be a
periodic X -cover. We have core(A)"™ = core(A™) for every n > 1.

Proof. Let p = min{k - per(A) : k-per(A) > n}. Lemmas 2.25 and 2.26 imply that
| core(A*)| > | core(A)*| > | core(A)|. Therefore, we have

| core(A)| = | core(AP*)] > | core(AP~V9)| > ... > |core(A™)| > ... > |core(A)],
hence |core(A™)| = | core(A)|. Lemma 2.26 now implies that
| core(A)"™*| > | core(A)| = | core(A™)],

and from Lemma 2.25 we have core(A)™ C core(A™). We conclude that we have
core(A)™ = core(A™). O

Lemma 2.28. Let x be an ergodic operation on X. If A is a periodic X -cover, then
core(A) is an X -cover.

Proof. Let n = per(A) - con(x). Fix A € core(A) and a € A. Now let z € X'. Since
n > con(x), the eighth point of Proposition 2.1 implies that a 5% %. Therefore,
there exist g, ..., x,—1 such that (... ((a*xxg) *xx1)...*xxH_1) = 2.

Now since A is an X-cover, A™ is an X-cover for every i > 0. Therefore, for
every 0 < i < n, there exists A; € A" such that z; € A;. Let

B:=(..((AxAy)*xA1)...xA,_1) € A™.

We have A™ = A since per(.A) divides n, hence B € A. We also have

(a) (b)
[Allv = [Bl = |(... (Ax Ag) x A1) ... x An_1)| = |A] = [|Allv,

where (a) follows from the fact that B € A, and (b) follows from the fact that x
is uniformity-preserving. Therefore, |B| = ||A||y, which implies that B € core(A).
Now since

r=(..((axxo)*x1)...%xxpn_1) € (...((Ax Ag) *x A1)...x Ap_1) = B € core(A),
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we have
T € U C.
Céecore(A)
But this is true for every x € X. We conclude that core(.A) is an X-cover. O

Now we are ready to prove Proposition 2.8:

Proof of Proposition 2.8. Let x be an ergodic operation on X’ and let A be a periodic
X-cover. Lemma 2.28 implies that core(.A) is an X'-cover.

Let p = per(A). Lemma 2.27 implies that core(A)™ = core(A™) for every
n > 1. In particular, we have core(A)P* = core(AP*) = core(.A), which implies
that core(A) is periodic and per(core(.A)) divides p. Now since core(A) is clearly
balanced, we conclude that core(.A) is a stable X'-cover. 0

2.8.6 Proofs for Section 2.7
Proof of Theorem 2.4

In order to prove Theorem 2.4, we need a few definitions and lemmas:

Definition 2.25. Define the two projection mappings P : X — X} and Py : X — X»
as Py(x1,22) = x1 and Pa(x1,x9) = o for all (x1,22) € X. Define the following:

o Ui(H) = {P\(H): HeH).
o Us(H) = {Po(H): H e H).

Lemma 2.29. For every xa,xh, € X, there exists an H-repeatable sequence X such
that:

e For every x1 € X1, we have (x1,25) € (x1,x2) * X.
e For every X C X, we have P;(X) C Pi(X % X).

We say that the sequence X can take the second coordinate from xo to %, while
keeping the first coordinate unchanged.

Proof. Let k = per(H)con(x) > con(xz). Choose arbitrarily a sequence of k el-
ements z1,...,21 -1 in X; and define the mapping 7 : &} — &} as w(z1) =
(... (&1 %1 21,0) %1 21,1) ... %1 T1k—1). Since 7 is a permutation of X7, there exists
an integer s > 0 such that 7°(z1) = x; for all x; € A}. Let | = ks and define the
sequence x1; for k <1i <1l as x1; = T1;mod k- Clearly,

(. ((xr*1210) %1 21,1) .. %121 y—1) = 7°(21) = 21 for all 21 € A7 (2.13)

Now since | > k > con(x3) and since %o is ergodic, there exists a sequence
(x2,i)o<i<i in Xy such that
.%'/2 = ( e ((IQ *2 x2,0) *2 x2,1) . ) xQ,l*l)- (214)

Define the H-repeatable sequence X = (X;)o<<; such that (z1;,22;) € X; € H
for all 0 <+ < [. For every z1 € X7, we have:

a (b)
(z1,x5) @ (x1,22) * (($1,z‘,932,i)0§i<l> € (z1,22) * X,
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where (a) follows from (2.13) and (2.14), and (b) follows from the fact that (z1, z2,)
€ X; forall 0 <i<lI.

Now let X C X. We have:
Pi(X) = (. ((Pi(X) %1 21,0) %1 @11) -+ %1 T1-1)

b (c)
© Pi(X % (21,4, 22,)0<i<t) C P1(X xX),

—
N

where (a) follows from (2.13), (b) follows from the definition of * and P;, and (c)
follows from the fact that (z1;,22,;) € X; for all 0 <i < [. O

Lemma 2.30. Let X be an H-repeatable sequence which takes the second coordinate
from zo to x!y while keeping the first coordinate unchanged as in Lemma 2.29. If
there exist HyH' € H and x1 € Xy such that (z1,z2) € H and (x1,2%) € H', then
H =HxX.

Proof. From Lemma 2.29 we have (z1,245) € (x1,22) * X C H * X. Therefore,
H'N(H % X) # ¢. On the other hand, we have H' € H and H * ¥ € H*XI* = H.
Therefore, H = H x X since H is a partition. O

Lemma 2.31. Uy (H) (resp. U2(H)) is a partition of Xy (resp. Xa).

Proof. Clearly, U;(#H) covers X;. Now suppose that there exist A, B € U;(H) such
that AN B # ¢ and let x1 € AN B. Let Hy, Hg € H be such that Py(H4) = A
and Pi(Hp) = B. There exist 22 4 € X3 and x5 p € X5 such that (z1,224) € Ha
and (z1,x2,5) € Hp. Using Lemma 2.29, choose an H-repeatable sequence X which
can take the second coordinate from x 4 to w2 p while keeping the first coordinate
unchanged.

Lemma 2.30 shows that Hgp = H4 * X and Lemma 2.29 implies that P;(H4) C
Pi(Hy % X). We conclude that A = Pi(Hs) C Pi(HaxX) = Pi(Hp) = B. By
exchanging the roles of A and B, we can also get B C A. Therefore, A = B. We
conclude that U;(H) is a partition of X;. A similar argument shows that Uy (H) is
a partition of X5. ]

Lemma 2.32. Uy (H) (resp. Us(H)) is a stable partition of Xy (resp. Xs) of period
of at most per(H). Moreover, for every i > 0, we have Uy (H)™ = U (H™) and
Ua(H)™2 = U (H™).

Proof. We will only prove the lemma for U (H) since the proof for Us(H) is similar.
We will start by showing by induction on i > 0 that U (H)™1 = U; (H™). The claim
is trivial for ¢ = 0. Now let ¢ > 0 and suppose that the claim is true for ¢ — 1. We
have:

Us (H)* = (ul(H)(i—l)*l)*l (@) (ul(%(i—l)*))*l
= {H{« HY : H}, H €Uy (HD")}
= {Py(H') %, P/(H"): H' /H" € H~D*}
O p(H «H"): B H" ¢ 1V}
={Pi(H): HcH"} =U(H™),
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where (a) follows from the induction hypothesis and (b) follows from the identity
P (H'") %y PI(H") = Pi(H' « H") which is very easy to check. We conclude that
we have Uy (H)*t = Uy (H™) for all i > 0. In particular, for p = per(H), we have
UL (H)P*r = Uy (HP*) = UL (H).

Lemma 2.31 shows that U;(#) is a partition, and we have just shown that
Ui (H)P*t = Ui (H). Therefore, Ui (H) is periodic of period of at most p. Lemma 2.2
now implies that U (#H) is a stable partition of A}. O

Definition 2.26. Let X C X, 21 € X1 and z2 € Xs. Define the sets Py, (X) C &1
and P2|x1 (X) C Xy as:

o Pip,(X)={x1 € X1 : (z1,22) € X} = P (X N (X1 x {z2})).

o Py (X) = {2 € Xy : (21,22) € X} = Po(X N ({21} x &)).
Define the following:

o Li(H)={Pis,(H): HEH, xo € Xy, Py, (H) # 0}

o Lo(H)={Py,,(H): HEH, x1 € Xy, Py, (H) # 0}
Lemma 2.33. £1(H) (resp. L2(H)) is a partition of X1 (resp. Xy).

Proof. Clearly, L£1(H) covers X;. Suppose that there exist A, B € £1(H) such that
ANB # ¢ andlet z1 € ANB. Let Hy, Hp € H and 2 4,22 p € &> be such that
A= Py, ,(Ha) and B = Py, ,(Hp). Using Lemma 2.29, choose an H-repeatable
sequence X which can take the second coordinate from 2 4 to x9 p while keeping
the first coordinate unchanged.

Since 1 € A = Py, , (Hy) and 1 € B = Piley 5 (Hp), we have (z1,224) € Ha
and (1,22 ) € Hp. It follows from Lemma 2.30 that Hg = H * X.

Now for every 27 € A = Py, ,(Ha), we have (2,72 4) € Ha and so by Lemma
2.29 we have (2,z28) € (},22,4) *X C Hy* X = Hp. We conclude that z} €
Pijg, 5 (Hp) = B for every z) € A. Therefore, A C B. By exchanging the roles of A
and B we can also get B C A which implies that A = B. We conclude that £1(H)
is a partition of Aj. A similar argument shows that Lo(#H) is a partition of Ay. [

Lemma 2.34. L£i(H) (resp. L2(H)) is a balanced partition of Xy (resp. Xa).

Proof. Let A,B € L1(H). There exist Hy, Hp € H and x2 4,22 p € X such that
A= P1|z2,A(HA) and B = Py, , (Hp). Fix 214 € A and 1 p € B and define k =
per(#) - max{con(x1), con(xz)}. Clearly, (x1,4,224) € Ha and (21 p,228) € Hp.

Since k > con(x1) and k > con(x*q), and since x; and *o are ergodic, there exist
a sequence (x1,)o<i<k in X1 and a sequence (22;)o<i<k in X2 such that:

(.. (1,4 %1 T10) %1 21,1) - .- *¥1 L1 k—1) = Z1,B,

(2.15)
(. .. (([132714 *9 .I'Q’O) *9 .73271) ..o X9 .%'2’]@,1) = 33273.

Now define the H-repeatable sequence X = (X;)o<i<k such that (z1,,22;) € X; €
H™ for all 0 < i < k. We have:

(a) b
(x1,B,22,B) = (T1,4,22,4) * (($1,i,$2,i)ogi<k> € Hp* X,
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where (a) follows from (2.15) and (b) follows from the fact that (1 4,22,4) € Ha
and (x1,4,x2;) € X; for every 0 <i < k. We conclude that Hg N (H4 * X) # ¢. On
the other hand, we have Hg € H and Hy * X € H** = H. Therefore, Hg = H * X
since H is a partition.

Define the mapping m1 : X1 — Xy asmi(z1) = (... (z1x121,0)¥121,1) - - F121 f—1)
for every x1 € Xy and the mapping my : Xy — Xp as ma(x2) = (... ((x2 *2 x20) *2
X1) ... % Lo k1) for every xg € Xo.

Now let 21 € A = Py, ,(Ha), we have:

a b (o)
(m(21), 22,8) < (11 (21), 72(w2,)) € (21,20,) 5 (215,82, )0sic) € HaxX = Hp,

—

where (a) follows from (2.15), (b) follows from the definition of 7; and 72 and (c)
follows from the fact that (1,22 4) € Ha and (x4, 22;) € X; for every 0 < i < k.
We conclude that mi(z1) € Py, ,(Hp) = B for every x1 € A. Therefore,

m1(A) C B, which implies that |A| & |1 (A)] < |B|, where (a) follows from the

fact that m; is a permutation. By exchanging the roles of A and B we can also
get |B| < |A| which implies that |A| = |B|. We conclude that £;(H) is a balanced
partition of X; as Lemma 2.33 already showed that £;(?) is a partition. A similar
argument shows that L£o(H) is a balanced partition of Xj. 0

Lemma 2.35. For every i > 0 and every A € L1(H)™, there exists B € Lq(H™)
such that A C B.

Proof. We will prove the lemma by induction on ¢ > 0. The lemma is trivial for
1=0.

Now let i > 0 and suppose that the lemma is true for i — 1. Let A € L£1(H)™!,
there exist A’, A” € L£1(H)#~D*1 such that A = A’ %; A”. From the induction
hypothesis, there exist B, B” € £1(H~1*) such that A’ ¢ B’ and A” C B". This
means that there exist H', H” € HU~1* and 2,24 € X such that B’ = Py (H')
and B" = Pyj,y(H"). We have:

(@)

A= A'si A" C B %y B" = Pypyy (H') %1 Py (H") C Pijyyumey (H' + H"),
where (a) follows from the fact that for every zy € Py, (H') and 2 € Py, (H"), we
have (2!, 25) € H and (27, 24) € H", and so (2] %127, 2hxoxly) = (2!, 24) = (27, 25) €
H' x H”, which implies that x| %1 2} € Pl\xg*zxg(H/ * H').

If we define B = Py .,y (H x H") € L1(H™), we get A C B. We conclude that
the lemma is true for all 7 > 0. O]

Lemma 2.36. L1(H) (resp. L2(H)) is a stable partition of Xy (resp. Xa) of period
of at most per(H). Moreover, for every i > 0, we have L1(H)™ = L1(H™) and
EQ(H)Z*Q — £2(Hz*)

Proof. We will only prove the lemma for £;(H) since the proof for Lo(#) is similar.
Let p = per(#). According to Lemma 2.35, for every A € L£1(H)P*!, there exists
B € L1(HP*) = L1(H) such that A C B. On the other hand, we have:

T ()
Al > [[IL1(H)P* A = 1L0(H)a = 1£1(H)| = |B],
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where (a) follows from Lemma 2.1 and (b) follows from the fact that £;(H) is a
balanced partition (Lemma 2.34). We conclude that A = B € £;(H) since |A| > |B|
and A C B. Now since this is true for every A € L£1(H)P*1, we have L1 (H)P*! C
L1(H) which implies that £i(H)?** = L£1(#H) since £1(H) is a partition of &} and
L1(H)P*1 is an Xj-cover. We conclude that £1(#H) is a stable partition of period of
at most p = per(H). Now since this is true for every stable partition and since H%*
is a stable partition for every i > 0, we conclude that £;(H™) is a stable partition
for every i > 0. This implies that £1(H™)/* is a stable partition for every i > 0
and every j > 0.

For every i > 0, Lemma 2.35 (applied to #(~D*) implies that £;(H~D*)*
is a sub-stable partition of £i(H™) and so ||£;(HED9)|| = ||£(HED) || <
|£1(H™)||. Therefore,

LGOI < [L(H) < - < L (H)I = [I£(H)]-

We conclude that || £y (H™)|| = ||£1(HE™m0dP)*)|| = ||£1(H)| for every i > 0. More-
over, since L£1(#) is stable, we have ||[£1(H)"!| = [|£1(#H)]||, which implies that
I£1(H)™ || = | £1(H™)] for every i > 0.

Now for every i > 0, £1(H)*! is a sub-stable partition of £1(H%*) (by Lemma
2.35) and we have just shown that || £1(H)™|| = ||£1(H™)|]. We conclude that
L1(H)™r = L1(H™) for every i > 0. O

Now we are ready to prove Theorem 2.4:

Proof of Theorem 2.4. Lemma 2.36 shows that £1(#H) and Lo(H) are stable par-
titions of X; and X» respectively, and Lemma 2.32 shows that U;(H) and Us(H)
are stable partitions of X7 and X, respectively. Moreover, Lemma 2.36 shows that
L1(H)™ = L1(H™) and Lo(H)™2 = Lo(H™) for every i > 0, and Lemma 2.32 shows
that Uy (H)™t = U (H™) and Us(H)™2 = Uy (H™) for every i > 0.

It is easy to see that £1(H) = Ui(H) and Lo(H) < Us(H). Now we turn to show
that £1(H) @ Lo(H) = H S Ur(H) @ Ua(H). Let A x B € L1(H) ® Lo(H) (i.e.,
A€ L1y(H) and B € L2(H)), and fix 1 € A and 25 € B. Let H € H be such that
(71,72) € H. We have w1 € Py, (H) as (v1,72) € H. Therefore, Py|,,(H) N A # ¢
which implies that A = Py, (H) since both A and Py, (H) are in £1(H) which was
shown to be a stable partition.

Now fix (r4,7p) € AXB. Since x4 € A = Pj|,,(H), we have (x4, 72) € H which
means that xo € Py, (H). Therefore, BN Py, , (H) # ¢ which implies that B =
Py, (H) since both B and Py, , (H) are in L3(H) which was shown to be a stable
partition. Now since xp € B = P, (H), we conclude that (v4,rp) € H. But this
is true for all (z4,2p) € A X B, hence A x B C H. Therefore, £1(H) ® Lo(H) < H.

In order to prove that H < Ui (H) @ Ua(H), let H € H, A’ = Pi(H) € Uy(H)
and B’ = Py(H) € Uz (H). Clearly, H C A" x B’, hence H < Ui (H) @ Uz2(H).

Now let H € H. Since £1(H) ® L2(H) =X H, there exist an integer ny > 0
and ng sets Hy,...,Hy,, € L1(H)® L2(H) such that Hy,..., H,, are disjoint and
H=HU...UH,,. Since Hy,...,Hy, € L1(H) @ L2(H), there exist ny sets
Hii,....,Hipn, € L1(H) and ny sets Haq,...,Hap, € Lo(H) such that H; =
Hl,l X Hg}l, ey and HnH = Hlv"H X H27nH. Clearly, Hl,i = Pl(Hz) and Hg}i =
Py(H;) for every 1 <1i < ny. We have:
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° HI,IU--~UH1,7LH = Pl(H1>U...UP1(HnH) = Pl(Hlu...UHnH) = Pl(H) S
U (H).

° H271 U...UHQ,TLH = PQ(Hl)U...UPQ(HnH) = PQ(H1U...UH7LH) = PQ(H) S
Us(H).

e Suppose that Hy; = Hy ; for some i # j and let x1 € Hy; = Hy ;, then Ho; U
Hyj C Py, (H) € Lo(H) which cannot happen unless Hy; = Ha j = Py, (H).
This is a contradiction since (H;; x Hg;) and (H; j x Hy ;) are disjoint. We
conclude that Hy1,..., Hyy, are disjoint. Similarly, Ha1,..., Ha,, are also
disjoint.

Now since Hy 1, ..., Hy p, are disjoint, we have ||Uy(H)|| = |Pi(H)| = |Hia|+-- -+

U (H . Uz (H
|Hiny| = nul|L1(H)||. Therefore, ng = HAEH%H Similarly, ng = ”ﬁzEH;H We

conclude that ng is the same for all H € H. Let us denote this common integer as
n. It is now easy to see that || =n - |[|[Ci(H)| - [|[L2(H)]] = [|[L1(H)]| - [|[U2(H)|| =
L (FO| - (| £2(H)]-

Now in order to prove the uniqueness of £1(H), L2(H), Ui(H) and Uz(H), sup-
pose that Hi, Ha, H}, Hb, and n’ > 0 satisfy the conditions of the theorem (i.e.
Hi, Ha, H), Hb and n’ play the roles of L1(H), L2(H), U1 (H), U2(H) and n respec-
tively). Let H € H, then there exist n’ disjoint sets H,,...,Hj,, € Hi and n/
disjoint sets Hy ..., Hé,n’ € Hs such that: ’

e Hi,U...UH| M.
o HyU...UHy,  €H.
o H=(Hj;xH);)U...U(Hy,, xHy,).

Since H = (H{ yx Hj1)U...U(H] ,,xHy ), we have Py (H) = Hj ,U...UH] , € H}.
But this is true for every H € H. Therefore, Uy(H) C H; which implies that
H = Ui (H) since H) and Uy (H) are partitions. Similarly, H) = Us(H).

Now let x5 € A3 be such that Pyj,,(H) # ¢. Clearly, z2 € Hy; for some 1 <i <
n' and so Py, (H) = Hj; € Hy since H = (H{; x Hj,)U...U(H],, x Hy ) and
since Hé,l, e ,Hin, are disjoint. Therefore, for every x5 € Xy satistying Py),,(H) #
@, we have Py,,(H) € Hi. We conclude that £1(H) C Hi which implies that

H1 = L1(H) since Hy and L£1(H) are partitions. Similarly, Ho = L2(#). Moreover,
r I ()1

[l s T ™
We conclude that the stable partitions £1(H), Lo(H), Ui (H), Uz (H) are unique.

O]

Proof of Theorem 2.5

For Theorem 2.5, we will first prove it for m = 2 using two lemmas. The general
result can then be proven by induction on m > 2.

Lemma 2.37. If x = x; ® %9 s a strongly ergodic operation on X = X1 X Xa, then
x1 and %o are strongly ergodic.
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Proof. Let H; be a stable partition of X7, then H = H; ® {X2} is a stable partition
of X1 x Xy. Fix x9 € Xy and let z; € AXj. Since * is strongly ergodic, then by
Definition 2.14 there exists n = n(x1,x2, H) > 0 such that for every H € H™*, there
exists an H-sequence X = (X;)o<i<n satisfying (z1,x2) * X = H. Let H; € H]™.
Clearly, Hy x Xy € H™ @ {Xo} = (H1 @ {Xo})™ = H™.

Since H; x Xy € H™, there exists an H-sequence X = (X;)o<i<n such that
(z1,22) % X = Hy x Xy. For every 0 <i <n, X; € (H1 ® {Xp})* = Hi" @ {Ap} and
so there exists X1, € H.*' such that X; = X;,; x X». By projecting the equation
(z1,22) * X = Hy x Xy on the first coordinate, we get x1 *; X1 = Hj, where X is
the Hi-sequence (X7 ;)o<i<n. By fixing zo € X, n will depend only on z; and H;
as required in the definition of strong ergodicity. This proves that x; is strongly
ergodic. A similar argument shows that o is also strongly ergodic. O

Lemma 2.38. If %1 and 9 are two strongly ergodic operations on Xy and Xy re-
spectively, then x = *x1 ® %9 1s a strongly ergodic operation on X = X1 X Xs.

Proof. Fix a stable partition H of X'. Since %1 and %9 are strongly ergodic, they are
ergodic and so Theorem 2.4 can be applied. Let £1(H), L2(H), Ui (H) and Us(H)
be defined as in Theorem 2.4, and let P, and P» be the projection onto the first and
second coordinate respectively as in Definition 2.25.

Let (z1,x9) € H € H. We will construct an H-augmenting sequence X satisfying
H C (x1,22)*X in two steps: We first construct an H-augmenting sequence Xy such
that Py(H) C Py((z1,22) * Xp), i-e., Xy stretches {(z1,22)} in the direction of the
first coordinate to cover P;(H). In the second step, we construct an H-augmenting
sequence Xy, such that H C ((wl,xg) * .’{U) « X, i.e., X stretches (z1,z2) * Xy in
the direction of the second coordinate to cover H.

Step 1: Let Hy = Pi(H) € Ui(H). Since *; is strongly ergodic, there exists a
Uy (H)-augmenting sequence X; such that xq %1 X1 = H;. Let X = (X{,i)0§i<k' =
(21)Pr(M) | For every 0 < i < k' = |X}|, we have X1 ; € Uh(H)™ = U (H™), and so
from Definition 2.25 there exists X € H* such that P(X!) = X1 ;- Define the H-
sequence X7, = (X])o<i<kr- The sequence X7, is H-repeatable since per(H) divides
|X1;| = k' = |X1]| - per(H). By Lemma 2.7, there exists [ > 0 such that Xy := (X],)!
is H-augmenting. We have:

a)
H, (C Hy # (xl)per('H)l—l _ (1,1 ¥ %1) %1 (%1)per(H)l—1

= a1 %1 (X2 = 2y 5y (X)) = w151 ((X] ) oicnr)’
= Pi((er2)) =1 (D) gerare) = Pr((@n,22) « (XDozicrr))
=P ((.’171,1132) * (.’ﬁj)l) = Pl((xl,a;g) * %U),

(2.16)

where (a) follows from the fact that X; is i) (H)-augmenting.

Step 2: Define Xy = (z1,22) * Xyy. Since Xy is H-augmenting, we must have
Xy C K, where K € Ky is such that (z1,22) € K (see Theorem 2.1). Now since
K4 is a sub-stable partition of H (by Theorem 2.1) and since (z1,2z2) € K N H, we
must have K C H. Therefore, Xy C H. On the other hand, from (2.16) we have
Hy C Pi(Xy). We conclude that for every a € Hy, we have a € P;(Xy) and so
there exists b, € Xy such that (a,b,) € Xy C H.
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According to Theorem 2.4, there exist n disjoint sets Hy 1,..., Hyn € £1(H) and
n disjoint sets HQJ, ceey Hgm S [,2(7'[) such that H = (H171 XHQJ_)U. . .U(HLnXHQ,n).
For every a € Hy = Hy1 U...U Hy,, there exists a unique 1 < ¢, < n such that
a € Hy;,. We have:

H = U (Hi; x Hyy) = U U ({a} x Ha;)

1<i<n 1<i<na€Hy ;
(2.17)
= U U Wa) xmy) = | (a} x Hay,).
].SZ’SH(ZGHLZ' IZGHl

Fix a € H;. Since (a,b,) € H = U ({a'} x Ha; ,), we must have b, € Ha;, €
a’'€eH

Lo(H). Now since *g is strongly ergodiec7 ‘Ehere exists an Lo(H )-augmenting sequence
X2,4 such that b, *g X2 4 = Ha;,. Let %/27@ = (Xé,a,i)0§i<kfl = (%g,a)per(m. For every
0 <i < kg, we have Xg ., € Lo(H)*2 = Lo(H™), and so from Definition 2.26 there
exist @ ,; € X1 and X ; € H™ such that X}, = PQ\I’l,a,i(Xt/z,i)' Define the #H-
sequence X, = (X ;)o<i<k,- The sequence X7, is H-repeatable since per(#) divides
|X5| = ki = |Xoal - per(H).

Define the mapping 74 : X1 — Xy as ma(2) = (w12 40)*121 41) - 12 4 4y 1)
for every z € X). Since 7, is a permutation, there exists p, > 0 such that 74*(z) = x
for every x € Xy. (X))P* is H-repeatable since X/, is H-repeatable. Now by Lemma
2.7 there exists I, > 0 such that X, := (X])Pele is H-augmenting. We have:

{a} x Haj, (é) {a} x (Ha,, *2 (.’{2@)Per(7{)pala71)
= {a} x ((ba #2 Xo,q) 2 (Xg,q)PFIPelal)
O f7pela (a)} 5 (by o (X,q)PrPIPela)
= {ﬂg“l“(a)} X (ba %9 ( /27a)pala)

c pala
© (a,bq) * <({$/1az} x Xé,a,i)ogKka)

(d)
C (a,ba) * ((X])osicr, )"

= (a,by) * (X])Pele = (a,b,) * X,.

(a) follows from the fact that Xo, is Lo(H)-augmenting, hence (X ,)Per(*)Pala—1
is Lo(H)-augmenting (by Remark 2.7), and so Ha;, C Hay, %o (Xg,4)Pe(FIPala=l,
(b) follows from the fact that 74*(z) = x for every x € X;, which implies that
wgal“(a) = a. (c) follows from the definition of 7, and from the fact that X}, , =
(X5 4.i)0<i<k,- (d) follows from the fact that Py, (X, ;) = X3, ;, which implies
that {7} ,,} x X3,, C X, for every 0 <i < kq. h

Now let X1, = (X4)aem, be the H-augmenting sequence obtained by concatenat-
ing the H-augmenting sequences X, for all a € H; (the order of the concatenation
is not important). Since {a} x Ha;, C (a,b,) * X, for every a € H;, we must have

{a} x Hy;, C (a,by) * X, for every a € Hj. (2.18)

Define X = (Xy,Xr). We have (x1,29) x X = ((xl,:v2) * %U) * X, = Xy xXp.
For every a € Hj, we have already shown that (a,b,) € Xy and so it follows from
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(2.18) that:
{a} x Ha;, C (a,by) * X C Xy X = (z1,22) * X.

Since this is true for every a € Hy, we have:

B ¢ i, (o,
acH,

where (a) follows from (2.17).

Now since X is H-augmenting, Theorem 2.1 implies that (x1,z2) *X C K, where
K € Ky is such that (z1,x2) € K. Therefore, |H| = |H| < |(z1,22) x X| < |K| =
ICx||. Now since Ky is a sub-stable partition of H, we conclude that Ky = H. But
this is true for every stable partition ‘H of X', hence * is strongly ergodic. O

Now we are ready to prove Theorem 2.5:

Proof of Theorem 2.5. Lemmas 2.37 and 2.38 show that Theorem 2.5 is true for
m = 2. Now let m > 2 and suppose that the theorem is true for m — 1.

Let *1,..., %, be m binary operations such that x| ®...® %, is strongly ergodic.
It is easy to see that 1 ® ... ® #*,, can be identified to (%1 ® ... ® #py,_1) @ %, (see
Notation 2.5). Therefore, (%1 @ ... ® *;,—1) & *,, is strongly ergodic. Lemma 2.37
implies that *; ® ... ® *,,_1 and %, are strongly ergodic. It then follows from the

induction hypothesis that *i,...,*,,_1 are strongly ergodic. Therefore, *1,..., %,
are strongly ergodic.
Conversely, let *1,..., %, be m strongly ergodic operations. From the induction

hypothesis, we get that 1 ®...®%,,_1 is strongly ergodic. Lemma 2.38 implies that

(%1 ® ... @ *m_1) @ %y, is strongly ergodic. But since (%} ® ... ® *;,—1) ® *p, can be

identified to *; ® ... ® #,,, we conclude that x; ® ... ® *,, is strongly ergodic.
Therefore, Theorem 2.5 is true for all m > 2. O



Polarizing Binary Operations

In this chapter!, we provide a necessary and sufficient condition for a binary oper-
ation to be polarizing (in the general multilevel sense). In Section 3.1, we formally
define the concept of polarizing binary operations. In Section 3.2, we prove that a
binary operation is polarizing if and only if it is uniformity-preserving and its right-
inverse is strongly ergodic. In Section 3.3, we explain how we can use a polarizing
operation to construct polar codes.

3.1 Formal Definition of Polarizing Binary Operations

Unless we state otherwise, every set that is considered in this chapter is finite.

3.1.1 Easy Channels

Notation 3.1. A channel W with input alphabet X and output alphabet ) is denoted
by W : X — Y. The transition probabilities of W are denoted by W (y|z), where
x € X andy € Y. Note that we use the long arrow (— ) in the notation W : X —
Y and not the short arrow (— ) that we only use to describe mappings. For example,
W : X — Y denotes a channel, and V : X — Y denotes a mapping from X to Y.

The probability of error of the maximum-likelihood (ML) decoder® of W for uni-
formly distributed input is denoted as P.(W'). The symmetric capacity of W, denoted
I(W), is the mutual information I(X;Y), where X and Y are jointly distributed as
Pxy(z,y) = ﬁW(ykz:) (i.e., X is uniform in X and it is used as input to the
channel W while Y is the output).

Definition 3.1. A channel W : X — Y is said to be §-easy if there exist an integer
L < |X| and a random code B of block length 1 and rate logy L (i.e., B€ S :={C C
X : |C| = L}), which satisfy the following:

o [I(W)—1logyL| <.

!The material of this chapter is based on [15, 18].
2The ML decoder is the decoder that minimizes the probability of error.

69
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1 1
e For every x € X, we have Z ZPB(C')]IQCGC = ——. In other words, if C € S

x|
ceS
is chosen according to the distribution of B and X is chosen uniformly in C,
then the marginal distribution of X as a random variable in X is uniform.

o If for each C € S we fix a bijection fc : {1,...,L} — C, then I(Wg) >
logy L — 6, where Wi : {1,...,L} — Y x S is the channel defined by:

Wis(y, Cla) = W(y|fc(a)).Ps(C).

Note that the value of I(Wpg) does not depend on the choice of the bijections
(fo)ces:

If we also have P.(Wg) < €, we say that W is (9, €)-easy.

If W is d-easy for a small §, then we can reliably transmit information near the
symmetric capacity of W using a code of blocklength 1 (hence the easiness; there
is no need to use codes of large blocklengths): We choose a random code according
to B, we reveal this code to the receiver, and then we transmit information using
this code. The rate of this code is equal to log, L which is close to the symmetric
capacity I(WW). On the other hand, the fact that I(Wp) > log, L — means that Wg
is almost perfect, which ensures that our simple coding scheme has a low probability
of error.

Note that we added (2) to our definition in order to induce a uniform distribution
on the input. This is important for the polarization process (see the definition of
W~ and W in Definition 3.2: The distribution of U; and Us are assumed to be
uniform in X).

3.1.2 Polarization Process

In this section, we consider an ordinary (single user) channel W and a binary oper-
ation * on its input alphabet.

Definition 3.2. Let X be an arbitrary set and x be a binary operation on X. Let
W X — Y be a channel. We define the two channels W~ : X — Y x Y and
WH: X —YxYxX as follows:

1
| D Wy lu * ug) W (yalus),

W™ (y1,y2lur) = ]
ug X

1
WH(y1,y2, ur|ug) = WW(?JHM * uz) W (y2|uz).

For every s = (s1,...,8n) € {—,+}", we define W* recursively as:

WS = (W), ),

Definition 3.3. Let (By)n>1 be i.i.d. uniform random variables in {—,+}. For
each channel W with input alphabet X, we define the channel-valued process (W, )n>0
recursively as follows:

Wy =W,
W, = WPh vn > 1.



3.1. Formal Definition of Polarizing Binary Operations 71

Definition 3.4. A binary operation * is said to be polarizing if we have the following
two properties:

e Conservation property: For every channel W with input alphabet X, we have
IW=)+ (W) =2I(W).

e Polarization property: For every channel W with input alphabet X and every
0 > 0, W, almost surely becomes J-easy, i.e.,

lim P[Wn is 5-6&5@/] =1.

n—oo

Notation 3.2. Throughout this chapter, we write (Uy, Us) ELN (X1, X2) , (Y1,Y2)
to denote the following:

o Uy and Us are two independent random variables uniformly distributed in X .
[ ] X1:U1>I<U2 andXQZUQ.

e The conditional distribution (Y1,Y2)|(X1, X2) is given by:

PYl,Y2|X1,X2 (Y1, y2lT1, m2) = W (y1|o1) W (y2]z2).

Le., Y1 and Yy are the outputs of two independent copies of the channel W
with inputs X1 and Xo respectively.

e (U,Uy) — (X1,X2) — (W1,Y3) is a Markov chain.

Note that since X1 = Uy x Uy and Xy = Us, the chain (X1, X2) — (U1, Us2) — (Y1,Y2)
1s also a Markov chain.

Remark 3.1. Let (Uy,Us) ELN (X1, X9) v, (Y1,Y32). From the definition of W~
and W, it is easy to see that we have I[(W~) = I(Uy;Y1,Ys) and I(WT) =
I(Us; Y1,Ys,Ur). Therefore,

IW™)+ I(WH) = I(Uy; Y1,Y2) + I(Us; Y1, Y2, Uy)

= I(U1,Us; Y1,Y5) 9 I(X1, X9;Y1,Y5),

where (a) follows from the fact that both (Uy, Uz) — (X1, X2)— (Y1, Y2) and (X1, X2)—
(Uy,Uz) — (Y1,Y2) are Markov chains. We have the following:

o If x is not uniformity-preserving, then (X1, X2) is not uniform in X2. If W
is a perfect channel, i.e., I(W) = logy |X|, we have

(a)
IW)+I(W) =I(X1, X2;Y1,Ys) < H(X1, Xo) < 2logy |X| = 2I(W),
(3.1)
where (a) follows from the fact that (X1, X2) is not uniform in X2. (3.1) means
that x does not satisfy the conservation property of Definition 3.4. Therefore,
every polarizing operation must be uniformity-preserving.
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o If % is uniformity-preserving, then (X1, X2) is uniform in X2, i.e., X1 and X»
are independent and uniform in X. Thus,

IW™)+I(WT) = I(X1, X2; Y1, Ya) = [(X1; Y1) + I (Xa; Ya) = 21(W).
Therefore, uniformity-preserving operations satisfy the conservation property.

We conclude that a binary operation * satisfies the conservation property if and only
if it is uniformity-preserving.

Definition 3.5. Let x be a polarizing operation on a set X. We say that >0 is a
x-achievable exponent if for every § > 0 and every channel W with input alphabet
X, Wy, almost surely becomes (9, 2*2ﬁﬂ’)—ea3y, i.e.,

lim P[W,, is (8,272 )-easy| = 1.

n—o0

We define the exponent of * as:
E, :=sup{B > 0: p is a*-achievable exponent}.

Note that E, depends only on * and it does not depend on any particular channel
W. The definition of a x-achievable exponent ensures that it is achievable for every
channel W with input alphabet X.

Example 3.1. If ¥ =Fy = {0,1} and * is the addition modulo 2, then E, = 3 (see
[19]).

3.2 A Characterization of Polarizing Binary Operations

3.2.1 Necessary Condition

In this subsection, we show that if * is polarizing, then * is uniformity-preserving
and /* (the right-inverse of *) is strongly ergodic. In order to prove this, we need
the following two lemmas:

Lemma 3.1. Let % be an ergodic operation on a set X. Let H be a stable partition
of X such that Ky # H, where Ky is the first residue of H with respect to x. Define
A=HUKy. We have:

1. For every Ay, As € A, we have:

o (A1 € Ky and As € Kyy) if and only if (A1 x Az € K™ and Ag € Kyy).
A1 € Ky and Ay € H) if and only if (A1 x Ay € Ky™ and A € H).
A1 € H and Ay € ]C'H) if and only if (Al x* Ay € H* and Ay € ]CH)

Ay € H and Az € H) if and only if (A1 x Ay € H* and Ay € H).

(
(
(
(

2. For every uy,us € X and every Ay, As € A, we have

(up € Ay x Az and ug € Ag) if and only if (u1/ uz € Ay and ug € Ay).
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Proof. 1) We have A = H U Ky. Therefore, for every A;, Ao € A, one of the
following four conditions holds true:

(i A1 € Ky and Ay € Ky

)

(ii) A€ IC'H and Ay € H.

(iii) A; € H and Ay € Ky.
)

(iv) Ay € H and Ay € H.

Now since Ky # H and Ky < H, we have ||[Ky|| < |[H]||. Therefore, for every
K € Ky and every H € H, we have |K| = ||[Ky|| < ||H|| = |H|. This implies
that K # H for every K € Ky and every H € H, hence Ky NH = ¢. Similarly,
Ky NH* = ¢. We conclude that for every Ay, As € A, the following four conditions
are mutually exclusive:

(a A1 x Ay € Ky™ and Ay € Ky.
(

b Al*AQElCH* and Ay € H.

)
)
(C) A1 x Ay € H" and Ay € ICH

)

(d) Ay %A € H* and Ay € H.
We have:

o If A} € Ky and Ag € Ky, then A; x Ay € Ky *. Therefore, (i) implies (a).

o If A} € Ky and Ag € H, then Ay x Ay € Ky* (see Theorem 2.1). Therefore,
(ii) implies (b).

o If Ay € H and Ay € Ky, let H € H be such that Ay C H. (Note that there
is no contradiction here between Ay C H € H, Ay € Ky and H N Ky = 0.)
We have Ay x Ay C Ay x H and |Ay * Ao| > |A1| = ||H|| = ||H*|| = | A1 = H|.
Therefore, A x Ay = A1 x H € H*. Hence (iii) implies (c).

o If Ay € H and Ay € H, then A x Ay € H*. Therefore, (iv) implies (d).

Now let A1, Ay € A and suppose that (a) holds true (i.e., A1xAs € Ky and Ay €
K3). Since A; € A then either Ay € Ky or A1 € H. But Ay € Ky, so either (i)
or (iii) holds true. On the other hand, we have shown that (iii) implies (¢), and (c)
contradicts (a), so (iii) cannot be true. Therefore, (i) must be true. We conclude
that (a) implies (i). Similarly, we can show that (b) implies (ii), (c¢) implies (iii),
and (d) implies (iv).

2) Fix Ay, Ay € A. We have:
o If Ay € Ky and Ay € Ky, then |A1 *A2| = ||IC’H*|| = HICHH = |A1|

e If A} € Ky and As € H, then from 1) we have A; x Ay € Ky*. Therefore,
[ A1 * Ag| = [y = [[Knl| = [Aal.

e If Ay € H and Ay € Ky then from 1) we have Ay x* Ay € H*. Therefore,
[ Ay * Ag| = [[H*|| = |[H]] = [A1].
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o If A; € H and A, € ‘H, then ‘Al*AQ‘ = HH*H = HHH = ‘Al‘

We conclude that in all cases, we have |A; x Aa| = |A1].
For every ui,us € X, we have:

o If uy/*us € Ay and ug € Ag, then up = (uy/*ug) x ug € Ay x As.

e Ifu; € Ay x Ay and us € As, we have Ay xug C A1 x As. On the other hand, we
have |A; * As| = |A1| = |A1 * ua| (where the last equality holds true because
* is uniformity-preserving). We conclude that A; * Ay = A; % ug. Therefore,
(Ay % Ag)/*us = Ay which implies that uy/*uy € Aj.

O]

Definition 3.6. A channel W : X — Y is said to be equivalent to another channel
W': X — Z if both channels are degraded from each other.

Lemma 3.2. Let % be a uniformity-preserving operation on a set X, and let W :
X — Y. If (W) =I1I(W) then W is equivalent to W.

Proof. Since I(W™*)+I(W ™) = 2I(W) and since I(W~) = (W), we have [(WT) =
I(W). Let (Uy, Us) 5 (X1, Xa) %5 (3, V) (See Notation 3.2). We have:

IW) =I(W") =I(Uy; Y1, Y2, Uy)

= I(UQ; Yz) -+ I(UQ; Y1, U1|Y2) = I(W) + I(UQ; Yy, U1|}/2)

This shows that I(Us; Yy, Up|Y2) = 0. This means that Y3 is a sufficient statistic
for the channel Uy — (Y1, Y2, U;) (which is equivalent to W*). We conclude that
W is equivalent to the channel Uy — Y5, which is equivalent to W. O

Proposition 3.1. Let x be a binary operation on a set X. If x is polarizing then x
is uniformity-preserving and /* is strongly ergodic.

Proof. If % is polarizing then * must be uniformity-preserving (see Remark 3.1).
We first prove that = is irreducible. Suppose to the contrary that * is not
irreducible. Proposition 2.1 shows that there exist two disjoint non-empty subsets
Ay and As of X such that A U Ay = X, A x X = Ay and Ay x X' = Ay. This
means that for every ui,us € X and every y € {1,2}, we have u; € A, if and only
if up xug € Ay.
For each € > 0 define the channel W, : X — {1,2, ¢} as follows:

1—¢ ifye{l,2}andz € A,
We(ylz) =<0 ifye{1,2}andz ¢ A,,
€ ify =e.

(W) =(1— E)hg(%), so there exists € > 0 such that I(W) is not the logarithm

of any integer. For such €, there exists § > 0 such that W, is not J-easy.
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Let (Uq, Ug) (Xl,XQ) (Yl, Y5) (See Notation 3.2). Consider the channel
Uy — (Y1,Y32) which is equivalent to W . We have:

Py, vy v, (Y1, y2lun) = |X] > We(yi|ua * ug) We (y2|uz)

U X
(a) 1
Wer (y1ur) Wer (y2|u2)
’Xge:x (3.2)
b)
= ) Wealyiun) Py, (y2|ug) P, (u2)
ug€X

= W (y1|u1) Py, (y2),

where (a) follows from the fact that if y; = e then We (y1|ug *us) = We (y1|ur) = €
and if y; € {1,2} then u; € A,, if and only if u; * up € Ay, which implies that
We(y1|ug * ug) = We(yr|ur). (b) follows from the fact that the channel Uy — Y5
is equivalent to W, and the fact that Us is uniform in X.

(3.2) implies that Y7 is a sufficient statistic for the channel U; — (Y1, Y2) (which
is equivalent to W, ). Moreover, since Py, y,u, (1, ¥2|u1) = We (y1]u1) Py, (y2), we
conclude that the channel W is equivalent to We. This implies that I(W.) =
I(W). Now Lemma 3.2 implies that W is equivalent to W,,. Therefore, for every
[ > 0 and every s € {—,+}, W5 is equlvalent to Wy which is not d-easy. This
contradicts the fact that * is polarizing. We conclude that * must be irreducible.

Suppose that * is not ergodic. Proposition 2.1 shows that there exists a partition
{Hop,...,Hp—1} of X such that H; * X = H; 11 modn for all 0 < i < n and |Hy| =

= |H,—1|. This means that for every u;,us € X and every y € {0,...,n — 1},
we have uy *x up € Hy if and only if u; € Hy_1 mod n -

For each 0 < ¢ < n and each 0 < € < 1, define the channel W;, : X —
{0,...,n—1,e} as follows:

1—€ ifye{0,....,n—1}and x € Hyyimod n,
Wie(ylx) =40 ifye{0,...,n—1} and ¢ Hy\; mod n,
€ ify =e.
I(Wie) = (1 —€)logyn so there exists € > 0 such that I(W; ) is not the logarithm

of any integer. For such €', there exists 0 > 0 such that W; . is not d-easy for any
0<17<n.

Let (Ul,Ug) (Xl,Xg) (Yl,Yg) Consider the channel U; — (Y7,Y5)
which is equivalent to W . We have:

Py, vy, (1, y2|ur) = ]X| > Wi (yilur * u2) Wi o (yalu2)

U EX
Y
= Wi—1 mod n,e (ylful) i€’ (yQ‘U‘Q)
e P (3.3)
b)
= Z Wi—1 mod n.e (y1|U1)PY2\U2 (y2|u2) Pu, (u2)
UgeEX

- i—1 mod n,e’ (yl |U1)Py2 (y2)7
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where (a) follows from the fact that if y; = e then

vVi,e’ (yl‘ul * UQ) = Wi_1 mod n,e’(y1|u1) =¢

and if y € {0,...,n—1} then uy xup € Hy, 4 mod n if and only if u1 € Hy, 1i 1 mod n
(which implies that W; o (y1|u1 * u2) = Wi_i mod n,e (y1|u1)). (b) follows from the
fact that the channel Uy — Y3 is equivalent to W; .~ and the fact that Us is uniform
in X.

(3.3) implies that Y] is a sufficient statistic for the channel U; — (Y1, Y2) (which
is equivalent to W, _,). Moreover, since

Py, vy, (Y1, y2lu1) = Wit mod e (1 |u1) Py, (32),

we conclude that the channel Wi;, is equivalent to W;_1 mod n,e- This implies that
I(W; ) = I(Wict mod n,e’) = (1 =€) logyn = I(W; ). Now Lemma 3.2 implies that
Wil
equivalent to Wi_|s- mod n,er (Where [s|™ is the number of appearances of the — sign
in the sequence s) which is not J-easy. This contradicts the fact that * is polarizing.

We conclude that * must be ergodic.

is equivalent to W; . Therefore, for every I > 0 and every s € {—, +}, W7 is

Since * is ergodic, /* is ergodic as well. Suppose that /* is not strongly ergodic.
Theorem 2.2 implies the existence of a stable partition H of (X, /*) such that ICy #
H (where K3 here denotes the first residue of H with respect to the right-inverse
operation /*). For each i > 0 and each € > 0 define the channel W;, : X —
ICHi/* UM as follows:

l1—¢ ifreyandye Ky,
Wie(ylx) = Qe ifreyandy e HY,
0 ifxéy.

We emphasize that y here is a subset of X and it is not an element of it. We have
I(Wie) = (1= €)logy [Ky/"| + elogy [H'"| = (1 — €) logy | K| + €logy [H].

Now since Ky # H and Ky < H, we have |H| # |Ky|. Therefore, there exists € > 0
such that I(W; ) is not the logarithm of any integer. For such ¢ > 0, there exists
d > 0 such that I(W; ) is not é-easy for any i > 0.

W, o
Let (Uy,Us) EiN (X1, X2) —% (Y1,Y3). Consider the channel Uy — (Y7, Ys),
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which is equivalent to W _,. We have:

PY1,Y2\U1 (Y1, y2|u1)

|X! Z Wi e (y1|ur * ug) Wi o (y2|us)
U EX

1
- S e (11 i+ )]

X |:]lu2ey2 . ((1 — 6/)]].y2€KHi/* + 6/]].y267_[i/*>:|

| | Z Luyvuseys, uaeys * ((1 - 6/)1y1elcni/* + 6l]ly1e7-ti/*>
us€X

|X’ Z e /v, uace ((1 B El)ﬂylelcﬂi/* * el]lyleHi/*>
U EX

8 <(1 B el)nyQGICHi/* - 6/19267{”*)

N2 .
|X’ Z 1U1€y1/*y2 u2€yY2 <(1 B 6) ]lyleKHi/*:yZGKHZ/
usEX

N / /
+(1—e)e ]lyIEIC’H,i/*a Y2 €H® +e(l—e )]lyleHi/*7 Y2 €3,/

12
+e€ ]].ylef}_[i/*7 yQEHi/*)
(b)

N2
|X| Z Lureyi/ye, useys <(1 —€) ]lyl/*yzelCH(Hl)/*, yoen /"
us€X
/ / ! /
+ (1= €)e ]lyl/*y2€’c7-t(i+l)/*7 yoei/* TE (1—e )]1y1/*y2€?'l“+1)/*7 y2€K3/"

12
te ]lyl/*y2€7‘l(i+1)/*, yze?li/*>

/ /
\X] Z [ ui€yr/ Y2’ <(1 = €Ly, eppercy it HE ]lyl/*yzeﬂ("“)/*)]
U EX

X [1U2€y2 : <(1 - el)ﬂyzelCHi/* + 61]1?J2€"Hi/*>}

|X| Z Wz—l—le (yl/ y2|U1) i,e (y2|U,2)
ug€X

DS Wipn,o (v /*elur) Pry o, (yalus) P, (uz)
UEX
= Wit (y1/ y2|ur) Py, (y2),

(3.4)
where (a) follows from applying the second point of Lemma 3.1 on the ergodic
operation /* and the stable partition Hi (b) follows from applying the first point
of Lemma 3.1 on the ergodic operation /* and the stable partition #*/". (c) follows
from the fact that W; o is equivalent to the channel Uy — Y5 and from the fact
that Us is uniform in X.

(3.4) implies that Y7/*Y> is a sufficient statistic for the channel U; — (Y1,Y3)
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(which is equivalent to W, ). Moreover, since

Py, voju, (1, y2lu1) = Wiyt (y1/ y2|u1) Py, (y2),

we conclude that the channel W, is equivalent to W; . This implies that
IW. ) = I(Wis10) = (1 — €)logy |Ky| + €' logy |H| = I(W; ). Now Lemma

i€’
3.2 implies that Wit, is equivalent to W; . Therefore, for every [ > 0 and every
s € {—,+}, W#, is equivalent to Wiijs|-,e (Where [s|™ is the number of appear-

i,€
ances of the — sign in the sequence s) which is not d-easy. This again contradicts

the fact that * is polarizing. We conclude that /* must be strongly ergodic. O

3.2.2 Sufficient Condition

In this subsection, we prove a converse for Proposition 3.1. We will show that for
any uniformity-preserving operation x, the strong ergodicity of /* implies that * is
polarizing. We will prove this in three steps.

Step 1: Polarized Channels are Projection Channels onto Stable Partitions

Notation 3.3. For every sequence x = (x;)o<i<n of N elements of X, and for
every 0 < j < k < N, we define the subsequence xé? as the sequence (})o<i<k—j,
where x, = x5 for every 0 <i <k — j.

Notation 3.4. For every k > 0 and every sequence X = (x;)g<;<or of |X| = 2k
elements of X, we define g.(x) € X recursively on k as follows:

o Ifk=0 (i.e., x =(x0)), 9+«(X) = 0.

o Ifk>0, g.(x)= g*(x|0x‘/2_1) * g*(xiii/_;) = g*(xgkfl_l) * g*(xngll).
For example, we have:

R pp———

° g*(x%) = (xo*x1) * (x2 *x x3).

o g.(x) = ((zo * 1) * (g * 33)) * (4 * 25) * (w6 * x7)).

Definition 3.7. Let A be a subset of X. We define the probability distribution I 4
on X asls(x) = ﬁ if v € A and I4(x) = 0 otherwise.

Definition 3.8. Let Y be an arbitrary set, H be a balanced partition of X and
(X,Y) be a random pair in X x Y. For every v > 0, we define:

Vio(X,Y) = {y € ¥: 3H, € U, |Pxpy=y I, | <7},

and
Prq(X,Y) = Py (Vny(X,Y)).
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Note that if Py ,(X,Y) ~ 1 for a small v then Y is “almost equivalent” to
the projection of X onto H. This will be proved rigorously in step 2. The next
proposition will be used later to show that a relation Py (X,Y) =~ 1 is satisfied
between the input and output of a polarized channel, where # is a stable partition.
This is why we say that polarized channels are projection channels onto stable
partitions.

Proposition 3.2. Let x be a strongly ergodic operation on a set X. Define k =
221 4 scon(x) and let ) be an arbitrary set. For every ~y > 0, there exists €(y) > 0
depending only on X such that if (X;,Yi)o<icor is a sequence of 2% random pairs
satisfying: -

1. (Xi,Yi)o<i<or are independent and identically distributed in X x Y,
2. X; is uniform in X for all 0 <i < 2F,
k__ k__
3. H(g.(Xg DYy ™) < H(Xo|Yo) +e(7),
then there exists a stable partition H of (X,*) such that Py (Xo,Yo) > 1 — 1.

Proof. See Appendix 3.4.1. O

Step 2: Structure of Projection Channels

Lemma 3.3. Let X be an arbitrary set and let x be an ergodic operation on X. For
every § > 0, there exists v := ~(0) > 0 such that for any stable partition H of (X, *),
if (X,Y) is a pair of random variables in X x Y satisfying

1. X is uniform in X,

2. Pu~(X3Y)>1—7,

then ‘I(ProjH/(X); Y) —logy W < & for every stable partition H' of (X, ).

Proof. Let ‘H' be a stable partition of X'. Note that the entropy function is con-
tinuous and the space of probability distributions on H’ is compact. Therefore,
the entropy function is uniformly continuous, which means that for every 6 > 0
there exists 7;,(6) > 0 such that if p; and po are two probabéility distributions

on H' satisfying |[p1 — palloc < 74y/(6) then |H(p1) — H(p2)| < §. Let 6 > 0 and

define ~3/(0) = min{2log2(|67-t/|+1)7 ”7_1[,”7;{,((5)}. Now define v(6) = min{~yx/(9) :
H' is a stable partition} which depends only on (X,x*) and §. Clearly, ||[H'||v(d) <
¥4, (0) for every stable partition ' of X.

Let #H be a stable partition of & and suppose that Py ,s5)(X;Y) > 1 — ~(d),
where X is uniform in X'. Fix y € Yy 5)(X;Y). By the definition of Yy 5 (X;Y),
there exists H, € H such that |Pxy (z|y) — Iy, (z)| < v(6) for every z € X.

Let H' be a stable partition of X. Corollary 2.1 shows that H A H' is also a
stable partition of X. From the definition of H A H’, for every H' € H' we have
either HyNH' = ¢ or HyNH' € H AH'. Therefore, we have either |H, N H'| =0 or




80 Polarizing Binary Operations

|HyNH'| = [|[HAH||. Let Hy, = {H' € H': H,NH' # ¢}, s0 |H,NH'| = [[HAH|
for all H" € H;,. Now since H, = U (HyNH'), we have ||H|| = |H,| = Z |HyN

H'eH’' H'eH!
o'l = ’H;| ||H AH||. Therefore,

[H] / ,
= |H, | < |H|. 3.9

We will now show that for every y € My +(s), we have HPpij, X)y=y —In, HOO
V34 (0), where I3, is the probability distribution on H' defined as Iy, (H') = |’H’ p if
H' € H, and Iy (H') = 0 otherwise. This will be useful to show that

1)
<—f 1y e
ER H/n or ally € Vi)

H(Projy (X)|Y = y) —logy 7= ——

Let y € Yy ) and H' € H'. We have PprOJH,(X)D/ (H'ly) = Z Pxy (zy).
reH’
But since |Pxy (z|y) — ﬁ| < 7(0) for every z € H,;, and since Px |y (z|y) < () if
' H'NH
z € X\ Hy, we conclude that ’PProjH/(X)|Y(H/’y) | U; |y" < |H'|v(8) = [H'||v(0) <
¥4y (0). We conclude:

o If H < 7-[’ we have |H' N Hy| = ||H A H'|| which means that ‘HI mﬁ”' =
|| (@)
“}ﬁgﬁ : ml/\,where( a) follows from (3.5). Thus\PProij)\Y(H/'y)_\T;I' =
Y (6).

o If H' € H'\ H,, Ilﬂlgﬁy‘ =0 and so PprojH,(X)‘y(H'\y) < Y4y (0).
Therefore, || Pproj,,, (x)y=y — I oo < Y3y (6) This means that |H(Proj, (X)[Y =

y) — H(Iy)
(3.5). Therefore,

< g But H(Iy,) = log, ]7—[’| logQ ”7_‘[‘1{7“[,“, where (a) follows from

1]l 5

Yy € Vry(s), |H(Projy (X)Y = y) —logy = [H A

(3.6)

On the other hand, for every y € yH (G PprOJH,( X)|y=y 18 a probability distri-
bution on H’ which implies that 0 < H(PI‘OJH/( )Y = y) < logy|H'|. Moreover,

we have 0 < log, IIJAQ’H < log, |H'| from (3.5). Therefore,

< log, |H/]. 3.7

VY € Vi ys)r |[HProjay (X)Y =y) —logy i —
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We conclude that:

. H
H(Progyy (X)IY) ~ logs 1
. H

< 3 [ Prog O = 9) ~ tors |- Pr(w
yey

(a) )

< Z §'Py(y)+ Z (logy [H']) - Py (y)
YEVH 4(5) YEVY (5
o )

N
=5 - Py Vo) + (o [H') Py (Vi 5)) < 5 + (loga [H])7(9)
5

< -+ (logy [H]) - Yoz, (1] + 1) <9,

N S DN

where (a) follows from (3.6) and (3.7). (b) follows from the second condition of the
lemma.

Now since Proj,,(X) is uniform in H', we have H(Proj,, (X)) = log, |H'|. We
conclude that if Py ,5)(X,Y) > 1—v(d) then for every stable partition H' of (X, %),
we have

[H] - I HAH

1]l
which implies that ’I(Projw(X); Y) — log, W < & since |H| - |[H| = |H/| -

[#]] = [T, O

‘I(Projy_[, (X);Y) — log, <4,

Step 3: Projection Channels are Easy

Definition 3.9. Let H be a balanced partition of X and let W : X — Y. We
define the channel W[H] : H — Y by:

WRIGIH) = o Y W) = g 3 Wole)
TEX: rxeH
Projy (z)=H

Remark 3.2. If X is a random variable uniformly distributed in X and Y is the
output of the channel W when X is the input, then it is easy to see that [(W[H]) =
I(Projp(X);Y).

Theorem 3.1. Let X be an arbitrary set and let x be a uniformity-preserving op-
eration on X such that /* is strongly ergodic. Let W : X — Y be an arbitrary
channel. Then for every § > 0, we have:

. 1
lim —
n—o0 2N

{s € {—,+}": IHs a stable partition of (X, /%),

‘I(WS[H/]) — log, W < 0 for all stable partitions H' of (X, /*)}‘ =1.
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Proof. Let (W), be as in Definition 3.3. Since x is uniformity-preserving, it satisfies
the conservation property of Definition 3.4 (see Remark 3.1). Therefore, we have:

E[1(Wae1) W] = SI(W,) + SI(W,H) = 1(W,).

This implies that the process (I(W,)), is a martingale, and so it converges almost
surely. Therefore, the process (I(W,1x) — I (Wn))n converges almost surely to zero,
where k = 22" + scon(/*). In particular, (I(Wy4x) — I(Wn))n converges in proba-
bility to zero, hence for every > 0 we have

lim P[|7(W,ix) = I(Wa)| > e(+(9))| =0,

n—o0

where €(.) is given by Proposition 3.2 and 7(.) is given by Lemma 3.3. We have:

B11(0Wi) — T0W)| 2 €(2(8))| = s Ml

where A, ) = {<s,s’> € {— " x =+ [IWE) — (W] = 6(7(5))}-
Define:
B = {s e {— 4} [TWSFDYy — 1(w)| > 6(7(5))},

where [k]~ € {—,+}* is the sequence consisting of k minus signs. Clearly, B, 1 X
{[k]7} € Apy and so |By | < [Ap k|- Now since

li L
n1—>n;o ontk

[Auel = im B[I(We) = I(W,)| > e(+(8))] = 0.

. 1 o1 &
we must have nh_>n010 W|Bn,k| = 0. Therefore, nh_>n010 27L|Bnk\ =2"x 0 =0 and so

R e
A3 g Pl =1
Now suppose that s € By ;, i.e., [I(WEED)Y — T(W#)| < e(v(8)). Let Uy,...,

Usk 1 be 2F independent random variables uniformly distributed in X'. For every
0 < j <k, define the sequence Uj, ..., U;or_y recursively as follows:

o Uy, =U, for every 0 <i < 2k,

e For every 0 < j < k and every 0 < i < 2F, define Ujy1,; as follows:

U= dUii ¥ Ujigrsr i 0 < dmod 2k < kil
T U if 2631 < j mod 2V < 2k~

Since # is uniformity-preserving, it is easy to see that for every 0 < i < k, the 2F
random variables Ujo, ..., U ox_; are independent and uniform in X. In particular,
if we define X; = Uy ; for 0 <i < 2% then Xo,..., Xor_; are 2% independent random
variables uniformly distributed in X'. Suppose that X, ..., Xox_; are sent through
2% independent copies of the channel W* and let Yp,..., Yo ; be the output of
each copy of the channel respectively. Clearly, (Xj,Y;)g<;<or are independent and
uniformly distributed in X x Y. Moreover, I(W?*) = I(X;;Y;) for every 0 < i < 2.
In particular, I(W?*) = I(Xo; Yp) = H(Xo) — H(Xo|Yo) = logy |X| — H(Xo|Yp). We
will show by backward induction on 0 < j < k that for every 0 < ¢ < 27 we have:
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o k=i _
o WE=i7) ig equivalent to the channel Ujgor—i — yq(gg 2hi-1

_ (¢+1)-2F-7 -1
* Ujgar—i =9y (qulzk—j )

The claim is trivial for 7 = k. Now let 0 < j < k and suppose that the claim is true
for j+ 1. Let 0 < ¢ < 27. From the induction hypothesis we have:

Y(2q+1)-2k*jflf1

o Wk=i=17) is equivalent to the channel Uji1,g26-5 — il

o (2q+1)-2F—3—1_1
® Yitlgok-i = 9/ (Xq.zk—j )

Y(q+1)-2k*jf1

o Wk=1=17) is equivalent to the channel Ujti,(2g41)2k—3-1 — (2q-+1).2k—i—1"

_ (g+1)-2k=7 -1
¢ Yjtl(2q+1)-2k—i-t = 9/~ (X(2qq+1)~2k*i*1)'

Now since
Uj+17q_2k—j = Uj7q,2k—j * Uj’(2q+1)_2k7j—l
and
Uj+1,(2q+1)-2k*j*1 = Uj,(2q+1)~2k*j*17

it follows that W F=117) = (W (slk==17)) = is equivalent to the channel Ujgok-i —

Y(q+1)-2k*j—1

i (see Remark 3.1). Moreover, we have

Ujgar-i = Ujrrgon-i/"Ujqrry2vs-1 = Ujragoe-a/Ujpa ag ) 281
B (2q+1)-2F =711\ (g+1)-2F=7 -1y (g+1)-2k=7 -1
=9/ (Xq-2qkfj )/ gr~ (X(2q+1)~2k*j*1) =9/ (Xq‘zkfj )

This terminates the induction argument and so the claim is true for all 0 < j < k.
In particular, for j =0 and ¢ = 0, we have Uy = Up o = g/~ (ng_l) and WF7) ig
equivalent to the channel Uy — Y()Qkfl. Thus,

W HD) = 1(U Y7 ") = H(Uo) ~ H(T]Yy ™) = logy |1X] = H(U|Y7" ).
Hence

LW D) — (W) = log, |X| — H(Uo|Yy ™) — logy |X] + H(Xo|Y0)
a _ k__
< H(XolYo) - H (g (X3 DY),
where (a) follows from the fact that Uy = g, (ng_l). We conclude that
|H (9/- (X2 DY) = H(Xo|Yo)| = [I(WEFD) - 1(W?)] < e(7(5)).

Proposition 3.2, applied to /*, implies the existence of a stable partition Hs of (X, /*)
such that Py, (5)(Xo, Yo) > 1 —(6). Now Lemma 3.3, applied to /*, implies that

for every stable partition H' of (X, /*), we have ‘I(WS [H']) — log, W
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. .
£z < 0. But this is true for every s € By ;.

Therefore, By, C Dn, where Dy, is defined as:

[1(Projie (Xo): Yo) — log, el et

D, = {3 € {—,+}": IH, a stable partition of (X, /"),

s Hsl|-||HsAH'

< 4 for all stable partitions H’ of (X, /*)}

. o1 .1
Now since nh_}rgo 27|ng| =1 and B, ; C Dy, we must have nh_)rglo 2—n|Dn| =1 O

Corollary 3.1. Let X be an arbitrary set and let x be a uniformity-preserving
operation on X such that /* is strongly ergodic, and let W : X — ) be an arbitrary
channel. Then for every 6 > 0, we have:

li !
A

{s € {—,+}": IHs a stable partition of (X, /),

[T(W*) — logy [Ho| < 8, | I(W[H,]) — logy M| < 5}‘ 1

Proof. We apply Theorem 3.1 and we consider the two particular cases where H' =
{{z}: 2 € X} and H' = H,. O

Remark 3.3. Corollary 3.1 can be interpreted as follows: In a polarized chan-
nel W#, we have I(W?) ~ I(W?[H,]) =~ log, |Hs| for some stable partition Hs of
(X,/*). Let Xg and Ys be the input and output of the channel W* respectively.
I(W*[H,]) =~ logy |Hs| means that Ys “almost” determines Projy (Xs). On the
other hand, I(W?*) ~ [(W*[Hs]) means that there is “almost” no other information
about Xs which can be determined from Ys. Therefore, W¥ is “almost” equivalent
to the channel Xy — Projy, (Xs).

Lemma 3.4. Let W : X — Y be an arbitrary channel. If there exists a balanced
partition H of X such that |I(W) —logy ||| < & and |I(W[H])—log, |H|| < 8, then
W is d-easy. Moreover, if we also have P.(W[H]) < €, then W is (0, €)-easy.

Proof. Let L = |H| and let Hy,...,Hy, be the L members of #. Let S = {C C
X |C| = L} and Sy = {{xl,...,mL} : ox € Hy,...,x21 € HL} c 8. For
each 1 <4 < L, let X; be a random variable uniformly distributed in H;. Define
B ={Xi,..., X}, which is a random set taking values in S;. Note that we can see
B as a random variable in S since Sy C S. For every z € &X', let H; be the unique
element of H such that © € H;. We have:

1 1 @ 1 11 11 1
l Ps(C)lyec = —PlzeBl = —PX,=z|=—- = .=
1 2 Po(Oecc = Ple € B) = 5Pl =2) = 5o (70 = G gl ~ T

(3.8)

where (a) follows from the fact that = € B if and only if X; = x. Now for each C €
Sy, define the bijection fe: {1,...,L} — C as follows: For each 1 <i < L, fo(i) is
the unique element in C'N H; (so Projy(fc(i)) = H;). Let U be a random variable
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chosen uniformly in {1,...,L} and independently from B, and let X = fz(U) (so
Projy(X) = Hy). From (3.8) we get that X is uniform in X'.

Let Y be the output of the channel W when X is the input. From Definition
3.1, we have I(Wp) = I(U;Y, B). On the other hand, I(W[H]) = I(Projy(X);Y) =

a b
I(Hy;Y). Therefore, I(Wp) = I(U;Y,B) > I(U;Y) @ I(Hy;Y) = I(W[H]) (>)

logy L — 6, where (a) follows from the fact that the mapping v — H,, is a bijection
from {1,...,L} to X and (b) follows from the fact that [I(W[H]) — log, [H|| < 6.
We conclude that W is d-easy since I(Wg) > logy L — § and [I(W) — logy L| < 0.

Now suppose that we also have P.(W[H]) < e. For every C € Sy, define the
mapping gc : {1,...,L} = H as gc(i) = Projy(fc(i)) for every 1 < ¢ < L. It
is easy to see that gco is a bijection for every C' € Sy. Furthermore, we have
Proj(X) = gs(U):

Consider the following decoder for the channel Wij:

e Compute an estimate H of Projy (X) using the ML decoder of the channel
e Compute U = ggl(I:I).
The probability of error of this decoder is:
P[U # U] = P[H # g5(U)] = PH # Projy,(X)] = P.(W[H]) <e.

Now since the ML decoder of Wy minimizes the probability of error, we conclude
that P.(Wg) < €. Therefore, W is a (9, €)-easy channel. O

Proposition 3.3. If x is a uniformity-preserving operation on a set X and /* is
strongly ergodic, then * is polarizing.

Proof. We have the following;:

e We know from Remark 3.1 that since * is uniformity-preserving, it satisfies
the conservation property of Definition 3.4.

e The polarization property of Definition 3.4 follows immediately from Corollary
3.1 and Lemma 3.4.

Therefore, * is polarizing. 0

Theorem 3.2. If x is a binary operation on a set X, then * is polarizing if and
only if * is uniformity-preserving and /* is strongly ergodic.

Proof. The theorem follows from Propositions 3.1 and 3.3. U

3.3 Polar Code Construction

Let * be a polarizing binary operation of exponent® F, > 0 on a finite set X. Fix a
channel W with input alphabet X and output alphabet )). Choose 0 < § < 1 and

3As we will see in Chapter 5, not every polarizing binary operation has a strictly positive
exponent. In this section, we assume that * is a polarizing binary operation that satisfies F. > 0.
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0 < B < p < E,, and let ng > 0 be such that for every n > ng, we have

_ 0
2log, |X|

/n n 1
212-2"" < 972" and o [Enl > 1=

where

E,={se{— +}":Wis (g,Q_QB/n)—easy}.

Such an integer exists because * is polarizing and 5’ < E, (see Definition 3.5).

For every s € E,, W* is (%, 2_2B/")—easy, hence there exist an integer L® < |X| and
a random code B* of block length 1 and rate logy L° (ie., B* € §° := {C C X :
|C| = L?}), which satisfy the following:

o |I(W?®)—1logy L?| < g.
e For every x € X', we have

1

L (3.9)

1
> 7: 8 (C)lsec =
cess

o If for each C' € §* we fix a bijection f& : {1,...,L°} — C, then I(W?*pgs) >

log, L® — % and P.(W?gs) < 2_25%, where Wogs : {1,...,L°} — Y° x S% is
the channel defined as:

Wepss(y, Cla) = W(y|fe(a)) - Pps(C).

Note that )* denotes the output alphabet of W#. In the rest of this sec-
tion, we assume that the bijections (f¢)ser,,cess are fixed and known to the
transmitter and the receiver.

A polar code is constructed as follows:

e If s ¢ E,, let U® be a frozen symbol in X, i.e., we suppose that the receiver
knows U?.

o If s € Ey, let C* be a frozen code of blocklength 1 and rate logy L® (i.e., the
code C* is chosen from &% and it is known to the receiver). Let U® be a random
variable that is uniformly distributed in {1,..., L} and let U® = f&.(U?).

e After computing U*® for every s € {—, +}", we apply n polarization steps on the
sequence (U?)geq— 1n to obtain another sequence of 2" symbols (Us)se(— 4},
which will be transmitted through 2" independent copies of the channel W
(see Section 3.3.1).

Since we have a freedom in the choice of the frozen symbols (U®).¢p, and the
frozen codes (C*)scp, , we can assume that these symbols and codes are randomly
generated as follows:

o If s ¢ E,, we assume that U® is chosen uniformly from X
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e If s € E,, we assume that C* is a random code taking values in & according to
the distribution of B*. Equation (3.9) implies that U® = f&.(U?) is uniformly
distributed in X.

Furthermore, we assume that the random variables (U*) ¢, , (U®)sek, and (C®)sep,
are independent.

3.3.1 Encoding

We associate the set S, := {—,+}" with the strict total order < that we define as
(S1,---,8n) < (8),...,s)) if and only if s; = —, s, = + for some i € {1,...,n} and
sp = s, for all i < h < n.

For every u = (u®)ses, € X", every 0 < n/ < n and every (s',5") € Spr X Sp_p,

define €% (u) € X recursively on 0 < n/ < n as follows:
o E(u)=uifn’ =0and s € S,.

o &y y(u) = E(fll’_)(u) * 85(,8//’+)(u) ifn’ >0,s €S,y_1and s" €S, .

S

o EF;:’JF)(U) = Sg;su’Jr)(u) ifn'>0,8 €S,y _1and s" €85, _,.
For every s € Sy, we write £;(u) as £°(u) and £ (u) as Es(u).

Let {Ws}ses, be a set of 2" independent copies of the channel W. W should
not be confused with W#*: Wj is a copy of the channel W whereas W? is a synthetic
channel obtained from W as before.

Let (U%)ses, = (f&:(U®))ses, be the sequence of 2" independent random vari-
ables that were defined above. For every 0 < n’ < n, s’ € S, and s” € S,,_,, define
Us' = &5 (U®)ses, ). We have:

e U;=Usifn’ =0and s e {— +}".

° U(S'; )= US(,SN’JF) * US(,SH’f) ifn >0, s ¢ {