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To all underpaid workers,

all undercredited researchers,

and everybody who is selflessly working

to make this universe a better place to live in.
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In the beginning, there was nothing easy . . .

and Arıkan said: “let there be polarization” . . .

and there was polarization . . .

and every channel was made easier . . .



Abstract

Information theory is the field in which we study the fundamental limitations of
communication. Shannon proved in 1948 that there exists a maximum rate, called
capacity, at which we can reliably communicate information through a given chan-
nel. However, Shannon did not provide an explicit construction of a practical
capacity-achieving coding scheme. Polar coding, invented by Arıkan, is the first low-
complexity coding technique that achieves the capacity of binary-input memoryless
symmetric channels. The construction of these codes is based on a phenomenon
called polarization. The study of polar codes and their generalization to arbitrary
channels is the subject of polarization theory, a subfield of information and coding
theories.

This thesis consists of two parts. In the first part, we provide solutions to several
open problems in polarization theory. The first open problem that we consider is to
determine the binary operations that always lead to polarization when they are used
in Arıkan-style constructions. In order to solve this problem, we develop an ergodic
theory for binary operations. This theory is used to provide a necessary and sufficient
condition that characterizes the polarizing binary operations, both in the single-user
and the multiple-access settings. We prove that the exponent of a polarizing binary
operation cannot exceed 1

2 . Furthermore, we show that the exponent of an arbitrary
quasigroup operation is exactly 1

2 . This implies that quasigroup operations are
among the best polarizing binary operations.

One drawback of polarization in the multiple-access setting is that it sometimes
induces a loss in the symmetric capacity region of a given multiple-access channel
(MAC). An open problem in MAC polarization theory is to determine all the MACs
that do not lose any part of their capacity region by polarization. Using Fourier
analysis, we solve this problem by providing a single-letter necessary and sufficient
condition that characterizes all these MACs in the general setting where we have an
arbitrary number of users, and each user uses an arbitrary Abelian group operation
on his input alphabet.

We also study the polarization of classical-quantum (cq) channels. The input
alphabet is endowed with an arbitrary Abelian group operation, and an Arıkan-
style transformation is applied using this operation. We show that as the number of
polarization steps becomes large, the synthetic cq-channels polarize to deterministic
homomorphism channels that project their input to a quotient group of the input
alphabet. This result is used to construct polar codes for arbitrary cq-channels and
arbitrary classical-quantum multiple-access channels (cq-MAC).

In the second part of this thesis, we investigate several problems that are related
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iv Abstract

to three orderings of communication channels: degradedness, input-degradedness,
and the Shannon ordering. We provide several characterizations for the input-
degradedness and the Shannon ordering.

Two channels are said to be equivalent if they are degraded from each other.
Input-equivalence and Shannon-equivalence between channels are similarly defined.
We construct and study several topologies on the quotients of the spaces of dis-
crete memoryless channels (DMC) by the equivalence, the input-equivalence and
the Shannon-equivalence relations. Finally, we prove the continuity of several chan-
nel parameters and operations under various DMC topologies.

Keywords: Polar codes, ergodic theory, quasigroup, multiple-access channels,
Fourier transform, classical-quantum channels, channel ordering, input degraded-
ness, Shannon ordering, topology.



Résumé

La Théorie de l’Information est le domaine qui définit les restreintes théoriques
sur la communication. En effet, en 1948, Shannon démontre l’existence d’un débit
maximal de transmission fiable d’information: la capacité. Cependant, Shannon
ne présente pas de construction explicite d’un système de codage pratique permet-
tant d’atteindre celle-ci. Le code polaire, inventé par Arıkan, est le premier de ces
codes atteignant la capacité des canaux symmétriques sans-mémoire à entré binaire.
L’étude des codes polaires ainsi que leur généralization à des canaux arbitraires con-
stitue ce qu’on nomme la théorie de la polarisation, un sous-domaine des théories
des codes et de l’information.

Cette thèse se compose de deux axes. En un premier temps, nous présentons des
solutions pour de plusieurs problèmes ouverts en théorie de la polarisation. Le pre-
mier de ces problèmes consiste à déterminer les lois de composition internes menant à
une polarisation lorsqu’elles font parties de constructions similaires à celle d’Arıkan.
Afin de résoudre ce problème, nous développons une théorie ergodique pour les lois
de composition internes. Cette théorie nous donne une condition nécessaire et suff-
isante qui caractérise les lois de composition internes polarisantes dans les deux
sytèmes d’accès: simple et multiple.

Toutefois, la polarisation d’un canal à accès multiple (CAM) induit une perte
dans la région de capacité symmétrique. Un problème ouvert en théorie de la po-
larisation des CAMs consiste à déterminer les CAMs pour lesquels la polarisation
n’aboutit à la perte d’aucune partie de leurs régions de capacité symmétrique. En
utilisant l’analyse de Fourier, nous résolvons ce problème en introduisant une con-
dition nécessaire et suffisante qui caractérise tous ces CAMs dans le cas général;
où nous supposons un nombre quelconque d’utilisateurs et chaque utilisateur utilise
une loi arbitraire d’un groupe abélien sur l’alphabet d’entrée.

Toujours dans le premier axe, nous étudions aussi la polarisation de canaux
classiques quantiques. Dans ce cas, l’alphabet d’entrée est doté d’une loi arbitraire
d’un groupe abélien et cette dernière est utilisée pour appliquer une transformation
similaire à celle d’Arıkan. Nous démontrons que pour un grand nombre d’étapes
de polarisation, les canaux classiques quantiques synthétiques se polarisent en des
canaux déterministes qui ne sont que des homomorphismes projetant l’entrée du
canal sur un groupe quotient de l’alphabet d’entrée. Nous utilisons ce résultat pour
construire des codes polaires pour des canaux classiques quantiques et des canaux
classiques quantiques à accès multiples quelconques.

En un deuxième temps, nous investiguons plusieurs problèmes reliés à trois classi-
fications des canaux de communication: dégradation, dégradation d’entrée et la clas-
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vi Résumé

sification de Shannon. Nous proposons plusieurs caractérisations pour la dégradation
d’entrée et la classification de Shannon.

De plus, deux canaux sont équivalents s’ils sont dégradés l’un de l’autre. De façon
similaire, nous définissons l’équivalence d’entrée et l’équivalence de Shannon. Nous
construisons et nous étudions plusieures topologies sur les quotients des espaces des
canaux discrets sans mémoire par les relations d’équivalence, d’équivalence d’entrée
et d’équivalence de Shannon. Finalement, nous démontrons la continuité de plusieurs
paramètres et opérations des canaux sous divers topologies des quotients des espaces
des canaux discrets sans mémoire.

Mot-clés: Codes polaires, théorie érgodique, quasigroupe, canaux à accès mul-
tiples, transformation de Fourier, canaux classiques quantiques, classification de
canaux, dégradation d’entrée, classification de Shannon, topologie.
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discussions.

vii



viii Acknowledgments

Many thanks to all my Lebanese friends in Switzerland – Elio Abi Karam,
Ghofran Akil, Ali Baajour, Abbas Bazzi, Ali Beydoun, Amer Chamseddine, Farah
Charab, Mohamad Dia, Raed El-Hage Ali, Marwa El-Halabi, Rafah El-Khatib, Hiba
Faour, Abbass Hammoud, Serj Haddad, Sahar Hanna, Hamza Harkous, Rida Jichi,
Ghid Maatouk, Elie Najm and Walaa Wehbi – for all the memorable moments that
we have had together during the past five years.

Warm thanks go to my Lebanese friends in Europe – Mohammad Bazzi, Tarek
Chehade, Mazen El-Ahmar, Ali Komaty, Bilal Komaty, Mokdad El-Mokdad, Abbas
El-Mostrah and Yasser Fadlallah – for their true friendship and for always being
there for me.

Finally, I would like to acknowledge and extend my heartfelt gratitude to my
family for their love, sacrifice, help and support. I am grateful to my brother Hassan
and my sisters Rajaa and Hasnaa for their continuous support and encouragement. I
am forever indebted to my father Abdallah for emphasizing the importance of math
and science when I was a little kid, and for teaching me the necessity of critical
thinking. My deep and sincere gratitude to my mother Zahra for her unlimited and
unconditional love and tenderness. This journey would not have been possible if not
for my parents, brother and sisters.



Contents

Abstract iii
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Introduction 1
The digital revolution that the world has witnessed over the past few decades is
the result of over a century of technological1 and theoretical2 developments. Claude
Shannon is credited for laying out the foundations of digitization (at least in the
areas of communication and storage) in his seminal paper “A Mathematical Theory
of Communication” [1]. In his pioneering paper, Shannon formalized the problem of
(digital) communication and provided clear answers to a number of questions about
what is possible and what is not possible to achieve in communication.

The publication of Shannon’s paper established a new field in applied mathe-
matics, known as information theory. This field is the study of the fundamental
limitations of communication. The channel coding theorem [1] shows that for every
communication channel W , there exists a positive number C(W ) ≥ 0 that charac-
terizes the highest rate of information3 that can be reliably communicated through
this channel. More precisely, for every R < C(W ) and every ε > 0, there exists a
channel coding scheme of a rate of at least R and whose probability of error is at
most ε. Whereas, for every R > C(W ) there exists εR,W > 0 such that every coding
scheme of rate of at least R has a probability of error of at least εR,W . C(W ) is
called the capacity of the channel W .

The channel coding theorem means that the probability of error can be made
arbitrarily small if and only if we communicate at a rate that is below the capacity
of the channel. In order to show the existence of good codes for rates below capacity,
Shannon used a non-constructive proof. Information and coding theorists needed
sixty years to find an explicit construction of low-complexity capacity-achieving
codes. This was possible due to the discovery of channel polarization by Arıkan [2]

1Technological advances that lead to the digital revolution include: the telegraph and Babbage’s
analytical engine (19th century), transistors (1947), microprocessors (late 1960s), digital mobile
phones (1990s) and the internet.

2Theoretical advances that contributed to the digital revolution include: the sampling theorem,
Turing’s foundation of computer science (1936), and Shannon’s foundation of communication and
information theory (1948).

3The rate of information that is communicated through a channel is the average number of bits
that is transmitted per channel use. The rigorous definition can be found in Section 1.1.
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2 Introduction

in 2008.

In this thesis, we provide answers to several questions in two areas of information
theory: polarization and channel ordering4. In Section 1.1, we provide a brief de-
scription of the communication problem. The main purpose of Section 1.1 is to make
this thesis accessible to readers who are not familiar with information theory. Read-
ers already familiar with information theory may skip ahead to Section 1.2 where
we discuss channel polarization and the construction of polar codes. We explain the
channel orderings that we studied in this thesis in Section 1.3. We summarize the
contributions of this thesis in Section 1.4.

1.1 The Communication Problem

Imagine that there is a source of information5 that produces a sequence of symbols
U1, . . . , Un, . . . that take values in a set U that we call the source alphabet. Shannon
modelled the source as a sequence of random variables6 (Un)n≥1 taking values in U .
The probability distribution of the sequence (Un)n≥1 is assumed to be known.

A party has access to the source and wants to communicate the symbols (Un)n≥1

with another party. The former party is called a transmitter and the latter is called
a receiver7. In order to achieve this communication, the transmitter and the receiver
use a channel, which is a physical medium that they share. The channel can be a
piece of paper, a magnetic tape, an electrical wire, an optical fiber, radio waves,
or any other physical medium. We can think of the channel as a black box that
takes symbols from the transmitter and produces symbols that are observed by the
receiver. The symbols produced at the receiver’s side depend on the symbols that
were transmitted in a stochastic way. The set X of symbols that the transmitter
can send is called the input alphabet of the channel, and the set Y of symbols that
the receiver can observe is called the output alphabet of the channel.

For example, consider the case of an electrical wire. By using some electronic
device, the transmitter can control the voltage at one end of the wire; and the re-
ceiver can measure (using another electronic device) the voltage at the other end
of the wire. Assume that the transmitter’s device can only produce voltages that
are between −V and V , and assume that the receiver’s device can only read volt-
ages that are between −2V and 2V . In this case, the input alphabet is the interval
[−V, V ] and the output alphabet is the interval [−2V, 2V ]. In practice, the output
cannot be perfectly predicted from the input due to the interference with the am-
bient electromagnetic noise and due to the imperfections of the electronic devices.
Therefore, for all practical purposes, we can assume that the output depends on the
input in a stochastic way.

4A channel ordering is a partial order on the set of communication channels.
5The source can be an image, a video, a sound wave, the text of a book, the speech of a senator,

the temperature measurements in a room, etc . . .
6Even if the symbols (Un)n≥1 are generated according to a deterministic procedure, we do not

usually have all the details of the generating procedure. Therefore, for all practical purposes, we
can assume that (Un)n≥1 is a sequence of random variables following a probability distribution that
we can measure by collecting data and studying their statistics.

7The transmitter and the receiver can be the same party but at two different instants of time,
e.g., storage can be seen as a communication between a person and his older self.



1.1. The Communication Problem 3

One simple model of such a channel is “the additive noise” model: If X ∈ [−V, V ]
is the input that is determined by the transmitter and if Y ∈ [−2V, 2V ] is the output
that is observed by the receiver, we can model the relation between X and Y as
follows:

Y = X + Z,

where Z is a random variable that might depend on X. Z represents the random
noise that is added by the channel to the input.

In general, the channel is described by specifying the input alphabet X , the
output alphabet Y, and the probabilistic relation between the input and the output,
i.e., for every x ∈ X , we have to specify a probability distribution PY |x on the
output alphabet Y. Note that for every y ∈ Y, PY |x(y) represents the conditional
probability of observing y at the output, given that x was the input. In the rest of
this thesis, we consider only channels with finite input and output alphabets.

Formally, we can define a channel W as a 3-tuple (X ,Y, pW ), where X and Y
are two finite sets that represent the input and output alphabets respectively, and

pW : X × Y → [0, 1] is a mapping that satisfies
∑
y∈Y

pW (x, y) = 1 for all x ∈ X .

For every (x, y) ∈ X × Y , we denote pW (x, y) as W (y|x) and we interpret it as the
conditional probability of receiving y at the output of the channel given that x was
the input. We write W : X −→ Y to denote that W is a channel with input alphabet
X and output alphabet Y. Note that we use the long arrow (−→) in the notation
W : X −→ Y and not the short arrow (→) that we only use to describe mappings.
For example, W : X −→ Y denotes a channel, and V : X → Y denotes a mapping
from X to Y.

Example 1.1. The binary symmetric channel with crossover probability ε is the
channel W : X −→ Y satisfying X = Y = {0, 1}, W (0|0) = W (1|1) = 1 − ε and
W (1|0) = W (0|1) = ε. In other words, there is a probability of ε that the input bit
will be flipped by the channel, and there is a probability of 1 − ε that the input bit
will remain intact. This channel is denoted as BSC(ε).

0

1

0

1
1− ε

ε

ε

1− ε

Figure 1.1 – Binary symmetric channel BSC(ε).

The binary erasure channel with erasure probability ε is the channel W : X −→ Y
satisfying X = {0, 1}, Y = {0, 1, ?}, W (0|0) = W (1|1) = 1 − ε and W (?|0) =
W (?|1) = ε. If we observe 0 (respectively 1) at the output, then we are certain that
the transmitted symbol was 0 (respectively 1). Whereas, if we observe the symbol ?
at the output, then there is an equal probability that the transmitted symbol was 0 or
1 (we say that the transmitted bit was erased). This channel is denoted as BEC(ε).
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0

1

0
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Figure 1.2 – Binary erasure channel BEC(ε).

As the source alphabet U might be different from the input alphabet X of the
channel W , the transmitter has to transform the sequence (Un)n≥1 to a sequence
of symbols chosen from X in order to be able to transmit over the channel W . On
the other end, the receiver observes a sequence of symbols in Y, and using these
observations, the receiver has to estimate the sequence (Un)n≥1.

Now we are ready to mathematically formulate the communication problem: A
communication scheme for transmitting the source symbols (Un)n≥1 through the
channel W is a 4-tuple (K,N, f, g), where K and N are two positive integers, f :
UK → XN is the transmitter’s encoder, and g : YN → UK is the receiver’s decoder.
The communication scheme is implemented as follows:

• The transmitter observes K source symbols U1, . . . , UK .

• The transmitter computes (X1, . . . , XN ) = f(U1, . . . , UK).

• The transmitter sends the symbols X1, . . . , XN to the receiver by using the
channel N times8.

• The receiver observes the output of the channel W and receives N output
symbols Y1, . . . , Yn.

• The receiver computes (Û1, . . . , ÛK) = g(Y1, . . . , YN ).

This procedure can be repeated as many times as needed in order to transmit the
subsequent source symbols.

The performance of the communication scheme can be assessed according to
various performance parameters:

• The speed of transmission:

S =
K

N
.

S is the average number of source symbols that are transmitted per channel
use. A higher speed corresponds to a more efficient use of the channel.

8We assume that the channel W is memoryless, in the sense that different uses of the channel
are statistically independent. More precisely, for every x1, . . . , xN ∈ X and every y1, . . . , yN ∈ Y,
we have

PY1,...,YN |X1,...,XN
(y1, . . . , yN |x1, . . . , xN ) =

N∏
i=1

W (yi|xi).
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• The probability of error :

Pe = P[{(Û1, . . . , ÛK) �= (U1, . . . , UK)}].

A smaller probability of error corresponds to a more reliable communication
scheme.

• The blocklength N of the communication scheme. A smaller blocklength cor-
responds to a smaller delay in the transmission.

• Ce and Cd which are the computational complexity of the encoder and the de-
coder, respectively. Obviously, lower computational complexities are preferred.

The study of the trade-off between all these performance parameters is one of the
main goals of information theory. In [1], Shannon was interested in specifying the
largest possible speed of transmission in a reliable communication scheme, regardless
of the blocklength or the computational complexity of the encoder or the decoder.

A speed S > 0 is said to be achievable if for every δ, ε > 0, there exists a
communication scheme of speed of at least S − δ and of probability of error of at
most ε. The main question that Shannon answered in [1] was, what is the largest
possible achievable speed of transmission?

Shannon solved this problem in two particular cases and then used his two solu-
tions to provide an answer to the general question. The two scenarios that Shannon
considered are as follows:

• The noiseless channel case: The distribution of the source is arbitrary but the
channel is noiseless, i.e., X = Y and W (y|x) = 1{y=x} for every x, y ∈ X .

• The noisy channel with a uniformly distributed source: An arbitrary discrete
memoryless channel (DMC) W is considered, but the source symbols are in-
dependent and uniformly distributed in U .

1.1.1 The Noiseless Coding Theorem

We consider a source that is memoryless9 in the sense that it produces independent
and identically distributed random variables (Un)n≥1. We also assume that the
channel is binary and noiseless, i.e., the channel can transmit bits without any error.
In such a communication scheme, the encoder f transforms the source symbols into
a sequence of bits, and the decoder g “reconstructs” the source symbols from the
same sequence of bits. A higher speed of transmission S = K

N corresponds to using
fewer bits to represent the same number of source symbols.

This procedure is also known as source coding, because we are trying to represent
the source symbols as efficiently as possible without any concern about the channel.
We define the source code rate R as the average number of bits per source symbol,
i.e.,

R =
N

K
=

1

S
.

We say that R > 0 is an achievable source code rate if the speed 1
R is achievable.

The main question that we are trying to answer can now be reformulated as follows:
What is the lowest possible achievable source code rate?

9Note that Shannon also studied sources that are not memoryless [1].
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Theorem 1.1. (The noiseless coding theorem10 [1]) Let (Un)n≥1 be a sequence
of independent and identically distributed random variables that take values in the
source alphabet U . The lowest achievable source code rate is equal to

H(U) = −
∑
u∈U

PU (u) log2 PU (u),

where U is a random variable that has the same probability distribution as any of
the random variables U1, . . . , Un, . . . We adopt the convention that 0 log2 0 = 0.

The quantity H(U) is known as the entropy11 of the random variable U . The
noiseless coding theorem (also known as the source coding theorem) provides an
operational interpretation of the entropy of a random variable: It is equal to the
lowest average number of bits that we need to describe one instance of the random
variable reliably. Intuitively, this can be interpreted by saying that H(U) represents
the amount of information contained in U .

The entropy of U can also be interpreted as being the amount of uncertainty or
the amount of randomness that is contained in U . This interpretation is reinforced
by observing that the entropy is equal to zero when U is deterministic (i.e., no
uncertainty nor randomness) and is maximal when U is uniformly distributed (i.e.,
maximum uncertainty and randomness). This “uncertainty interpretation” might
seem to be inconsistent with the previous “information interpretation”: How can
information and uncertainty represent the same thing?

This apparent inconsistency disappears when we realize that the uncertainty
about a random variable before observing it is the same as the amount of information
that we gain after observing it. If there is no uncertainty about the random variable
before observation, then we do not learn any new information by observing it12.

1.1.2 Basic Information Theoretic Quantities

Let (X,Y ) be a pair of random variables that might not be independent. Assume
that X takes values in X and Y takes values in Y. The joint entropy of X and Y
is defined as

H(X,Y ) = −
∑
x∈X

∑
Y ∈Y

PX,Y (x, y) log2 PX,Y (x, y).

This is exactly equal to the entropy of the pair (X,Y ) when it is seen as one random
variable that takes values in X ×Y. H(X,Y ) represents the amount of information
that is gained after observing both X and Y . The joint entropy of more than two
random variables can be defined similarly.

For every y ∈ Y, define

H(X|Y = y) = −
∑
x∈X

PX|Y (x|y) log2 PX|Y (x|y).

10The noiseless coding theorem that Shannon proved in [1] considered variable-length source
coding. Variable-length source codes have the advantage that they can achieve the entropy without
making any errors.

11Notice that the entropy is a function of the probability distribution of the random variable.
12Formalists might find these arguments informal, unnecessary, confusing and/or meaningless.

We reassure the reader that such arguments are never used to prove theorems in information
theory (which is as formal and rigorous as any other field of mathematics). These interpretations
and arguments are used only to provide intuition.
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This is equal to the amount of information that we gain by observing X, assuming
that we already know that Y = y. The conditional entropy of X given Y is defined
as

H(X|Y ) =
∑
y∈Y

PY (y)H(X|Y = y) = −
∑
x∈X

∑
y∈Y

PX,Y (x, y) log2 PX|Y (x|y).

This is equal to the (average) amount of information that we gain after observing X,
assuming that we already know the value of Y . H(X|Y ) is also equal to the amount
of uncertainty about X which remains after observing Y (and before observing X).

The mutual information between X and Y is defined as

I(X;Y ) = H(X)−H(X|Y ).

If H(X) is the amount of uncertainty about X before observing it, and H(X|Y ) is
the amount of uncertainty aboutX which remains after observing Y , then I(X;Y ) is
the amount of uncertainty about X which is removed by observing Y . Equivalently,
I(X;Y ) represents the amount of information about X which we can infer from Y .

Now let X,Y and Z be three random variables taking values in X ,Y and Z,
respectively. The conditional mutual information between X and Y given Z is
defined as

I(X;Y |Z) = H(X|Z)−H(X|Y, Z).

This is equal to the amount of information about X, which we can infer from Y ,
assuming that we already know Z.

The following properties are well-known [3]:

• If U is a random variable taking values in U then:

(a) 0 ≤ H(U) ≤ log2 |U|.
(b) H(U) = 0 if and only if U is deterministic.

(c) H(U) = log2 |U| if and only if U is uniform in U .

• Chain rule for entropy: H(X,Y ) = H(Y ) +H(X|Y ) = H(X) +H(Y |X).

• Conditioning reduces entropy: H(X|Y ) ≤ H(X).

• H(X|Y ) = 0 if and only if X can be written as a function of Y .

• I(X;Y ) = I(Y ;X) = H(X) +H(Y )−H(X,Y ) ≥ 0.

• I(X;Y ) = 0 if and only if X and Y are independent.

• I(X;Y |Z) = I(Y ;X|Z) ≥ 0.

• Chain rule for mutual information: I(X;Y Z) = I(X;Z) + I(X;Y |Z).13

13I(X;Y Z) is the mutual information between X and (Y, Z). A clearer notation that is used for
this quantity is I(X;Y, Z). As products of random variables almost never appear in information
theory, the notation I(X;Y Z) is much more common because it is simpler.
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1.1.3 The Noisy-Channel Coding Theorem

The channel coding problem is about reliably communicating a random message
through a noisy channel W . The message is assumed to be uniformly distributed in
a set M that is called the message set.

A channel coding scheme for a channel W : X −→ Y is a 4-tuple (M, N, f, g).
M is the message set, N is the blocklength, f : M → XN is the (channel) encoder
and g : YN → M is the (channel) decoder. The scheme is implemented as follows:

• A random message M is uniformly chosen from M.

• The transmitter computes (X1, . . . , XN ) = f(M).

• The transmitter sends X1, . . . , XN to the receiver by using the channel N
times.

• The receiver observes N output symbols Y1, . . . , YN .

• The receiver computes an estimate of the transmitted message as

M̂ = g(Y1, . . . , YN ).

The probability of error of the coding scheme C = (M, N, f, g) when it is used for
the channel W is given by

Pe(C,W ) = P[M̂ �= M ].

Remark 1.1. If we have a memoryless source that produces symbols uniformly dis-
tributed in U , then a (K,N, f, g) communication scheme can be seen as a (UK , N, f, g)
channel coding scheme.

The rate of the channel coding scheme (M, N, f, g) is defined as R = log2 |M|
N .

This is equal to the number of bits that are transmitted per channel use. A higher
rate corresponds to a higher speed of transmission.

A rate R > 0 is said to be achievable for a channel W if for every δ, ε > 0, there
exists a channel coding scheme of rate of at least R − δ and whose probability of
error is at most ε. The highest achievable rate is called the capacity of the channel
W , and we denote it as C(W ).

Theorem 1.2. (The noisy-channel coding theorem [1]) Let W : X −→ Y be a
discrete memoryless channel. The capacity of W is given by the following formula:

C(W ) = sup
PX∈ΔX

I(X;Y ),

where ΔX is the set of probability distributions on X , X is a random variable in X
which is distributed as PX , and Y is the output of the channel W when X is the
input, i.e., for every (x, y) ∈ X × Y, we have PX,Y (x, y) = PX(x)W (y|x).

The above characterization of the channel capacity is consistent with the intuitive
interpretation of mutual information: If I(X;Y ) is the amount of information about
X which we can infer from Y , then sup

PX∈ΔX
I(X;Y ) is the highest number of bits

that can be transmitted through the channel W .
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It is easy to see that for every channel W with input alphabet X , we have
0 ≤ C(W ) ≤ log2 |X |. If C(W ) = 0, then the output of the channel W is always
independent of the input. Whereas, if C(W ) = log2 |X |, then we can show that the
input of W can be written as a function of the output14. In other words, if the
capacity is maximal, then the channel is perfect; in the sense that we can determine
the input from the output without errors.

1.1.4 Solution to the Communication Problem

The noiseless coding theorem and the noisy-channel coding theorem provide a solu-
tion to the communication problem that was formulated at the beginning of Section
1.1:

• Using the noiseless coding theorem, we can find a good source code whose rate
is arbitrarily close to H(U) bits per source symbol.

• Using the noisy channel coding theorem, we can find a good channel coding
scheme whose rate is arbitrarily close to C(W ) bits per channel use.

By composing the source code with the channel code, we obtain a reliable com-
munication scheme whose speed of transmission is arbitrarily close to C(W )

H(U) source
symbols per channel use. Conversely, Shannon showed that it is not possible to
achieve a better speed of transmission.

This is known as the source-channel separation theorem: Any achievable speed
of transmission can be realized by composing a source code with a channel code.
The purpose of the source code is to represent the source symbols with as fewer
bits as possible (i.e., combat the redundancy of the source), and the purpose of the
channel code is to combat the noise of the channel.

1.2 Channel Polarization

Polar coding, invented by Arıkan [2], is the first low-complexity coding technique
that achieves the symmetric capacity (defined below) of binary-input memoryless
channels. Polar codes rely on a phenomenon that is called polarization: The process
of converting a set of identical copies of a given binary-input channel into a set of
“almost extremal channels”, i.e., either “almost perfect channels”, or “almost useless
channels”.

Definition 1.1. Let W : X −→ Y be a discrete memoryless channel of input alpha-
bet X and output alphabet Y. The symmetric capacity of W , denoted as I(W ), is the
quantity I(X;Y ) where X is a uniform random variable in X and Y is the output
of W when X is the input. Clearly, I(W ) ≤ C(W ) for every discrete memoryless
channel W .

14Let PX be the capacity-achieving input distribution. We have

log2 |X | = C(W ) = I(X;Y ) ≤ H(X) ≤ log2 |X |.

This shows that H(X) = log2 |X | (which means that X is uniform) and H(X|Y ) = H(X) −
I(X;Y ) = 0, which implies that X can be written as a function of Y .
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If a channel W satisfies some symmetry conditions, then the capacity of W can
be shown to be equal to I(W ). An example of channels that satisfy C(W ) = I(W )
is the well-known family of binary-input memoryless symmetric channels:

Definition 1.2. Let F2 := {0, 1} be the binary field and let W : F2 −→ Y be
a binary-input channel. We say that W is a binary-input memoryless symmet-
ric (BMS) channel if there exists a bijection π : Y → Y satisfying π−1 = π and
W (y|0) = W (π(y)|1) for every y ∈ Y. BSC(ε) and BEC(ε) are examples of BMS
channels.

As C(W ) = I(W ) for every BMS channel, we can see that polar codes achieve
the capacity of all BMS channels.

1.2.1 Polarization of Binary-Input Channels

We start by an informal introduction to the polarization of binary-input channels.
Formal and rigorous statements will be provided at the end of this subsection.

We can distinguish, among all binary-input channels, two that are extremal:

• Useless channels where the output is always independent of the input. Such
channels satisfy C(W ) = I(W ) = 0.

• Perfect channels where the input can be determined from the output with
probability 1. Such channels satisfy C(W ) = I(W ) = 1.

It is very easy to achieve the capacity of extremal channels: In the case of a use-
less channel, we can transmit a (frozen) bit that is already known to the receiver.
Whereas, in the case of a perfect channel, we can transmit an information bit15 and
the receiver can decode it without error.

Now let W : F2 −→ Y be an arbitrary binary-input channel. If there is a
way to transform a collection of independent and identical copies of the channel W
into a collection of extremal channels while preserving the total symmetric capacity,
then by transmitting frozen bits through the useless channels and information bits
through the perfect channels, we can use this procedure to achieve the symmetric
capacity. Arıkan proposed a method to do this by applying a basic transformation
recursively.

Arıkan’s basic transformation is illustrated in Figure 1.3. U1 and U2 are two
independent and uniformly distributed bits. Let X1 = U1 ⊕U2 and X2 = U2, where
⊕ denotes the XOR operation (i.e., addition modulo 2). It is easy to see that X1

and X2 are independent and uniform in F2. We transmit X1 and X2 through two
independent copies of the channel W . Let Y1 and Y2 be the outputs corresponding
to X1 and X2 respectively.

Consider applying a successive cancellation decoder to estimate (U1, U2) from
(Y1, Y2): We first compute an estimate Û1 of U1, based on the output (Y1, Y2).
After that, we compute an estimate Û2 of U2, based on (Y1, Y2, Û1). This procedure
motivates us to study the following two synthetic channels:

15An information bit is a random variable that is uniformly distributed in F2 and not initially
known to the receiver.
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W

WU1

U2

+ Y1

Y2

Figure 1.3 – Arıkan’s basic transformation.

• The channel W− whose input is U1 and whose output is (Y1, Y2). U2 is con-
sidered as noise.

• The channel W+ whose input is U2 and whose output is (Y1, Y2, U1).

We have:

I(W−) + I(W+) = I(U1;Y1Y2) + I(U2;Y1Y2U1)
(a)
= I(U1;Y1Y2) + I(U2;Y1Y2|U1)

= I(U1U2;Y1Y2) = I(X1X2;Y1Y2) = I(X1;Y1) + I(X2;Y2)

= 2I(W ),

where (a) follows from the fact that I(U1;U2) = 0. This shows that the total
symmetric capacity is preserved by Arıkan’s basic transformation. Furthermore, we
have

I(W+) = I(U2;Y1Y2U1) ≥ I(U2;Y2) = I(X2;Y2) = I(W ).

This shows that 0 ≤ I(W−) ≤ I(W ) ≤ I(W+) ≤ 1. In other words, W− is closer to
the useless channel andW+ is closer to the perfect channel. Therefore, Arıkan’s basic
transformation makes us closer to the desirable extremal channels. By applying this
transformation recursively, we expect that we will get closer and closer to extremal
channels. Figure 1.4 shows how we can implement two polarization steps:

+

++

+

Y4

Y3

Y2

Y1

U4

U3

U2

U1

W

W

W

W

Figure 1.4 – Two polarization steps.

We apply the following successive cancellation decoder:

1. We compute an estimate Û1 of U1, based on the observation (Y1, Y2, Y3, Y4).
This corresponds to decoding the synthetic channel whose input is U1 and
whose output is (Y1, Y2, Y3, Y4). It is easy to see that this is equivalent to the
channel W−− := (W−)−.
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2. We compute an estimate Û3 of U3, based on (Y1, Y2, Y3, Y4, Û1). This corre-
sponds to decoding the synthetic channel whose input is U3 and whose output
is (Y1, Y2, Y3, Y4, U1). It is easy to see that this is equivalent to the channel
W−+ := (W−)+.

3. We compute an estimate Û2 of U2, based on (Y1, Y2, Y3, Y4, Û1, Û3). This corre-
sponds to decoding a synthetic channel that is equivalent to W+− := (W+)−.

4. Finally, we compute an estimate Û4 of U4, based on (Y1, Y2, Y3, Y4, Û1, Û2, Û3).
This corresponds to decoding a synthetic channel that is equivalent toW++ :=
(W+)+.

It is easy to see that after n polarization steps, we obtain 2n synthetic channels{
W s : s ∈ {−,+}n

}
. Arıkan showed that as n becomes large, almost all the

synthetic channels become either very close to a useless channel or very close to
a perfect channel. In other words, for the vast majority of s ∈ {−,+}n, we have
either I(W s) ≈ 0 or I(W s) ≈ 1. Let IG be the set of indices s ∈ {−,+}n satisfying
I(W s) ≈ 1.

Polar codes are constructed as follows:

• For each s ∈ IG, send an information bit over the channel W s. Hence, we send
a total of |IG| bits.

• For each s /∈ IG, send a frozen bit over the channel W s. A frozen bit is
a random symbol that is assumed to be known to the receiver. Hence, no
information is being sent over W s for s /∈ IG.

On one hand, as information bits are only sent through channels that are almost
perfect, the polar coding scheme is reliable (i.e., it has a low probability of error).
On the other hand, as we are sending a total of |IG| bits over 2n uses of the channel

W , we can see that the rate of the polar coding scheme is equal to |IG|
2n bits per

channel use.
As Arıkan’s basic transformation preserves the total symmetric capacity, we have

2nI(W ) =
∑

s∈{−,+}n
I(W s).

Therefore,

I(W ) =
1

2n

∑
s∈{−,+}n

I(W s)
(a)
≈ 1

2n

∑
s∈IG

I(W s) ≈ |IG|
2n

,

where (a) follows from the fact that for almost all the indices s ∈ {−,+}n, we either
have s ∈ IG or I(W s) ≈ 0. We deduce that the rate of the aforementioned polar
coding scheme is close to the symmetric capacity of the channel.

Arıkan showed that all the above approximations become arbitrarily good as n
becomes large. This implies that we can construct polar codes with a probability of
error that is arbitrarily small and a rate that is arbitrarily close to the symmetric
capacity I(W ). Furthermore, this can be achieved using an encoder and a decoder
of complexity O(N logN), where N = 2n is the blocklength of the code (see [2] for
details). We conclude that polar codes can achieve the symmetric capacity of any
binary-input channel using low-complexity encoder and decoder.
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Formal Description of Channel Polarization

Definition 1.3. Let W : F2 → Y be a binary-input memoryless channel. We define
the two channels W− : F2 → Y × Y and W+ : F2 → Y × Y × F2 as follows:

W−(y1, y2|u1) =
1

2

∑
u2∈F2

W (y1|u1 ⊕ u2)W (y2|u2),

W+(y1, y2, u1|u2) =
1

2
W (y1|u1 ⊕ u2)W (y2|u2).

Moreover, for all s = (s1, ..., sn) ∈ {−,+}n, we define

W s := ((W s1)s2 ...)sn .

Theorem 1.3. [2] Let W : F2 → Y be a binary-input memoryless channel. For
every δ > 0, we have

lim
n→∞

1

2n
∣∣{s ∈ {−,+}n : δ < I(W s) < 1− δ

}∣∣ = 0.

Any construction that is similar to the one given in Definition 1.3 and Figure 1.3
is called an Arıkan-style construction. If such construction exhibits a polarization
phenomenon, then the code obtained by this construction is called a polar code
(the concepts of “polarization phenomena” and “Arıkan-style constructions” will be
formally and rigorously defined in Chapter 3).

1.2.2 Polarization for Arbitrary Discrete Memoryless Channels

Any attempt to generalize Arıkan’s technique to channels having a non-binary input
alphabet X has to replace the XOR operation by a binary operation ∗ on the input
alphabet X . The first operation that was investigated is the addition modulo q,
where q = |X | and X is endowed with the algebraic structure Zq. Şaşoğlu et al. [4]
show that if q is prime, then the addition modulo q leads to the same polarization
phenomenon as in the binary input case.

Park and Barg [5] show that if q = 2r with r > 0, then the addition modulo
q leads to a polarization phenomenon which is different from the polarization in
the binary input case, but it can still be used to construct capacity-achieving polar
codes. They show that we have a multilevel polarization: Although we do not
always have polarization to “almost perfect” or “almost useless” channels, we always
have polarization to channels that are easy to use for communication. Sahebi and
Pradhan [6] show that multilevel polarization also happens if an arbitrary Abelian
group operation on the alphabet X is used. This enables the construction of polar
codes for arbitrary discrete memoryless channels (DMC) since any alphabet can be
endowed with an Abelian group structure.

Polar codes for arbitrary DMCs were also constructed by Şaşoğlu [7] using a
special quasigroup operation that ensures two-level polarization.

1.2.3 Polarization for Multiple-Access Channels

So far we have only considered discrete memoryless channels. These channels have
exactly one transmitter and one receiver. There exists another kind of channels



14 Introduction

that allow more than one user to transmit information to a single receiver. Such
channels are called multiple-access channels16 (MAC). The polarization phenomenon
can be generalized to MACs: If W is an m-user MAC, we can apply an Arıkan-style
construction on W by using a binary operation on the input alphabet of each user.

Şaşoğlu et al. constructed MAC-polar codes for a two-user MAC with an input
alphabet of prime size [8]. Abbe and Telatar used matroid theory to construct
MAC-polar codes for an m-user MAC with binary inputs [9].

1.3 Channel Ordering

The ordering of communication channels was first introduced by Shannon [10]. A
channel W ′ is said to contain another channel W if W can be simulated from W ′ by
randomization at the input and the output using a shared randomness between the
transmitter and the receiver. More precisely, W ′ : X ′ −→ Y ′ contains W : X −→ Y
if there exist an integer n and three sequences (αl)1≤l≤n, (Tl)1≤l≤n and (Rl)1≤l≤n

such that:

• αl is a positive number for every 1 ≤ l ≤ n, and

n∑
l=1

αl = 1.

In other words, (αl)1≤l≤n forms a probability distribution on {1, . . . , n}.

• For every 1 ≤ l ≤ n, Tl is a channel of input alphabet X and output alphabet
X ′.

• For every 1 ≤ l ≤ n, Rl is a channel of input alphabet Y ′ and output alphabet
Y.

• For every (x, y) ∈ X × Y, we have

W (y|x) =
n∑

l=1

αl

∑
x′∈X ′

∑
y′∈Y ′

Tl(x
′|x)W ′(y′|x′)Rl(y|y′).

Assume that a transmitter and a receiver share a random variable L taking values
in {1, . . . , n}, and assume that L is distributed as (αl)1≤l≤n. If the transmitter and
the receiver have access to the channel W ′, they can use the random variable L in
order to simulate the channel W as follows: In order to transmit a symbol X ∈ X
through the simulated channel W , the transmitter first observes the random variable
L and then applies the random mapping17 TL on X. Let X ′ ∈ X ′ be the (random)
output of TL. The transmitter sends X ′ through the channel W ′. Let Y ′ ∈ Y ′ be
the output of the channel W ′. The receiver observes the random variable L and
applies the random mapping RL on Y ′. Let Y be the output of RL. It is easy to
see that the channel from X to Y is equivalent to W .

16See Chapter 4 for the formal definition of multiple-access channels.
17A discrete memoryless channel can be seen as a random mapping from the input alphabet to

the output alphabet.
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Shannon showed in [10] that if W ′ contains W , then the existence of a coding
scheme of blocklength N , rate R and probability of error ε for the channel W
implies the existence of a coding scheme of blocklength N , rate R and probability
of error of at most ε for the channel W ′. This shows that C(W ) ≤ C(W ′) and
Pe(N,R,W ′) ≤ Pe(N,R,W ) for every integer N and every positive real number
R > 0, where Pe(N,R,W ) is the smallest probability of error among all coding
schemes of blocklength N and of rate of at least R, assuming that the schemes are
used for the channel W .

Another ordering that has been well studied is the degradedness between chan-
nels. A channel W is said to be degraded from another channel W ′ if W can be
obtained from W ′ by composing it with another channel. In other words, W is de-
graded with respect to W ′ if W can be simulated from W ′ by a randomization at the
output. In Part II of this thesis, we will refer to degradedness as output-degradedness
in order to distinguish it from the notion of input-degradedness that we introduce
in Chapter 10. It is easy to see that output-degradedness is a special case of Shan-
non’s ordering. We can trace the roots of the notion of output-degradedness to the
seminal work of Blackwell, in the 1950s, about comparing statistical experiments
[11]. Note that in the Shannon ordering, the input and output alphabets need not
be the same, whereas in the output-degradedness definition, we have to assume
that W and W ′ share the same input alphabet X but they can have different out-
put alphabets. A characterization of output-degradedness is given by the famous
Blackwell-Sherman-Stein (BSS) theorem [11, 12, 13].

1.4 Outline and Contributions of this Thesis

This thesis consists of two parts. In the first part (Chapters 2–9), we provide
solutions to several problems related to channel polarization. We summarize the
main results of Part I in Section 1.4.1. Part I is concluded in Chapter 9. In the second
part (Chapters 10–13), we investigate several problems related to channel orderings.
We present the main results of Part II in Section 1.4.2. Part II is concluded in
Chapter 13.

1.4.1 Part I: Channel polarization

An Ergodic Theory for Binary Operations

In Section 1.2.2, we saw that Abelian group operations are polarizing in the sense
that they always lead to a (multilevel) polarization phenomenon when they are
used in Arıkan-style constructions. An open problem in polarization theory is to
characterize all the polarizing binary operations (in the general multilevel sense).
Chapters 2 and 3 solve this problem by providing a necessary and sufficient condition
for a binary operation to be polarizing. In Chapter 2, we develop an ergodic theory
for binary operations. This theory will be used in Chapter 3 to characterize the
polarizing operations.

In Chapter 2, we define uniformity preserving, irreducible, ergodic and strongly
ergodic operations and we study their properties. We introduce the concepts of a
stable partition and the residue of a stable partition. We show that an ergodic
operation is strongly ergodic if and only if all its stable partitions are their own
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residues. We also study the products of binary operations and the structure of their
stable partitions. We show that the product of a sequence of binary operations is
strongly ergodic if and only if all the operations in the sequence are strongly ergodic.

Polarizing Binary Operations

Let ∗ be a binary operation on a finite set X . We say that ∗ is polarizing if for every
discrete memoryless channel W with input alphabet X , the recursive application of
the Arıkan-style construction that is based on ∗ transforms a collection of indepen-
dent and identical copies of W into a collection of “easy channels”. In Chapter
3, we provide rigorous definitions for the concepts of easy channels and polarizing
binary operations. We show that a binary operation is polarizing if and only if it is
uniformity preserving and its right-inverse is strongly ergodic.

We define the exponent E∗ of a polarizing binary operation ∗. We show that if
∗ is a polarizing operation on a finite set X , then for every channel W with input
alphabet X , every β < E∗ and every δ > 0, there exists n0 = n0(W,β, δ, ∗) > 0 such
that for every n ≥ n0, there exists a polar code of blocklength N = 2n and of rate
of at least I(W )− δ such that the probability of error of the successive cancellation

decoder is at most 2−Nβ
. In other words, the probability of error of polar codes that

are constructed using ∗ decays faster than 2−NE∗−ε
for any ε > 0.

MAC Polarization Theory

Let X1, . . . ,Xm be m finite sets and let ∗1, . . . , ∗m be m binary operations defined on
X1, . . . ,Xm respectively. We say that the sequence (∗1, . . . , ∗m) is MAC-polarizing if
every MAC of input alphabets X1, . . . ,Xm can be polarized by applying an Arıkan-
style transformation that is based on the binary operations ∗1, . . . , ∗m. In Chapter
4, we show that a sequence of binary operations is MAC-polarizing if and only if
every binary operation in the sequence is uniformity preserving and its right inverse
is strongly ergodic.

We define the exponent E∗1,...,∗m of a MAC-polarizing sequence (∗1, . . . , ∗m).
We show that if ∗1, . . . , ∗m are binary operations on X1, . . . ,Xm respectively, and if
(∗1, . . . , ∗m) is MAC-polarizing, then for every MAC W of input alphabets X1, . . . ,
Xm, every β < E∗1,...,∗m and every δ > 0, there exists

n0 = n0(W,β, δ, ∗1, . . . , ∗m) > 0

such that for every n ≥ n0, there exists a MAC-polar code of blocklength N =
2n and of sum-rate of at least I(W ) − δ such that the probability of error of the

successive cancellation decoder is at most 2−Nβ
. In other words, the probability of

error of MAC-polar codes that are constructed using ∗1, . . . , ∗m decays faster than

2−NE∗1,...,∗m−ε

for any ε > 0.
We also show that if we use special binary operations (namely, the addition

modulo the size of the input alphabets), the MAC-polar code construction becomes
simpler.

Error Exponents

In Chapter 5, we study the exponents of polarizing binary operations and the
exponents of MAC-polarizing sequences of binary operations. We show that the
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exponent of a polarizing binary operation cannot exceed 1
2 . We provide a sufficient

condition for a polarizing operation to have a zero exponent. We prove that the
exponent of a quasigroup operation is exactly 1

2 . This implies that quasigroup
operations are among the best polarizing binary operations.

We show that the exponent of a MAC-polarizing sequence of binary operations
is upper bounded by the exponent of the product of all the binary operations that
are present in the sequence, which in turn is upper bounded by the exponent of
every binary operation in the sequence. Furthermore, we prove that the exponent
of a sequence of quasigroup operations is exactly 1

2 .

Fourier Analysis of MAC Polarization

One drawback of MAC-polar codes (i.e., codes that are based on MAC polariza-
tion) is that they might not achieve the entire symmetric-capacity region18. The
reason behind this problem is that MAC polarization sometimes induces a loss in
the symmetric-capacity region.

Chapter 6 provides a single-letter necessary and sufficient condition that char-
acterizes the set of MACs that do not lose any part of their symmetric-capacity
region by polarization. The characterization that we provide relies on Fourier anal-
ysis, and works in the general setting where we have an arbitrary number of users
and each user uses an arbitrary Abelian group operation on his input alphabet. We
show that the reason why a given MAC W loses parts of its symmetric-capacity re-
gion by polarization is because its transition probabilities are not “aligned”, which
makes W “incompatible” with polarization. The “alignment” condition is expressed
in terms of the Fourier transforms of the transition probabilities of W .

Erasure Schemes Using Generalized Polar Codes

One possible way to enhance the performance of polar codes is through decoding
with erasure; it is sometimes desirable to allow the receiver not to decide which
message was transmitted, especially when there is a feedback from the receiver to
the transmitter: If a confusing string of symbols was received (in the sense that
there is a high probability of a decoding error to occur, no matter which message
the receiver chooses as the decoded message), the receiver can ask the transmitter
to resend the message, in the hope that the received string will not be confusing in
the next transmission.

There are two types of error when we allow decoding with erasure:

• If the receiver decides on the transmitted message and makes an error, we say
that an undetected error occurs.

• If the receiver does not decide, we say that an erasure occurs.

In Chapter 7, we study the tradeoff between the probability of undetected error
and the erasure probability for generalized polar (GP) codes19. We derive a closed-
form formula for the zero-undetected-error capacity IGP

0 (W ) of GP codes for a given

18The definition of the symmetric-capacity region can be found in Chapter 4.
19Generalized polar codes are a family of codes that contains, among others, the standard polar

codes of Arıkan and Reed-Muller codes.
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binary-input memoryless symmetric channel W under the low-complexity successive
cancellation decoder with erasure. We show that for every ε > 0 and every R <
IGP
0 (W ), there exists a generalized polar code of blocklength N and of rate of at
least R where the undetected-error probability is zero and the erasure probability is

less than 2−N
1
2−ε

. Conversely, we show that for any ε > 0 and any GP code of rate
IGP
0 (W ) < R < I(W ) and blocklength N , the undetected error probability cannot

be made less than 2−N
1
2+ε

unless the erasure probability is close to 1.

Polar Codes for Arbitrary Classical-Quantum Channels

The polarization phenomenon can be generalized to the setting where the input of
the channel is classical and the output is a quantum state. In Chapter 8, we prove
polarization theorems for arbitrary classical-quantum channels (cq-channel). The
input alphabet is endowed with an arbitrary Abelian group operation and an Arıkan-
style transformation is applied using this operation. We show that as the number of
polarization steps becomes large, the synthetic cq-channels polarize to deterministic
homomorphism cq-channels that project their input to a quotient group of the input
alphabet. This result is used to construct polar codes for arbitrary cq-channels and
arbitrary classical-quantum multiple-access channels (cq-MAC). The encoder can
be implemented in O(N logN) operations, where N is the blocklength of the code.
We propose a quantum successive cancellation decoder for the constructed codes.
Furthermore, we show that the probability of error of this decoder decays faster
than 2−Nβ

for any β < 1
2 .

1.4.2 Part II: Channel ordering

Characterizations of Various Channel Orderings

In Chapter 10, we introduce the input-degradedness as a novel channel ordering. A
channel W is said to be input-degraded from another channel W ′ if W can be simu-
lated from W ′ by randomization at the input. We provide a necessary and sufficient
condition for a channel to be input-degraded from another one. We show that any
decoder that is good for W ′ is also good for W . We provide two characterizations for
input-degradedness, one of which is similar to the Blackwell-Sherman-Stein (BSS)
theorem.

We also study the Shannon ordering of communication channels in Chapter 10.
We show that W ′ contains W (in the Shannon ordering sense) if and only if W is the
skew-composition of W ′ with a convex-product channel. We use this fact to derive
a characterization of the Shannon ordering that is similar to the BSS theorem. The
characterization that we provide is given in terms of blind randomized in the middle
(BRM) games20.

Topological Structures on DMC Spaces

A topology on a given set is a mathematical structure that enables us to formally talk
about the neighborhood of a given point of the set. This makes it possible to define
continuous mappings and converging sequences. Topological spaces generalize metric

20The definition of BRM games is given in Chapter 10.
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spaces which are mathematical structures that specify distances between the points
of the space. Links between information theory and topology were investigated in
[14].

Two channels are said to be output-equivalent if they are output-degraded from
each other. Input-equivalence and Shannon-equivalence between channels are simi-
larly defined. In Chapter 11, we construct and study several topologies on the
quotients of the spaces of discrete memoryless channels (DMC) by the output-
equivalence, the input-equivalence and the Shannon-equivalence relations. In Chap-
ter 12, we show that many channel parameters and operations are continuous under
the constructed topologies.

The space of output-equivalent channels with input alphabet X and output al-
phabet Y can be naturally endowed with the quotient of the Euclidean topology
by the output-equivalence relation. We show that this topology is compact, path-
connected and metrizable. A topology on the space of output-equivalent channels
with fixed input alphabet X and arbitrary but finite output alphabet is said to be
natural if and only if it induces the quotient topology on the subspaces of output-
equivalent channels sharing the same output alphabet. We show that every natural
topology is σ-compact, separable and path-connected. Whereas, if |X | ≥ 2, we prove
that a Hausdorff natural topology is not Baire and it is not locally compact any-
where. This implies that no natural topology can be completely metrized if |X | ≥ 2.
We show that the finest natural topology, which we call the strong topology, is com-
pactly generated, sequential and T4. However, if |X | ≥ 2, we prove that the strong
topology is not first-countable anywhere, hence it is not metrizable. We show that
in the strong topology, a subspace is compact if and only if it is rank-bounded and
strongly-closed. We provide a necessary and sufficient condition for a sequence of
channels to converge in the strong topology.

We introduce a metric distance on the space of output-equivalent channels which
compares the noise levels between channels. We show that the induced metric topol-
ogy, which we call the noisiness topology, is natural. We also study topologies that
are inherited from the space of meta-probability measures by identifying channels
with their Blackwell measures. We show that the weak-∗ topology is exactly the
same as the noisiness topology and hence it is natural. We prove that if |X | ≥ 2, the
total-variation topology is not natural nor Baire, hence it is not completely metriz-
able. Furthermore, we show that it is not locally compact anywhere. Finally, we
prove that the Borel σ-algebra is the same for all Hausdorff natural topologies on
the space of output-equivalent channels.

We then study the topologies that can be constructed on the spaces of input-
equivalent channels. The space of input-equivalent channels with input alphabet X
and output alphabet Y can be naturally endowed with the quotient of the Euclidean
topology by the input-equivalence relation. We show that this topology is compact,
path-connected and metrizable. A topology on the space of input-equivalent chan-
nels with a fixed output alphabet Y and arbitrary but finite input alphabet is said
to be natural if and only if it induces the quotient topology on the subspaces of
input-equivalent channels sharing the same input alphabet. We show that every
natural topology is σ-compact, separable and path-connected. Whereas, if |Y| ≥ 3,
we prove that a Hausdorff natural topology is not Baire and it is not locally com-
pact anywhere. We show that the finest natural topology, which we call the strong
topology, is compactly generated, sequential and T4. However, if |Y| ≥ 3, we prove
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that the strong topology is not first-countable anywhere, hence it is not metrizable.
We introduce the similarity metric on the space of input-equivalent channels, and
we prove that its induced topology is natural.

Some of the above results can also be shown for the spaces of Shannon-equivalent
channels. The space of Shannon-equivalent channels with input alphabet X and out-
put alphabet Y can be naturally endowed with the quotient of the Euclidean topol-
ogy by the Shannon-equivalence relation. We show that this topology is compact,
path-connected and metrizable. A topology on the space of Shannon-equivalent
channels with arbitrary but finite input and output alphabets is said to be natural if
and only if it induces the quotient topology on the subspaces of Shannon-equivalent
channels sharing the same input and output alphabets. We show that every natural
topology is σ-compact, separable and path-connected. We show that the finest nat-
ural topology, which we call the strong topology, is compactly generated, sequential
and T4. We introduce the BRM metric on the space of Shannon-equivalent channels,
and we prove that its induced topology is natural. The definition of the BRM metric
relies on the characterization of the Shannon ordering in terms of BRM games.

Continuity of Channel Parameters and Operations

In Chapter 12, we study the continuity of many channel parameters and opera-
tions under various topologies on the space of output-equivalent channels, the space
of input-equivalent channels, and the space of Shannon-equivalent channels. The
continuity of channel parameters and operations might be helpful in the following
two problems:

• If a parameter (such as the optimal probability of error of a given code) is
difficult to compute for a channel W , one can approximate it by computing
the same parameter for a sequence of channels (Wn)n≥0 that converges to W
in some topology where the parameter is continuous.

• The study of robustness of a communication system against the imperfect
specification of the channel.

We show that mutual information, channel capacity, Bhattacharyya parameter,
the probability of error of a fixed code, and the optimal probability of error for
a given code rate and blocklength, are continuous under various topologies on the
space of output-equivalent channels. We also show that channel operations such
as sums, products, interpolations, and Arıkan-style transformations are continuous
under these topologies.

As for the space of input-equivalent channels, we show that the channel capacity,
the probability of error of a given decoder, and the optimal probability of error for
a given code rate and blocklength, are continuous under the strong topology. We
also prove that channel sums and products are continuous under both the strong
and similarity topologies.

Finally, we study the continuity of channel parameters and operations on the
space of Shannon-equivalent channels. We show that the channel capacity and the
optimal probability of error for a given code rate and blocklength are continuous
under the strong topology. We also prove that channel sums and products are
continuous under the strong topology.
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An Ergodic Theory of Binary
Operations 2
In this chapter1, we develop an ergodic theory for binary operations. This theory
will be used in Chapter 3 to provide a necessary and sufficient condition for a binary
operation to be polarizing.

In Section 2.1 we introduce the notion of uniformity-preserving operations. A
uniformity-preserving operation ∗ on X is a binary operation for which the mapping
f∗ : X 2 → X 2 defined as f∗(x, y) = (x ∗ y, y) is bijective. It is called uniformity-
preserving since for any pair of random variables (X1, X2) in X 2, (X1 ∗ X2, X2) is
uniform in X 2 if and only if (X1, X2) is uniform in X 2. As we will see in Chapter
3, if ∗ is not uniformity-preserving, then the Arıkan style construction that is based
on ∗ does not conserve the symmetric capacity. Hence being uniformity-preserving
is a necessary condition to be polarizing. On the other hand, being a quasigroup
operation is a sufficient condition [17]. Therefore, a necessary and sufficient condition
must be a property that is stronger than uniformity-preserving and weaker than
quasigroup. A reasonable strategy to search for a necessary and sufficient condition
is to relax the quasigroup property while keeping the uniformity-preserving property.

The difference between a quasigroup operation and a uniformity-preserving op-
eration is that in the case of a quasigroup operation, any element is reachable from
any other element by one multiplication on the right. This property does not always
hold for a uniformity-preserving operation.

One possible relaxation of the quasigroup property is to consider uniformity-
preserving operations where all the elements are reachable from each other by mul-
tiple multiplications on the right. Irreducible and ergodic operations — which are
defined and studied in Section 2.2 — satisfy this property. The concepts of irre-
ducible and ergodic operations are very similar to the concepts of irreducible and
ergodic Markov chains. The reason why we consider such binary operations is be-
cause of their good connectability properties: If the elements of X are well connected
under ∗, this will create strong correlations between the inputs of the synthetic chan-
nels, which should ultimately lead to a polarization phenomenon.

Although ergodic operations seem to have good connectability properties, this

1The material of this chapter is based on [15, 16].
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is not enough to ensure polarization as we will see in Chapter 3. It turns out that
we need a stronger notion of ergodicity. In order to define this stronger notion of
ergodicity, we first need to define stable partitions. Section 2.3 introduces balanced,
periodic and stable partitions and investigates their properties. Stable partitions
are a generalization of the concept of quotient groups. In Section 2.4, we introduce
and study the notion of the residue of a stable partition and in Section 2.5 we define
and investigate strongly ergodic operations. We show that an ergodic operation
is strongly ergodic if and only if each stable partition is its own residue. Strong
ergodicity is a novel concept and has no analog in the ergodic theory of Markov
chains. We will show in Chapter 3 that a binary operation is polarizing if and only
if it is uniformity-preserving and its right-inverse is strongly ergodic.

Generated stable partitions are introduced and studied in Section 2.6. This
concept is needed to show that the strong ergodicity of the right-inverse operation
is a sufficient condition for polarization.

The products of binary operations are defined in Section 2.7 and the structure
of their stable partitions is studied. We show that the product of a sequence of
binary operations is strongly ergodic if and only if every operation in the sequence
is strongly ergodic. As we will see in Chapter 4, the products of binary operations
and their stable partitions are important for the study of MAC polarization theory.

2.1 Uniformity-Preserving Operations

All the sets that are considered in this chapter are finite.

Definition 2.1. A uniformity-preserving operation ∗ on X is a binary operation
such that the mapping f∗ : X 2 → X 2 defined by f∗(x, y) = (x ∗ y, y) is bijective. It is
called uniformity-preserving since for any pair of random variables (X1, X2) in X 2,
(X1 ∗X2, X2) is uniform in X 2 if and only if (X1, X2) is uniform in X 2.

Remark 2.1. It is easy to see that ∗ is uniformity-preserving if and only if it satisfies
the following condition:

• The multiplication-on-the-right mappings πb : X → X defined by πb(x) = x ∗ b
are bijective for all b ∈ X . We denote π−1

b (a) as a/∗b. The binary operation
/∗ is called the right-inverse of ∗.

It is easy to see that if ∗ is uniformity-preserving then /∗ is uniformity-preserving
as well.

Definition 2.2. A uniformity-preserving operation is said to be a quasigroup oper-
ation if it also satisfies the following:

• The multiplication-on-the-left mappings ηb : X → X defined by ηb(x) = b ∗ x
are bijective for all b ∈ X . We denote η−1

b (a) as b\∗a. The binary operation
\∗ is called the left-inverse of ∗.

It is easy to see that if ∗ is a quasigroup operation then /∗ and \∗ are quasigroup
operations as well.

Note that for a general quasigroup operation ∗, we may find a, b ∈ X such that
π−1
b (a) = a/∗b �= b\∗a = η−1

b (a). This is why we use different notations for left and
right inverses.
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Notation 2.1. Let A and B be two subsets of X . We define the set:

A ∗B := {a ∗ b : a ∈ A, b ∈ B}.

For a, b ∈ X , we denote {a} ∗B and A ∗ {b} by a ∗B and A ∗ b respectively.

It is easy to see that if ∗ is uniformity-preserving and B is non-empty, then
|A∗B| ≥ |A|. On the other hand, the relation |A∗B| ≥ |B| does not hold in general
unless ∗ is a quasigroup operation and A is non-empty.

2.2 Irreducible and Ergodic Operations

In this section and throughout the chapter, ∗ is always a uniformity-preserving
operation.

Definition 2.3. Let ∗ be a uniformity-preserving operation on a set X . We say that
a ∈ X is ∗-connectable to b ∈ X in l-steps if there exist l elements x0, . . . , xl−1 ∈ X
satisfying (. . . ((a ∗ x0) ∗ x1) . . . ∗ xl−1) = b. We denote this relation by a

∗,l−→ b.

We say that a is ∗-connectable to b if there exists l > 0 such that a
∗,l−→ b. We

denote this relation by a
∗−→ b.

Definition 2.4. A uniformity-preserving operation ∗ is said to be irreducible if all
the elements of X are ∗-connectable to each other. If ∗ is irreducible, we define the

period of an element a ∈ X as per(∗, a) := gcd{l > 0 : a
∗,l−→ a}, and we define the

period of ∗ as:

per(∗) := gcd {per(∗, a) : a ∈ X} = gcd
{
l > 0 : ∃a ∈ X , a

∗,l−→ a
}
.

Definition 2.5. If there exists l > 0 such that all the elements of X are ∗-connectable
to each other in l steps, we say that the operation ∗ is ergodic. In this case, we call
the minimum integer l > 0 which satisfies this property the connectability of the
operation ∗, and we denote it by con(∗), i.e.,

con(∗) = min
{
l > 0 : ∀a, b ∈ X , a

∗,l−→ b
}
.

Remark 2.2. In order to justify our choice of terminology in the previous definition,
consider a sequence (X ′

n)n≥0 of independent and uniformly distributed random vari-
ables in X . Define (Xn)n≥0 recursively as follows: X0 = X ′

0 and Xn = Xn−1 ∗X ′
n

for n > 0. It is easy to see that (Xn)n≥0 is a stationary Markov chain. We have the
following:

• ∗ is irreducible if and only if (Xn)n≥0 is irreducible.

• ∗ is ergodic if and only if (Xn)n≥0 is ergodic.

The following proposition shows the important properties of irreducible and er-
godic operations. These properties will be used in Chapter 3 to show that every
polarizing operation is ergodic.

Proposition 2.1. We have the following:
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1. Every quasigroup operation is ergodic, and every ergodic operation is irre-
ducible.

2. If ∗ is uniformity-preserving but not irreducible, there exists two disjoint non-
empty subsets A1 and A2 of X such that A1 ∪ A2 = X , A1 ∗ X = A1 and
A2 ∗ X = A2.

3. If ∗ is irreducible, we have per(∗, a) = per(∗) for all a ∈ X .

4. If ∗ is irreducible, there exists a partition E∗ of X containing n = per(∗) subsets
H0, . . . , Hn−1 such that Hi ∗ X = Hi+1 mod n for all 0 ≤ i < n. Moreover, we
have |H0| = . . . = |Hn−1|.

5. If ∗ is irreducible, there exists an integer d > 0 such that for every 0 ≤ i < n =
per(∗), every element of Hi is ∗-connectable to every element of Hi+d mod n in
d steps. We call the least integer d > 0 satisfying this property the connectabil-
ity of the irreducible operation ∗ and we denote it con(∗) (This definition is
consistent with the definition of the connectability of ergodic operations. I.e.,
the connectability of an ergodic operation when it is seen as an irreducible oper-
ation is the same as its connectability when it is seen as an ergodic operation).

6. If ∗ is irreducible, then for every s ≥ con(∗) and every 0 ≤ i < n = per(∗),
any element of Hi is ∗-connectable to any element of Hi+s mod n in s steps.

7. If ∗ is irreducible, per(∗) = 1 if and only if ∗ is ergodic.

8. If ∗ is ergodic, all the elements of X are ∗-connectable to each other in s steps
for any s ≥ con(∗).

9. If ∗ is ergodic, then con(∗) = 1 if and only if ∗ is a quasigroup operation.

10. If ∗ is irreducible (resp. ergodic), then /∗ is irreducible (resp. ergodic) as well.

Proof. See Appendix 2.8.1.

2.3 Balanced, Periodic and Stable Partitions

Notation 2.2. Let H be a set of subsets of a set X , we define the following:

• ‖H‖∧ = min
H∈H

|H|.

• ‖H‖∨ = max
H∈H

|H|.

Definition 2.6. A partition H of a set X is said to be a balanced partition if all
the elements of H have the same size. We denote the common size of its elements
by ‖H‖. The number of elements in H is denoted by |H|. Clearly, |X | = |H| · ‖H‖
and ‖H‖ = ‖H‖∧ = ‖H‖∨ for such a partition.

Definition 2.7. Let H be a partition of a set X . We define the projection onto H
as the mapping ProjH : X → H, where ProjH(x) is the unique element H ∈ H such
that x ∈ H.
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Notation 2.3. Let A and B be two sets of subsets of X . We define A∗B as follows:

A ∗ B = {A ∗B : A ∈ A, B ∈ B}.

Definition 2.8. Let H be a set of subsets of X , and let ∗ be a uniformity-preserving
operation on X . We define the set H∗ = H ∗ H = {A ∗ B : A,B ∈ H}, and we
define the sequence (Hn∗)n≥0 recursively as follows:

• H0∗ = H.

• Hn∗ := (H(n−1)∗)∗ = H(n−1)∗ ∗ H(n−1)∗ for all n > 0.

Definition 2.9. A partition H of X is said to be a periodic partition of (X , ∗) if
there exists n > 0 such that Hn∗ = H. In this case, the minimum integer n > 0
which satisfies Hn∗ = H is called the period of H, and it is denoted by per(H).

A partition H of X is said to be a stable partition of (X , ∗) if H is both balanced
and periodic.

Throughout the chapter, we write that H is a periodic (resp. stable) partition
of X if the binary operation ∗ is clear from the context.

Example 2.1. Let Q = Zn×Zn, define (x1, y1)∗(x2, y2) = (x1+y1+x2+y2, y1+y2)
which is a quasigroup operation. For each j ∈ Zn and each 0 ≤ i < n, define
Hi,j = {(j + ik, k) : k ∈ Zn}. Let Hi = {Hi,j : j ∈ Zn} for 0 ≤ i < n. It is easy
to see that H∗

i = Hi+1 for 0 ≤ i < n− 1 and H∗
n−1 = H0. Therefore, H := H0 is a

periodic partition of (Q, ∗) and per(H) = n. Moreover, H is balanced with ‖H‖ = n,
hence H is a stable partition.

Proposition 2.2. Let H be a periodic partition of (X , ∗). For every n > 0, we
have:

1. Hn∗ is a periodic partition and has the same period as H, i.e., per(Hn∗) =
per(H).

2. |Hn∗| = |H|.

Proof. see Appendix 2.8.2.

Lemma 2.1. ‖H∗‖∨ ≥ ‖H‖∨ and ‖H∗‖∧ ≥ ‖H‖∧.

Proof. Let A ∈ H be such that A = ‖H‖∨, then A ∗ A ∈ H∗. Thus, ‖H∗‖∨ ≥
|A ∗A| ≥ |A| = ‖H‖∨.

Now let B and C be two elements of H such that |B ∗ C| = ‖H∗‖∧. We have
|B ∗ C| ≥ |B| ≥ ‖H‖∧. This implies that ‖H∗‖∧ ≥ ‖H‖∧.

Proposition 2.3. Let H be a stable partition of (X , ∗). For every n > 0, Hn∗ is a
stable partition satisfying per(Hn∗) = per(H) and ‖Hn∗‖ = ‖H‖.

Proof. Proposition 2.2 shows that Hn∗ is a periodic partition of period per(Hn∗) =
per(H). It remains to show that Hn∗ is balanced and that ‖Hn∗‖ = ‖H‖. Let p > 0
be the smallest multiple of per(H) which is greater than n, i.e.,

p = min{k · per(H) : k > 0, k · per(H) > n}.

We have Hp∗ = H since per(H) divides p. By Lemma 2.1 we have:
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• ‖H‖ = ‖H‖∧ ≤ ‖H∗‖∧ ≤ . . . ≤ ‖Hn∗‖∧ ≤ . . . ≤ ‖Hp∗‖∧ = ‖H‖∧ = ‖H‖.

• ‖H‖ = ‖H‖∨ ≤ ‖H∗‖∨ ≤ . . . ≤ ‖Hn∗‖∨ ≤ . . . ≤ ‖Hp∗‖∨ = ‖H‖∨ = ‖H‖.

Therefore, ‖Hn∗‖∧ = ‖Hn∗‖∨ = ‖H‖, which means that for every A ∈ Hn∗ we
have |A| = ‖H‖. We conclude that Hn∗ is balanced and ‖Hn∗‖ = ‖H‖.

Lemma 2.2. If ∗ is ergodic then every periodic partition is stable.

Proof. Let H be a periodic partition of X . We only need to show that H is balanced.
Let n = per(H) and m = min{kn : k > 0 and kn > con(∗)}. Clearly, Hm∗ = H.

Moreover, statement 8 of Proposition 2.1 shows that all the elements of X are ∗-
connectable to each other in m steps. Let H ∈ H be chosen such that |H| is maximal

and let H ′ be any element of H. Let h ∈ H and h′ ∈ H ′. We have h
∗,m−→ h′ so there

exist m elements x0, . . . , xm−1 ∈ X satisfying (. . . ((h ∗ x0) ∗ x1) . . . ∗ xm−1) = h′.
Since H covers X , then each of H∗, H2∗, . . . , and H(m−1)∗ covers X as well.

And so there exist X0 ∈ H, X1 ∈ H∗, . . . , and Xm−1 ∈ H(m−1)∗ such that x0 ∈ X0,
x1 ∈ X1, . . . , and xm−1 ∈ Xm−1. Now since (. . . ((h ∗ x0) ∗ x1) . . . ∗ xm−1) = h′

and since h ∈ H, we have h′ ∈ H ′′ := (. . . ((H ∗ X0) ∗ X1) . . . ∗ Xm−1). From the
definition of H ′′, we have H ′′ ∈ Hm∗ = H. Moreover, h′ ∈ H ′ ∩ H ′′, so H ′ = H ′′

since H is a partition. We conclude that H ′ = (. . . ((H ∗X0)∗X1) . . .∗Xm−1) which
implies that |H ′| ≥ |H|. On the other hand, we have |H| ≥ |H ′| since H was chosen
so that |H| is maximal. We conclude that |H ′| = |H| for all H ′ ∈ H, hence H is
balanced.

Remark 2.3. The ergodicity condition in the previous lemma cannot be replaced by
irreducibility. Consider the following irreducible (but not ergodic) operation:

∗ 0 1 2 3

0 2 3 2 2

1 3 2 3 3

2 0 0 0 1

3 1 1 1 0

Although the partition H = {{0, 1}, {2}, {3}} is not balanced, we have H2∗ = H.

The following proposition shows that the concept of periodic partitions general-
izes the concept of quotient groups:

Proposition 2.4. Let (G, ∗) be a finite group, and let H be a periodic partition of
(G, ∗). There exists a normal subgroup H of G such that H is the quotient group of
G by H (denoted by G/H).

Proof. Since every group operation is ergodic, Lemma 2.2 implies that H is stable,
i.e., it is also balanced.

Let H be the element of H containing the neutral element e of G. For every
H ′ ∈ H, we have |H ′| = |H ∗H ′| = |H ′ ∗H| = ‖H‖ since H ∗H ′ ∈ H∗, H ′ ∗H ∈ H∗

and ‖H∗‖ = ‖H‖. On the other hand, we have H ′ = e ∗ H ′ ⊂ H ∗ H ′ and H ′ =
H ′ ∗ e ⊂ H ′ ∗H. We conclude that H ∗H ′ = H ′ ∗H = H ′. Therefore,

• H ∗H = H, hence x ∗ y ∈ H for every x, y ∈ H.



2.3. Balanced, Periodic and Stable Partitions 29

• For every x ∈ H, we have |H∗x| = |H|. On the other hand, H∗x ⊂ H∗H = H.
Therefore, H ∗ x = H which implies that e ∈ H ∗ x and so there exists x′ ∈ H
such that x′ ∗ x = e. We conclude that the inverse of every element of H is
also in H.

• For every x ∈ G letHx ∈ H be such that x ∈ Hx. We have x∗H ⊂ Hx∗H = Hx

and |x ∗ H| (a)
= |H| = |Hx|, where (a) follows from the fact that ∗ is a group

operation. Therefore, x ∗H = Hx. Similarly, we can show that H ∗ x = Hx.
Hence x ∗H = H ∗ x = Hx for every x ∈ G.

We conclude that H is a normal subgroup of G, and H is the quotient group of G
by H.

Definition 2.10. A periodic partition H1 is said to be a sub-periodic partition of
another periodic partition H2 if for every H1 ∈ H1, there exists H2 ∈ H2 such that
H1 ⊂ H2. We denote this relation by H1 � H2, and we say that H1 is finer than
H2.

If H1 and H2 are two stable partitions satisfying H1 � H2, we say that H1 is a
sub-stable partition of H2 (in such case, we clearly have ‖H1‖ divides ‖H2‖).
Remark 2.4. Let (G, ∗) be a group and let H1 be a sub-periodic partition of a
periodic partition H2. If HH1 and HH2 are the normal subgroups associated with H1

and H2 respectively, then HH1 is a normal subgroup of HH2.

Definition 2.11. For any two partitions H1 and H2 of a set X , we define:

H1 ∧H2 = {H1 ∩H2 : H1 ∈ H1, H2 ∈ H2, H1 ∩H2 �= ø}.
Proposition 2.5. If H1 and H2 are periodic partitions then H1 ∧ H2 is a periodic
partition of period of at most lcm{per(H1), per(H2)}. Moreover, we have (H1 ∧
H2)

n∗ = Hn∗
1 ∧Hn∗

2 for every n ≥ 0.

Proof. See Appendix 2.8.2.

Corollary 2.1. Let ∗ be an ergodic operation. If H1 and H2 are two stable partitions
then H1 ∧H2 is a stable partition of period of at most lcm{per(H1), per(H2)}.
Proof. The corollary follows from Proposition 2.5 and Lemma 2.2.

Remark 2.5. Let (G, ∗) be a group. If H1 and H2 are two periodic partitions of
(G, ∗), then HH1∧H2 = HH1 ∩HH2.

Remark 2.6. The ergodicity condition in Corollary 2.1 cannot be replaced by irre-
ducibility. Consider the following irreducible (but not ergodic) operation:

∗ 0 1 2 3 4 5 6 7

0 4 5 6 7 4 4 4 4

1 5 4 7 6 5 5 5 5

2 6 7 4 5 6 6 6 6

3 7 6 5 4 7 7 7 7

4 0 0 0 0 0 1 2 3

5 1 1 1 1 1 0 3 2

6 2 2 2 2 2 3 0 1

7 3 3 3 3 3 2 1 0
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Define:
H1 =

{
{0, 1}, {2, 3}, {4, 5}, {6, 7}

}
,

H2 =
{
{0, 2}, {1, 3}, {4, 5}, {6, 7}

}
.

While both H1 and H2 are stable partitions of periods 1 and 2 respectively, the
partition H1 ∧H2 =

{
{0}, {1}, {2}, {3}, {4, 5}, {6, 7}

}
is periodic but it is not stable

as it is not balanced.

2.4 The Residue of a Stable Partition

Let H be a stable partition. Let H ∈ H and x ∈ H. For any sequence (Xn)n≥0

satisfying Xn ∈ Hn∗ for all n ≥ 0, define the sequences (An)n≥0 and (Hn)n≥0

recursively as follows:

• A0 = {x} and H0 = H.

• An = An−1 ∗Xn−1 = (. . . ((x ∗X0) ∗X1) . . . ∗Xn−1).

• Hn = Hn−1 ∗Xn−1 = (. . . ((H ∗X0) ∗X1) . . . ∗Xn−1).

Since x ∈ H, we can show by induction on n that An ⊂ Hn ∈ Hn∗ and so |An| ≤
|Hn| = ‖Hn∗‖ = ‖H‖ for all n ≥ 0. Therefore, |Hn| is constant. On the other hand,
|An| ≥ |An−1| since An = An−1 ∗ Xn−1. Hence, |An| is increasing and it is upper
bounded by ‖H‖.

Does |An| reach ‖H‖ or does |An| remain strictly less than ‖H‖ for all n ≥ 0? In
other words, do we have An = Hn for some n > 0 or does An remain a strict subset
of Hn for all n ≥ 0? The answer depends of course on the sequence (Xn)n≥0, so one
can ask: Is it possible to choose at least one sequence (Xn)n≥0 for which |An| = ‖H‖
and An = Hn for some n > 0?

What are the stable partitions H for which it is always possible to reach a set in
Hn∗ for some n > 0 starting from an arbitrary singleton in X and then recursively
multiplying on the right by sets chosen from Hi∗ (0 ≤ i < n)?

It is easy to see that for the trivial stable partition H = {X}, the above condition
is equivalent to ergodicity. Therefore, satisfying the above condition for every stable
partition is a stronger notion of ergodicity. Strong ergodicity turns out to be impor-
tant for polarization theory as we will see in Chapter 3. In this section, we introduce
the notions and concepts that are necessary to understand strong ergodicity.

Notation 2.4. Let X = (Xi)0≤i<k be a sequence of subsets Xi of X . We denote the
length k of the sequence X by |X|.

For every A ⊂ X , we denote (. . . ((A∗X0)∗X1) . . .)∗Xk−1) by A∗X. If A = {a},
we write a ∗ X to denote {a} ∗ X.

The nth power of the sequence X = (Xi)0≤i<k is the sequence Xn = (X ′
i)0≤i<kn,

where X ′
i = Xi mod k for 0 ≤ i < kn. I.e., Xn is obtained by concatenating n copies

of X.

Definition 2.12. Let H be a stable partition of (X , ∗) where ∗ is uniformity-
preserving. A sequence X = (Xi)0≤i<k is said to be H-sequence if X0 ∈ H, X1 ∈ H∗,
. . . , Xk−1 ∈ H(k−1)∗. If we also have that per(H) divides |X| = k, we say that the
sequence is H-repeatable.
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An H-repeatable sequence X is said to be H-augmenting if A ⊂ A ∗ X for all
A ⊂ X .

Remark 2.7. If X is H-repeatable, then Xl is an H-sequence for every l > 0. This
is not necessarily true if X is an H-sequence which is not repeatable.

If a sequence is H-augmenting then it is also H-repeatable by definition. There-
fore, whenever we need to show that a sequence is H-augmenting, we have to show
first that it is H-repeatable.

If X is H-augmenting then Xl is H-augmenting for every l > 0.

Theorem 2.1. Let H be a stable partition of (X , ∗) where ∗ is ergodic. There exists
a unique sub-stable partition KH of H such that:

• For every K ∈ KH and every H-sequence X, we have K ∗ X ∈ KH|X|∗.

• For every K ∈ KH and every x ∈ K, there exists an H-augmenting sequence
X such that x ∗ X = K.

• For every K ∈ KH, every x ∈ K, and every H-augmenting sequence X′, we
have x ∗ X′ ⊂ K.

KH is called the first residue of the stable partition H. We also have KHl∗ = KHl∗

for all l ≥ 0.

Proof. See Appendix 2.8.3.

Remark 2.8. Theorem 2.1 implies that an ergodic operation is strongly ergodic if
and only if KH = H for every stable partition H of X . This will be explained and
proven in detail in Section 2.5.

Remark 2.9. It is possible to prove a more general theorem for the periodic parti-
tions of an arbitrary uniformity-preserving operation:

Let H be a periodic partition of (X , ∗) where ∗ is an arbitrary uniformity-
preserving operation. There exists a unique sub-periodic partition KH of H such
that:

• For every K ∈ KH and every H-sequence X, we have K ∗ X ∈ KH|X |∗.

• For every K ∈ KH and every x ∈ K, there exists an H-augmenting sequence
X such that x ∗ X = K.

• For every K ∈ KH, every x ∈ K, and every H-augmenting sequence X′, we
have x ∗ X′ ⊂ K.

KH is called the first residue of the periodic partition H. We also have KHl∗ = KHl∗

for all l ≥ 0.
We will not prove this general theorem here since Theorem 2.1 is sufficient for

our purposes. The proof of the general theorem is more complicated but follows
similar steps as the proof of Theorem 2.1.

Note that if the operation ∗ is not ergodic, KH may not be a stable partition
even if H is a stable partition. Consider the following irreducible (but not ergodic)
operation:
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∗ 0 1 2 3 4 5 6 7

0 4 5 4 5 4 4 4 4

1 5 4 5 4 5 5 5 5

2 6 7 6 7 6 6 6 6

3 7 6 7 6 7 7 7 7

4 2 2 2 2 2 3 2 3

5 3 3 3 3 3 2 3 2

6 0 0 0 0 0 1 0 1

7 1 1 1 1 1 0 1 0

Let H =
{
{0, 2}, {1, 3}, {4, 5}, {6, 7}

}
, which is a stable partition of period 2. The

reader can check that KH =
{
{0}, {1}, {2}, {3}, {4, 5}, {6, 7}

}
which is periodic but

not stable as it is not balanced.

Definition 2.13. Let H be a stable partition of (X , ∗) where ∗ is ergodic. For every
n ≥ 0, we define the nth residue Rn(H) of H recursively as follows:

• R0(H) = H.

• R1(H) = KH.

• Rn+1(H) = R1(Rn(H)) = KRn(H) for every n ≥ 1.

The residual degree degR(H) of H is the smallest integer n ≥ 0 that satisfies
Rn+1(H) = Rn(H). The residue of H is defined as R(H) := RdegR(H)(H). Clearly
R1(R(H)) = KR(H) = R(H) and R(R(H)) = R(H).

Remark 2.10. In the application to polarization theory, we will only need the first
residue. We just note here that for every n ≥ 0, there exists an ergodic operation and
a stable partition H of residual degree n. In other words, there are stable partitions
of arbitrary residual degrees.

2.5 Strongly Ergodic Operations

Definition 2.14. A uniformity-preserving operation ∗ is said to be strongly ergodic
if for every stable partition H and for every x ∈ X , there exists an integer n =
n(x,H) such that for every H ∈ Hn∗, there exists an H-sequence Xx,H of length n
such that x ∗ Xx,H = H.

Theorem 2.2. We have the following:

1. If ∗ is strongly ergodic then it is ergodic.

2. If ∗ is strongly ergodic, there exists an integer d > 0 such that for every s ≥ d,
every stable partition H, every x ∈ X and every H ∈ Hs∗, there exists an
H-sequence Xx,H of length s satisfying x∗Xx,H = H. If d is minimal with this
property, we call it the strong connectability of ∗, and we denote it by scon(∗).

3. If ∗ is ergodic, then ∗ is strongly ergodic if and only if KH = H for every
stable partition H (i.e., every stable partition H is its own residue, and so the
residual degree is zero).
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4. If ∗ is a quasigroup operation then it is strongly ergodic.

Proof. 1) Suppose that ∗ is strongly ergodic and consider the trivial stable partition
{X}. For every x ∈ X , there exists nx > 0 such that x ∗ (X )nx = X . This shows

that for every y ∈ X , x
∗,nx−→ y which shows that ∗ is irreducible. Let n = per(∗)

and let H0, . . . , Hn−1 be the equally sized subsets of X given by the fourth point of
Proposition 2.1.

Let x ∈ H0. We have X = x ∗ (X )nx ⊂ H0 ∗ (X )nx = Hnx mod n, where the last
equality follows from the fourth point of Proposition 2.1. Therefore, Hnx mod n = X
which implies that n = 1 since {H0, . . . , Hn−1} is a partition. Therefore, per(∗) = 1
and so ∗ is ergodic by the seventh point of Proposition 2.1.

2) Let ∗ be strongly ergodic, and define d = max
x,H

n(x,H), where n(x,H) is

as in Definition 2.14. Now fix x ∈ X and fix a stable partition H. Let s ≥ d
and fix H ∈ Hs∗. If s = n(x,H), there is nothing to prove. Now suppose that
s > n := n(x,H), then there exists H ′ ∈ Hn∗ and an Hn∗-sequence X of length s−n
such that H ′ ∗X = H. Moreover, there exists an H-sequence Xx,H′ of length n such
that x ∗ Xx,H′ = H ′. We conclude that x ∗ (Xx,H′ ,X) = H.

3) Let H be a stable partition of (X , ∗) where ∗ is strongly ergodic, and let
x ∈ X , K ∈ KH and H ∈ H be chosen so that x ∈ K ⊂ H. Let s = scon(∗) ·per(H).
We have Hs∗ = H since per(H) divides s. Now since s ≥ scon(∗) and H ∈ H = Hs∗,
there exists an H-sequence Xx,H of length s such that x ∗ Xx,H = H. We have
x ∈ H = x∗Xx,H ⊂ K ∗Xx,H , so x ∈ K ∗Xx,H which implies that K∩(K ∗Xx,H) �= ø
(since we also have x ∈ K). On the other hand, Theorem 2.1 implies that K∗Xx,H ∈
KHs∗ = KH. Therefore, K ∗ Xx,H = K since KH is a partition. We conclude that
H = x∗Xx,H ⊂ K ∗Xx,H = K which implies that H = K since we also have K ⊂ H.
Therefore, ‖KH‖ = ‖H‖ and so KH = H.

Now suppose that ∗ is an ergodic operation which satisfies KH = H for every
stable partition H. Let x ∈ X and let H be a stable partition. Let k = con(∗) ·
per(H) ≥ con(∗), and for each H ∈ H fix xH ∈ H and let XH be an H-augmenting
sequence such that xH ∗ XH = H (such XH exists due to Theorem 2.1). Define

n(x,H) = k+
∑
H∈H

|XH | and define X′ to be the H-augmenting sequence obtained by

concatenating all the XH sequences (the order of the concatenation is not important).
It is easy to see that xH ∗ X′ = H for all H ∈ H: We have xH ∗ X′ ⊂ H from
Theorem 2.1. On the other hand, H ⊂ xH ∗ X′ follows from the fact that X′ is the
concatenation of a collection of H-augmenting sequences containing XH and that

xH ∗XH = H. We also have |X′| =
∑
H∈H

|XH |. Now since k ≥ con(∗), it follows from

Proposition 2.1 that for every H ∈ H there exists a sequence x0, . . . , xk−1 satisfying
(. . . ((x ∗ x0) ∗ x1) . . . ∗ xk−1) = xH . Let X′

H = (X0, . . . , Xk−1) be an H-sequence of
length k such that xi ∈ Xi for all 0 ≤ i < k. Clearly, xH ∈ x ∗ X′

H . It is easy to see
that the sequence X′′

H = (X′
H ,X′) is of length n(x,H) and satisfies H ⊂ x∗X′′

H . Now
let Hx ∈ H be chosen so that x ∈ Hx. Since Hx ∈ H = KH, Theorem 2.1 implies
that we have Hx ∗X′′

H ∈ KHn(x,H)∗ = KH = H (note that Hn(x,H)∗ = H since per(H)
divides n(x,H)). We conclude that H ⊂ x ∗ X′′

H ⊂ Hx ∗ X′′
H ∈ H, which implies

that H = x ∗ X′′
H = Hx ∗ X′′

H since we have H ∈ H and H is a partition. Therefore,
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for every H ∈ H = Hn(x,H)∗, there exists an H-sequence X′′
H of length n(x,H) such

that x ∗ X′′
H = H. Thus, ∗ is a strongly ergodic operation.

4) Let H be a stable partition of a quasigroup operation ∗. For every K ∈ KH
and every x ∈ K, there exists an H-augmenting sequence X = (Xi)0≤i<k such that

K = x ∗ X, which implies that |K| = |x ∗ X| =
∣∣(x ∗ (Xi)0≤i<k−1

)
∗ Xk−1

∣∣ (a)

≥
|Xk−1| = ‖H‖, where (a) is true because ∗ is a quasigroup operation. We conclude
that ‖KH‖ = ‖H‖ which implies that KH = H.

Remark 2.11. While every strongly ergodic operation ∗ is ergodic, the converse is
not true. Consider the following operation:

∗ 0 1 2 3

0 2 2 0 0

1 3 3 1 1

2 1 1 3 3

3 0 0 2 2

The first residue of the stable partition H =
{
{0, 1}, {2, 3}

}
is

KH =
{
{0}, {1}, {2}, {3}

}
�= H.

Also, a strongly ergodic operation need not be a quasigroup operation, here is an
example:

∗ 0 1 2 3

0 3 3 3 3

1 0 1 0 0

2 1 0 1 1

3 2 2 2 2

2.6 Generated Stable Partitions

Definition 2.15. Let A and B be two sets of subsets of X . We say that A is finer
than B (or B is coarser than A) if for every A ∈ A there exists B ∈ B such that
A ⊂ B. We write A � B to denote the relation “A is finer than B”.

Let A be a set of subsets of X . Is it possible to find a periodic partition of (X , ∗)
which is coarser than A and finer than every other periodic partition that is coarser
than A? Similarly, is it possible to find a stable partition of (X , ∗) which is coarser
than A and finer than every other stable partition that is coarser than A? The
following answer these two questions.

Proposition 2.6. Let ∗ be a uniformity-preserving operation on X , and let A be a
set of subsets of X . There exists a unique periodic partition 〈A〉 which satisfies the
following:

• A � 〈A〉.

• For every periodic partition H of X , if A � H then 〈A〉 � H.
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In other words, 〈A〉 is the finest periodic partition that is coarser than A. 〈A〉 is
called the periodic partition generated by A.

Proof. Define

〈A〉 =
∧

H is a periodic partition
A�H

H. (2.1)

Proposition 2.5 implies that 〈A〉 is a periodic partition. Moreover, it follows from
(2.1) and from the definition of the wedge operator (Definition 2.11) that for every
periodic partition H satisfying A � H, we have 〈A〉 � H.

Now let A ∈ A. We have:

• If A = ø, then A ⊂ B for every B ∈ 〈A〉.

• If A �= ø, then for every periodic partition H satisfying A � H, choose BH ∈ H
such that A ⊂ BH. Define

B =
⋂

H is a periodic partition
A�H

BH.

Clearly, A ⊂ B which implies that B �= ø and so B ∈ 〈A〉 (see Definition 2.11).

We conclude that for every A ∈ A, there exists B ∈ 〈A〉 such that A ⊂ B. Therefore,
A � 〈A〉.

Now let H′ be a periodic partition satisfying the conditions of the proposition.
I.e.,

• A � H′.

• For every periodic partition H of X , if A � H then H′ � H.

Since A � 〈A〉, we have H′ � 〈A〉. Similarly, since A � H′ we have 〈A〉 � H′.
Therefore, H′ = 〈A〉 and so 〈A〉 is unique.

Remark 2.12. It is possible to show that 〈A〉n∗ = 〈An∗〉 for every n > 0, but we
will not prove this here since we do not need this property for our purposes.

Corollary 2.2. Let ∗ be an ergodic operation on X , and let A be a set of subsets of
X . There exists a unique stable partition 〈A〉 which satisfies the following:

• A � 〈A〉.

• For every stable partition H of X , if A � H then 〈A〉 � H.

In other words, 〈A〉 is the finest stable partition that is coarser than A. 〈A〉 is called
the stable partition generated by A.

Proof. The corollary follows from Proposition 2.6 and from the fact that if ∗ is an
ergodic operation on X then every periodic partition is stable (see Lemma 2.2).
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Remark 2.13. The ergodicity condition in Corollary 2.2 cannot be replaced by irre-
ducibility. Consider the irreducible (but not ergodic) operation ∗ of Remark 2.6, and
let A =

{
{0, 1}, {2, 3}

}
. Notice that there is no stable partition that is both coarser

than A and finer than every stable partition that is coarser than A. Therefore, if ∗
is not ergodic, the concept of “generated stable partitions” is not always well defined.

Let A be a set of subsets of X which covers X and does not contain the empty set
as an element. We have A � 〈A〉 which implies that An∗ � 〈A〉n∗ for every n > 0.
Can we find n > 0 for which An∗ = 〈A〉n∗? The rest of this section is dedicated to
show that the answer to this question is affirmative if ∗ is strongly ergodic. This
property of strongly ergodic operations turns out to be important for polarization
theory as we will see in Chapter 3.

Definition 2.16. Let A be a set of subsets of X . We say that A is an X -cover if

ø /∈ A and X =
⋃
A∈A

A.

We say that an X -cover A is periodic if An∗ = A for some n > 0. The least
integer n > 0 satisfying An∗ = A is called the period of A, and it is denoted by
per(A).

We say that an X -cover A is balanced if for every A1, A2 ∈ A we have |A1| =
|A2|. An X -cover A is said to be stable if it is both periodic and balanced.

Proposition 2.7. If ∗ is a strongly ergodic operation on a set X , then every stable
X -cover is a stable partition.

Proof. See Appendix 2.8.4.

Remark 2.14. The strong ergodicity condition in Proposition 2.7 cannot be replaced
by ergodicity. Consider the following ergodic (but not strongly ergodic) operation:

∗ 0 1 2 3 4 5

0 3 3 3 0 0 0

1 4 4 4 1 1 1

2 5 5 5 2 2 2

3 1 1 1 5 5 5

4 2 2 2 3 3 3

5 0 0 0 4 4 4

The set
{
{0, 1}, {0, 2}, {1, 2}, {3, 4}, {3, 5}, {4, 5}

}
is a stable X -cover of period 1,

but it is not a partition.

Definition 2.17. Let A be a set of subsets of X . The core of A is defined as

core(A) = {A ∈ A : |A| = ‖A‖∨} =
{
A ∈ A : |A| = max

B∈A
|B|
}
.

Lemma 2.3. Let ∗ be a uniformity-preserving operation on X and let A be a periodic
X -cover. We have ‖An∗‖∨ = ‖A‖∨ for every n ≥ 1.

Proof. Let p = min{k · per(A) : k · per(A) > n}. Lemma 2.1 implies that

‖A‖∨ ≤ ‖A∗‖∨ ≤ . . . ≤ ‖An∗‖∨ ≤ . . . ≤ ‖Ap∗‖∨ = ‖A‖∨.

Therefore, ‖An∗‖∨ = ‖A‖∨.
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Proposition 2.8. Let ∗ be an ergodic operation on X . If A is a periodic X -cover,
then core(A) is a stable X -cover and per(core(A)) divides per(A). Moreover, we
have core(A)n∗ = core(An∗) for every n ≥ 1.

Proof. See Appendix 2.8.5.

Proposition 2.9. Let ∗ be a strongly ergodic operation on X . If A is a periodic
X -cover, then 〈A〉 = core(A).

Proof. Proposition 2.8 implies that core(A) is a stable X -cover and per(core(A))
divides per(A). On the other hand, Proposition 2.7 implies that core(A) is a stable
partition.

Fix a ∈ A ∈ A and let B ∈ core(A) be such that a ∈ B. Theorem 2.1 implies the
existence of a core(A)-augmenting sequence X such that a∗X = B. Since a ∈ A, we
have B = a ∗ X ⊂ A ∗ X. On the other hand, we have A ∗ X ∈ An∗, where n = |X|.
This means that |A ∗ X| ≤ ‖An∗‖∨

(a)
= ‖A‖∨ = |B|, where (a) follows from Lemma

2.3.

Now since B ⊂ A ∗X and |A ∗X| ≤ |B|, we must have A ∗X = B. On the other
hand, since X is core(A)-augmenting, we have A ⊂ A ∗ X = B.

We have just shown that for every A ∈ A, there exists B ∈ core(A) such that
A ⊂ B. Therefore, A � core(A), which implies that 〈A〉 � core(A). On the other
hand, since core(A) ⊂ A, we have core(A) � A, which implies that core(A) � 〈A〉.
We conclude that 〈A〉 = core(A).

Remark 2.15. The strong ergodicity condition in Proposition 2.9 cannot be replaced
by ergodicity. Consider the ergodic operation ∗ of Remark 2.14, and consider the
the X -cover

A =
{
{0, 1}, {0, 2}, {1, 2}, {3, 4}, {3, 5}, {4, 5}

}
.

core(A) = A is not a partition, hence core(A) �= 〈A〉.

Theorem 2.3. Let ∗ be a strongly ergodic operation on a set X . For every X -cover
A, there exists an integer n < 22

|X|
such that 〈A〉 = core(An∗) and per(〈A〉) divides

n, i.e., 〈A〉 = 〈A〉n∗ = core(An∗) ⊂ An∗.

Proof. 2|X | is the number of subsets of X , and 22
|X|

is the number of sets of subsets
of X . Thus, the sets Ai∗ for 0 ≤ i ≤ 22

|X|
cannot be pairwise different. Therefore,

there exist at least two integers 0 ≤ n1 < n2 ≤ 22
|X|

such that An1∗ = An2∗. Define
p = n2 − n1 and let 0 ≤ n3 < p be such that n3 ≡ −n1 mod p. Define n = n1 + n3.
We have n < n1 + p = n2 ≤ 22

|X|
. On the other hand, since n ≡ 0 mod p, it follows

that p divides n.

We have

(An∗)p∗ = A(n1+n3+p)∗ = A(n2+n3)∗ = (An2∗)n3∗ = (An1∗)n3∗ = An∗,

which shows that An∗ is a periodic X -cover and per(An∗) divides p. But p divides
n, so per(An∗) divides n.

Proposition 2.8 shows that core(An∗) is a stable X -cover and per(core(An∗))
divides per(An∗). This implies that per(core(An∗)) divides n. On the other hand,
Proposition 2.7 implies that core(An∗) is a stable partition.
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Now let A ∈ A and let a be an arbitrary element of X . Define the mapping
π : X → X as π(x) = x ∗ a. Since π is a permutation, there exists k > 0 such that
πk(x) = x for every x ∈ X . Now for every 0 ≤ i < kn, let Xi ∈ Ai∗ be such that
a ∈ Xi and let X = (Xi)0≤i<kn. We have:

• A ∗ X ∈ Akn∗.

• A ⊂ A ∗ X since πkn(x) = x for every x ∈ X .

• Akn∗ = (An∗)(k−1)n∗ = An∗ since per(An∗) divides n.

We conclude that A ⊂ A ∗ X ∈ An∗. Therefore, A � An∗. On the other hand,
Proposition 2.9 implies that An∗ � core(An∗). Therefore, A � core(An∗).

Now since core(An∗) is a stable partition (hence it is also periodic), we must
have 〈A〉 � core(An∗) by Proposition 2.6. On the other hand, we have:

• Since A � 〈A〉 then Anp∗ � 〈A〉np∗, where p = per(〈A〉).

• Anp∗ = (An∗)(p−1)n∗ (a)
= An∗, where (a) follows from the fact that per(An∗)

divides n.

• 〈A〉np∗ = 〈A〉 since p = per(〈A〉).

Therefore, An∗ � 〈A〉. But core(An∗) ⊂ An∗, which implies that core(An∗) � An∗,
hence core(An∗) � 〈A〉. We conclude that core(An∗) = 〈A〉 as we have already
shown that 〈A〉 � core(An∗).

Remark 2.16. The strong ergodicity condition in Theorem 2.3 cannot be replaced
by ergodicity. Consider the ergodic operation ∗ of Remark 2.14, and consider the
the X -cover

A =
{
{0, 1}, {0, 2}, {1, 2}, {3, 4}, {3, 5}, {4, 5}

}
,

which is not a partition. We have the following:

• It is easy to see that core(An∗) = An∗ = A for every n ≥ 0.

• Since A is not a partition, core(An∗) = A is not a partition for any n ≥ 0.

Therefore, core(An∗) �= 〈A〉n∗ for every n ≥ 0.

2.7 Product of Binary Operations

Definition 2.18. Let X1, . . . ,Xm be m sets, and let ∗1, . . . , ∗m be m binary op-
erations on X1, . . . ,Xm respectively. We define the product of ∗1, . . . , ∗m, denoted
∗ = ∗1 ⊗ . . .⊗ ∗m, as the binary operation ∗ on X1 × · · · × Xm defined by:

(x1, x2, . . . , xm) ∗ (x′1, x′2, . . . , x′m) = (x1 ∗1 x′1, x2 ∗2 x′2, . . . , xm ∗m x′m).

Proposition 2.10. Let ∗1, . . . , ∗m be m binary operations on X1, . . . ,Xm respec-
tively. Let X = X1 × · · · × Xm and ∗ = ∗1 ⊗ . . .⊗ ∗m. We have:

1. ∗ is uniformity-preserving if and only if ∗1, . . . , ∗m are uniformity-preserving.
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2. If ∗ is irreducible then ∗1, . . . , ∗m are irreducible. The converse is not neces-
sarily true.

3. ∗ is ergodic if and only if ∗1, . . . , ∗m are ergodic. Moreover,

con(∗) = max{con(∗1), . . . , con(∗m)}.

Proof. 1) Suppose that ∗1, . . . , ∗m are uniformity-preserving. Fix

b = (b1, . . . , bm) ∈ X

and define the mapping πb : X → X as πb(x) = x ∗ b for all x ∈ X . Now let
y = (y1, . . . , ym) ∈ X . For every 1 ≤ i ≤ m, ∗i is uniformity-preserving and so
there exists xi ∈ Xi such that xi ∗i bi = yi. Define x = (x1, . . . , xm). We have
πb(x) = x ∗ b = y. Therefore, πb is surjective which implies that it is bijective. Since
this is true for every b ∈ X , ∗ is uniformity-preserving.

Conversely, suppose that ∗ is uniformity-preserving and let 1 ≤ i ≤ m. Fix bi ∈
Xi and define the mapping πbi : Xi → Xi as πbi(xi) = xi ∗i bi for all xi ∈ Xi. Now let
yi ∈ Xi and choose arbitrarily yj ∈ Xj for each j �= i. Define y = (y1, . . . , ym) ∈ X .
Since ∗ is uniformity-preserving, there exists x = (x1, . . . , xm) ∈ X such that y = x∗b
which implies that yi = xi ∗i bi. Therefore, πbi is surjective which implies that it is
bijective. Since this is true for every bi ∈ Xi, ∗i is uniformity-preserving.

2) Suppose that ∗ is irreducible and fix 1 ≤ i ≤ m. Let ai, bi ∈ Xi and choose
arbitrarily aj , bj ∈ Xj for each j �= i. Define a = (a1, . . . , am) ∈ X and b =
(b1, . . . , bm) ∈ X . Since ∗ is irreducible, a is ∗-connectable to b and so there exists
l > 0 and x0, . . . , xl−1 ∈ X such that b = (. . . ((a ∗ x0) ∗ x1) . . . ∗ xl−1). For each
0 ≤ k < l, let xk = (x1,k, . . . , xm,k) and so xi,k ∈ Xi. It is easy to see that we have
bi = (. . . ((ai ∗i xi,0) ∗i xi,1) . . . ∗i xi,l−1). Therefore, ai is ∗i-connectable to bi for all
ai, bi ∈ Xi, hence ∗i is irreducible.

In order to see that the converse is not necessarily true, let X1 = X2 = {0, 1}
and define x ∗1 y = x ∗2 y = x ⊕ 1 for every x, y ∈ {0, 1}. It is easy to see that ∗1
and ∗2 are irreducible and per(∗1) = per(∗2) = 2. Let ∗ = ∗1 ⊗ ∗2. It is easy to see
that (0, 0) is not ∗-connectable to (0, 1). Therefore, ∗ is not irreducible.

3) Suppose that ∗1, . . . , ∗m are ergodic and let

d = max{con(∗1), . . . , con(∗m)}.

Let a = (a1, . . . , am) ∈ X and b = (b1, . . . , bm) ∈ X . For each 1 ≤ i ≤ m, since
d ≥ con(∗i) there exist xi,0, . . . , xi,d−1 ∈ Xi such that bi = (. . . ((ai∗ixi,0)∗ixi,1) . . .∗i
xi,d−1). For each 0 ≤ k < d define xk = (x1,k, . . . , xm,k) ∈ X . It is easy to see
that b = (. . . ((a ∗ x0) ∗ x1) . . . ∗ xd−1). Therefore, all the elements of X are ∗-
connectable to each other in d steps. We conclude that ∗ is ergodic and con(∗) ≤
d = max{con(∗1), . . . , con(∗m)}.

Conversely, suppose that ∗ is ergodic and let 1 ≤ i ≤ m. Let ai, bi ∈ Xi and
choose arbitrarily aj , bj ∈ Xj for each j �= i. Define a = (a1, . . . , am) ∈ X and b =
(b1, . . . , bm) ∈ X . Since ∗ is ergodic, a is ∗-connectable to b in con(∗) steps. It follows
that ai is ∗i-connectable to bi in con(∗) steps (we use the same argument that we
used for the irreducible case). Since this is true for every ai, bi ∈ Xi, we conclude that
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∗i is ergodic and con(∗i) ≤ con(∗). We conclude that max{con(∗1), . . . , con(∗m)} ≤
con(∗) which implies that

con(∗) = max{con(∗1), . . . , con(∗m)}

since we have con(∗) ≤ max{con(∗1), . . . , con(∗m)} from the previous paragraph.

Definition 2.19. Let H1, . . . ,Hm be m stable partitions of (X1, ∗1), . . . , (Xm, ∗m)
respectively. The product of H1, . . . ,Hm, denoted H = H1 ⊗ . . .⊗Hm is defined as

H = {A1 × . . .×Am : A1 ∈ H1, . . . , Am ∈ Hm}.

It is easy to see that H is a stable partition of (X1×· · ·×Xm, ∗1⊗ . . .⊗∗m) of period
per(H) = lcm{per(H1), . . . , per(Hm)}.

Theorem 2.4. Let ∗1 and ∗2 be two ergodic operations on X1 and X2 respectively.
Let X = X1 × X2 and ∗ = ∗1 ⊗ ∗2 (thus, ∗ is ergodic). Let H be a stable partition
of X . There exist two unique stable partitions L1 := L1(H) and U1 := U1(H) of X1

and two unique stable partitions L2 := L2(H) and U2 := U2(H) of X2 such that:

• L1 � U1, L2 � U2 and ‖U1‖
‖L1‖ = ‖U2‖

‖L2‖ = n for some integer n > 0.

• L1 ⊗ L2 � H � U1 ⊗ U2.

• For every H ∈ H, there exist n disjoint sets H1,1, . . . , H1,n ∈ L1 and n disjoint
sets H2,1, . . . , H2,n ∈ L2 such that:

– H1,1 ∪ . . . ∪H1,n ∈ U1.

– H2,1 ∪ . . . ∪H2,n ∈ U2.

– H = (H1,1 ×H2,1) ∪ . . . ∪ (H1,n ×H2,n).

Therefore, ‖H‖ = n · ‖L1‖ · ‖L2‖ = ‖L1‖ · ‖U2‖ = ‖U1‖ · ‖L2‖.

The integer n is called the correlation of H and is denoted by cor∗1,∗2(H).
We also have L1(H)i∗1 = L1(Hi∗), L2(H)i∗2 = L2(Hi∗), U1(H)i∗1 = U1(Hi∗)

and U2(H)i∗2 = U2(Hi∗) for every i ≥ 0.

Proof. See Appendix 2.8.6.

Remark 2.17. If H = H1 ⊗H2, then L1(H) = U1(H) = H1, L2(H) = U2(H) = H2

and cor∗1,∗2(H) = 1.

Example 2.2. Figure 2.1 shows an element H of a stable partition H of correlation
n = cor∗1,∗2(H) = 3. H is represented by the regions that are enclosed in thick lines.

Example 2.3. Let X1 = X2 = {0, 1} and define ∗1 and ∗2 as x ∗1 y = x ∗2
y = x ⊕ y for every x, y ∈ {0, 1}. Let X = X1 × X2, ∗ = ∗1 ⊗ ∗2 and H ={
{(0, 0), (1, 1)}, {(0, 1), (1, 0)}

}
. It is easy to see that H is a stable partition of

(X , ∗). We have:

• L1(H) = L2(H) =
{
{0}, {1}

}
.
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H1,1 ×H2,1

H1,2 ×H2,2

H1,3 ×H2,3

H1,1 ∈ L1(H) H1,2 ∈ L1(H) H1,3 ∈ L1(H)

H1,1 ∪H1,2 ∪H1,3 ∈ U1(H)

H2,1 ∈ L2(H)

H2,3 ∈ L2(H)

H2,2 ∈ L2(H)

H2,1 ∪H2,2 ∪H2,3 ∈ U2(H)

Figure 2.1 – H = (H1,1 ×H2,1) ∪ (H1,2 ×H2,2) ∪ (H1,3 ×H2,3) ∈ H.

• U1(H) = U2(H) =
{
{0, 1}

}
.

• n = cor∗1,∗2(H) = 2.

For H = {(0, 1), (1, 0)} ∈ H, we have:

• H1,1 = {0}, H1,2 = {1} and H1,1 ∪H1,2 = {0, 1} ∈ U1(H).

• H2,1 = {1}, H2,2 = {0} and H2,1 ∪H2,2 = {0, 1} ∈ U2(H).

• (H1,1 ×H2,1) ∪ (H1,2 ×H2,2) = {(0, 1), (1, 0)} = H.

Theorem 2.4 shows that the stable partitions of the product of two ergodic
operations have a very particular structure. This structure will be useful to prove
the following theorem:

Theorem 2.5. Let ∗1, . . . , ∗m be m ≥ 2 binary operations on X1, . . . ,Xm respec-
tively. Let X = X1 × · · · × Xm and ∗ = ∗1 ⊗ . . .⊗ ∗m. Then ∗ is strongly ergodic if
and only if ∗1, . . . , ∗m are strongly ergodic.

Proof. See Appendix 2.8.6.

Notation 2.5. Let ∗1, . . . , ∗m be m ≥ 2 ergodic operations on X1, . . . ,Xm respec-
tively. Define X = X1 × · · · × Xm and ∗ = ∗1 ⊗ . . . ⊗ ∗m. Let A and B be two
non-empty subsets of Im := {1, . . . ,m} which form a non-trivial partition (i.e.,
A ∪ B = Im, A ∩ B = ø, A �= ø and B �= ø). Let i1 < . . . < i|A| and j1 < . . . < j|B|
be such that A = {i1, . . . , i|A|} and B = {j1, . . . , j|B|}. Define XA = Xi1 ×· · ·×Xi|A|,
XB = Xj1 × · · · × Xj|B|, ∗A = ∗i1 ⊗ . . .⊗ ∗i|A| and ∗B = ∗j1 ⊗ . . .⊗ ∗j|B| . Define the
mapping fA,B : X → XA ×XB as

fA,B(x1, . . . , xm) =
(
(xi1 , . . . , xi|A|), (xj1 , . . . , xj|B|)

)
.

Clearly, fA,B is a bijection. We call fA,B the canonical bijection between X and
XA × XB. Throughout this chapter, we identify (X , ∗) with (XA × XB, ∗A ⊗ ∗B)
through the canonical bijection fA,B.

Let H be a stable partition of (X , ∗). Since ∗A and ∗B are ergodic, there are two
unique stable partitions LA(H) � UA(H) of (XA, ∗A) and two unique stable partitions
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LB(H) � UB(H) of (XB, ∗B) and nA = cor∗A,∗B (H) = cor∗B ,∗A(H) = nB > 0
satisfying the conditions of Theorem 2.4. We adopt the convention that UIm(H) = H.

If A = {i} contains only one element i, we denote L{i}(H) and U{i}(H) as Li(H)
and Ui(H) respectively.

Notation 2.6. For each A ⊂ B ⊂ Im = {1, . . . ,m} we define the mapping PB→A :
XB → XA as PB→A(xj1 , . . . , xj|B|) = (xi1 , . . . , xi|A|), where A = {i1, . . . , i|A|} ⊂
{j1, . . . , j|B|} = B, i1 < . . . < i|A| and j1 < . . . < j|B|. If A contains only one
element i, we denote PB→{i} by PB→i.

Now for each A � B ⊂ Im = {1, . . . ,m}, each xB\A ∈ XB\A and each XB ⊂ XB,
we define the set PB→A|xB\A(XB) := {xA ∈ XA : (xA, xB\A) ∈ XB} ⊂ XA. If A

contains only one element i, we denote PB→{i}|xB\{i}(XB) by PB→i|xB\i(XB).

It is easy to see that if A ⊂ B ⊂ C ⊂ {1, . . . ,m} then we have PB→A ◦ PC→B =
PC→A. Similarly, if A � B � C ⊂ {1, . . . ,m}, then for each XC ⊂ XC , each
xC\B ∈ XC\B and each xB\A ∈ XB\A, we have

PB→A|xB\A
(
PC→B|xC\B (XC)

)
= PC→A|(xC\B ,xB\A)(XC).

Here we have (xC\B, xB\A) ∈ XC\A since we are identifying XC\A with XC\B×XB\A
through the canonical bijection.

Remark 2.18. Let H be a stable partition of (X , ∗) = (X1×· · ·×Xm, ∗1⊗ . . .⊗∗m),
where ∗ is ergodic. If A ⊂ Im = {1, . . . ,m}, we have from Definition 2.25:

UA(H) = {PIm→A(H) : H ∈ H}.

Furthermore, if A � Im = {1, . . . ,m}, we have from Definition 2.26:

LA(H) = {PIm→A|xIm\A(H) : H ∈ H, xIm\A ∈ XIm\A, PIm→A|xIm\A(H) �= ø}
(a)
= {PIm→A|xIm\A(H) : H ∈ H, xIm\A ∈ PIm→Im\A(H)}.

(a) follows from the fact that PIm→A|xIm\A(H) �= ø if and only if

xIm\A ∈ PIm→Im\A(H).

Proposition 2.11. Let ∗1, . . . , ∗m be m ≥ 2 ergodic operations on X1, . . . ,Xm re-
spectively. Define X = X1 × · · · × Xm and ∗ = ∗1 ⊗ . . . ⊗ ∗m. Let H be a stable
partition of (X , ∗) and A � B � Im = {1, . . . ,m}. Then UA

(
UB(H)

)
= UA(H) and

LA

(
LB(H)

)
= LA(H).

Proof. From Remark 2.18 we have:

UA

(
UB(H)

)
= {PB→A(HB) : HB ∈ UB(H)}
=
{
PB→A

(
PIm→B(H)

)
: H ∈ H

}
= {PIm→A(H) : H ∈ H} = UA(H).
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On the other hand, we have:

LA

(
LB(H)

)
(a)
= {PB→A|xB\A(HB) : HB ∈ LB(H), xB\A ∈ XB\A, PB→A|xB\A(HB) �= o}
(b)
=
{
PB→A|xB\A

(
PIm→B|xIm\B (H)

)
:

H ∈ H, xIm\B ∈ XIm\B, PIm→B|xIm\B (H) �= ø,

xB\A ∈ XB\A, PB→A|xB\A
(
PIm→B|xIm\B (H)

)
�= o

}
(c)
=
{
PB→A|xB\A

(
PIm→B|xIm\B (H)

)
: H ∈ H, xIm\B ∈ XIm\B,

xB\A ∈ XB\A, PB→A|xB\A
(
PIm→B|xIm\B (H)

)
�= o

}
(d)
=
{
PIm→A|(xIm\B ,xB\A)(H) : H ∈ H, xIm\B ∈ XIm\B, xB\A ∈ XB\A,

PIm→A|(xIm\B ,xB\A)(H) �= ø
}

(e)
= {PIm→A|xIm\A(H) : H ∈ H, xIm\A ∈ XIm\A, PIm→A|xIm\A(H) �= o}
= LA(H).

(a) and (b) follow from Remark 2.18. (c) follows from the fact that

PB→A|xB\A
(
PIm→B|xIm\B (H)

)
�= ø

entails PIm→B|xIm\B (H) �= ø. (d) follows from the fact that

PB→A|xB\A
(
PIm→B|xIm\B (H)

)
= PIm→A|(xIm\B ,xB\A)(H).

(e) follows from the fact that Im \A = (Im \B)∪ (B \A) and so XIm\A is identified
to XIm\B ×XB\A.

Definition 2.20. Let ∗1, . . . , ∗m be m ≥ 2 ergodic operations on X1, . . . ,Xm respec-
tively. Let X = X1 × · · · × Xm and ∗ = ∗1 ⊗ . . .⊗ ∗m. Let H be a stable partition of
(X , ∗). The canonical factorization of H is the sequence (Hi)1≤i≤m defined as:

• Hm = Um(H).

• For each 1 ≤ i < m, Hi = Ui

(
LIi(H)

)
, where Ii = {1, . . . , i}.

Lemma 2.4. Let ∗1, . . . , ∗m be m ≥ 2 ergodic operations on X1, . . . ,Xm respectively.
Let X = X1 × · · · ×Xm and ∗ = ∗1 ⊗ . . .⊗∗m. Let H be a stable partition of (X , ∗).
If (Hi)1≤i≤m is the canonical factorization of H, then (Hi)1≤i≤m−1 is the canonical
factorization of LIm−1(H), where Im−1 = {1, . . . ,m− 1}.

Proof. For each 1 ≤ i ≤ m, define Ii = {1, . . . , i}. Let {H′
i}1≤i≤m−1 be the canonical

factorization of LIm−1(H). We have:

• H′
m−1 = Um−1

(
LIm−1(H)

)
= Hm−1.
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• For each 1 ≤ i < m− 1, we have

H′
i = Ui

(
LIi

(
LIm−1(H)

)) (a)
= Ui

(
LIi(H)

)
= Hi,

where (a) follows from Proposition 2.11.

Definition 2.21. Let H be a partition of a set X . A section of H is a subset C ⊂ X
such that:

• |C| = H.

• For each H ∈ H, there exists a unique x ∈ C such that x ∈ H. In other words,
the mapping ProjH, restricted to C, is a bijection between C and H.

Lemma 2.5. Let ∗1 and ∗2 be two ergodic operations on X1 and X2 respectively.
Let X = X1 ×X2 and ∗ = ∗1 ⊗∗2 (thus, ∗ is ergodic). Let H be a stable partition of
X . If C1 and C2 are sections of L1(H) and U2(H) respectively, then C = C1 × C2

is a section of H.

Proof. Let fC,H : C → H be the mapping ProjH restricted to C, i.e., fC,H(x) =
ProjH(x) for every x ∈ C.

Let H ∈ H and I2 = {1, 2}. We have PI2→2(H) ∈ U2(H) by Remark 2.18. Now
since C2 is a section of U2(H), there exists a unique x2 ∈ C2 such that x2 ∈ PI2→2(H).

Since x2 ∈ PI2→2(H), we have PI2→1|x2
(H) ∈ L1(H) by Remark 2.18. But C1

is a section of L1(H), so there exists a unique x1 ∈ C1 such that x1 ∈ PI2→1|x2
(H),

which means that (x1, x2) ∈ H. Therefore, there exists (x1, x2) ∈ C1×C2 = C such
that fC,H(x1, x2) = ProjH(x1, x2) = H. We conclude that fC,H is surjective.

On the other hand, we have |C| = |C1×C2| = |C1|·|C2| = |L1(H)|·|U2(H)| = |H|,
where the last equality follows from Theorem 2.4. Therefore, fC,H is bijective since
fC,H : C → H is surjective and |C| = |H|. Hence, C = C1×C2 is a section of H.

Proposition 2.12. Let ∗1, . . . , ∗m be m ≥ 2 ergodic operations on X1, . . . ,Xm re-
spectively. Let X = X1×· · ·×Xm and ∗ = ∗1⊗ . . .⊗∗m. Let H be a stable partition
of (X , ∗) and (Hi)1≤i≤m be the canonical factorization of H. We have:

• |H| = |H1| × · · · × |Hm|.

• If Ci is a section of Hi for every 1 ≤ i ≤ m, then C = C1 × · · · × Cm is a
section of H.

Proof. For each 1 ≤ i ≤ m, we define Ii = {1, . . . , i}. We will prove the proposition
by induction on m. If m = 2, we have:

• H1 = U1

(
LI1(H)

)
= U1

(
L1(H)

)
= L1(H) and H2 = U2(H).

• By Theorem 2.4, we have |H| = |L1(H)| · |U2(H)| = |H1| · |H2|.

• If C1 and C2 are sections of H1 = L1(H) and H2 = U2(H) respectively, then
Lemma 2.5 shows that C = C1 × C2 is a section of H
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Therefore the proposition is true for m = 2.

Now let m > 2 and suppose that the proposition is true for m − 1. By Lemma
2.4, (Hi)1≤i≤m−1 is the canonical factorization of LIm−1(H). We have:

• |H| = |LIm−1(H)| · |Um(H)| = |LIm−1(H)| · |Hm| by Theorem 2.4. On the other
hand, we have |LIm−1(H)| = |H1|×· · ·×|Hm−1| from the induction hypothesis.
Therefore, |H| = |H1| × · · · × |Hm|.

• For every 1 ≤ i ≤ m, let Ci be a section of Hi. From the induction hypothesis
we get that C1×· · ·×Cm−1 is a section of LIm−1(H). Now since C1×· · ·×Cm−1

and Cm are sections of LIm−1(H) and Um(H) respectively, Lemma 2.5 implies
that C = C1 × · · · × Cm is a section of H.

Therefore, the proposition is also true for m. We conclude that the proposition is
true for every m ≥ 2.

2.8 Appendix

2.8.1 Proof of Proposition 2.1

1) Trivial: For a quasigroup operation, all the elements of X are ∗-connectable to
each other in one step.

2) Suppose that ∗ is uniformity-preserving but not irreducible. There exist two
elements a1 and a2 of X such that a1 is not ∗-connectable to a2. Let A1 = {x ∈
X : a1

∗−→ x} and A2 = X \ A1. Clearly, a1 ∗ a1 ∈ A1 and a2 ∈ A2. Therefore, A1

and A2 are two disjoint non-empty sets such that A1 ∪A2 = X . Moreover, we have
A1 ∗ X ⊂ A1 from the definition of A1. Now since |A1 ∗ X | ≥ |A1|, we must have
A1 ∗ X = A1.

For every x ∈ X , define πx : X → X as πx(a) = a ∗ x for all a ∈ X . Since ∗ is
uniformity-preserving, πx is bijective for all x ∈ X . Therefore, |πx(A1)| = |A1|. On
the other hand, πx(A1) = A1 ∗ x ⊂ A1 ∗ X = A1. This means that πx(A1) = A1,
which implies that πx(A2) = πx(X \ A1) = X \ πx(A1) = X \ A1 = A2 since πx is
bijective. Therefore, A2 ∗ x = A2 for every x ∈ X , hence A2 ∗ X = A2.

3) Suppose that ∗ is irreducible, and let a, b ∈ X . Since ∗ is irreducible, there

exist l1, l2 ≥ 0 such that a
∗,l1−→ b and b

∗,l2−→ a, so a
∗,l1+l2−→ a which means that per(∗, a)

divides l1+l2. Now for any integer l > 0 satisfying b
∗,l−→ b, we have that a

∗,l1+l+l2−→ a.
This shows that per(∗, a) divides l1 + l2 + l, which implies that per(∗, a) divides l
since we have just shown that per(∗, a) divides l1 + l2. But this is true for every

l > 0 that satisfies b
∗,l−→ b. We conclude that per(∗, a) divides per(∗, b). Similarly,

we can show that per(∗, b) divides per(∗, a). Therefore, per(∗, a) is the same for all
a ∈ X . Now since per(∗) = gcd{per(∗, a) : a ∈ X}, we have per(∗) = per(∗, a) for
all a ∈ X .

4) Suppose that ∗ is irreducible and let n = per(∗). Fix a ∈ X and for every

0 ≤ i < n, define Hi =
{
x ∈ X : ∃l > 0, a

∗,l−→ x and l ≡ i mod n
}
. We have the

following:
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• If x ∈ X , then a
∗,la,x−→ x for some integer la,x > 0 because of irreducibility.

This shows that for every x ∈ X , we have x ∈ Hla,x mod n ⊂
n−1⋃
i=0

Hi. Therefore,

X ⊂
n−1⋃
i=0

Hi ⊂ X , hence

n−1⋃
i=0

Hi = X .

• Let x ∈ Hi and y ∈ Hj . We have a
∗,la,x−→ x for some la,x > 0 satisfying

la,x ≡ i mod n. Moreover, x
∗,lx,a−→ a for some lx,a > 0, and so a

∗,la,x+lx,a−→ a. The
definition of per(∗) implies that n divides la,x + lx,a and so lx,a ≡ −i mod n.

Now since y ∈ Hj , we have a
∗,la,y−→ y for some la,y > 0 satisfying la,y ≡ j mod n.

We conclude that x
∗,lx,y−→ y, where lx,y = lx,a + la,y ≡ j − i mod n.

• Suppose there exist i �= j such that Hi ∩Hj �= ø and let x ∈ Hi ∩Hj . From

the previous paragraph we have x
∗,lx,x−→ x, where lx,x ≡ j − i �≡ 0 mod n. The

definition of per(∗) implies that n divides lx,x which is a contradiction since
lx,x �≡ 0 mod n. We conclude that Hi ∩Hj = ø for all i �= j.

• For every 0 ≤ i < n and every y ∈ Hi ∗ X , there exist x ∈ Hi and z ∈ X
such that y = x ∗ z, which implies that y ∈ Hi+1 mod n. Therefore Hi ∗ X ⊂
Hi+1 mod n, and so |Hi+1 mod n| ≥ |Hi ∗ X | ≥ |Hi|. Thus, |H0| ≥ |Hn−1| ≥
. . . ≥ |H1| ≥ |H0|, which implies that |H0| = |H1| = . . . = |Hn−1|.

Therefore, {H0, . . . , Hn−1} is a partition of X satisfying |H0| = |H1| = . . . = |Hn−1|.
Now let 0 ≤ i < n. We have shown that Hi ∗ X ⊂ Hi+1 mod n. On the other

hand, we have |Hi ∗ X | ≥ |Hi| = |Hi+1 mod n|. Therefore, Hi ∗ X = Hi+1 mod n.

5) For every x ∈ X and every j > 0 define

Kx,j =
{
y ∈ X : x

∗,j−→ y
}
.

Since Kx,j+1 = Kx,j ∗ X and since the number of subsets of X is finite, there exists
dx > 0 such that the sequence (Kx,j)j≥dx is periodic. Let perx be the period of
(Kx,j)j≥dx . Now since Kx,j+1 = Kx,j ∗ X , we have |Kx,j+1| ≥ |Kx,j |. Therefore, the
sequence (|Kx,j |)j≥dx is both periodic and non-decreasing, which implies that it is
constant.

Fix j ≥ dx, and let l > 0 be such that x
∗,l−→ x. For every x′ ∈ Kx,j we

have x
∗,j−→ x′ which implies that x

∗,l+j−→ x′ (since x
∗,l−→ x) and so x′ ∈ Kx,j+l.

Therefore, Kx,j ⊂ Kx,j+l, which implies that Kx,j = Kx,j+l (since we know that
|Kx,j | = |Kx,j+l|). Now since this is true for every j ≥ dx, we conclude that perx

divides every l > 0 satisfying x
∗,l−→ x. Therefore, perx divides gcd{l > 0 : x

∗,l−→
x} = per(∗, x) = n. Hence,

Kx,j = Kx,j+kn for all j ≥ dx and all k ≥ 0. (2.2)

For every x ∈ X , let ix be the unique index 0 ≤ ix < n satisfying x ∈ Hix .
Clearly, Kx,j ⊂ Hix+j mod n. Now let x′ ∈ Kx,j and x′′ ∈ Hix+j mod n, where j ≥ dx.
Since both x′ and x′′ are in Hix+j mod n, we know from the discussion of the fourth
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point that we have x′
∗,lx′,x′′−→ x′′ for some lx′,x′′ ≡ 0 mod n. Since n divides lx′,x′′ ,

we have Kx,j+lx′,x′′ = Kx,j from (2.2). Now since x′ ∈ Kx,j and x′
∗,lx′,x′′−→ x′′, we

have x′′ ∈ Kx,j+lx′,x′′ = Kx,j . But this is true for every x′′ ∈ Hix+j mod n. Therefore,
Hix+j mod n ⊂ Kx,j , which implies that Kx,j = Hix+j mod n as we already have
Kx,j ⊂ Hix+j mod n.

Define d = max
x∈X

dx. Let 0 ≤ i < n and x ∈ Hi. We have ix = i (since x ∈ Hi) and

d ≥ dx. Therefore, from the above discussion we have Hi+d mod n = Hix+d mod n =

Kx,d. Hence, for every y ∈ Hi+d mod n, we have y ∈ Kx,d and so x
∗,d−→ y.

6) We will prove the claim by induction on s ≥ con(∗). If s = con(∗), the claim
follows from 5). Now let s > con(∗) and suppose that the claim is true for s−1. Let
0 ≤ i < n, x ∈ Hi and y ∈ Hi+s mod n. Since Hi+s mod n = Hi+s−1 mod n ∗ X , there

exists y′ ∈ Hi+s−1 mod n such that y′ ∗,1−→ y. Now since y′ ∈ Hi+s−1 mod n, it follows

from the induction hypothesis that x
∗,s−1−→ y′. Therefore, x ∗,s−→ y.

7) Let ∗ be an irreducible operation of period per(∗) = 1. Let E∗ be the partition
defined in 4). Since per(∗) = 1, the partition E∗ contains only one element H0 which
must be X . Now 5) implies that there exists d > 0 such that any element of X = H0

is ∗-connectable to any element of H0+d mod 1 = H0 = X in d steps. Therefore, ∗ is
ergodic.

Conversely, if ∗ is ergodic, let d = con(∗) and n = per(∗). Define E∗ =

{H0, . . . , Hn−1} as in 4) and let a ∈ H0. Since a
∗,d−→ x for all x ∈ X , then

X ⊂ Hd mod n which implies that X = Hd mod n. Now since |H0| = . . . = |Hn−1| =
|Hd mod n| = |X |, then H0 = . . . = Hn−1 = X and E∗ = {X}. Therefore, per(∗) =
n = |E∗| = 1.

8) If ∗ is ergodic, then per(∗) = 1 by 7). Therefore, E∗ contains only one element
H0 which must be X . Now 6) implies that for every s ≥ con(∗), any element of
X = H0 is ∗-connectable to any element of H0+s mod 1 = H0 = X in s steps.

9) and 10) are trivial.

2.8.2 Proofs for Section 2.3

Proof of Proposition 2.2 (1). For every k > 0 and every sequence H0 ∈ H, H1 ∈ H∗,
. . . , Hk−1 ∈ H(k−1)∗, define

HH0,...,Hk−1
:=
{
(. . . ((H ∗H0) ∗H1) . . . ∗Hk−1) : H ∈ H

}
. (2.3)

We have: ⋃
X∈HH0,...,Hk−1

X =
⋃

H∈H
(. . . ((H ∗H0) ∗H1) . . . ∗Hk−1)

=
(
. . .
((( ⋃

H∈H
H
)
∗H0

)
∗H1

)
. . . ∗Hk−1

)
= (. . . ((X ∗H0) ∗H1) . . . ∗Hk−1) = X .

Therefore, HH0,...,Hk−1
covers X for any sequence H0 ∈ H, H1 ∈ H∗, . . . , Hk−1 ∈

H(k−1)∗. Moreover, it is easy to see from (2.3) that HH0,...,Hk−1
⊂ Hk∗, which implies

that Hk∗ covers X .
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Fix n > 0 and suppose that Hn∗ is not a partition. Since we have shown that
Hn∗ covers X , there must exist X1, X

′
1 ∈ Hn∗ such that X1 ∩X ′

1 �= ø and X1 �= X ′
1.

We may assume without loss of generality that |X1| ≤ |X ′
1|. If X ′

1 \ X1 = ø then
X ′

1 ⊂ X1 which implies thatX ′
1 = X1 (because |X1| ≤ |X ′

1|) which is a contradiction.
Therefore, we must have X ′

1 \X1 �= ø.
Since X1 ∈ Hn∗, there exists H ∈ H and a sequence H0 ∈ H, H1 ∈ H∗, . . . ,

Hn−1 ∈ H(n−1)∗ such that X1 = (. . . ((H ∗H0) ∗H1) . . . ∗Hn−1) which implies that
X1 ∈ HH0,...,Hn−1 . Now since we have shown that HH0,...,Hn−1 covers X and since
X ′

1 \ X1 �= ø, there must exist X2 ∈ HH0,...,Hn−1 such that X2 ∩ (X ′
1 \ X1) �= ø.

Clearly, X1 �= X2 since X1 ∩ (X ′
1 \X1) = ø and X2 ∩ (X ′

1 \X1) �= ø.
Let p > 0 be the smallest multiple of per(H) which is greater than n, i.e.,

p = min{k · per(H) : k > 0, k · per(H) > n}.

We have Hp∗ = H since per(H) divides p. Fix Hn ∈ Hn∗, Hn+1 ∈ H(n+1)∗, . . . ,
Hp−1 ∈ H(p−1)∗ and define:

• A = (. . . ((X1 ∗Hn) ∗Hn+1) . . . ∗Hp−1) ∈ Hp∗ = H.

• B = (. . . ((X2 ∗Hn) ∗Hn+1) . . . ∗Hp−1) ∈ Hp∗ = H.

• C = (. . . ((X ′
1 ∗Hn) ∗Hn+1) . . . ∗Hp−1) ∈ Hp∗ = H.

We have X1 ∩ X ′
1 �= ø and X2 ∩ X ′

1 �= ø, which imply that A ∩ C �= ø and
B ∩ C �= ø. Now since A,B,C are members of H which is a partition (i.e., the
elements of H are non-empty, disjoint and cover X ), we must have A = B = C. We
conclude that

(. . . ((X1 ∗Hn) ∗Hn+1) . . . ∗Hp−1) = (. . . ((X2 ∗Hn) ∗Hn+1) . . . ∗Hp−1). (2.4)

We have:

• HH0,...,Hp−1 ⊂ Hp∗ from the definition of HH0,...,Hp−1 (see (2.3)). We have
shown that HH0,...,Hp−1 covers X and we know that Hp∗ = H is a partition.
Therefore, we must have HH0,...,Hp−1 = Hp∗ = H.

• The mapping HH0,...,Hn−1 → HH0,...,Hp−1 defined by X → (. . . ((X ∗ Hn) ∗
Hn+1) . . . ∗Hp−1) is surjective but not injective because of (2.4). This implies
that |HH0,...,Hp−1 | < |HH0,...,Hn−1 |.

• The mapping H → HH0,...,Hn−1 defined by H → (. . . ((H ∗H0)∗H1) . . .∗Hn−1)
is surjective. Therefore, |HH0,...,Hn−1 | ≤ |H|.

We conclude that |H| = |HH0,...,Hp−1 | < |HH0,...,Hn−1 | ≤ |H| which is a contradiction.

Therefore, Hn∗ must be a partition. On the other hand, we have, (Hn∗)per(H)∗ =
(Hper(H)∗)n∗ = Hn∗ which implies thatHn∗ is a periodic partition of period per(Hn∗)
≤ per(H). But since H = Hp∗ = (Hn∗)(p−n)∗, we must also have per(H) =
per(Hp∗) ≤ per(Hn∗). Therefore, per(Hn∗) = per(H) for every n > 0.

Lemma 2.6. Let H be a periodic partition of (X , ∗). For every H2 ∈ H, we have

H∗ = H ∗ {H2} = {H1 ∗H2 : H1 ∈ H}.
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Proof. For every H2 ∈ H, we have:

X = X ∗H2 =
( ⋃

H1∈H
H1

)
∗H2 =

⋃
H1∈H

(H1 ∗H2).

Therefore, the set {H1 ∗H2 : H1 ∈ H} covers X and it is a subset of H∗ which is
a partition of X by Proposition 2.2 (1). Therefore, we must have H∗ = {H1 ∗H2 :
H1 ∈ H}.

Proof of Proposition 2.2 (2). For every l ≥ 0, Proposition 2.2 (1) shows thatHl∗ is a
periodic partition. If we fix H2 ∈ Hl∗, then we have H(l+1)∗ = {H1 ∗H2 : H1 ∈ Hl∗}
by Lemma 2.6. Therefore,

|H(l+1)∗| =
∣∣∣{H1 ∗H2 : H1 ∈ Hl∗}

∣∣∣ ≤ ∣∣∣{H1 : H1 ∈ Hl∗}
∣∣∣ = |Hl∗|. (2.5)

Now fix n > 0 and let p > 0 be the smallest multiple of per(H) which is greater
than n, i.e., p = min{k · per(H) : k > 0, k · per(H) > n}. From (2.5) we have

|H| = |Hp∗| ≤ |H(p−1)∗| ≤ . . . ≤ |Hn∗| ≤ . . . ≤ |H|.

Therefore, |Hn∗| = |H| for every n > 0.

Proof of Proposition 2.5. Since H1 and H2 are two partitions of X , it is easy to see
that H1 ∧ H2 is also a partition of X . Now let H1, H

′
1 ∈ H1 and H2, H

′
2 ∈ H2. If

H1 ∩H2 �= ø and H ′
1 ∩H ′

2 �= ø, we have:

(H1 ∩H2) ∗ (H ′
1 ∩H ′

2) ⊂ (H1 ∗H ′
1) ∩ (H2 ∗H ′

2) ∈ H∗
1 ∧H∗

2. (2.6)

Fix H ′
1 ∈ H1 and H ′

2 ∈ H2 such that H ′
1 ∩ H ′

2 �= ø. Lemma 2.6 implies that
H∗

1 = {H1 ∗H ′
1 : H1 ∈ H1} and H∗

2 = {H2 ∗H ′
2 : H2 ∈ H2}. Since H∗

1 and H∗
2 are

partitions of X , we have:

|X | =
∑

A1∈H∗
1,A2∈H∗

2

|A1 ∩A2| =
∑

H1∈H1,H2∈H2

|(H1 ∗H ′
1) ∩ (H2 ∗H ′

2)|,

which implies that

|X | ≥
∑

H1∈H1,H2∈H2:
H1∩H2 �=ø

|(H1 ∗H ′
1) ∩ (H2 ∗H ′

2)| (2.7)

≥
∑

H1∈H1,H2∈H2:
H1∩H2 �=ø

|(H1 ∩H2) ∗ (H ′
1 ∩H ′

2)|, (2.8)

where (2.8) follows from (2.6). Now since H ′
1 ∩H ′

2 �= ø, we have

|(H1 ∩H2) ∗ (H ′
1 ∩H ′

2)| ≥ |H1 ∩H2|. (2.9)
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Therefore,∑
H1∈H1,H2∈H2:

H1∩H2 �=ø

|(H1 ∩H2) ∗ (H ′
1 ∩H ′

2)| ≥
∑

H1∈H1,H2∈H2:
H1∩H2 �=ø

|H1 ∩H2|. (2.10)

Now since H1 and H2 are two partitions of X , we have∑
H1∈H1,H2∈H2:

H1∩H2 �=ø

|H1 ∩H2| = |X |. (2.11)

We conclude that all the inequalities in (2.7), (2.8), (2.9) and (2.10) are in fact equal-
ities because if one of them were a strict inequality, we would have a contradiction
with (2.11). Therefore, for all H1 ∈ H1 and H2 ∈ H2 satisfying H1 ∩ H2 �= ø, we
have |(H1 ∩H2) ∗ (H ′

1 ∩H ′
2)| = |(H1 ∗H ′

1)∩ (H2 ∗H ′
2)|. Equation (2.6) now implies

that (H1 ∩ H2) ∗ (H ′
1 ∩ H ′

2) = (H1 ∗ H ′
1) ∩ (H2 ∗ H ′

2). We conclude that for every
H1, H

′
1 ∈ H1 and H2, H

′
2 ∈ H2 satisfying H1 ∩ H2 �= ø and H ′

1 ∩ H ′
2 �= ø, we have

(H1∩H2)∗(H ′
1∩H ′

2) = (H1∗H ′
1)∩(H2∗H ′

2) ∈ H∗
1∧H∗

2. Hence (H1∧H2)
∗ ⊂ H∗

1∧H∗
2.

We have the following:

• (H1 ∧H2)
∗ covers X since H1 ∧H2 covers X .

• H∗
1 ∧H∗

2 is a partition of X .

• (H1 ∧H2)
∗ ⊂ H∗

1 ∧H∗
2.

Therefore, we must have (H1 ∧H2)
∗ = H∗

1 ∧H∗
2.

It follows by induction that (H1 ∧ H2)
n∗ = Hn∗

1 ∧ Hn∗
2 for all n ≥ 0. In

particular, for l = lcm(per(H1), per(H2)), we have (H1 ∧ H2)
l∗ = Hl∗

1 ∧ Hl∗
2 =

H1 ∧ H2, which implies that H1 ∧ H2 is a periodic partition of period of at most
lcm(per(H1), per(H2)).

2.8.3 Proof of Theorem 2.1

In order to prove Theorem 2.1, we need several lemmas:

Lemma 2.7. For every stable partition H, and for every H-repeatable sequence X,
there exists an integer l > 0 such that Xl is H-augmenting.

Proof. Let X = (Xi)0≤i<k and let xi ∈ Xi for 0 ≤ i < k. Consider the mapping
π : X → X defined by π(x) = (. . . ((x∗x0)∗x1) . . .)∗xk−1). Since π is a permutation,
there exists an integer l > 0 such that πl(x) = x for all x ∈ X . For every A ⊂ X ,
we have A = πl(A) ⊂ A ∗ Xl. Therefore, Xl is H-augmenting.

Definition 2.22. Let A ⊂ X . We say that an H-augmenting sequence X connects
A if for every a ∈ A we have A ⊂ a ∗ X.

Lemma 2.8. If there exists an H-augmenting sequence that connects a set A ⊂ X ,
then there exists H ∈ H such that A ⊂ H.

Proof. Let X be such an H-augmenting sequence. Let a ∈ A and H ′ ∈ H be such
that a ∈ H ′. Define H = H ′ ∗ X ∈ H|X|∗. Since X is H-augmenting, |X| divides
per(H) and so H|X|∗ = H. Therefore, H ∈ H. On the other hand, X connects A, so
we have A ⊂ a ∗ X ⊂ H ′ ∗ X = H.
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Lemma 2.9. Let x ∈ X and let X be an H-augmenting sequence. For every y ∈ x∗X,
there exists an H-augmenting sequence X′ which connects {x, y}.

Proof. Let y ∈ x∗X = (. . . ((x∗X0)∗X1) . . .)∗Xk−1). There exist xi ∈ Xi (0 ≤ i < k)
such that y = (. . . ((x ∗ x0) ∗ x1) . . .) ∗ xk−1). Define the mapping π : X → X as
π(a) = (. . . ((a∗x0)∗x1) . . .)∗xk−1) for every a ∈ X . Clearly, π is a permutation. The
fact that y = π(x) implies that x and y belong to the same cycle of the permutation
π. Therefore, there exists s > 0 such that x = πs(y). Let X′ = Xs. It is easy to see
that X′ is H-augmenting. Moreover, we have:

• x ∈ y ∗ X′ because x = πs(y), and y ∈ y ∗ X′ because X′ is H-augmenting.
Therefore, {x, y} ⊂ y ∗ X′.

• y ∈ x ∗ X by assumption and x ∈ x ∗ X since X is H-augmenting. Therefore,
{x, y} ⊂ x ∗ X. On the other hand, x ∗ X ⊂ (x ∗ X) ∗ Xs−1 since Xs−1 is
H-augmenting. Hence {x, y} ⊂ (x ∗ X) ∗ Xs−1 = x ∗ X′.

We conclude that X′ connects {x, y}.

Lemma 2.10. If there exists an H-augmenting sequence that connects a set A ⊂ X ,
and if there exists an H-augmenting sequence that connects another set B ⊂ X such
that A ∩B �= ø, then there exists an H-augmenting sequence that connects A ∪B.

Proof. Let X be an H-augmenting sequence that connects A, and let X′ be an H-
augmenting sequence that connects B. Let X′′ = (X,X′,X) be the H-repeatable se-
quence that is obtained by concatenating X, X′ and X. Clearly, X′′ is H-augmenting.
Fix x ∈ A ∩B and let y ∈ A ∪B. We have the following:

• If y ∈ A, then A ⊂ y ∗X. In particular, x ∈ y ∗X. Now since x ∈ B and since
X′ connects B, we have B ⊂ x ∗ X′. Therefore, B ⊂ (y ∗ X) ∗ X′.

• If y ∈ B, then y ∈ y ∗ X since X is H-augmenting. Now since y ∈ B and since
X′ connects B, we have B ⊂ y ∗ X′. Therefore, B ⊂ (y ∗ X) ∗ X′.

We conclude that for every y ∈ A ∪B, we have B ⊂ (y ∗X) ∗X′. This implies that:

• B ⊂ ((y ∗ X) ∗ X′) ∗ X = y ∗ X′′ since X is H-augmenting.

• Since B ⊂ (y ∗X) ∗X′, we have x ∈ (y ∗X) ∗X′. Now since x ∈ A and since X
connects A, we have A ⊂ x ∗ X. Therefore, A ⊂ ((y ∗ X) ∗ X′) ∗ X = y ∗ X′′.

We conclude that A∪B ⊂ y ∗X′′ for every y ∈ A∪B. Hence X′′ connects A∪B.

Definition 2.23. For every stable partition H of (X , ∗), define the connectivity
relation RH of H on X as follows: aRHb if and only if there exists an H-augmenting
sequence that connects {a, b}.

Lemma 2.11. For every stable partition H, RH is an equivalence relation.

Proof. Clearly, RH is symmetric. Lemma 2.10 shows that RH is transitive. In order
to show that RH is reflexive, let x ∈ X , and let X be an arbitrary H-repeatable
sequence. Lemma 2.7 implies that there exists l > 0 such that Xl is H-augmenting.
We have x ∈ x∗Xl and so Xl connects {x}. Therefore, xRHx for every x ∈ X , hence
RH is reflexive. We conclude that RH is an equivalence relation.
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Notation 2.7. For every stable partition H, we denote the set of equivalence classes
of its connectivity relation RH by KH.

Lemma 2.12. Let H be a stable partition and let K ∈ KH. We have:

• For every x ∈ K and every H-augmenting sequence X′, x ∗ X′ ⊂ K.

• There exists an H-augmenting sequence X satisfying x ∗X = K for all x ∈ K.

Proof. For every K ∈ KH, every x ∈ K, every H-augmenting sequence X′, and
every y ∈ x ∗ X′, we have xRHy because of Lemma 2.9, so y ∈ K. This shows that
x ∗ X′ ⊂ K.

Now fix K ∈ KH and let K = {a1, . . . , ar} where r = |K|. For each 1 ≤ i ≤ r,
define Ki := {a1, . . . , ai}. Since a1RHa1 there exists an H-augmenting sequence that
connects K1. Now let 1 < i ≤ r and suppose that there exists an H-augmenting se-
quence that connects Ki−1. Since ai−1RHai, there exists an H-augmenting sequence
that connects {ai−1, ai}. Now since Ki−1∩{ai−1, ai} = {ai−1} �= ø, Lemma 2.10 im-
plies that there exists an H-augmenting sequence that connects Ki−1 ∪ {ai−1, ai} =
Ki, and so the claim is true for i. By induction we conclude that the claim is true
for every 1 ≤ i ≤ r. In particular, there exists an H-augmenting sequence X that
connects Kr = K.

Let x ∈ K. Since X connects K, we have K ⊂ x∗X, which implies that x∗X = K
as we already have x ∗ X ⊂ K.

Lemma 2.13. If ∗ is an ergodic operation on X , then for every stable partition H,
we have the following:

• KHl∗ is a balanced partition and ‖KHl∗‖ = ‖KH‖ for all l ≥ 0.

• For every l ≥ 0, K1 ∈ KH, K2 ∈ KHl∗, and every a ∈ K1, there exists an H-
sequence Xa,K2 such that |Xa,K2 | ≡ l mod n and K2 = a ∗Xa,K2 = K1 ∗Xa,K2.

Proof. Let K1 ∈ KH, l ≥ 0 and K2 ∈ KHl∗ . Let n = per(H), k1 = con(∗)n + l
and k2 = con(∗)n + (−l mod n). Choose a ∈ K1 and b ∈ K2. Since ∗ is ergodic
and since k1 ≥ con(∗) and k2 ≥ con(∗), it follows from Proposition 2.1 that there
exist x0, . . . , xk1−1 ∈ X such that b = (. . . ((a ∗ x0) ∗ x1) . . . ∗ xk1−1) and there exist
y0, . . . , yk2−1 ∈ X such that a = (. . . ((b ∗ y0) ∗ y1) . . . ∗ yk2−1). Let X1 = (Xi)0≤i<k1

and X2 = (Yi)0≤i<k2 be such that xi ∈ Xi ∈ Hi∗ for 0 ≤ i < k1 and yi ∈ Yi ∈ H(l+i)∗

for 0 ≤ i < k2. Clearly, b ∈ a ∗ X1 and a ∈ b ∗ X2. The concatenation X = (X1,X2)
is an H-repeatable sequence since n divides k1 + k2. Lemma 2.7 implies that there
exists an integer s > 0 such that Xs is H-augmenting. Lemma 2.12, applied to KHl∗ ,
implies the existence of an Hl∗-augmenting sequence X′ such that b ∗ X′ = K2.

Consider the sequence X′′ = (X1,X
′,X2,X

s−1). It is easy to see that X′′ is H-
augmenting and so K1 ⊂ K1 ∗ X′′. On the other hand, since X′′ is H-augmenting,
Lemma 2.12 shows that for every x ∈ K1 we have x ∗ X′′ ⊂ K1, which means that
K1 ∗X′′ ⊂ K1. Therefore, K1 = K1 ∗X′′. Moreover, since b ∈ a∗X1 and b∗X′ = K2,
we have

K2 ⊂ (a ∗ X1) ∗ X′ ⊂ (K1 ∗ X1) ∗ X′, (2.12)

which implies that |K2| ≤ |(K1 ∗ X1) ∗ X′| ≤ |(((K1 ∗ X1) ∗ X′) ∗ X2) ∗ Xs−1| =
|K1 ∗ X′′| = |K1|. By exchanging the roles of K1 and K2, we get |K1| ≤ |K2|.
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Therefore, |K2| = |K1| for every K1 ∈ KH and every K2 ∈ KHl∗ . We conclude that
both KH and KHl∗ are balanced partitions and ‖KH‖ = ‖KHl∗‖.

Now define Xa,K2 = (X1,X
′). Since Xa,K2 is an initial segment of X′′, we have

|K1 ∗Xa,K2 | ≤ |K1 ∗X′′|. But we have shown that K1 ∗X′′ = K1 and |K1| = |K2|, so
we must have |K1 ∗ Xa,K2 | ≤ |K2|. Moreover, we have K2 ⊂ a ∗ Xa,K2 ⊂ K1 ∗ Xa,K2

from (2.12). We conclude that K2 = a ∗ Xa,K2 = K1 ∗ Xa,K2 .

Lemma 2.14. Let H be a stable partition of (X , ∗) where ∗ is ergodic. For every
K ∈ KH and every H-sequence X, we have |K ∗ X| = |K| = ‖KH‖.

Proof. Let K ′ = K ∗ X and l = |X|, and let X′ = (X ′
i)0≤i<(−l mod n) be an arbitrary

Hl∗-sequence of length (−l mod n). Clearly, (X,X′) is H-repeatable. Lemma 2.7
implies that there exists an integer s > 0 such that (X,X′)s is H-augmenting. We
haveK ⊂ K∗(X,X′)s. On the other hand, Lemma 2.12 implies thatK∗(X,X′)s ⊂ K.
Therefore, K = K ∗ (X,X′)s = K ′ ∗ (X′, (X,X′)s−1) which implies that |K ′| ≤ |K|.
We also have |K| ≤ |K ′| since K ′ = K ∗ X. Thus, |K ′| = |K| = ‖KH‖.

Lemma 2.15. Let H be a stable partition of (X , ∗) where ∗ is ergodic. Let K ∈ KH
and l > 0. If X = (Xi)0≤i<l is an H-sequence, then K ∗ X ∈ KHl∗.

Proof. Let K ′ = K ∗ X. Fix x ∈ K ′ and let K ′′ ∈ KHl∗ be chosen so that x ∈ K ′′.
Lemma 2.12 implies the existence of an Hl∗-augmenting sequence X′′ such that
x ∗ X′′ = K ′′. We have K ′′ ⊂ K ′ ∗ X′′ since x ∈ K ′, and K ′ ⊂ K ′ ∗ X′′ since X′′ is
Hl∗-augmenting. Therefore, K ′ ∪ K ′′ ⊂ K ′ ∗ X′′. On the other hand, we have the
following:

• |K ′| = |K ∗ X| = |K| = ‖KH‖ from Lemma 2.14.

• (X,X′′) is an H-sequence, so Lemma 2.14 implies that |K ∗ (X,X′′)| = |K| =
‖KH‖. Now since K ′ ∗ X′′ = K ∗ (X,X′′), we deduce that |K ′ ∗ X′′| = ‖KH‖.

• Lemma 2.13 implies that ‖KH‖ = ‖KHl∗‖, so |K ′′| = ‖KHl∗‖ = ‖KH‖.

Therefore, |K ′′| = |K ′| = |K ′ ∗X′′| = ‖KH‖ and K ′ ∪K ′′ ⊂ K ′ ∗X′′, hence K ′ = K ′′

and K ′ ∈ KHl∗ .

Lemma 2.16. Let H be a stable partition of (X , ∗) where ∗ is ergodic. KH is a
sub-stable partition of H and KHl∗ = KHl∗ for all l ≥ 0.

Proof. We will prove that KHl∗ = KHl∗ by induction on l ≥ 0. The statement
is trivial for l = 0. Now let l > 0 and suppose that KH(l−1)∗ = KH(l−1)∗. Let
K ∈ KHl∗ = (KH(l−1)∗)∗ = (KH(l−1)∗)∗. There exist K1,K2 ∈ KH(l−1)∗ = KH(l−1)∗

such that K = K1 ∗K2. Let H2 ∈ H(l−1)∗ be chosen such that K2 ⊂ H2 (Lemma 2.8
guarantees the existence of H2). From Lemma 2.15, we have K1 ∗ H2 ∈ KHl∗ and

so |K1 ∗ H2| = ‖KHl∗‖ (a)
= ‖KH(l−1)∗‖ = |K1|, where (a) follows from Lemma 2.13.

We have K1 ∗K2 ⊂ K1 ∗H2 and |K1| ≤ |K1 ∗K2| ≤ |K1 ∗H2| = |K1|. Therefore,
K = K1∗K2 = K1∗H2 which implies that K ∈ KHl∗ . This shows that KHl∗ ⊂ KHl∗ ,
which implies that KHl∗ = KHl∗ since KHl∗ covers X and KHl∗ is a partition of X .

We conclude that KHl∗ = KHl∗ for all l ≥ 0. In particular, KHn∗ = KHn∗ = KH,
where n = per(H) so KH is periodic. Moreover, Lemma 2.13 shows that KH is
balanced. Therefore, KH is a stable partition. Lemma 2.8 now implies that KH is a
sub-stable partition of H.
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Proposition 2.13. Let H be a stable partition of (X , ∗) where ∗ is ergodic, and let
K be a partition of X which satisfies the following two conditions:

• For every K ∈ K and every x ∈ K, there exists an H-augmenting sequence X
such that x ∗ X = K.

• For every K ∈ K, every x ∈ K, and every H-augmenting sequence X′, we have
x ∗ X′ ⊂ K.

Then K = KH.

Proof. Fix x ∈ X and let K1,x ∈ KH and K2,x ∈ K be chosen such that x ∈ K1,x and
x ∈ K2,x. Lemma 2.12 implies the existence of an H-augmenting sequence X1 such
that x∗X1 = K1,x, and the first condition of the proposition implies the existence of
an H-augmenting sequence X2 such that x∗X2 = K2,x. The second condition of the
proposition implies that x ∗X1 ⊂ K2,x, and Lemma 2.12 implies that x ∗X2 ⊂ K1,x.
Therefore, K1,x ⊂ K2,x and K2,x ⊂ K1,x which implies that K1,x = K2,x. Since this
is true for all x ∈ X , we conclude that K = KH.

Now we are ready to prove Theorem 2.1:

Proof of Theorem 2.1. Lemma 2.16 shows that KH is a sub-stable partition of H
satisfying KHl∗ = KHl∗ for all l ≥ 0. Moreover, we have:

• For every K ∈ KH and every H-sequence X, we have K ∗X ∈ KH|X|∗ = KH|X|∗

by Lemma 2.15.

• For every K ∈ KH and every x ∈ K, Lemma 2.12 shows that there exists an
H-augmenting sequence X such that x ∗ X = K.

• For every K ∈ KH, every x ∈ K, and every H-augmenting sequence X′, we
have x ∗ X′ ⊂ K by Lemma 2.12.

This shows the existence part of Theorem 2.1. The uniqueness follows from Propo-
sition 2.13.

2.8.4 Proof of Proposition 2.7

Definition 2.24. Let A be an X -cover. Define the relation PA on X as follows:
xPAy if and only if there exists a finite sequence (Ai)1≤i≤n such that x ∈ A1, y ∈ An,
Ai ∈ A for all 1 ≤ i ≤ n, and Ai ∩ Ai+1 �= ø for all 1 ≤ i < n. Clearly, PA is an
equivalence relation on X . The set of equivalence classes of PA (denoted by P(A))
is called the partition of X generated by A.

Lemma 2.17. Let A be an X -cover. For every B ∈ P(A), there exists a finite

sequence (Ai)1≤i≤n such that B =
n⋃

i=1

Ai, Ai ∈ A for all 1 ≤ i ≤ n, and Ai∩Ai+1 �= ø

for all 1 ≤ i < n.
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Proof. Let B ∈ P(A) and let x ∈ B. We say that a sequence (Ai)1≤i≤n is (x,A)-
connected if x ∈ A1, Ai ∈ A for all 1 ≤ i ≤ n, and Ai∩Ai+1 �= ø for all 1 ≤ i < n. If

(Ai)1≤i≤n is such a sequence, we clearly have xPAy for every y ∈
n⋃

i=1

Ai. Therefore,

n⋃
i=1

Ai ⊂ B.

Let A1 ∈ A be such that x ∈ A1. The sequence (A1) of length 1 is (x,A)-
connected. Therefore, there exists at least one (x,A)-connected sequence. Now

consider an (x,A)-connected sequence (Ai)1≤i≤n such that
n⋃

i=1

Ai is maximal. If

n⋃
i=1

Ai �= B, there exists y ∈ B such that y /∈
n⋃

i=1

Ai. Let x′ ∈ An. Since x′, y ∈ B,

x′PAy and so there exists a sequence (A′
i)1≤i≤m such that x′ ∈ A′

1, y ∈ A′
m, A′

i ∈ A
for all 1 ≤ i ≤ m, and A′

i ∩ A′
i+1 �= ø for all 1 ≤ i < m. Consider the sequence

(A′′
i )1≤i≤n+m defined by A′′

i = Ai for 1 ≤ i ≤ n and A′′
i = A′

i−n for n+1 ≤ i ≤ n+m.
Since x′ ∈ An ∩ A′

1 = A′′
n ∩ A′′

n+1, (A′′
i )1≤i≤n+m is (x,A)-connected. We have

n⋃
i=1

Ai �
n+m⋃
i=1

A′′
i since y ∈

n+m⋃
i=1

A′′
i and y /∈

n⋃
i=1

Ai. This contradicts the maximality

of

n⋃
i=1

Ai. Therefore, we must have
n⋃

i=1

Ai = B.

Lemma 2.18. Let ∗ be a uniformity-preserving operation on a set X , and let A be
an X -cover. For every n > 0 and every A ∈ An∗, there exists B ∈ P(A)n∗ such that
A ⊂ B.

Proof. We will show the lemma by induction on n. The lemma is trivial for n = 0.
Now let n > 0 and suppose that the lemma is true for n− 1. Let A ∈ An∗, there

exists A1, A2 ∈ A(n−1)∗ such that A = A1 ∗ A2. The induction hypothesis implies
the existence of two sets B1, B2 ∈ P(A)(n−1)∗ such that A1 ⊂ B1 and A2 ⊂ B2. We
have A = A1 ∗A2 ⊂ B1 ∗B2 and B1 ∗B2 ∈ P(A)n∗.

Lemma 2.19. Let ∗ be a uniformity-preserving operation on a set X , and let A be
an X -cover. For every n ≥ 0, we have P

(
P(A)n∗

)
= P(An∗).

Proof. We will show the lemma by induction on n. The lemma is trivial for n = 0.
Now let n > 0 and suppose that P

(
P(A)(n−1)∗) = P(A(n−1)∗), which means

that for every x, y ∈ X , we have xPA(n−1)∗y if and only if xPP(A)(n−1)∗y.
Let x, y ∈ X be such that xPP(A)n∗y. There exists a sequence (Dj)1≤j≤m such

that: x ∈ D1, y ∈ Dm, Dj ∈ P(A)n∗ for 1 ≤ j ≤ m, and Dj ∩ Dj+1 �= ø for
1 ≤ j < m. Define x1 = x and xm+1 = y, and for each 2 ≤ j ≤ m, choose
xj ∈ Dj−1 ∩ Dj . For every 1 ≤ j ≤ m, we have xj , xj+1 ∈ Dj and Dj ∈ P(A)n∗.
We are going to show that xjPAn∗xj+1 for every 1 ≤ j ≤ m which will imply that
xPAn∗y.

Fix j ∈ {1, . . . ,m}. Since Dj ∈ P(A)n∗, there exist D′
j , D

′′
j ∈ P(A)(n−1)∗ such

that Dj = D′
j ∗ D′′

j . Moreover, since xj , xj+1 ∈ Dj there exist a′j , b
′
j+1 ∈ D′

j

and a′′j , b
′′
j+1 ∈ D′′

j such that xj = a′j ∗ a′′j and xj+1 = b′j+1 ∗ b′′j+1. We have
a′jPP(A)(n−1)∗b′j+1 and a′′jPP(A)(n−1)∗b′′j+1. Therefore, from the induction hypothesis
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we have a′jPA(n−1)∗b′j+1 and a′′jPA(n−1)∗b′′j+1. There exist two sequences (A′
i)1≤i≤m′

j

and (A′′
i )1≤i≤m′′

j
such that:

• a′j ∈ A′
1, b

′
j+1 ∈ A′

m′
j
, A′

i ∈ A(n−1)∗ for 1 ≤ i ≤ m′
j , and A′

i ∩ A′
i+1 �= ø for

1 ≤ i < m′
j .

• a′′j ∈ A′′
1, b

′′
j+1 ∈ A′′

m′′
j
, A′′

i ∈ A(n−1)∗ for 1 ≤ i ≤ m′′
j , and A′′

i ∩ A′′
i+1 �= ø for

1 ≤ i < m′′
j .

Now consider the sequence (Ai)1≤i≤m′
j+m′′

j
defined as Ai = A′

i ∗ A′′
1 for 1 ≤ i ≤ m′

j ,

and Ai = A′
m′

j
∗ A′′

i−m′
j
for m′

j + 1 ≤ i ≤ m′
j + m′′

j . The sequence (Ai)1≤i≤m′
j+m′′

j

satisfies the following: xj = a′j ∗ a′′j ∈ A1, xj+1 = b′j+1 ∗ b′′j+1 ∈ Am′
j+m′′

j
and

Ai ∈ An∗ for 1 ≤ i ≤ m′
j +m′′

j . Moreover, it is easy to see that Ai ∩ Ai+1 �= ø for
1 ≤ i < m′

j+m′′
j . Therefore, xjPAn∗xj+1. Now since this is true for all 1 ≤ j ≤ m, we

have x1PAn∗xm+1 and so xPAn∗y. We conclude that for every x, y ∈ X , xPP(A)n∗y
implies xPAn∗y.

Now let x, y ∈ X be such that xPAn∗y. There exists a sequence (Ei)1≤i≤k such
that: x ∈ E1, y ∈ Ek, Ei ∈ An∗ for 1 ≤ i ≤ k, and Ei ∩ Ei+1 �= ø for 1 ≤ i < k.
Now for every 1 ≤ i ≤ k, we can apply Lemma 2.18 to get a set Fi ∈ P(A)n∗ such
that Ei ⊂ Fi. Clearly, we have x ∈ F1, y ∈ Fk, Fi ∈ P(A)n∗ for 1 ≤ i ≤ k, and
Fi ∩ Fi+1 �= ø for 1 ≤ i < k. Thus, xPP(A)n∗y.

We conclude that for every x, y ∈ X , xPP(A)n∗y if and only if xPAn∗y. Therefore,
P
(
P(A)n∗

)
= P(An∗).

Lemma 2.20. Let ∗ be an ergodic operation on a set X . If A is a periodic X -cover,
then P(A) is a stable partition.

Proof. Let n = per(A) · con(∗). Since per(A) divides n, we have An∗ = A. Let
A ∈ P(A) be chosen so that |A| is maximal, and let B ∈ P(A). We clearly have
|B| ≤ |A|. We also have B ∈ P(An∗) since An∗ = A. From Lemma 2.19 we have
P
(
P(A)n∗

)
= P(An∗), and so B ∈ P

(
P(A)n∗

)
= P(An∗) = P(A).

Fix x ∈ A and y ∈ B. Since n ≥ con(∗), there exists a sequence x0, . . . , xn−1 ∈ X
such that y = (. . . ((x ∗ x0) ∗ x1) . . . ∗ xn−1). Now choose X0, . . . , Xn−1 such that
xi ∈ Xi ∈ P(A)i∗ for 0 ≤ i < n. Define C := (. . . ((A∗X0)∗X1) . . .∗Xn−1). Clearly,
y ∈ C ∈ P(A)n∗. Now since y ∈ B ∈ P

(
P(A)n∗

)
and y ∈ C ∈ P(A)n∗, we must

have C = (. . . ((A ∗X0) ∗X1) . . . ∗Xn−1) ⊂ B and so |A| ≤ |C| ≤ |B|, which implies
that |A| = |B| = |C| since we already have |B| ≤ |A|. Therefore, C = B and so
B ∈ P(A)n∗ for every B ∈ P(A), from which we conclude that P(A) ⊂ P(A)n∗. On
the other hand, since |A| = |B| for every B ∈ P(A), P(A) is a balanced partition.

Now for every C ∈ P(A)n∗, there exists a set D ∈ P(A) and a sequence
X0, . . . , Xn−1 such that Xi ∈ P(A)i∗ and C = (. . . ((D ∗ X0) ∗ X1) . . . ∗ Xn−1).
We have |D| ≤ |C|. On the other hand, Lemma 2.18 (applied to the X -cover
P(A)n∗) implies the existence of a set B ∈ P

(
P(A)n∗

)
such that C ⊂ B. There-

fore, |D| ≤ |C| ≤ |B|. Now since P
(
P(A)n∗

)
= P(An∗) (by Lemma 2.19) and

An∗ = A, we have B ∈ P
(
P(A)n∗

)
= P(An∗) = P(A). Therefore, |D| = |B|

since D,B ∈ P(A) and since P(A) was shown to be a balanced partition. Thus,
|B| = |C| = |D| which implies that C = B ∈ P(A) since C ⊂ B. We conclude that
C ∈ P(A) for every C ∈ P(A)n∗. Therefore, P(A)n∗ ⊂ P(A). This means that
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P(A)n∗ = P(A) since we already have P(A) ⊂ P(A)n∗. We conclude that P(A) is
a stable partition.

Lemma 2.21. Let ∗ be a uniformity-preserving operation on a set X . If A is a
stable X -cover, then for every i ≥ 0, every A ∈ A and every B ∈ Ai∗, we have
|A| = |B|.

Proof. Fix i ≥ 0, and let p = min{k · per(A) : k · per(A) > i}. Clearly, Ap∗ = A.
Let A ∈ A and B ∈ Ai∗. We have

|A| (a)= ‖A‖∧
(b)

≤ ‖Ai∗‖∧ ≤ |B| ≤ ‖Ai∗‖∨
(c)

≤ ‖Ap∗‖∨ = ‖A‖∨
(d)
= |A|,

where (a) and (d) follow from the fact that A is a balanced X -cover. (b) and (c)
follow from Lemma 2.1. This shows that |A| = |B|.

Lemma 2.22. Let ∗ be a uniformity-preserving operation on a set X , and let A be
a stable X -cover. For every A,B,C ∈ A, if B ∩ C �= ø then A ∗B = A ∗ C.

Proof. We have A ∗ B ∈ A∗, and from Lemma 2.21 we get |A ∗ B| = |A|. On the
other hand, since ∗ is uniformity-preserving, we have |A ∗ x| = |A| for every x ∈ X .

Now since A ∗ B =
⋃
b∈B

A ∗ b, and since |A ∗ b| = |A| = |A ∗ B| for every b ∈ B, we

must have A ∗ B = A ∗ b for every b ∈ B. Similarly, A ∗ C = A ∗ c for every c ∈ C.
We conclude that A ∗ B = A ∗ C since B ∩ C �= ø (for any x ∈ B ∩ C, we have
A ∗B = A ∗ x = A ∗ C).

Lemma 2.23. Let ∗ be a uniformity-preserving operation on a set X , and let A be
a stable X -cover. For every A ∈ A and every B ∈ P(A), we have A ∗B ∈ A∗.

Proof. According to Lemma 2.17 there exists a finite sequence (Ai)1≤i≤l such that

B =

l⋃
i=1

Ai, Ai ∈ A for all 1 ≤ i ≤ l, and Ai ∩ Ai+1 �= ø for all 1 ≤ i < l. Lemma

2.22 shows that A∗A1 = A∗A2 = . . . = A∗Al. Therefore, A∗B = A∗A1 ∈ A∗.

Lemma 2.24. Let ∗ be an ergodic operation on a set X , and let A be a stable
X -cover. For every A ∈ A and every P(A)-sequence X, we have A ∗ X ∈ A|X|∗.

Proof. We will prove the lemma by induction on k = |X| > 0. Lemma 2.23 implies
that the statement is true for k = 1. Now let k > 1 and suppose that the lemma is
true for |X| = k− 1. Now let X = (Xi)0≤i<k be a P(A)-sequence of length k. Define
X′ = (Xi)0≤i<k−1. We have:

• A′ = A ∗ X′ ∈ A(k−1)∗ from the induction hypothesis.

• Lemma 2.20 shows that P(A) is a stable partition, and so P(A)(k−1)∗ is also a
stable partition. In particular, P(A)(k−1)∗ is a partition and so P(A)(k−1)∗ =
P
(
P(A)(k−1)∗). On the other hand, Lemma 2.19 shows that P

(
P(A)(k−1)∗) =

P(A(k−1)∗). Therefore, P(A)(k−1)∗ = P(A(k−1)∗). We conclude that Xk−1 ∈
P(A(k−1)∗) since we have Xk−1 ∈ P(A)(k−1)∗.
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• Since (A(k−1)∗)n∗ = (An∗)(k−1)∗ = A(k−1)∗ (where n = per(A)), A(k−1)∗ is
a periodic X -cover. On the other hand, Lemma 2.21 implies that A(k−1)∗ is
balanced. Therefore, A(k−1)∗ is a stable X -cover.

Now since A′ ∈ A(k−1)∗ and Xk−1 ∈ P(A(k−1)∗), and since A(k−1)∗ is a stable
X -cover, we can apply Lemma 2.23 to obtain A′ ∗ Xk−1 ∈ (A(k−1)∗)∗ = Ak∗. We
conclude that A∗X = A′∗Xk−1 ∈ Ak∗ which completes the induction argument.

Now we are ready to prove Proposition 2.7:

Proof of Proposition 2.7. Let ∗ be a strongly ergodic operation on X and let A be
a stable X -cover. Lemma 2.20 shows that P(A) is a stable partition. Let n =
per(A). scon(∗). We have the following:

• P(A)n∗ = P
(
P(A)n∗

)
since P(A) is a stable partition.

• P
(
P(A)n∗

)
= P(An∗) by Lemma 2.19.

• An∗ = A since per(A) divides n.

Therefore, P(A)n∗ = P(An∗) = P(A).

Fix A ∈ A. From Lemma 2.18 there exists B ∈ P(A) such that A ⊂ B. Fix
a ∈ A. Since a ∈ B ∈ P(A) = P(A)n∗ and since n ≥ scon(∗), we can apply
Theorem 2.2 to get a P(A)-sequence of length n such that a∗X = B ∗X = B. Since
B = a ∗ X ⊂ A ∗ X ⊂ B ∗ X = B, we have A ∗ X = B. Now from Lemma 2.24, we
have B = A ∗ X ∈ An∗ = A. This means that |A| = |B| because A,B ∈ A and A is
stable. Therefore, A = B since we have A ⊂ B and |A| = |B|.

We conclude that A ∈ P(A) for every A ∈ A. Now since P(A) is a partition, we
have A ∩A′ = ø for every A,A′ ∈ A satisfying A �= A′. On the other hand, A is an
X -cover. This shows that A itself is a partition, hence A = P(A). Therefore, A is
a stable partition.

2.8.5 Proof of Proposition 2.8

Lemma 2.25. Let ∗ be a uniformity-preserving operation on X and let A be a
periodic X -cover. We have core(A)n∗ ⊂ core(An∗) for every n ≥ 1.

Proof. Let A ∈ core(A)n∗. There exist A0, A
′
0 ∈ core(A), A′

1 ∈ core(A)∗, . . . , A′
n−1 ∈

core(A)(n−1)∗ such that A = (. . . ((A0 ∗A′
0) ∗A′

1) . . . ∗A′
n−1). We have

‖An∗‖∨ ≥ |A| = |(. . . ((A0 ∗A′
0) ∗A′

1) . . . ∗A′
n−1)| ≥ |A0| = ‖A‖∨

(a)
= ‖An∗‖∨,

where (a) follows from Lemma 2.3. Therefore, |A| = ‖An∗‖∨ and so A ∈ core(An∗).
We conclude that core(A)n∗ ⊂ core(An∗).

Lemma 2.26. Let ∗ be a uniformity-preserving operation on X and let A be a
periodic X -cover. We have | core(A)n∗| ≥ | core(A)| for every n ≥ 1.
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Proof. Fix b0 ∈ B0 ∈ core(A), b1 ∈ B1 ∈ core(A)∗, . . . , bn−1 ∈ Bn−1 ∈ core(A)(n−1)∗.
Let π : X → X be defined as π(x) = (. . . ((x ∗ b0) ∗ b1) . . . ∗ bn−1). Clearly, π is a
bijection because ∗ is uniformity-preserving.

For every A ∈ core(A), we have (. . . ((A ∗ B0) ∗ B1) . . . ∗ Bn−1) ∈ core(A)n∗.
Lemma 2.25 now implies that (. . . ((A ∗B0) ∗B1) . . . ∗Bn−1) ∈ core(An∗) and so

|(. . . ((A ∗B0) ∗B1) . . . ∗Bn−1)| = ‖An∗‖∨
(a)
= ‖A‖ = |A|,

where (a) follows from Lemma 2.3. Now since π(A) = (. . . ((A∗ b0)∗ b1) . . .∗ bn−1) ⊂
(. . . ((A ∗B0) ∗B1) . . . ∗Bn−1) and |(. . . ((A ∗B0) ∗B1) . . . ∗Bn−1)| = |A| = |π(A)|,
we have (. . . ((A ∗ B0) ∗ B1) . . . ∗ Bn−1) = π(A). Therefore, π(A) ∈ core(A)n∗ for
every A ∈ core(A). We conclude that

| core(A)n∗| ≥ |{π(A) : A ∈ core(A)}| (a)= |{A : A ∈ core(A)}| = | core(A)|,

where (a) follows from the fact that π is a bijection.

Lemma 2.27. Let ∗ be a uniformity-preserving operation on X and let A be a
periodic X -cover. We have core(A)n∗ = core(An∗) for every n ≥ 1.

Proof. Let p = min{k · per(A) : k · per(A) > n}. Lemmas 2.25 and 2.26 imply that
| core(A∗)| ≥ | core(A)∗| ≥ | core(A)|. Therefore, we have

| core(A)| = | core(Ap∗)| ≥ | core(A(p−1)∗)| ≥ . . . ≥ | core(An∗)| ≥ . . . ≥ | core(A)|,

hence | core(An∗)| = | core(A)|. Lemma 2.26 now implies that

| core(A)n∗| ≥ | core(A)| = | core(An∗)|,

and from Lemma 2.25 we have core(A)n∗ ⊂ core(An∗). We conclude that we have
core(A)n∗ = core(An∗).

Lemma 2.28. Let ∗ be an ergodic operation on X . If A is a periodic X -cover, then
core(A) is an X -cover.

Proof. Let n = per(A) · con(∗). Fix A ∈ core(A) and a ∈ A. Now let x ∈ X . Since

n ≥ con(∗), the eighth point of Proposition 2.1 implies that a
∗,n−→ x. Therefore,

there exist x0, . . . , xn−1 such that (. . . ((a ∗ x0) ∗ x1) . . . ∗ xn−1) = x.
Now since A is an X -cover, Ai∗ is an X -cover for every i ≥ 0. Therefore, for

every 0 ≤ i < n, there exists Ai ∈ Ai∗ such that xi ∈ Ai. Let

B := (. . . ((A ∗A0) ∗A1) . . . ∗An−1) ∈ An∗.

We have An∗ = A since per(A) divides n, hence B ∈ A. We also have

‖A‖∨
(a)

≥ |B| = |(. . . ((A ∗A0) ∗A1) . . . ∗An−1)|
(b)

≥ |A| = ‖A‖∨,

where (a) follows from the fact that B ∈ A, and (b) follows from the fact that ∗
is uniformity-preserving. Therefore, |B| = ‖A‖∨, which implies that B ∈ core(A).
Now since

x = (. . . ((a ∗ x0) ∗ x1) . . . ∗ xn−1) ∈ (. . . ((A ∗A0) ∗A1) . . . ∗An−1) = B ∈ core(A),
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we have
x ∈

⋃
C∈core(A)

C.

But this is true for every x ∈ X . We conclude that core(A) is an X -cover.

Now we are ready to prove Proposition 2.8:

Proof of Proposition 2.8. Let ∗ be an ergodic operation on X and let A be a periodic
X -cover. Lemma 2.28 implies that core(A) is an X -cover.

Let p = per(A). Lemma 2.27 implies that core(A)n∗ = core(An∗) for every
n ≥ 1. In particular, we have core(A)p∗ = core(Ap∗) = core(A), which implies
that core(A) is periodic and per(core(A)) divides p. Now since core(A) is clearly
balanced, we conclude that core(A) is a stable X -cover.

2.8.6 Proofs for Section 2.7

Proof of Theorem 2.4

In order to prove Theorem 2.4, we need a few definitions and lemmas:

Definition 2.25. Define the two projection mappings P1 : X → X1 and P2 : X → X2

as P1(x1, x2) = x1 and P2(x1, x2) = x2 for all (x1, x2) ∈ X . Define the following:

• U1(H) = {P1(H) : H ∈ H}.

• U2(H) = {P2(H) : H ∈ H}.

Lemma 2.29. For every x2, x
′
2 ∈ X2, there exists an H-repeatable sequence X such

that:

• For every x1 ∈ X1, we have (x1, x
′
2) ∈ (x1, x2) ∗ X.

• For every X ⊂ X , we have P1(X) ⊂ P1(X ∗ X).

We say that the sequence X can take the second coordinate from x2 to x′2 while
keeping the first coordinate unchanged.

Proof. Let k = per(H) con(∗2) ≥ con(∗2). Choose arbitrarily a sequence of k el-
ements x1,0, . . . , x1,k−1 in X1 and define the mapping π : X1 → X1 as π(x1) =
(. . . ((x1 ∗1 x1,0) ∗1 x1,1) . . . ∗1 x1,k−1). Since π is a permutation of X1, there exists
an integer s > 0 such that πs(x1) = x1 for all x1 ∈ X1. Let l = ks and define the
sequence x1,i for k ≤ i < l as x1,i = x1,i mod k. Clearly,

(. . . ((x1 ∗1 x1,0) ∗1 x1,1) . . . ∗1 x1,l−1) = πs(x1) = x1 for all x1 ∈ X1. (2.13)

Now since l ≥ k ≥ con(∗2) and since ∗2 is ergodic, there exists a sequence
(x2,i)0≤i<l in X2 such that

x′2 = (. . . ((x2 ∗2 x2,0) ∗2 x2,1) . . . ∗2 x2,l−1). (2.14)

Define the H-repeatable sequence X = (Xi)0≤i<l such that (x1,i, x2,i) ∈ Xi ∈ Hi∗

for all 0 ≤ i < l. For every x1 ∈ X1, we have:

(x1, x
′
2)

(a)
= (x1, x2) ∗

(
(x1,i, x2,i)0≤i<l

) (b)
∈ (x1, x2) ∗ X,
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where (a) follows from (2.13) and (2.14), and (b) follows from the fact that (x1,i, x2,i)
∈ Xi for all 0 ≤ i < l.

Now let X ⊂ X . We have:

P1(X)
(a)
= (. . . ((P1(X) ∗1 x1,0) ∗1 x1,1) . . . ∗1 x1,l−1)

(b)
= P1(X ∗ (x1,i, x2,i)0≤i<l)

(c)
⊂ P1(X ∗ X),

where (a) follows from (2.13), (b) follows from the definition of ∗ and P1, and (c)
follows from the fact that (x1,i, x2,i) ∈ Xi for all 0 ≤ i < l.

Lemma 2.30. Let X be an H-repeatable sequence which takes the second coordinate
from x2 to x′2 while keeping the first coordinate unchanged as in Lemma 2.29. If
there exist H,H ′ ∈ H and x1 ∈ X1 such that (x1, x2) ∈ H and (x1, x

′
2) ∈ H ′, then

H ′ = H ∗ X.

Proof. From Lemma 2.29 we have (x1, x
′
2) ∈ (x1, x2) ∗ X ⊂ H ∗ X. Therefore,

H ′ ∩ (H ∗ X) �= ø. On the other hand, we have H ′ ∈ H and H ∗ X ∈ H|X|∗ = H.
Therefore, H ′ = H ∗ X since H is a partition.

Lemma 2.31. U1(H) (resp. U2(H)) is a partition of X1 (resp. X2).

Proof. Clearly, U1(H) covers X1. Now suppose that there exist A,B ∈ U1(H) such
that A ∩ B �= ø and let x1 ∈ A ∩ B. Let HA, HB ∈ H be such that P1(HA) = A
and P1(HB) = B. There exist x2,A ∈ X2 and x2,B ∈ X2 such that (x1, x2,A) ∈ HA

and (x1, x2,B) ∈ HB. Using Lemma 2.29, choose an H-repeatable sequence X which
can take the second coordinate from x2,A to x2,B while keeping the first coordinate
unchanged.

Lemma 2.30 shows that HB = HA ∗ X and Lemma 2.29 implies that P1(HA) ⊂
P1(HA ∗ X). We conclude that A = P1(HA) ⊂ P1(HA ∗ X) = P1(HB) = B. By
exchanging the roles of A and B, we can also get B ⊂ A. Therefore, A = B. We
conclude that U1(H) is a partition of X1. A similar argument shows that U2(H) is
a partition of X2.

Lemma 2.32. U1(H) (resp. U2(H)) is a stable partition of X1 (resp. X2) of period
of at most per(H). Moreover, for every i ≥ 0, we have U1(H)i∗1 = U1(Hi∗) and
U2(H)i∗2 = U2(Hi∗).

Proof. We will only prove the lemma for U1(H) since the proof for U2(H) is similar.
We will start by showing by induction on i ≥ 0 that U1(H)i∗1 = U1(Hi∗). The claim
is trivial for i = 0. Now let i > 0 and suppose that the claim is true for i − 1. We
have:

U1(H)i∗1 =
(
U1(H)(i−1)∗1)∗1 (a)

=
(
U1(H(i−1)∗)

)∗1
= {H ′

1 ∗1 H ′′
1 : H ′

1, H
′′
1 ∈ U1(H(i−1)∗)}

= {P1(H
′) ∗1 P1(H

′′) : H ′, H ′′ ∈ H(i−1)∗}
(b)
= {P1(H

′ ∗H ′′) : H ′, H ′′ ∈ H(i−1)∗}
= {P1(H) : H ∈ Hi∗} = U1(Hi∗),
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where (a) follows from the induction hypothesis and (b) follows from the identity
P1(H

′) ∗1 P1(H
′′) = P1(H

′ ∗ H ′′) which is very easy to check. We conclude that
we have U1(H)i∗1 = U1(Hi∗) for all i ≥ 0. In particular, for p = per(H), we have
U1(H)p∗1 = U1(Hp∗) = U1(H).

Lemma 2.31 shows that U1(H) is a partition, and we have just shown that
U1(H)p∗1 = U1(H). Therefore, U1(H) is periodic of period of at most p. Lemma 2.2
now implies that U1(H) is a stable partition of X1.

Definition 2.26. Let X ⊂ X , x1 ∈ X1 and x2 ∈ X2. Define the sets P1|x2
(X) ⊂ X1

and P2|x1
(X) ⊂ X2 as:

• P1|x2
(X) = {x1 ∈ X1 : (x1, x2) ∈ X} = P1

(
X ∩ (X1 × {x2})

)
.

• P2|x1
(X) = {x2 ∈ X2 : (x1, x2) ∈ X} = P2

(
X ∩ ({x1} × X2)

)
.

Define the following:

• L1(H) = {P1|x2
(H) : H ∈ H, x2 ∈ X2, P1|x2

(H) �= ø}.

• L2(H) = {P2|x1
(H) : H ∈ H, x1 ∈ X1, P2|x1

(H) �= ø}.

Lemma 2.33. L1(H) (resp. L2(H)) is a partition of X1 (resp. X2).

Proof. Clearly, L1(H) covers X1. Suppose that there exist A,B ∈ L1(H) such that
A ∩ B �= ø and let x1 ∈ A ∩ B. Let HA, HB ∈ H and x2,A, x2,B ∈ X2 be such that
A = P1|x2,A

(HA) and B = P2|x2,B
(HB). Using Lemma 2.29, choose an H-repeatable

sequence X which can take the second coordinate from x2,A to x2,B while keeping
the first coordinate unchanged.

Since x1 ∈ A = P1|x2,A
(HA) and x1 ∈ B = P1|x2,B

(HB), we have (x1, x2,A) ∈ HA

and (x1, x2,B) ∈ HB. It follows from Lemma 2.30 that HB = HA ∗ X.
Now for every x′1 ∈ A = P1|x2,A

(HA), we have (x′1, x2,A) ∈ HA and so by Lemma
2.29 we have (x′1, x2,B) ∈ (x′1, x2,A) ∗ X ⊂ HA ∗ X = HB. We conclude that x′1 ∈
P1|x2,B

(HB) = B for every x′1 ∈ A. Therefore, A ⊂ B. By exchanging the roles of A
and B we can also get B ⊂ A which implies that A = B. We conclude that L1(H)
is a partition of X1. A similar argument shows that L2(H) is a partition of X2.

Lemma 2.34. L1(H) (resp. L2(H)) is a balanced partition of X1 (resp. X2).

Proof. Let A,B ∈ L1(H). There exist HA, HB ∈ H and x2,A, x2,B ∈ X2 such that
A = P1|x2,A

(HA) and B = P2|x2,B
(HB). Fix x1,A ∈ A and x1,B ∈ B and define k =

per(H) ·max{con(∗1), con(∗2)}. Clearly, (x1,A, x2,A) ∈ HA and (x1,B, x2,B) ∈ HB.
Since k ≥ con(∗1) and k ≥ con(∗2), and since ∗1 and ∗2 are ergodic, there exist

a sequence (x1,i)0≤i<k in X1 and a sequence (x2,i)0≤i<k in X2 such that:

(. . . ((x1,A ∗1 x1,0) ∗1 x1,1) . . . ∗1 x1,k−1) = x1,B,

(. . . ((x2,A ∗2 x2,0) ∗2 x2,1) . . . ∗2 x2,k−1) = x2,B.
(2.15)

Now define the H-repeatable sequence X = (Xi)0≤i<k such that (x1,i, x2,i) ∈ Xi ∈
Hi∗ for all 0 ≤ i < k. We have:

(x1,B, x2,B)
(a)
= (x1,A, x2,A) ∗

(
(x1,i, x2,i)0≤i<k

) (b)
∈ HA ∗ X,
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where (a) follows from (2.15) and (b) follows from the fact that (x1,A, x2,A) ∈ HA

and (x1,i, x2,i) ∈ Xi for every 0 ≤ i < k. We conclude that HB ∩ (HA ∗ X) �= ø. On
the other hand, we have HB ∈ H and HA ∗X ∈ Hk∗ = H. Therefore, HB = HA ∗X
since H is a partition.

Define the mapping π1 : X1 → X1 as π1(x1) = (. . . ((x1∗1x1,0)∗1x1,1) . . .∗1x1,k−1)
for every x1 ∈ X1 and the mapping π2 : X2 → X2 as π2(x2) = (. . . ((x2 ∗2 x2,0) ∗2
x2,1) . . . ∗2 x2,k−1) for every x2 ∈ X2.

Now let x1 ∈ A = P1|x2,A
(HA), we have:

(π1(x1), x2,B)
(a)
= (π1(x1), π2(x2,A))

(b)
= (x1, x2,A)∗

(
(x1,i, x2,i)0≤i<k

) (c)
∈ HA∗X = HB,

where (a) follows from (2.15), (b) follows from the definition of π1 and π2 and (c)
follows from the fact that (x1, x2,A) ∈ HA and (x1,i, x2,i) ∈ Xi for every 0 ≤ i < k.

We conclude that π1(x1) ∈ P1|x2,B
(HB) = B for every x1 ∈ A. Therefore,

π1(A) ⊂ B, which implies that |A| (a)
= |π1(A)| ≤ |B|, where (a) follows from the

fact that π1 is a permutation. By exchanging the roles of A and B we can also
get |B| ≤ |A| which implies that |A| = |B|. We conclude that L1(H) is a balanced
partition of X1 as Lemma 2.33 already showed that L1(H) is a partition. A similar
argument shows that L2(H) is a balanced partition of X2.

Lemma 2.35. For every i ≥ 0 and every A ∈ L1(H)i∗1, there exists B ∈ L1(Hi∗)
such that A ⊂ B.

Proof. We will prove the lemma by induction on i ≥ 0. The lemma is trivial for
i = 0.

Now let i > 0 and suppose that the lemma is true for i − 1. Let A ∈ L1(H)i∗1 ,
there exist A′, A′′ ∈ L1(H)(i−1)∗1 such that A = A′ ∗1 A′′. From the induction
hypothesis, there exist B′, B′′ ∈ L1(H(i−1)∗) such that A′ ⊂ B′ and A′′ ⊂ B′′. This
means that there exist H ′, H ′′ ∈ H(i−1)∗ and x′2, x′′2 ∈ X2 such that B′ = P1|x′

2
(H ′)

and B′′ = P1|x′′
2
(H ′′). We have:

A = A′ ∗1 A′′ ⊂ B′ ∗1 B′′ = P1|x′
2
(H ′) ∗1 P1|x′′

2
(H ′′)

(a)
⊂ P1|x′

2∗2x′′
2
(H ′ ∗H ′′),

where (a) follows from the fact that for every x′1 ∈ P1|x′
2
(H ′) and x′′1 ∈ P1|x′′

2
(H ′′), we

have (x′1, x′2) ∈ H ′ and (x′′1, x′′2) ∈ H ′′, and so (x′1∗1x′′1, x′2∗2x′′2) = (x′1, x′2)∗(x′′1, x′′2) ∈
H ′ ∗H ′′, which implies that x′1 ∗1 x′′1 ∈ P1|x′

2∗2x′′
2
(H ′ ∗H ′′).

If we define B = P1|x′
2∗2x′′

2
(H ′ ∗H ′′) ∈ L1(Hi∗), we get A ⊂ B. We conclude that

the lemma is true for all i ≥ 0.

Lemma 2.36. L1(H) (resp. L2(H)) is a stable partition of X1 (resp. X2) of period
of at most per(H). Moreover, for every i ≥ 0, we have L1(H)i∗1 = L1(Hi∗) and
L2(H)i∗2 = L2(Hi∗).

Proof. We will only prove the lemma for L1(H) since the proof for L2(H) is similar.
Let p = per(H). According to Lemma 2.35, for every A ∈ L1(H)p∗1 , there exists

B ∈ L1(Hp∗) = L1(H) such that A ⊂ B. On the other hand, we have:

|A| ≥ ‖L1(H)p∗1‖∧
(a)

≥ ‖L1(H)‖∧
(b)
= ‖L1(H)‖ = |B|,
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where (a) follows from Lemma 2.1 and (b) follows from the fact that L1(H) is a
balanced partition (Lemma 2.34). We conclude that A = B ∈ L1(H) since |A| ≥ |B|
and A ⊂ B. Now since this is true for every A ∈ L1(H)p∗1 , we have L1(H)p∗1 ⊂
L1(H) which implies that L1(H)p∗1 = L1(H) since L1(H) is a partition of X1 and
L1(H)p∗1 is an X1-cover. We conclude that L1(H) is a stable partition of period of
at most p = per(H). Now since this is true for every stable partition and since Hi∗

is a stable partition for every i ≥ 0, we conclude that L1(Hi∗) is a stable partition
for every i ≥ 0. This implies that L1(Hi∗)j∗1 is a stable partition for every i ≥ 0
and every j ≥ 0.

For every i > 0, Lemma 2.35 (applied to H(i−1)∗) implies that L1(H(i−1)∗)∗1
is a sub-stable partition of L1(Hi∗) and so ‖L1(H(i−1)∗)‖ = ‖L1(H(i−1)∗)∗1‖ ≤
‖L1(Hi∗)‖. Therefore,

‖L1(H)‖ ≤ ‖L1(H∗)‖ ≤ . . . ≤ ‖L1(Hp∗)‖ = ‖L1(H)‖.

We conclude that ‖L1(Hi∗)‖ = ‖L1(H(i mod p)∗)‖ = ‖L1(H)‖ for every i ≥ 0. More-
over, since L1(H) is stable, we have ‖L1(H)i∗1‖ = ‖L1(H)‖, which implies that
‖L1(H)i∗1‖ = ‖L1(Hi∗)‖ for every i ≥ 0.

Now for every i ≥ 0, L1(H)i∗1 is a sub-stable partition of L1(Hi∗) (by Lemma
2.35) and we have just shown that ‖L1(H)i∗1‖ = ‖L1(Hi∗)‖. We conclude that
L1(H)i∗1 = L1(Hi∗) for every i ≥ 0.

Now we are ready to prove Theorem 2.4:

Proof of Theorem 2.4. Lemma 2.36 shows that L1(H) and L2(H) are stable par-
titions of X1 and X2 respectively, and Lemma 2.32 shows that U1(H) and U2(H)
are stable partitions of X1 and X2 respectively. Moreover, Lemma 2.36 shows that
L1(H)i∗1 = L1(Hi∗) and L2(H)i∗2 = L2(Hi∗) for every i > 0, and Lemma 2.32 shows
that U1(H)i∗1 = U1(Hi∗) and U2(H)i∗2 = U2(Hi∗) for every i > 0.

It is easy to see that L1(H) � U1(H) and L2(H) � U2(H). Now we turn to show
that L1(H) ⊗ L2(H) � H � U1(H) ⊗ U2(H). Let A × B ∈ L1(H) ⊗ L2(H) (i.e.,
A ∈ L1(H) and B ∈ L2(H)), and fix x1 ∈ A and x2 ∈ B. Let H ∈ H be such that
(x1, x2) ∈ H. We have x1 ∈ P1|x2

(H) as (x1, x2) ∈ H. Therefore, P1|x2
(H) ∩ A �= ø

which implies that A = P1|x2
(H) since both A and P1|x2

(H) are in L1(H) which was
shown to be a stable partition.

Now fix (xA, xB) ∈ A×B. Since xA ∈ A = P1|x2
(H), we have (xA, x2) ∈ H which

means that x2 ∈ P2|xA
(H). Therefore, B ∩ P2|xA

(H) �= ø which implies that B =
P2|xA

(H) since both B and P2|xA
(H) are in L2(H) which was shown to be a stable

partition. Now since xB ∈ B = P2|xA
(H), we conclude that (xA, xB) ∈ H. But this

is true for all (xA, xB) ∈ A×B, hence A×B ⊂ H. Therefore, L1(H)⊗L2(H) � H.

In order to prove that H � U1(H) ⊗ U2(H), let H ∈ H, A′ = P1(H) ∈ U1(H)
and B′ = P2(H) ∈ U2(H). Clearly, H ⊂ A′ ×B′, hence H � U1(H)⊗ U2(H).

Now let H ∈ H. Since L1(H) ⊗ L2(H) � H, there exist an integer nH > 0
and nH sets H1, . . . , HnH ∈ L1(H)⊗L2(H) such that H1, . . . , HnH are disjoint and
H = H1 ∪ . . . ∪ HnH . Since H1, . . . , HnH ∈ L1(H) ⊗ L2(H), there exist nH sets
H1,1, . . . , H1,nH ∈ L1(H) and nH sets H2,1, . . . , H2,nH ∈ L2(H) such that H1 =
H1,1 × H2,1, . . . , and HnH = H1,nH × H2,nH . Clearly, H1,i = P1(Hi) and H2,i =
P2(Hi) for every 1 ≤ i ≤ nH . We have:
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• H1,1 ∪ . . .∪H1,nH = P1(H1)∪ . . .∪P1(HnH ) = P1(H1 ∪ . . .∪HnH ) = P1(H) ∈
U1(H).

• H2,1 ∪ . . .∪H2,nH = P2(H1)∪ . . .∪P2(HnH ) = P2(H1 ∪ . . .∪HnH ) = P2(H) ∈
U2(H).

• Suppose that H1,i = H1,j for some i �= j and let x1 ∈ H1,i = H1,j , then H2,i ∪
H2,j ⊂ P2|x1

(H) ∈ L2(H) which cannot happen unless H2,i = H2,j = P2|x1
(H).

This is a contradiction since (H1,i ×H2,i) and (H1,j ×H2,j) are disjoint. We
conclude that H1,1, . . . , H1,nH are disjoint. Similarly, H2,1, . . . , H2,nH are also
disjoint.

Now since H1,1, . . . , H1,nH are disjoint, we have ‖U1(H)‖ = |P1(H)| = |H1,1|+ · · ·+
|H1,nH | = nH‖L1(H)‖. Therefore, nH = ‖U1(H)‖

‖L1(H)‖ . Similarly, nH = ‖U2(H)‖
‖L2(H)‖ . We

conclude that nH is the same for all H ∈ H. Let us denote this common integer as
n. It is now easy to see that ‖H‖ = n · ‖L1(H)‖ · ‖L2(H)‖ = ‖L1(H)‖ · ‖U2(H)‖ =
‖U1(H)‖ · ‖L2(H)‖.

Now in order to prove the uniqueness of L1(H), L2(H), U1(H) and U2(H), sup-
pose that H1, H2, H′

1, H′
2, and n′ > 0 satisfy the conditions of the theorem (i.e.

H1, H2, H′
1, H′

2 and n′ play the roles of L1(H), L2(H), U1(H), U2(H) and n respec-
tively). Let H ∈ H, then there exist n′ disjoint sets H ′

1,1, . . . , H
′
1,n′ ∈ H1 and n′

disjoint sets H ′
2,1, . . . , H

′
2,n′ ∈ H2 such that:

• H ′
1,1 ∪ . . . ∪H ′

1,n′ ∈ H′
1.

• H ′
2,1 ∪ . . . ∪H ′

2,n′ ∈ H′
2.

• H = (H ′
1,1 ×H ′

2,1) ∪ . . . ∪ (H ′
1,n′ ×H ′

2,n′).

SinceH = (H ′
1,1×H ′

2,1)∪. . .∪(H ′
1,n′×H ′

2,n′), we have P1(H) = H ′
1,1∪. . .∪H ′

1,n′ ∈ H′
1.

But this is true for every H ∈ H. Therefore, U1(H) ⊂ H′
1 which implies that

H′
1 = U1(H) since H′

1 and U1(H) are partitions. Similarly, H′
2 = U2(H).

Now let x2 ∈ X2 be such that P1|x2
(H) �= ø. Clearly, x2 ∈ H ′

2,i for some 1 ≤ i ≤
n′ and so P1|x2

(H) = H ′
1,i ∈ H1 since H = (H ′

1,1 ×H ′
2,1) ∪ . . . ∪ (H ′

1,n′ ×H ′
2,n′) and

since H ′
2,1, . . . , H

′
2,n′ are disjoint. Therefore, for every x2 ∈ X2 satisfying P1|x2

(H) �=
ø, we have P1|x2

(H) ∈ H1. We conclude that L1(H) ⊂ H1 which implies that
H1 = L1(H) since H1 and L1(H) are partitions. Similarly, H2 = L2(H). Moreover,

n′ = ‖H′
1‖

‖H1‖ = ‖U1(H)‖
‖L1(H)‖ = n.

We conclude that the stable partitions L1(H), L2(H), U1(H), U2(H) are unique.

Proof of Theorem 2.5

For Theorem 2.5, we will first prove it for m = 2 using two lemmas. The general
result can then be proven by induction on m ≥ 2.

Lemma 2.37. If ∗ = ∗1 ⊗ ∗2 is a strongly ergodic operation on X = X1 ×X2, then
∗1 and ∗2 are strongly ergodic.
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Proof. Let H1 be a stable partition of X1, then H = H1 ⊗{X2} is a stable partition
of X1 × X2. Fix x2 ∈ X2 and let x1 ∈ X1. Since ∗ is strongly ergodic, then by
Definition 2.14 there exists n = n(x1, x2,H) > 0 such that for every H ∈ Hn∗, there
exists an H-sequence X = (Xi)0≤i<n satisfying (x1, x2) ∗ X = H. Let H1 ∈ Hn∗1

1 .
Clearly, H1 ×X2 ∈ Hn∗1

1 ⊗ {X2} = (H1 ⊗ {X2})n∗ = Hn∗.
Since H1 × X2 ∈ Hn∗, there exists an H-sequence X = (Xi)0≤i<n such that

(x1, x2) ∗X = H1 ×X2. For every 0 ≤ i < n, Xi ∈ (H1 ⊗{X2})i∗ = Hi∗1
1 ⊗{X2} and

so there exists X1,i ∈ Hi∗1
1 such that Xi = X1,i × X2. By projecting the equation

(x1, x2) ∗ X = H1 × X2 on the first coordinate, we get x1 ∗1 X1 = H1, where X1 is
the H1-sequence (X1,i)0≤i<n. By fixing x2 ∈ X2, n will depend only on x1 and H1

as required in the definition of strong ergodicity. This proves that ∗1 is strongly
ergodic. A similar argument shows that ∗2 is also strongly ergodic.

Lemma 2.38. If ∗1 and ∗2 are two strongly ergodic operations on X1 and X2 re-
spectively, then ∗ = ∗1 ⊗ ∗2 is a strongly ergodic operation on X = X1 ×X2.

Proof. Fix a stable partition H of X . Since ∗1 and ∗2 are strongly ergodic, they are
ergodic and so Theorem 2.4 can be applied. Let L1(H), L2(H), U1(H) and U2(H)
be defined as in Theorem 2.4, and let P1 and P2 be the projection onto the first and
second coordinate respectively as in Definition 2.25.

Let (x1, x2) ∈ H ∈ H. We will construct an H-augmenting sequence X satisfying
H ⊂ (x1, x2)∗X in two steps: We first construct an H-augmenting sequence XU such
that P1(H) ⊂ P1

(
(x1, x2) ∗ XU

)
, i.e., XU stretches {(x1, x2)} in the direction of the

first coordinate to cover P1(H). In the second step, we construct an H-augmenting
sequence XL such that H ⊂

(
(x1, x2) ∗ XU

)
∗ XL, i.e., XL stretches (x1, x2) ∗ XU in

the direction of the second coordinate to cover H.

Step 1: Let H1 = P1(H) ∈ U1(H). Since ∗1 is strongly ergodic, there exists a
U1(H)-augmenting sequence X1 such that x1 ∗1 X1 = H1. Let X′

1 = (X ′
1,i)0≤i<k′ =

(X1)
per(H). For every 0 ≤ i < k′ = |X′

1|, we have X ′
1,i ∈ U1(H)i∗1 = U1(Hi∗), and so

from Definition 2.25 there exists X ′
i ∈ Hi∗ such that P1(X

′
i) = X ′

1,i. Define the H-
sequence X′

U = (X ′
i)0≤i<k′ . The sequence X′

U is H-repeatable since per(H) divides
|X′

U | = k′ = |X1| · per(H). By Lemma 2.7, there exists l > 0 such that XU := (X′
U )

l

is H-augmenting. We have:

H1

(a)
⊂ H1 ∗1 (X1)

per(H)l−1 = (x1 ∗1 X1) ∗1 (X1)
per(H)l−1

= x1 ∗1 (X1)
per(H)l = x1 ∗1 (X′

1)
l = x1 ∗1

(
(X ′

1,i)0≤i<k′
)l

= P1

(
(x1, x2)

)
∗1
((

P1(X
′
i)
)
0≤i<k′

)l
= P1

(
(x1, x2) ∗

(
(X ′

i)0≤i<k′
)l)

= P1

(
(x1, x2) ∗ (X′

U )
l
)
= P1

(
(x1, x2) ∗ XU

)
,

(2.16)

where (a) follows from the fact that X1 is U1(H)-augmenting.

Step 2: Define XU = (x1, x2) ∗ XU . Since XU is H-augmenting, we must have
XU ⊂ K, where K ∈ KH is such that (x1, x2) ∈ K (see Theorem 2.1). Now since
KH is a sub-stable partition of H (by Theorem 2.1) and since (x1, x2) ∈ K ∩H, we
must have K ⊂ H. Therefore, XU ⊂ H. On the other hand, from (2.16) we have
H1 ⊂ P1(XU ). We conclude that for every a ∈ H1, we have a ∈ P1(XU ) and so
there exists ba ∈ X2 such that (a, ba) ∈ XU ⊂ H.
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According to Theorem 2.4, there exist n disjoint sets H1,1, . . . , H1,n ∈ L1(H) and
n disjoint setsH2,1, . . . , H2,n ∈ L2(H) such thatH = (H1,1×H2,1)∪. . .∪(H1,n×H2,n).
For every a ∈ H1 = H1,1 ∪ . . . ∪ H1,n, there exists a unique 1 ≤ ia ≤ n such that
a ∈ H1,ia . We have:

H =
⋃

1≤i≤n

(H1,i ×H2,i) =
⋃

1≤i≤n

⋃
a∈H1,i

({a} ×H2,i)

=
⋃

1≤i≤n

⋃
a∈H1,i

({a} ×H2,ia) =
⋃

a∈H1

({a} ×H2,ia).
(2.17)

Fix a ∈ H1. Since (a, ba) ∈ H =
⋃

a′∈H1

({a′} ×H2,ia′ ), we must have ba ∈ H2,ia ∈

L2(H). Now since ∗2 is strongly ergodic, there exists an L2(H)-augmenting sequence
X2,a such that ba ∗2X2,a = H2,ia . Let X

′
2,a = (X ′

2,a,i)0≤i<k′a = (X2,a)
per(H). For every

0 ≤ i < k′a, we have X ′
2,a,i ∈ L2(H)i∗2 = L2(Hi∗), and so from Definition 2.26 there

exist x′1,a,i ∈ X1 and X ′
a,i ∈ Hi∗ such that X ′

2,a,i = P2|x′
1,a,i

(X ′
a,i). Define the H-

sequence X′
a = (X ′

a,i)0≤i<k′a . The sequence X′
a is H-repeatable since per(H) divides

|X′
a| = k′a = |X2,a| · per(H).
Define the mapping πa : X1 → X1 as πa(x) = (((x∗1x′1,a,0)∗1x′1,a,1) . . .∗1x′1,a,k′a−1)

for every x ∈ X1. Since πa is a permutation, there exists pa > 0 such that πpa
a (x) = x

for every x ∈ X1. (X
′
a)

pa is H-repeatable since X′
a is H-repeatable. Now by Lemma

2.7 there exists la > 0 such that Xa := (X′
a)

pala is H-augmenting. We have:

{a} ×H2,ia

(a)
⊂ {a} ×

(
H2,ia ∗2 (X2,a)

per(H)pala−1
)

= {a} ×
(
(ba ∗2 X2,a) ∗2 (X2,a)

per(H)pala−1
)

(b)
= {πpala

a (a)} ×
(
ba ∗2 (X2,a)

per(H)pala
)

= {πpala
a (a)} ×

(
ba ∗2 (X′

2,a)
pala

)
(c)
= (a, ba) ∗

((
{x′1,a,i} ×X ′

2,a,i

)
0≤i<ka

)pala
(d)
⊂ (a, ba) ∗

(
(X ′

a,i)0≤i<ka

)pala
= (a, ba) ∗ (X′

a)
pala = (a, ba) ∗ Xa.

(a) follows from the fact that X2,a is L2(H)-augmenting, hence (X2,a)
per(H)pala−1

is L2(H)-augmenting (by Remark 2.7), and so H2,ia ⊂ H2,ia ∗2 (X2,a)
per(H)pala−1.

(b) follows from the fact that πpa
a (x) = x for every x ∈ X1, which implies that

πpala
a (a) = a. (c) follows from the definition of πa and from the fact that X′

2,a =
(X ′

2,a,i)0≤i<ka . (d) follows from the fact that P2|x′
1,a,i

(X ′
a,i) = X ′

2,a,i, which implies

that {x′1,a,i} ×X ′
2,a,i ⊂ X ′

a,i for every 0 ≤ i < ka.
Now let XL = (Xa)a∈H1 be the H-augmenting sequence obtained by concatenat-

ing the H-augmenting sequences Xa for all a ∈ H1 (the order of the concatenation
is not important). Since {a} ×H2,ia ⊂ (a, ba) ∗ Xa for every a ∈ H1, we must have

{a} ×H2,ia ⊂ (a, ba) ∗ XL for every a ∈ H1. (2.18)

Define X = (XU ,XL). We have (x1, x2) ∗ X =
(
(x1, x2) ∗ XU

)
∗ XL = XU ∗ XL.

For every a ∈ H1, we have already shown that (a, ba) ∈ XU and so it follows from
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(2.18) that:

{a} ×H2,ia ⊂ (a, ba) ∗ XL ⊂ XU ∗ XL = (x1, x2) ∗ X.

Since this is true for every a ∈ H1, we have:

H
(a)
=

⋃
a∈H1

{a} ×H2,ia ⊂ (x1, x2) ∗ X,

where (a) follows from (2.17).
Now since X is H-augmenting, Theorem 2.1 implies that (x1, x2)∗X ⊂ K, where

K ∈ KH is such that (x1, x2) ∈ K. Therefore, ‖H‖ = |H| ≤ |(x1, x2) ∗ X| ≤ |K| =
‖KH‖. Now since KH is a sub-stable partition of H, we conclude that KH = H. But
this is true for every stable partition H of X , hence ∗ is strongly ergodic.

Now we are ready to prove Theorem 2.5:

Proof of Theorem 2.5. Lemmas 2.37 and 2.38 show that Theorem 2.5 is true for
m = 2. Now let m > 2 and suppose that the theorem is true for m− 1.

Let ∗1, . . . , ∗m be m binary operations such that ∗1⊗ . . .⊗∗m is strongly ergodic.
It is easy to see that ∗1 ⊗ . . .⊗ ∗m can be identified to (∗1 ⊗ . . .⊗ ∗m−1)⊗ ∗m (see
Notation 2.5). Therefore, (∗1 ⊗ . . . ⊗ ∗m−1) ⊗ ∗m is strongly ergodic. Lemma 2.37
implies that ∗1 ⊗ . . . ⊗ ∗m−1 and ∗m are strongly ergodic. It then follows from the
induction hypothesis that ∗1, . . . , ∗m−1 are strongly ergodic. Therefore, ∗1, . . . , ∗m
are strongly ergodic.

Conversely, let ∗1, . . . , ∗m be m strongly ergodic operations. From the induction
hypothesis, we get that ∗1⊗ . . .⊗∗m−1 is strongly ergodic. Lemma 2.38 implies that
(∗1 ⊗ . . .⊗ ∗m−1)⊗ ∗m is strongly ergodic. But since (∗1 ⊗ . . .⊗ ∗m−1)⊗ ∗m can be
identified to ∗1 ⊗ . . .⊗ ∗m, we conclude that ∗1 ⊗ . . .⊗ ∗m is strongly ergodic.

Therefore, Theorem 2.5 is true for all m ≥ 2.



Polarizing Binary Operations 3
In this chapter1, we provide a necessary and sufficient condition for a binary oper-
ation to be polarizing (in the general multilevel sense). In Section 3.1, we formally
define the concept of polarizing binary operations. In Section 3.2, we prove that a
binary operation is polarizing if and only if it is uniformity-preserving and its right-
inverse is strongly ergodic. In Section 3.3, we explain how we can use a polarizing
operation to construct polar codes.

3.1 Formal Definition of Polarizing Binary Operations

Unless we state otherwise, every set that is considered in this chapter is finite.

3.1.1 Easy Channels

Notation 3.1. A channel W with input alphabet X and output alphabet Y is denoted
by W : X −→ Y. The transition probabilities of W are denoted by W (y|x), where
x ∈ X and y ∈ Y. Note that we use the long arrow (−→) in the notation W : X −→
Y and not the short arrow (→) that we only use to describe mappings. For example,
W : X −→ Y denotes a channel, and V : X → Y denotes a mapping from X to Y.

The probability of error of the maximum-likelihood (ML) decoder2 of W for uni-
formly distributed input is denoted as Pe(W ). The symmetric capacity of W , denoted
I(W ), is the mutual information I(X;Y ), where X and Y are jointly distributed as
PX,Y (x, y) = 1

|X |W (y|x) (i.e., X is uniform in X and it is used as input to the

channel W while Y is the output).

Definition 3.1. A channel W : X −→ Y is said to be δ-easy if there exist an integer
L ≤ |X | and a random code B of block length 1 and rate log2 L (i.e., B ∈ S := {C ⊂
X : |C| = L}), which satisfy the following:

• |I(W )− log2 L| < δ.

1The material of this chapter is based on [15, 18].
2The ML decoder is the decoder that minimizes the probability of error.
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• For every x ∈ X , we have
∑
C∈S

1

L
PB(C)1x∈C =

1

|X | . In other words, if C ∈ S

is chosen according to the distribution of B and X is chosen uniformly in C,
then the marginal distribution of X as a random variable in X is uniform.

• If for each C ∈ S we fix a bijection fC : {1, . . . , L} → C, then I(WB) >
log2 L− δ, where WB : {1, . . . , L} −→ Y × S is the channel defined by:

WB(y, C|a) = W (y|fC(a)).PB(C).

Note that the value of I(WB) does not depend on the choice of the bijections
(fC)C∈S .

If we also have Pe(WB) < ε, we say that W is (δ, ε)-easy.

If W is δ-easy for a small δ, then we can reliably transmit information near the
symmetric capacity of W using a code of blocklength 1 (hence the easiness; there
is no need to use codes of large blocklengths): We choose a random code according
to B, we reveal this code to the receiver, and then we transmit information using
this code. The rate of this code is equal to log2 L which is close to the symmetric
capacity I(W ). On the other hand, the fact that I(WB) > log2 L−δ means that WB
is almost perfect, which ensures that our simple coding scheme has a low probability
of error.

Note that we added (2) to our definition in order to induce a uniform distribution
on the input. This is important for the polarization process (see the definition of
W− and W+ in Definition 3.2: The distribution of U1 and U2 are assumed to be
uniform in X ).

3.1.2 Polarization Process

In this section, we consider an ordinary (single user) channel W and a binary oper-
ation ∗ on its input alphabet.

Definition 3.2. Let X be an arbitrary set and ∗ be a binary operation on X . Let
W : X −→ Y be a channel. We define the two channels W− : X −→ Y × Y and
W+ : X −→ Y × Y × X as follows:

W−(y1, y2|u1) =
1

|X |
∑
u2∈X

W (y1|u1 ∗ u2)W (y2|u2),

W+(y1, y2, u1|u2) =
1

|X |W (y1|u1 ∗ u2)W (y2|u2).

For every s = (s1, . . . , sn) ∈ {−,+}n, we define W s recursively as:

W s := ((W s1)s2 . . .)sn .

Definition 3.3. Let (Bn)n≥1 be i.i.d. uniform random variables in {−,+}. For
each channel W with input alphabet X , we define the channel-valued process (Wn)n≥0

recursively as follows:

W0 := W,

Wn := WBn
n−1, ∀n ≥ 1.
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Definition 3.4. A binary operation ∗ is said to be polarizing if we have the following
two properties:

• Conservation property: For every channel W with input alphabet X , we have
I(W−) + I(W+) = 2I(W ).

• Polarization property: For every channel W with input alphabet X and every
δ > 0, Wn almost surely becomes δ-easy, i.e.,

lim
n→∞P

[
Wn is δ-easy

]
= 1.

Notation 3.2. Throughout this chapter, we write (U1, U2)
f∗−→ (X1, X2)

W−→ (Y1, Y2)
to denote the following:

• U1 and U2 are two independent random variables uniformly distributed in X .

• X1 = U1 ∗ U2 and X2 = U2.

• The conditional distribution (Y1, Y2)|(X1, X2) is given by:

PY1,Y2|X1,X2
(y1, y2|x1, x2) = W (y1|x1)W (y2|x2).

I.e., Y1 and Y2 are the outputs of two independent copies of the channel W
with inputs X1 and X2 respectively.

• (U1, U2)− (X1, X2)− (Y1, Y2) is a Markov chain.

Note that since X1 = U1 ∗U2 and X2 = U2, the chain (X1, X2)− (U1, U2)− (Y1, Y2)
is also a Markov chain.

Remark 3.1. Let (U1, U2)
f∗−→ (X1, X2)

W−→ (Y1, Y2). From the definition of W−

and W+, it is easy to see that we have I(W−) = I(U1;Y1, Y2) and I(W+) =
I(U2;Y1, Y2, U1). Therefore,

I(W−) + I(W+) = I(U1;Y1, Y2) + I(U2;Y1, Y2, U1)

= I(U1, U2;Y1, Y2)
(a)
= I(X1, X2;Y1, Y2),

where (a) follows from the fact that both (U1, U2)−(X1, X2)−(Y1, Y2) and (X1, X2)−
(U1, U2)− (Y1, Y2) are Markov chains. We have the following:

• If ∗ is not uniformity-preserving, then (X1, X2) is not uniform in X 2. If W
is a perfect channel, i.e., I(W ) = log2 |X |, we have

I(W−) + I(W+) = I(X1, X2;Y1, Y2) ≤ H(X1, X2)
(a)
< 2 log2 |X | = 2I(W ),

(3.1)
where (a) follows from the fact that (X1, X2) is not uniform in X 2. (3.1) means
that ∗ does not satisfy the conservation property of Definition 3.4. Therefore,
every polarizing operation must be uniformity-preserving.
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• If ∗ is uniformity-preserving, then (X1, X2) is uniform in X 2, i.e., X1 and X2

are independent and uniform in X . Thus,

I(W−) + I(W+) = I(X1, X2;Y1, Y2) = I(X1;Y1) + I(X2;Y2) = 2I(W ).

Therefore, uniformity-preserving operations satisfy the conservation property.

We conclude that a binary operation ∗ satisfies the conservation property if and only
if it is uniformity-preserving.

Definition 3.5. Let ∗ be a polarizing operation on a set X . We say that β ≥ 0 is a
∗-achievable exponent if for every δ > 0 and every channel W with input alphabet
X , Wn almost surely becomes (δ, 2−2βn)-easy, i.e.,

lim
n→∞P

[
Wn is (δ, 2−2βn)-easy

]
= 1.

We define the exponent of ∗ as:

E∗ := sup{β ≥ 0 : β is a ∗-achievable exponent}.

Note that E∗ depends only on ∗ and it does not depend on any particular channel
W . The definition of a ∗-achievable exponent ensures that it is achievable for every
channel W with input alphabet X .

Example 3.1. If X = F2 = {0, 1} and ∗ is the addition modulo 2, then E∗ = 1
2 (see

[19]).

3.2 A Characterization of Polarizing Binary Operations

3.2.1 Necessary Condition

In this subsection, we show that if ∗ is polarizing, then ∗ is uniformity-preserving
and /∗ (the right-inverse of ∗) is strongly ergodic. In order to prove this, we need
the following two lemmas:

Lemma 3.1. Let ∗ be an ergodic operation on a set X . Let H be a stable partition
of X such that KH �= H, where KH is the first residue of H with respect to ∗. Define
A = H ∪KH. We have:

1. For every A1, A2 ∈ A, we have:

• (A1 ∈ KH and A2 ∈ KH) if and only if (A1 ∗A2 ∈ KH∗ and A2 ∈ KH).

• (A1 ∈ KH and A2 ∈ H) if and only if (A1 ∗A2 ∈ KH∗ and A2 ∈ H).

• (A1 ∈ H and A2 ∈ KH) if and only if (A1 ∗A2 ∈ H∗ and A2 ∈ KH).

• (A1 ∈ H and A2 ∈ H) if and only if (A1 ∗A2 ∈ H∗ and A2 ∈ H).

2. For every u1, u2 ∈ X and every A1, A2 ∈ A, we have

(u1 ∈ A1 ∗A2 and u2 ∈ A2) if and only if (u1/
∗u2 ∈ A1 and u2 ∈ A2).
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Proof. 1) We have A = H ∪ KH. Therefore, for every A1, A2 ∈ A, one of the
following four conditions holds true:

(i) A1 ∈ KH and A2 ∈ KH.

(ii) A1 ∈ KH and A2 ∈ H.

(iii) A1 ∈ H and A2 ∈ KH.

(iv) A1 ∈ H and A2 ∈ H.

Now since KH �= H and KH � H, we have ||KH|| < ||H||. Therefore, for every
K ∈ KH and every H ∈ H, we have |K| = ||KH|| < ||H|| = |H|. This implies
that K �= H for every K ∈ KH and every H ∈ H, hence KH ∩ H = ø. Similarly,
KH∗∩H∗ = ø. We conclude that for every A1, A2 ∈ A, the following four conditions
are mutually exclusive:

(a) A1 ∗A2 ∈ KH∗ and A2 ∈ KH.

(b) A1 ∗A2 ∈ KH∗ and A2 ∈ H.

(c) A1 ∗A2 ∈ H∗ and A2 ∈ KH.

(d) A1 ∗A2 ∈ H∗ and A2 ∈ H.

We have:

• If A1 ∈ KH and A2 ∈ KH, then A1 ∗A2 ∈ KH∗. Therefore, (i) implies (a).

• If A1 ∈ KH and A2 ∈ H, then A1 ∗ A2 ∈ KH∗ (see Theorem 2.1). Therefore,
(ii) implies (b).

• If A1 ∈ H and A2 ∈ KH, let H ∈ H be such that A2 ⊂ H. (Note that there
is no contradiction here between A2 ⊂ H ∈ H, A2 ∈ KH and H ∩ KH = ø.)
We have A1 ∗ A2 ⊂ A1 ∗H and |A1 ∗ A2| ≥ |A1| = ||H|| = ||H∗|| = |A1 ∗H|.
Therefore, A1 ∗A2 = A1 ∗H ∈ H∗. Hence (iii) implies (c).

• If A1 ∈ H and A2 ∈ H, then A1 ∗A2 ∈ H∗. Therefore, (iv) implies (d).

Now let A1, A2 ∈ A and suppose that (a) holds true (i.e., A1∗A2 ∈ KH∗ and A2 ∈
KH). Since A1 ∈ A then either A1 ∈ KH or A1 ∈ H. But A2 ∈ KH, so either (i)
or (iii) holds true. On the other hand, we have shown that (iii) implies (c), and (c)
contradicts (a), so (iii) cannot be true. Therefore, (i) must be true. We conclude
that (a) implies (i). Similarly, we can show that (b) implies (ii), (c) implies (iii),
and (d) implies (iv).

2) Fix A1, A2 ∈ A. We have:

• If A1 ∈ KH and A2 ∈ KH, then |A1 ∗A2| = ||KH∗|| = ||KH|| = |A1|.

• If A1 ∈ KH and A2 ∈ H, then from 1) we have A1 ∗ A2 ∈ KH∗. Therefore,
|A1 ∗A2| = ||KH∗|| = ||KH|| = |A1|.

• If A1 ∈ H and A2 ∈ KH then from 1) we have A1 ∗ A2 ∈ H∗. Therefore,
|A1 ∗A2| = ||H∗|| = ||H|| = |A1|.



74 Polarizing Binary Operations

• If A1 ∈ H and A2 ∈ H, then |A1 ∗A2| = ||H∗|| = ||H|| = |A1|.

We conclude that in all cases, we have |A1 ∗A2| = |A1|.
For every u1, u2 ∈ X , we have:

• If u1/
∗u2 ∈ A1 and u2 ∈ A2, then u1 = (u1/

∗u2) ∗ u2 ∈ A1 ∗A2.

• If u1 ∈ A1 ∗A2 and u2 ∈ A2, we have A1 ∗u2 ⊂ A1 ∗A2. On the other hand, we
have |A1 ∗ A2| = |A1| = |A1 ∗ u2| (where the last equality holds true because
∗ is uniformity-preserving). We conclude that A1 ∗ A2 = A1 ∗ u2. Therefore,
(A1 ∗A2)/

∗u2 = A1 which implies that u1/
∗u2 ∈ A1.

Definition 3.6. A channel W : X −→ Y is said to be equivalent to another channel
W ′ : X −→ Z if both channels are degraded from each other.

Lemma 3.2. Let ∗ be a uniformity-preserving operation on a set X , and let W :
X −→ Y. If I(W−) = I(W ) then W+ is equivalent to W .

Proof. Since I(W+)+I(W−) = 2I(W ) and since I(W−) = I(W ), we have I(W+) =

I(W ). Let (U1, U2)
f∗−→ (X1, X2)

W−→ (Y1, Y2) (See Notation 3.2). We have:

I(W ) = I(W+) = I(U2;Y1, Y2, U1)

= I(U2;Y2) + I(U2;Y1, U1|Y2) = I(W ) + I(U2;Y1, U1|Y2).

This shows that I(U2;Y1, U1|Y2) = 0. This means that Y2 is a sufficient statistic
for the channel U2 −→ (Y1, Y2, U1) (which is equivalent to W+). We conclude that
W+ is equivalent to the channel U2 −→ Y2, which is equivalent to W .

Proposition 3.1. Let ∗ be a binary operation on a set X . If ∗ is polarizing then ∗
is uniformity-preserving and /∗ is strongly ergodic.

Proof. If ∗ is polarizing then ∗ must be uniformity-preserving (see Remark 3.1).

We first prove that ∗ is irreducible. Suppose to the contrary that ∗ is not
irreducible. Proposition 2.1 shows that there exist two disjoint non-empty subsets
A1 and A2 of X such that A1 ∪ A2 = X , A1 ∗ X = A1 and A2 ∗ X = A2. This
means that for every u1, u2 ∈ X and every y ∈ {1, 2}, we have u1 ∈ Ay if and only
if u1 ∗ u2 ∈ Ay.

For each ε > 0 define the channel Wε : X −→ {1, 2, e} as follows:

Wε(y|x) =

⎧⎪⎨
⎪⎩
1− ε if y ∈ {1, 2} and x ∈ Ay,

0 if y ∈ {1, 2} and x /∈ Ay,

ε if y = e.

I(Wε) = (1− ε)h2
( |A1|
|X |
)
, so there exists ε′ > 0 such that I(Wε′) is not the logarithm

of any integer. For such ε′, there exists δ > 0 such that Wε′ is not δ-easy.
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Let (U1, U2)
f∗−→ (X1, X2)

Wε′−→ (Y1, Y2) (See Notation 3.2). Consider the channel
U1 −→ (Y1, Y2) which is equivalent to W−

ε′ . We have:

PY1,Y2|U1
(y1, y2|u1) =

1

|X |
∑
u2∈X

Wε′(y1|u1 ∗ u2)Wε′(y2|u2)

(a)
=

1

|X |
∑
u2∈X

Wε′(y1|u1)Wε′(y2|u2)

(b)
=
∑
u2∈X

Wε′(y1|u1)PY2|U2
(y2|u2)PU2(u2)

= Wε′(y1|u1)PY2(y2),

(3.2)

where (a) follows from the fact that if y1 = e then Wε′(y1|u1 ∗ u2) = Wε′(y1|u1) = ε′

and if y1 ∈ {1, 2} then u1 ∈ Ay1 if and only if u1 ∗ u2 ∈ Ay1 , which implies that
Wε′(y1|u1 ∗ u2) = Wε′(y1|u1). (b) follows from the fact that the channel U2 −→ Y2
is equivalent to Wε′ and the fact that U2 is uniform in X .

(3.2) implies that Y1 is a sufficient statistic for the channel U1 −→ (Y1, Y2) (which
is equivalent to W−

ε′ ). Moreover, since PY1,Y2|U1
(y1, y2|u1) = Wε′(y1|u1)PY2(y2), we

conclude that the channel W−
ε′ is equivalent to Wε′ . This implies that I(W−

ε′ ) =
I(Wε′). Now Lemma 3.2 implies that W+

ε′ is equivalent to Wε′ . Therefore, for every
l > 0 and every s ∈ {−,+}l, W s

ε′ is equivalent to Wε′ which is not δ-easy. This
contradicts the fact that ∗ is polarizing. We conclude that ∗ must be irreducible.

Suppose that ∗ is not ergodic. Proposition 2.1 shows that there exists a partition
{H0, . . . , Hn−1} of X such that Hi ∗ X = Hi+1 mod n for all 0 ≤ i < n and |H0| =
. . . = |Hn−1|. This means that for every u1, u2 ∈ X and every y ∈ {0, . . . , n − 1},
we have u1 ∗ u2 ∈ Hy if and only if u1 ∈ Hy−1 mod n .

For each 0 ≤ i < n and each 0 < ε < 1, define the channel Wi,ε : X −→
{0, . . . , n− 1, e} as follows:

Wi,ε(y|x) =

⎧⎪⎨
⎪⎩
1− ε if y ∈ {0, . . . , n− 1} and x ∈ Hy+i mod n,

0 if y ∈ {0, . . . , n− 1} and x /∈ Hy+i mod n,

ε if y = e.

I(Wi,ε) = (1− ε) log2 n so there exists ε′ > 0 such that I(Wi,ε′) is not the logarithm
of any integer. For such ε′, there exists δ > 0 such that Wi,ε′ is not δ-easy for any
0 ≤ i < n.

Let (U1, U2)
f∗−→ (X1, X2)

Wi,ε′−→ (Y1, Y2). Consider the channel U1 −→ (Y1, Y2)
which is equivalent to W−

i,ε′ . We have:

PY1,Y2|U1
(y1, y2|u1) =

1

|X |
∑
u2∈X

Wi,ε′(y1|u1 ∗ u2)Wi,ε′(y2|u2)

(a)
=

1

|X |
∑
u2∈X

Wi−1 mod n,ε′(y1|u1)Wi,ε′(y2|u2)

(b)
=
∑
u2∈X

Wi−1 mod n,ε′(y1|u1)PY2|U2
(y2|u2)PU2(u2)

= Wi−1 mod n,ε′(y1|u1)PY2(y2),

(3.3)



76 Polarizing Binary Operations

where (a) follows from the fact that if y1 = e then

Wi,ε′(y1|u1 ∗ u2) = Wi−1 mod n,ε′(y1|u1) = ε′

and if y1 ∈ {0, . . . , n−1} then u1 ∗u2 ∈ Hy1+i mod n if and only if u1 ∈ Hy1+i−1 mod n

(which implies that Wi,ε′(y1|u1 ∗ u2) = Wi−1 mod n,ε′(y1|u1)). (b) follows from the
fact that the channel U2 −→ Y2 is equivalent to Wi,ε′ and the fact that U2 is uniform
in X .

(3.3) implies that Y1 is a sufficient statistic for the channel U1 −→ (Y1, Y2) (which
is equivalent to W−

i,ε′). Moreover, since

PY1,Y2|U1
(y1, y2|u1) = Wi−1 mod n,ε′(y1|u1)PY2(y2),

we conclude that the channel W−
i,ε′ is equivalent to Wi−1 mod n,ε′ . This implies that

I(W−
i,ε′) = I(Wi−1 mod n,ε′) = (1− ε′) log2 n = I(Wi,ε′). Now Lemma 3.2 implies that

W+
i,ε′ is equivalent to Wi,ε′ . Therefore, for every l > 0 and every s ∈ {−,+}l, W s

i,ε′ is

equivalent to Wi−|s|− mod n,ε′ (where |s|− is the number of appearances of the − sign
in the sequence s) which is not δ-easy. This contradicts the fact that ∗ is polarizing.
We conclude that ∗ must be ergodic.

Since ∗ is ergodic, /∗ is ergodic as well. Suppose that /∗ is not strongly ergodic.
Theorem 2.2 implies the existence of a stable partition H of (X , /∗) such that KH �=
H (where KH here denotes the first residue of H with respect to the right-inverse
operation /∗). For each i ≥ 0 and each ε > 0 define the channel Wi,ε : X −→
KHi/∗ ∪Hi/∗ as follows:

Wi,ε(y|x) =

⎧⎪⎨
⎪⎩
1− ε if x ∈ y and y ∈ KHi/∗ ,

ε if x ∈ y and y ∈ Hi/∗ ,

0 if x /∈ y.

We emphasize that y here is a subset of X and it is not an element of it. We have

I(Wi,ε) = (1− ε) log2 |KHi/∗ |+ ε log2 |Hi/∗ | = (1− ε) log2 |KH|+ ε log2 |H|.

Now since KH �= H and KH � H, we have |H| �= |KH|. Therefore, there exists ε′ > 0
such that I(Wi,ε′) is not the logarithm of any integer. For such ε′ > 0, there exists
δ > 0 such that I(Wi,ε′) is not δ-easy for any i ≥ 0.

Let (U1, U2)
f∗−→ (X1, X2)

Wi,ε′−→ (Y1, Y2). Consider the channel U1 −→ (Y1, Y2),
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which is equivalent to W−
i,ε′ . We have:

PY1,Y2|U1
(y1, y2|u1)

=
1

|X |
∑
u2∈X

Wi,ε′(y1|u1 ∗ u2)Wi,ε′(y2|u2)

=
1

|X |
∑
u2∈X

[
1u1∗u2∈y1 ·

(
(1− ε′)1y1∈KHi/∗ + ε′1y1∈Hi/∗

)]

×
[
1u2∈y2 ·

(
(1− ε′)1y2∈KHi/∗ + ε′1y2∈Hi/∗

)]
=

1

|X |
∑
u2∈X

1u1∗u2∈y1, u2∈y2 ·
(
(1− ε′)1y1∈KHi/∗ + ε′1y1∈Hi/∗

)

×
(
(1− ε′)1y2∈KHi/∗ + ε′1y2∈Hi/∗

)
(a)
=

1

|X |
∑
u2∈X

1u1∈y1/∗y2, u2∈y2 ·
(
(1− ε′)1y1∈KHi/∗ + ε′1y1∈Hi/∗

)

×
(
(1− ε′)1y2∈KHi/∗ + ε′1y2∈Hi/∗

)
=

1

|X |
∑
u2∈X

1u1∈y1/∗y2, u2∈y2 ·
(
(1− ε′)21y1∈KHi/∗ , y2∈KHi/∗

+ (1− ε′)ε′1y1∈KHi/∗ , y2∈Hi/∗ + ε′(1− ε′)1y1∈Hi/∗ , y2∈KHi/∗

+ ε′21y1∈Hi/∗ , y2∈Hi/∗
)

(b)
=

1

|X |
∑
u2∈X

1u1∈y1/∗y2, u2∈y2 ·
(
(1− ε′)21y1/∗y2∈KH(i+1)/∗ , y2∈KHi/∗

+ (1− ε′)ε′1y1/∗y2∈KH(i+1)/∗ , y2∈Hi/∗ + ε′(1− ε′)1y1/∗y2∈H(i+1)/∗ , y2∈KHi/∗

+ ε′21y1/∗y2∈H(i+1)/∗ , y2∈Hi/∗
)

=
1

|X |
∑
u2∈X

[
1u1∈y1/∗y2 ·

(
(1− ε′)1y1/∗y2∈KH(i+1)/∗ + ε′1y1/∗y2∈H(i+1)/∗

)]

×
[
1u2∈y2 ·

(
(1− ε′)1y2∈KHi/∗ + ε′1y2∈Hi/∗

)]
=

1

|X |
∑
u2∈X

Wi+1,ε′(y1/
∗y2|u1)Wi,ε′(y2|u2)

(c)
=
∑
u2∈X

Wi+1,ε′(y1/
∗y2|u1)PY2|U2

(y2|u2)PU2(u2)

= Wi+1,ε′(y1/
∗y2|u1)PY2(y2),

(3.4)
where (a) follows from applying the second point of Lemma 3.1 on the ergodic
operation /∗ and the stable partition Hi/∗ . (b) follows from applying the first point
of Lemma 3.1 on the ergodic operation /∗ and the stable partition Hi/∗ . (c) follows
from the fact that Wi,ε′ is equivalent to the channel U2 −→ Y2 and from the fact
that U2 is uniform in X .

(3.4) implies that Y1/
∗Y2 is a sufficient statistic for the channel U1 −→ (Y1, Y2)
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(which is equivalent to W−
i,ε′). Moreover, since

PY1,Y2|U1
(y1, y2|u1) = Wi+1,ε′(y1/

∗y2|u1)PY2(y2),

we conclude that the channel W−
i,ε′ is equivalent to Wi+1,ε′ . This implies that

I(W−
i,ε′) = I(Wi+1,ε′) = (1 − ε′) log2 |KH| + ε′ log2 |H| = I(Wi,ε′). Now Lemma

3.2 implies that W+
i,ε′ is equivalent to Wi,ε′ . Therefore, for every l > 0 and every

s ∈ {−,+}l, W s
i,ε′ is equivalent to Wi+|s|−,ε′ (where |s|− is the number of appear-

ances of the − sign in the sequence s) which is not δ-easy. This again contradicts
the fact that ∗ is polarizing. We conclude that /∗ must be strongly ergodic.

3.2.2 Sufficient Condition

In this subsection, we prove a converse for Proposition 3.1. We will show that for
any uniformity-preserving operation ∗, the strong ergodicity of /∗ implies that ∗ is
polarizing. We will prove this in three steps.

Step 1: Polarized Channels are Projection Channels onto Stable Partitions

Notation 3.3. For every sequence x = (xi)0≤i<N of N elements of X , and for
every 0 ≤ j ≤ k < N , we define the subsequence xk

j as the sequence (x′i)0≤i≤k−j,
where x′i = xi+j for every 0 ≤ i ≤ k − j.

Notation 3.4. For every k ≥ 0 and every sequence x = (xi)0≤i<2k of |x| = 2k

elements of X , we define g∗(x) ∈ X recursively on k as follows:

• If k = 0 (i.e., x = (x0)), g∗(x) = x0.

• If k > 0, g∗(x) = g∗(x
|x|/2−1
0 ) ∗ g∗(x|x|−1

|x|/2 ) = g∗(x2k−1−1
0 ) ∗ g∗(x2k−1

2k−1 ).

For example, we have:

• g∗(x1
0) = x0 ∗ x1.

• g∗(x3
0) = (x0 ∗ x1) ∗ (x2 ∗ x3).

• g∗(x7
0) =

(
(x0 ∗ x1) ∗ (x2 ∗ x3)

)
∗
(
(x4 ∗ x5) ∗ (x6 ∗ x7)

)
.

Definition 3.7. Let A be a subset of X . We define the probability distribution IA
on X as IA(x) = 1

|A| if x ∈ A and IA(x) = 0 otherwise.

Definition 3.8. Let Y be an arbitrary set, H be a balanced partition of X and
(X,Y ) be a random pair in X × Y. For every γ > 0, we define:

YH,γ(X,Y ) =
{
y ∈ Y : ∃Hy ∈ H, ‖PX|Y=y − IHy‖∞ < γ

}
,

and

PH,γ(X,Y ) = PY

(
YH,γ(X,Y )

)
.
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Note that if PH,γ(X,Y ) ≈ 1 for a small γ then Y is “almost equivalent” to
the projection of X onto H. This will be proved rigorously in step 2. The next
proposition will be used later to show that a relation PH,γ(X,Y ) ≈ 1 is satisfied
between the input and output of a polarized channel, where H is a stable partition.
This is why we say that polarized channels are projection channels onto stable
partitions.

Proposition 3.2. Let ∗ be a strongly ergodic operation on a set X . Define k =
22

|X|
+ scon(∗) and let Y be an arbitrary set. For every γ > 0, there exists ε(γ) > 0

depending only on X such that if (Xi, Yi)0≤i<2k is a sequence of 2k random pairs
satisfying:

1. (Xi, Yi)0≤i<2k are independent and identically distributed in X × Y,

2. Xi is uniform in X for all 0 ≤ i < 2k,

3. H
(
g∗(X2k−1

0 )|Y 2k−1
0

)
< H(X0|Y0) + ε(γ),

then there exists a stable partition H of (X , ∗) such that PH,γ(X0, Y0) > 1− γ.

Proof. See Appendix 3.4.1.

Step 2: Structure of Projection Channels

Lemma 3.3. Let X be an arbitrary set and let ∗ be an ergodic operation on X . For
every δ > 0, there exists γ := γ(δ) > 0 such that for any stable partition H of (X , ∗),
if (X,Y ) is a pair of random variables in X × Y satisfying

1. X is uniform in X ,

2. PH,γ(X;Y ) > 1− γ,

then
∣∣∣I(ProjH′(X);Y

)
− log2

|H|·‖H∧H′‖
‖H′‖

∣∣∣ < δ for every stable partition H′ of (X , ∗).

Proof. Let H′ be a stable partition of X . Note that the entropy function is con-
tinuous and the space of probability distributions on H′ is compact. Therefore,
the entropy function is uniformly continuous, which means that for every δ > 0
there exists γ′H′(δ) > 0 such that if p1 and p2 are two probability distributions
on H′ satisfying ‖p1 − p2‖∞ < γ′H′(δ) then |H(p1) − H(p2)| < δ

2 . Let δ > 0 and

define γH′(δ) = min
{

δ
2 log2(|H′|+1) ,

1
‖H′‖γ

′
H′(δ)

}
. Now define γ(δ) = min{γH′(δ) :

H′ is a stable partition} which depends only on (X , ∗) and δ. Clearly, ‖H′‖γ(δ) ≤
γ′H′(δ) for every stable partition H′ of X .

Let H be a stable partition of X and suppose that PH,γ(δ)(X;Y ) > 1 − γ(δ),
where X is uniform in X . Fix y ∈ YH,γ(δ)(X;Y ). By the definition of YH,γ(δ)(X;Y ),
there exists Hy ∈ H such that |PX|Y (x|y)− IHy(x)| < γ(δ) for every x ∈ X .

Let H′ be a stable partition of X . Corollary 2.1 shows that H ∧ H′ is also a
stable partition of X . From the definition of H ∧ H′, for every H ′ ∈ H′ we have
either Hy ∩H ′ = ø or Hy ∩H ′ ∈ H∧H′. Therefore, we have either |Hy ∩H ′| = 0 or
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|Hy ∩H ′| = ‖H∧H′‖. Let H′
y = {H ′ ∈ H′ : Hy ∩H ′ �= ø}, so |Hy ∩H ′| = ‖H∧H′‖

for all H ′ ∈ H′
y. Now since Hy =

⋃
H′∈H′

(Hy∩H ′), we have ‖H‖ = |Hy| =
∑

H′∈H′
|Hy∩

H ′| = |H′
y| · ‖H ∧ H′‖. Therefore,

‖H‖
‖H ∧H′‖ = |H′

y| ≤ |H′|. (3.5)

We will now show that for every y ∈ YH,γ(δ), we have ‖PProjH′ (X)|Y=y− IH′
y
‖∞ <

γ′H′(δ), where IH′
y
is the probability distribution on H′ defined as IH′

y
(H ′) = 1

|H′
y | if

H ′ ∈ H′
y and IH′

y
(H ′) = 0 otherwise. This will be useful to show that

∣∣∣H(ProjH′(X)|Y = y)− log2
‖H‖

‖H ∧H′‖
∣∣∣ < δ

2
for all y ∈ YH,γ(δ).

Let y ∈ YH,γ(δ) and H ′ ∈ H′. We have PProjH′ (X)|Y (H ′|y) =
∑
x∈H′

PX|Y (x|y).

But since |PX|Y (x|y)− 1
|Hy | | < γ(δ) for every x ∈ Hy, and since PX|Y (x|y) < γ(δ) if

x ∈ X \Hy, we conclude that
∣∣PProjH′ (X)|Y (H ′|y)− |H′∩Hy |

|Hy |
∣∣ < |H ′|γ(δ) = ‖H′‖γ(δ) ≤

γ′H′(δ). We conclude:

• If H ′ ∈ H′
y, we have |H ′ ∩ Hy| = ‖H ∧ H′‖ which means that

|H′∩Hy |
|Hy | =

‖H∧H′‖
‖H‖

(a)
= 1

|H′
y | , where (a) follows from (3.5). Thus |PProjH′ (X)|Y (H ′|y)− 1

|H′
y | | <

γ′H′(δ).

• If H ′ ∈ H′ \ H′
y,

|H′∩Hy |
|Hy | = 0 and so PProjH′ (X)|Y (H ′|y) < γ′H′(δ).

Therefore, ‖PProjH′ (X)|Y=y − IH′
y
‖∞ < γ′H′(δ). This means that

∣∣H(ProjH′(X)|Y =

y) −H(IH′
y
)
∣∣ < δ

2 . But H(IH′
y
) = log2 |H′

y|
(a)
= log2

‖H‖
‖H∧H′‖ , where (a) follows from

(3.5). Therefore,

∀y ∈ YH,γ(δ),
∣∣∣H(ProjH′(X)|Y = y)− log2

‖H‖
‖H ∧H′‖

∣∣∣ < δ

2
. (3.6)

On the other hand, for every y ∈ Yc
H,γ(δ), PProjH′ (X)|Y=y is a probability distri-

bution on H′ which implies that 0 ≤ H(ProjH′(X)|Y = y) ≤ log2 |H′|. Moreover,

we have 0 ≤ log2
‖H‖

‖H∧H′‖ ≤ log2 |H′| from (3.5). Therefore,

∀y ∈ Yc
H,γ(δ),

∣∣∣H(ProjH′(X)|Y = y)− log2
‖H‖

‖H ∧H′‖
∣∣∣ ≤ log2 |H′|. (3.7)
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We conclude that:∣∣∣H(ProjH′(X)|Y )− log2
‖H‖

‖H ∧H′‖
∣∣∣

≤
∑
y∈Y

∣∣∣H(ProjH′(X)|Y = y)− log2
‖H‖

‖H ∧H′‖
∣∣∣ · PY (y)

(a)

≤
∑

y∈YH,γ(δ)

δ

2
· PY (y) +

∑
y∈Yc

H,γ(δ)

(log2 |H′|) · PY (y)

=
δ

2
· PY (YH,γ(δ)) + (log2 |H′|)PY (Yc

H,γ(δ))
(b)
<

δ

2
+ (log2 |H′|)γ(δ)

≤ δ

2
+ (log2 |H′|) · δ

2 log2(|H′|+ 1)
< δ,

where (a) follows from (3.6) and (3.7). (b) follows from the second condition of the
lemma.

Now since ProjH′(X) is uniform in H′, we have H(ProjH′(X)) = log2 |H′|. We
conclude that if PH,γ(δ)(X,Y ) > 1−γ(δ) then for every stable partition H′ of (X , ∗),
we have ∣∣∣I(ProjH′(X);Y

)
− log2

|H′| · ‖H ∧ H′‖
‖H‖

∣∣∣ < δ,

which implies that
∣∣∣I(ProjH′(X);Y

)
− log2

|H|·‖H∧H′‖
‖H′‖

∣∣∣ < δ since |H| · ‖H‖ = |H′| ·
‖H′‖ = |X |.

Step 3: Projection Channels are Easy

Definition 3.9. Let H be a balanced partition of X and let W : X −→ Y. We
define the channel W [H] : H −→ Y by:

W [H](y|H) =
1

‖H‖
∑
x∈X :

ProjH(x)=H

W (y|x) = 1

|H|
∑
x∈H

W (y|x).

Remark 3.2. If X is a random variable uniformly distributed in X and Y is the
output of the channel W when X is the input, then it is easy to see that I(W [H]) =
I(ProjH(X);Y ).

Theorem 3.1. Let X be an arbitrary set and let ∗ be a uniformity-preserving op-
eration on X such that /∗ is strongly ergodic. Let W : X −→ Y be an arbitrary
channel. Then for every δ > 0, we have:

lim
n→∞

1

2n

∣∣∣∣∣
{
s ∈ {−,+}n : ∃Hs a stable partition of (X , /∗),

∣∣∣I(W s[H′])− log2
|Hs|·‖Hs∧H′‖

‖H′‖
∣∣∣ < δ for all stable partitions H′ of (X , /∗)

}∣∣∣∣∣ = 1.
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Proof. Let (Wn)n be as in Definition 3.3. Since ∗ is uniformity-preserving, it satisfies
the conservation property of Definition 3.4 (see Remark 3.1). Therefore, we have:

E
[
I(Wn+1)|Wn

]
=

1

2
I(W−

n ) +
1

2
I(W+

n ) = I(Wn).

This implies that the process (I(Wn))n is a martingale, and so it converges almost
surely. Therefore, the process

(
I(Wn+k)− I(Wn)

)
n
converges almost surely to zero,

where k = 22
|X|

+ scon(/∗). In particular,
(
I(Wn+k)− I(Wn)

)
n
converges in proba-

bility to zero, hence for every δ > 0 we have

lim
n→∞P

[
|I(Wn+k)− I(Wn)| ≥ ε

(
γ(δ)

)]
= 0,

where ε(.) is given by Proposition 3.2 and γ(.) is given by Lemma 3.3. We have:

P
[
|I(Wn+k)− I(Wn)| ≥ ε

(
γ(δ)

)]
=

1

2n+k
|An,k|,

where An,k =

{
(s, s′) ∈ {−,+}n × {−,+}k : |I(W (s,s′)) − I(W s)| ≥ ε

(
γ(δ)

)}
.

Define:

Bn,k =

{
s ∈ {−,+}n : |I(W (s,[k]−))− I(W s)| ≥ ε

(
γ(δ)

)}
,

where [k]− ∈ {−,+}k is the sequence consisting of k minus signs. Clearly, Bn,k ×
{[k]−} ⊂ An,k and so |Bn,k| ≤ |An,k|. Now since

lim
n→∞

1

2n+k
|An,k| = lim

n→∞P
[
|I(Wn+k)− I(Wn)| ≥ ε

(
γ(δ)

)]
= 0,

we must have lim
n→∞

1

2n+k
|Bn,k| = 0. Therefore, lim

n→∞
1

2n
|Bn,k| = 2k × 0 = 0 and so

lim
n→∞

1

2n
|Bc

n,k| = 1.

Now suppose that s ∈ Bc
n,k, i.e., |I(W (s,[k]−)) − I(W s)| < ε

(
γ(δ)

)
. Let U0, . . . ,

U2k−1 be 2k independent random variables uniformly distributed in X . For every
0 ≤ j ≤ k, define the sequence Uj,0, . . . , Uj,2k−1 recursively as follows:

• U0,i = Ui for every 0 ≤ i < 2k.

• For every 0 ≤ j < k and every 0 ≤ i < 2k, define Uj+1,i as follows:

Uj+1,i =

{
Uj,i ∗ Uj,i+2k−j−1 if 0 ≤ i mod 2k−j < 2k−j−1,

Uj,i if 2k−j−1 ≤ i mod 2k−j < 2k−j .

Since ∗ is uniformity-preserving, it is easy to see that for every 0 ≤ i ≤ k, the 2k

random variables Uj,0, . . . , Uj,2k−1 are independent and uniform in X . In particular,

if we define Xi = Uk,i for 0 ≤ i < 2k, then X0, . . . , X2k−1 are 2
k independent random

variables uniformly distributed in X . Suppose that X0, . . . , X2k−1 are sent through
2k independent copies of the channel W s and let Y0, . . . , Y2k−1 be the output of
each copy of the channel respectively. Clearly, (Xi, Yi)0≤i<2k are independent and
uniformly distributed in X × Y. Moreover, I(W s) = I(Xi;Yi) for every 0 ≤ i < 2k.
In particular, I(W s) = I(X0;Y0) = H(X0)−H(X0|Y0) = log2 |X | −H(X0|Y0). We
will show by backward induction on 0 ≤ j ≤ k that for every 0 ≤ q < 2j we have:
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• W (s,[k−j]−) is equivalent to the channel Uj,q·2k−j −→ Y
(q+1)·2k−j−1

q·2k−j .

• Uj,q·2k−j = g/∗
(
X

(q+1)·2k−j−1

q·2k−j

)
.

The claim is trivial for j = k. Now let 0 ≤ j < k and suppose that the claim is true
for j + 1. Let 0 ≤ q < 2j . From the induction hypothesis we have:

• W (s,[k−j−1]−) is equivalent to the channel Uj+1,q·2k−j −→ Y
(2q+1)·2k−j−1−1

q·2k−j .

• Uj+1,q·2k−j = g/∗
(
X

(2q+1)·2k−j−1−1

q·2k−j

)
.

• W (s,[k−j−1]−) is equivalent to the channel Uj+1,(2q+1)·2k−j−1 −→ Y
(q+1)·2k−j−1

(2q+1)·2k−j−1 .

• Uj+1,(2q+1)·2k−j−1 = g/∗
(
X

(q+1)·2k−j−1

(2q+1)·2k−j−1

)
.

Now since

Uj+1,q·2k−j = Uj,q·2k−j ∗ Uj,(2q+1)·2k−j−1

and

Uj+1,(2q+1)·2k−j−1 = Uj,(2q+1)·2k−j−1 ,

it follows thatW (s,[k−j]−) = (W (s,[k−j−1]−))− is equivalent to the channel Uj,q·2k−j −→
Y

(q+1)·2k−j−1

q·2k−j (see Remark 3.1). Moreover, we have

Uj,q·2k−j = Uj+1,q·2k−j/∗Uj,(2q+1)·2k−j−1 = Uj+1,q·2k−j/∗Uj+1,(2q+1)·2k−j−1

= g/∗
(
X

(2q+1)·2k−j−1−1

q·2k−j

)
/∗g/∗

(
X

(q+1)·2k−j−1

(2q+1)·2k−j−1

)
= g/∗

(
X

(q+1)·2k−j−1

q·2k−j

)
.

This terminates the induction argument and so the claim is true for all 0 ≤ j ≤ k.

In particular, for j = 0 and q = 0, we have U0 = U0,0 = g/∗
(
X2k−1

0

)
and W (s,[k]−) is

equivalent to the channel U0 −→ Y 2k−1
0 . Thus,

I(W (s,[k]−)) = I(U0;Y
2k−1
0 ) = H(U0)−H(U0|Y 2k−1

0 ) = log2 |X | −H(U0|Y 2k−1
0 ).

Hence

I(W (s,[k]−))− I(W s) = log2 |X | −H(U0|Y 2k−1
0 )− log2 |X |+H(X0|Y0)

(a)
= H(X0|Y0)−H

(
g/∗(X

2k−1
0 )|Y 2k−1

0

)
,

where (a) follows from the fact that U0 = g/∗
(
X2k−1

0

)
. We conclude that

∣∣H(g/∗(X2k−1
0 )|Y 2k−1

0

)
−H(X0|Y0)

∣∣ = |I(W (s,[k]−))− I(W s)| < ε
(
γ(δ)

)
.

Proposition 3.2, applied to /∗, implies the existence of a stable partitionHs of (X , /∗)
such that PHs,γ(δ)(X0, Y0) > 1− γ(δ). Now Lemma 3.3, applied to /∗, implies that

for every stable partition H′ of (X , /∗), we have
∣∣∣I(W s[H′]) − log2

|Hs|·‖Hs∧H′‖
‖H′‖

∣∣∣ =
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∣∣∣I(ProjH′(X0);Y0
)
− log2

|Hs|·‖Hs∧H′‖
‖H′‖

∣∣∣ < δ. But this is true for every s ∈ Bc
n,k.

Therefore, Bc
n,k ⊂ Dn, where Dn is defined as:

Dn =

{
s ∈ {−,+}n : ∃Hs a stable partition of (X , /∗),

∣∣∣I(W s[H′])− log2
|Hs|·‖Hs∧H′‖

‖H′‖
∣∣∣ < δ for all stable partitions H′ of (X , /∗)

}
.

Now since lim
n→∞

1

2n
|Bc

n,k| = 1 and Bc
n,k ⊂ Dn, we must have lim

n→∞
1

2n
|Dn| = 1.

Corollary 3.1. Let X be an arbitrary set and let ∗ be a uniformity-preserving
operation on X such that /∗ is strongly ergodic, and let W : X −→ Y be an arbitrary
channel. Then for every δ > 0, we have:

lim
n→∞

1

2n

∣∣∣∣{s ∈ {−,+}n : ∃Hs a stable partition of (X , /∗),

∣∣I(W s)− log2 |Hs|
∣∣ < δ,

∣∣I(W s[Hs])− log2 |Hs|
∣∣ < δ

}∣∣∣∣ = 1.

Proof. We apply Theorem 3.1 and we consider the two particular cases where H′ ={
{x} : x ∈ X

}
and H′ = Hs.

Remark 3.3. Corollary 3.1 can be interpreted as follows: In a polarized chan-
nel W s, we have I(W s) ≈ I(W s[Hs]) ≈ log2 |Hs| for some stable partition Hs of
(X , /∗). Let Xs and Ys be the input and output of the channel W s respectively.
I(W s[Hs]) ≈ log2 |Hs| means that Ys “almost” determines ProjHs

(Xs). On the
other hand, I(W s) ≈ I(W s[Hs]) means that there is “almost” no other information
about Xs which can be determined from Ys. Therefore, W s is “almost” equivalent
to the channel Xs −→ ProjHs

(Xs).

Lemma 3.4. Let W : X −→ Y be an arbitrary channel. If there exists a balanced
partition H of X such that

∣∣I(W )− log2 |H|
∣∣ < δ and

∣∣I(W [H])− log2 |H|
∣∣ < δ, then

W is δ-easy. Moreover, if we also have Pe(W [H]) < ε, then W is (δ, ε)-easy.

Proof. Let L = |H| and let H1, . . . , HL be the L members of H. Let S =
{
C ⊂

X : |C| = L
}

and SH =
{
{x1, . . . , xL} : x1 ∈ H1, . . . , xL ∈ HL

}
⊂ S. For

each 1 ≤ i ≤ L, let Xi be a random variable uniformly distributed in Hi. Define
B = {X1, . . . , XL}, which is a random set taking values in SH. Note that we can see
B as a random variable in S since SH ⊂ S. For every x ∈ X , let Hi be the unique
element of H such that x ∈ Hi. We have:

1

L

∑
C∈H

PB(C)1x∈C =
1

|H|P[x ∈ B] (a)= 1

|H|P[Xi = x] =
1

|H| ·
1

|Hi|
=

1

|H| ·
1

‖H‖ =
1

|X | ,

(3.8)
where (a) follows from the fact that x ∈ B if and only if Xi = x. Now for each C ∈
SH, define the bijection fC : {1, . . . , L} → C as follows: For each 1 ≤ i ≤ L, fC(i) is
the unique element in C ∩Hi (so ProjH(fC(i)) = Hi). Let U be a random variable
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chosen uniformly in {1, . . . , L} and independently from B, and let X = fB(U) (so
ProjH(X) = HU ). From (3.8) we get that X is uniform in X .

Let Y be the output of the channel W when X is the input. From Definition
3.1, we have I(WB) = I(U ;Y,B). On the other hand, I(W [H]) = I(ProjH(X);Y ) =

I(HU ;Y ). Therefore, I(WB) = I(U ;Y,B) ≥ I(U ;Y )
(a)
= I(HU ;Y ) = I(W [H])

(b)
>

log2 L− δ, where (a) follows from the fact that the mapping u → Hu is a bijection
from {1, . . . , L} to H and (b) follows from the fact that

∣∣I(W [H]) − log2 |H|
∣∣ < δ.

We conclude that W is δ-easy since I(WB) > log2 L− δ and |I(W )− log2 L| < δ.

Now suppose that we also have Pe(W [H]) < ε. For every C ∈ SH, define the
mapping gC : {1, . . . , L} → H as gC(i) = ProjH(fC(i)) for every 1 ≤ i ≤ L. It
is easy to see that gC is a bijection for every C ∈ SH. Furthermore, we have
ProjH(X) = gB(U).

Consider the following decoder for the channel WB:

• Compute an estimate Ĥ of ProjH(X) using the ML decoder of the channel
W [H].

• Compute Û = g−1
B (Ĥ).

The probability of error of this decoder is:

P[Û �= U ] = P[Ĥ �= gB(U)] = P[Ĥ �= ProjH(X)] = Pe(W [H]) < ε.

Now since the ML decoder of WB minimizes the probability of error, we conclude
that Pe(WB) < ε. Therefore, W is a (δ, ε)-easy channel.

Proposition 3.3. If ∗ is a uniformity-preserving operation on a set X and /∗ is
strongly ergodic, then ∗ is polarizing.

Proof. We have the following:

• We know from Remark 3.1 that since ∗ is uniformity-preserving, it satisfies
the conservation property of Definition 3.4.

• The polarization property of Definition 3.4 follows immediately from Corollary
3.1 and Lemma 3.4.

Therefore, ∗ is polarizing.

Theorem 3.2. If ∗ is a binary operation on a set X , then ∗ is polarizing if and
only if ∗ is uniformity-preserving and /∗ is strongly ergodic.

Proof. The theorem follows from Propositions 3.1 and 3.3.

3.3 Polar Code Construction

Let ∗ be a polarizing binary operation of exponent3 E∗ > 0 on a finite set X . Fix a
channel W with input alphabet X and output alphabet Y. Choose 0 < δ < 1 and

3As we will see in Chapter 5, not every polarizing binary operation has a strictly positive
exponent. In this section, we assume that ∗ is a polarizing binary operation that satisfies E∗ > 0.
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0 < β < β′ < E∗, and let n0 ≥ 0 be such that for every n ≥ n0, we have

2n2−2β
′n

< 2−2βn and
1

2n
|En| > 1− δ

2 log2 |X | ,

where

En =
{
s ∈ {−,+}n :W s is ( δ2 , 2

−2β
′n
)-easy

}
.

Such an integer exists because ∗ is polarizing and β′ < E∗ (see Definition 3.5).

For every s ∈ En, W
s is ( δ2 , 2

−2β
′n
)-easy, hence there exist an integer Ls ≤ |X | and

a random code Bs of block length 1 and rate log2 L
s (i.e., Bs ∈ Ss := {C ⊂ X :

|C| = Ls}), which satisfy the following:

• |I(W s)− log2 L
s| < δ

2 .

• For every x ∈ X , we have

∑
C∈Ss

1

Ls
PBs(C)1x∈C =

1

|X | . (3.9)

• If for each C ∈ Ss we fix a bijection f s
C : {1, . . . , Ls} → C, then I(W sBs) >

log2 L
s − δ

2 and Pe(W
sBs) < 2−2β

′n
, where W sBs : {1, . . . , Ls} −→ Ys × Ss is

the channel defined as:

W sBs(y, C|a) = W s(y|f s
C(a)) · PBs(C).

Note that Ys denotes the output alphabet of W s. In the rest of this sec-
tion, we assume that the bijections (f s

C)s∈En,C∈Ss are fixed and known to the
transmitter and the receiver.

A polar code is constructed as follows:

• If s /∈ En, let U s be a frozen symbol in X , i.e., we suppose that the receiver
knows U s.

• If s ∈ En, let Cs be a frozen code of blocklength 1 and rate log2 L
s (i.e., the

code Cs is chosen from Ss and it is known to the receiver). Let Ũ s be a random
variable that is uniformly distributed in {1, . . . , Ls} and let U s = f s

Cs(Ũ s).

• After computing U s for every s ∈ {−,+}n, we apply n polarization steps on the
sequence (U s)s∈{−,+}n to obtain another sequence of 2n symbols (Us)s∈{−,+}n ,
which will be transmitted through 2n independent copies of the channel W
(see Section 3.3.1).

Since we have a freedom in the choice of the frozen symbols (U s)s/∈En
and the

frozen codes (Cs)s∈En , we can assume that these symbols and codes are randomly
generated as follows:

• If s /∈ En, we assume that U s is chosen uniformly from X .
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• If s ∈ En, we assume that Cs is a random code taking values in Ss according to
the distribution of Bs. Equation (3.9) implies that U s = f s

Cs(Ũ s) is uniformly
distributed in X .

Furthermore, we assume that the random variables (U s)s/∈En
, (Ũ s)s∈En and (Cs)s∈En

are independent.

3.3.1 Encoding

We associate the set Sn := {−,+}n with the strict total order < that we define as
(s1, . . . , sn) < (s′1, . . . , s′n) if and only if si = −, s′i = + for some i ∈ {1, . . . , n} and
sh = s′h for all i < h ≤ n.

For every u = (us)s∈Sn ∈ X Sn , every 0 ≤ n′ ≤ n and every (s′, s′′) ∈ Sn′ ×Sn−n′ ,
define Es′′

s′ (u) ∈ X recursively on 0 ≤ n′ ≤ n as follows:

• Es
ø(u) = us if n′ = 0 and s ∈ Sn.

• Es′′
(s′,−)(u) = E(s′′,−)

s′ (u) ∗ E (s′′,+)
s′ (u) if n′ > 0, s′ ∈ Sn′−1 and s′′ ∈ Sn−n′ .

• Es′′
(s′,+)(u) = E(s′′,+)

s′ (u) if n′ > 0, s′ ∈ Sn′−1 and s′′ ∈ Sn−n′ .

For every s ∈ Sn, we write Es
ø(u) as Es(u) and Eø

s (u) as Es(u).
Let {Ws}s∈Sn be a set of 2n independent copies of the channel W . Ws should

not be confused with W s: Ws is a copy of the channel W whereas W s is a synthetic
channel obtained from W as before.

Let (U s)s∈Sn = (f s
Cs(Ũ s))s∈Sn be the sequence of 2n independent random vari-

ables that were defined above. For every 0 ≤ n′ ≤ n, s′ ∈ Sn′ and s′′ ∈ Sn−n′ , define
U s′′
s′ = Es′′

s′
(
(U s)s∈Sn

)
. We have:

• U s
ø = U s if n′ = 0 and s ∈ {−,+}n.

• U s′′
(s′,−) = U

(s′′,+)
s′ ∗ U (s′′,−)

s′ if n′ > 0, s′ ∈ {−,+}n′−1 and s′′ ∈ {−,+}n−n′
.

• U s′′
(s′,+) = U

(s′′,+)
s′ if n′ > 0, s′ ∈ {−,+}n′−1 and s′′ ∈ {−,+}n−n′

.

For every s ∈ Sn, let Us = Uø
s . Since ∗ is polarizing, it is uniformity-preserving.

This implies that (Us)s∈Sn are independent and uniformly distributed in X .

It is easy to see that the complexity of the encoding algorithm is O(N logN),
where N = 2n is the blocklength of the polar code.

For every s ∈ Sn, we send Us through the channel Ws. Let Ys be the output
of the channel Ws, and let Y = {Ys}s∈Sn . We can prove by backward induction on
n′ that for every s′′ ∈ Sn−n′ , the channel U s′′

s′ −→
(
{Ys}s has s′ as a prefix, {U r

s′}r<s′′
)

is equivalent to the channel W s′′ for every 0 ≤ n′ ≤ n, s′ ∈ Sn′ and s′′ ∈ Sn−n′ .
In particular, the channel U s −→

(
Y, {U r}r<s

)
is equivalent to the channel W s for

every s ∈ Sn. This implies that the channel Ũ s −→
(
Y, {U r}r<s, C

s
)
is equivalent

to W sBs for every s ∈ En.

Figure 3.1 is an illustration of a polar code construction for n = 2 (i.e., the
blocklength is N = 22 = 4).
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Figure 3.1 – Two polarization steps.

3.3.2 Decoding

If s /∈ En, there is nothing to decode because the receiver knows U s. Suppose now
that s ∈ En. If we know {U r}r<s then we can estimate Ũ s from

(
Y, {U r}r<s, C

s
)

using the maximum likelihood decoder of W sBs . After that, we can obtain an
estimate of U s by applying f s

Cs on the estimate of Ũ s.
This motivates us to consider the following successive cancellation decoder:

• Û s = U s if s /∈ En.

• Û s = f s
Cs(Ds(Y, {Û r}r<s, C

s)) if s ∈ En, where Ds is the ML decoder of W sBs .

The symbols (U s)s∈Sn are successively decoded according to the total order < of
Sn. By using essentially the same method that Arıkan used for binary-input channels
[2], the successive cancellation decoder can be implemented with a complexity of
O(N logN).

3.3.3 Performance of Polar Codes

We have{
Û s = U s, ∀s ∈ Sn

}
⇔

{
Û s = U s, ∀s ∈ En

}
⇔

{
f s
Cs(Ds(Y, {Û r}r<s, C

s)) = U s, ∀s ∈ En

}
⇔

{
f s
Cs(Ds(Y, {U r}r<s, C

s)) = U s, ∀s ∈ En

}
⇔

{
f s
Cs(Ds(Y, {U r}r<s, C

s)) = f s
Cs(Ũ s), ∀s ∈ En

}
⇔

{
Ds(Y, {U r}r<s, C

s) = Ũ s, ∀s ∈ En

}
.

Therefore, the probability of error of the above successive cancellation decoder is
upper bounded by

∑
s∈En

P
(
Ds(Y, {U r}r<s, C

s) �= Ũ s
)
=
∑
s∈En

Pe(W
sBs)

(a)

≤ |En|2−2β
′n

≤ 2n2−2β
′n

< 2−2βn ,
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where (a) follows from the fact that W sBs is ( δ2 , 2
−2β

′n
)-easy.

This upper bound was calculated on average over the random choice of the frozen
symbols (U s)s/∈En

and codes (Cs)s∈En . Therefore, there exists at least one choice of
the frozen symbols and codes for which the upper bound of the probability of error
still holds.

We should note here that unlike the case of binary-input symmetric memoryless
channels where the frozen symbols can be chosen arbitrarily [2], the choice of the
frozen symbols (U s)s/∈En

and codes (Cs)s∈En in our construction of polar codes
cannot be arbitrary. The code designer should make sure that his choice of the
frozen symbols and codes does indeed yield the desirable probability of error4.

The last thing to discuss is the rate of polar codes. The rate at which we are

communicating is R =
1

2n

∑
s∈En

log2 L
s. On the other hand, we have

∣∣I(W s) −

log2 L
s
∣∣ < δ

2 for all s ∈ En. We conclude that:

I(W )
(a)
=

1

2n

∑
s∈{−,+}n

I(W s) =
1

2n

∑
s∈En

I(W s) +
1

2n

∑
s∈Ec

n

I(W s)

<
1

2n

∑
s∈En

(
log2 L

s +
δ

2

)
+

1

2n
|Ec

n| log2 |X |

< R+
1

2n
|En|

δ

2
+

δ

2 log2 |X | log2 |X | ≤ R+
δ

2
+

δ

2
= R+ δ,

where (a) follows from the conservation property of polarizing binary operations.
To this end we have shown the following proposition, which is the main result of

this section:

Proposition 3.4. If ∗ is a polarizing operation of exponent E∗ > 0 on the set X ,
then for every channel W with input alphabet X , every β < E∗ and every δ > 0,
there exists n0 = n0(W,β, δ, ∗) > 0 such that for every n ≥ n0, there exists a polar
code of blocklength N = 2n and of rate at least I(W )− δ such that the probability of

error of the successive cancellation decoder is at most 2−Nβ
.

3.4 Appendix

3.4.1 Proof of Proposition 3.2

Let (Xi, Yi)0≤i<2k be a sequence of 2k random pairs that satisfy conditions 1) and
2) of Proposition 3.2.

Notation 3.5. For every sequence x = (xi)1≤i<2k of 2k − 1 elements of X , define
the mapping πx : X → X as πx(x0) = g∗

(
(x0,x)

)
for all x0 ∈ X , where (x0,x) is

the sequence of 2k elements obtained by concatenating x0 and x. Note that πx is a
bijection since ∗ is uniformity-preserving. Define:

4In practice, the code designer can generate the frozen symbols (Us)s/∈En and codes (Cs)s∈En

randomly, and then runs a numerical simulation to assess the performance of the coding scheme.
The code designer repeats this experiment until he finds a suitable choice for the frozen symbols
(Us)s/∈En and codes (Cs)s∈En . With high probability, the code designer is expected to find good
frozen symbols and codes after a few trials.
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• py(x) := PX0|Y0
(x|y) for every x ∈ X and every y ∈ Y. Note that py(x) =

PXi|Yi
(x|y) for every 0 ≤ i < 2k since (Xi, Yi) and (X0, Y0) are identically

distributed.

• py0,x(x) := py0
(
π−1
x (x)

)
for every x ∈ X , every y0 ∈ Y and every sequence

x = (xi)1≤i<2k ∈ X 2k−1.

• For every x = (xi)1≤i<2k ∈ X 2k−1, and every y2
k−1

1 = (yi)1≤i<2k ∈ Y2k−1,
define

p
y2

k−1
1

(x) :=
2k−1∏
i=1

pyi(xi) = P
X2k−1

1 |Y 2k−1
1

(x|y2k−1
1 ).

Fix γ > 0 and let γ′ = min

{
γ

2|X | + 1
,

1

(2|X | + 2)|X |

}
.

Notation 3.6. Define:

C =
{
y2

k−1
0 ∈ Y2k : ∀x ∈ X 2k−1, ∀x′ ∈ X 2k−1,(
p
y2

k−1
1

(x) ≥ γ′2
k−1 and p

y2
k−1

1

(x′) ≥ γ′2
k−1
)
⇒ ‖py0,x − py0,x′‖∞ < γ′

}
.

Lemma 3.5. There exists ε(γ) > 0 such that if H
(
g∗(X2k−1

0 )
∣∣Y 2k−1

0

)
< H(X0|Y0)+

ε(γ), then

P
Y 2k−1
0

(C) > 1− γ′2
k
.

Proof. For every x ∈ X and every y2
k−1

0 ∈ Y2k , we have:

P
g∗(X2k−1

0 )|Y 2k−1
0

(x|y2k−1
0 ) =

∑
x0,...,x2k−1

∈X :

g∗(x2k−1
0 )=x

⎛
⎝2k−1∏

i=0

pyi(xi)

⎞
⎠

=
∑

x∈X 2k−1,
x=(xi)1≤i<2k

∑
x0∈X :

g∗((x0,x))=x

⎛
⎝2k−1∏

i=1

pyi(xi)

⎞
⎠ py0(x0)

=
∑

x∈X 2k−1

p
y2

k−1
1

(x)
∑

x0∈X :
πx(x0)=x

py0(x0)

=
∑

x∈X 2k−1

p
y2

k−1
1

(x)py0
(
π−1
x (x)

)

=
∑

x∈X 2k−1

p
y2

k−1
1

(x)py0,x(x).

Therefore, for every y2
k−1

0 ∈ Y2k we have:

P
g∗(X2k−1

0 )|Y 2k−1
0

(x|y2k−1
0 ) =

∑
x∈X 2k−1

p
y2

k−1
1

(x)py0,x(x). (3.10)



3.4. Appendix 91

Due to the concavity of the entropy function, it follows from (3.10) that for every

sequence y2
k−1

0 ∈ Y2k we have:

H
(
g∗(X2k−1

0 )
∣∣Y 2k−1

0 = y2
k−1

0

)
≥

∑
x∈X 2k−1

p
y2

k−1
1

(x)H(py0,x)

(a)
=

∑
x∈X 2k−1

p
y2

k−1
1

(x)H(py0) = H(py0)

= H(X0|Y0 = y0),

(3.11)

where (a) follows from the fact that the distribution py0,x is a permuted version of
the distribution py0 , which implies that py0,x and py0 have the same entropy. Now

if y2
k−1

0 ∈ Cc, there exist x ∈ X 2k−1 and x′ ∈ X 2k−1 such that p
y2

k−1
1

(x) ≥ γ′2k−1,

p
y2

k−1
1

(x′) ≥ γ′2k−1 and ‖py0,x−py0,x′‖∞ ≥ γ′. Therefore, due to the strict concavity

of the entropy function, it follows from (3.10) that there exists ε′(γ′) > 0 such that:

H
(
g∗(X2k−1

0 )
∣∣Y 2k−1

0 = y2
k−1

0

)
≥
( ∑

x∈X 2k−1

p
y2

k−1
1

(x)H(py0,x)
)
+ ε′(γ′)

= H(X0|Y0 = y0) + ε′(γ′).
(3.12)

Moreover, since the space of probability distributions on X is compact, ε′(γ′) > 0
can be chosen so that it depends only on γ′ and |X |. We have:

H
(
g∗(X2k−1

0 )
∣∣Y 2k−1

0

)
=

∑
y2

k−1
0 ∈C

H
(
g∗(X2k−1

0 )
∣∣Y 2k−1

0 = y2
k−1

0

)
P
Y 2k−1
0

(y2
k−1

0 )

+
∑

y2
k−1

0 ∈Cc

H
(
g∗(X2k−1

0 )
∣∣Y 2k−1

0 = y2
k−1

0

)
P
Y 2k−1
0

(y2
k−1

0 )

(a)

≥
∑

y2
k−1

0 ∈C
H(X0|Y0 = y0)P

Y 2k−1
0

(y2
k−1

0 )

+
∑

y2
k−1

0 ∈Cc

(
H(X0|Y0 = y0) + ε′(γ′)

)
P
Y 2k−1
0

(y2
k−1

0 )

=
( ∑

y2
k−1

0 ∈Y2k−1

H(X0|Y0 = y0)P
Y 2k−1
0

(y2
k−1

0 )
)
+ ε′(γ′)P

Y 2k−1
0

(Cc)

= H(X0|Y0) + ε′(γ′)P
Y 2k−1
0

(Cc),

where (a) follows from (3.11) and (3.12). Let ε(γ) = ε′(γ′)γ′2k .
Clearly, if H

(
g∗(X2k−1

0 )
∣∣Y 2k−1

0

)
< H(X0|Y0) + ε(γ), then we must have

P
Y 2k−1
0

(Cc) < γ′2
k
.
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In the next few definitions and lemmas, (Xi, Yi)0≤i<2k is a sequence of 2k random
pairs that satisfy conditions 1), 2) and 3) of Proposition 3.2 where ε(γ) is as in

Lemma 3.5. In particular, we have H
(
g∗(X2k−1

0 )
∣∣Y 2k−1

0

)
< H(X0|Y0) + ε(γ) and so

by Lemma 3.5 we have P
Y 2k−1
0

(C) > 1− γ′2k , where

γ′ = min

{
γ

2|X | + 1
,

1

(2|X | + 2)|X |

}
.

Notation 3.7. Define the following:

• For each y0 ∈ Y, let Cy0 :=
{
y2

k−1
1 ∈ Y2k−1 : y2

k−1
0 ∈ C

}
.

• C0 :=
{
y0 ∈ Y : P

Y 2k−1
1

(Cy0) > 1− γ′2k−1
}
.

• For each y ∈ Y, let Ay = {x ∈ X : py(x) ≥ γ′}.

• For each D ⊂ X , let YD = {y ∈ Y : Ay = D}.

• A = {D0 ⊂ X : PY0(YD0) ≥ γ′}.

We will show later that A is actually the stable partition H of (X , ∗) that is
claimed in Proposition 3.2.

Lemma 3.6. We have:

• PY0(C0) > 1− γ′.

• For every D0 ∈ A there exists y0 ∈ C0 such that Ay0 = D0.

Proof. We have

1− γ′2
k
< P

Y 2k−1
0

(C) =
∑
y0∈C0

PY0(y0)PY 2k−1
1

(Cy0) +
∑
y0∈Cc

0

PY0(y0)PY 2k−1
1

(Cy0)

(a)

≤ PY0(C0) + PY0(Cc
0)(1− γ′2

k−1) = 1− γ′2
k−1PY0(Cc

0),

where (a) follows from the fact that P
Y 2k−1
1

(Cy0) ≤ 1− γ′2k−1 for every y0 ∈ Cc
0. We

conclude that PY0(Cc
0) < γ′, hence PY0(C0) > 1− γ′.

Now let D0 ∈ A. We have PY0(YD0) ≥ γ′ by definition. But we have just shown
that PY0(C0) > 1−γ′, hence 1 ≥ PY0(YD0∪C0) = PY0(YD0)+PY0(C0)−PY0(YD0∩C0) >
γ′+1− γ′−PY0(YD0 ∩C0), thus PY0(YD0 ∩C0) > 0. This implies that YD0 ∩C0 �= ø.
Therefore, there exists y0 ∈ C0 such that Ay0 = D0.

Lemma 3.7. A is an X -cover.

Proof. For every y0 ∈ Y, let ay0 = argmax
x

py0(x). Clearly, PY0(ay0) ≥ 1
|X | > γ′.

Therefore, ay0 ∈ Ay0 and so Ay0 �= ø for every y0 ∈ Y . This means that Yø = ø,
hence PY0(Yø) = 0 < γ′. We conclude that ø /∈ A.
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Suppose that A is not an X -cover. This means that
⋃

D0∈A
D0 �= X . Therefore,

there exists x0 ∈ X such that x0 /∈
⋃

D0∈A
D0 and so x0 /∈ D0 for every D0 ∈ A. We

have:

1

|X | = PX0(x0) =
∑
y0∈Y

PY0(y0)py0(x0)
(a)
=

∑
D0⊂X

∑
y0∈YD0

PY0(y0)py0(x0)

=
∑
D0∈A

∑
y0∈YD0

PY0(y0)py0(x0) +
∑

D0⊂X
D0 /∈A

∑
y0∈YD0

PY0(y0)py0(x0)

(b)

≤
∑
D0∈A

∑
y0∈YD0

PY0(y0)γ
′ +

∑
D0⊂X
D0 /∈A

∑
y0∈YD0

PY0(y0) =
∑
D0∈A

PY0(YD0)γ
′ +

∑
D0⊂X
D0 /∈A

PY0(YD0)

(c)

≤ PY0

( ⋃
D0∈A

YD0

)
γ′ +

∑
D0⊂X
D0 /∈A

γ′
(d)

≤ γ′ + 2|X |γ′ ≤ (2|X | + 1)
1

(2|X | + 2)|X | <
1

|X | ,

where (a) follows from the fact that {YD0 : D0 ⊂ X} is a partition of Y. (b)
follows from the fact that if D0 ∈ A and y0 ∈ YD0 , then Ay0 = D0 ∈ A and so
x0 /∈ Ay0 (since x0 /∈ D0 for every D0 ∈ A) which implies that py0(x0) < γ′. (c)
follows from the fact that {YD0 : D0 ⊂ X} is a partition of Y and from the fact
that PY0(YD0) < γ′ for every D0 /∈ A. (d) follows from the fact that there are at
most 2|X | subsets of X . We conclude that if A is not an X -cover, then 1

|X | <
1
|X |

which is a contradiction. Therefore, A is an X -cover.

The next three lemmas will be used to show that A is a stable partition.

Lemma 3.8. Let k = 22
|X|

+ scon(∗). For every x ∈ X there exists a sequence
X = (Xi)0≤i<k of length k such that Xi ∈ Ai∗ for every 0 ≤ i < k, and x∗X ∈ 〈A〉k∗.

Proof. Since A is an X -cover, we can apply Theorem 2.3. Therefore, there exists
0 ≤ n < 22

|X|
such that core(An∗) = 〈A〉 and per(〈A〉) divides n. Fix x ∈ X and

X ∈ 〈A〉k∗ = 〈A〉(k−n)∗ = core(An∗)(k−n)∗, and let A ∈ A be such that x ∈ A.
Choose an arbitrary sequence X1 = (Xi)0≤i<n such that Xi ∈ Ai∗ for 0 ≤ i < n.

Clearly, A ∗ X1 ∈ An∗. Since A � 〈A〉, we have An∗ � 〈A〉n∗ (a)
= 〈A〉 = core(An∗),

where (a) follows from the fact that per(〈A〉) divides n. We conclude that there
exists B ∈ core(An∗) such that A ∗ X1 ⊂ B.

Since k = 22
|X|

+ scon(∗) and 0 ≤ n < 22
|X|

, we have k − n > scon(∗). Let
x′ ∈ x ∗ X1. Since k − n > scon(∗), we can apply Theorem 2.2 to get a sequence
X2 = (X ′

i)0≤i<k−n such that X ′
i ∈ 〈A〉i∗ = core(An∗)i∗ ⊂ A(n+i)∗ for every 0 ≤ i <

k − n, and x′ ∗ X2 = X. Since x′ ∈ x ∗ X1 ⊂ A ∗ X1 ⊂ B, we have X = x′ ∗ X2 ⊂
(x ∗ X1) ∗ X2 ⊂ B ∗ X2. But both X and B ∗ X2 are elements of 〈A〉(k−n)∗ which
is a partition, so we must have B ∗ X2 = X. Now define X = (X1,X2). We have
X = x′ ∗ X2 ⊂ x ∗ X ⊂ B ∗ X2 = X. Therefore, x ∗ X = X ∈ 〈A〉k∗.
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Lemma 3.9. For every i ≥ 0 and every X ∈ Ai∗ there exist 2i sets B0, . . . , B2i−1 ∈
A such that

X =

{
g∗(x) : x ∈

2i−1∏
j=0

Bj

}
:= {g∗(x0, . . . , x2i−1) : x0 ∈ B0, . . . , x2i−1 ∈ B2i−1} .

Proof. We will show the lemma by induction on i ≥ 0. The lemma is trivial for
i = 0: Take B0 = X ∈ A, we get

X = {x : x ∈ B0} =

{
g∗(x) : x ∈

20−1∏
j=0

Bj

}
.

Now let i > 0 and suppose that the lemma is true for i − 1. Let X ∈ Ai∗, and let
X ′, X ′′ ∈ A(i−1)∗ be such that X = X ′∗X ′′. It follows from the induction hypothesis
that there exist 2i−1 sets B′

0, . . . , B
′
2i−1−1

∈ A and 2i−1 sets B′′
0 , . . . , B

′′
2i−1−1

∈ A
such that

X ′ =
{
g∗(x′) : x′ ∈

2i−1−1∏
j=0

B′
j

}
and X ′′ =

{
g∗(x′′) : x′′ ∈

2i−1−1∏
j=0

B′′
j

}
.

We have:

X = X ′ ∗X ′′ =
{
g∗(x′) : x′ ∈

2i−1−1∏
j=0

B′
j

}
∗
{
g∗(x′′) : x′′ ∈

2i−1−1∏
j=0

B′′
j

}

=

{
g∗(x′) ∗ g∗(x′′) : x′ ∈

2i−1−1∏
j=0

B′
j , x

′′ ∈
2i−1−1∏
j=0

B′′
j

}

=

{
g∗(x) : x ∈

( 2i−1−1∏
j=0

B′
j

)
×
( 2i−1−1∏

j=0

B′′
j

)}
=

{
g∗(x) : x ∈

2i−1∏
j=0

Bj

}
,

where

Bj =

{
B′

j if 0 ≤ j < 2i−1,

B′′
j−2i−1 if 2i−1 ≤ j < 2i.

Lemma 3.10. Let X = (Xi)0≤i<l be a sequence of length l > 0 such that Xi ∈ Ai∗

for every 0 ≤ i < l. There exist 2l − 1 sets D1, . . . , D2l−1 ∈ A such that for every
x ∈ X , we have

x ∗ X =

{
g∗
(
(x,x)

)
: x ∈

2l−1∏
i=1

Di

}
=

{
πx(x) : x ∈

2l−1∏
i=1

Di

}
.

Proof. We will show the lemma by induction on l > 0. If l = 1, the lemma is trivial:
If we take D1 = X0 ∈ A, then for every x ∈ X we have

x ∗ X = {x ∗ x0 : x0 ∈ X0} =
{
g∗
(
(x, x0)

)
: x0 ∈ D1

}
=

{
g∗
(
(x,x)

)
: x ∈

21−1∏
i=1

Di

}
.
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Now let l > 1 and suppose that the lemma is true for l − 1. Let X = (Xi)0≤i<l

and define the sequence X′ = (Xi)0≤i<l−1. The induction hypothesis implies the
existence of 2l−1 − 1 sets D′

1, . . . , D
′
2l−1−1

∈ A such that for every x ∈ X we have

x ∗ X′ =
{
g∗
(
(x,x′)

)
: x′ ∈

2l−1−1∏
i=1

D′
i

}
.

On the other hand, since Xl−1 ∈ A(l−1)∗, Lemma 3.9 shows the existence of 2l−1

sets D′′
0 , . . . , D

′′
2l−1−1

∈ A such that

Xl−1 =

{
g∗(x′′) : x′′ ∈

2l−1−1∏
i=0

D′′
i

}
.

Define the 2l − 1 sets D1, . . . , D2l−1 ∈ A as follows:

Di =

{
D′

i if 1 ≤ i < 2l−1,

D′′
i−2l−1 if 2l−1 ≤ i < 2l.

For every x ∈ X we have:

x ∗ X = (x ∗ X′) ∗Xl−1

=

{
g∗
(
(x,x′)

)
: x′ ∈

2l−1−1∏
i=1

D′
i

}
∗
{
g∗(x′′) : x′′ ∈

2l−1−1∏
i=0

D′′
i

}

=

{
g∗
(
(x,x′)

)
∗ g∗(x′′) : x′ ∈

2l−1−1∏
i=1

Di, x
′′ ∈

2l−1∏
i=2l−1

Di

}

=

{
g∗
(
(x,x)

)
: x ∈

2l−1∏
i=1

Di

}
.

Lemma 3.11. We have the following:

1. A is a stable partition of (X , ∗).

2. If y0 ∈ C0 and Ay0 ∈ A then y0 ∈ YA,γ(X0, Y0).

Proof. 1) Let D0 ∈ A. By Lemma 3.6, there exists y0 ∈ C0 such that D0 = Ay0 . Let
ay0 = argmax

x∈X
py0(x). Clearly, py0(ay0) ≥ 1

|X | > γ′ and so ay0 ∈ Ay0 = D0.

Since A is an X -cover (Lemma 3.7), Theorem 2.3 implies the existence of an in-

teger n satisfying 0 ≤ n < 22
|X|

, core(An∗) = 〈A〉 and per(〈A〉) divides n. Moreover,
Lemma 3.8 shows the existence of a sequence X = (Xi)0≤i<k such that Xi ∈ Ai∗ for
all 0 ≤ i < k and ay0 ∗ X ∈ 〈A〉k∗ = 〈A〉(k−n)∗. Let

B = ay0 ∗ X ∈ 〈A〉k∗ = 〈A〉(k−n)∗. (3.13)
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Lemma 3.10 shows the existence of 2k − 1 sets D1, . . . , D2k−1 ∈ A such that

B =
{
g∗
(
(ay0 ,x)

)
: x ∈

2k−1∏
i=1

Di

}
=
{
πx(ay0) : x ∈

2k−1∏
i=1

Di

}
. (3.14)

Define

C′
y0 =

{
y2

k−1
1 ∈ Y2k−1 : ∀1 ≤ i < 2k, Ayi = Di

}
=

2k−1∏
i=1

YDi .

Since D1, . . . , D2k−1 ∈ A, we have

P
Y 2k−1
1

(C′
y0) =

2k−1∏
i=1

PYi(YDi) =
2k−1∏
i=1

PY0(YDi) ≥ γ′2
k−1.

On the other hand, since y0 ∈ C0, we have P
Y 2k−1
1

(Cy0) > 1 − γ′2k−1 from the

definition of C0. Therefore, P
Y 2k−1
1

(Cy0 ∩ C′
y0) > 0 which implies that Cy0 ∩ C′

y0 �= ø.

Hence, there exists a sequence (y1, . . . , y2k−1) ∈ Cy0 such that Ayi = Di for all
1 ≤ i < 2k.

Now fix a sequence

x′ = (x′i)1≤i<2k such that x′i ∈ Di for all 1 ≤ i < 2k. (3.15)

Let x ∈ π−1
x′ (B), then there exists x′ ∈ B such that x′ = πx′(x). Now from

(3.14), since x′ ∈ B, there exists a sequence x = (xi)1≤i<2k such that xi ∈ Di for all
1 ≤ i < 2k and x′ = πx(ay0). We have:

• (yi)0≤i<2k ∈ C since (y1, . . . , y2k−1) ∈ Cy0 .

• For every 1 ≤ i < 2k, we have pyi(xi) ≥ γ′ and pyi(x
′
i) ≥ γ′ since xi, x

′
i ∈ Di =

Ayi . Therefore, p
y2

k−1
1

(x) =

2k−1∏
i=1

pyi(xi) ≥ γ′2
k−1 and similarly p

y2
k−1

1

(x′) ≥

γ′2k−1.

From the definition of C, we get ‖py0,x−py0,x′‖∞ < γ′ which implies that |py0,x(x′)−
py0,x′(x′)| < γ′. Therefore,

|py0(ay0)− py0(x)| =
∣∣py0(π−1

x (x′)
)
− py0

(
π−1
x′ (x

′)
)∣∣ = |py0,x(x′)− py0,x′(x′)| < γ′.

We conclude that
∀x ∈ π−1

x′ (B), |py0(ay0)− py0(x)| < γ′, (3.16)

and so py0(x) > py0(ay0) − γ′ ≥ 1
|X | − γ′ ≥ 1

|X | − 1
|X |(2|X|+2)

> 1
|X | − 1

2|X | =
1

2|X | >
1

(2|X|+2)|X | ≥ γ′ which implies that x ∈ Ay0 = D0. But this is true for every x ∈
π−1
x′ (B). We conclude that π−1

x′ (B) ⊂ D0. On the other hand, since D0 ∈ A � 〈A〉,
there exists C ∈ 〈A〉 such that D0 ⊂ C. Therefore, π−1

x′ (B) ⊂ D0 ⊂ C and

‖〈A〉‖ = ‖〈A〉(k−n)∗‖ = |B| (a)= |π−1
x′ (B)| ≤ |D0| ≤ |C| = ‖〈A〉‖,
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where (a) follows from the fact that πx′ is a bijection. We conclude that ‖〈A〉‖ =
|π−1

x′ (B)| = |D0| = |C|. But π−1
x′ (B) ⊂ D0 ⊂ C, so we must have

π−1
x′ (B) = D0 = C ∈ 〈A〉. (3.17)

Now since this is true for every D0 ∈ A, we conclude that A ⊂ 〈A〉. But A is an
X -cover and 〈A〉 is a partition, so we must have A = 〈A〉. We conclude that A is a
stable partition.

2) Let y0 ∈ Cy0 and suppose that D0 = Ay0 ∈ A. Define ay0 = argmax
x∈X

py0(x).

Let B ∈ Ak∗ and x′ ∈ X 2k−1 be defined as in equations (3.13) and (3.15) respectively.
Equation (3.17) shows that D0 = π−1

x′ (B). By replacing π−1
x′ (B) by D0 in equation

(3.16), we conclude that for every x ∈ D0 we have |py0(ay0) − py0(x)| < γ′, which
means that

py0(ay0)− γ′ < py0(x) < py0(ay0) + γ′. (3.18)

On the other hand, for every x ∈ X \D0 = X \Ay0 , we have

0 ≤ py0(x) < γ′. (3.19)

By adding up the inequalities (3.18) for all x ∈ D0 with the inequalities (3.19) for
all x ∈ X \D0, we get |D0| · py0(ay0)− |D0| · γ′ < 1 < |D0| · py0(ay0) + |X | · γ′, from
which we get |py0(ay0)− 1

|D0| | <
|X |
|D0|γ

′ ≤ |X |γ′. We conclude that for every x ∈ D0,
we have∣∣∣∣py0(x)− 1

|D0|

∣∣∣∣ ≤ |py0(x)−py0(ay0)|+
∣∣∣∣py0(ay0)− 1

|D0|

∣∣∣∣ < γ′+|X |γ′ < (2|X |+1)γ′ ≤ γ,

and for every x ∈ X \ D0 = X \ Ay0 , we have py0(x) < γ′ < γ. Therefore, ‖py0 −
ID0‖∞ ≤ γ and so y0 ∈ YA,γ(X0, Y0).

Now we are ready to prove Proposition 3.2:

Proof of Proposition 3.2. According to Lemma 3.11, A is a stable partition. More-
over, for every y0 ∈ C0 satisfying Ay0 ∈ A, we have y0 ∈ YA,γ(X0, Y0). Therefore, if
we define

Y ′
A =

{
y ∈ Y : Ay ∈ A

}
,

then Y ′
A ∩ C0 ⊂ YA,γ(X0, Y0).

We have Y ′c
A =

⋃
D⊂X
D/∈A

YD. Now since PY0(YD) < γ′ for every D /∈ A, we have:

PY0(Y ′c
A) ≤

∑
D⊂X
D/∈A

PY0(YD) < 2|X |γ′.

But PY0(C0) > 1 − γ′ by Lemma 3.6, so we have PY0(Y ′
A ∩ C0) > 1 − (2|X | +

1)γ′ ≥ 1 − γ, which implies that PY0(YA,γ(X0, Y0)) > 1 − γ since Y ′
A ∩ C0 ⊂

YA,γ(X0, Y0). By letting H = A, which is a stable partition, we get PH,γ(X0, Y0) =
PY0(YH,γ(X0, Y0)) > 1− γ.





MAC Polarization Theory 4
In this chapter1, we generalize the results of [8] and [9] to arbitrary multiple-access
channels. In Section 4.1, we define the multiple-access channels and their capacity
regions. In Section 4.2, we provide a formal definition of MAC-polarizing sequences
of binary operations. In Section 4.3, we prove that a sequence of binary operations is
MAC-polarizing if and only if every binary operation in the sequence is uniformity-
preserving and its right-inverse is strongly ergodic. In Section 4.4, we explain how we
can use a MAC-polarizing sequence of binary operations to construct MAC-polar
codes for arbitrary multiple access channels. In Section 4.5, we show that if we
use special binary operations (namely, the addition modulo the size of the input
alphabets), the MAC-polar code construction becomes simpler.

4.1 Multiple-Access Channels

Definition 4.1. A discrete m-user multiple-access channel (MAC) is an (m + 2)-
tuple W = (X1, . . . ,Xm,Y, pW ), where X1, . . . ,Xm are finite sets that are called the
input alphabets of W , Y is a finite set that is called the output alphabet of W , and
pW : X1 × · · · × Xm × Y → [0, 1] is a mapping that satisfies

∀(x1, x2, . . . , xm) ∈ X1 × · · · × Xm,
∑
y∈Y

pW (x1, x2, . . . , xm, y) = 1.

Notation 4.1. We write W : X1 × · · · × Xm −→ Y to denote that W has m
users, X1, X2, . . . , Xm as input alphabets, and Y as output alphabet. We denote
pW (x1, x2, . . . , xm, y) as W (y|x1, x2, . . . , xm) which is interpreted as the conditional
probability of receiving y at the output, given that (x1, x2, . . . , xm) is the input.

Note that we use the long arrow (−→) in the notation W : X1 × · · · ×Xm −→ Y
and not the short arrow (→) which we only use to describe mappings. For example,
W : X1 × X2 −→ Y denotes a 2-user MAC, whereas V : X1 × X2 → Y denotes a
mapping from X1 ×X2 to Y.

1The material of this chapter is based on [17, 18, 20, 21].
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Definition 4.2. An m-user MAC-coding scheme C is a (2m+ 2)-tuple

C = (M1, . . . ,Mm, N, f1, . . . , fm, g).

Mk is the message set of the kth user, N is the blocklength, fk : Mk → XN
k is the

encoder of the kth user, and g : YN → M1 × · · · ×Mm is the decoder.
The rate of transmission for the kth user is defined as Rk = log2 |Mk|

N . The rate
vector of the MAC-coding scheme is the m-tuple (R1, . . . , Rm) ∈ Rm. The quantity
R1 + · · ·+Rm is called the sum-rate of the MAC-coding scheme.

The MAC-coding scheme C = (M1, . . . ,Mm, N, f1, . . . , fm, g) is implemented as
follows:

• For every 1 ≤ k ≤ m, a random message Mk is uniformly chosen from Mk.
Mk represents the message that the kth user wishes to transmit to the receiver.

• For every 1 ≤ k ≤ m, the kth user computes (Xk,1, . . . , Xk,N ) = fk(Mk).

• For every 1 ≤ k ≤ m, the kth user transmits Xk,1, . . . , Xk,N to the receiver by
using the MAC N times. More precisely, at the ith use of the MAC, the kth

user transmits the symbol Xk,i.

• The receiver observes N output symbols Y1, . . . , YN .

• The receiver computes an estimate of the transmitted messages as

(M̂1, . . . , M̂m) = g(Y1, . . . , YN ).

The probability of error of the MAC-coding scheme C when it is used for the MAC
W is given by

Pe(C,W ) = P[(M̂1, . . . , M̂m) �= (M1, . . . ,Mm)].

Definition 4.3. A rate vector R = (R1, . . . , Rm) is said to be achievable for the
MAC W : X1 × · · · × Xm −→ Y if for every δ, ε > 0, there exists a MAC-coding
scheme of rate vector at least2 (R1 − δ, . . . , Rm − δ) and whose probability of error
is at most ε. The capacity region of the MAC W is the set of all achievable rate
vectors.

Definition 4.4. Given a MAC W and a collection of independent random variables
X1, . . . , Xm taking values in X1, . . . ,Xm respectively, we define the polymatroid re-
gion JX1,...,Xm(W ) in Rm as:

JX1,...,Xm(W ) :=
{
R =(R1, . . . , Rm) ∈ Rm :

0 ≤ R(S) ≤ IX1,...,Xm,S(W ) for all S ⊂ {1, . . . ,m}
}
,

where R(S) :=
∑
k∈S

Rk, X(S) := (Xk)k∈S, and

IX1,...,Xm,S(W ) := I(X(S);Y X(Sc)).

2We consider that (R1, . . . , Rm) ≤ (R′
1, . . . , R

′
m) if Ri ≤ R′

i for every 1 ≤ i ≤ m.



4.2. MAC-Polarizing Sequences of Binary Operations 101

The mutual information is computed for the probability distribution on X1 × · · · ×
Xm × Y which is given by

PX1,...,Xm,Y (x1, . . . , xm, y) = PX1(x1) · · ·PXm(xm)W (y|x1, . . . , xm).

JX1,...,Xm(W ) is called the information-theoretic capacity region of the MAC W
for the input distributions X1, . . . , Xm.

Theorem 4.1. (Theorem 15.3.6 [3]) The capacity region of a MAC W is given
by the closure of the convex hull of the union of all information-theoretic capacity
regions of W for all the input distributions, i.e,

ConvexHull

( ⋃
X1,...,Xm

are independent
random variables inX1,...,Xm resp.

JX1,...,Xm(W )

)
.

Definition 4.5. IX1,...,Xm(W ) := IX1,...,Xm,{1,...,m}(W ) is called the sum capacity
of W for the input distributions X1, . . . , Xm. IX1,...,Xm(W ) is equal to the maxi-
mum value of R1 + · · · + Rm among all rate vectors (R1, . . . , Rm) that belong to
JX1,...,Xm(W ). The set of rate-vectors (R1, . . . , Rm) in JX1,...,Xm(W ) which satisfy
R1 + · · ·+Rm = IX1,...,Xm(W ) is called the dominant face of JX1,...,Xm(W ) .

Notation 4.2. For the sake of simplicity, if X1, . . . , Xm are independent and uni-
form random variables in X1, . . . ,Xm respectively, we write J (W ), IS(W ) and I(W )
to denote JX1,...,Xm(W ), IX1,...,Xm,S(W ) and IX1,...,Xm(W ), respectively.

J (W ) is called the symmetric-capacity region of W , and I(W ) is called the
symmetric sum-capacity of W .

4.2 MAC-Polarizing Sequences of Binary Operations

4.2.1 Easy MACs

Notation 4.3. Let W be an m-user MAC. The probability of error of the maximum-
likelihood (ML) decoder3 of W for uniformly distributed input is denoted as Pe(W ).

Definition 4.6. An m-user MAC W : X1 × · · · × Xm −→ Y is said to be δ-easy
if there exist m integers L1 ≤ |X1|, . . . , Lm ≤ |Xm|, and m independent random
codes B1, . . . ,Bm taking values in the sets S1 = {C1 ⊂ X1 : |C1| = L1}, . . . ,
Sm = {Cm ⊂ Xm : |Cm| = Lm} respectively, which satisfy the following:

• |I(W )− log2 L| < δ, where L = L1 × · · · × Lm.

• For every 1 ≤ i ≤ m and every xi ∈ Xi, we have
∑
Ci∈Si

1

Li
PBi(Ci)1xi∈Ci =

1

|Xi|
.

In other words, if Ci ∈ Si is chosen according to the distribution of Bi and Xi

is chosen uniformly in Ci, then the marginal distribution of Xi as a random
variable in Xi is uniform.

3The ML decoder is the decoder that minimizes the probability of error.
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• If for each 1 ≤ i ≤ m and each Ci ∈ Si we fix a bijection fi,Ci : {1, ..., Li} → Ci,
then I(WB1,...,Bm) > log2 L− δ, where

WB1,...,Bm : {1, ..., L1} × · · · × {1, ..., Lm} −→ Y × S1 × · · · × Sm

is the MAC defined by:

WB1,...,Bm(y, C1, . . . , Cm|a1, . . . , am)

= W (y|f1,C1(a1), . . . , fm,Cm(am)).

m∏
i=1

PBi(Ci).

Note that the value of I(WB1,...,Bm) does not depend on the choice of the bijec-
tions (fi,Ci)1≤i≤m, Ci∈Si.

If we also have Pe(WB1,...,Bm) < ε, we say that W is (δ, ε)-easy.

If W is a δ-easy MAC for a small δ, then we can reliably transmit information
near the symmetric sum-capacity of W using a code of blocklength 1 (hence the
easiness; there is no need to use codes of large blocklengths): We choose a random
MAC-code according to B1, . . . ,Bm, we reveal this code to the receiver, and then
we transmit information using this code. The sum-rate of this code is equal to
log2 L1 + · · · + log2 Lm = log2 L which is close to the sum-capacity I(W ). On the
other hand, the fact that I(WB1,...,Bm) > log2 L− δ means that WB1,...,Bm is almost
perfect, which ensures that our simple MAC-coding scheme has a low probability of
error.

4.2.2 Polarization Process for MACs

Definition 4.7. Let X1, . . . ,Xm be m arbitrary sets. Let ∗1, . . . , ∗m be m binary
operations on X1, . . . ,Xm respectively, and let W : X1 × · · · × Xm −→ Y be an
m-user MAC. We define the two MACs W− : X1 × · · · × Xm −→ Y × Y and
W+ : X1 × · · · × Xm −→ Y × Y × X1 × · · · × Xm as follows:

W−(y1, y2|u1,1, . . . , um,1)

=
1

|X1| · · · |Xm|
∑

u1,2∈X1

...
um,2∈Xm

W (y1|u1,1 ∗1 u1,2, . . . , um,1 ∗m um,2)W (y2|u1,2, . . . , um,2),

and

W+(y1, y2,u1,1, . . . , um,1|u1,2, . . . , um,2)

=
1

|X1| · · · |Xm|W (y1|u1,1 ∗1 u1,2, . . . , um,1 ∗m um,2)W (y2|u1,2, . . . , um,2).

For every s = (s1, . . . , sn) ∈ {−,+}n, we define W s recursively as:

W s := ((W s1)s2 . . .)sn .
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Definition 4.8. Let (Bn)n≥1 be i.i.d. uniform random variables in {−,+}. For
each MAC W with input alphabets X1, . . . ,Xm, we define the MAC-valued process
(Wn)n≥0 recursively as follows:

W0 := W,

Wn := WBn
n−1, ∀n ≥ 1.

Definition 4.9. A sequence of m binary operations (∗1, . . . , ∗m) on the sets X1, . . . ,
Xm is said to be MAC-polarizing if we have the following two properties:

• Conservation property: For every MAC W with input alphabets X1, . . . ,Xm

we have
I(W−) + I(W+) = 2I(W ).

• Polarization property: For every MAC W with input alphabets X1, . . . ,Xm and
every δ > 0, Wn almost surely becomes δ-easy, i.e.,

lim
n→∞P

[
Wn is δ-easy

]
= 1.

Notice that in the conservation property we only ask for the symmetric sum-
capacity to be preserved and we do not ask for the whole symmetric-capacity region
to be preserved. The reason for this is because MAC polarization sometimes induces
a loss in the symmetric-capacity region (see [8] and [9]). There are, however, polar
coding techniques that achieve the whole symmetric-capacity region (e.g., [22] and
[23]) but those techniques are not based on MAC polarization; they are based on
monotone chain rules and single-user channel polarization. In the above definition,
we are only interested in the MAC polarization phenomenon itself. We note, how-
ever, that monotone chain rules can be used together with the general single-user
polarization theory that was developed in Chapter 3 in order to construct MAC
codes that achieve the whole symmetric-capacity region.

Remark 4.1. As in Remark 3.1, a sequence of binary operations satisfies the
conservation property if and only if every operation in the sequence is uniformity-
preserving.

Definition 4.10. Let (∗1, . . . , ∗m) be a MAC-polarizing sequence on the sets X1, . . . ,
Xm. We say that β ≥ 0 is a (∗1, . . . , ∗m)-achievable exponent if for every δ > 0 and

every MAC W with input alphabets X1, . . . ,Xm, Wn almost surely becomes (δ, 2−2βn)-
easy, i.e.,

lim
n→∞P

[
Wn is (δ, 2−2βn)-easy

]
= 1.

We define the exponent of (∗1, . . . , ∗m) as:

E∗1,...,∗m := sup{β ≥ 0 : β is a (∗1, . . . , ∗m)-achievable exponent}.

Remark 4.2. For each 1 ≤ i ≤ m and each ordinary single-user channel Wi :
Xi −→ Y with input alphabet Xi, consider the MAC W : X1 × · · · × Xm −→ Y
defined as W (y|x1, . . . , xm) = Wi(y|xi). Let (Wi,n)n≥0 be the single-user channel
valued process obtained from Wi as in Definition 3.3, and let (Wn)n≥0 be the MAC-
valued process obtained from W as in Definition 4.8. It is easy to see that if Wn is
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δ-easy, then Wi,n is δ-easy. This shows that if the sequence (∗1, . . . , ∗m) is MAC-
polarizing then ∗i is polarizing for each 1 ≤ i ≤ m. Moreover, if Wn is (δ, ε)-easy,
then Wi,n is (δ, ε)-easy. This implies that E∗1,...,∗m ≤ E∗i for each 1 ≤ i ≤ m.
Therefore, E∗1,...,∗m ≤ min{E∗1 , . . . , E∗m}.

4.3 Polarization Theory for MACs

Definition 4.11. Let W : X1 × · · · × Xm −→ Y be an m-user MAC. Let X =
X1×· · ·×Xm. The single-user channel obtained from W is the channel W ′ : X −→ Y
defined by W ′(y∣∣(x1, . . . , xm)

)
= W (y|x1, . . . , xm) for every (x1, . . . , xm) ∈ X .

Notation 4.4. Let W : X1 × · · · × Xm −→ Y be an m-user MAC. Let ∗1, . . . , ∗m be
m ergodic operations on X1, . . . ,Xm respectively, and let ∗ = ∗1 ⊗ . . .⊗∗m, which is
an ergodic operation on X = X1 × · · · × Xm. Let H be a stable partition of (X , ∗).
W [H] denotes the single-user channel W ′[H] : H −→ Y (see Definition 3.9), where
W ′ is the single-user channel obtained from W .

Lemma 4.1. Let W : X1 × · · · × Xm −→ Y be an m-user MAC. Let ∗1, . . . , ∗m
be m ergodic operations on X1, . . . ,Xm respectively, and let ∗ = ∗1 ⊗ . . . ⊗ ∗m. If
there exists δ > 0 and a stable partition H of (X , ∗) such that

∣∣I(W )− log2 |H|
∣∣ < δ

and
∣∣I(W [H])− log2 |H|

∣∣ < δ, then W is a δ-easy MAC. Moreover, if we also have
Pe(W [H]) < ε, then W is a (δ, ε)-easy MAC.

Proof. Let (Hi)1≤i≤m be the canonical factorization of H (see Definition 2.20). Let
L = |H|. For each 1 ≤ i ≤ m let Li = |Hi| and define Si := {Ci ⊂ Xi : |Ci| = Li}.
We have L = L1 × · · · × Lm (see Proposition 2.12). Moreover, we have

|I(W )− log2 L| =
∣∣I(W )− log2 |H|

∣∣ ≤ δ. (4.1)

Now for each 1 ≤ i ≤ m let Hi,1, . . . , Hi,Li be the elements of Hi, and for each
1 ≤ j ≤ Li let Xi,j be a uniform random variable in Hi,j . We suppose that Xi,j is
independent from Xi′,j′ for all (i

′, j′) �= (i, j). Define Bi = {Xi,1, . . . , Xi,Li} which is
a random subset of Xi. Clearly, |Bi| = Li since each Xi,j is drawn from a different
element of Hi. Therefore, Bi takes values in Si and B1, . . . ,Bm are independent.

For each 1 ≤ i ≤ m and each xi ∈ Xi, let j be the unique index 1 ≤ j ≤ Li such
that xi ∈ Hi,j . Since we are sure that xi /∈ Hi,j′ for j

′ �= j, then xi ∈ Bi if and only
if Xi,j = xi. We have:

∑
Ci∈Si

1

Li
PBi(Ci)1xi∈Ci =

1

Li
P[xi ∈ Bi]

(a)
=

1

Li
P[Xi,j = xi]

=
1

Li
· 1

|Hi,j |
=

1

|Hi|
· 1

‖Hi‖
=

1

|Xi|
,

(4.2)

where (a) follows from the fact that xi ∈ Bi if and only if Xi,j = xi.
Now for each 1 ≤ i ≤ m and each Ci ⊂ Si, let fi,Ci : {1, . . . , Li} → Ci be a fixed

bijection. Let T1, . . . , Tm be m independent random variables that are uniform in
{1, . . . , L1}, . . . , {1, . . . , Lm} respectively, and which are independent of B1, . . . ,Bm.
For each 1 ≤ i ≤ m, let Xi = fi,Bi(Ti). Send X1, . . . , Xm through the MAC W and
let Y be the output. The MAC T1, . . . , Tm −→ (Y,B1, . . . ,Bm) is equivalent to the
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MAC WB1,...,Bm (see Definition 4.6). Our aim now is to show that I(WB1,...,Bm) =
I(T1, . . . , Tm;Y,B1, . . . ,Bm) > log2 L − δ, which will imply that W is δ-easy (see
Definition 4.6).

We have

I(T1, . . . , Tm;Y,B1, . . . ,Bm) = H(T1, . . . , Tm)−H(T1, . . . , Tm|Y,B1, . . . ,Bm).

Now since H(T1, . . . , Tm) = H(T1) + · · · + H(Tm) = log2 L1 + . . . + log2 Lm =
log2 L, it is sufficient to show that H(T |Y,B) < δ, where T = (T1, . . . , Tm) and
B = (B1, . . . ,Bm) ∈ S1 × · · · × Sm.

Now for each 1 ≤ i ≤ m and each xi ∈ Xi, we have:

PXi(xi) = P[fi,Bi(Ti) = xi]
(a)
=

∑
Ci∈Si: xi∈Ci

P[fi,Ci(Ti) = xi]PBi(Ci)

(b)
=

∑
Ci∈Si: xi∈Ci

1

Li
PBi(Ci) =

∑
Ci∈Si

1

Li
PBi(Ci)1xi∈Ci

(c)
=

1

|Xi|
,

where (a) follows from the fact that fi,Ci(Ti) ∈ Ci and so if xi /∈ Ci then there is
a probability of zero to have fi,Ci(Ti) = xi. (b) follows from the fact that Ti is
uniform in {1, . . . , Li} and fi,Ci is a bijection from {1, . . . , Li} to Ci which imply
that fi,Ci(Ti) is uniform in Ci and so P[fi,Ci(Ti) = xi] =

1
|Ci| =

1
Li
. (c) follows from

Equation (4.2). Therefore, X := (X1, . . . , Xm) is uniform in X since X1, . . . , Xm

are independent and uniform in X1, . . . ,Xm respectively. This means that

I(W [H]) = I(ProjH(X);Y ) = H(ProjH(X))−H(ProjH(X)|Y )

= log2 |H| −H(ProjH(X)|Y ).

Moreover, we have
∣∣I(W [H])− log2 |H|

∣∣ < δ by hypothesis. We conclude that

H(ProjH(X)|Y ) < δ. (4.3)

For each 1 ≤ i ≤ m, let SHi =
{
{x1, . . . , xLi} : xj ∈ Hi,j , ∀1 ≤ j ≤ Li

}
be the

set of sections of Hi (see Definition 2.21). By construction, Bi takes values in SHi .
Now define

SH = {C1 × · · · × Cm : C1 ∈ SH1 , . . . , Cm ∈ SHm}.
For each C = C1×· · ·×Cm ∈ SH, define fC : {1, . . . , L1}×· · ·×{1, . . . , Lm} → H

as
fC(t1, . . . , tm) = ProjH

(
f1,C1(t1), . . . , fm,Cm(tm)

)
,

Since C1, . . . , Cm are sections of H1, . . . ,Hm respectively, C = C1 × · · · × Cm is a
section of H (see Proposition 2.12). Therefore, for every H ∈ H, there exists a
unique x = (x1, . . . , xm) ∈ C such that H = ProjH(x). This implies that there
exist unique t1 ∈ {1, . . . , L1}, . . . ,tm ∈ {1, . . . , Lm} such that fC(t1, . . . , tm) = H.
Therefore, fC is a bijection from {1, . . . , L1} × · · · × {1, . . . , Lm} to H.

Now since fC is a bijection for every C ∈ SH and since B1×· · ·×Bm takes values
in SH, we have

H(T |Y,B) = H
(
fB1×···×Bm(T )

∣∣Y,B)
= H

(
ProjH

(
f1,B1(T1), . . . , fm,Bm(Tm)

)∣∣Y,B)
= H

(
ProjH(X1, . . . , Xm)

∣∣Y,B) = H(ProjH(X)|Y,B)

≤ H(ProjH(X)|Y )
(a)
< δ
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as required, where (a) follows from (4.3). We conclude that W is δ-easy.
Now suppose that we also have Pe(W [H]) < ε. Consider the following decoder

for the MAC WB = WB1,...,Bm :

• Compute an estimate Ĥ of ProjH(X) using the ML decoder of the channel
W [H].

• Compute T̂ = f−1
B1×···×Bm

(Ĥ).

The probability of error of this decoder is:

P[T̂ �= T ] = P[Ĥ �= fB1×···×Bm(T )] = P
[
Ĥ �= ProjH

(
f1,B1(T1), . . . , fm,Bm(Tm)

)]
= P[Ĥ �= ProjH(X1, . . . , Xm)] = P[Ĥ �= ProjH(X)] = Pe(W [H]) < ε.

Now since the ML decoder of WB minimizes the probability of error, we conclude
that Pe(WB) < ε. Therefore, W is a (δ, ε)-easy MAC.

Theorem 4.2. Let ∗1, . . . , ∗m be m binary operations on X1, . . . ,Xm respectively.
The sequence (∗1, . . . , ∗m) is MAC-polarizing if and only if ∗1, . . . , ∗m are polarizing.

Proof. Suppose that (∗1, . . . , ∗m) is MAC-polarizing. By Remark 4.2, ∗1, . . . , ∗m are
polarizing.

Conversely, suppose that ∗1, . . . , ∗m are polarizing. Theorem 3.2 implies that
∗1, . . . , ∗m are uniformity-preserving and /∗1 , . . . , /∗m are strongly ergodic. Now
Theorem 2.5 implies that the binary operation /∗1 ⊗ . . . ⊗ /∗m is strongly ergodic.
By noticing that /∗1⊗...⊗∗m = /∗1⊗ . . .⊗/∗m , we conclude that /∗ is strongly ergodic,
where ∗ = ∗1 ⊗ . . .⊗ ∗m.

Now let W : X1 × · · · × Xm −→ Y be an m-user MAC. Let X = X1 × · · · × Xm

and let W ′ : X −→ Y be the single-user channel obtained from W (see Definition
4.11).

For each n > 0 and each s ∈ {−,+}n, let W ′s be obtained from W ′ using the
operation ∗ (see Definition 3.2), and letW s be obtained fromW using the operations
∗1, . . . , ∗m (see Definition 4.7). Now since /∗ is strongly ergodic, then by Corollary
3.1, for every δ > 0 we have:

lim
n→∞

1

2n

∣∣∣∣{s ∈ {−,+}n : ∃Hs a stable partition of (X , /∗),

∣∣I(W ′s)− log2 |Hs|
∣∣ < δ,

∣∣I(W ′s[Hs])− log2 |Hs|
∣∣ < δ

}∣∣∣∣ = 1.

It is easy to see that W ′s is the single-user channel obtained from W s. Therefore,
I(W s) = I(W ′s) and I(W s[H]) = I(W ′s[H]) (by definition). Therefore,

lim
n→∞

1

2n

∣∣∣∣{s ∈ {−,+}n : ∃Hs a stable partition of (X , /∗),

∣∣I(W s)− log2 |Hs|
∣∣ < δ,

∣∣I(W s[Hs])− log2 |Hs|
∣∣ < δ

}∣∣∣∣ = 1.

Now Lemma 4.1, applied to /∗1 , . . . , /∗m , implies that:

lim
n→∞

1

2n
∣∣{s ∈ {−,+}n : W s is δ-easy

}∣∣ = 1.
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Therefore, (∗1, . . . , ∗m) satisfies the polarization property of Definition 4.9. On the
other hand, since ∗1, . . . , ∗m are uniformity-preserving, Remark 4.1 implies that
(∗1, . . . , ∗m) satisfies the conservation property of Definition 4.9. We conclude that
(∗1, . . . , ∗m) is MAC-polarizing.

4.4 MAC-Polar Code Construction

Let X1, . . . ,Xm be m finite sets, and let ∗1, . . . , ∗m be m binary operations on
X1, . . . ,Xm, respectively. Assume that (∗1, . . . , ∗m) is a MAC-polarizing sequence
of binary operations of exponent4 E∗1,...,∗m > 0. Fix an m-user MAC W with
input alphabets X1, . . . ,Xm and output alphabet Y. Choose 0 < δ < 1 and
0 < β < β′ < E∗1,...,∗m , and let n0 ≥ 0 be such that for every n ≥ n0, we have

2n2−2β
′n

< 2−2βn and
1

2n
|En| > 1− δ

2 log2(|X1| × · · · × |Xm|) ,

where

En =
{
s ∈ {−,+}n :W s is ( δ2 , 2

−2β
′n
)-easy

}
.

Such an integer exists because (∗1, . . . , ∗m) is MAC-polarizing and β′ < E∗1,...,∗m
(see Definition 4.10). For every s ∈ En, W

s is ( δ2 , 2
−2β

′n
)-easy, hence there exist m

integers Ls
1 ≤ |X1|, . . . , Ls

m ≤ |Xm|, and m independent random codes Bs
1, . . . ,Bs

m

taking values in the sets Ss
1 = {C1 ⊂ X1 : |C1| = Ls

1}, . . . , Ss
m = {Cm ⊂ Xm :

|Cm| = Ls
m} respectively, which satisfy the following:

• |I(W s)− log2 L
s| < δ

2 , where Ls = Ls
1 × · · · × Ls

m.

• For every 1 ≤ i ≤ m and every xi ∈ Xi, we have∑
Ci∈Ss

i

1

Ls
i

PBs
i
(Ci)1xi∈Ci =

1

|Xi|
. (4.4)

• If for each 1 ≤ i ≤ m and each Ci ∈ Ss
i we fix a bijection f s

i,Ci
: {1, ..., Ls

i} → Ci,

then I(W sBs
1,...,Bs

m
) > log2 L

s − δ
2 and Pe(W

sBs
1,...,Bs

m
) < 2−2β

′n
, where

W sBs
1,...,Bs

m
: {1, ..., Ls

1} × · · · × {1, ..., Ls
m} −→ Ys × Ss

1 × · · · × Ss
m

is the MAC defined as:

W sBs
1,...,Bs

m
(y, C1, . . . , Cm|a1, . . . , am)

= W s(y|f s
1,C1

(a1), . . . , f
s
m,Cm

(am)).
m∏
i=1

PBs
i
(Ci).

Note that Ys denotes the output alphabet of W s. In the rest of this section,
we assume that the bijections (f s

i,Ci
)1≤i≤m,s∈En,Ci∈Ss

i
are fixed and known to

the m users and the receiver.

4As we will see in Chapter 5, not every MAC-polarizing sequence of binary operations has
a strictly positive exponent. In this section, we assume that (∗1, . . . , ∗m) is a MAC-polarizing
sequence of binary operations which satisfies E∗1,...,∗m > 0.
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A MAC-polar code is constructed as follows:

• If s /∈ En and 1 ≤ i ≤ m, let U s
i be a frozen symbol in Xi, i.e., we suppose

that the receiver knows U s
i .

• If s ∈ En and 1 ≤ i ≤ m, let Cs
i be a frozen code of blocklength 1 and rate

log2 L
s
i (i.e., the code Cs

i is chosen from Ss
i and it is known to the receiver).

Let Ũ s
i be a random variable that is uniformly distributed in {1, . . . , Ls

i} and
let U s

i = f s
i,Cs

i
(Ũ s

i ).

• After computing U s
i for every s ∈ {−,+}n, the ith user applies n polarization

steps on the sequence (U s
i )s∈{−,+}n to obtain another sequence of 2n symbols

(Ui,s)s∈{−,+}n , which will be transmitted through 2n independent copies of the
MAC W (see Section 4.4.1).

Since we have a freedom in the choice of the frozen symbols (U s
i )1≤i≤m,s/∈En

and
the frozen codes (Cs

i )1≤i≤m,s∈En , we can assume that these symbols and codes are
randomly generated as follows:

• If s /∈ En and 1 ≤ i ≤ m, we assume that U s
i is chosen uniformly from Xi.

• If s ∈ En and 1 ≤ i ≤ m, we assume that Cs
i is a random code taking

values in Ss
i according to the distribution of Bs

i . Equation (4.4) implies that
U s
i = f s

i,Cs
i
(Ũ s

i ) is uniformly distributed in Xi.

Furthermore, we assume that the random variables (U s
i )1≤i≤m,s/∈En

, (Ũ s
i )1≤i≤m,s∈En

and (Cs
i )1≤i≤m,s∈En are independent.

4.4.1 Encoding

We associate the set Sn := {−,+}n with the strict total order < that we define as
(s1, . . . , sn) < (s′1, . . . , s′n) if and only if sj = −, s′j = + for some j ∈ {1, . . . , n} and
sh = s′h for all j < h ≤ n.

Let 1 ≤ i ≤ m. For every ui = (usi )s∈Sn ∈ X Sn , every 0 ≤ n′ ≤ n and every
(s′, s′′) ∈ Sn′ × Sn−n′ , define Es′′

i,s′(ui) ∈ Xi recursively on 0 ≤ n′ ≤ n as follows:

• Es
i,ø(ui) = usi if n′ = 0 and s ∈ Sn.

• Es′′
i,(s′,−)(ui) = E(s′′,−)

i,s′ (ui) ∗i E(s′′,+)
i,s′ (ui) if n

′ > 0, s′ ∈ Sn′−1 and s′′ ∈ Sn−n′ .

• Es′′
i,(s′,+)(ui) = E(s′′,+)

i,s′ (ui) if n
′ > 0, s′ ∈ Sn′−1 and s′′ ∈ Sn−n′ .

For every s ∈ Sn, we write Es
i,ø(ui) as Es

i (ui) and Eø
i,s(ui) as Ei,s(ui).

Let {Ws}s∈Sn be a set of 2n independent copies of the MAC W . Ws should not
be confused with W s: Ws is a copy of the MAC W whereas W s is a synthetic MAC
obtained from W as before.

Let (U s
i )s∈Sn = (f s

i,Cs
i
(Ũ s

i ))s∈Sn be the sequence of 2n independent random vari-

ables that were defined above. For every 0 ≤ n′ ≤ n, s′ ∈ Sn′ and s′′ ∈ Sn−n′ , define
U s′′
i,s′ = Es′′

i,s′
(
(U s

i )s∈Sn

)
. We have:

• U s
i,ø = U s

i if n′ = 0 and s ∈ {−,+}n.
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• U s′′
i,(s′,−) = U

(s′′,+)
i,s′ ∗i U (s′′,−)

i,s′ if n′ > 0, s′ ∈ {−,+}n′−1 and s′′ ∈ {−,+}n−n′
.

• U s′′
i,(s′,+) = U

(s′′,+)
i,s′ if n′ > 0, s′ ∈ {−,+}n′−1 and s′′ ∈ {−,+}n−n′

.

For every s ∈ Sn, let Ui,s = Uø
i,s. Since (∗1, . . . , ∗m) is MAC-polarizing, ∗1, . . . , ∗m are

uniformity-preserving. This implies that (Ui,s)s∈Sn are independent and uniformly
distributed in Xi.

It is easy to see that the complexity of the encoding algorithm is O(N logN),
where N = 2n is the blocklength of the MAC-polar code.

For every s ∈ Sn, the ith user sends Ui,s through the MAC Ws. Let Ys be
the output of the MAC Ws, and let Y = {Ys}s∈Sn . We can prove by back-
ward induction on n′ that for every s′′ ∈ Sn−n′ , the MAC (U s′′

1,s′ , . . . , U
s′′
m,s′) −→(

{Ys}s has s′ as a prefix, {U r
i,s′}1≤i≤m,r<s′′

)
is equivalent to the MAC W s′′ for every

0 ≤ n′ ≤ n, s′ ∈ Sn′ and s′′ ∈ Sn−n′ . In particular, the MAC (U s
1 , . . . , U

s
m) −→(

Y, {U r
i }1≤i≤m,r<s

)
is equivalent to the MAC W s for every s ∈ Sn. This implies

that the MAC

(Ũ s
1 , . . . , Ũ

s
m) −→

(
Y, {U r

i }1≤i≤m,r<s, {Cs
i }1≤i≤m

)
is equivalent to W sBs

1,...,Bs
m

for every s ∈ En.
Figure 4.1 is an illustration of a MAC-polar code construction for n = 1 (i.e.,

the blocklength is N = 21 = 2).

W

W
U+
1 ∈ X1

U+
2 ∈ X2

U−
2 ∈ X2

U−
1 ∈ X1

∗2

∗1
Y−

Y+

Figure 4.1 – One polarization step.

4.4.2 Decoding

If s /∈ En, there is nothing to decode because the receiver knows (U
s
i )1≤i≤m. Suppose

now that s ∈ En. If we know {U r
i }1≤i≤m,r<s then we can estimate (Ũ s

i )1≤i≤m from(
Y, {U r

i }1≤i≤m,r<s, {Cs
i }1≤i≤m

)
using the maximum-likelihood decoder of the MAC

W sBs
1,...,Bs

m
. After that, for every 1 ≤ i ≤ m, we can obtain an estimate of U s

i by

applying f s
i,Cs

i
on the estimate of Ũ s

i .
This motivates us to consider the following successive cancellation decoder:

• If s /∈ En, the receiver computes Û s
i = U s

i for every 1 ≤ i ≤ m.

• If s ∈ En, the receiver first computes

( ˆ̃U s
i )1≤i≤m = Ds(Y, {Û r

i }1≤i≤m,r<s, {Cs
i }1≤i≤m)),
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where Ds is the ML decoder of W sBs
1,...,Bs

m
. The receiver then computes Û s

i =

f s
i,Cs

i
( ˆ̃Ui) for every 1 ≤ i ≤ m.

The symbols (U s
i )1≤i≤m,s∈Sn are successively decoded according to the total or-

der < of Sn. By using essentially the same method that Arıkan used for binary-input
channels [2], the successive cancellation decoder can be implemented with a com-
plexity of O(N logN).

4.4.3 Performance of MAC-Polar Codes

We have{
(Û s

i )1≤i≤m = (U s
i )1≤i≤m, ∀s ∈ Sn

}
⇔

{
(Û s

i )1≤i≤m = (U s
i )1≤i≤m, ∀s ∈ En

}
⇔

{(
f s
i,Cs

i
( ˆ̃U s

i )
)
1≤i≤m

=
(
f s
i,Cs

i
(Ũ s

i )
)
1≤i≤m

, ∀s ∈ En

}
⇔

{
( ˆ̃U s

i )1≤i≤m = (Ũ s
i )1≤i≤m, ∀s ∈ En

}
⇔

{
Ds(Y, {Û r

i }1≤i≤m,r<s, {Cs
i }1≤i≤m)) = (Ũ s

i )1≤i≤m, ∀s ∈ En

}
⇔

{
Ds(Y, {U r

i }1≤i≤m,r<s, {Cs
i }1≤i≤m)) = (Ũ s

i )1≤i≤m, ∀s ∈ En

}
.

Therefore, the probability of error of the above successive cancellation decoder is
upper bounded as∑

s∈En

P
(
Ds(Y,{U r

i }1≤i≤m,r<s, {Cs
i }1≤i≤m)) �= (Ũ s

i )1≤i≤m

)

=
∑
s∈En

Pe(W
sBs

1,...,Bs
m
)
(a)

≤ |En|2−2β
′n ≤ 2n2−2β

′n
< 2−2βn ,

where (a) follows from the fact that W sBs
1,...,Bs

m
is ( δ2 , 2

−2β
′n
)-easy.

This upper bound was calculated on average over the random choice of the
frozen symbols (U s

i )1≤i≤m,s/∈En
and codes (Cs

i )1≤i≤m,s∈En . Therefore, there exists
at least one choice of the frozen symbols and codes for which the upper bound of
the probability of error still holds.

We should note here that unlike the case of binary-input symmetric memoryless
channels where the frozen symbols can be chosen arbitrarily [2], the choice of the
frozen symbols (U s

i )1≤i≤m,s/∈En
and codes (Cs

i )1≤i≤m,s∈En in our construction of
MAC-polar codes cannot be arbitrary. The code designer should make sure that his
choice of the frozen symbols and codes does indeed yield the desirable probability
of error5.

The last thing to discuss is the sum-rate of MAC-polar codes. The transmission

rate at which the ith user is communicating is Ri =
1

2n

∑
s∈En

log2 L
s
i . Therefore, the

5In practice, the code designer can generate the frozen symbols (Us
i )1≤i≤m,s/∈En and codes

(Cs
i )1≤i≤m,s∈En randomly, and then runs a numerical simulation to assess the performance of the

MAC-coding scheme. The code designer repeats this experiment until he finds a suitable choice for
the frozen symbols (Us

i )1≤i≤m,s/∈En and codes (Cs
i )1≤i≤m,s∈En . With high probability, the code

designer is expected to find good frozen symbols and codes after a few trials.
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sum-rate is

R =

m∑
i=1

Ri =
1

2n

m∑
i=1

∑
s∈En

log2 L
s
i =

1

2n

∑
s∈En

log2 L
s.

On the other hand, we have
∣∣I(W s)− log2 L

s
∣∣ < δ

2 for all s ∈ En. We conclude that:

I(W )
(a)
=

1

2n

∑
s∈{−,+}n

I(W s) =
1

2n

∑
s∈En

I(W s) +
1

2n

∑
s∈Ec

n

I(W s)

<
1

2n

∑
s∈En

(
log2 L

s +
δ

2

)
+

1

2n
|Ec

n| log2(|X1| × · · · × |Xm|)

< R+
1

2n
|En|

δ

2
+

δ

2 log2(|X1| × · · · × |Xm|) log2(|X1| × · · · × |Xm|)

≤ R+
δ

2
+

δ

2
= R+ δ,

where (a) follows from the conservation property of MAC-polarizing sequences of
binary operations.

To this end we have shown the following proposition, which is the main result of
this section:

Proposition 4.1. Let (∗1, . . . , ∗m) be a MAC-polarizing sequence of binary op-
erations on the sets X1, . . . ,Xm. If E∗1,...,∗m > 0, then for every MAC W with
input alphabets X1, . . . ,Xm, every β < E∗1,...,∗m and every δ > 0, there exists
n0 = n0(W,β, δ, ∗1, . . . , ∗m) > 0 such that for every n ≥ n0, there exists a MAC-
polar code of blocklength N = 2n and of sum-rate at least I(W ) − δ such that the

probability of error of the successive cancellation decoder is at most 2−Nβ
.

4.5 A Special MAC-Polar Code Construction

If we have |Xk| = pr11 pr22 . . . p
rnk
nk , where p1, . . . , pnk

are prime numbers, we can
assume that Xk = Fr1

p1F
r2
p2 . . .F

rnk
pnk

, where Fp denotes the Galois field of size p. This

means that we can replace the kth user by r1 + r2 + · · · + rnk
virtual users such

that r1 virtual users have Fp1 as input alphabet, r2 virtual users have Fp2 as input
alphabet, and so on.

Therefore, we can assume without loss of generality that Xk = Fqk for every
1 ≤ k ≤ m, where qk is a prime number. In this section, we consider the polarization
transformation of Definition 4.7, where for every 1 ≤ k ≤ m, the binary operation
that is used for the kth user is the addition modulo qk.

Let p1, p2, . . . , pl be the distinct primes that appear in the sequence q1, . . . , qm,
and for each 1 ≤ i ≤ l, let mi be the number of times pi appears in the sequence q1,
. . . , qm. We adopt two notations to indicate the users and their inputs:

• The first notation is the usual one: We have an index k taking value in
{1, . . . ,m}, and the input of the kth user is denoted as Xk ∈ Fqk .

• In the second notation, the mi users having their inputs in Fpi will be indexed
by (i, 1), . . . , (i, j) , . . . , (i,mi), where 1 ≤ i ≤ l and 1 ≤ j ≤ mi. The input
of the (i, j)th user is denoted as Xi,j ∈ Fpi . The vector (Xi,1, . . . , Xi,mi) ∈ Fmi

pi

is denoted as 
Xi.
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Definition 4.12. In order to simplify our notation, we will introduce the notion of
generalized matrices:

• A generalized matrix A = (A1, . . . , Al) ∈
l∏

i=1

Fmi×ri
pi is a collection of l matri-

ces. Fmi×ri
pi denotes the set of mi × ri matrices with coefficients in Fpi.

• If ri = 0 in A = (A1, . . . , Al) ∈
l∏

i=1

Fmi×ri
pi , we write Ai = ø. In case Ai = ø

for all i, we write A = ø.

• A generalized vector 
x = (
x1, . . . , 
xl) ∈
l∏

i=1

Fmi
pi is a collection of l vectors.

• Addition of generalized vectors is defined as component-wise addition.

• The transposition of a generalized matrix is obtained by transposing each ma-
trix in it: AT = (AT

1 , . . . , A
T
l ).

• A generalized matrix acts on a generalized vector in a component-wise fashion:

If A ∈
l∏

i=1

Fmi×ri
pi and 
x ∈

l∏
i=1

Fmi
pi , then 
y = AT
x ∈

l∏
i=1

Fri
pi is defined as


y = (AT
1 
x1, . . . , A

T
l 
xl).

We adopt the convention that øT
xi = 
0.

• A generalized matrix A is said to be full rank if and only if each matrix com-
ponent in it is full rank.

• The rank of a generalized matrix A ∈
l∏

i=1

Fmi×ri
pi is defined as:

rank(A) =
l∑

i=1

rank(Ai).

• The logarithmic rank of a generalized matrix is defined as:

lrank(A) =
l∑

i=1

rank(Ai) · log2 pi.

• If A is a generalized matrix satisfying Ai �= ø and Aj = ø for all j �= i, we say
that A is an ordinary matrix and we identify A with Ai.

Definition 4.13. Let W :

l∏
i=1

Fmi
pi −→ Y be an m-user MAC, and let A ∈

l∏
i=1

Fmi×ri
pi

be a full-rank generalized matrix. We define the rank(A)-user MAC

W [A] :

l∏
i=1

Fri
pi −→ Y
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as follows:

W [A](y|
u) = 1∏l
i=1 p

mi−ri
i

∑
�x ∈ ∏l

i=1 F
mi
pi

AT �x=�u

W (y|
x).

The main result of this section is that as the number of polarization steps be-
comes large, almost all the synthetic MACs W s become MACs for which the output
is “almost determined” by the action of a generalized matrix As on the input:

Theorem 4.3. Let W :
l∏

i=1

Fmi
pi −→ Y be an m-user MAC. For every 0 < δ < 1, we

have:

lim
n→∞

1

2n

∣∣∣∣{s ∈ {−,+}n : ∃As ∈
l∏

i=1

Fmi×ri,s
pi , As is full rank,

|I(W s)− lrank(As)| < δ, |I(W s[As])− lrank(As)| < δ
}∣∣∣∣ = 1.

Proof. Since G :=
l∏

i=1

Fmi
pi is an Abelian group, we can view W as a channel from

the Abelian group G to Y. From Corollary 3.1, we have:

lim
n→∞

1

2n

∣∣∣∣{s ∈ {−,+}n : ∃Hs a stable partition of (G, /+),

∣∣I(W s)− log2 |Hs|
∣∣ < δ,

∣∣I(W s[Hs])− log2 |Hs|
∣∣ < δ

}∣∣∣∣ = 1.

On the other hand, from the proof of Proposition 2.4 we can see that every
stable partition of (G, /+) is the quotient of G by a (normal6) subgroup of (G,+).
Therefore,

lim
n→∞

1

2n

∣∣∣∣{s ∈ {−,+}n : ∃Hs a subgroup of (G,+),

∣∣I(W s)− log2 |G/Hs|
∣∣ < δ,

∣∣I(W s[G/Hs])− log2 |G/Hs|
∣∣ < δ

}∣∣∣∣ = 1.

Let s ∈ {−,+}n be such that there exists a subgroup Hs of G which satisfies:

•
∣∣I(W s)− log2 |G/Hs|

∣∣ < δ.

•
∣∣I(W s[G/Hs])− log2 |G/Hs|

∣∣ < δ.

From the properties of Abelian groups, there exist l integers: r1,s ≤ m1, . . . ,

rl,s ≤ ml such that G/Hs is isomorphic to
l∏

i=1

Fri,s
pi (Note that ri,s can be zero).

6Note that every subgroup of an Abelian group is normal.
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Therefore, there exists a surjective homomorphism fs :
l∏

i=1

Fmi
pi −→

l∏
i=1

Fri,s
pi , such

that for every 
x ∈
l∏

i=1

Fmi
pi , fs(
x) can be determined from 
x mod Hs := ProjG/Hs

(
x)

and vice versa.

For every 1 ≤ i ≤ l and 1 ≤ j ≤ mi, define the vector 
e i,j ∈
l∏

i=1

Fmi
pi in such

a way that the (i, j)th component is equal to 1, and all the other components are
equal to 0. Clearly, the order of 
e i,j in the group G is equal to pi. Define


y i,j = (
y i,j
1 , 
y i,j

2 , . . . , 
y i,j
l ) = fs(
e

i,j) ∈
l∏

i=1

Fri,s
pi .

If 
y i,j
i′ �= 
0 for some i′ �= i, then pi′ divides the order of 
y i,j . But 
y i,j = fs(
e

i,j),
so the order of 
y i,j divides the order of 
e i,j , which is equal to pi. Therefore, if

y i,j
i′ �= 
0 for some i′ �= i, then pi′ divides pi, which is a contradiction. We conclude

that 
y i,j
i′ = 
0 for every i′ �= i.

Now for every 
x ∈
l∏

i=1

Fmi
pi , we have 
x =

l∑
i=1

mi∑
j=1

xi,j
e
i,j . Therefore, fs(
x) =

l∑
i=1

mi∑
j=1

xi,j
y
i,j . Since 
y i,j

i′ = 0 for all i′ �= i, then fs(
x) = AT
s 
x, where As =

(A1,s, . . . , Al,s) ∈
l∏

i=1

Fmi×ri,s
pi is the generalized matrix whose components are given

by Ai,s = [
y i,1
i 
y i,2

i . . . 
y i,mi
i ]T . As is full rank since fs is surjective. Furthermore,

we have:

lrank(As) =
l∑

i=1

ri,s · log2 pi = log2

( l∏
i=1

p
ri,s
i

)
= log2 |G/Hs|.

Now recall that for every 
x ∈
l∏

i=1

Fmi
pi , A

T
s 
x = fs(
x) can be determined from 
x mod

Hs and vice versa. We conclude that W s[G/Hs] is equivalent to W s[As]. Therefore,

lim
n→∞

1

2n

∣∣∣∣{s ∈ {−,+}n : ∃As ∈
l∏

i=1

Fmi×ri,s
pi , As is full rank,

|I(W s)− lrank(As)| < δ, |I(W s[As])− lrank(As)| < δ
}∣∣∣∣ = 1.
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4.5.1 MAC-Polar Code Construction

Choose 0 < δ < 1, and let n be an integer such that

1

2n
|En| > 1− δ

2
l∑

i=1

mi log2 pi

,

where

En =

{
s ∈ {−,+}n :∃As ∈

l∏
i=1

Fmi×ri,s
pi , As is full rank,

|I(W s)− lrank(As)| <
δ

2
, |I(W s[As])− lrank(As)| <

δ

2

}
.

Such an integer exists due to Theorem 4.3.
For every s ∈ En, fix a generalized matrix As = (A1,s, . . . , Al,s) that satisfies the

conditions in En. Furthermore, for every 1 ≤ i ≤ l, fix a set of ri,s indices

Ji,s = {j1, . . . jri,s} ⊂ {1, . . . ,mi}

such that the corresponding rows of Ai,s are linearly independent.
Now for every s ∈ {−,+}n, 1 ≤ i ≤ l and 1 ≤ j ≤ mi, define F (s, i, j) as follows:

F (s, i, j) =

{
0 if s ∈ En and j ∈ Ji,s,

1 otherwise.

F (s, i, j) = 1 indicates that the user (i, j) will be frozen in the channel W s, i.e., no
useful information will be sent.

A MAC-polar code is constructed as follows: The user (i, j) sends a symbol
U s
i,j ∈ Fpi through a MAC that is equivalent to W s. If F (s, i, j) = 0, U s

i,j is an
information symbol, and if F (s, i, j) = 1, U s

i,j is a frozen symbol. Since we are free
to choose any value for the frozen symbols, we will analyze the performance of the
MAC-polar code averaged over all the possible choices of the frozen symbols, so we
will consider that U s

i,j is a random variable that is uniformly distributed in Fpi for
every s ∈ {−,+}n, 1 ≤ i ≤ l and 1 ≤ j ≤ mi. However, the value of U s

i,j will be
revealed to the receiver if F (s, i, j) = 1, and if F (s, i, j) = 0 the receiver has to
estimate U s

i,j from the output of the MAC.

Let s ∈ {−,+}n. For every 1 ≤ i ≤ l, we denote (U s
i,1, . . . , U

s
i,mi

) as 
U s
i . Fur-

thermore, we denote (
U s
1 , . . . ,


U s
l ) as


U s.

Encoding

We associate the set Sn = {−,+}n with the same strict total order < that we defined
in Section 4.4.1. Let {Ws}s∈{−,+}n be a set of 2n independent copies of the channel
W . As in Section 4.4.1, Ws should not be confused with W s: Ws is a copy of the
MAC W , whereas W s is a synthetic MAC obtained from W as before.

Let 1 ≤ i ≤ l and 1 ≤ j ≤ mi. For every 0 ≤ n′ ≤ n, s′ ∈ Sn′ and s′′ ∈ Sn−n′ ,
define U s′′

i,j,s′ recursively on 0 ≤ n′ ≤ n as follows:
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• U s
i,j,ø = U s

i,j if n′ = 0 and s ∈ {−,+}n.

• U s′′
i,j,(s′,−) = U

(s′′,+)
i,j,s′ + U

(s′′,−)
i,j,s′ if n′ > 0, s′ ∈ {−,+}n′−1 and s′′ ∈ {−,+}n−n′

.

• U s′′
i,j,(s′,+) = U

(s′′,+)
i,j,s′ if n′ > 0, s′ ∈ {−,+}n′−1 and s′′ ∈ {−,+}n−n′

.

For every s ∈ Sn, let Ui,j,s = Uø
i,j,s. The user (i, j) sends Ui,j,s through the MAC Ws

for all s ∈ {−,+}n. Let Ys be the output of the MAC Ws, and let Y = {Ys}s∈{−,+}n .
Let 0 ≤ n′ ≤ n, s′ ∈ Sn′ and s′′ ∈ Sn−n′ . For every 1 ≤ i ≤ l, we denote

(U s′′
i,1,s′ , . . . , U

s′′
i,mi,s′) as


U s′′
i,s′ . Furthermore, we denote (
U s′′

1,s′ , . . . ,

U s′′
l,s′) as


U s′′
s′ .

We can prove by backward induction on n′ that for every s′′ ∈ Sn−n′ , the MAC

U s′′
s′ −→

(
{Ys}s has s′ as a prefix, {
U r

s′}r<s′′
)
is equivalent to W s′′ . In particular, the

MAC 
U s −→
(
Y, {
U r}r<s

)
is equivalent to the MAC W s for every s ∈ Sn.

Decoding

If s /∈ En, there is nothing to decode because F (s, i, j) = 1 for all (i, j), i.e., the
receiver knows U s

i,j for all (i, j).

Now suppose that s ∈ En. If we know {
Ur}r<s then we can estimate 
Us as
follows:

• If F (s, i, j) = 1 then we know U s
i,j .

• We have F (s, i, j) = 0 for ri,s values of j corresponding to ri,s linearly inde-

pendent rows of Ai,s. Therefore, if we know AT
i,s

U s
i , we can recover U s

i,j for all
the indices j satisfying F (s, i, j) = 0.

• Since AT
s

U s −→

(
Y, {
U r}r<s

)
is equivalent to W s[As], we can estimate AT

s

U s

using the maximum likelihood decoder of the MAC W s[As].

• Let Ds(Y, {
U r}r<s) be the estimate of 
U s obtained from (Y, {
U r}r<s) by the
above procedure.

This motivates the following successive cancellation decoder:

• 
̂U s = 
U s if s /∈ En.

• 
̂U s = Ds(Y, { 
̂U r}r<s) if s ∈ En.

Performance of MAC-polar codes

As we will see in Chapter 5, the exponent of a sequence of quasigroup operations is
equal to 1

2 . This means that the probability of error of the MAC-polar codes that

we constructed in this section decays faster7 than 2−Nβ
for any β < 1

2 .
By changing our choice of the indices in Ji,s, we can achieve all the portion of

the dominant face of the symmetric-capacity region that is achievable by MAC-polar
codes. This portion of the dominant face that is achievable by MAC-polar codes
might be strictly smaller than the dominant face. In such case, we say that we have
a loss in the symmetric-capacity region. We study this loss in Chapter 6.

7In order to ensure that the probability of error of the MAC-polar code decays faster than 2−Nβ

,

we should add the condition Pe(W
s[As]) < 2−2β

′n
to the definition of En, where β < β′ < 1

2
.
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There are two common approaches to assess the performance of a family of codes:

• The error exponent approach: We fix a rate R and study the decay of the
probability of error as the blocklength N increases. It is known that the decay
of the probability of error of random codes is exponential in N (see e.g., [24]).
Unlike random codes, the probability of error of polar codes does not decay
exponentially in the blocklength. Arıkan and Telatar showed that the proba-
bility of error of polar codes for binary-input channels decays exponentially in
the square root of the blocklength. This behavior was also shown for the polar
codes of [4, 5, 6, 7], and the MAC-polar codes of [8, 9].

• The scaling exponent approach: We fix a probability of error and study the
growth of the blocklengthN as the gap to capacity C(W )−R decreases towards
zero. It was shown in [25, 26, 27, 28] that the blocklength of optimal codes

grows as O
(

1
(C(W )−R)2

)
. The scaling exponent of polar codes in the case of

binary-input channels was studied in [29, 30, 31, 32].

In this chapter1, we study the error exponents of polarizing binary operations
and MAC-polarizing sequences of binary operations. In Section 5.1, we define the
Bhattacharyya parameter of a channel, which is a very useful tool for the study
of error exponents of polar codes. In Section 5.2, we show that the exponent of a
polarizing binary operation cannot exceed 1

2 . We also provide a sufficient condition
for a polarizing operation to have a zero exponent. In Section 5.3, we prove that
the exponent of a quasigroup operation is exactly 1

2 . In Section 5.4, we show that
the exponent of a MAC-polarizing sequence of binary operations is upper bounded
by the exponent of the product of all the binary operations that are present in
the sequence, which in turn is upper bounded by the exponent of every binary
operation in the sequence. Furthermore, we prove that the exponent of a sequence
of quasigroup operations is exactly 1

2 .

1The material of this chapter is based on [17, 18, 20].
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5.1 The Bhattacharyya Parameter

Definition 5.1. Let W be a channel with input alphabet X and output alphabet Y.
For every x, x′ ∈ X , we define the channel Wx,x′ : {0, 1} −→ Y as follows:

Wx,x′(y|b) =
{
W (y|x) if b = 0,

W (y|x′) if b = 1.

The Battacharyya parameter between x and x′ of the channel W is the Bhat-
tacharyya parameter of the channel Wx,x′:

Z(Wx,x′) :=
∑
y∈Y

√
Wx,x′(y|0)Wx,x′(y|1) =

∑
y∈Y

√
W (y|x)W (y|x′).

It is easy to see that 0 ≤ Z(Wx,x′) ≤ 1 for every x, x′ ∈ X . Moreover, if x = x′ we
have Z(Wx,x′) = Z(Wx,x) = 1.

If |X | ≥ 2, the Battacharyya parameter of the channel W is defined as:

Z(W ) :=
1

|X |(|X | − 1)

∑
(x,x′)∈X×X

x�=x′

Z(Wx,x′).

We can easily see that 0 ≤ Z(W ) ≤ 1.

Proposition 5.1. The Bhattacharyya parameter of a channel W : X −→ Y has the
following properties:

1. Z(W )2 ≤ 1− I(W )

log2 |X | .

2. I(W ) ≥ log2
|X |

1 + (|X | − 1)Z(W )
.

3.
1

4
Z(W )2 ≤ Pe(W ) ≤ (|X | − 1)Z(W ), where Pe(W ) is the probability of error

of the maximum likelihood decoder of W for uniformly distributed input.

Proof. Inequalities 1) and 2) are proved in Proposition 3.3 of [33], and the upper
bound of 3) is shown in Proposition 3.2 of [33]. It remains to show the lower bound
of 3).

Let DML
W : Y → X be the ML decoder of the channel W : X −→ Y. I.e., for

every y ∈ Y, DML
W (y) = argmax

x∈X
W (y|x). For every x ∈ X , let Pe,x(W ) be the

probability of error of DML
W given that x was sent through W . Clearly, Pe(W ) =

1

|X |
∑
x∈X

Pe,x(W ).

Now fix x, x′ ∈ X such that x �= x′ and define Pe,x,x′(W ) := 1
2Pe,x(W ) +

1
2Pe,x′(W ). Consider the channel Wx,x′ : {0, 1} −→ Y. We can use DML

W to construct
a decoder for Wx,x′ as follows:

• If DML
W (y) = x, the decoder output is 0.
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• If DML
W (y) = x′, the decoder output is 1.

• If DML
W (y) /∈ {x, x′} for y ∈ Y, we consider that an error has occurred.

It is easy to see that the probability of error of the constructed decoder (assuming
uniform binary input to the channel Wx,x′) is equal to 1

2Pe,x(W ) + 1
2Pe,x′(W ) =

Pe,x,x′(W ). But since the ML decoder of Wx,x′ has the minimal probability of error
among all decoders, we conclude that:

Pe,x,x′(W ) ≥ Pe(Wx,x′) =
1

2

∑
y∈Y

min
{
Wx,x′(y|0),Wx,x′(y|1)

}

=
1

2

∑
y∈Y

min
{
W (y|x),W (y|x′)

}
.

(5.1)

On the other hand, we have:

Z(Wx,x′) =
∑
y∈Y

√
W (y|x)W (y|x′)

=
∑
y∈Y

√(
min

{
W (y|x),W (y|x′)

})(
max

{
W (y|x),W (y|x′)

})
(a)

≤
(∑

y∈Y
min

{
W (y|x),W (y|x′)

})1/2(∑
y∈Y

max
{
W (y|x),W (y|x′)

})1/2
(b)

≤
√
2Pe,x,x′(W )

(∑
y∈Y

W (y|x) +W (y|x′)
)1/2

=
√
2Pe,x,x′(W ).

√
2

= 2
√

Pe,x,x′(W ),

where (a) follows from the Cauchy-Schwartz inequality. (b) follows from (5.1) and
from the fact that max

{
W (y|x),W (y|x′)

}
≤ W (y|x) +W (y|x′). We conclude that:

Pe,x,x′(W ) ≥ 1

4
Z(Wx,x′)2. (5.2)

Now since Pe(W ) =
1

|X |
∑
x∈X

Pe,x(W ), we have:

∑
x,x′∈X
x�=x′

Pe,x,x′(W ) =
1

2

( ∑
x,x′∈X
x�=x′

Pe,x(W )
)
+

1

2

( ∑
x,x′∈X
x�=x′

Pe,x′(W )
)

=
1

2

(∑
x∈X

(|X | − 1)Pe,x(W )
)
+

1

2

( ∑
x′∈X

(|X | − 1)Pe,x′(W )
)

=
1

2
(|X | − 1)|X |Pe(W ) +

1

2
(|X | − 1)|X |Pe(W )

= (|X | − 1)|X |Pe(W ).
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Therefore,

Pe(W ) =
1

(|X | − 1)|X |
∑

x,x′∈X
x�=x′

Pe,x,x′(W )
(a)

≥ 1

(|X | − 1)|X |
∑

x,x′∈X
x�=x′

1

4
Z(Wx,x′)2

(b)

≥ 1

4

( 1

(|X | − 1)|X |
∑

x,x′∈X
x�=x′

Z(Wx,x′)
)2

=
1

4
Z(W )2,

where (a) follows from (5.2) and (b) follows from the convexity of the mapping
t → t2.

Remark 5.1. Proposition 5.1 shows that Z(W ) measures the ability of the receiver
to reliably decode the output and correctly estimate the input:

• If Z(W ) is low, the inequality Pe(W ) ≤ (|X | − 1)Z(W ) implies that Pe(W ) is
also low and the receiver can determine the input from the output with high
probability. This is also expressed by inequality 2) of Proposition 5.1: If Z(W )
is close to 0, I(W ) is close to log2 |X |.

• If Z(W ) is close to 1, inequality 1) of Proposition 5.1 implies that I(W ) is
close to 0, which means that the input and the output are “almost” independent
and so it is not possible to recover the input reliably. This is also expressed by

the inequality Pe(W ) ≥ 1

4
Z(W )2: If Z(W ) is high, Pe(W ) cannot be too low.

Since Wx,x′ is the binary input channel obtained by sending either x or x′ through W ,
Z(Wx,x′) can be interpreted as a measure of the ability of the receiver to distinguish
between x and x′: If Z(Wx,x′) ≈ 0, the receiver can reliably distinguish between x
and x′ and if Z(Wx,x′) ≈ 1, the receiver cannot distinguish between x and x′.

5.2 Exponent of a Polarizing Operation

In this section, we study the exponent of polarizing operations.

Notation 5.1. Let x, x′ ∈ X and let s ∈ {−,+}n. Throughout this section, W s
x,x′

denotes (W s)x,x′. The channel W s
x,x′ should not be confused with (Wx,x′)s which is

not defined unless a binary operation on {0, 1} is specified.

Lemma 5.1. For every u1, u
′
1, v ∈ X , we have Z(W−

u1,u′
1
) ≥ 1

|X |Z(Wu1∗v,u′
1∗v).
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Proof.

Z(W−
u1,u′

1
) =

∑
y1,y2∈Y

√
W−(y1, y2|u1)W−(y1, y2|u′1)

=
∑

y1,y2∈Y

√√√√ ∑
u2,u′

2∈X

1

|X |2W (y1|u1 ∗ u2)W (y2|u2)W (y1|u′1 ∗ u′2)W (y2|u′2)

≥ 1

|X |
∑

y1,y2∈Y

√
W (y1|u1 ∗ v)W (y2|v)W (y1|u′1 ∗ v)W (y2|v)

=
1

|X |
∑

y1,y2∈Y
W (y2|v)

√
W (y1|u1 ∗ v)W (y1|u′1 ∗ v)

=
1

|X |
∑
y1∈Y

√
W (y1|u1 ∗ v)W (y1|u′1 ∗ v) =

1

|X |Z(Wu1∗v,u′
1∗v).

Lemma 5.2. For every u2, u
′
2 ∈ X , we have

Z(W+
u2,u′

2
) =

1

|X |
∑
u1∈X

Z(Wu1∗u2,u1∗u′
2
)Z(Wu2,u′

2
).

Proof.

Z(W+
u2,u′

2
) =

∑
y1,y2∈Y

∑
u1∈X

√
W+(y1, y2, u1|u2)W+(y1, y2, u1|u′2)

=
∑

y1,y2∈Y

∑
u1∈X

√
1

|X |2W (y1|u1 ∗ u2)W (y2|u2)W (y1|u1 ∗ u′2)W (y2|u′2)

=
1

|X |
∑
u1∈X

∑
y1,y2∈Y

√
W (y1|u1 ∗ u2)W (y1|u1 ∗ u′2)

√
W (y2|u2)W (y2|u′2)

=
1

|X |
∑
u1∈X

Z(Wu1∗u2,u1∗u′
2
)Z(Wu2,u′

2
).

Notation 5.2. If W is a channel with input alphabet X . We denote max
x,x′∈X
x�=x′

Z(Wx,x′)

and min
x,x′∈X
x�=x′

Z(Wx,x′) by Zmax(W ) and Zmin(W ) respectively. Note that we can also

express Zmin(W ) as min
x,x′∈X

Z(Wx,x′) since Zmin(W ) ≤ 1 and Zx,x(W ) = 1 for every

x ∈ X .

Proposition 5.2. Let ∗ be a polarizing operation on X , where |X | ≥ 2. If for every
u2, u

′
2 ∈ X there exists u1 ∈ X such that u1 ∗ u2 = u1 ∗ u′2, then E∗ = 0.

Proof. Let β > 0 and 0 < β′ < β. Clearly,
1

4

(
2−2β

′n)2
> 2−2βn for n large enough.

We have:
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• For every u2, u
′
2 ∈ X satisfying u2 �= u′2, let u1 ∈ X be such that u1 ∗ u2 =

u1 ∗u′2. Lemma 5.2 implies that Z(W+
u2,u′

2
) ≥ 1

|X |Z(Wu1∗u2,u1∗u′
2
)Z(Wu2,u′

2
) =

1

|X |Z(Wu2,u′
2
) since Z(Wu1∗u2,u1∗u′

2
) = 1. Therefore,

Zmax(W
+) = max

x,x′∈X
x�=x′

Z(W+
x,x′) ≥

1

|X | max
x,x′∈X
x�=x′

Z(Wx,x′) =
1

|X |Zmax(W ).

• By fixing v ∈ X , Lemma 5.1 implies that

Zmax(W
−) = max

x,x′∈X
x�=x′

Z(W−
x,x′) ≥

1

|X | max
x,x′∈X
x�=x′

Z(Wx∗v,x′∗v)

(a)
=

1

|X | max
x,x′∈X
x�=x′

Z(Wx,x′) =
1

|X |Zmax(W ),

where (a) follows from the fact that ∗ is uniformity-preserving, which implies
that

{(x ∗ v, x′ ∗ v) : x, x′ ∈ X , x �= x′} = {(x, x′) : x, x′ ∈ X , x �= x′}.

By induction on n > 0, we conclude that for every s ∈ {−,+}n we have:

Zmax(W
s) ≥ 1

|X |nZmax(W ) =
1

2n log2 |X |Zmax(W ).

If Z(W ) > 0 we have Zmax(W ) > 0, and

Z(W s) ≥ 1

|X |(|X | − 1)
Zmax(W

s) ≥ Zmax(W )

|X |(|X | − 1) · (2n)log2 |X | ,

which means that the decay of Z(W s) in terms of the blocklength 2n can be at

best polynomial. Therefore, for n large enough we have Z(W s) > 2−2β
′n

for every
s ∈ {−,+}n.

Now let δ = 1
3 log2 |X | − 1

3 log2(|X | − 1) > 0 and let W be any channel sat-
isfying log2 |X | − δ < I(W ) < log2 |X | (we can easily construct such a channel).
Since I(W ) < log2 |X |, Proposition 5.1 implies that we have Z(W ) > 0. Let
Wn be the process introduced in Definition 3.3. Since ∗ is polarizing, we have
P[Wn is δ-easy] > 3

4 (i.e., 1
2n |{s ∈ {−,+}n : W s is δ-easy}| > 3

4) for n large
enough. On the other hand, since ∗ satisfies the conservation property, we have

E[I(Wn)] =
1

2n

∑
s∈{−,+}n

I(W s) = I(W ) > log2 |X | − δ. Therefore, we must have

P
[
I(Wn) > log2 |X | − 2δ

]
> 1

2 and so for n large enough, we have

P
[
I(Wn) > log2 |X | − 2δ and Wn is δ-easy

]
>

1

4
.

Now suppose s ∈ {−,+}n is such that W s is δ-easy and I(W s) > log2 |X | − 2δ, and
let L and B be as in Definition 3.1. We have I(W s) − log2(|X | − 1) > 3δ − 2δ = δ
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and so the only possible value for L is |X |. But since the only subset of X of
size |X | is X , we have B = X with probability 1. Therefore, W s

B is equivalent

to W s which means that Z(W s
B) = Z(W s) > 2−2β

′n
. Now Proposition 5.1 im-

plies that Pe(W
s
B) > 1

4

(
2−2β

′n
)2

> 2−2βn and so W s is not (δ, 2−βn)-easy. Thus,

P
[
Wn is (δ, 2−2βn)-easy

]
< 3

4 for n large enough.

We conclude that no exponent β > 0 is ∗-achievable. Therefore, E∗ = 0.

Remark 5.2. Consider the following uniformity-preserving operation:

∗ 0 1 2 3

0 3 3 3 3

1 0 1 0 0

2 1 0 1 1

3 2 2 2 2

It is easy to see that /∗ is strongly ergodic and so ∗ is polarizing. Moreover, ∗
satisfies the property of Proposition 5.2, hence it has a zero exponent. This shows
that the exponent of a polarizing operation can be as low as 0.

The following lemma will be used to show that E∗ ≤ 1
2 for every polarizing

operation ∗.

Lemma 5.3. Let ∗ be a uniformity-preserving operation on X and let W be a
channel with input alphabet X . For every n > 0 and every s ∈ {−,+}n, we have

Zmin(W
s) ≥

(
Zmin(W )

|X |

)(|s|−+1)2|s|
+

, where |s|− (resp. |s|+) is the number of −
signs (resp. + signs) in the sequence s.

Proof. We will prove the lemma by induction on n > 0. If n = 1, then either s = −
or s = +. If s = −, let v ∈ X . We have:

Zmin(W
s) = Zmin(W

−) = min
u1,u′

1∈X
Z(W−

u1,u′
1
)

(a)

≥ min
u1,u′

1∈X
1

|X |Z(Wu1∗v,u′
1∗v)

(b)

≥
(
Zmin(W )

|X |

)(|s|−+1)2|s|
+

,

(5.3)

where (a) follows from Lemma 5.1 and (b) follows from the fact that (|s|−+1)2|s|+ =
2 since |s|− = 1 and |s|+ = 0 when s = −.

If s = +, we have:

Zmin(W
s) = Zmin(W

+) = min
u2,u′

2∈X
Z(W+

u2,u′
2
)

(a)

≥ min
u2,u′

2∈X
1

|X |
∑
u1∈X

Z(Wu1∗u2,u1∗u′
2
)Z(Wu2,u′

2
)

≥ Zmin(W )2
(b)

≥
(
Zmin(W )

|X |

)(|s|−+1)2|s|
+

, (5.4)
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where (a) follows from Lemma 5.2 and (b) follows from the fact that (|s|−+1)2|s|+ =
2 since |s|− = 0 and |s|+ = 1 when s = +. Therefore, the lemma is true for n = 1.
Now let n > 1 and suppose that it is true for n − 1. Let s = (s′, sn) ∈ {−,+}n,
where s′ ∈ {−,+}n−1 and sn ∈ {−,+}. From the induction hypothesis, we have

Zmin(W
s′) ≥

(
Zmin(W )

|X |

)(|s′|−+1)2|s
′|+

.

If sn = −, we can apply (5.3) on W s′ to get:

Zmin(W
s) ≥ 1

|X |Zmin(W
s′) ≥ 1

|X |

(
Zmin(W )

|X |

)(|s′|−+1)2|s
′|+

≥
(
Zmin(W )

|X |

)1+(|s′|−+1)2|s
′|+

≥
(
Zmin(W )

|X |

)(|s′|−+2)2|s
′|+

=

(
Zmin(W )

|X |

)(|s|−+1)2|s|
+

.

If sn = +, we can apply (5.4) on W s′ to get:

Zmin(W
s) ≥ Zmin(W

s′)2 ≥

⎛
⎝(Zmin(W )

|X |

)(|s′|−+1)2|s
′|+
⎞
⎠

2

=

(
Zmin(W )

|X |

)2(|s′|−+1)2|s
′|+

=

(
Zmin(W )

|X |

)(|s′|−+1)2|s
′|++1

=

(
Zmin(W )

|X |

)(|s|−+1)2|s|
+

.

We conclude that the lemma is true for every n > 0.

Proposition 5.3. If ∗ is a polarizing operation on X , where |X | ≥ 2, then E∗ ≤ 1
2 .

Proof. Let β > 1
2 , and let 1

2 < β′ < β. Let ε > 0 be such that (1 − ε) log2 |X | >
log2 |X | − δ, where δ = 1

3 |X | − 1
3(|X | − 1). Let e /∈ X and consider the channel

W : X −→ X ∪ {e} defined as follows:

W (y|x) =

⎧⎪⎨
⎪⎩
1− ε if y = x,

ε if y = e,

0 otherwise.

We have I(W ) = (1− ε) log2 |X | > log2 |X |− δ and Z(Wx,x′) = ε for every x, x′ ∈ X
such that x �= x′, and thus Zmin(W ) = ε. We have the following:

• Since β′ > 1
2 , the law of large numbers implies that

1

2n
∣∣{s ∈ {−,+}n : |s|+ ≤ β′n

}∣∣
converges to 1 as n goes to infinity. Therefore, for n large enough, we have
1

2n
|Bn| >

7

8
, where

Bn =
{
s ∈ {−,+}n : |s|+ ≤ β′n

}
.
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• Since
∑

s∈{−,+}n
I(W s) = 2nI(W ) > 2n(log2 |X | − δ), we must have

1

2n
|Cn| >

1

2

where

Cn =
{
s ∈ {−,+}n : I(W s) > log2 |X | − 2δ

}
.

• Since ∗ is polarizing, we have
1

2n
|Dn| >

7

8
for n large enough, where

Dn =
{
s ∈ {−,+}n : W s is δ-easy

}
.

We conclude that for n large enough, we have
1

2n
|An| >

1

4
, where

An = Bn ∩ Cn ∩Dn

=
{
s ∈ {−,+}n : |s|+ ≤ β′n, W s is δ-easy and I(W s) > log2 |X | − 2δ

}
.

Now let s ∈ An. Let L and B be as in Definition 3.1. We have I(W s)−log2(|X |−1) >
3δ − 2δ = δ and so the only possible value for L is |X |, and since the only subset of
X of size |X | is X , we have B = X with probability 1. Therefore, W s

B is equivalent
to W s. Thus,

Z(W s
B) = Z(W s) ≥ Zmin(W

s)
(a)

≥
(
Zmin(W )

|X |

)(|s|−+1)2|s|
+

(b)

≥
(

ε

|X |

)(n+1)2β
′n

,

where (a) follows from Lemma 5.3 and (b) follows from the fact that |s|− ≤ n and
|s|+ ≤ β′n for s ∈ An, and from the fact that Zmin(W ) = ε which was proved earlier.

Now Proposition 5.1 implies that Pe(W
s
B) ≥

1

4

(
ε

|X |

)2(n+1)2β
′n

. On the other hand,

since β′ < β, we have
1

4

(
ε

|X |

)2(n+1)2β
′n

> 2−2βn for n large enough. Therefore,

W s is not (δ, 2−βn)-easy if s ∈ An and n is large enough. Let Wn be the process
introduced in Definition 3.3. For n large enough, we have

P
[
Wn is (δ, 2−2βn)-easy

]
≤ 1− 1

2n
|An| < 1− 1

4
=

3

4
.

We conclude that no exponent β > 1
2 is ∗-achievable. Therefore, E∗ ≤ 1

2 .

5.3 Exponent of a Quasigroup Operation

Definition 5.2. Let (Q, ∗) be a quasigroup with |Q| ≥ 2, and Y be an arbitrary set.
Let W : Q −→ Y be an arbitrary channel, and H be a stable partition of (Q, /∗).
We define the channels W [H]− : H/∗ −→ Y × Y and W [H]+ : H −→ Y × Y ×H/∗

as:

W [H]+(y1, y2, H1|H2) =
1

|H|W [H](y1|H1 ∗H2)W [H](y2|H2),

W [H]−(y1, y2|H1) =
1

|H|
∑

H2∈H
W [H](y1|H1 ∗H2)W [H](y2|H2).
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Lemma 5.4. W [H]+ is degraded with respect to W+[H], and W [H]− is equivalent
to W−[H/∗ ].

Proof. Let (H1, H2, y1, y2) ∈ H/∗ ×H× Y × Y, we have:

W [H]+(y1, y2, H1|H2) =
1

|H|W [H](y1|H1 ∗H2)W [H](y2|H2)

=
1

|Q|.||H||
∑
x1∈Q,

ProjH(x1)=H1∗H2

W (y1|x1)
∑
x2∈Q,

ProjH(x2)=H2

W (y2|x2)

=
1

|Q|.||H||
∑
x1∈Q,

ProjH/∗ (x1)=H1

∑
x2∈Q,

ProjH(x2)=H2

W (y1|x1 ∗ x2)W (y2|x2)

=
1

||H||
∑
x1∈Q,

ProjH/∗ (x1)=H1

∑
x2∈Q,

ProjH(x2)=H2

W+(y1, y2, x1|x2)

=
∑
x1∈Q,

ProjH/∗ (x1)=H1

W+[H](y1, y2, x1|H2).

Therefore, W [H]+ is degraded with respect to W+[H]. Now let (H1, y1, y2) ∈ H/∗ ×
Y × Y, we have:

W [H]−(y1, y2|H1) =
1

|H|
∑

H2∈H
W [H](y1|H1 ∗H2)W [H](y2|H2)

=
1

|Q|.||H||
∑

H2∈H

∑
x1∈Q,

ProjH(x1)=H1∗H2

W (y1|x1)
∑
x2∈Q,

ProjH(x2)=H2

W (y2|x2)

=
1

|Q|.||H||
∑

H2∈H

∑
x1∈Q,

ProjH/∗ (x1)=H1

∑
x2∈Q,

ProjH(x2)=H2

W (y1|x1 ∗ x2)W (y2|x2)

=
1

|Q|.||H||
∑
x1∈Q,

ProjH/∗ (x1)=H1

∑
x2∈Q

W (y1|x1 ∗ x2)W (y2|x2)

=
1

||H||
∑
x1∈Q,

ProjH/∗ (x1)=H1

W−(y1, y2|x1) = W−[H/∗ ](y1, y2|H1).

Therefore, W [H]− is equivalent to W−[H/∗ ].

Definition 5.3. Let H be a stable partition of (Q, /∗), we define the stable partitions
H− and H+, by H/∗ and H respectively.

Lemma 5.5. Let (Bn)n≥0 and (Wn)n≥0 be defined as in definition 3.3. For each
stable partition H of (Q, /∗), we define the stable-partition-valued process (Hn)n≥0

by:

H0 := H,

Hn := HBn
n−1, ∀n ≥ 1.
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Then I(Wn[Hn]) converges almost surely to a number in

LH :=
{
log2 d : d divides |H|

}
.

Proof. Since Wn[Hn]
− is equivalent to W−

n [H/∗
n ] and Wn[Hn]

+ is degraded with
respect to W+

n [Hn] (Lemma 5.4), we have:

E
(
I(Wn+1[Hn+1])

∣∣∣Wn

)
=

1

2
I(W−

n [H/∗
n ]) +

1

2
I(W+

n [Hn])

≥ 1

2
I(Wn[Hn]

−) +
1

2
I(Wn[Hn]

+) = I(Wn[Hn]).

This implies that the process I(Wn[Hn]) is a sub-martingale and so it converges
almost surely. Let δ > 0, and define

Dn,δ :=

{
s ∈ {−,+}n : ∃Hs a stable partition of (Q, /∗),

∣∣∣I(W s[H′])− log2
|Hs|.||Hs ∧H′||

||H′||
∣∣∣ < δ for all stable partitions H′ of (Q, /∗)

}
.

Theorem 3.1 implies that lim
n→∞

1

2n
|Dn,δ| = 1. It is easy to see that almost surely, for

every δ > 0 and for every n0 > 0, there exists n > n0 such that (B1, . . . , Bn) ∈ Dl,δ.
Let (Bn)n≥0 be a realization that satisfies:

• The sequence
(
I(Wn[Hn])

)
n≥0

converges to a limit x.

• For every δ > 0 and every n0 > 0, there exists n > n0 such that (B1, . . . , Bn) ∈
Dn,δ.

Let δ > 0 and let n0 > 0 be chosen such that |I(Wn[Hn])− x| < δ for every n > n0.
Choose n > n0 such that s = (B1, . . . , Bn) ∈ Dn,δ. By taking H′ = Hn in (5.3), we

obtain
∣∣∣I(Wn[Hn])− log2

|Hs|.||Hs ∧Hn||
||Hn||

∣∣∣ < δ. Therefore,

∣∣∣x− log2
|Hn|.||Hs ∧Hn||

||Hs||
∣∣∣ < 2δ.

But |Q| = |Hs|.||Hs|| = |Hn|.||Hn||, hence
∣∣∣x− log2

|Hs|.||Hs ∧Hn||
||Hn||

∣∣∣ < 2δ.

By noticing that
|Hn|.||Hs ∧Hn||

||Hs||
divides |Hn| = |H|, we conclude that

min
R∈LH

|x−R| < 2δ, ∀δ > 0.

Therefore, x ∈ LH.

Lemma 5.6. Let (Q, ∗) be a quasigroup satisfying |Q| ≥ 2, and let W : Q −→ Y.
Let H be a stable partition of (Q, /∗). For every 0 < δ < 1 and every 0 < β < 1

2 , we
have:

lim
n→∞

1

2n

∣∣∣∣{s ∈ {−,+}n : ∃H a stable partition of (Q, /∗),

I(W s[H]) > log2 |H| − δ, Z(W s[H]) ≥ 2−2nβ
}∣∣∣∣ = 0.
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Proof. Let 0 < δ < 1 and 0 < β < 1
2 , and let H be a stable partition of (Q, /∗).

I(Wn[Hn]) converges almost surely to an element in LH. Due to the relations
between the quantities I(W ) and Z(W ) (see Proposition 5.1), we can see that
Z(Wn[Hn]) converges to 0 if and only if I(Wn[Hn]) converges to log2 |H|, and there
is a number z0 > 0 such that lim inf Z(Wn[H]) > z0 whenever I(Wn[H]) converges
to a number in LH other than log2 |H|. Therefore, we can say that almost surely,
we have:

limZ(Wn[Hn]) = 0 or lim inf Z(Wn[H]) > z0

Z(W+
n [H+

n ]) ≤ Z(Wn[Hn]
+) sinceWn[Hn]

+ is degraded with respect toW+
n [H+

n ],
and Z(W−

n [H−
n ]) = Z(Wn[Hn]

−) since Wn[Hn]
− and W−

n [H−
n ] are equivalent (see

Lemma 5.4). On the other hand, from [33, Lemma 3.5], we have:

• Z(Wn[Hn]
−) ≤

(
|H|2 − |H|+ 1

)
Z(Wn[Hn]).

• Z(Wn[Hn]
+) ≤

(
|H| − 1

)
Z(Wn[Hn])

2.

Therefore, we have Z(W−
n [Hn]) ≤ K.Z(Wn[Hn]) and Z(W+

n [Hn]) ≤ K.Z(Wn[Hn])
2,

where K :=
(
|H|2 − |H| + 1

)
. By applying exactly the same techniques that were

used to prove [33, Theorem 3.5] we get:

lim
n→∞P

[
I(Wn[Hn]) > log2 |H| − δ, Z(Wn[Hn]) ≥ 2−2nβ

]
= 0.

But this is true for every stable partition H of (Q, /∗). Therefore,

lim
n→∞

1

2n

∣∣∣∣{s ∈ {−,+}n : ∃H a stable partition of (Q, /∗),

I(W s[Hs]) > log2 |H| − δ, Z(W s[Hs]) ≥ 2−2nβ
}∣∣∣∣ = 0.

By noticing that for every s ∈ {−,+}n, there exists a stable partition Hs of (Q, /∗)
satisfying H = Hs

s, we conclude that:

lim
n→∞

1

2n

∣∣∣∣{s ∈ {−,+}n : ∃H a stable partition of (Q, /∗),

I(W s[H]) > log2 |H| − δ, Z(W s[H]) ≥ 2−2nβ
}∣∣∣∣ = 0.

Theorem 5.1. The convergence of Wn to projection channels is almost surely fast:

lim
n→∞

1

2n

∣∣∣∣{s ∈ {−,+}n : ∃Hs a stable partition of (Q, /∗),

∣∣I(W s)− log2 |Hs|
∣∣ < δ,

∣∣I(W s[Hs])− log2 |Hs|
∣∣ < δ, Z(W s[Hs]) < 2−2βn

}∣∣∣∣ = 1,

for every 0 < δ < 1, and every 0 < β < 1
2 .
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Proof. Let 0 < δ < 1, and 0 < β < 1
2 . Define:

E0 =
{
s ∈ {−,+}n : ∃H a stable partition of (Q, /∗),

I(W s[H]) > log2 |H| − δ, Z(W s[H]) ≥ 2−2βn
}
,

E1 =
{
s ∈ {−,+}n :∃Hs a stable partition of (Q, /∗),∣∣I(W s)− log2 |Hs|

∣∣ < δ,
∣∣I(W s[Hs])− log2 |Hs|

∣∣ < δ
}
,

E2 =

{
s ∈ {−,+}n : ∃Hs a stable partition of (Q, /∗),

∣∣I(W s)− log2 |Hs|
∣∣ < δ,

∣∣I(W s[Hs])− log2 |Hs|
∣∣ < δ, Z(W s[Hs]) < 2−2βn

}
.

It is easy to see that E1 \ E0 ⊂ E2 and |E2| ≥ |E1| − |E0|. From Corollary 3.1
and Lemma 5.6, we obtain

1 ≥ lim
n→∞

1

2n
|E2| ≥ lim

n→∞
1

2n
(
|E1| − |E0|

)
= 1− 0 = 1.

Proposition 5.4. If (Q, ∗) is a quasigroup satisfying |Q| ≥ 2, then E∗ = 1
2 .

Proof. Let β < β′ < 1
2 . Let W : Q −→ Y be a channel. From Theorem 5.1, we have:

lim
n→∞

1

2n

∣∣∣∣{s ∈ {−,+}n : ∃Hs a stable partition of (X , /∗),

∣∣I(W s)− log2 |Hs|
∣∣ < δ,

∣∣I(W s[Hs])− log2 |Hs|
∣∣ < δ, Z(W s[Hs]) < 2−2β

′n}∣∣∣∣ = 1.

On the other hand, from Proposition 5.1, we have

Pe(W
s[Hs]) ≤ (|Hs| − 1)Z(W s[Hs]) ≤ (|X | − 1)Z(W s[Hs]).

Therefore,

lim
n→∞

1

2n

∣∣∣∣{s ∈ {−,+}n : ∃Hs a stable partition of (X , /∗),

∣∣I(W s)− log2 |Hs|
∣∣ < δ,

∣∣I(W s[Hs])− log2 |Hs|
∣∣ < δ, Pe(W

s[Hs]) < (|X | − 1)2−2β
′n
}∣∣∣∣ = 1.

But (|X | − 1)2−2β
′n

< 2−2βn for n large enough, hence

lim
n→∞

1

2n

∣∣∣∣{s ∈ {−,+}n : ∃Hs a stable partition of (X , /∗),

∣∣I(W s)− log2 |Hs|
∣∣ < δ,

∣∣I(W s[Hs])− log2 |Hs|
∣∣ < δ, Pe(W

s[Hs]) < 2−2βn
}∣∣∣∣ = 1.
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Lemma 3.4 now implies that:

lim
n→∞

1

2n
∣∣{s ∈ {−,+}n : W s is (δ, 2−2βn)-easy

}∣∣ = 1.

We conclude that every 0 ≤ β < 1
2 is a ∗-achievable exponent. Therefore, E∗ ≥ 1

2 .
On the other hand, since ∗ is polarizing, Proposition 5.3 implies that E∗ ≤ 1

2 .
Therefore, E∗ = 1

2 .

Corollary 5.1. For every δ > 0, every β < 1
2 , every channel W : Q −→ Y, and

every quasigroup operations ∗ on Q, there exists a polar code for the channel W
constructed using ∗ such that its rate is at least I(W ) − δ and its probability of

error under successive cancellation decoding is less than 2−Nβ
, where N = 2n is the

blocklength.

Proof. The corollary follows from Propositions 3.4 and 5.4.

Conjecture 5.1. If ∗ is a polarizing operation that is not a quasigroup operation,
then E∗ < 1

2 .

Conjecture 5.1 implies that quasigroup operations are the best polarizing oper-
ations. Therefore, if the conjecture is true and we are looking for good polar codes
with large blocklength, it is sufficient to consider quasigroup operations.

5.4 Exponent of a MAC-Polarizing Sequence of Binary
Operations

Proposition 5.5. Let ∗1, . . . , ∗m be m binary operations on X1, . . . ,Xm respectively.
If max

1≤i≤m
|Xi| ≥ 2 and (∗1, . . . , ∗m) is MAC-polarizing, then

E∗1,...,∗m ≤ E∗1⊗...⊗∗m ≤ min{E∗1 , . . . , E∗m} ≤ 1

2
.

Proof. Define ∗ = ∗1⊗. . .⊗∗m. Let W : X1×· · ·×Xm −→ Y be an m-user MAC and
let W ′ : X −→ Y be the single user channel obtained from W (see Definition 4.11).
Note that every MAC polar code for the MAC W constructed using (∗1, . . . , ∗m)
can be seen as a polar code for the channel W ′ constructed using the operation ∗.
Moreover, the probability of error of the ML decoder is the same. Therefore, every
(∗1, . . . , ∗m)-achievable exponent is ∗-achievable. Hence, E∗1,...,∗m ≤ E∗.

Now let X = X1 × · · · × Xm. For each 1 ≤ i ≤ m and each single user channel
Wi : Xi −→ Y with input alphabet Xi, consider the single user channel W : X −→ Y
with input alphabet X defined as W

(
y
∣∣(x1, . . . , xm)

)
= Wi(y|xi). Let (Wi,n)n≥0 be

the single user channel valued process obtained from Wi using the operation ∗i as in
Definition 3.3, and let (Wn)n≥0 be the single user channel valued process obtained
from W using the operation ∗ as in Definition 3.3. It is easy to see that for every
δ > 0 and every ε > 0, Wi,n is (δ, ε)-easy if and only if Wn is (δ, ε)-easy. This
implies that each ∗-achievable exponent is ∗i-achievable. Therefore, E∗ ≤ E∗i for
every 1 ≤ i ≤ m, hence E∗ ≤ min{E∗1 , . . . , E∗m}. Now from Proposition 5.3, we
have min{E∗1 , . . . , E∗m} ≤ 1

2 .
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Proposition 5.6. Let ∗1, . . . , ∗m be m quasigroup operations on the sets Q1, . . . , Qm,
respectively. If max

1≤i≤m
|Qi| ≥ 2, then E∗1,...,∗m = 1

2 .

Proof. Let ∗ = ∗1⊗ . . .⊗∗m, then ∗ is a quasigroup operation. Let β < β′ < 1
2 . Let

W : Q1 × · · · × Qm −→ Y be an m-user MAC. Define Q = Q1 × · · · × Qm and let
W ′ : Q −→ Y be the single user channel obtained from W (see Definition 4.11). For
each n > 0 and each s ∈ {−,+}n, let W ′s be obtained from W ′ using the operation ∗
(see Definition 3.2), and let W s be obtained from W using the operations ∗1, . . . , ∗m
(see Definition 4.7). From Theorem 5.1, we have:

lim
n→∞

1

2n

∣∣∣∣{s ∈ {−,+}n : ∃Hs a stable partition of (Q, /∗),

∣∣I(W ′s)− log2 |Hs|
∣∣ < δ,

∣∣I(W ′s[Hs])− log2 |Hs|
∣∣ < δ, Z(W ′s[Hs]) < 2−2β

′n}∣∣∣∣ = 1.

On the other hand, from Proposition 5.1, we have

Pe(W
′s[Hs]) ≤ (|Hs| − 1)Z(W ′s[Hs]) ≤ (|Q| − 1)Z(W ′s[Hs]).

Therefore,

lim
n→∞

1

2n

∣∣∣∣{s ∈ {−,+}n : ∃Hs a stable partition of (Q, /∗),

∣∣I(W ′s)− log2 |Hs|
∣∣ < δ,

∣∣I(W ′s[Hs])− log2 |Hs|
∣∣ < δ, Pe(W

′s[Hs]) < (|Q| − 1)2−2β
′n}∣∣∣∣ = 1.

It is easy to see that W ′s is the single user channel obtained from W s. There-
fore, I(W s) = I(W ′s), I(W s[Hs]) = I(W ′s[Hs]) (by definition) and Pe(W

s[Hs]) =

Pe(W
′s[Hs]). On the other hand, we have (|Q|−1)2−2β

′n
< 2−2βn for n large enough.

We conclude that:

lim
n→∞

1

2n

∣∣∣∣{s ∈ {−,+}n : ∃Hs a stable partition of (Q, /∗),

∣∣I(W s)− log2 |Hs|
∣∣ < δ,

∣∣I(W s[Hs])− log2 |Hs|
∣∣ < δ, Pe(W

s[Hs]) < 2−2βn
}∣∣∣∣ = 1.

Now since /∗ = /∗1⊗. . .⊗/∗m and since /∗i is ergodic (as it is a quasigroup operation)
for every 1 ≤ i ≤ m, Lemma 4.1 implies that:

lim
n→∞

1

2n
∣∣{s ∈ {−,+}n : W s is (δ, 2−2βn)-easy

}∣∣ = 1.

We conclude that every 0 ≤ β < 1
2 is a (∗1, . . . , ∗m)-achievable exponent. Therefore,

E∗1,...,∗m ≥ 1
2 . On the other hand, we have E∗1,...,∗m ≤ 1

2 from Proposition 5.5.
Hence E∗1,...,∗m = 1

2 .

Corollary 5.2. For every δ > 0, every β < 1
2 , every MAC W : Q1×· · ·×Qm −→ Y,

and every quasigroup operations ∗1, . . . , ∗m on Q1, . . . , Qm respectively, there exists
a polar code for the MAC W constructed using ∗1, . . . , ∗m such that its sum-rate is
at least I(W )− δ and its probability of error under successive cancellation decoding

is less than 2−Nβ
, where N = 2n is the blocklength.

Proof. The corollary follows from Propositions 4.1 and 5.6.





Fourier Analysis of MAC
Polarization 6
We saw at the end of Chapter 4 that the multiple-access channel (MAC) polarization
process might induce a loss in the symmetric-capacity region. This means that
MAC-polar codes might not achieve the entire symmetric-capacity region.

In this chapter1, we provide a single-letter necessary and sufficient condition
that characterizes the set of MACs that do not lose any part of their symmetric-
capacity region by polarization. The characterization that we provide works in the
general setting where we have an arbitrary number of users and each user uses
an arbitrary Abelian group operation on his input alphabet. We will show that
the reason why a given MAC W loses parts of its symmetric-capacity region by
polarization is because its transition probabilities are not “aligned”, which makes
W “incompatible” with polarization. The “alignment” condition will be expressed
in terms of the Fourier transforms of the transition probabilities of W . The use
of Fourier analysis in our study should not come as a surprise since the transition
probabilities of W− can be expressed as a convolution of the transition probabilities
of W . This is what makes Fourier analysis useful for our study because it turns
convolutions into multiplications, which are much easier to analyze.

Note that there are alternate polar coding solutions that can achieve the entire
symmetric-capacity region without any loss. These techniques, which are not based
on MAC polarization, are hybrid schemes combining single-user channel polarization
with other techniques. In [8], Şaşoğlu et al. used the “rate splitting/onion peeling”
scheme of [36] and [37] to transform any point on the dominant face of an m-user
MAC into a corner point of a (2m − 1)-user MAC and then applied single-user
channel polarization to achieve this corner point. In [22], Arıkan used monotone
chain rules to construct polar codes for the Slepian-Wolf problem, but the same
technique can be used to achieve the entire symmetric-capacity region of a MAC.

Although the alternate solutions of [8] and [22] can achieve the entire symmetric-
capacity region, they are more complicated than MAC-polar codes (i.e., those that
are based on MAC polarization). The alternate solution in [8] requires more encoding
and decoding complexity because it adds m− 1 virtual users. Arıkan’s solution [22]

1The material of this chapter is based on [34, 35].
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does not add significant encoding and decoding complexity, but the code design is
much more complicated than that of MAC-polar codes. So if we are given a MAC W
whose symmetric-capacity region is preserved by polarization (i.e., MAC-polar codes
can achieve the entire symmetric-capacity region of this MAC), then using MAC-
polar codes for this MAC is preferable to the alternate solutions. One practical
implication of this study is that it allows a code designer to determine whether he
can use the preferable MAC-polar codes to achieve the symmetric-capacity region.

In Section 6.1, we introduce the preliminaries of this chapter: We describe the
MAC polarization process and explain the discrete Fourier transforms on Abelian
groups. In Section 6.2, we provide a sufficient condition for the preservation of
the symmetric-capacity region. This sufficient condition, which is relatively easy to
understand, provides an intuition that clarifies the necessary and sufficient condition
that we prove later. In Section 6.3, we characterize the two-user MACs whose
symmetric-capacity regions are preserved by polarization. Section 6.4 generalizes
the results of Section 6.3 to MACs with arbitrary number of users.

6.1 Preliminaries

Throughout this chapter, G1, . . . , Gm are finite Abelian groups. We will use the
addition symbol + to denote the group operations of G1, . . . , Gm. Since every finite
Abelian group is isomorphic to the product of cyclic groups, we may assume without
loss of generality that G1, . . . , Gm are products of cyclic groups. In other words,
for every 1 ≤ i ≤ m, there exist ki integers Ni,1, . . . , Ni,ki > 0 such that Gi =
ZNi,1 × · · · × ZNi,ki

.

6.1.1 Polarization

Notation 6.1. Let W : G1 × · · · × Gm −→ Z be an m-user MAC. We write

(X1, . . . , Xm)
W−→ Z to denote the following:

• X1, . . . , Xm are independent random variables uniformly distributed in G1, . . . ,
Gm respectively.

• Z is the output of the MAC W when X1, . . . , Xm are the inputs.

Notation 6.2. Fix S ⊂ {1, . . . ,m} and let S = {i1, . . . , i|S|}, where i1 < . . . < i|S|.
Define GS as

GS :=
∏
i∈S

Gi = Gi1 × · · · ×Gi|S| .

For every (x1, . . . , xm) ∈ G1 × · · · ×Gm, we write xS to denote (xi1 , . . . , xi|S|).

Notation 6.3. Let W : G1 × · · · ×Gm −→ Z and (X1, . . . , Xm)
W−→ Z. For every

S ⊂ {1, . . . ,m}, we write IS(W ) to denote I(XS ;ZXSc). If S = {i}, we denote
I{i}(W ) as Ii(W ).

I(W ) := I{1,...,m}(W ) = I(X1, . . . , Xm;Z) is called the symmetric sum-capacity
of W .
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The symmetric-capacity region of an m-user MAC W : G1 × · · · ×Gm −→ Z is
defined as:

J (W ) =
{
(R1, . . ., Rm) ∈ Rm : ∀S ⊂ {1, . . . ,m}, 0 ≤

∑
i∈S

Ri ≤ IS(W )
}
.

Note that I(W ) is called the symmetric sum-capacity because it is computed
using uniform input distributions. The same is true for J (W ).

Notation 6.4. {−,+}∗ :=
⋃
n≥0

{−,+}n, where {−,+}0 = {ø}.

Definition 6.1. Let W : G1 × · · · × Gm −→ Z. We define the m-user MACs
W− : G1 × · · · × Gm −→ Z2 and W+ : G1 × · · · × Gm −→ Z2 × G1 × · · · × Gm as
follows:

W−(y1, y2|u1,1, . . . , um,1)

=
1

|G1| · · · |Gm|
∑

u1,2∈X1

...
um,2∈Xm

W (y1|u1,1 + u1,2, . . . , um,1 + um,2)W (y2|u1,2, . . . , um,2),

and

W+(y1, y2,u1,1, . . . , um,1|u1,2, . . . , um,2)

=
1

|G1| · · · |Gm|W (y1|u1,1 + u1,2, . . . , um,1 + um,2)W (y2|u1,2, . . . , um,2).

For every s ∈ {−,+}∗, we define the MAC W s as follows:

W s :=

{
W if s = ø,

(. . . ((W s1)s2) . . .)sn if s = (s1, . . . , sn).

The following remark explains why polarization might induce a loss in the
symmetric-capacity region.

Remark 6.1. Let Um
1 = (U1, . . . , Um) and Ũm

1 = (Ũ1, . . . , Ũm) be two independent
random variables uniformly distributed in G1 × · · · ×Gm. Let Xm

1 = Um
1 + Ũm

1 and

X̃m
1 = Ũm

1 . Let (X1, . . . , Xm)
W−→ Z and (X̃1, . . . , X̃m)

W−→ Z̃. We have:

• I(W ) = I(Xm
1 ;Z) = I(X̃m

1 ; Z̃).

• I(W−) = I(Um
1 ;ZZ̃) and I(W+) = I(Ũm

1 ;ZZ̃Um
1 ).

Hence,

2I(W ) = I(Xm
1 ;Z) + I(X̃m

1 ; Z̃) = I(Xm
1 X̃m

1 ;ZZ̃) = I(Um
1 Ũm

1 ;ZZ̃)

= I(Um
1 ;ZZ̃) + I(Ũm

1 ;ZZ̃|Um
1 )

(a)
= I(Um

1 ;ZZ̃) + I(Ũm
1 ;ZZ̃Um

1 )

= I(W−) + I(W+),
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where (a) follows from the fact that Um
1 is independent of Ũm

1 .
Therefore, the symmetric sum-capacity is preserved by polarization. On the other

hand, IS might not be preserved if S � {1, . . . ,m}.
For example, consider the two-user MAC case. Let W : G1 × G2 −→ Z. Let

(U1, V1) and (U2, V2) be two independent random pairs uniformly distributed in G1×
G2. Let X1 = U1 + U2, X2 = U2, Y1 = V1 + V2 and Y2 = V2. Let (X1, Y1)

W−→ Z1

and (X2, Y2)
W−→ Z2. We have:

• I1(W
−) = I(U1;Z1Z2V1) and I1(W

+) = I(U2;Z1Z2U1V1V2).

• I2(W
−) = I(V1;Z1Z2U1) and I2(W

+) = I(V2;Z1Z2U1V1U2).

On the other hand, we have:

• I1(W ) = I(X1;Z1Y1) = I(X2;Z2Y2).

• I2(W ) = I(Y1;Z1X1) = I(Y2;Z2X2).

Therefore,

2I1(W ) = I(X1;Z1Y1) + I(X2;Z2Y2) = I(X1X2;Z1Z2Y1Y2)

= I(U1U2;Z1Z2V1V2) = I(U1;Z1Z2V1V2) + I(U2;Z1Z2V1V2U1)

(a)

≥ I(U1;Z1Z2V1) + I(U2;Z1Z2V1V2U1) = I1(W
−) + I1(W

+), (6.1)

where (a) follows from the fact that

I(U1;Z1Z2V1V2) = I(U1;Z1Z2V1) + I(U1;V2|Z1Z2V1) ≥ I(U1;Z1Z2V1).

Similarly,

2I2(W ) = I(Y1;Z1X1) + I(Y2;Z2X2) = I(Y1Y2;Z1Z2X1X2)

= I(V1V2;Z1Z2U1U2) = I(V1;Z1Z2U1U2) + I(V2;Z1Z2U1U2V1)

≥ I(V1;Z1Z2U1) + I(V2;Z1Z2U1U2V1) = I2(W
−) + I2(W

+).

Note that
1

20

∑
s∈{−,+}0

I1(W
s) =

1

1
I1(W

ø) = I1(W ) ≤ I1(W ). Now let n ≥ 0 and

assume that
1

2n

∑
s∈{−,+}n

I1(W
s) ≤ I1(W ), then

1

2n+1

∑
s∈{−,+}n+1

I1(W
s) =

1

2n+1

∑
s∈{−,+}n

(
I1

(
W (s,−)

)
+ I1

(
W (s,+)

))
(a)

≤ 1

2n+1

∑
s∈{−,+}n

2I1(W ) =
1

2n

∑
s∈{−,+}n

I1(W
s) ≤ I1(W ),

where (a) follows from applying (6.1) to W s. We conclude that for every n ≥ 0 we
have:

1

2n

∑
s∈{−,+}n

I1(W
s) ≤ I1(W ). (6.2)
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Similarly,
1

2n

∑
s∈{−,+}n

I2(W
s) ≤ I2(W ). (6.3)

By using a similar induction argument, but using the equality I
(
W (s,−)

)
+

I
(
W (s,+)

)
= 2I(W s), we can show that for every n ≥ 0, we have:

1

2n

∑
s∈{−,+}n

I(W s) = I(W ). (6.4)

While (6.4) shows that polarization preserves the symmetric sum-capacity, (6.2) and
(6.3) show that polarization might result into a loss in the symmetric-capacity region.

Similarly, for the m-user case, we have

1

2n

∑
s∈{−,+}n

IS(W
s) ≤ IS(W ), ∀S � {1, . . . ,m}.

Definition 6.2. Let S ⊂ {1, . . . ,m}. We say that polarization ∗-preserves IS for
W if for all n ≥ 0 we have:

1

2n

∑
s∈{−,+}n

IS(W
s) = IS(W ).

If polarization ∗-preserves IS for every S ⊂ {1, . . . ,m}, we say that polarization
∗-preserves the symmetric-capacity region for W .

Remark 6.2. If polarization ∗-preserves the symmetric-capacity region for W , then
the entire symmetric-capacity region can be achieved by polar codes.

Section 6.3 provides a characterization of two-user MACs whose I1 is ∗-preserved
by polarization. Section 6.4 generalizes the results of Section 6.3 and provides a
characterization of m-user MACs whose IS is ∗-preserved by polarization, where
S � {1, . . . ,m}. This yields a complete characterization of the MACs with ∗-
preserved symmetric-capacity regions.

6.1.2 Discrete Fourier Transform on Finite Abelian Groups

A tool that we are going to need for the analysis of the polarization process is
the discrete Fourier transform (DFT) on finite Abelian groups. Since every finite
Abelian group is isomorphic to the product of cyclic groups, the DFT on finite
Abelian groups can be defined based on the usual multidimensional DFT.

Definition 6.3. The k-dimensional discrete Fourier transform of a mapping f :
ZN1 × · · · × ZNk

→ C is the mapping f̂ : ZN1 × · · · × ZNk
→ C defined as:

f̂(x̂1, . . . , x̂k) =
∑

x1∈ZN1
,...,xk∈ZNk

f(x1, . . . , xk)e
−j

2πx̂1x1
N1

...−j
2πx̂kxk

Nk .
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Notation 6.5. Let G = ZN1 × · · · × ZNk
be a finite Abelian group. For every

x = (x1, . . . , xk) ∈ G and every x̂ = (x̂1, . . . , x̂k) ∈ G, define 〈x̂, x〉 ∈ R as:

〈x̂, x〉 := x̂1x1
N1

+ · · ·+ x̂kxk
Nk

∈ R.

Using this notation, the DFT on G has a compact formula:

f̂(x̂) =
∑
x∈G

f(x)e−j2π〈x̂,x〉.

In the rest of this section, we recall well known properties of DFT.

Proposition 6.1. The inverse DFT is given by the following formula:

f(x) =
1

|G|
∑
x̂∈G

f̂(x̂)ej2π〈x̂,x〉.

Definition 6.4. The convolution of two mappings f : G → C and g : G → C is the
mapping f ∗ g : G → C defined as:

(f ∗ g)(x) =
∑
x′∈G

f(x′)g(x− x′).

We will sometimes write f(x) ∗ g(x) to denote (f ∗ g)(x).

Proposition 6.2. Let f : G → C and g : G → C be two mappings. We have:

• (̂f ∗ g)(x̂) = f̂(x̂)ĝ(x̂).

• (̂f · g)(x̂) = 1

|G|(f̂ ∗ ĝ)(x̂).

• If fa : G → C is defined as fa(x) = f(x− a), then f̂a(x̂) = f̂(x̂)e−j2π〈x̂,a〉.

• If f̃ : G → C is defined as f̃(x) = f(−x), then
ˆ̃
f(x̂) = f̂(x̂)∗, where f̂(x̂)∗ is

the complex conjugate of f̂(x̂).

6.1.3 Useful Notation

This subsection introduces useful notation that will be used throughout this chapter.
The usefulness of this notation will be clear later. We added this subsection so that
the reader may refer to it anytime.

Let W : G1 × G2 −→ Z be a two-user MAC and let (X,Y )
W−→ Z. Define the

following:

• YZ(W ) := {(y, z) ∈ G2 × Z : PY,Z(y, z) > 0}. This is just the support of
PY,Z .

• For every (y, z) ∈ YZ(W ), define py,z,W : G1 → [0, 1] as

py,z,W (x) = PX|Y,Z(x|y, z), ∀x ∈ G1.
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For every z ∈ Z, define:

• Yz(W ) := {y ∈ G2 : PY,Z(y, z) > 0}.

• ΔYz(W ) :=
{
y1 − y2 : y1, y2 ∈ Yz(W )

}
.

• X̂
z
(W ) :=

{
x̂ ∈ G1 : ∃y ∈ Yz(W ), p̂y,z,W (x̂) �= 0

}
.

• Dz(W ) := X̂
z
(W )×ΔYz(W ) =

{
(x̂, y) : x̂ ∈ X̂

z
(W ), y ∈ ΔYz(W )

}
.

Now define:

• X̂Z(W ) :=
{
(x̂, z) : z ∈ Z, x̂ ∈ X̂

z
(W )

}
.

• D(W ) :=
⋃
z∈Z

Dz(W ).

6.1.4 Pseudo-Quadratic Functions

Definition 6.5. Let D ⊂ G1 ×G2. Define the following sets:

• H1(D) := {x ∈ G1 : ∃y ∈ G2, (x, y) ∈ D}.

• For every x ∈ H1(D), let Hx
2 (D) := {y ∈ G2 : (x, y) ∈ D}.

• H2(D) := {y ∈ G2 : ∃x ∈ G1, (x, y) ∈ D}.

• For every y ∈ H2(D), let Hy
1 (D) := {x ∈ G1 : (x, y) ∈ D}.

We say that D is a pseudo-quadratic domain if:

• Hy
1 (D) is a subgroup of G1 for every y ∈ H2(D).

• Hx
2 (D) is a subgroup of G2 for every x ∈ H1(D).

Definition 6.6. Let D ⊂ G1 × G2 and let F : D → T be a mapping from D to
T = {ω ∈ C : |ω| = 1}. We say that F is a pseudo-quadratic function if:

• D is a pseudo-quadratic domain.

• For every y ∈ H2(D), the mapping x → F (x, y) is a group homomorphism
from

(
Hy

1 (D),+
)
to (T, ·).

• For every x ∈ H1(D), the mapping y → F (x, y) is a group homomorphism
from

(
Hx

2 (D),+
)
to (T, ·).

Definition 6.7. We say that W : G1 × G2 −→ Z is polarization compatible with
respect to the first user if there exists a pseudo-quadratic function F : D → T such
that:

• D(W ) ⊂ D ⊂ G1 ×G2.

• For every (x̂, z) ∈ X̂Z(W ) and every y1, y2 ∈ Yz(W ), we have p̂y1,z,W (x̂) =
F (x̂, y1 − y2) · p̂y2,z,W (x̂).
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6.1.5 Main Result

The following theorem is the main result of this chapter:

Theorem 6.1. If W is a two-user MAC, then polarization ∗-preserves I1 for W if
and only if W is polarization compatible with respect to the first user.

Theorem 6.1 has the following implications:

• (Proposition 6.9) If G1 = G2 = Fq for a prime q and (X,Y )
W−→ Z, then

polarization ∗-preserves I1 for W if and only if there exists a ∈ Fq such that
I(X + aY ;Y |Z) = 0.

• (Corollary 6.3) Polarization ∗-preserves the symmetric-capacity region for the
binary adder channel.

• (Proposition 6.10) If |G1| and |G2| are co-prime and (X,Y )
W−→ Z, then po-

larization ∗-preserves I1 for W if and only if I(X;Y |Z) = 0 (i.e., if and only
if the dominant face of J (W ) is a single point).

The reader may find the polarization compatibility condition (Definition 6.7)
too abstract at this stage and it may not be clear why the ∗-preservation of I1 has
anything to do with pseudo-quadratic functions. In order to clarify the meaning of
polarization compatibility and make it more intuitive, we provide in Section 6.2 a
sufficient condition for the ∗-preservation of I1 that is easy to understand. After
expressing this condition in terms of {p̂y,z,W : (y, z) ∈ YZ(W )}, the link between
the ∗-preservation of I1 and pseudo-quadratic functions should become clear.

6.2 A Sufficient Condition for the ∗-Preservation of I1

In this section, we only consider two-user MACs W : G1 ×G2 −→ Z, where G1 and
G2 are finite Abelian groups. We derive a sufficient condition which ensures that
polarization ∗-preserves I1.

Definition 6.8. Let W : G1 × G2 −→ Z be a two-user MAC. We say that I1 is
preserved for W if and only if I1(W

−) + I1(W
+) = 2I1(W ).

Lemma 6.1. Polarization ∗-preserves I1 for W if and only if I1 is preserved for
W s for every s ∈ {−,+}∗.

Proof. Polarization ∗-preserves I1 for W if and only if

∀n ≥ 0, I1(W ) =
1

2n

∑
s∈{−,+}n

I1(W
s)

⇔ ∀n ≥ 0,
1

2n

∑
s∈{−,+}n

I1(W
s) =

1

2n+1

∑
s′∈{−,+}n+1

I1(W
s′)

⇔ ∀n ≥ 0,
∑

s∈{−,+}n
2I1(W

s) =
∑

s∈{−,+}n
(I1(W

(s,−)) + I1(W
(s,+)))

⇔ ∀n ≥ 0,
∑

s∈{−,+}n

(
2I1(W

s)− I1(W
(s,−))− I1(W

(s,+))
)
= 0.
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But since 2I1(W
s)−I1(W

(s,−))−I1(W
(s,+)) ≥ 0 (apply (6.1) toW s), we conclude

that polarization ∗-preserves I1 for W if and only if

∀n ≥ 0, ∀s ∈ {−,+}n, I1(W (s,−)) + I1(W
(s,+)) = 2I1(W

s).

In other words, polarization ∗-preserves I1 for W if and only if I1 is preserved for
W s for every s ∈ {−,+}∗.

Suppose we want to prove that a given condition on W is sufficient for the
∗-preservation of I1. Lemma 6.1 suggests a method to do that:

1. Show that if W satisfies the condition, then I1 is preserved for W .

2. Show that if W satisfies the condition, then W− and W+ satisfy the condition
as well.

By doing that, we would have shown that if W satisfies the condition, then W s

satisfies the same condition for all s ∈ {−,+}∗, which in turn implies that I1 is
preserved for W s for all s ∈ {−,+}∗, hence polarization ∗-preserves I1 for W due
to Lemma 6.1.

Definition 6.9. Let W : G1 ×G2 −→ Z be a two-user MAC and let (X,Y )
W−→ Z.

We say that W is homomorphic-independent with respect to the first user if and
only if there exists a subgroup H2 of G2, a group homomorphism f : H2 → G1 and
a mapping g : Z → G2 such that:

• P[Y − g(Z) ∈ H2] = 1.

• I
(
X + f(Y − g(Z));Y

∣∣Z) = 0.

The condition P[Y − g(Z) ∈ H2] = 1 means that Y and g(Z) belong to the
same coset of H2. In other words, given Z = z, Y belongs to a single coset of
H2, and this coset is determined by g(z). On the other hand, the condition I

(
X +

f(Y − g(Z));Y
∣∣Z) = 0 is equivalent to say that given Z, a shifted version of X

is conditionally independent of Y , and the amount by which X should be shifted
is f(Y − g(Z)). One might be tempted to simplify the expression I

(
X + f(Y −

g(Z));Y
∣∣Z) as follows:

I
(
X + f(Y − g(Z));Y

∣∣Z) = I
(
X + f(Y )− f(g(Z));Y

∣∣Z) = I
(
X + f(Y );Y

∣∣Z).
This would be correct if f were defined on the whole group G2. However, f is only
defined on a subgroup H2 of G2. This is why f can be applied on Y − g(Z) which
belongs to H2, but cannot be applied to Y and g(Z) individually because they can
lie outside H2.

In the rest of this section, we show that if W is homomorphic-independent
with respect to the first user, then polarization ∗-preserves I1 for W . For the
sake of brevity, we will write homomorphic-independent to denote “homomorphic-
independent with respect to the first user”.

Lemma 6.2. If W : G1 × G2 −→ Z is homomorphic-independent, then I1 is pre-
served for W .
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Proof. Let U1, U2, V1, V2, X1, X2, Y1, Y2, Z1, Z2 be as in Remark 6.1. We can see from
(6.1) that I1 is preserved for W if and only if I(U1;Z1Z2V1) = I(U1;Z1Z2V1V2).
Therefore, it is sufficient to show that I(U1;V2|Z1Z2V1) = 0.

Let H2, f and g be as in Definition 6.9. We have:

V1 − g(Z1) + g(Z2) = Y1 − Y2 − g(Z1) + g(Z2) =
(
Y1 − g(Z1)

)
−
(
Y2 − g(Z2)

) (a)
∈ H2,

where (a) is true because P[Y1 − g(Z1) ∈ H2] = P[Y2 − g(Z2) ∈ H2] = 1.

Let X̃1 = X1 + f(Y1 − g(Z1)) and X̃2 = X2 + f(Y2 − g(Z2)). We have:

U1 + f
(
V1 − g(Z1) + g(Z2)

)
= X1 −X2 + f(Y1 − Y2 − g(Z1) + g(Z2))

= X1 + f(Y1 − g(Z1))−X2 − f(Y2 − g(Z2))

= X̃1 − X̃2.

(6.5)

Therefore,

I(U1;V2|Z1Z2V1) = I
(
U1 − f

(
V1 − g(Z1) + g(Z2)

)
;V2

∣∣Z1Z2V1

)
= I(X̃1 − X̃2;V2|Z1Z2V1) ≤ I(X̃1X̃2;V2|Z1Z2V1)

≤ I(X̃1X̃2;V1V2|Z1Z2) = I(X̃1X̃2;Y1Y2|Z1Z2)

= I(X̃1;Y1|Z1) + I(X̃2;Y2|Z2)
(b)
= 0,

where (b) follows from the fact that W is homomorphic-independent. We conclude
that I(U1;V2|Z1Z2V1) = 0 and so I1 is preserved for W .

Lemma 6.3. If W : G1 × G2 −→ Z is homomorphic-independent, then W− and
W+ are homomorphic-independent as well.

Proof. Let U1, U2, V1, V2, X1, X2, Y1, Y2, Z1, Z2 be as in Remark 6.1. Let H2, f and g
be as in Definition 6.9. Define the mappings g− : Z2 → G2 and g+ : Z2×G1×G2 →
G2 as follows:

g−(z1, z2) = g(z1)− g(z2) and g+(z1, z2, u1, v1) = g(z2).

Since W is homomorphic-independent, we have P[Y1 − g(Z1) ∈ H2] = 1 and
P[Y2 − g(Z2) ∈ H2] = 1. Therefore, P[Y1 − Y2 − g(Z1) + g(Z2) ∈ H2] = 1 which
implies that P

[
V1 − g−(Z1, Z2) ∈ H2

]
= 1. Similarly, P

[
V2 − g+(Z1, Z2, U1, V1) ∈

H2

]
= P[Y2 − g(Z2) ∈ H2] = 1.

Define X̃1 = X1 + f(Y1 − g(Z1)) and X̃2 = X2 + f(Y2 − g(Z2)) as in the proof
of Lemma 6.2. From (6.5) we have U1 + f(V1 − g−(Z1, Z2)) = X̃1 − X̃2. Therefore,

I
(
U1 + f(V1−g−(Z1, Z2));V1

∣∣Z1Z2

)
= I(X̃1 − X̃2;V1|Z1Z2) ≤ I(X̃1X̃2;V1V2|Z1Z2)

= I(X̃1X̃2;Y1Y2|Z1Z2) = I(X̃1;Y1|Z1) + I(X̃2;Y2|Z2)
(a)
= 0,

where (a) follows from the fact that W is homomorphic-independent.
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On the other hand, we have

I
(
U2 + f(V2 − g+(Z1,Z2, U1, V1));V2

∣∣Z1Z2U1V1

)
= I

(
X2 + f(Y2 − g(Z2));V2

∣∣Z1Z2U1V1

)
= I(X̃2;V2|Z1Z2, U1 + f(V1 − g−(Z1, Z2)), V1)

= I(X̃2;V2|Z1Z2, X̃1 − X̃2, V1) ≤ I(X̃2, X̃1 − X̃2;V2V1|Z1Z2)

= I(X̃1X̃2;Y1Y2|Z1Z2) = I(X̃1;Y1|Z1) + I(X̃2;Y2|Z2) = 0.

We conclude that W− and W+ are homomorphic-independent.

Proposition 6.3. If W : G1 ×G2 −→ Z is homomorphic-independent, then polar-
ization ∗-preserves I1 for W .

Proof. We first show by induction on n ≥ 0 that for every s ∈ {−,+}n, W s is
homomorphic-independent. If n = 0, there is nothing to prove. Now let n > 0 and
suppose that the claim is true for n− 1.

Let s ∈ {−,+}n, then there exists s′ ∈ {−,+}n−1 such that s = (s′,−) or
s = (s′,+). We know from the induction hypothesis that W s′ is homomorphic-
independent, and by applying Lemma 6.3 to W s′ we deduce that both W (s′,−) and
W (s′,+) are homomorphic-independent. Therefore,W s is homomorphic-independent.

We conclude that for every n ≥ 0 and every s ∈ {−,+}n, W s is homomorphic-
independent. Lemma 6.2 implies that I1 is preserved for W s for every s ∈ {−,+}s,
and Lemma 6.1 shows that polarization ∗-preserves I1 for W .

One might try to simplify the sufficient condition that we have just shown in
the following way. If H2, f and g are as in Definition 6.9, let f̃ : G2 → G1 be an
extension of f which is a homomorphism from (G2,+) to (G1,+). We have:

I
(
X + f̂(Y );Y

∣∣Z) = I
(
X + f̂(Y )− f̂(g(Z));Y

∣∣Z)
= I

(
X + f̂(Y − g(Z));Y

∣∣Z) = I
(
X + f(Y − g(Z));Y

∣∣Z) = 0.

This would suggest that homomorphic-independence is equivalent to the existence
of a homomorphism f̂ : G2 → G1 satisfying I(X + f̂(Y );Y |Z) = 0, which is of
course simpler than the way homomorphic-independence was defined in Definition
6.9. This argument breaks down when we realize that not every homomorphism
f : H2 → G1 can be extended to a homomorphism from (G2,+) to (G1,+). For
example, if G1 = F2, G2 = Z4, H2 = {0, 2} ⊂ G2 and f : H2 → G1 is defined as
f(0) = 0 and f(2) = 1, then f is clearly a homomorphism from H2 to G1. However,
f is not extendable to a homomorphism f̂ : G2 → G1 defined on the whole group
G2. If f were extendable, we would have 1 = f̂(2) = f̂(1)+ f̂(1) = 2f̂(1) = 0, which
is a contradiction.

The existence of a homomorphism f : G2 → G1 satisfying I(X+f(Y );Y |Z) is of
course a sufficient condition for the ∗-preservation of I1 because it is a particular case
of homomorphic-independence. However, homomorphic-independence is a strictly
more general condition as we have shown in the previous paragraph.

Note that there is a large freedom on the choice of the mapping g : Z → G2 in
Definition 6.9. The main role of the mapping g is to find the coset of H2 to which
Y belongs, and any other mapping g′ playing this role will satisfy the conditions of
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Definition 6.9: Let H2, f and g be as in Definition 6.9 and assume that g′ : Z → G2

satisfies g′(z)−g(z) ∈ H2 for all z ∈ Z. We have Y−g′(Z) = Y−g(Z)+g(Z)−g′(Z) ∈
H2 with probability 1. On the other hand,

I
(
X + f(Y − g′(Z));Y

∣∣Z) = I
(
X + f

(
Y − g(Z) + g(Z)− g′(Z)

)
;Y
∣∣Z)

= I
(
X + f(Y − g(Z)) + f

(
g(Z)− g′(Z)

)
;Y
∣∣Z)

= I
(
X + f(Y − g(Z));Y

∣∣Z) = 0.

Therefore, H2, f and g′ also satisfy the conditions of Definition 6.9.
Let us now see how homomorphic-independence can be expressed in terms of

{p̂y,z,W : (y, z) ∈ YZ(W )}. For the sake of brevity, we will write py,z to denote
py,z,W .

The condition I
(
X + f(Y − g(Z));Y

∣∣Z) = 0 is equivalent to the conditional
independence of X + f(Y − g(Z)) and Y given Z. This is equivalent to say that
for every x ∈ G1, every y1, y2 ∈ G and every z ∈ Z satisfying PY,Z(y1, z) > 0 and
PY,Z(y2, z) > 0, we have

PX+f(Y−g(Z))|Y,Z
(
x
∣∣y1, z) = PX+f(Y−g(Z))|Y,Z

(
x
∣∣y2, z).

On the other hand, we have

PX+f(Y−g(Z))|Y,Z
(
x
∣∣y1, z) = PX|Y,Z

(
x− f(y1 − g(z))

∣∣y1, z)
= py1,z(x− f(y1 − g(z))),

and

PX+f(Y−g(Z))|Y,Z
(
x
∣∣y2, z) = PX|Y,Z

(
x− f(y2 − g(z))

∣∣y2, z)
= py2,z(x− f(y2 − g(z))).

Therefore, the condition I
(
X + f(Y − g(Z));Y

∣∣Z) = 0 is equivalent to say that for
every z ∈ Z and every y1, y2 ∈ Yz(W ), we have

py1,z(x− f(y1 − g(z))) = py2,z(x− f(y2 − g(z))), ∀x ∈ G1

⇔ py1,z(x) = py2,z
(
x+ f(y1 − g(z))− f(y2 − g(z))

)
, ∀x ∈ G1

⇔ py1,z(x) = py2,z
(
x+ f(y1 − g(z)− y2 + g(z))

)
, ∀x ∈ G1

⇔ py1,z(x) = py2,z
(
x+ f(y1 − y2)

)
, ∀x ∈ G1.

This shows that if we want to get rid of the mapping g in the second condition
of Definition 6.9, we have to express the homomorphic-independence condition in
terms of the conditional probability distributions {py,z : (y, z) ∈ YZ(W )}. On the
other hand, due to the freedom on the choice of the mapping g that we have shown
above, we can see that g in the condition P[Y − g(Z) ∈ H2] just serves the purpose
of saying that given Z = z, Y belongs to a single coset of H2. In other words,
y1− y2 ∈ H2 for all z ∈ Z and every y1, y2 ∈ Yz(W ), which is equivalent to say that
ΔYz(W ) ⊂ H2 for all z ∈ Z. Therefore, the first condition of Definition 6.9 can be
replaced by D(W ) ⊂ G1 ×H2. This shows the following lemma:

Lemma 6.4. W is homomorphic-independent if and only if there exists a subgroup
H2 of G2 and a homomorphism f : H2 → G1 satisfying:
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• D(W ) ⊂ G1 ×H2.

• For every z ∈ Z and every y1, y2 ∈ Yz(W ), we have:

py1,z(x) = py2,z(x+ f(y1 − y2)), ∀x ∈ G1

⇔ p̂y1,z(x̂) = p̂y2,z
(
x̂
)
ej2π〈x̂,f(y1−y2)〉, ∀x̂ ∈ G1.

Lemma 6.4 suggests that if we are given a two-user MAC W and we want to
check whether it is homomorphic-independent, then one way to do that is to com-

pute Q(x̂, y1, y2, z) =
p̂y1,z(x̂)

p̂y2,z(x̂)
for every z ∈ Z, every y1, y2 ∈ Yz(W ) and every x̂

satisfying p̂y2,z(x̂) �= 0, and then make sure that Q(x̂, y1, y2, z) can be expressed as
ej2π〈x̂,f(y1−y2)〉 for some homomorphism f : H2 → G1, where H2 is a subgroup of G2

that satisfies D(W ) ⊂ G1 ×H2.
We can now make the following remarks:

• ej2π〈x̂,f(y1−y2)〉 ∈ T := {ω ∈ C : |ω| = 1}.

• ej2π〈x̂,f(y1−y2)〉 depends only on x̂ and y1 − y2.

• For every y ∈ H2, the mapping x̂ → ej2π〈x̂,f(y)〉 is a group homomorphism
from (G1,+) to (T, ·).

• For every x̂ ∈ G1, the mapping y → ej2π〈x̂,f(y)〉 is a group homomorphism from
(H2,+) to (T, ·).

Therefore, the mapping (x̂, y) → ej2π〈x̂,f(y)〉 is a pseudo-quadratic function from
G1 ×H2 to T.

We can now show the following characterization of homomorphic-independent
MACs:

Proposition 6.4. Let W : G1×G2 −→ Z be a two-user MAC. W is homomorphic-
independent if and only if there exists a subgroup H2 of G2 and a pseudo-quadratic
function F : G1 ×H2 → T satisfying:

• D(W ) ⊂ G1 ×H2.

• For every (x̂, z) ∈ X̂Z(W ) and every y1, y2 ∈ Yz(W ), we have p̂y1,z(x̂) =
F (x̂, y1 − y2)p̂y2,z(x̂).

Proof. The above discussion shows that the existence of suchH2 and F is a necessary
condition for the homomorphic-independence of W . For the proof that it is also
sufficient, see Appendix 6.5.1.

Note that the only difference between polarization compatibility (Definition 6.7)
and the characterization of homomorphic-independence of Proposition 6.4 is that the
domain D of the pseudo-quadratic function F in Definition 6.7 can be an arbitrary
pseudo-quadratic domain, whereas the domain of F in Proposition 6.4 needs to
be of the form G1 × H2 for some subgroup H2 of G2. In the next section, we
show that polarization compatibility is a necessary and sufficient condition for the
∗-preservation of I1.
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6.3 Two-user MACs with ∗-Preserved I1

Throughout this section, we fix a two-user MAC W : G1×G2 −→ Z, where G1 and
G2 are finite Abelian groups. This section is dedicated to proving Theorem 6.1.

6.3.1 Polarization Compatibility is Necessary

For the sake of simplicity, we write py,z(x) to denote py,z,W (x).

According to (6.1), I1 is preserved for W if and only if I(U1;V2|Z1Z2V1) = 0,
which means that for every z1, z2 ∈ Z and every v1, v2 ∈ G2, if

PV2,Z1,Z2,V1(v2, z1, z2, v1) > 0,

then PU1|V2,Z1,Z2,V1
(u1|v2, z1, z2, v1) does not depend on v2.

In order to study this condition, we should keep track of the values of z1, z2 ∈ Z
and v1, v2 ∈ G2 for which PV2,Z1,Z2,V1(v2, z1, z2, v1) > 0. But

PV2,Z1,Z2,V1(v2, z1, z2, v1) = PY1,Z1(v1 + v2, z1)PY2,Z2(v2, z2),

so it is sufficient to keep track of the pairs (y, z) ∈ G2 ×Z satisfying PY,Z(y, z) > 0.
This is where YZ(W ) and {Yz(W ) : z ∈ Z} become useful.

The following lemma gives a characterization of two-user MACs with preserved
I1 in terms of the Fourier transform of the distributions py,z.

Lemma 6.5. I1 is preserved for W if and only if for every y1, y2, y
′
1, y

′
2 ∈ G2 and

every z1, z2 ∈ Z satisfying

• y1 − y2 = y′1 − y′2,

• y1, y
′
1 ∈ Yz1(W ) and y2, y

′
2 ∈ Yz2(W ),

we have

p̂y1,z1(x̂) · p̂y2,z2(x̂)∗ = p̂y′1,z1(x̂) · p̂y′2,z2(x̂)
∗, ∀x̂ ∈ G1.

Proof. Let U1, U2, V1, V2, X1, X2, Y1, Y2, Z1, Z2 be as in Remark 6.1. We know that
I1 is preserved for W if and only if I(U1;V2|Z1Z2V1) = 0, which is equivalent to say
that U1 is conditionally independent of V2 given (Z1, Z2, V1).

In other words, for any fixed (z1, z2, v1) ∈ Z × Z ×G2 satisfying

PZ1,Z2,V1(z1, z2, v1) > 0,

if v2, v
′
2 ∈ G2 satisfy PV2|Z1,Z2,V1

(v2|z1, z2, v1) > 0 and PV2|Z1,Z2,V1
(v′2|z1, z2, v1) > 0,

then we have

∀u1 ∈ G1, PU1|V2,Z1,Z2,V1
(u1|v2, z1, z2, v1) = PU1|V2,Z1,Z2,V1

(u1|v′2, z1, z2, v1).

This condition is equivalent to saying that, for every z1, z2 ∈ Z and every v1, v2, v
′
2 ∈

G2 satisfying PZ1,Z2,Y1,Y2(z1, z2, v1+v2, v2) > 0 and PZ1,Z2,Y1,Y2(z1, z2, v1+v′2, v′2) > 0,
we have

∀u1 ∈ G1, PX1−X2|Z1,Z2,Y1,Y2
(u1|z1, z2, v1 + v2, v2) = PX1−X2|Z1,Z2,Y1,Y2

(u1|z1, z2, v1 + v′2, v′2).
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By denoting v1 + v2, v2, v1 + v′2 and v′2 as y1, y2, y
′
1 and y′2 respectively (so that

y1 − y2 = y′1 − y′2 = v1), we can deduce that I1 is preserved for W if and only
if for every y1, y2, y

′
1, y

′
2 ∈ G2 and every z1, z2 ∈ Z satisfying y1 − y2 = y′1 − y′2,

PZ1,Z2,Y1,Y2(z1, z2, y1, y2) > 0 and PZ1,Z2,Y1,Y2(z1, z2, y
′
1, y

′
2) > 0 (i.e., y1, y

′
1 ∈ Yz1(W )

and y2, y
′
2 ∈ Yz2(W )), we have

∀u1 ∈ G1, PX1−X2|Z1,Z2,Y1,Y2
(u1|z1, z2, y1, y2) = PX1−X2|Z1,Z2,Y1,Y2

(u1|z1, z2, y′1, y′2).

On the other hand, we have:

PX1−X2|Z1,Z2,Y1,Y2
(u1|z1, z2, y1, y2)

=
∑

u2∈G1

PX1|Z1,Y1
(u1 + u2|z1, y1)PX2|Z2,Y2

(u2|z2, y2)

=
∑

u2∈G1

py1,z1(u1 + u2)py2,z2(u2) = (py1,z1 ∗ p̃y2,z2)(u1),

where we define p̃y2,z2(x) := py2,z2(−x). Similarly,

PX1−X2|Z1,Z2,Y1,Y2
(u1|z1, z2, y′1, y′2) = (py′1,z1 ∗ p̃y′2,z2)(u1).

Therefore, for every u1 ∈ G1, we have

(py1,z1 ∗ p̃y2,z2)(u1) = (py′1,z1 ∗ p̃y′2,z2)(u1),

which is equivalent to p̂y1,z1(û1) · p̂y2,z2(û1)∗ = p̂y′1,z1(û1) · p̂y′2,z2(û1)
∗ for every û1 ∈

G1.

Definition 6.10. Let W : G1 × G2 −→ Z be a two-user MAC. We say that I1
is ∗− preserved for W if and only if I1 is preserved for W [n]− for every n ≥ 0,
where [n]− ∈ {−,+}n is the sequence containing n minus signs (e.g., [0]− = ø,
[2]− = (−,−)).

The following three lemmas study the MACs W for which I1 is ∗− preserved.

Lemma 6.6. If I1 is ∗− preserved for W , then for every n > 0, every y1, . . . , y2n ,
y′1, . . . , y′2n ∈ G2 and every z1, . . . , z2n ∈ Z satisfying

•
2n∑
i=1

yi =
2n∑
i=1

y′i,

• y1 ∈ Yz1(W ), . . . , y2n ∈ Yz2n (W ), and

• y′1 ∈ Yz1(W ), . . . , y′2n ∈ Yz2n (W ),

we have
2n∏
i=1

p̂yi,zi(x̂) =
2n∏
i=1

p̂y′i,zi(x̂), ∀x̂ ∈ G1.

Proof. See Appendix 6.5.2.

Lemma 6.7. If I1 is ∗− preserved for W then for every (x̂, z) ∈ X̂Z(W ), we have:
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• p̂y,z(x̂) �= 0 for all y ∈ Yz(W ).

• p̂y,z(x̂)

p̂y′,z(x̂)
∈ T for every y, y′ ∈ Yz(W ), where T := {ω ∈ C : |ω| = 1}.

Proof. If x̂ ∈ X̂
z
(W ), there exists y′ ∈ Yz(W ) satisfying p̂y′,z(x̂) �= 0. Fix y ∈ Yz(W )

and let a > 0 be the order of y − y′ in G2 (i.e., a(y − y′) = 0). Let n > 0 be such
that a < 2n and define the two sequences (yi)1≤i≤2n and (y′i)1≤i≤2n as follows:

• If 1 ≤ i ≤ a, yi = y and y′i = y′.

• If a < i ≤ 2n, yi = y′i = y′.

Since a(y − y′) = 0, we have ay = ay′ and so

2n∑
i=1

yi = ay + (2n − a)y′ = ay′ + (2n − a)y′ =
2n∑
i=1

y′i.

By applying Lemma 6.6, we get

(
p̂y,z(x̂)

)a(
p̂y′,z(x̂)

)2n−a
=

2n∏
i=1

p̂yi,z(x̂) =
2n∏
i=1

p̂y′i,z(x̂)

=
(
p̂y′,z(x̂)

)2n �= 0.

Therefore, p̂y,z(x̂) �= 0. Moreover,( p̂y,z(x̂)

p̂y′,z(x̂)

)a
= 1,

which means that
p̂y,z(x̂)

p̂y′,z(x̂)
is a root of unity. Hence

p̂y,z(x̂)

p̂y′,z(x̂)
∈ T.

Lemma 6.8. If I1 is ∗− preserved for W , there exists a unique mapping f̂W :
D(W ) → T such that for every (x̂, z) ∈ X̂Z(W ) and every y1, y2 ∈ Yz(W ), we have

p̂y1,z(x̂) = f̂W (x̂, y1 − y2) · p̂y2,z(x̂).

Proof. Let (x̂, y) ∈ D(W ). Let z be such that (x̂, y) ∈ Dz(W ) = X̂
z
(W )×ΔYz(W ),

and let y1, y2 ∈ Yz(W ) be such that y1 − y2 = y. We want to show that
p̂y1,z(x̂)

p̂y2,z(x̂)

depends only on (x̂, y) = (x̂, y1 − y2) and that
p̂y1,z(x̂)

p̂y2,z(x̂)
∈ T.

Suppose there exist z′ ∈ Z and y′1, y′2 ∈ Yz′(W ) which satisfy x̂ ∈ X̂
z′
(W ) and

y′1 − y′2 = y = y1 − y2. We need to show that
p̂y1,z(x̂)

p̂y2,z(x̂)
=

p̂y′1,z′(x̂)

p̂y′2,z′(x̂)
∈ T.

From Lemma 6.7 we have py1,z(x̂) �= 0, py2,z(x̂) �= 0, py′1,z′(x̂) �= 0 and py′2,z′(x̂) �=
0. On the other hand, since y1 + y′2 = y2 + y′1, Lemma 6.6 shows that py1,z(x̂) ·
py′2,z′(x̂) = py2,z(x̂) · py′1,z′(x̂). Therefore,

py1,z(x̂)

py2,z(x̂)
=

py′1,z′(x̂)

py′2,z′(x̂)

(a)
∈ T,
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where (a) follows from Lemma 6.7. This shows that the value of
py1,z(x̂)

py2,z(x̂)
∈ T

depends only on (x̂, y) and does not depend on the choice of z, y1, y2. We conclude
that there exists a unique f̂W (x̂, y) ∈ T such that for every z ∈ Z and every y1, y2 ∈
Yz(W ) satisfying x̂ ∈ X̂

z
(W ) and y1− y2 = y, we have p̂y1,z(x̂) = f̂W (x̂, y) · p̂y2,z(x̂).

Notice that the only difference between the mapping f̂W in Lemma 6.8 and the
function F in Definition 6.7 is that F is a pseudo-quadratic function defined on a
pseudo-quadratic domain D containing D(W ), whereas f̂W is only defined on D(W ).
Therefore, if we want to prove that W is polarization compatible, we have to show
that f̂W can be extended to a pseudo-quadratic function.

Another important remark is that if polarization ∗-preserves I1 for W , then from
Lemma 6.1 we can see that I1 is preserved for W (s,[n]−) for every s ∈ {−,+}∗ and
every n ≥ 0. Therefore, I1 is ∗− preserved for W s for every s ∈ {−,+}∗. Lemma 6.8
now implies that for every s ∈ {−,+}∗, there exists a function f̂W s : D(W s) → T
such that for every (x̂, zs) ∈ X̂Z(W s) and every y1, y2 ∈ Yzs(W s), we have

p̂y1,zs,W s(x̂) = f̂W s(x̂, y1 − y2) · p̂y2,zs,W s(x̂).

By studying the relations between D(W ) and f̂W on one hand and D(W s) and f̂W s

on the other hand, we can deduce restrictions on f̂W which will allow us to extend
it to a pseudo-quadratic function.

The following proposition shows how D(W−) and f̂W− are related to D(W ) and
f̂W in the case where I1 is ∗− preserved for W .

Proposition 6.5. If I1 is ∗− preserved for W , we have:

1. D(W−) = {(x̂, y1 + y2) : (x̂, y1), (x̂, y2) ∈ D(W )}.

2. For every x̂ ∈ G1 and every y1, y2 ∈ G2 satisfying (x̂, y1), (x̂, y2) ∈ D(W ), we
have

f̂W−(x̂, y1 + y2) = f̂W (x̂, y1) · f̂W (x̂, y2).

Proof. See Appendix 6.5.3.

Corollary 6.1. If I1 is ∗− preserved for W , then D(W ) ⊂ D(W−) and f̂W−(x̂, y) =
f̂W (x̂, y) for every (x̂, y) ∈ D(W ), i.e., f̂W− is an extension of f̂W .

Proof. Let (x̂, y) ∈ D(W ). There exists z ∈ Z and y1, y2 ∈ Yz(W ) such that
y = y1− y2, p̂y1,z(x̂) �= 0 and p̂y2,z(x̂) �= 0. Since y1 ∈ Yz(W ), we have 0 = y1− y1 ∈
ΔYz(W ). Therefore, we have (x̂, 0) ∈ D(W ) and f̂W (x̂, 0) =

p̂y1,z(x̂)

p̂y1,z(x̂)
= 1.

Since (x̂, y) ∈ D(W ) and (x̂, 0) ∈ D(W ), Proposition 6.5 implies that (x̂, y) =
(x̂, y + 0) ∈ D(W−) and f̂W−(x̂, y) = f̂W (x̂, y) · f̂W (x̂, 0) = f̂W (x̂, y).

The following proposition shows how D(W+) and f̂W+ are related to D(W ) and
f̂W in the case where polarization ∗-preserves I1 for W .

Proposition 6.6. If polarization ∗-preserves I1 for W , we have:
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1.
{
(x̂1 + x̂2, y) : (x̂1, y), (x̂2, y) ∈ D(W )

}
⊂ D(W+).

2. For every x̂1, x̂2 ∈ G1 and every y ∈ G2 satisfying (x̂1, y), (x̂2, y) ∈ D(W ), we
have

f̂W+(x̂1 + x̂2, y) = f̂W (x̂1, y) · f̂W (x̂2, y).

Proof. See Appendix 6.5.4.

Corollary 6.2. If polarization ∗-preserves I1 for W , then D(W ) ⊂ D(W+) and
f̂W+(x̂, y) = f̂W (x̂, y) for every (x̂, y) ∈ D(W ), i.e., f̂W+ is an extension of f̂W .

Proof. For every (x̂, y) ∈ D(W ), there exists z ∈ Z and y1, y2 ∈ Yz(W ) such that
x̂ ∈ X̂

z
(W ) and y = y1 − y2. Lemma 6.7 implies that p̂y1,z(x̂) �= 0 and p̂y2,z(x̂) �= 0.

We have:

p̂y1,z(0) =
∑
x∈G1

py1,z(x)e
−j2π〈0,x〉 =

∑
x∈G1

py1,z(x) = 1 �= 0.

Similarly, p̂y2,z(0) = 1 �= 0. Therefore, we have 0 ∈ X̂
z
(W ) and y ∈ ΔYz(W ). Hence,

(0, y) ∈ D(W ) and f̂W (0, y) =
p̂y1,z(0)

p̂y2,z(0)
= 1.

Since (x̂, y) ∈ D(W ) and (0, y) ∈ D(W ), Proposition 6.6 implies that (x̂, y) =
(x̂+ 0, y) ∈ D(W+) and f̂W+(x̂, y) = f̂W (x̂, y)f̂W (0, y) = f̂W (x̂, y).

The next proposition gives a necessary condition for the ∗-preservation of I1:

Proposition 6.7. If polarization ∗-preserves I1 for W , then f̂W can be extended to
a pseudo-quadratic function.

Proof. Define the sequence (Wn)n≥0 of MACs recursively as follows:

• W0 = W .

• Wn = W−
n−1 if n > 0 is odd.

• Wn = W+
n−1 if n > 0 is even.

For example, we have W1 = W−, W2 = W (−,+), W3 = W (−,+,−), W4 = W (−,+,−,+)

. . .
It follows from Corollaries 6.1 and 6.2 that:

• The sequence of sets
(
D(Wn)

)
n≥0

is increasing.

• f̂Wn is an extension of f̂W for every n > 0.

Since
(
D(Wn)

)
n≥0

is increasing and since G1×G2 is finite, there exists n0 > 0 such

that for every n ≥ n0 we have D(Wn) = D(Wn0) for all n ≥ n0. We may assume
without loss of generality that n0 is even. Define the following sets:

• Ĥ1 = {x̂ ∈ G1 : ∃y ∈ G2, (x̂, y) ∈ D(Wn0)}.

• For every x̂ ∈ Ĥ1, let H
x̂
2 = {y ∈ G2 : (x̂, y) ∈ D(Wn0)}.
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• H2 = {y ∈ G2 : ∃x̂ ∈ G1, (x̂, y) ∈ D(Wn0)}.

• For every y ∈ H2, let Ĥ
y
1 = {x̂ ∈ G1 : (x̂, y) ∈ D(Wn0)}.

We have the following:

• For every fixed y ∈ H2, let x̂1, x̂2 ∈ Ĥy
1 so that (x̂1, y), (x̂2, y) ∈ D(Wn0) ⊂

D(Wn0+1). It follows from Proposition 6.6 that (x̂1 + x̂2, y) ∈ D(W+
n0+1) =

D(Wn0+2) = D(Wn0) which implies that x̂1+x̂2 ∈ Ĥy
1 . Hence Ĥ

y
1 is a subgroup

of (G1,+). Moreover, we have:

f̂Wn0
(x̂1 + x̂2, y)

(a)
= f̂Wn0+2(x̂1 + x̂2, y) = f̂W+

n0+1
(x̂1 + x̂2, y)

(b)
= f̂Wn0+1(x̂1, y) · f̂Wn0+1(x̂2, y)

(c)
= f̂Wn0

(x̂1, y) · f̂Wn0
(x̂2, y),

where (a) and (c) follow from corollaries 6.1 and 6.2 and (b) follows from
Proposition 6.6. Therefore the mapping x̂ → f̂Wn0

(x̂, y) is a group homomor-

phism from (Ĥy
1 ,+) to (T, ·).

• For every fixed x̂ ∈ Ĥ1, let y1, y2 ∈ H x̂
2 so that (x̂, y1), (x̂, y2) ∈ D(Wn0). It

follows from Proposition 6.5 that (x̂, y1+y2) ∈ D(W−
n0
) = D(Wn0+1) = D(Wn0)

which implies that y1+y2 ∈ H x̂
2 . HenceH

x̂
2 is a subgroup of (G2,+). Moreover,

we have

f̂Wn0
(x̂, y1 + y2)

(a)
= f̂Wn0+1(x̂, y1 + y2) = f̂W−

n0
(x̂, y1 + y2)

(b)
= f̂Wn0

(x̂, y1) · f̂Wn0
(x̂, y2),

where (a) follows from corollary 6.1 and (b) follows from Proposition 6.5.
Therefore the mapping y → f̂Wn0

(x̂, y) is a group homomorphism from (H x̂
2 ,+)

to (T, ·).

We conclude that f̂Wn0
(which is an extension of f̂W ) is pseudo-quadratic.

Proposition 6.7 shows that if polarization ∗-preserves I1 for W then W must be
polarization compatible with respect to the first user.

6.3.2 Polarization Compatibility is Sufficient

For the sake of brevity, we will write “polarization compatible” to denote “polar-
ization compatible with respect to the first user”. In this subsection, we show that
polarization compatibility is a sufficient condition for the ∗-preservation of I1.

Lemma 6.9. If W : G1 ×G2 −→ Z is polarization compatible then I1 is preserved
for W .

Proof. Let F : D → T be the pseudo-quadratic function of Definition 6.7. Suppose
that y1, y2, y

′
1, y

′
2 ∈ G2 and z1, z2 ∈ Z satisfy:

• y1 − y2 = y′1 − y′2.
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• y1, y
′
1 ∈ Yz1(W ) and y2, y

′
2 ∈ Yz2(W ).

For every x̂ ∈ G1, we have:

• If (x̂, z1) /∈ X̂Z(W ) then p̂y1,z1(x̂) = 0 and p̂y′1,z1(x̂) = 0, so

p̂y1,z1(x̂)p̂y2,z2(x̂)
∗ = p̂y′1,z1(x̂)p̂y′2,z2(x̂)

∗ = 0.

• If (x̂, z2) /∈ X̂Z(W ) then p̂y2,z2(x̂) = 0 and p̂y′2,z2(x̂) = 0, so

p̂y1,z1(x̂)p̂y2,z2(x̂)
∗ = p̂y′1,z1(x̂)p̂y′2,z2(x̂)

∗ = 0.

• If (x̂, z1) ∈ X̂Z(W ) and (x̂, z2) ∈ X̂Z(W ), then

p̂y1,z1(x̂)p̂y2,z2(x̂)
∗ = p̂y′1,z1(x̂)F (x̂, y1 − y′1)p̂y′2,z2(x̂)

∗F (x̂, y2 − y′2)
∗

(a)
= p̂y′1,z1(x̂)p̂y′2,z2(x̂)

∗,

where (a) follows from the fact that y1 − y′1 = y2 − y′2 and so

F (x̂, y1 − y′1)F (x̂, y2 − y′2)
∗ = |F (x̂, y1 − y′1)|2 = 1.

Therefore, we have p̂y1,z1(x̂)p̂y2,z2(x̂)
∗ = p̂y′1,z1(x̂)p̂y′2,z2(x̂)

∗ for all x̂ ∈ G1. Lemma
6.5 now implies that I1 is preserved for W .

Lemma 6.10. If W : G1 ×G2 −→ Z is polarization compatible then W− and W+

are polarization compatible as well.

Proof. See Appendix 6.5.5.

Proposition 6.8. If W is polarization compatible then polarization ∗-preserves I1
for W .

Proof. Suppose that W is polarization compatible. Using Lemma 6.10, we can show
by induction that W s is polarization compatible for every s ∈ {−,+}∗. Lemma 6.9
now implies that I1 is preserved for W s for every s ∈ {−,+}∗. By applying Lemma
6.1, we deduce that polarization ∗-preserves I1 for W .

Propositions 6.7 and 6.8 show that polarization ∗-preserves I1 for W if and only
if W is polarization compatible. This completes the proof of Theorem 6.1.

6.3.3 Special Cases

The characterization found in Theorem 6.1 (i.e., polarization compatibility) takes a
simple form in the special case where G1 = G2 = Fq for a prime q:

Proposition 6.9. Let W : Fq × Fq −→ Z be a two-user MAC and let (X,Y )
W−→

Z. Polarization ∗-preserves I1 for W if and only if there exists a ∈ Fq such that
I(X + aY ;Y |Z) = 0.
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Proof. If polarization ∗-preserves I1 for W then W is polarization compatible. Let
F : D → T be the pseudo-quadratic function of Definition 6.7. We have the follow-
ing:

• If there exists (x̂, y) ∈ D such that x̂ �= 0 and y �= 0 then D = Fq ×Fq since D
is a pseudo-quadratic domain and since q is prime.

• If for all (x̂, y) ∈ D we have either x̂ = 0 or y = 0, then F (x̂, y) = 1 for every
(x̂, y) ∈ D. Hence the mapping F ′ : Fq × Fq → T defined as F ′(x̂, y) = 1 is an
extension of F which preserves the pseudo-quadratic property.

Therefore, we can assume without loss of generality that D = Fq × Fq. Now since
F (1, 1)q = F (1, q · 1) = F (1, 0) = 1, F (1, 1) is a qth root of unity. Therefore, there

exists a ∈ Fq such that F (1, 1) = e
j2π a

q .
Fix z ∈ Z and y1, y2 ∈ Yz(W ). For every x̂ ∈ Fq we have

p̂y1,z(x̂) = p̂y2,z(x̂) · F (x̂, y1 − y2) = p̂y2,z(x̂) · ej2πa
(y1−y2)x̂

q ,

which is equivalent to say that for every x′ ∈ Fq, we have

py1,z(x
′) = py2,z(x

′ + a(y1 − y2)),

i.e.,
PX|Y,Z(x′|y1, z) = PX|Y,Z(x′ + a(y1 − y2)|y2, z). (6.6)

By applying the change of variable x′ = x− ay1, we can see that (6.6) is equivalent
to

PX+aY |Y,Z(x|y1, z) = PX|Y,Z(x− ay1|y1, z) = PX|Y,Z(x′|y1, z)
= PX|Y,Z(x′ + a(y1 − y2)|y2, z)
= PX|Y,Z(x− ay1 + a(y1 − y2)|y2, z)
= PX|Y,Z(x− ay2|y2, z) = PX+aY |Y,Z(x|y2, z).

This shows that X + aY is conditionally independent of Y given Z, i.e., I(X +
aY ;Y |Z) = 0.

On the other hand, let W : Fq×Fq −→ Z be a two-user MAC and let (X,Y )
W−→

Z. If there exists a ∈ Fq such that I(X+aY ;Y |Z) = 0, then Proposition 6.3 implies
that polarization ∗-preserves I1 for W .

Corollary 6.3. Polarization ∗-preserves the symmetric-capacity region for the bi-
nary adder channel.

Proof. Let X and Y be two independent uniform random variables in {0, 1}, and
let Z = X + Y ∈ {0, 1, 2} (where + here denotes addition in R). It is easy to check
that I(X ⊕ Y ;Y |Z) = I(X ⊕ Y ;X|Z) = 0. Therefore, polarization ∗-preserves I1
and I2 for W . We conclude that polarization ∗-preserves the symmetric-capacity
region for W .

Remark 6.3. It may seem promising to try to generalize Proposition 6.9 to the case
where G1 = Fk

q and G2 = Fl
q by considering the condition I(X + AY ;Y |Z) = 0 for

some matrix A ∈ Fk×l
q . Although this condition is sufficient for the ∗-preservation

of I1 (Proposition 6.3), it turns out that it is not necessary.
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Proposition 6.10. If |G1| and |G2| are co-prime and (X,Y )
W−→ Z, then polar-

ization ∗-preserves I1 for W if and only if I(X;Y |Z) = 0 (i.e., if and only if the
dominant face of J (W ) is a single point).

Proof. Let F : D → T be a pseudo-quadratic function. For every (x̂, y) ∈ D, we
have:

• F (x̂, y)|G1| = F (|G1| · x̂, y) = F (0, y) = 1.

• F (x̂, y)|G2| = F (x̂, |G2| · y) = F (x̂, 0) = 1.

Therefore, F (x̂, y) is both a |G1|th root of unity and a |G2|th root of unity. This
shows that F (x̂, y) must be equal to 1 because |G1| and |G2| are co-prime. We
conclude that every pseudo-quadratic function F : D → T must be equal to 1.
Therefore, polarization ∗-preserves I1 for W if and only if p̂y1,z(x̂) = p̂y2,z(x̂) for
every (x̂, z) ∈ X̂Z(W ) and every y1, y2 ∈ Yz(W ).

Now since p̂y1,z(x̂) = p̂y2,z(x̂) = 0 for every x̂ /∈ X̂
z
(W ) and every y1, y2 ∈ Yz(W ),

we conclude that polarization ∗-preserves I1 for W if and only if p̂y1,z(x̂) = p̂y2,z(x̂)
for every (x̂, z) ∈ G1 × Z and every y1, y2 ∈ Yz(W ). This is equivalent to say that
py1,z(x) = py2,z(x) for every (x, z) ∈ G1 × Z and every y1, y2 ∈ Yz(W ). This just
means that X and Y are conditionally independent given Z.

6.4 Generalization to Multiple User MACs

Definition 6.11. Let W : G1× · · · ×Gm −→ Z be an m-user MAC. For every S ⊂
{1, . . . ,m}, we define the two-user MAC WS : GS ×GSc −→ Z as WS(y|xS , xSc) =
W (y|x1, . . . , xm).

Remark 6.4. It is easy to see that for every s ∈ {−,+}∗ and every S ⊂ {1, . . . ,m},
we have (W s)S = (WS)

s. Therefore, polarization ∗-preserves IS for W if and only
if polarization ∗-preserves I1 for WS.

Theorem 6.2. Let W : G1 × · · · × Gm −→ Z be an m-user MAC. Polarization
∗-preserves IS for W if and only if WS is polarization compatible.

Proof. Direct corollary of Theorem 6.1 and Remark 6.4.

6.5 Appendix

6.5.1 Proof of Proposition 6.4

We need the following lemma:

Lemma 6.11. Let (G,+) be an Abelian group and let f̂ : G → T be a group
homomorphism from (G,+) to (T, ·). There exists xf ∈ G satisfying:

• f̂(x̂) = ej2π〈x̂,xf 〉 for every x̂ ∈ G.

• If n > 0 is such that f̂(x̂)n = 1 for every x̂ ∈ G, then nxf = 0.
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Proof. Let N1, . . . , Nk > 0 be k integers such that G = ZN1 × · · · × ZNk
. For

every 1 ≤ i ≤ k, let ei = (0, . . . , 0, 1, 0, . . . , 0) ∈ G be the element of G whose jth

coordinate is 1 if j = i and 0 otherwise.

Since Niei = 0, we have f̂(ei)
Ni = f̂(Niei) = f̂(0) = 1. Therefore, f̂(ei) is an

N th
i root of unity, so there exists 0 ≤ xi < Ni such that f̂(ei) = e

j2πxi
Ni .

Let xf := (x1, . . . , xk) ∈ G. For every x̂ = (x̂1, . . . x̂k) ∈ G we have:

f̂(x̂) = f̂

(
k∑

i=1

x̂iei

)
=

k∏
i=1

f̂(ei)
x̂i =

k∏
i=1

(
e

j2πxi
Ni

)x̂i

= e
∑k

i=1
j2πx̂ixi

Ni = ej2π〈x̂,xf 〉.

If n > 0 is such that f̂(x̂)n = 1 for every x̂ ∈ G, then e
j2πnxi

Ni = f̂(ei)
n = 1 for

every 1 ≤ i ≤ k. This means that Ni divides nxi for every 1 ≤ i ≤ k. Therefore,

nxf = (nx1 mod N1, . . . , nxk mod Nk) = 0.

Now we are ready to prove Proposition 6.4.

Since we have shown the necessary condition in the discussion before the state-
ment of Proposition 6.4, we only need to show the sufficient condition.

Let W : G1 × G2 −→ Z be a two-user MAC, and assume that there exists a
subgroup H2 of G2 and a pseudo-quadratic function F : G1 ×H2 → T satisfying:

• D(W ) ⊂ G1 ×H2.

• For every (x̂, z) ∈ X̂Z(W ) and every y1, y2 ∈ Yz(W ), we have p̂y1,z(x̂) =
F (x̂, y1 − y2)p̂y2,z(x̂).

Since (H2,+) is an Abelian group, it is isomorphic to the product of cyclic groups.
Let N ′

1, . . . , N
′
k′ > 0 be k′ integers such that H2 is isomorphic to ZN ′

1
× · · · × ZN ′

k′
.

Because of this isomorphism, we can find k′ elements e′1, . . . , e′k′ ∈ H2 such that:

• e′i is of order N
′
i for every 1 ≤ i ≤ k′.

• For every y ∈ H2, there exist unique integers 0 ≤ y1 < N ′
1, . . . , 0 ≤ yk′ < N ′

k′

such that y =
k′∑
i=1

yie
′
i.

For every 1 ≤ i ≤ k′, the mapping x̂ → F (x̂, e′i) is a group homomorphism
from (G1,+) to (T, ·). Lemma 6.11 shows that there exists fi ∈ G1 such that
F (x̂, e′i) = ej2π〈x̂,fi〉 for every x̂ ∈ G1. Moreover, for every 1 ≤ i ≤ k′, we have
F (x̂, e′i)

N ′
i = F (x̂, N ′

ie
′
i) = F (x̂, 0) = 1 for every x̂ ∈ G1, hence N ′

ifi = 0.

For every y ∈ H2, define f(y) =
k′∑
i=1

yifi, where 0 ≤ y1 < N ′
1, . . . , 0 ≤ yk′ < N ′

k′

satisfy y =
k′∑
i=1

yie
′
i. We can show that f is a group homomorphism from (H2,+) to
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(G1,+): Let y, y′ ∈ H2 and let 0 ≤ y1, y
′
1, y

′′
1 ≤ N ′

1, . . . , 0 ≤ yk′ , y
′
k′ , y

′′
k′ ≤ N ′

k′ be

such that y =
k′∑
i=1

yie
′
i, y

′ =
k′∑
i=1

y′ie
′
i and y + y′ =

k′∑
i=1

y′′i e
′
i. We have:

0 = y + y′ − y − y′ =
k′∑
i=1

(y′′i − yi − y′i)e
′
i
(a)
=

k′∑
i=1

(y′′i − yi − y′i mod N ′
i)e

′
i,

where (a) follows from the fact that e′i is of order N
′
i . Thus, y

′′
i = yi+ y′i mod N ′

i for
every 1 ≤ i ≤ k′. Therefore,

f(y + y′) =
k′∑
i=1

y′′i fi
(b)
=

k′∑
i=1

(yi + y′i)fi =

(
k′∑
i=1

yifi

)
+

(
k′∑
i=1

y′ifi

)
= f(y) + f(y′),

where (b) follows from the fact that N ′
ifi = 0 and y′′i = yi + y′i mod N ′

i for every
1 ≤ i ≤ k′. We conclude that f is a group homomorphism from (H2,+) to (G1,+).

On the other hand, for every x̂ ∈ G1, we have:

F (x̂, y) = F

(
x̂,

k′∑
i=1

yie
′
i

)
=

k′∏
i=1

F
(
x̂, e′i

)yi = k′∏
i=1

(
ej2π〈x̂,fi〉

)yi

= e
∑k′

i=1 j2πyi〈x̂,fi〉 = e
j2π

〈
x̂,
∑k′

i=1 yifi

〉
= ej2π〈x̂,f(y)〉.

Let z ∈ Z and y1, y2 ∈ Yz(W ). For every x̂ ∈ G1, we have:

• If x̂ /∈ X̂
z
(W ), we have p̂y1,z(x̂) = p̂y2,z(x̂) = 0, hence

p̂y1,z(x̂) = p̂y2,z(x̂)e
j2π〈x̂,f(y1−y2)〉.

• If x̂ ∈ X̂
z
(W ), we have

p̂y1,z(x̂) = p̂y2,z(x̂)F (x̂, y1 − y2) = p̂y2,z(x̂)e
j2π〈x̂,f(y1−y2)〉.

We conclude that

p̂y1,z(x̂) = p̂y2,z(x̂)e
j2π〈x̂,f(y1−y2)〉 ∀x̂ ∈ G1

⇔ py1,z(x) = py2,z(x+ f(y1 − y2)) ∀x ∈ G1.

Lemma 6.4 now shows that W is homomorphic-independent.

6.5.2 Proof of Lemma 6.6

We need the following two lemmas:

Lemma 6.12. Suppose that I1 is ∗− preserved for W . Fix n > 0 and let (Ui, Vi)0≤i<2n

be a sequence of random pairs which are independent and uniformly distributed in
G1 ×G2. Let

F =

[
1 1
0 1

]
.

Define X2n−1
0 = F⊗n ·U2n−1

0 and Y 2n−1
0 = F⊗n · V 2n−1

0 , and for each 0 ≤ i < 2n let

(Xi, Yi)
W−→ Zi. We have the following:
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• The MAC (U0, V0) −→ Z2n−1
0 is equivalent to W [n]− .

• I(U0;V
2n−1
1 |Z2n−1

0 V0) = 0.

Proof. We will show the lemma by induction on n > 0. For n = 1, the claim
follows from Remark 6.1 and from the fact that I1 is preserved for W if and only if
I(U0;V1|Z0Z1V0) = 0 (see (6.1)).

Now let n > 1 and suppose that the claim is true for n− 1. Let N = 2n−1. We
have X2n−1

0 = F⊗n · U2n−1
0 and Y 2n−1

0 = F⊗n · V 2n−1
0 , i.e., X2N−1

0 = F⊗n · U2N−1
0

and Y 2N−1
0 = F⊗n · V 2N−1

0 . Therefore, we have:

XN−1
0 = F⊗(n−1) · (UN−1

0 + U2N−1
N ),

X2N−1
N = F⊗(n−1) · U2N−1

N ,

Y N−1
0 = F⊗(n−1) · (V N−1

0 + V 2N−1
N ),

and

Y 2N−1
N = F⊗(n−1) · V 2N−1

N .

This means that

(UN−1
0 + U2N−1

N , V N−1
0 + V 2N−1

N , ZN−1
0 )

and

(U2N−1
N , V 2N−1

N , Z2N−1
N )

satisfy the conditions of the induction hypothesis. Therefore,

• I(U0 + UN ;V N−1
1 + V 2N−1

N+1 |ZN−1
0 , V0 + VN ) = 0.

• I(UN ;V 2N−1
N+1 |Z2N−1

N , VN ) = 0.

Moreover, since

(UN−1
0 + U2N−1

N , V N−1
0 + V 2N−1

N , ZN−1
0 )

is independent of

(U2N−1
N , V 2N−1

N , Z2N−1
N ),

we can combine the above two equations to get:

I(U0 + UN , UN ;V N−1
1 + V 2N−1

N+1 , V 2N−1
N+1 |Z2N−1

0 , V0 + VN , VN ) = 0,

which can be rewritten as

I(U0UN ;V N−1
1 V 2N−1

N+1 |Z2N−1
0 V0VN ) = 0. (6.7)

On the other hand, it also follows from the induction hypothesis that:

• The MAC (U0 + UN , V0 + VN ) −→ ZN−1
0 is equivalent to W [n−1]− .

• The MAC (UN , VN ) −→ Z2N−1
N is equivalent to W [n−1]− .
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This implies that the MAC (U0, V0) −→ Z2N−1
0 is equivalent to W [n]− . Now since

I1 is ∗− preserved for W , I1 must be preserved for W [n−1]− . Therefore,

I(U0;VN |Z2N−1
0 V0) = I(U0;VN |ZN−1

0 Z2N−1
N V0)

(a)
= 0, (6.8)

where (a) follows from (6.1). We conclude that:

I(U0;V
2N−1
1 |Z2N−1

0 V0) = I(U0;VN |Z2N−1
0 V0) + I(U0;V

N−1
1 V 2N−1

N+1 |Z2N−1
0 V0VN )

≤ I(U0;VN |Z2N−1
0 V0) + I(U0UN ;V N−1

1 V 2N−1
N+1 |Z2N−1

0 V0VN )

(b)
= 0,

where (b) follows from (6.7) and (6.8).

Lemma 6.13. For every n > 0, if X2n−1
0 = F⊗nU2n−1

0 , then U0 =
2n−1∑
i=0

(−1)|i|bXi,

where |i|b is the number of ones in the binary expansion of i.

Proof. We will show the lemma by induction on n > 0. For n = 1, the fact that
X1

0 = F⊗1 · U1
0 = F · U1

0 implies that X0 = U0 + U1 and X1 = U1. Therefore

U0 = X0 −X1 =
1∑

i=0

(−1)|i|bXi.

Now let n > 1 and suppose that the claim is true for n− 1. Let N = 2n−1. The
fact that X2N−1

0 = F⊗n · U2N−1
0 implies that:

• XN−1
0 = F⊗(n−1) · (UN−1

0 + U2N−1
N ).

• X2N−1
N = F⊗(n−1) · U2N−1

N .

We can apply the induction hypothesis to get:

• U0 + UN =
N−1∑
i=0

(−1)|i|bXi.

• UN =

N−1∑
i=0

(−1)|i|bXi+N .

Therefore,

U0 =
N−1∑
i=0

(−1)|i|bXi −
N−1∑
i=0

(−1)|i|bXi+N =
N−1∑
i=0

(−1)|i|bXi +
N−1∑
i=0

(−1)1+|i|bXi+N

=
N−1∑
i=0

(−1)|i|bXi +
2N−1∑
i=N

(−1)1+|i−N |bXi
(a)
=

N−1∑
i=0

(−1)|i|bXi +
2N−1∑
i=N

(−1)|i|bXi

=
2N−1∑
i=0

(−1)|i|bXi,

where (a) follows from the fact that for 2n = N ≤ i < 2N = 2n+1, we have
|i−N |b = |i− 2n|b = |i|b − 1.
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We are now ready to prove Lemma 6.6:

Let W be a two-user MAC such that I1 is ∗− preserved for W . Let n > 0,
y1, . . . , y2n , y

′
1, . . . , y

′
2n ∈ G2 and z1, . . . , z2n ∈ Z be such that

•
2n∑
i=1

yi =
2n∑
i=1

y′i,

• y1 ∈ Yz1(W ), . . . , y2n ∈ Yz2n (W ), and

• y′1 ∈ Yz1(W ), . . . , y′2n ∈ Yz2n (W ).

Now fix x̂ ∈ G1. If p̂y,z(x̂) = 0 for every (y, z) ∈ YZ(W ), then we clearly have

2n∏
i=1

p̂yi,zi(x̂) =

2n∏
i=1

p̂y′i,zi(x̂).

Therefore, we can assume without loss of generality that there exists (y, z) ∈
YZ(W ) which satisfies p̂y,z(x̂) �= 0.

Let U2n+1−1
0 , V 2n+1−1

0 , X2n+1−1
0 , Y 2n+1−1

0 and Z2n+1−1
0 be as in Lemma 6.12 and

let N = 2n+1 so that we have

I(U0;V
N−1
1 |ZN−1

0 V0) = 0. (6.9)

Since XN−1
0 = F⊗(n+1) ·UN−1

0 and Y N−1
0 = F⊗(n+1) ·V N−1

0 , Lemma 6.13 implies
that

U0 =

N−1∑
i=0

(−1)|i|bXi and V0 =

N−1∑
i=0

(−1)|i|bYi. (6.10)

Notice that
∣∣{0 ≤ i < N = 2n+1 : |i|b ≡ 0 mod 2

}∣∣ = ∣∣{0 ≤ i < N = 2n+1 :
|i|b ≡ 1 mod 2

}∣∣ = 2n. Let k1, . . . , k2n be the elements of
{
0 ≤ i < N : |i|b ≡

0 mod 2
}
and let l1, . . . , l2n be the elements of

{
0 ≤ i < N : |i|b ≡ 1 mod 2

}
.

Define (ỹi, ỹ
′
i, z̃i)0≤i<N as follows:

• For every 1 ≤ i ≤ 2n, let ỹki = yi, ỹ
′
ki

= y′i and z̃ki = zi.

• For every 1 ≤ i ≤ 2n, let ỹli = ỹ′li = y and z̃li = z (where (y, z) is any fixed
pair in YZ(W ) satisfying p̂y,z(x̂) �= 0).

Now let ṽN−1
0 = (F⊗(n+1))−1 · ỹN−1

0 and ṽ′N−1
0 = (F⊗(n+1))−1 · ỹ′N−1

0 . We have

ṽ0
(a)
=

N−1∑
i=0

(−1)|i|b ỹi =
2n∑
i=1

(ỹki − ỹli) =

(
2n∑
i=1

yi

)
− 2ny

(b)
=

(
2n∑
i=1

y′i

)
− 2ny =

2n∑
i=1

(ỹ′ki − ỹ′li) =
N−1∑
i=0

(−1)|i|b ỹ′i
(c)
= ṽ′0,
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where (a) and (c) follow from Lemma 6.13. (b) follows from the fact that
2n∑
i=1

yi =

2n∑
i=1

y′i. Therefore,

(ṽ0, z̃
N−1
0 ) = (ṽ′0, z̃

N−1
0 ). (6.11)

On the other hand, since ỹi ∈ Yz̃i(W ) for every 0 ≤ i < N , we have

PV0,V
N−1
1 ,ZN−1

0
(ṽ0, ṽ

N−1
1 , z̃N−1

0 ) = PV N−1
0 ,ZN−1

0
(ṽN−1

0 , z̃N−1
0 )

= PY N−1
0 ,ZN−1

0
(ỹN−1

0 , z̃N−1
0 ) > 0.

(6.12)

Similarly, since ỹ′i ∈ Yz̃i(W ) for every 0 ≤ i < N , we have

PV0,V
N−1
1 ,ZN−1

0
(ṽ′0, ṽ

′N−1
1 , z̃N−1

0 ) = PV N−1
0 ,ZN−1

0

(
ṽ′N−1
0 , z̃N−1

0

)
= PY N−1

0 ,ZN−1
0

(ỹ′N−1
0 , z̃N−1

0 ) > 0.
(6.13)

Equation (6.9) implies that given (V0, Z
N−1
0 ), U0 is conditionally independent of

V N−1
1 . Equations (6.11), (6.12) and (6.13) now imply that for every u0 ∈ G1, we

have:

PU0|V N−1
1 ,V0,Z

N−1
0

(u0|ṽN−1
1 , ṽ0, z̃

N−1
0 ) = PU0|V N−1

1 ,V0,Z
N−1
0

(u0|ṽ′N−1
1 , ṽ′0, z̃

N−1
0 )

⇔ PU0|V N−1
0 ,ZN−1

0
(u0|ṽN−1

0 , z̃N−1
0 ) = PU0|V N−1

0 ,ZN−1
0

(u0|ṽ′N−1
0 , z̃N−1

0 )

⇔ PU0|Y N−1
0 ,ZN−1

0
(u0|ỹN−1

0 , z̃N−1
0 ) = PU0|Y N−1

0 ,ZN−1
0

(u0|ỹ′N−1
0 , z̃N−1

0 )

(a)⇔
∑

x̃N−1
0 ∈GN

1 :∑N−1
i=0 (−1)|i|b x̃i=u0

N−1∏
i=0

PXi|Yi,Z1
(x̃i|ỹi, z̃i) =

∑
x̃N−1
0 ∈GN

1 :∑N−1
i=0 (−1)|i|b x̃i=u0

N−1∏
i=0

PXi|Yi,Z1
(x̃i|ỹ′i, z̃i)

(b)⇔
∑

xN
1 ∈GN

1 :∑2n

i=1 xi−
∑N

i=2n+1 xi=u0

2n∏
i=1

pyi,zi(xi)
N∏

i=2n+1

py,z(xi)

=
∑

xN
1 ∈GN

1 :∑2n

i=1 xi−
∑N

i=2n+1 xi=u0

2n∏
i=1

py′i,zi(xi)
N∏

i=2n+1

py,z(xi),

(6.14)

where (a) follows from (6.10) and (b) follows from the following change of variables:

xi =

{
x̃ki if 1 ≤ i ≤ 2n,

x̃li−2n
if 2n ≤ i ≤ 2n+1 = N.

Now notice that the left hand side of (6.14) is the convolution of (pyi,zi)1≤i≤2n

with 2n copies of p̃y,z (where we define p̃y,z(x) = py,z(−x)). Likewise, the right hand
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side of (6.14) is the convolution of (py′i,zi)1≤i≤2n with 2n copies of p̃y,z. By applying
the DFT on (6.14), we get:

2n∏
i=1

p̂yi,zi(û0)
N∏

i=2n+1

p̂y,z(û0)
∗ =

2n∏
i=1

p̂y′i,zi(û0)
N∏

i=2n+1

p̂y,z(û0)
∗, ∀û0 ∈ G1.

In particular,

2n∏
i=1

p̂yi,zi(x̂)

N∏
i=2n+1

p̂y,z(x̂)
∗ =

2n∏
i=1

p̂y′i,zi(x̂)

N∏
i=2n+1

p̂y,z(x̂)
∗.

Now since p̂y,z(x̂) �= 0, we conclude that

2n∏
i=1

p̂yi,zi(x̂) =
2n∏
i=1

p̂y′i,zi(x̂).

6.5.3 Proof of Proposition 6.5

We need the following lemmas.

Lemma 6.14. For every two-user MAC W : G1 ×G2 −→ Z and every z1, z2 ∈ Z,
we have:

Y(z1,z2)(W−) = Yz1(W )−Yz2(W ) =
{
y1 − y2 : y1 ∈ Yz1(W ), y2 ∈ Yz2(W )

}
.

Proof. Let U1, U2, V1, V2, X1, X2, Y1, Y2, Z1, Z2 be as in Remark 6.1. For every v1 ∈
G2 and every z1, z2 ∈ Z, we have:

PV1,Z1,Z2(v1, z1, z2) =
∑

y1,y2∈G2:
v1=y1−y2

PY1,Y2,Z1,Z2(y1, y2, z1, z2)

=
∑

y1,y2∈G2:
v1=y1−y2

PY1,Z1(y1, z1)PY2,Z2(y2, z2).

Therefore, v1 ∈ Y(z1,z2)(W−) if and only if there exist y1, y2 ∈ G2 such that y1 ∈
Yz1(W ), y2 ∈ Yz2(W ) and v1 = y1 − y2. Hence,

Y(z1,z2)(W−) =
{
y1 − y2 : y1 ∈ Yz1(W ), y2 ∈ Yz2(W )

}
.

Lemma 6.15. Let U1, U2, V1, V2, X1, X2, Y1, Y2, Z1, Z2 be as in Remark 6.1. For
every z1, z2 ∈ Z, every v1 ∈ Y(z1,z2)(W−) and every û1 ∈ G1, we have:

p̂v1,(z1,z2),W−(û1) =
∑

v2∈Yz2 (W ):
v1+v2∈Yz1 (W )

PY1|Z1
(v1 + v2|z1)PY2|Z2

(v2|z2)
PV1|Z1,Z2

(v1|z1, z2)
p̂v1+v2,z1(û1) · p̂v2,z2(û1)∗. (6.15)
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Proof. Fix z1, z2 ∈ Z and v1 ∈ Y(z1,z2)(W−), and let β = PV1|Z1,Z2
(v1|z1, z2) > 0.

For every u1 ∈ G1, we have:

pv1,(z1,z2),W−(u1)

= PU1|V1,Z1,Z2
(u1|v1, z1, z2) =

1

β
PU1,V1|Z1,Z2

(u1, v1|z1, z2)

=
1

β

∑
u2∈G1,
v2∈G2

PU1,U2,V1,V2|Z1,Z2
(u1, u2, v1, v2|z1, z2)

=
1

β

∑
u2∈G1,
v2∈G2

PX1,X2,Y1,Y2|Z1,Z2
(u1 + u2, u2, v1 + v2, v2|z1, z2)

=
1

β

∑
v2∈G2

∑
u2∈G1

PX1,Y1|Z1
(u1 + u2, v1 + v2|z1)PX2,Y2|Z2

(u2, v2|z2)

=
1

β

∑
v2∈Yz2 (W ):

v1+v2∈Yz1 (W )

∑
u2∈G1

PX1,Y1|Z1
(u1 + u2, v1 + v2|z1)PX2,Y2|Z2

(u2, v2|z2)

=
1

β

∑
v2∈Yz2 (W ):

v1+v2∈Yz1 (W )

PY1|Z1
(v1 + v2|z1)PY2|Z2

(v2|z2)
∑

u2∈G1

pv1+v2,z1(u1 + u2)pv2,z2(u2)

=
1

β

∑
v2∈Yz2 (W ):

v1+v2∈Yz1 (W )

PY1|Z1
(v1 + v2|z1)PY2|Z2

(v2|z2)(pv1+v2,z1 ∗ p̃v2,z2)(u1),

where we define p̃v2,z2(x) = pv2,z2(−x) for every x ∈ G1. Therefore, for every
û1 ∈ G1, we have:

p̂v1,(z1,z2),W−(û1) =
∑

v2∈Yz2 (W ):
v1+v2∈Yz1 (W )

PY1|Z1
(v1 + v2|z1)PY2|Z2

(v2|z2)
PV1|Z1,Z2

(v1|z1, z2)
p̂v1+v2,z1(û1) · p̂v2,z2(û1)∗.

Lemma 6.16. If I1 is ∗− preserved for W , then

D(W−) ⊂ {(x̂, y1 + y2) : (x̂, y1), (x̂, y2) ∈ D(W )}.

Proof. Let U1, U2, V1, V2, X1, X2, Y1, Y2, Z1, Z2 be as in Remark 6.1. Let (û1, v1) ∈
D(W−). There exists z− = (z1, z2) ∈ Z2 such that (û1, v1) ∈ Dz−(W−), i.e., û1 ∈
X̂

z−
(W−) and v1 ∈ ΔYz−(W−). This implies the existence of v′1, v′′1 ∈ Yz−(W−)

such that v1 = v′1−v′′1 . Since û1 ∈ X̂
z−

(W−), Lemma 6.7 shows that p̂v′1,z−,W−(û1) �=
0 and p̂v′′1 ,z−,W−(û1) �= 0. From (6.15), we have:

p̂v′1,z−,W−(û1) =
∑

v′2∈Yz2 (W ):
v′1+v′2∈Yz1 (W )

PY1|Z1
(v′1 + v′2|z1)PY2|Z2

(v′2|z2)
PV1|Z1,Z2

(v′1|z1, z2)
p̂v′1+v′2,z1(û1) · p̂v′2,z2(û1)

∗.



6.5. Appendix 163

Since p̂v′1,z−,W−(û1) �= 0, the terms in the above sum cannot all be zero. There-
fore, there exists v′2 ∈ Yz2(W ) such that v′1 + v′2 ∈ Yz1(W ), p̂v′1+v′2,z1(û1) �= 0 and
p̂v′2,z2(û1) �= 0. Similarly, since p̂v′′1 ,z−,W−(û1) �= 0, there exists v′′2 ∈ Yz2(W ) such
that v′′1 + v′′2 ∈ Yz1(W ), p̂v′′1+v′′2 ,z1(û1) �= 0 and p̂v′′2 ,z2(û1) �= 0. Therefore, we have

• û1 ∈ X̂
z1
(W ) (because p̂v′1+v′2,z1(û1) �= 0).

• v1 + v′2 − v′′2 = (v′1 + v′2)− (v′′1 + v′′2) ∈ ΔYz1(W ).

• û1 ∈ X̂
z2
(W ) (because p̂v′2,z2(û1) �= 0).

• v′′2 − v′2 ∈ ΔYz2(W ).

We can now see that (û1, v1 + v′2 − v′′2) ∈ Dz1(W ) ⊂ D(W ) and (û1, v
′′
2 − v′2) ∈

Dz2(W ) ⊂ D(W ). By noticing that v1 = (v1+v′2−v′′2)+(v′′2 −v′2), we conclude that:

D(W−) ⊂
{
(x̂, y1 + y2) : (x̂, y1), (x̂, y2) ∈ D(W )

}
.

Now we are ready to prove Proposition 6.5.

Let W be a two-user MAC such that I1 is ∗− preserved for W . Let U1, U2, V1, V2,
X1, X2, Y1, Y2, Z1, Z2 be as in Remark 6.1.

1. Let x̂ ∈ G1 and y1, y2 ∈ G2 be such that (x̂, y1), (x̂, y2) ∈ D(W ). There exist
z1, z2 ∈ Z, y′1, y′′1 ∈ Yz1(W ) and y′2, y′′2 ∈ Yz2(W ) such that x̂ ∈ X̂

z1
(W ), x̂ ∈

X̂
z2
(W ), y1 = y′1− y′′1 and y2 = y′2− y′′2 . Lemma 6.7 implies that p̂y′1,z1(x̂) �= 0,

p̂y′′1 ,z1(x̂) �= 0, p̂y′2,z2(x̂) �= 0 and p̂y′′2 ,z2(x̂) �= 0. Now from Lemma 6.14 we get

y′1 − y′′2 ∈ Y(z1,z2)(W−) and y′′1 − y′2 ∈ Y(z1,z2)(W−).

For every v2 ∈ Yz2(W ) satisfying y′1 − y′′2 + v2 ∈ Yz1(W ), we have:

p̂y′1−y′′2+v2,z1(x̂)·p̂v2,z2(x̂)∗

= p̂y′1,z1(x̂)f̂W (x̂, v2 − y′′2) · p̂y′′2 ,z2(x̂)
∗f̂W (x̂, v2 − y′′2)

∗

(a)
= p̂y′1,z1(x̂)p̂y′′2 ,z2(x̂)

∗,

(6.16)

where (a) follows from the fact that f̂W (x̂, v2 − y′′2) ∈ T, which means that

f̂W (x̂, v2 − y′′2)f̂W (x̂, v2 − y′′2)
∗ = |f̂W (x̂, v2 − y′′2)|2 = 1.
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Let z− = (z1, z2) ∈ Z2. From (6.15), we have:

p̂y′1−y′′2 ,z−,W−(x̂)

=
∑

v2∈Yz2 (W ):
y′1−y′′2+v2∈Yz1 (W )

PY1|Z1
(y′1 − y′′2 + v2|z1)PY2|Z2

(v2|z2)
PV1|Z1,Z2

(y′1 − y′′2 |z1, z2)
p̂y′1−y′′2+v2,z1(x̂) · p̂v2,z2(x̂)∗

(a)
=

∑
v2∈Yz2 (W ):

y′1−y′′2+v2∈Yz1 (W )

PY1|Z1
(y′1 − y′′2 + v2|z1)PY2|Z2

(v2|z2)
PV1|Z1,Z2

(y′1 − y′′2 |z1, z2)
p̂y′1,z1(x̂)p̂y′′2 ,z2(x̂)

∗

= p̂y′1,z1(x̂)p̂y′′2 ,z2(x̂)
∗ ∑

v2∈Yz2 (W ):
y′1−y′′2+v2∈Yz1 (W )

PY1|Z1
(y′1 − y′′2 + v2|z1)PY2|Z2

(v2|z2)
PV1|Z1,Z2

(y′1 − y′′2 |z1, z2)

= p̂y′1,z1(x̂)p̂y′′2 ,z2(x̂)
∗ �= 0,

where (a) follows from (6.16). This shows that x̂ ∈ X̂
z−

(W−). Now since

y′1 − y′′2 ∈ Yz−(W−) and y′′1 − y′2 ∈ Yz−(W−), we have (y′1 − y′′2)− (y′′1 − y′2) ∈
ΔYz−(W−). Therefore,

(x̂, y1 + y2) = (x̂, y′1 − y′′1 + y′2 − y′′2) =
(
x̂, (y′1 − y′′2)− (y′′1 − y′2)

)
∈ D(W−).

Hence,
{
(x̂, y1 + y2) : (x̂, y1), (x̂, y2) ∈ D(W )

}
⊂ D(W−). We conclude that

D(W−) =
{
(x̂, y1 + y2) : (x̂, y1), (x̂, y2) ∈ D(W )

}
since the other inclusion was shown in Lemma 6.16.

2. Let x̂, y1, y2 be such that (x̂, y1), (x̂, y2) ∈ D(W ). Define y′1, y′′1 , y′2, y′′2 , z1, z2, z−

as in 1). We have shown that p̂y′1−y′′2 ,z−,W−(x̂) = p̂y′1,z1(x̂)p̂y′′2 ,z2(x̂)
∗. Similarly,

we can show that p̂y′′1−y′2,z−,W−(x̂) = p̂y′′1 ,z1(x̂)p̂y′2,z2(x̂)
∗. Therefore,

f̂W−(x̂, y1 + y2) = f̂W−(x̂, y′1 − y′′1 + y′2 − y′′2) = f̂W−
(
x̂, (y′1 − y′′2)− (y′′1 − y′2)

)
=

p̂y′1−y′′2 ,z−,W−(x̂)

p̂y′′1−y′2,z−,W−(x̂)
=

p̂y′1,z1(x̂)p̂y′′2 ,z2(x̂)
∗

p̂y′′1 ,z1(x̂)p̂y′2,z2(x̂)
∗ =

f̂W (x̂, y1)

f̂W (x̂, y2)∗

(a)
= f̂W (x̂, y1) · f̂W (x̂, y2),

where (a) follows from the fact that f̂W (x̂, y2) · f̂W (x̂, y2)
∗ = |f̂W (x̂, y2)|2 = 1.

6.5.4 Proof of Proposition 6.6

We need the following lemmas.

Lemma 6.17. For every y1, y2 ∈ G2 and every z1, z2 ∈ Z, we have:

• If (y1, z1) /∈ YZ(W ) or (y2, z2) /∈ YZ(W ), then
(
y2, (z1, z2, u1, y1 − y2)

)
/∈

YZ(W+) for every u1 ∈ G1.

• If (y1, z1) ∈ YZ(W ) and (y2, z2) ∈ YZ(W ), there exists u1 ∈ G1 such that(
y2, (z1, z2, u1, y1 − y2)

)
∈ YZ(W+).
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Proof. Let U1, U2, V1, V2, X1, X2, Y1, Y2, Z1, Z2 be as in Remark 6.1. For every u1 ∈
G1, every y1, y2 ∈ G2 and every z1, z2 ∈ Z, we have:

PV2,Z1,Z2,U1,V1(y2, z1, z2,u1, y1 − y2)

=
∑

u2∈G1

PU2,V2,Z1,Z2,U1,V1(u2, y2, z1, z2, u1, y1 − y2)

=
∑

u2∈G1

PX1,X2,Y1,Y2,Z1,Z2(u1 + u2, u2, y1, y2, z1, z2)

=
∑

u2∈G1

PX1,Y1,Z1(u1 + u2, y1, z1) · PX2,Y2,Z2(u2, y2, z2).

Therefore, we have:

• If (y1, z1) /∈ YZ(W ) or (y2, z2) /∈ YZ(W ), then for all u1, u2 ∈ G1, we
have PX1,Y1,Z1(u1 + u2, y1, z1) ≤ PY1,Z1(y1, z1) = 0 or PX2,Y2,Z2(u2, y2, z2) ≤
PY2,Z2(y2, z2) = 0, which means that PV2,Z1,Z2,U1,V1(y2, z1, z2, u1, y1 − y2) = 0.
Hence

(
y2, (z1, z2, u1, y1 − y2)

)
/∈ YZ(W+) for every u1 ∈ G1.

• If (y1, z1) ∈ YZ(W ) and (y2, z2) ∈ YZ(W ), then PY1,Z1(y1, z1) > 0 and
PY2,Z2(y2, z2) > 0. This means that there exist x1, x2 ∈ G1 such that

PX1,Y1,Z1(x1, y1, z1) > 0

and
PX2,Y2,Z2(x2, y2, z2) > 0.

Let u1 = x1 − x2 and u2 = x2. We have

PX1,Y1,Z1(u1 + u2, y1, z1) · PX2,Y2,Z2(u2, y2, z2) > 0,

which implies that PV2,Z1,Z2,U1,V1(y2, z1, z2, u1, y1 − y2) > 0 hence(
y2, (z1, z2, u1, y1 − y2)

)
∈ YZ(W+).

Lemma 6.18. Let U1, U2, V1, V2, X1, X2, Y1, Y2, Z1, Z2 be as in Remark 6.1. For
every

(
v2, (z1, z2, u1, v1)

)
∈ YZ(W+), we have:

p̂v2,(z1,z2,u1,v1),W+(û2) =
∑

û′
2∈G1

p̂v1+v2,z1(û
′
2) · p̂v2,z2(û2 − û′2)

|G1|α(u1, z1, z2, v1, v2)
ej2π〈û

′
2,u1〉, (6.17)

where α(u1, z1, z2, v1, v2) = PU1|Z1,Z2,V1,V2
(u1|z1, z2, v1, v2).

Proof. For every
(
v2, (z1, z2, u1, v1)

)
∈ YZ(W+) and every u2 ∈ G2, we have:

pv2,(z1,z2,u1,v1),W+(u2) = PU2|V2,Z1,Z2,U1,V1
(u2|v2, z1, z2, u1, v1)

=
PU1,U2|Z1,Z2,V1,V2

(u1, u2|z1, z2, v1, v2)
PU1|Z1,Z2,V1,V2

(u1|z1, z2, v1, v2)

=
PX1,X2|Z1,Z2,Y1,Y2

(u1 + u2, u2|z1, z2, v1 + v2, v2)

α(u1, z1, z2, v1, v2)

=
PX1|Z1,Y1

(u1 + u2|z1, v1 + v2)PX2|Z2,Y2
(u2|z2, v2)

α(u1, z1, z2, v1, v2)

=
pv1+v2,z1(u1 + u2)pv2,z2(u2)

α(u1, z1, z2, v1, v2)
.
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Therefore, for every û2 ∈ G2, we have:

p̂v2,(z1,z2,u1,v1),W+(û2) =

1
|G1|

(
p̂v1+v2,z1(û2)e

j2π〈û2,u1〉) ∗ p̂v2,z2(û2)
α(u1, z1, z2, v1, v2)

=

∑
û′
2∈G1

p̂v1+v2,z1(û
′
2)e

j2π〈û′
2,u1〉p̂v2,z2(û2 − û′2)

|G1|α(u1, z1, z2, v1, v2)

=
∑

û′
2∈G1

p̂v1+v2,z1(û
′
2) · p̂v2,z2(û2 − û′2)

|G1|α(u1, z1, z2, v1, v2)
ej2π〈û

′
2,u1〉.

Lemma 6.19. Let (y1, z1), (y2, z2) ∈ YZ(W ) and x̂ ∈ G1. If there exists u1 ∈ G1

such that ∑
û∈G1

p̂y1,z1(û) · p̂y2,z2(x̂− û)ej2π〈û,u1〉 �= 0, (6.18)

then we have:

• (y2, z
+) ∈ YZ(W+), where z+ = (z1, z2, u1, y1 − y2).

• x̂ ∈ X̂
z+

(W+).

Proof. Let U1, U2, V1, V2, X1, X2, Y1, Y2, Z1, Z2 be as in Remark 6.1. Let v1 = y1−y2
and v2 = y2. Notice that the expression in (6.18) is the DFT of the mapping
K : G1 → C defined as

K(x) = |G1| · py1,z1(u1 + x) · py2,z2(x).

Equation (6.18) shows that K̂ is not zero everywhere which implies that K is not
zero everywhere. Therefore, there exists x ∈ G1 such that K(x) �= 0. We have:

PV2,Z1,Z2,U1,V1(v2, z1, z2, u1, v1) ≥ PU1,U2,V1,V2,Z1,Z2(u1, x, y1 − y2, y2, z1, z2)

= PX1,X2,Y1,Y2,Z1,Z2(u1 + x, x, y1, y2, z1, z2)

= PX1,Y1,Z1(u1 + x, y1, z1)PX2,Y2,Z2(x, y2, z2)

= PY1,Z1(y1, z1)py1,z1(u1 + x) · PY2,Z2(y2, z2)py2,z2(x)

= PY1,Z1(y1, z1) · PY2,Z2(y2, z2) ·
K(x)

|G1|
(a)
> 0,

where (a) follows from the fact that y1 ∈ Yz1(W ), y2 ∈ Yz2(W ) and K(x) > 0.
We conclude that

(
v2, (z1, z2, u1, v1)

)
∈ YZ(W+) and so we can apply (6.17) to

(v2, z1, z2, u1, v1):

p̂v2,(z1,z2,u1,v1),W+(x̂)
(a)
=
∑
û∈G1

p̂y1,z1(û) · p̂y2,z2(x̂− û)

|G1|α(u1, z1, z2, v1, v2)
ej2π〈û,u1〉

(b)

�= 0,

where (b) follows from (6.18). Therefore, p̂y2,z+,W+(x̂) �= 0, where

z+ = (z1, z2, u1, y1 − y2).

Hence x̂ ∈ X̂
z+

(W+).
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Now we are ready to prove Proposition 6.6.
Let W be a two-user MAC and assume that polarization ∗-preserves I1 for W .

Let U1, U2, V1, V2, X1, X2, Y1, Y2, Z1, Z2 be as in Remark 6.1.

1. Suppose that x̂1, x̂2 ∈ G1 and y ∈ G2 satisfy (x̂1, y), (x̂2, y) ∈ D(W ) and let
x̂ = x̂1 + x̂2. There exist z1, z2 ∈ Z, y1, y

′
1 ∈ Yz1(W ) and y2, y

′
2 ∈ Yz2(W )

such that

• x̂1 ∈ X̂
z1
(W ) and y = y1 − y′1.

• x̂2 ∈ X̂
z2
(W ) and y = y2 − y′2.

Lemma 6.7 implies that p̂y1,z1(x̂1) �= 0, p̂y′1,z1(x̂1) �= 0, p̂y2,z2(x̂2) �= 0 and
p̂y′2,z2(x̂2) �= 0.

Let v1 = y1 − y2 = y′1 − y′2, v2 = y2 and v′2 = y′2. Define the mapping
L̂ : G1 → C as

L̂(û) = p̂y1,z1(û) · p̂y2,z2(x̂− û).

We have: L̂(x̂1) = p̂y1,z1(x̂1) · p̂y2,z2(x̂2) �= 0. Therefore, the mapping L̂ is not
zero everywhere, which implies that its inverse DFT is not zero everywhere.
Hence there exists u1 ∈ G1 such that:∑

û∈G1

p̂y1,z1(û) · p̂y2,z2(x̂− û)ej2π〈û,u1〉 �= 0.

It follows from Lemma 6.19 that (v2, z
+) ∈ YZ(W+) and x̂ ∈ X̂

z+

(W+), where
z+ = (z1, z2, u1, v1). If we can also show that (v′2, z+) ∈ YZ(W+) we will be
able to conclude that (x̂, y) ∈ D(W+) since y = v2−v′2. We have the following:

• Since (v2, z
+) ∈ YZ(W+), we have

PU1,Z1,Z2,V1(u1, z1, z2, v1) ≥ PV2,Z1,Z2,U1,V1(v2, z1, z2, u1, v1) > 0.

Hence,
PU1|Z1,Z2,V1

(u1|z1, z2, v1) > 0.

• Since y′1 ∈ Yz1(W ) and y′2 ∈ Yz2(W ), we have

PV2,Z1,Z2,V1(v
′
2, z1, z2, v1) = PY1,Z1,Y2,Z2(y

′
1, z1, y

′
2, z2) > 0.

Thus,
PV2|Z1,Z2,V1

(v′2|z1, z2, v1) > 0.

But I1 is preserved for W , so we must have I(U1;V2|Z1Z2V1) = 0. Therefore,

PU1,V2|Z1,Z2,V1
(u1, v

′
2|z1, z2, v1)

= PU1|Z1,Z2,V1
(u1|z1, z2, v1) · PV2|Z1,Z2,V1

(v′2|z1, z2, v1) > 0.
(6.19)

We conclude that PV2,Z1,Z2,U1,V1(v
′
2, z1, z2, u1, v1) > 0, i.e., (v′2, z+) ∈ YZ(W+).

Hence, (x̂, y) ∈ D(W+). We conclude that (x̂1 + x̂2, y) ∈ D(W+) for every
x̂1, x̂2 ∈ G1 and every y ∈ G2 satisfying (x̂1, y), (x̂2, y) ∈ D(W ). Therefore,{

(x̂1 + x̂2, y) : (x̂1, y), (x̂2, y) ∈ D(W )
}
⊂ D(W+).
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2. Suppose that x̂1, x̂2 ∈ G1 and y ∈ G2 satisfy (x̂1, y), (x̂2, y) ∈ D(W ) and let
x̂ = x̂1 + x̂2. Let y1, y2, y

′
1, y

′
2, v1, v2, v

′
2, z1, z2, z

+ be defined as in 1) so that

v2, v
′
2 ∈ Yz+(W+), y = v2 − v′2 and x̂ ∈ X̂

z+

(W+). Lemma 6.7 implies that
p̂v2,z+,W+(x̂) �= 0 and p̂v′2,z+,W+(x̂) �= 0. Now since (x̂, y) = (x̂, v2 − v′2) ∈
D(W+), we have:

p̂v2,(z1,z2,u1,v1),W+(x̂) = p̂v2,z+,W+(x̂) = f̂W+(x̂, y) · p̂v′2,z+,W+(x̂)

= f̂W+(x̂, y) · p̂v′2,(z1,z2,u1,v1),W+(x̂).

Define F : G1 → C and F ′ : G1 → C as follows:

F (u′1) =
∑
û∈G1

p̂y1,z1(û) · p̂y2,z2(x̂− û)ej2π〈û,u
′
1〉.

F ′(u′1) =
∑
û∈G1

p̂y′1,z1(û) · p̂y′2,z2(x̂− û)ej2π〈û,u
′
1〉.

For every u′1 ∈ G1, we have:

• If F (u′1) �= 0 then from Lemma 6.19, we have

(
v2, (z1, z2, u

′
1, v1)

)
∈ YZ(W+) and x̂ ∈ X̂

(z1,z2,u′
1,v1)(W+).

By replacing u1 by u′1 in (6.19), we get
(
v′2, (z1, z2, u′1, v1)

)
∈ YZ(W+).

Therefore,

p̂v2,(z1,z2,u′
1,v1),W

+(x̂) = f̂W+(x̂, y) · p̂v′2,(z1,z2,u′
1,v1),W

+(x̂). (6.20)

We have:

F (u′1)

=
∑
û∈G1

p̂y1,z1(û) · p̂y2,z2(x̂− û)ej2π〈û,u
′
1〉

(a)
= |G1| · α(u′1, z1, z2, v1, v2)p̂v2,(z1,z2,u′

1,v1),W
+(x̂)

(b)
=

α(u′1, z1, z2, v1, v2)
α(u′1, z1, z2, v1, v′2)

|G1|α(u′1, z1, z2, v1, v′2)p̂v′2,(z1,z2,u′
1,v1),W

+(x̂)f̂W+(x̂, y)

(c)
=

α(u′1, z1, z2, v1, v2)
α(u′1, z1, z2, v1, v′2)

∑
û∈G1

p̂y′1,z1(û) · p̂y′2,z2(x̂− û)ej2π〈û,u
′
1〉f̂W+(x̂, y)

=
PU1|Z1,Z2,V1,V2

(u′1|z1, z2, v1, v2)
PU1|Z1,Z2,V1,V2

(u′1|z1, z2, v1, v′2)
f̂W+(x̂, y)F ′(u′1)

(d)
= f̂W+(x̂, y)F ′(u′1),

where (a) and (c) follow from (6.17), (b) follows from (6.20) and (d)
follows from the fact that I(U1;V2|Z1Z2V1) = 0. Therefore, F ′(u′1) �= 0
and F (u′1) = f̂W+(x̂, y)F ′(u′1).
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• If F (u′1) = 0 then we must have F ′(u′1) = 0 (because F ′(u′1) �= 0 would
yield F (u′1) �= 0 in a similar way as above, which is a contradiction).
Therefore, we have F (u′1) = 0 = f̂W+(x̂, y)F ′(u′1).

We conclude that for every u′1 ∈ G1, we have

F (u′1) = f̂W+(x̂, y)F ′(u′1) =
∑
û∈G1

f̂W+(x̂, y) · p̂y′1,z1(û) · p̂y′2,z2(x̂− û)ej2π〈û,u
′
1〉.

(6.21)

Now define g : G1 ×G2 → C as follows:

g(x̂′, y′) =

{
f̂W (x̂′, y′) if (x̂′, y′) ∈ D(W ),

0 otherwise.
(6.22)

For every x̂′ ∈ G1, we have:

• If p̂y1,z1(x̂
′) �= 0 then p̂y′1,z1(x̂

′) �= 0 (by Lemma 6.7) and p̂y1,z1(x̂
′) =

f̂W (x̂′, y1 − y′1)p̂y′1,z1(x̂
′) = g(x̂′, y)p̂y′1,z1(x̂

′).
• If p̂y1,z1(x̂

′) = 0 then p̂y′1,z1(x̂
′) = 0 (by Lemma 6.7) and so p̂y1,z1(x̂

′) =
0 = g(x̂′, y)p̂y′1,z1(x̂

′).

Therefore, for every x̂′ ∈ G1 we have p̂y1,z1(x̂
′) = g(x̂′, y)p̂y′1,z1(x̂

′). Similarly,
p̂y2,z2(x̂

′) = g(x̂′, y)p̂y′2,z2(x̂
′) for all x̂′ ∈ G1. Hence,

F (u′1) =
∑
û∈G1

p̂y1,z1(û) · p̂y2,z2(x̂− û)ej2π〈û,u
′
1〉

=
∑
û∈G1

g(û, y)p̂y′1,z1(û) · g(x̂− û, y)p̂y′2,z2(x̂− û)ej2π〈û,u
′
1〉.

(6.23)

We conclude that for every u′1 ∈ G1, we have:∑
û∈G1

[
f̂W+(x̂, y)− g(û, y)g(x̂− û, y)

]
p̂y′1,z1(û)·p̂y′2,z2(x̂− û)ej2π〈û,u

′
1〉

(a)
= F (u′1)− F (u′1) = 0,

(6.24)

where (a) follows from (6.21) and (6.23). Notice that the sum in (6.24) is the
inverse DFT of the function K̂ : G1 → C defined as:

K̂(û) = |G1| ·
[
f̂W+(x̂, y)− g(û, y)g(x̂− û, y)

]
p̂y′1,z1(û) · p̂y′2,z2(x̂− û).

Now (6.24) implies that the inverse DFT of K̂ is zero everywhere. Therefore,
K̂ is also zero everywhere. In particular,

K̂(x̂1) = |G1| ·
[
f̂W+(x̂, y)− g(x̂1, y)g(x̂2, y)

]
p̂y′1,z1(x̂1) · p̂y′2,z2(x̂2) = 0.

But p̂y′1,z1(x̂1) �= 0 and p̂y′2,z2(x̂2) �= 0, so we must have

f̂W+(x̂, y)− g(x̂1, y)g(x̂2, y) = 0.

Therefore,

f̂W+(x̂, y) = g(x̂1, y)g(x̂2, y) = f̂W (x̂1, y) · f̂W (x̂2, y).
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6.5.5 Proof of Lemma 6.10

Lemma 6.20. If W : G1 × G2 −→ Z is polarization compatible then W− is also
polarization compatible.

Proof. Let U1, U2, V1, V2, X1, X2, Y1, Y2, Z1, Z2 be as in Remark 6.1. Let F : D → T
be the pseudo-quadratic function of Definition 6.7.

Let (û1, v) ∈ D(W−). There exists z− = (z1, z2) ∈ Z2 such that û1 ∈ X̂
z−

(W−)
and v ∈ ΔYz−(W−). We have:

• Since û1 ∈ X̂
z−

(W−), there exists v1 ∈ Yz−(W−) such that p̂v1,z−,W−(û1) �= 0.
From (6.15), we have:

p̂v1,z−,W−(û1) =
∑

v2∈Yz2 (W ):
v1+v2∈Yz1 (W )

PY1|Z1
(v1 + v2|z1)PY2|Z2

(v2|z2)
PV1|Z1,Z2

(v1|z1, z2)
p̂v1+v2,z1(û1) · p̂v2,z2(û1)∗.

Since p̂v1,z−,W−(û1) �= 0, the terms in the above sum cannot all be zero. There-
fore, there exists v2 ∈ Yz2(W ) such that v1 + v2 ∈ Yz1(W ), p̂v1+v2,z1(û1) �= 0

and p̂v2,z2(û1) �= 0. Hence, û1 ∈ X̂
z1
(W ) and û1 ∈ X̂

z2
(W ).

• From Lemma 6.14 we have Yz−(W−) = Yz1(W )−Yz2(W ) which implies that

ΔYz−(W−) = ΔYz1(W ) −ΔYz2(W ). Now since v ∈ ΔYz−(W−), there exists
y1 ∈ ΔYz1(W ) and y2 ∈ ΔYz2(W ) such that v = y1 − y2.

We conclude that

(û1, y1) ∈ X̂
z1
(W )×ΔYz1(W ) = Dz1(W ) ⊂ D(W ) ⊂ D,

and
(û1, y2) ∈ X̂

z2
(W )×ΔYz2(W ) = Dz2(W ) ⊂ D(W ) ⊂ D.

Therefore, (û1, v) = (û1, y1 − y2) ∈ D since D is a pseudo-quadratic domain. Since
this is true for every (û1, v) ∈ D(W−), we conclude that D(W−) ⊂ D.

Now let (û1, z
−) ∈ X̂Z(W−) (where z− = (z1, z2) ∈ Z2). We have shown that

û1 ∈ X̂
z1
(W ) and û1 ∈ X̂

z2
(W ) and so (û1, z1) ∈ X̂Z(W ) and (û1, z2) ∈ X̂Z(W ). Fix

y1 ∈ Yz1(W ) and y2 ∈ Yz2(W ). For every v′1 ∈ Yz−(W−), we have:

p̂v′1,z−,W−(û1)

=
∑

v′2∈Yz2 (W ):
v′1+v′2∈Yz1 (W )

PY1|Z1
(v′1 + v′2|z1)PY2|Z2

(v′2|z2)
PV1|Z1,Z2

(v′1|z1, z2)
p̂v′1+v′2,z1(û1) · p̂v′2,z2(û1)

∗

(a)
=

∑
v′2∈Yz2 (W ):

v′1+v′2∈Yz1 (W )

PY1|Z1
(v′1 + v′2|z1)PY2|Z2

(v′2|z2)
PV1|Z1,Z2

(v′1|z1, z2)
p̂y1,z1(û1) · F (û1, v

′
1 + v′2 − y1) ·

p̂y2,z2(û1)
∗

F (û1, v′2 − y2)

(b)
= p̂y1,z1(û1) · p̂y2,z2(û1)∗

∑
v′2∈Yz2 (W ):

v′1+v′2∈Yz1 (W )

PY1|Z1
(v′1 + v′2|z1)PY2|Z2

(v′2|z2)
PV1|Z1,Z2

(v′1|z1, z2)
F (û1, v

′
1 + v′2 − y1 − v′2 + y2)

= p̂y1,z1(û1) · p̂y2,z2(û1)∗ · F (û1, v
′
1 − y1 + y2)

∑
v′2∈Yz2 (W ):

v′1+v′2∈Yz1 (W )

PY1|Z1
(v′1 + v′2|z1)PY2|Z2

(v′2|z2)
PV1|Z1,Z2

(v′1|z1, z2)

= p̂y1,z1(û1) · p̂y2,z2(û1)∗ · F (û1, v
′
1 − y1 + y2),
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where (a) follows from the polarization compatibility of W and from the fact that

F (û1, v
′
2 − y2) ∈ T which implies that F (û1, v

′
2 − y2)

∗ =
1

F (û1, v′2 − y2)
. (b) fol-

lows from the fact that the mapping y → F (û1, y) is a group homomorphism from

(H û1
2 (D),+) to (T, ·). Therefore, for every v′1, v′′1 ∈ Yz−(W−), we have:

p̂v′1,z−,W−(û1) = p̂y1,z1(û1) · p̂y2,z2(û1)∗ · F (û1, v
′
1 − y1 + y2)

= p̂y1,z1(û1) · p̂y2,z2(û1)∗ · F (û1, v
′′
1 − y1 + y2 + v′1 − v′′1)

= p̂y1,z1(û1) · p̂y2,z2(û1)∗ · F (û1, v
′′
1 − y1 + y2) · F (û1, v

′
1 − v′′1)

= p̂v′′1 ,z−,W−(û1) · F (û1, v
′
1 − v′′1).

Hence, p̂v′1,z−,W−(û1) = F (û1, v
′
1 − v′′1) · p̂v′′1 ,z−,W−(û1). We conclude that W− is

polarization compatible.

Lemma 6.21. If W : G1 × G2 −→ Z is polarization compatible then W+ is also
polarization compatible.

Proof. Let U1, U2, V1, V2, X1, X2, Y1, Y2, Z1, Z2 be as in Remark 6.1. Let F : D → T
be the pseudo-quadratic function of Definition 6.7.

Let (û2, v) ∈ D(W+). There exists z+ = (z1, z2, u1, v1) ∈ Z+ such that û2 ∈
X̂

z+

(W+) and v ∈ ΔYz+(W+). We have:

• Since û2 ∈ X̂
z+

(W+), there exists v2 ∈ Yz+(W+) such that p̂v2,z+(û2) �= 0.
From (6.17) we have

p̂v2,z+,W+(û2) =
∑

û′
2∈G1

p̂v1+v2,z1(û
′
2) · p̂v2,z2(û2 − û′2)

|G1|α(u1, z1, z2, v1, v2)
ej2π〈û

′
2,u1〉.

Since p̂v2,z+,W+(û2) �= 0, there must exist û′2 ∈ G1 such that p̂v1+v2,z1(û
′
2) �= 0

and p̂v2,z2(û2 − û′2) �= 0. Therefore, û′2 ∈ X̂
z1
(W ) and (û2 − û′2) ∈ X̂

z2
(W ).

• Since v ∈ ΔYz+(W+), there exist v′2, v′′2 ∈ Yz+(W+) such that v = v′2 − v′′2 .
Now Lemma 6.17 implies that v1 + v′2 ∈ Yz1(W ), v′2 ∈ Yz2(W ), v1 + v′′2 ∈
Yz1(W ) and v′′2 ∈ Yz2(W ). Therefore, v = (v1 + v′2) − (v1 + v′′2) ∈ ΔYz1(W )
and v = v′2 − v′′2 ∈ ΔYz2(W ).

We conclude that

(û′2, v) ∈ X̂
z1
(W )×ΔYz1(W ) = Dz1(W ) ⊂ D(W ) ⊂ D

and

(û2 − û′2, v) ∈ X̂
z2
(W )×ΔYz2(W ) = Dz2(W ) ⊂ D(W ) ⊂ D.

Now since D is a pseudo-quadratic domain, we have (û2, v) =
(
û′2+(û2−û′2), v

)
∈ D.

We conclude that D(W+) ⊂ D.

Now let (û2, z
+) ∈ X̂Z(W+), where z+ = (z1, z2, u1, v1) ∈ Z+. For every v′2, v′′2 ∈

Yz+(W+), we have v1 + v′2 ∈ Yz1(W ), v′2 ∈ Yz2(W ), v1 + v′′2 ∈ Yz1(W ) and v′′2 ∈
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Yz2(W ) from Lemma 6.17. Therefore,

p̂v′2,z+,W+(û2)

=
∑

û′
2∈G1

p̂v1+v′2,z1(û
′
2) · p̂v′2,z2(û2 − û′2)

|G1|α(u1, z1, z2, v1, v′2)
ej2π〈û

′
2,u1〉

(a)
=

∑
û′
2∈G1:

û′
2∈X̂

z1 (W ),

û2−û′
2∈X̂

z2 (W )

p̂v1+v′2,z1(û
′
2) · p̂v′2,z2(û2 − û′2)

|G1|α(u1, z1, z2, v1, v′2)
ej2π〈û

′
2,u1〉

(b)
=

∑
û′
2∈G1:

û′
2∈X̂

z1 (W ),

û2−û′
2∈X̂

z2 (W )

p̂v1+v′′2 ,z1(û
′
2)F (û′2, v′2 − v′′2) · p̂v′′2 ,z2(û2 − û′2)F (û2 − û′2, v′2 − v′′2)

|G1| · PU1|Z1,Z2,V1,V2
(u1|z1, z2, v1, v′2)

ej2π〈û
′
2,u1〉

(c)
=

∑
û′
2∈G1

p̂v1+v′′2 ,z1(û
′
2) · p̂v′′2 ,z2(û2 − û′2)

|G1| · PU1|Z1,Z2,V1,V2
(u1|z1, z2, v1, v′′2)

F (û′2 + û2 − û′2, v
′
2 − v′′2) · ej2π〈û

′
2,u1〉

= F (û2, v
′
2 − v′′2)

∑
û′
2∈G1

p̂v1+v′′2 ,z1(û
′
2) · p̂v′′2 ,z2(û2 − û′2)

|G1| · PU1|Z1,Z2,V1,V2
(u1|z1, z2, v1, v′′2)

ej2π〈û
′
2,u1〉

= F (û2, v
′
2 − v′′2)p̂v′′2 ,z+,W+(û2),

where (a) follows from the fact that p̂v1+v′2,z1(û
′
2) = 0 if û′2 /∈ X̂

z1
(W ), and

p̂v′2,z2(û2 − û′2) = 0 if (û2 − û′2) /∈ X̂
z2
(W ). (b) follows from the fact that W is

polarization compatible. (c) follows from the fact that F is pseudo-quadratic and
the fact that U1 is conditionally independent of V2 given (Z1, Z2, V1) (since the
polarization compatibility of W implies that I1 is preserved for W by Lemma 6.9,
which implies that I(U1;V2|Z1Z2V1) = 0). Therefore, for every v′2, v′′2 ∈ Yz+(W+),
we have

p̂v′2,z+,W+(û2) = F (û2, v
′
2 − v′′2) · p̂v′′2 ,z+,W+(û2).

We conclude that W+ is polarization compatible.

Lemma 6.10 follows from Lemmas 6.20 and 6.21.



Erasure Schemes Using
Generalized Polar Codes 7
The probability of error of polar codes for binary-input channels under successive
cancellation decoding was shown to be equal to o(2−N1/2−ε

) [19], where N is the
blocklength. A more refined estimation of the probability of error, which explicitly
depends on the transmission rate R, was obtained by Hassani et al. [38]. They
showed that the probability of error under successive cancellation decoding of the

polar code is equal to 2−2
n
2 +

√
n
2 Q−1

(
R

I(W )

)
+o(

√
n)

, where N = 2n is the blocklength,
R is the transmission rate, I(W ) is the capacity of the binary-input memoryless
symmetric (BMS) channel W , and Q is the well known Q-function1. They also
showed that the probability of error under MAP decoding has the same asymptotic
behavior. This does not show a good performance of polar codes in terms of the
probability of error because the decay is too slow in the blocklength. One attempt
to enhance the performance of polar codes was to apply list decoding with CRC
error detection [39].

Another possible way to enhance the performance of polar codes is through
decoding with erasure; it is sometimes desirable to allow the receiver not to decide
which message was transmitted, especially when there is a feedback from the receiver
to the transmitter: If a confusing string of symbols was received (in the sense that
there is a high probability of a decoding error to occur, no matter which message
the receiver chooses as the decoded message), the receiver can ask the transmitter
to resend the message, in the hope that the received string will not be confusing in
the next transmission.

There are two types of error when we allow decoding with erasure:

• If the receiver decides on the transmitted message and makes an error, we say
that an undetected error occurs.

• If the receiver does not decide, we say that an erasure occurs.

1Q(x) = P[X ≥ x], where X is a Gaussian random variable of mean 0 and variance 1.

173
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In general, there is a trade-off between the probability of undetected error pue and
the erasure probability per: pue can be made smaller at the expense of a higher per.
The trade-off between these parameters was first studied by Forney [40].

In this chapter2, we study the tradeoff between these parameters for general-
ized polar3 (GP) codes, which are a family of codes that contains, among others,
the standard polar codes of Arıkan [2] and Reed-Muller codes4. In Section 7.1, we
provide the preliminaries of this chapter: We provide a formal definition of erasure
schemes, GP codes, and successive cancellation decoders with erasure. In Section
7.2, we study the erasure schemes that are based on GP Codes: We compute the
zero-undetected-error capacity of GP codes under the low-complexity successive can-
cellation decoder with erasure, and we derive an estimate of the erasure probability
of GP codes for rates that are below the zero-undetected-error capacity.

7.1 Preliminaries

7.1.1 Useful Notations

For every 0 ≤ ε, ε′ ≤ 1, define the following:

• ε = 1− ε.

• ε ∗ ε′ = εε′ + εε′.

• m(ε) = min{ε, ε}.

For every x ∈ FN
2 and every I ⊂ [N ] = {1, . . . , N}, we write xI ∈ FI

2 to denote
the subvector containing the components of x whose indices appear in I.

7.1.2 Erasure Schemes

Let W : F2 −→ Y be a binary-input channel. A coding scheme with erasure is a
4-tuple C = (M, N, f, g) where M is the set of messages, N is the blocklength of the
code, f : M → FN

2 is the encoder mapping, and g : YN → M∪ {e} is the decoder
mapping, where e /∈ M represents erasure.

The scheme is used as follows:

• The transmitter chooses a message M uniformly in M and computes XN =
(X1, . . . , XN ) = f(M).

• The transmitter sends X1, . . . , XN through N independent copies of the chan-
nel W , i.e., he uses the channel N times. The rate R of the coding scheme is

the amount of information that is sent per channel use: R =
log2 |M|

N
.

• The receiver obtains Y1, . . . , YN and computes M̂ = g(Y N ) = g(Y1, . . . , YN ).

2The material of this chapter is based on [41].
3See Section 7.1.5 for the definition of generalized polar codes.
4The invention of polar codes brought back attention to Reed-Muller codes because of their

similarity. It was recently shown that Reed-Muller codes achieve the capacity of binary erasure
channels under MAP decoding [42].
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• If M̂ = e, we say that an erasure has occurred. Thus, the erasure probability
of the scheme is per(W, C) = P({M̂ = e}).

• If M̂ �= e and M̂ �= M , we say that an undetected error has occured. There-
fore, the undetected error probability of the scheme is pue(W, C) = P

({
M̂ /∈

{e,M}
})

.

In practice, it is desirable to maximize the rate R while minimizing the erasure
probability per(W, C), the undetected-error probability pue(W, C), the blocklengthN ,
as well as the computational complexity of both the encoder and the decoder. The
trade-off between all these performance parameters is one of the important problems
in information theory. In this chapter we are interested in studying the trade-off
between these parameters asymptotically in N under the following assumptions:

(i) A BMS channel W is used.

(ii) Only GP codes are considered.

(iii) Only successive cancellation decoders with erasure5 are considered.

7.1.3 Binary-Input Memoryless Symmetric Channels

We encountered binary-input memoryless symmetric (BMS) channels in Definition
1.2. In this chapter, we will adopt a more general definition.

BMS channels generalize binary symmetric channels (BSC). One can think of a
BMS channel as “a combination of BSCs”: Let BSC(ε1), . . . ,BSC(εl) be a collection
of l binary symmetric channels of crossover probabilities ε1, . . . , εl respectively. Let
p1, . . . , pl be a probability distribution over [l] := {1, . . . , l} and consider the binary-
input channelW which operates as follows: During each use of the channelW , one of
the channels BSC(ε1), . . . ,BSC(εl) is chosen with probability p1, . . . , pl respectively.
The bit at the input of W is transmitted to the receiver through the chosen BSC.
Moreover, we assume that the receiver knows which BSC was used in each channel
use of W . Formally, the channel W : F2 → [l]× F2 can be defined as follows:

W (i, y|x) =
{
pi · (1− εi) if x = y,

pi · εi if x �= y.
(7.1)

We denote this channel W as

W =

l∑
i=1

pi · BSC(εi).

Definition 7.1. A channel W is said to be binary-input memoryless symmetric
(BMS) if there exist 0 ≤ ε1, . . . , εl ≤ 1 and a probability distribution {p1, . . . , pl}
over [l] = {1, . . . , l} such that W is equivalent (in the sense of Definition 3.6) to the

channel

l∑
i=1

pi · BSC(εi). In this case, we write

W ≡
l∑

i=1

pi · BSC(εi), (7.2)

5See Section 7.1.6 for the definition of successive cancellation decoders with erasure.
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and we say that this is a BSC-decomposition of W .

Note that one can define general BMS channels by considering infinite collections
of BSCs. The binary-input additive white Gaussian noise channels are examples of
general BMS channels with continuous output alphabet. For the sake of simplicity,
we will only consider in this chapter BMS channels with finite output alphabets.
However, all the main results of this chapter are also valid for general BMS channels.

Another remark that is worth mentioning is that there are infinitely many BSC-
decompositions of a given BMS channel W . The reason for this is twofold:

(i) We can decompose or unite BSC-components having the same crossover prob-
ability by decomposing or adding their fractions (i.e., the pi parameters) re-
spectively.

(ii) For every ε > 0, we have BSC(ε) ≡ BSC(ε). Therefore, we can change the
crossover probability of any BSC component to its complement.

This motivates the following definition:

Definition 7.2. If εi ≤ 1
2 for all 1 ≤ i ≤ l, we say that W ≡

l∑
i=1

pi · BSC(εi)

is a natural BSC-decomposition of W . Note that any BSC-decomposition can be
naturalized as follows:

W ≡
l∑

i=1

pi · BSC(εi) ≡
l∑

i=1

pi · BSC
(
m(εi)

)
.

If 0 ≤ ε1 < . . . < εl ≤ 1
2 and pi > 0 for all 1 ≤ i ≤ l, we say that W ≡

l∑
i=1

pi · BSC(εi) is the canonical BSC-decomposition of W . It can be shown that the

canonical BSC-decomposition of W is unique.

Example 7.1. For every 0 ≤ ε ≤ 1, the binary erasure channel BEC(ε) is BMS.
Moreover, for 0 < ε < 1, its canonical BSC-decomposition is

BEC(ε) ≡ (1− ε) · BSC(0) + ε · BSC
(
1

2

)
.

Definition 7.3. Let W ≡
l∑

i=1

pi ·BSC(εi). For every 0 ≤ ε ≤ 1
2 , define the fraction

pW (ε) of BSC(ε) in W as follows:

pW (ε) =
l∑

i=1

pi · 1{m(εi)=ε}.

pW (ε) is well defined because it does not depend on the BSC-decomposition of W .

I.e., if

l∑
i=1

pi ·BSC(εi) ≡
l′∑

j=1

p′j ·BSC(ε′j) then
l∑

i=1

pi ·1{m(εi)=ε} =
l′∑

j=1

p′j ·1{m(ε′j)=ε}.
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As we will see later, the parameter pW (0) will play an important role in our
analysis. We introduce another parameter which is also of interest for our study:

Definition 7.4. Let W be a BMS channel. We define the best imperfect component
of W , denoted εbic(W ), as follows:

εbic(W ) =

⎧⎪⎨
⎪⎩
0 if I(W ) = 1,

min
ε∈]0, 1

2
]:

pW (ε)>0

ε if I(W ) < 1.

=

⎧⎪⎨
⎪⎩
0 if I(W ) = 1,

min
1≤i≤l,

pi>0, 0<εi<1

m(εi) if I(W ) < 1.

7.1.4 Dt Decoders for BMS Channels

Definition 7.5. Let W =
∑l

i=1 pi · BSC(εi) and let 0 ≤ t ≤ 1
2 . Define the decoder

Dt : [l]× F2 → {0, 1, e} of W as follows:

Dt(i, x) =

⎧⎪⎨
⎪⎩
x if εi ≤ t,

1⊕ x if εi ≥ 1− t,

e otherwise.

Remark 7.1. Dt decoders are desirable because no other decoder with erasure can
provide a strictly better trade-off between pue and per for the code of blocklength 1
and rate 1. Moreover, Dt decoders are very easy to implement: We compute the

log-likelihood ratio LLR(y) = log
PX|Y (1|y)
PX|Y (0|y) (where X and Y are the input and output

of W respectively) and then compare with T = log 1−t
t :

Dt(y) =

⎧⎪⎨
⎪⎩
0 if LLR(y) ≤ −T,

1 if LLR(y) ≥ T,

e otherwise.

7.1.5 Generalized Polar Codes

Definition 7.6. A code f : M → FN
2 is said to be a generalized polar (GP) code

of parameters (n, r, I, b) if it satisfies the following:

• N = 2n, M = FI
2 and b ∈ FN−r

2 .

• I ⊂ [N ] = {1, . . . , N} and |I| = r.

• f(u) = F⊗n · ũ, where
F =

[
1 1
0 1

]
,

and ũ ∈ FN
2 is such that ũI = u and ũIc = b.

n is called the number of polarization steps of the GP code. We denote the code f
as GP(n, r, I, b). Moreover, if b = 0 ∈ FN−r

2 , we write GP(n, r, I).
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Example 7.2. Here are two examples of GP codes:

• Standard polar codes of Arıkan: Take I to be the set of indices of the r synthetic
channels having the lowest Bhattacharyya parameters, and take b to be the
vector of frozen bits.

• Reed-Muller codes: Take I to be the set of indices of the r columns of F⊗n

having the largest number of ones, and take b = 0 ∈ FN−r
2 .

7.1.6 Successive Cancellation Decoder with Erasure of GP codes

Because of the recursive construction of F⊗n, one can implement the encoder of any
GP code in O(N logN) time exactly like polar codes.

On the other hand, for any given GP(n, r, I, b) code, there are various decoders
that can be considered. One attractive choice is what we call successive cancellation
decoder with erasure (SCE) which operates similarly like the successive cancellation
decoder of polar codes, but instead of applying the ML decoder for each bit ui,
we apply a Dti decoder for some 0 ≤ ti ≤ 1

2 . The reason why SCE decoders are
desirable is because they have low computational complexity.

Definition 7.7. For every i ∈ I let 0 ≤ ti ≤ 1
2 and let t = (ti)i∈I ∈ [0, 12 ]

I . The
Dt successive cancellation decoder with erasure (denoted SCE -Dt or simply Dt) for
a GP(n, r, I, b) code operates as follows:

• For each i ∈ I, compute ûi by applying the Dti decoder. The bits are suc-
cessively decoded exactly in the same order as in the successive cancellation
decoder of polar codes.

• If ûi = e for any i ∈ I, stop decoding immediately and declare erasure.

• If ûi �= e for every i ∈ I, the output is û = (ûi)i∈I .

Two remarks are worth mentioning here:

• The computational complexity of any SCE decoder is O(N logN).

• If ti = 0 for every i ∈ I, we get a zero-undetected-error scheme.

7.2 Erasure Schemes Using GP Codes

Definition 7.8. Let W : F2 −→ Y be a BMS channel and define

IGP
0 (W ) :=

∑
y∈Y:

W (y|1)=0

W (y|0) =
∑
y∈Y:

W (y|0)=0

W (y|1). (7.3)

It can be easily shown that IGP
0 (W ) = pW (0).

The following theorem, which is the main result of this chapter, shows that
IGP
0 (W ) is the zero-undetected-error capacity of GP codes for W under SCE de-
coders.

Theorem 7.1. Let W be a fixed BMS channel. We have the following:
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• For every R < IGP
0 (W ), every β < 1

2 and every n large enough, there exists
a GP code of blocklength N = 2n and of rate at least R for which the low-
complexity D0- SCE decoder (which induces a zero-undetected-error scheme)

has an erasure probability of order 2−2β·n
.

• For every α > 0, every β > 1
2 , every n large enough, and every GP code

of rate IGP
0 (W ) < R < I(W ) and blocklength N = 2n, if per < 1 − α then

pue > 2−2β·n. In other words, the undetected error probability cannot be made

better than 2−N
1
2+o(1)

unless the erasure probability is of order 1− o(1).

In order to prove Theorem 7.1, we need a few lemmas and propositions. The
next proposition shows the first point of the theorem. In fact, it provides a better
estimate for the erasure probability:

Proposition 7.1. Let W : F2 −→ Y be a BMS channel. For every R < IGP
0 (W ),

there exists a GP code of blocklength N = 2n and of rate at least R for which the low-
complexity D0- SCE decoder (which induces a zero-undetected-error scheme) has an

erasure probability of order 2−2

n
2 +Q−1

(
R

IGP
0 (W )

)√
n
2 +o(

√
n)

, where Q(x) = P({N (0, 1) ≥
x}) is the standard Q-function.

Proof. Define W ′ : F2 −→ F2 ∪ {e} as follows:

W ′(y′|x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑
y∈Y:

W (y|x⊕1)=0

W (y|x) if y′ = x,

∑
y∈Y:

W (y|x⊕1)>0

W (y|x) if y′ = e,

0 otherwise.

In other words, for each x ∈ F2 we contract all the output symbols of W for
which we can decide without error that the input was x to one output symbol of
W ′ that we also denote by x. Moreover, we contract all the remaining uncontracted
symbols to the erasure symbol e.

Let ε = 1 − IGP
0 (W ). One can easily check that W ′ = BEC(ε) � W . Now for

every R < IGP
0 (W ) = 1− ε = I(W ′), there exists a polar code for W ′ of rate at least

R and whose probability of error under successive cancellation decoder is equal to

2−2
n
2 +Q−1

(
R

I(W ′)
)√

n
2 +o(

√
n)

(see [38]). One can use the same code for W and apply the
D0- SCE decoder. This induces a zero-undetected-error scheme.

It can be easily seen that the erasure probability for the D0- SCE decoder of
the GP code for W is of the same order as the error probability of the successive
cancellation decoder of the polar code for W ′.

In order to prove the second point of Theorem 7.1, we will need the analysis
tools of polarization theory. Let us first recall the basic notations and definitions.
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Let W : F2 −→ Y be a binary-input channel. We define the two channels
W− : F2 −→ Y × Y and W+ : F2 −→ Y × Y × F2 as follows:

W−(y1, y2|u1) =
1

2

∑
u2∈F2

W (y1|u1 ⊕ u2)W (y2|u2), (7.4)

W+(y1, y2, u1|u2) =
1

2
W (y1|u1 ⊕ u2)W (y2|u2). (7.5)

For every s = (s1, . . . , sn) ∈ {−,+}n, we define W s recursively as

W s := ((W s1)s2 . . .)sn .

Proposition 7.2. If W is BMS, then W− and W+ are BMS as well. More precisely,

if W ≡
l∑

i=1

pi · BSC(εi), then

W− ≡
l∑

i=1

l∑
j=1

pipj · BSC(εi ∗ εj), (7.6)

and

W+ ≡
l∑

i=1

l∑
j=1

pipj ·
(
(εi ∗ εj) · BSC

(
εiεj
εi ∗ εj

)
+ (εi ∗ εj) · BSC

(
εiεj
εi ∗ εj

))
. (7.7)

Proof. We use Equations (7.1), (7.4) and (7.5) and we apply the fact that BSC(ε) ≡
BSC(ε) for every ε ∈ [0, 1].

Proposition 7.2 can be used to derive the effect of polarization on IGP
0 (W ) and

εbic(W ) :

Corollary 7.1. IGP
0 (W−) = IGP

0 (W )2 and IGP
0 (W+) = 2IGP

0 (W )− IGP
0 (W )2.

Proof. Let W ≡∑l
i=1 pi · BSC(εi) be a BSC-decomposition of W . Using the equa-

tions of Proposition 7.2, one can see that:

• IGP
0 (W−) = pW−(0)

(a)
= pW (0)2 = IGP

0 (W )2, where (a) follows from the fact
that m(εi ∗ εj) = 0 if and only if m(εi) = m(εj) = 0.

• IGP
0 (W+) = pW+(0)

(b)
= 2pW (0) − pW (0)2 = 2IGP

0 (W ) − IGP
0 (W )2, where (b)

follows from the fact that

m

(
εiεj
εi ∗ εj

)
= 0 ⇔ m(εi) = 0 or m(εj) = 0,

and

m

(
εiεj
εi ∗ εj

)
= 0 ⇔ m(εi) = 0 or m(εj) = 0.
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Corollary 7.2. We have:

εbic(W
−) =

{
2εbic(W ) · εbic(W ) if pW (0) = 0,

εbic(W ) otherwise.

εbic(W
+) =

εbic(W )2

εbic(W )2 + (1− εbic(W ))2
.

Proof. If I(W ) = 1 (i.e., εbic(W ) = 0), then I(W−) = I(W+) = 1 which implies
that εbic(W

−) = εbic(W
+) = 0. This shows the corollary for I(W ) = 1.

Assume now that I(W ) < 1 so that εbic(W ) > 0. Let W ≡
l∑

i=1

pi · BSC(εi) be

the canonical BSC-decomposition of W .
Since 0 ≤ εi, εj ≤ 1

2 for every 1 ≤ i, j ≤ l, it is easy to see that:

• 0 ≤ εi ∗ εj ≤ 1
2 . This means that the crossover probabilities appearing in (7.6)

do not need to be complemented.

• εi ∗ εj = 0 if and only if εi = εj = 0.

Now since the function ε ∗ ε′ is increasing in both ε and ε′ (assuming 0 ≤ ε, ε′ ≤ 1
2),

we conclude that

εbic(W
−) = min

1≤i,j≤l,
m(εi∗εj)>0

m(εi ∗ εj)

=

{
2εbic(W ) · (1− εbic(W )) if pW (0) = 0,

εbic(W ) otherwise.

We apply a similar reasoning on m
(

εiεj
εi∗εj

)
and m

(
εiεj
εi∗εj

)
. We obtain:

εbic(W
+) = min

{ εiεj
εi ∗ εj

,
εiεj
εi ∗ εj

, 1− εiεj
εi ∗ εj

: 1 ≤ i, j ≤ l, εi > 0, εj > 0
}

=
εbic(W )2

εbic(W )2 + (1− εbic(W ))2
.

Proposition 7.3. Let W : F2 −→ Y be a BMS channel and let GP (n, r, I, b) be a
generalized polar code of rate R = r

2n and blocklength N = 2n. If IGP
0 (W ) < R <

I(W ) then for every β > 1
2 , every α > 0 and every n large enough, there is no SCE

decoder which can make the undetected error probability lower than 2−Nβ
unless it

makes the erasure probability at least 1− α.

Proof. Let (Bn)n≥1 be i.i.d. uniform random variables in {−,+}. Define the
channel-valued process (Wn)n≥0 as follows:

W0 := W,

Wn := WBn
n−1 ∀n ≥ 1.
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Let 1
2 < β′ < β and let n be large enough so that we have α

2 · 2−Nβ′
≥ 2−Nβ

,
where N = 2n.

Corollary 7.1 shows that the process IGP
0 (Wn) is a martingale process. Therefore,

IGP
0 (Wn) converges almost surely. Moreover, one can show by standard polariza-
tion theory techniques that IGP

0 (Wn) = pWn(0) converges almost surely to 0 or 1.
Furthermore, for every ε > 0 we have:

lim
n→∞P({pWn(0) < ε}) = 1− pW (0).

Therefore, as n becomes large, the fraction of indices s ∈ {−,+}n such that pW s(0) ≥
ε is roughly at most IGP

0 (W ) = pW (0).
On the other hand, from Corollary 7.2, we can easily see that εbic(W

−) ≥ εbic(W )
and εbic(W

+) ≥ εbic(W )2. By applying the same analysis of [19], but to εbic instead
of the Bhattacharyya parameter, one can show that if I(W ) < 1, then the fraction

of indices s ∈ {−,+}n such that εbic(W
s) ≥ 2−2β

′n
goes to 1. Therefore, for n large

enough, if R > IGP
0 (W ) = pW (0), there exists at least one index s ∈ {−,+}n whose

corresponding index in F⊗n appears in the generator matrix of the GP code and

which satisfies εbic(W
s) > 2−2β

′n
and pW s(0) < α

2 . Let i ∈ [2n] be the index of the
column of F⊗n corresponding to s and let 0 ≤ ti ≤ 1

2 be the threshold used for W s

in an SCE−Dt decoder. Let p
(i)
ue and p

(i)
er be the erasure probability and undetected

error probability of the Dti decoder applied to W s respectively. We have:

p(i)er =
∑
ε>ti

pW (ε),

and

p(i)ue =
∑
ε≤ti

ε · pW s(ε) =
∑

εbic(W s)≤ε≤ti

ε · pW s(ε)

≥
∑

εbic(W s)≤ε≤ti

εbic(W
s) · pW s(ε)

= εbic(W
s) · (1− pW s(0)− p(i)er )

≥ 2−Nβ′
·
(
1− α

2
− p(i)er

)
. (7.8)

Therefore, if p
(i)
er ≤ 1− α then p

(i)
ue ≥ α

2 · 2−Nβ′
≥ 2−Nβ

. Hence p
(i)
ue cannot be made

less than 2−Nβ
unless p

(i)
er is at least 1 − α. The proposition now follows from the

fact that the erasure probability and the undetected error probability of the whole

scheme are lower bounded by p
(i)
er and p

(i)
ue respectively.

The proof of Theorem 7.1 now follows from Propositions 7.1 and 7.3.



Polar Codes for Arbitrary
Classical-Quantum Channels 8
The polarization phenomenon can be generalized to the setting where the input
of the channel is classical and the output is a quantum state. Wilde and Guha
constructed polar codes for binary-input classical-quantum channels1 (cq-channel)
in [43]. They showed that using the same polarization transformation of Arıkan
yields polarization of the synthetic cq-channels to almost useless and almost perfect
channels. Wilde and Guha proposed a quantum successive cancellation decoder and
showed that its probability of error decays faster than 2−Nβ

for any β < 1
2 . In [44],

Hirche et. al. constructed codes for binary-input classical-quantum multiple-access
channels2 (cq-MAC) by combining the polarization results of [43] with the monotone
chain rule method of Arıkan [22].

In this chapter3, we construct polar codes for arbitrary cq-channels and arbitrary
cq-MACs by using arbitrary Abelian group operations on the input alphabets. The
polarization transformation that we use is similar to the one in [6]. Since we are
proving a quantum version of the results in [4] and [6], many ideas of these two papers
were adopted and adapted to the quantum setting. However, some inequalities that
were used in [4] and [6] do not have quantum analogues. Therefore, other inequalities
that serve the same purpose needed to be shown for cq-channels.

In Section 8.1, we provide a very brief introduction to quantum mechanics. For
a more detailed discussion of quantum mechanics, see [47, Chapter 2]. The main
purpose of Section 8.1 is to make this chapter accessible for readers who are not
familiar with quantum mechanics. Readers already familiar with quantum mechan-
ics may skip ahead to Section 8.1.4 where we describe the non-commutative union
bound. In Section 8.2, we define classical-quantum channels and explain some basic
results that we will use later. In Section 8.3, we describe the polarization process. In
Section 8.4, we show that we have a two-level polarization if the cq-channel has Fq

as its input alphabet, where q is a prime number. In Section 8.5, we prove multilevel
polarization for arbitrary cq-channels using an arbitrary Abelian group operation
on the input alphabet. We show that the synthetic cq-channels converge to deter-

1The definition of classical-quantum channels can be found in Section 8.2.
2The definition of classical-quantum multiple-access channels can be found in Section 8.7.
3The material of this chapter is based on [45, 46].
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ministic homomorphism channels that project their input onto a quotient group of
the input alphabet. We discuss the rate of polarization (i.e., how fast the synthetic
cq-channels polarize) in Section 8.6. We discuss the construction of polar codes in
Section 8.7. As in all polar coding schemes, the encoder can be implemented in
O(N logN) operations, where N is the blocklength of the polar code. We prove
that the probability of error of the quantum successive cancellation decoder decays
faster than 2−Nβ

for any β < 1
2 , but we do not have an efficient implementation

of the decoder. We discuss the polarization of arbitrary cq-MACs in Section 8.8.
We show that while cq-MAC-polar codes might not achieve the entire symmetric-
capacity region, they always achieve points on the dominant face. We show that
the entire symmetric-capacity region can be achieved by combining the cq-channel
polarization result either with the rate-splitting method of [8], or with the monotone
chain rule method of [22].

8.1 Introduction to Quantum Mechanics

From a pedagogical point of view, the conventional wisdom in writing an introduc-
tion to any field is to start by an informal discussion (in order to build an intuition
about the topic), and then provide a formal description of the subject. However,
we do not believe that this is the best approach to follow in the case of quantum
mechanics: The purpose of informal discussions is to explain the ideas of the sub-
ject in terms of concepts that the reader is already familiar with, whereas quantum
mechanics is fundamentally different than everything that we are used to in our
everyday life.

Any informal description of quantum mechanics is bound to use philosophical
statements and interpretations that are inaccurate (or at best misleading). In our
introduction to quantum mechanics, we will avoid using such interpretations and
try to be as philosophically neutral as possible.

8.1.1 Closed quantum systems

We start by providing the mathematical formalism describing closed quantum sys-
tems4.

The state space

We first describe the simplest quantum system: the quantum bit (qubit). Unlike
the classical bit, which can only be in one of two states (either 0 or 1), the qubit5

can be in an “arbitrary superposition of the states 0 and 1”. By superposition, we
mean a “linear combination of the states 0 and 1”. We represent the state of a qubit
as a unit complex vector |ψ〉 of dimension 2. The states 0 and 1 are represented by
the vectors

|0〉 =
(
1
0

)
∈ C2 and |1〉 =

(
0
1

)
,

4A closed quantum system is a physical system that does not interact with its environment.
5The polarization of one photon can be represented as a one-qubit system: The states 0 and 1

correspond to horizontal and vertical polarization, respectively.
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respectively. A general state of a one-qubit system can be represented by the complex
vector

|ψ〉 =
(
α0

α1

)
= α0|0〉+ α1|1〉 ∈ C2,

where α0, α1 ∈ C and |α0|2 + |α1|2 = 1. We can see that there are infinitely many
possible states for a qubit.

In a system of two qubits, the state is described by a unit complex vector of
dimension 4. The states 00, 01, 10 and 11 are represented by the vectors

|00〉 =

⎛
⎜⎜⎝
1
0
0
0

⎞
⎟⎟⎠ ∈ C4, |01〉 =

⎛
⎜⎜⎝
0
1
0
0

⎞
⎟⎟⎠ ∈ C4, |10〉 =

⎛
⎜⎜⎝
0
0
1
0

⎞
⎟⎟⎠ ∈ C4, and |11〉 =

⎛
⎜⎜⎝
0
0
0
1

⎞
⎟⎟⎠ ∈ C4,

respectively. A general state of a two-qubits system can be represented by the
complex vector

|ψ〉 =

⎛
⎜⎜⎝
α00

α01

α10

α11

⎞
⎟⎟⎠ = α00|00〉+ α01|01〉+ α10|10〉+ α11|11〉,

where α00, α01, α10, α11 ∈ C and |α00|2 + |α01|2 + |α10|2 + |α11|2 = 1.

In a system of n qubits, the state is described by a unit complex vector of
dimension 2n, which is a superposition of the states

{
|b1 . . . bn〉 : b1, . . . , bn ∈ {0, 1}

}
:

|ψ〉 =
∑

(b1,...,bn)∈{0,1}n
αb1...bn |b1 . . . bn〉 ∈ C2n ,

where αb1...bn ∈ C for every (b1, . . . , bn) ∈ {0, 1}n and
∑

(b1,...,bn)∈{0,1}n
|αb1...bn |n = 1.

The state of a general closed quantum system A is determined by a unit vector
in a complex Hilbert space HA that is called the state space of the system A. For
example, the state space of a quantum system of n qubits is C2n . In this thesis, we
only consider quantum systems whose state spaces are finite dimensional. Therefore,
we can assume without loss of generality that the state space is Cd, where d is the
dimension of the state space.

Remark 8.1. The unit vector that can represent the physical state is not unique: If
|ψ〉, |φ〉 ∈ HA are two unit vectors satisfying |ψ〉 = ejθ|φ〉 for some θ ∈ R, then |ψ〉
and |φ〉 represent the same physical state. In other words, the “global” phase of the
unit vector is physically irrelevant.

If we want a one-to-one representation of the physical states, we have to consider
the projective Hilbert space6 corresponding to the state space: The set of physical
states is in one-to-one correspondence with the rays of the projective Hilbert space.

6The projective Hilbert space corresponding to a Hilbert space H is the quotient of H \ {0} by
the equivalence relation ≡ defined as v ≡ w ⇔ ∃λ ∈ C, v = λw. The equivalence classes are called
rays.
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Notation 8.1. The inner product between the states |ψ〉 and |φ〉 is denoted as

〈ψ|φ〉.
This is called the bra-ket notation, which is widely used in quantum mechanics. The
first part (namely, 〈ψ|) is called the bra part of the braket. The second part (namely,
|φ〉) is called the ket part. This is why the state vectors are also called ket-vectors.
〈ψ| is called the bra-vector that is associated to the ket-vector |ψ〉.

It is useful to think of a ket-vector |ψ〉 as a column matrix, and to interpret its
associated bra-vector 〈ψ| as the complex conjugate of the column matrix |ψ〉. In this
case, the bra-ket 〈ψ|φ〉, which is the inner product between |ψ〉 and |φ〉, is exactly
the result of the matrix multiplication of the bra-vector 〈ψ| with the ket-vector |φ〉,
i.e., 〈ψ|φ〉 = (〈ψ|) · (|φ〉).

For example, if |ψ〉, |φ〉 ∈ C2 are two ket-vectors in the state space of a one-qubit
system

|ψ〉 =
(
α0

α1

)
= α0|0〉+ α1|1〉 ∈ C2 and |φ〉 =

(
β0
β1

)
= β0|0〉+ β1|1〉 ∈ C2,

then

〈ψ|φ〉 =
(
α∗
0 α∗

1

)(β0
β1

)
= α∗

0β0 + α∗
1β1.

Evolution in time

If a quantum system A is closed, then for every t1, t2 ∈ R, there exists a unitary
operator Ut1,t2 : HA → HA such that if |ψt1〉 and |ψt2〉 are the states of the system
at time t1 and t2, respectively, then

|ψt2〉 = Ut1,t2 |ψt1〉.
In other words, the state of a closed quantum system evolves unitarily7.

Measurements

In contrast with the classical world, the state of a quantum system cannot be per-
fectly determined by observation and experiment. For example, let |ψ〉 = α0|0〉 +
α1|1〉 be the state of a one-qubit system, and assume that |ψ〉 is unknown. There
is no experiment that enables us to know exactly the state of the system. We
emphasize that this impossibility is not due to the ambiguity in the global phase8.

There is a set of measurements that are physically possible, but none of them
enables us to determine the state of the quantum system perfectly. In the following,
we describe the set of measurements that we can “perform on a closed quantum
system”9.

7The time evolution operator Ut1,t2 can be determined by the general Schrödinger equation.
8There is no experiment that enables us to find two complex numbers α′

0, α
′
1 such that α′

0|0〉+
α′
1|1〉 = ejθ|ψ〉 for some θ ∈ R.

9By definition, a measurement is an interaction between the quantum system with a measuring
device M . This means that it is impossible to measure a closed quantum system without making
it open. By “performing a measurement on a closed quantum system A”, we mean that the
measurement is performed while the composite system AM is closed. We emphasize that the
measurement (at least in the presented formalism) is not a unitary evolution of the composite
system AM .
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Let A be a closed quantum system whose state space is HA. A measurement of
the system A is a physical process that is applied on the system at the end of which
we obtain one of several possible outcomes10.

A measurement is characterized by a collection of n orthogonal projections11

P1, . . . , Pn of HA, which satisfy:

• P1, . . . , Pn are mutually orthogonal: PiPj = 0 for every i, j �= 0.

• P1, . . . , Pn add up to the identity:

n∑
i=1

Pi = I, where I is the identity mapping

on HA.

m ∈ {1, . . . , n} represents the different possible outcomes of the measurement.
If |ψ〉 is the state of the quantum system before applying the measurement

{P1, . . . , Pn}, then the measurement outcome will be equal to m ∈ {1, . . . , n} with
probability12

P({outcome = m}) = 〈ψ|Pm|ψ〉.
Furthermore, if the measurement outcome m occurs, then the post-measurement
state is equal to

1√
〈ψ|Pm|ψ〉

Pm|ψ〉.

For example, consider a one-qubit system, and consider the measurement {P0, P1},
where

P0 = |0〉〈0| =
(
1
0

)(
1 0

)
=

(
1 0
0 0

)
and P1 = |1〉〈1| =

(
0
1

)(
0 1

)
=

(
0 0
0 1

)
.

Let |ψ〉 = α0|0〉 + α1|1〉 be the state of the qubit. A simple calculation shows
that if we measure the state |ψ〉 with the measurement {P0, P1}, then the outcome
0 (resp. 1) occurs with probability |α0|2 (resp. |α1|2). Moreover, if the outcome 0
(resp. 1) occurs, then the post-measurement state is |0〉 (resp. |1〉). This is why we
say that “{P0, P1} measures the bit-value of the qubit”.

Composite quantum systems

If two quantum systems A and B have state spaces HA and HB, respectively, then
the state space of the composite system AB is equal to the tensor product of the
individual state spaces:

HAB = HA ⊗HB.

10For example, if we are measuring the bit-value of a qubit, we get one of two possible outcomes:
0 or 1.

11An orthogonal projection on a Hilbert space H is a linear mapping P from H to itself which
satisfies the following:

• P is a projection: P 2|ψ〉 = P |ψ〉 for every |ψ〉 ∈ H.

• P is self-adjoint: P † = P .

12The philosophical interpretation of the probabilitic nature of measurement is left to the reader.
We stick to the frequentist interpretation because it is exactly what is tested in practice: If there
is a large number of copies of the system, all of which are in the state |ψ〉, and if we perform the
same measurement {P1, . . . , Pn} on all of the copies, then the fraction of times we get the outcome
m will be very close to 〈ψ|Pm|ψ〉.
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For example, if A represents a system of nA qubits and B represents a system
of nB qubits, then

HAB = HA ⊗HB = C2nA ⊗ C2nB ≡ C2nA×2nB = C2nA+nB ,

which means that the composite system AB represents a system of nA +nB qubits,
as expected.

8.1.2 Open quantum systems

In Section 8.1.1, we described the quantum mechanics of closed systems, which are
too idealistic. Perhaps the only truly closed system is the whole universe. Assume
that we are only interested in a system A that is open. Let E be the system
describing the rest of the universe, i.e., E represents the environment of A.

The formalism of Section 8.1.1 does not help us in describing the quantum me-
chanics of the system A because it is open. Nevertheless, we can still use this
formalism to describe the quantum mechanics of the composite system AE. Let
|ψ〉 ∈ HAE = HA ⊗HE be the ket-vector that describes the state of AE.

Assume that we perform a measurement that acts only on the system A. This
measurement must be of the form {P1 ⊗ IE , . . . , Pn ⊗ IE}, where P1, . . . , Pn are
orthogonal projections acting on HA, and IE is the identity operator on E. The
probability of getting the outcome m ∈ {1, . . . , n} is equal to

P({outcome = m}) = 〈ψ|Pm ⊗ IE |ψ〉 = Tr
(
(Pm ⊗ IE)|ψ〉〈ψ|

)
= TrATrE

(
(Pm ⊗ IE)|ψ〉〈ψ|

)
= TrA

(
PmTrE(|ψ〉〈ψ|)

)
,

where TrA (resp. TrE) is the partial trace with respect to the system A (resp. E).
If we define

ρ = TrE(|ψ〉〈ψ|),
we get

P({outcome = m}) = TrA(Pmρ) = Tr(Pmρ).

This means that if we know ρ, then we can compute the probability distribution
of the outcome of any measurement that acts on A. ρ is called the density-matrix
that represents the state of the open system A. It is easy to see that if the outcome
of the measurement is m, then the post-measurement density matrix is equal to

PmρPm

Tr(Pmρ)
.

We can also show that if |ψ〉 is the state of the composite system AE and if
|ψ〉 was subjected to a unitary operator U ⊗ IE (i.e., it acts only on A), then the
resulting density matrix after the unitary evolution is UρU †. We conclude that if
we are only interested in the system A and if all the quantum operations that are
applied act only on A, then we do not need to know the state |ψ〉 of the whole
system: We just need to know the density matrix of the system A. This motivates
us to represent the state of an open system by its density matrix.

Density matrices have the following properties:

• ρ is a positive semi-definite operator acting on HA.

• The trace of ρ is equal to 1.
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8.1.3 POVM measurements

In practice, it is not easy to perfectly devise a measurement that only acts on
a desired system A. A general measurement cannot be described by a projective
measurement13.

If we are not interested in specifying the post-measurement state, then one pos-
sible way to describe a general measurement is through the POVM14 formalism.

A POVM measurement is described by a collection of n operators {E1, . . . , En}
that satisfy:

• E1, . . . , En are positive semi-definite operators acting on HA.

•
n∑

i=1

Ei = I, where I is the identity operator on HA.

If a POVM measurement {E1, . . . , En} is applied on an open system of state ρ,
then the probability that the outcome m ∈ {1, . . . , n} will occur is:

P({outcome = m}) = Tr(Emρ).

We emphasize that the POVM formalism does not enable us to specify the post-
measurement state. This is because POVM measurements do not have unique phys-
ical implementations. Nevertheless, for every POVM measurement {E1, . . . , En},
there exists one implementation of it such that the post-measurement state corre-

sponding to the outcome m is

√
Emρ

√
Em

Tr(Emρ)
.

8.1.4 Non-Commutative Union Bound

Sen proved in [48] the following “non-commutative union bound”:

1− Tr(Πr . . .Π1ρΠ1 . . .Πr) ≤ 2

√√√√ r∑
i=1

(1− Tr(Πiρ)), (8.1)

where Π1, . . . ,Πr are projection operators. This inequality was used in [43] to upper
bound the probability of error of the quantum successive cancellation decoder of the
polar code constructed for a binary-input cq-channel. This was possible because the
measurements used in [43] are projective. In this chapter, the quantum successive
cancellation decoder that we propose uses general POVM measurement. Therefore,
we cannot use the inequality (8.1).

We provide a “non-commutative union bound” that is looser than (8.1) by a
multiplicative factor of

√
r, but it is more general so that it can be applied to

general POVMs.

Lemma 8.1. Let Π1, . . . ,Πr be r semi-definite positive operators satisfying Π1 ≤
I, . . . ,Πr ≤ I. We have:

1− Tr
(√

Πr . . .
√

Π1ρ
√

Π1 . . .
√

Πr

)
≤ 2

√
r

√√√√ r∑
i=1

(1− Tr(Πiρ)).

13The measurement procedure that was described in Section 8.1.1 is called a projective measure-
ment.

14POVM stands for Positive Operator-Valued Measure.
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Proof. See Appendix 8.9.1.

8.2 Classical-Quantum Channels

A classical-quantum (cq) channel W : x ∈ G −→ ρx ∈ DM(k) takes a classical
input x ∈ G and has a quantum output ρx ∈ DM(k), where DM(k) is the space
of density matrices of dimension k < ∞. We assume that the input alphabet G is
finite but its size q = |G| can be arbitrary.

8.2.1 Coding for a Classical-Quantum Channel

A coding scheme for a cq-channel W : x ∈ G −→ ρx ∈ DM(k) is a 4-tuple
(M, N, f,D). M is the message set, N is the blocklength, f : M → XN is the
encoder and D is the (quantum) decoder. D = {Dm}m∈M is a POVM measurement
that is indexed by M. Every operator Dm acts on (Ck)⊗N , which is the state-space
of the system describing N cq-channel outputs.

The coding scheme is implemented as follows:

• A random message M is uniformly chosen from M.

• The transmitter computes (X1, . . . , XN ) = f(M).

• The transmitter sends X1, . . . , XN to the receiver by using the cq-channel N
times.

• The receiver observes the output system, which is in the state ρX1 ⊗· · ·⊗ρXN
.

• The receiver applies the POVM measurement D = {Dm}m∈M on the output
system. Let M̂ ∈ M be the measurement outcome.

The rate of the coding scheme is log2 |M|
N . The probability of error is given by

P[{M̂ �= M}] = 1− 1

|M|
∑
m∈M

Tr
(
Dm · (ρf1(m) ⊗ · · · ⊗ ρfN (m))

)
,

where f(m) = (f1(m), . . . , fN (m)).

8.2.2 Quantum-Information Theoretic Quantities

If the input to the cq-channel W : x ∈ G −→ ρx ∈ DM(k) is uniformly distributed,
we can describe the state of the joint input-output system as the state ρXB ∈
DM(q · k) defined as:

ρXB :=
1

q

∑
x∈G

|x〉〈x| ⊗ ρx.

A very important quantity associated with W is the symmetric Holevo informa-
tion I(W ) defined as:

I(W ) := I(X;B)ρ := H(X)ρ +H(B)ρ −H(XB)ρ

:= H(ρX) +H(ρB)−H(ρXB)

:= H
(
TrB(ρ

XB)
)
+H

(
TrX(ρXB)

)
−H(ρXB),
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where H(σ) is the von Neumann entropy of the density matrix σ:

H(σ) = −Tr(σ log2 σ).

It is easy to show that

I(W ) = H

(
1

q

∑
x∈G

ρx

)
− 1

q

∑
x∈G

H(ρx).

The quantity I(W ) is the capacity for transmitting classical information over
the cq-channel W when the prior input distribution is restricted to be uniform in
G. We have 0 ≤ I(W ) ≤ log2 q.

Besides I(W ), we will need another parameter that measures the reliability of
the cq-channel W . For the binary-input case, the fidelity between the two output
states was used as a measure of reliability in [43]. In our case, we have q output
states, so we will consider the average pairwise fidelity between them (similarly to
the average Bhattacharyya distance defined in [4]):

F (W ) :=
1

q(q − 1)

∑
x,x′∈G,
x�=x′

F (ρx, ρx′),

where F (ρ, σ) = Tr

√
ρ

1
2σρ

1
2 =

∥∥√σ
√
ρ
∥∥
1
, and ‖A‖1 is the nuclear norm of the

matrix A:
‖A‖1 = Tr

√
A†A.

Clearly, 0 ≤ F (W ) ≤ 1. We adopt the convention F (W ) := 0 if |G| = 1.
It was shown in [49] that Pe(W ) ≤ (q−1)F (W ), where Pe(W ) is the probability

of error of the optimal decoder ofW . This shows that if F (W ) is small then Pe(W ) is
also small and so W is reliable. Intuitively, this is true because a small F (W ) means
that all the pairwise fidelities are small, which implies that all the output states
are easily distinguishable from each other, which in turn should allow a reliable
decoding.

The following proposition provides three inequalities that relate I(W ) and F (W ).

Proposition 8.1. We have:

(i) I(W ) ≥ log2
q

1 + (q − 1)F (W )
.

(ii) I(W ) ≤ log2(q/2) +
√

1− F (W )2.

(iii) I(W ) ≤ log2

(
1 +

√
q2 − (1 + (q − 1)F (W ))2

)
.

Proof. See Appendix 8.9.2.

In the above proposition, the first inequality implies that if I(W ) is close to 0
then F (W ) is close to 1. The same inequality also implies that if F (W ) is close to
0 then I(W ) is close to log2 q. The second inequality implies that if I(W ) is close
to log2 q then F (W ) is close to 0. The third inequality implies that if F (W ) is close
to 1 then I(W ) is close to 0.
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8.3 Polarization Process for Classical-Quantum Channels

Since any set can be endowed with an Abelian group operation, we may assume
that one such operation on G is fixed. We will denote this Abelian group operation
additively.

Let W : x ∈ G −→ ρx ∈ DM(k) be a cq-channel. Define the cq-channels
W− : u1 ∈ G −→ ρ−u1

∈ DM(k2) and W+ : u2 ∈ G −→ ρ+u2
∈ DM(k2 · q) as:

ρ−u1
=

1

q

∑
u2∈G

ρu1+u2 ⊗ ρu2 ,

and

ρ+u2
=

1

q

∑
u1∈G

ρu1+u2 ⊗ ρu2 ⊗ |u1〉〈u1|.

Moreover for every n > 0 and every s = (s1, . . . , sn) ∈ {−,+}n, define W s =
(. . . ((W s1)s2) . . .)sn .

Remark 8.2. W− and W+ can be constructed as follows:

• Two independent and uniform random variables U1, U2 are generated in G.

• X1 = U1 + U2 and X2 = U2 are computed.

• X1 is sent through one copy of the cq-channel W . Let B1 be the quantum
system describing the output.

• X2 is sent through another copy of the cq-channel W (independent from the one
that was used for X1). Let B2 be the quantum system describing the output.

It can be easily seen that the cq-channels U1 −→ B1B2 and U2 −→ B1B2U1 simulate
W− and W+ respectively.

We have:

I(W−) + I(W+) = I(U1;B1B2) + I(U2;B1B2U1) = I(U1;B1B2) + I(U2;B1B2|U1)

= I(U1U2;B1B2) = I(X1X2;B1B2) = I(X1;B1) + I(X2;B2)

= 2I(W ).

This shows that the total symmetric Holevo information is conserved. Moreover,

I(W+) = I(U2;B1B2U1) ≥ I(U2;B2) = I(X2;B2) = I(W )

and

I(W−) = 2I(W )− I(W+) ≤ I(W ).

Let us now study the reliability of the cq-channel and how it is affected after one
step of polarization. But first let us define the quantity Fd(W ) for every d ∈ G:

Fd(W ) =
1

q

∑
x∈G

F (ρx, ρx+d).
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Clearly, 0 ≤ Fd(W ) ≤ 1 and F0(W ) = 1. Note that

F (W ) =
1

q − 1

∑
d∈G,
d �=0

Fd(W ).

Define Fmax(W ) = max
d∈G,
d �=0

Fd(W ). Clearly, F (W ) ≤ Fmax(W ) ≤ (q − 1)F (W ).

Proposition 8.2. For every d ∈ G, we have:

• Fd(W
+) = Fd(W )2.

• Fd(W ) ≤ Fd(W
−) ≤ 2Fd(W ) +

∑
Δ∈G,
Δ�=0,
Δ�=−d

FΔ(W )Fd+Δ(W ).

Proof. See Appendix 8.9.3.

Corollary 8.1. We have:

• Fmax(W
+) = Fmax(W )2.

• Fmax(W ) ≤ Fmax(W
−) ≤ qFmax(W ).

• F (W+) ≤ min
{
F (W ), (q − 1)2F (W )2

}
.

• F (W ) ≤ F (W−) ≤ q(q − 1)F (W )

Proof. First equation:

Fmax(W
+) = max

d∈G,
d �=0

Fd(W
+) = max

d∈G,
d �=0

Fd(W )2 =

⎛
⎝max

d∈G,
d �=0

Fd(W )

⎞
⎠

2

= Fmax(W )2.

Second equation:

Fmax(W ) = max
d∈G,
d �=0

Fd(W ) ≤ max
d∈G,
d �=0

Fd(W
−) = Fmax(W

−)

≤ max
d∈G,
d �=0

(
2Fd(W ) +

∑
Δ∈G,
Δ�=0,
Δ�=−d

FΔ(W )Fd+Δ(W )
)

≤ 2Fmax(W ) + (q − 2)Fmax(W )2 ≤ qFmax(W ).

First part of third equation:

F (W+) =
1

q − 1

∑
d∈G,
d �=0

Fd(W
+) =

1

q − 1

∑
d∈G,
d �=0

Fd(W )2 ≤ 1

q − 1

∑
d∈G,
d �=0

Fd(W ) = F (W ).
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Second part of third equation:

F (W+) ≤ Fmax(W
+) = Fmax(W )2 ≤ (q − 1)2F (W )2.

First inequality of the fourth equation:

F (W−) =
1

q − 1

∑
d∈G,
d �=0

Fd(W
−) ≥ 1

q − 1

∑
d∈G,
d �=0

Fd(W ) = F (W ).

Second inequality of the fourth equation:

F (W−) ≤ Fmax(W
−) ≤ qFmax(W ) ≤ q(q − 1)F (W ).

The following lemma is very useful to prove polarization results.

Lemma 8.2. [6] Let {Bn}n≥0 be a sequence of independent and uniformly dis-
tributed {−,+}-valued random variables. Suppose {In}n≥0 and {Tn}n≥0 are two
processes adapted to the process {Bn}n≥0 satisfying:

(1) 0 ≤ In ≤ log2 q.

(2) {In}n≥0 converges almost surely to a random variable I∞.

(3) 0 ≤ Tn ≤ 1.

(4) Tn+1 = T 2
n when Bn+1 = +.

(5) There exists a function f(ε) (depending only on q) satisfying lim
ε→0

f(ε) = 0 such

that for all n, if Tn < ε then In > log2 q − f(ε).

(6) There exists a function g(ε) (depending only on q) satisfying lim
ε→0

g(ε) = 0 such

that for all n, if Tn > 1− ε then In < g(ε).

Then T∞ = lim
n→∞Tn exists almost surely. Moreover, we have I∞ ∈ {0, log2 q} and

T∞ ∈ {0, 1} with probability 1.

8.4 Polarization for G = Fq

In this section, we focus on the particular case where G = Fq where q is prime. The
main result of this section is the following theorem.

Theorem 8.1. Let W : x ∈ Fq −→ ρx ∈ DM(k) be a cq-channel with input in Fq.
For every δ > 0, we have:

lim
n→∞

1

2n

∣∣∣{s ∈ {−,+}n : δ ≤ I(W s) ≤ log2 q − δ
}∣∣∣ = 0. (8.2)
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Moreover, for every β < 1
2 , we have:

lim
n→∞

1

2n

∣∣∣{s ∈ {−,+}n : I(W s) ≥ log2 q − δ, F (W s) < 2−2βn
}∣∣∣ = 1

log2 q
I(W ).

(8.3)

Proof. Let {Bn}n≥0 be a sequence of independent and uniformly distributed {−,+}-
valued random variables. Define the cq-channel-valued process {Wn}n≥0 as follows:

• W0 = W .

• Wn = WBn
n−1 for every n ≥ 1.

Let In = I(Wn) and Tn = Fmax(Wn). Let us check the conditions of Lemma 8.2.
Conditions (1) and (3) follow from the properties of I(W ) and Fmax(W ). Condition
(4) is satisfied because of Corollary 8.1.

We have E(In+1|Wn) =
1

2
I(W−

n ) +
1

2
I(W+

n ) = I(Wn). This shows that {In}n≥0

is a bounded martingale and so it converges almost surely. This shows that condition
(2) is satisfied.

Condition (5) follows from the following inequality:

I(W )
(a)

≥ log2
q

1 + (q − 1)F (W )
≥ log2

q

1 + (q − 1)Fmax(W )
,

where (a) is from Proposition 8.1. By choosing f(ε) = log2(1+ (q− 1)ε), we can see
that condition (5) is satisfied.

In order to show condition (6), we need to prove that if Fmax(W ) is close to 1
then I(W ) is close to 0. Let d be such that Fd(W ) = Fmax(W ). We have:

1− Fd(W ) =
1

q

∑
x∈G

(
1− F (ρx, ρx+d)

)
.

Therefore, for every x ∈ G we have 1− F (ρx, ρx+d) ≤ q(1− Fd(W )) and so

F (ρx, ρx+d) ≥ 1− q(1− Fd(W )).

Assume that Fd(W ) is high enough so that

1− q(1− Fd(W )) ≥ cos
π

2(q − 1)
. (8.4)

Now let x, x′ ∈ G be such that x �= x′. Define A(ρx, ρx′) = arccosF (ρx, ρx′) and

let l =
x′ − x

d
mod q. We have:

F (ρx, ρx′) = cos
(
A(ρx, ρx+ld)

) (a)

≥ cos

(
l−1∑
i=0

A(ρx+id, ρx+(i+1)d)

)

= cos

(
l−1∑
i=0

arccosF (ρx+id, ρx+(i+1)d)

)

(b)

≥ cos
(
l · arccos

(
1− q

(
1− Fd(W )

)))
(c)

≥ cos
(
(q − 1) · arccos

(
1− q

(
1− Fd(W )

)))
,
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where (a) follows from the fact that A(ρx, ρx′) is a metric distance [47]. (a), (b) and

(c) are true because cos is a decreasing function on
[
0,

π

2

]
and we assumed Equation

(8.4). We deduce that

F (W ) =
1

q(q − 1)

∑
x,x′∈G,
x�=x′

F (ρx, ρx′) ≥ cos
(
(q−1)·arccos

(
1−q

(
1−Fd(W )

)))
. (8.5)

By combining Equation (8.5) and inequality (iii) of Proposition 8.1, we get con-
dition (6) of Lemma 8.2. Therefore, all the conditions of Lemma 8.2 are satis-
fied. We conclude that {I(Wn)}n≥0 converges almost surely to a random variable
I∞ ∈ {0, log2 q}. This proves Equation (8.2).

From Corollary 8.1 we can deduce that F (W−) ≤ q2F (W ) and F (W+) ≤
q2F (W )2. Therefore, we can apply the same techniques that were used to prove
[33, Theorem 3.5] in order to get Equation (8.3).

Theorem 8.1 can be used to construct polar codes for any cq-channel whose
input alphabet size is prime. The polar code construction, encoder and decoder
are similar to the one described in [43]. The main idea is to send information only
through synthetic cq-channels for which the symmetric Holevo information is close
to log2 q and for which the average pairwise fidelity is less than 2−Nβ

, where N = 2n

is the blocklength of the polar code and β < 1
2 . We send frozen symbols that are

known to the receiver through the remaining synthetic cq-channels. A quantum
successive cancellation decoder that is similar to the one in [43] is applied. The

probability of error can be shown to decay faster than 2−Nβ
for any β < 1

2 . We
postpone the accurate description and the study of the polar code till Section 8.7
where we construct polar codes in the more general case where (G,+) is an arbitrary
Abelian group.

8.5 Polarization for Arbitrary (G,+)

In this section, (G,+) is an arbitrary Abelian group. For every cq-channel W :
x ∈ G −→ ρx ∈ DM(k) and for every subgroup H of G, define the cq-channel
W [H] : D ∈ G/H −→ ρD ∈ DM(k) as follows:

ρD =
1

|D|
∑
x∈D

ρx.

W [H] can be simulated as follows: If a coset D ∈ G/H is chosen as input, a
random variable X is chosen uniformly from D and then sent through the cq-channel
W .

It is easy to see that if ρXB =
1

q

∑
x∈G

|x〉〈x|X ⊗ ρBx , then I(W [H]) = I(X mod

H;B)ρ.

The main result of this section is the following theorem.
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Theorem 8.2. Let W : x ∈ G −→ ρx ∈ DM(k) be a cq-channel. For every δ > 0,
we have:

lim
n→∞

1

2n

∣∣∣{s ∈ {−,+}n : ∃Hs a subgroup of G,∣∣I(W s)− log2 |G/Hs|
∣∣ < δ,

∣∣I(W s[Hs])− log2 |G/Hs|
∣∣ < δ

}∣∣∣ = 1.

Theorem 8.2 can be interpreted as follows: As the number of polarization steps
becomes large, the synthetic cq-channels polarize to homomorphism cq-channels
projecting their input onto a quotient group of G. The inequality∣∣I(W s[Hs])− log2 |G/Hs|

∣∣ < δ

means that from the output of W s, one can determine with high probability the
coset of Hs to which the input belongs. The inequality∣∣I(W s)− log2 |G/Hs|

∣∣ < δ

means that there is almost no other information about the input that can be deter-
mined from the output of W s.

In order to prove Theorem 8.2 we need several definitions and lemmas. Let
{Bn}n≥0 be a sequence of independent and uniformly distributed {−,+}-valued
random variables. Define the cq-channel-valued process {Wn}n≥0 as follows:

• W0 = W .

• Wn = WBn
n−1 for every n ≥ 1.

Lemma 8.3. For every subgroup H of G, the process {I(Wn[H])}n≥0 is a sub-
martingale.

Proof. It is sufficient to show that I(W−[H]) + I(W+[H]) ≥ 2I(W [H]). Let U1, U2,
X1, X2, B1 and B2 be as in Remark 8.2. We have:

I(W−[H]) + I(W+[H]) = I(U1 mod H;B1B2) + I(U2 mod H;B1B2U1)

≥ I(U1 mod H;B1B2) + I(U2 mod H;B1B2, U1 mod H)

= I(U1 mod H,U2 mod H;B1B2)

= I(X1 mod H,X2 mod H;B1B2)

= I(X1 mod H,B1) + I(X2 mod H;B2) = 2I(W [H]).

Let M ⊂ H be two subgroups of G. For every coset D of H, let D/M = {C ∈
G/M : C ⊂ D} be the set of cosets of M which are subsets of D. Define the
cq-channel W [M |D] : C ∈ D/M −→ ρC ∈ DM(k) as follows:

ρC =
1

|C|
∑
x∈C

ρx.

W [M |D] can be simulated as follows: If a coset C ∈ D/M is chosen as input, a
random variable X is chosen uniformly from C and then sent through the cq-channel
W .

Define the following:
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• IM |H(W ) = I(W [M ])− I(W [H]).

• FM |H
max (W ) = max

d∈H,
d/∈M

Fd(W ).

The following lemma relates IM |H(W ) to {I(W [M |D]) : D ∈ G/H}.

Lemma 8.4. IM |H(W ) =
1

|G/H|
∑

D∈G/H

I(W [M |D]).

Proof. Let ρXB =
1

q

∑
x∈G

|x〉〈x|X ⊗ ρBx . We have I(W [M ]) = I(X mod M ;B)ρ and

I(W [M ]) = I(X mod H;B)ρ. Therefore,

IM |H(W ) = I(W [M ])− I(W [H]) = I(X mod M ;B)ρ − I(X mod M ;B)ρ

= I(X mod M,X mod H;B)ρ − I(X mod H;B)ρ = I(X mod M ;B|X mod H)ρ

=
∑

D∈G/H

1

|G/H|I(X mod M ;B|X mod H = D)ρ
(a)
=

∑
D∈G/H

1

|G/H|I(W [M |D]),

where (a) follows from the fact that conditioning on X mod H = D, the state of the

input-output system becomes
1

|D|
∑
x∈D

|x〉〈x|X ⊗ ρBx and so the mutual information

between X mod M and B becomes exactly I(W [M |D]).

The following lemma relates F (W [M |D]) to F
M |H
max (W ).

Lemma 8.5. For every D ∈ G/H, we have:

(1) F (W [M |D]) ≤ q · |M |
|H| FM |H

max (W ).

(2) There exists εq > 0 depending only on q such that if M is maximal in H (i.e.,

|H/M | is prime) and if F
M |H
max (W ) ≥ 1− εq, then

F (W [M |D]) ≥ cos

(
|H| − |M |

|M | arccos

(
1−

√
1−

(
1− q

(
1− F

M |H
max (W )

))2))
.

Proof. See Appendix 8.9.4.

Lemma 8.6. For every two subgroups M ⊂ H of G where M is maximal in H (i.e.,
|H/M | is prime), the process {IM |H(Wn)}n≥0 converges almost surely to a random

variable I
(∞)
M |H ∈ {0, log2 |H/M |} and the process {FM |H

max (Wn)}n≥0 converges almost

surely to a random variable F
(∞)
M |H ∈ {0, 1}.

Proof. Let In = IM |H(Wn) and Tn = F
M |H
max (Wn). We will show that In and Tn

satisfy the conditions of Lemma 8.2, where q is replaced with q′ = |H/M |. Condi-
tions (1) and (3) are obviously satisfied. Condition (4) is also satisfied because of
Proposition 8.2.
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Since IM |H(Wn) = I(Wn[M ])−I(Wn[H]) and since the processes {I(Wn[M ])}n≥0

and {I(Wn[H])}n≥0 are sub-martingales by Lemma 8.3, we conclude that {In}n≥0

converges almost surely. Therefore, condition (2) is satisfied.

To see that condition (5) is satisfied, assume that F
M |H
max (W ) is close to zero, then

the first inequality of Lemma 8.5 implies that F (W [M |D]) is close to zero for every
D ∈ G/H. The first inequality of Proposition 8.1 then shows that I(W [M |D]) is
close to log2 q

′, for every D ∈ G/H. Lemma 8.4 now implies that IM |H(W ) is close
to log2 q

′.
To see that condition (6) is satisfied, assume that F

M |H
max (W ) is close to 1, then

the second inequality of Lemma 8.5 implies that F (W [M |D]) is close to 1 for every
D ∈ G/H. The third inequality of Proposition 8.1 then shows that I(W [M |D]) is
close to zero, for every D ∈ G/H. Lemma 8.4 now implies that IM |H(W ) is close to
zero.

We conclude that {IM |H(Wn)}n≥0 converges almost surely to a random vari-

able taking values in {0, log2 q′} = {0, log2 |H/M |} and {FM |H
max (Wn)}n≥0 converges

almost surely to a random variable taking values in {0, 1}.

Lemma 8.7. Let d1, . . . , dr ∈ G. If Fdi(W ) ≥ 1− 1

q

(
1− cos

π

2r

)
for all 1 ≤ i ≤ r,

then

Fd1+···+dr(W ) ≥ cos

(
r∑

i=1

arccos
(
1− q

(
1− Fdi(W )

)))
.

Proof. We may assume without loss of generality that d1 �= 0, . . . , dr �= 0 and

d := d1 + · · ·+ dr �= 0. Define d′1 = 0, and for every 2 ≤ i ≤ r, let d′i =
i−1∑
j=1

dj .

For every 1 ≤ i ≤ r, we have 1− Fdi(W ) =
1

q

∑
x∈G

(
1− F (ρx, ρx+di)

)
. Therefore,

for every x ∈ G, we have 1 − F (ρx, ρx+di) ≤ q
(
1 − Fdi(W )

)
and so F (ρx, ρx+di) ≥

1− q
(
1− Fdi(W )

)
. Therefore,

F (ρx, ρx+d)

= F (ρx+d′1 , ρx+d′r+dr) = cosA(ρx+d′1 , ρx+d′r+dr)
(a)

≥ cos

(
r∑

i=1

A(ρx+d′i , ρx+d′i+di)

)

= cos

(
r∑

i=1

arccosF (ρx+d′i , ρx+d′i+di)

)
(b)

≥ cos

(
r∑

i=1

arccos
(
1− q

(
1− Fdi(W )

)))
,

where (a) follows from the fact that A(ρ′, ρ′′) = arccosF (ρ′, ρ′′) is a metric distance

[47]. (a) and (b) are true because cos is a decreasing function on
[
0,

π

2

]
and we

assumed that Fdi(W ) ≥ 1− 1

q

(
1− cos

π

2r

)
for every 1 ≤ i ≤ r. We conclude that

Fd(W ) =
1

q

∑
x∈G

F (ρx, ρx+d) ≥ cos

(
r∑

i=1

arccos
(
1− q

(
1− Fdi(W )

)))
.
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Lemma 8.8. Let d ∈ G be such that d �= 0 and let H = 〈d〉 be the subgroup generated
by d. We have:

• If Fd(W ) ≤ F
M |H
max (W ) for every maximal subgroup M of H.

• If FM |H
max (W ) ≥ 1− 1

q

(
1− cos

π

2q

)
for every maximal subgroup M of H, then

Fd(W ) ≥ cos

⎛
⎝q · arccos

⎛
⎝1− q

⎛
⎝1− min

M is a maximal
subgroup of H

FM |H
max (W )

⎞
⎠
⎞
⎠
⎞
⎠ .

Proof. Let M be a maximal subgroup of H. Since H = 〈d〉, then we must have
d ∈ H and d /∈ M . Therefore,

Fd(W ) ≤ max
d′∈H,
d′ /∈M

Fd′(W ) = FM |H
max (W ).

Now let M1, . . . ,Mr be the maximal subgroups of H = 〈d〉. For every 1 ≤ i ≤ r,

let di ∈ H be such that di /∈ Mi and Fdi(W ) = F
Mi|H
max (W ). It was shown in [6] that

d ∈ 〈d1, . . . , dr〉, which means that there are l1, . . . , lr ∈ N such that d =
r∑

i=1

lidi.

Moreover, l1, . . . , lr ∈ N can be chosen so that l1 + · · ·+ lr ≤ q.

Since Fdi(W ) ≥ 1 − 1

q

(
1− cos

π

2q

)
≥ 1 − 1

q

(
1− cos

π

2(l1 + · · ·+ lr)

)
for all

1 ≤ i ≤ r, Lemma 8.7 implies that

Fd(W ) = Fl1d1+···+lrdr(W )

≥ cos

(
r∑

i=1

li arccos
(
1− q

(
1− Fdi(W )

)))

(a)

≥ cos

(
(l1 + · · ·+ lr) arccos

(
1− q

(
1− min

1≤i≤r
Fdi(W )

)))
(b)

≥ cos

(
q · arccos

(
1− q

(
1− min

1≤i≤r
Fdi(W )

)))
,

where (a) and (b) are true because cos is decreasing on
[
0,

π

2

]
and because we

assumed that Fdi(W ) ≥ 1− 1

q

(
1− cos

π

2q

)
for all 1 ≤ i ≤ r.

Proposition 8.3. For every d ∈ G, the process {Fd(Wn)}n≥0 converges almost

surely to a random variable F
(∞)
d ∈ {0, 1}. Moreover, the random set {d ∈ G :

F
(∞)
d = 1} is almost surely a subgroup of G.

Proof. Let d ∈ G be such that d �= 0. Let H = 〈d〉 be the subgroup generated
by d. Lemma 8.6 shows that for every maximal subgroup M of H, the process{
F

M |H
max (Wn)

}
n≥0

converges almost surely to a random variable taking values in

{0, 1}.
Take a sample of the process {Wn}n≥0 for which

{
F

M |H
max (Wn)

}
n≥0

converges to

either 0 or 1 for every maximal subgroup M of H. We have:
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• If there exists a maximal subgroup M of H for which
{
F

M |H
max (Wn)

}
n≥0

con-

verges to 0, then the first point of Lemma 8.8 implies that {Fd(Wn)}n≥0 con-
verges to 0 as well.

• If
{
F

M |H
max (Wn)

}
n≥0

converges to 1 for all maximal subgroups M of H, then

the second point of Lemma 8.8 implies that {Fd(Wn)}n≥0 converges to 1 as
well.

We conclude that for every d ∈ G, the process {Fd(Wn)}n≥0 converges almost surely

to a random variable F
(∞)
d ∈ {0, 1}. (Note that for d = 0, we have F0(Wn) = 1 for

all n.)
Now take a sample of the process {Wn}n≥0 for which {Fd(Wn)}n≥0 converges

to either 0 or 1 for every d ∈ G. If d1, d2 ∈ G are such that {Fd1(Wn)}n≥0 and
{Fd2(Wn)}n≥0 converge to 1, then Lemma 8.7 implies that {Fd1+d2(Wn)}n≥0 con-
verges to 1 as well. We conclude that the set

{
d ∈ G : {Fd(Wn)}n≥0 converges to 1

}
is a subgroup of G.

Corollary 8.2. For every ε > 0, we have

lim
n→∞

1

2n

∣∣∣{s ∈ {−,+}n : ∃Hs a subgroup of G,

Fd(W ) > 1− ε for every d ∈ Hs, and Fd(W ) < ε for every d /∈ Hs

}∣∣∣ = 1.

Lemma 8.9. For every δ > 0, there exists ε > 0 depending only on δ and q such that
for every cq-channel W , if there exists a subgroup H of G satisfying Fd(W ) > 1− ε
for all d ∈ H and Fd(W ) < ε for all d /∈ H, then

∣∣I(W ) − log2 |G/H|
∣∣ < δ and∣∣I(W [H])− log2 |G/H|

∣∣ < δ.

Proof. If H = G, then I(W [G]) = 0 = log2 |G/G| and so
∣∣I(W [G])− log2 |G/G|

∣∣ =
0 < δ. On the other hand, since H = G, we have Fd(W ) > 1 − ε for every d ∈ G.

Therefore, F (W ) =
1

q − 1

∑
d∈G,
d �=0

Fd(W ) > 1 − ε. The third inequality of Proposition

8.1 now implies I(W ) < δ
(1)
q for some function ε → δ

(1)
q (ε) (depending only on ε and

q) which satisfies lim
ε→0

δ(1)q (ε) = 0.

Now assume that H �= G. We have

F (W [H]) = F (W [H|G])
(a)

≤ q · |H|
q

FH|G
max (W ) ≤ qmax

d∈G,
d/∈H

Fd(W ) ≤ qε,

where (a) follows from the first inequality of Lemma 8.5. The first inequality of

Proposition 8.1 implies that I(W [H]) > log2 |G/H| − δ
(2)
q (ε) for some function ε →

δ
(2)
q (ε) (depending only on ε and q) which satisfies lim

ε→0
δ(2)q (ε) = 0.

On the other hand, we have F {0}|H
max (W ) = max

d∈H,
d �=0

Fd(W ) ≥ 1 − ε. Assume that

ε < εq, where εq is given by Lemma 8.5. For every D ∈ G/H, we have

F (W [{0}|D]) ≥ cos

(
(|H| − 1) · arccos

(
1−

√
1−

(
1− q

(
1− F

{0}|H
max (W )

))2))
.
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This means that F (W [{0}|D]) is close to 1 as well. The third inequality of Propo-

sition 8.1 now implies that I(W [{0}|D]) < δ
(3)
q (ε) for some function ε → δ

(3)
q (ε)

(depending only on ε and q) which satisfies lim
ε→0

δ(3)q (ε) = 0. We conclude that

I(W )− I(W [H]) = I(W [{0}])− I(W [H]) = I{0}|H(W )

(a)
=

1

|G/H|
∑

D∈G/H

I(W [{0}|D]) < δ(q3),

where (a) follows from Lemma 8.4. We conclude that

∣∣I(W )−log2 |G/H|
∣∣ ≤ |I(W )−I(W [H])|+

∣∣I(W [H])−log2 |G/H|
∣∣ < δ(2)q (δ)+δ(3)q (δ).

If we define δq(ε) = max
{
δ
(1)
q (ε), δ

(2)
q (ε) + δ

(3)
q (ε)

}
, we get

∣∣I(W )−log2 |G/H|
∣∣ <

δq(ε) and
∣∣I(W [H])− log2 |G/H|

∣∣ < δq(ε) in all cases. Moreover, lim
ε→0

δq(ε) = 0.

This concludes the proof of the lemma.

The proof of Theorem 8.2 now follows immediately from Corollary 8.2 and
Lemma 8.9.

8.6 Rate of Polarization

In order to derive the rate of polarization (i.e., how fast the synthetic cq-channels
polarize), we need the following two lemmas.

Lemma 8.10. For every subgroup H of G, we have:

• F (W−[H]) ≤ |H|q(q − |H|)F (W [H]).

• F (W+[H]) ≤ |H|(q − |H|)2F (W [H])2.

Proof. See Appendix 8.9.5

Lemma 8.11. For any 0 < δ < 1 and any 0 < β < 1
2 , we have

lim
n→∞

1

2n

∣∣∣{s ∈ {−,+}n : I(W s[H]) > log2 |G/H| − δ, F (W s[H]) ≥ 2−2βn
}∣∣∣ = 0.

Proof. The lemma is trivial if H = G, so let us assume that H �= G. Let H1, . . . , Hr

be a sequence of subgroups of G satisfying:

• H = H1 ⊂ . . . ⊂ Hr = G.

• Hi is maximal in Hi+1 for every 1 ≤ i < r.
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Let {Wn}n≥0 be the process defined in the previous section. Lemma 8.6 implies

that {IHi|Hi+1
(Wn)}n≥0 converges almost surely to a random variable I

(∞)
Hi|Hi+1

∈
{0, log2 |Hi+1/Hi|}. On the other hand, we have

I(Wn[H]) = I(Wn[H])− I(Wn[G]) =
r−1∑
i=1

(
I(Wn[Hi])− I(Wn[Hi+1])

)

=

r−1∑
i=1

IHi|Hi+1
(Wn).

This shows that the process {I(Wn[H])}n≥0 converges almost surely to a random

variable I
(∞)
H satisfying

I
(∞)
H ∈ {log2m : m divides |G/H|}.

Due to the relations between the quantities I(W ) and F (W ) in Proposition 8.1,
we can see that {F (Wn[H])}n≥0 converges to 0 whenever {I(Wn[H])}n≥0 converges
to log2 |G/H|, and there is a number f0 > 0 such that lim inf

n→∞ F (Wn[H]) > f0

whenever {I(Wn[H])}n≥0 converges to a number in {log2m : m divides |G/H|}
other than log2 |G/H|. Therefore, we can say that almost surely, we have:

lim
n→∞F (Wn[H]) = 0 or lim inf

n→∞ F (Wn[H]) > f0.

Now from Lemma 8.10, we have F (W−
n [H]) ≤ q3F (Wn[H]) and F (W+

n [H]) ≤
q3F (Wn[H])2. By applying exactly the same techniques that were used to prove [33,
Theorem 3.5] we get:

lim
n→∞P

({
I(Wn[H]) > log2 |G/H| − δ, F (Wn[H]) ≥ 2−2nβ

})
= 0.

By examining the explicit expression of this probability we get the lemma.

Theorem 8.3. The polarization of Wn is almost surely fast:

lim
n→∞

1

2n

∣∣∣{s ∈ {−,+}n : ∃Hs subgroup of G,∣∣I(W s)− log2 |G/Hs|
∣∣ < δ,

∣∣I(W s[Hs])− log2 |G/Hs|
∣∣ < δ, F (W s[Hs]) < 2−2βn

}∣∣∣ = 1,

for any 0 < δ < 1 and any 0 < β < 1
2 .

Proof. For every subgroup H of G, define:

EH =
{
s ∈ {−,+}n : I(W s[H]) > log2 |G/H| − δ, F (W s[H]) ≥ 2−2βn

}
,

E1 =
{
s ∈ {−,+}n :∃Hs subgroup of G,∣∣I(W s)− log2 |G/Hs|

∣∣ < δ,
∣∣I(W s[Hs])− log2 |G/Hs|

∣∣ < δ
}
,
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and

E2 =
{
s ∈ {−,+}n : ∃Hs subgroup of G,∣∣I(W s)− log2 |G/Hs|

∣∣ < δ,
∣∣I(W s[Hs])− log2 |G/Hs|

∣∣ < δ, F (W s[Hs]) < 2−2βn
}
.

If s ∈ E1/
( ⋃

H subgroup of G

EH

)
then s ∈ E2. Therefore,

E1/
( ⋃

H subgroup of G

EH

)
⊂ E2,

and |E2| ≥ |E1| −
∑

H subgroup of G

|EH |. By Theorem 8.2 and Lemma 8.11 we have:

1 ≥ lim
n→∞

1

2n
|E2| ≥ lim

n→∞
1

2n

(
|E1| −

∑
H subgroup of G

|EH |
)
= 1− 0 = 1.

8.7 Polar Code Construction

Let W : x ∈ G −→ ρx ∈ DM(k) be an arbitrary cq-channel.
Choose 0 < δ < 1 and 0 < β < β′ < 1

2 , and let n be an integer such that

2
√
2n
√

(q − 1)2n2−2β′n ≤ 2−2βn and
1

2n
|En| > 1− δ

2 log2 q
,

where

En =
{
s ∈ {−,+}n : ∃Hs subgroup of G,

∣∣I(W s)− log2 |G/Hs|
∣∣ < δ

2
,
∣∣I(W s[Hs])− log2 |G/Hs|

∣∣ < δ

2
, F (W s[Hs]) < 2−2β

′n}
.

Such an integer exists due to Theorem 8.3. For every s ∈ {−,+}n choose a
subgroup Hs of G as follows:

• If s /∈ En, define Hs = G. We clearly have F (W s[Hs]) = 0 < 2−2β
′n
.

• If s ∈ En, choose a subgroup Hs of G such that F (W s[Hs]) < 2−2β
′n
,
∣∣I(W s)−

log2 |G/Hs|
∣∣ < δ

2 and
∣∣I(W s[Hs])− log2 |G/Hs|

∣∣ < δ
2 .

Now for every s ∈ {−,+}n, let fs : G/Hs −→ G be a frozen mapping (in the sense
that the receiver knows fs) such that fs(a) mod Hs = a for all a ∈ G/Hs. We
call such mapping a section mapping of G/Hs. Let Ũ s be a random coset chosen
uniformly in G/Hs and let U s = fs(Ũ

s). Note that if the receiver can determine
U s mod Hs = Ũ s accurately, then he can also determine U s since he knows fs.

If Hs �= {0}, we have some freedom on the choice of the section mapping fs.
We will analyze the performance of polar codes averaged over all possible section
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mappings. I.e., we assume that fs is chosen uniformly from the set of all possible
section mappings of G/Hs. We can easily see that the induced distributions of{
U s : s ∈ {−,+}n

}
are independent and uniform in G. Note that for every

s ∈ {−,+}n, the receiver has to determine Ũ s = U s mod Hs in order to successfully
determine U s.

8.7.1 Encoder

We associate the set Sn := {−,+}n with the strict total order< defined as (s1, ..., sn) <
(s′1, ..., s′n) if and only if si = −, s′i = + for some i ∈ {1, ..., n} and sh = s′h for all
i < h ≤ n.

For every u = (us)s∈Sn ∈ GSn , every 0 ≤ n′ ≤ n and every (s′, s′′) ∈ Sn′ ×Sn−n′ ,
define Es′′

s′ (u) ∈ G recursively on 0 ≤ n′ ≤ n as follows:

• Es
ø(u) = us if n′ = 0 and s ∈ Sn.

• Es′′
(s′,−)(u) = E(s′′,−)

s′ (u) + E (s′′,+)
s′ (u) if n′ > 0, s′ ∈ Sn′−1 and s′′ ∈ Sn−n′ .

• Es′′
(s′,+)(u) = E(s′′,+)

s′ (u) if n′ > 0, s′ ∈ Sn′−1 and s′′ ∈ Sn−n′ .

For every s ∈ Sn, we write Es
ø(u) as Es(u) and Eø

s (u) as Es(u).
Let {Ws}s∈Sn be a set of 2n independent copies of the cq-channel W . Ws should

not be confused with W s: Ws is a copy of the cq-channel W and W s is a synthetic
cq-channel obtained from W as before.

Let (U s)s∈Sn = (fs(Ũ
s))s∈Sn be the sequence of 2n independent random variables

that were defined before. For every 0 ≤ n′ ≤ n, s′ ∈ Sn′ and s′′ ∈ Sn−n′ , define
U s′′
s′ = Es′′

s′
(
(U s)s∈Sn

)
. We have:

• U s
ø = U s if n′ = 0 and s ∈ {−,+}n.

• U s′′
(s′,−) = U

(s′′,+)
s′ + U

(s′′,−)
s′ if n′ > 0, s′ ∈ {−,+}n′−1 and s′′ ∈ {−,+}n−n′

.

• U s′′
(s′,+) = U

(s′′,+)
s′ if n′ > 0, s′ ∈ {−,+}n′−1 and s′′ ∈ {−,+}n−n′

.

For every s ∈ Sn, let Us = Uø
s . It is easy to see that (Us)s∈Sn are independent and

uniformly distributed in G.
For every s ∈ Sn, we send Us through the cq-channel Ws. Let Bs be the system

describing the output of the cq-channel Ws, and let B = {Bs}s∈Sn . We can prove
by backward induction on n′ that for every s′′ ∈ Sn−n′ , the cq-channel U s′′

s′ →(
{Bs}s has s′ as a prefix, {U r

s′}r<s′′
)
is equivalent to the cq-channel W s′′ for every 0 ≤

n′ ≤ n, s′ ∈ Sn′ and s′′ ∈ Sn−n′ . In particular, the cq-channel U s →
(
B, {U r}r<s

)
is equivalent to the cq-channel W s for every s ∈ Sn.

Note that the encoding algorithm described above has a complexity ofO(N logN),
where N = 2n is the blocklength of the polar code.

8.7.2 Quantum Successive Cancellation decoder

Before describing the decoder, let us fix a few useful notations.
For every s ∈ Sn, define Ls = {r ∈ Sn : r < s} and Us = {r ∈ Sn : r > s}. For

every u = (us)s∈Sn ∈ GSn , define the following:
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• For every S ⊂ Sn, let u
S := (us)s∈S .

• For every s ∈ Sn, let us := Es(u).

• Define ρBu :=
⊗
s∈Sn

ρBs
us
. This means that if U s = us for every s ∈ Sn, then the

receiver sees the state ρBu at the output.

It is easy to see that for every s ∈ Sn, we have W s : us ∈ G −→ ρB,ULs

s,us ∈
DM

(
k2

n · q|Ls|), where
ρB,ULs

s,us =
1

q|Ls|
∑

uLs∈GLs

ρBus,uLs ⊗
∣∣uLs

〉 〈
uLs

∣∣ULs

,

and

ρBus,uLs =
1

q|Us|
∑

uUs∈GUs

ρBu .

Moreover, we have W s[Hs] : ũ
s ∈ G/Hs −→ ρB,ULs

s,ũs ∈ DM
(
k2

n · q|Ls|), where
ρB,ULs

s,ũs =
1

|Hs|
∑
us∈ũs

ρB,ULs

s,us =
1

q|Ls|
∑

uLs∈GLs

ρBũs,uLs ⊗
∣∣uLs

〉 〈
uLs

∣∣ULs

,

and

ρBũs,uLs =
1

|Hs| · q|Us|
∑
us∈ũs

∑
uUs∈GUs

ρBu .

Lemma 8.12. For every uLs ∈ GLs, there exists a POVM
{
ΠB

(s),uLs ,ũs : ũs ∈ G/Hs

}
such that the POVM

{
ΠB,ULs

(s),ũs : ũs ∈ G/Hs

}
defined as

ΠB,ULs

(s),ũs =
∑

uLs∈GLs

ΠB
(s),uLs ,ũs ⊗

∣∣uLs
〉 〈

uLs
∣∣ULs

,

satisfies

1− 1

|G/Hs|
∑

ũs∈G/Hs

Tr
(
ΠB,ULs

(s),ũs ρB,ULs

s,ũs

)
< (|G/Hs| − 1)F (W [Hs]).

Proof. See Appendix 8.9.6.

For every s ∈ Sn and every uLs ∈ GLs , define the POVM
{
ΠB

(s),uLs ,us : us ∈ G
}

as:

ΠB
(s),uLs ,us =

{
ΠB

(s),uLs ,us mod Hs
if us = fs(u

s mod Hs),

0 otherwise.

Now we are ready to describe the quantum successive cancellation decoder. We
will decode {U s}s∈Sn successively by respecting the order < on Sn. At the stage
s ∈ Sn, we would have decoded ULs = (U r)r<s and obtained an estimate ûLs =

(ûr)r<s of it, so we apply the POVM
{
ΠB

(s),ûLs ,us : us ∈ G
}

on the output system
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B = (Bs)s∈Sn and we let ûs be the measurement result. We assume that the
POVM measurement is designed so that if σB was the state of the B system before
the measurement, and if the output ûs occurs, then the post-measurement state is√

ΠB
(s),ûLs ,ûsσ

B
√
ΠB

(s),ûLs ,ûs

Tr
(
ΠB

(s),ûLs ,ûsσB
) .

The whole procedure is equivalent to applying the POVM{
ΛB
u : u = (us)s∈Sn ∈ GSn

}
defined as:

ΛB
u =

√
ΠB

(s1),us1
. . .
√

ΠB
(si),u

Lsi ,usi
. . .
√

ΠB
(sN ),uLsN ,usN

√
ΠB

(sN ),uLsN ,usN
. . .√

ΠB
(si),u

Lsi ,usi
. . .
√

ΠB
(s1),us1

,

where s1 < s2 < . . . < sN are the N = 2n elements of Sn ordered according to
the order relation <.

It is easy to see that Λu ≥ 0 for every u ∈ GSn , and
∑

u∈GSn

Λu = I.

8.7.3 Performance of Polar Codes

For every s ∈ Sn, let Fs be the set of section mappings of G/Hs. We have:

Fs =
{
fs ∈ GG/Hs : fs(ũ

s) ∈ ũs for all ũs ∈ G/Hs

}
.

It is easy to see that |Fs| = |Hs||G/Hs|. Define

F :=
∏
s∈Sn

Fs.

For every f = (fs)s∈Sn ∈ F and every ũ = (ũs)s∈Sn ∈
∏
s∈Sn

(G/Hs), define

f(ũ) =
(
fs(ũ

s)
)
s∈Sn

∈ GSn .

The probability of error of the quantum successive cancellation decoder for a

particular choice of f = (fs)s∈Sn ∈ F =
∏
s∈Sn

Fs is given by:

Pe(f) =
1∏

s∈Sn
|G/Hs|

∑
ũ∈∏s∈Sn

(G/Hs)

(
1− Tr

(
ΛB
f(ũ)ρ

B
f(ũ)

))

= EŨ

(
1− Tr

(
ΛB
f(Ũ)

ρB
f(Ũ)

))
,

where Ũ = (Ũ s)s∈Sn is uniformly distributed in
∏
s∈Sn

(G/Hs).

The probability of error averaged over all the choices of f = (fs)s∈Sn ∈ F =∏
s∈Sn

Fs is:
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P e =
1

|F|
∑
f∈F

Pe(f) =
1

|F|
∑
f∈F

EŨ

(
1− Tr

(
Λf(Ũ)ρ

B
f(Ũ)

))

= EF,Ũ

(
1− Tr

(
ΛB
F (Ũ)

ρB
F (Ũ)

))
= EF,Ũ

(
1− Tr

(
ΛB
Uρ

B
U

))
,

where F = (Fs)s∈Sn is uniformly distributed in F =
∏
s∈Sn

Fs, and U = (U s)s∈Sn =

F (U) =
(
Fs(Ũ

s)
)
s∈Sn

. It is easy to see that {U s : s ∈ Sn} are independent and
uniformly distributed in G. We have:

P e = EF,Ũ

(
1− Tr

(
ΛB
Uρ

B
U

))
= EF,Ũ

(
1− Tr

(√
ΠB

(sN ),ULsN ,UsN
. . .
√

ΠB
(s1),Us1

ρBU

√
ΠB

(s1),Us1
. . .
√

ΠB
(sN ),ULsN ,UsN

))
(a)

≤ EF,Ũ

⎛
⎝2

√
N

√√√√ N∑
i=1

(
1− Tr

(
ΠB

(si),U
Lsi ,Usi

ρBU

))⎞⎠
(b)

≤ 2
√
N

√√√√EF,Ũ

(
N∑
i=1

(
1− Tr

(
ΠB

(si),U
Lsi ,Usi

ρBU

)))

= 2
√
N

√∑
s∈Sn

EF,Ũ

(
1− Tr

(
ΠB

(s),ULs ,Usρ
B
U

))

(c)
= 2

√
N

√∑
s∈Sn

EF,Ũ

(
1− Tr

(
ΠB

(s),ULs ,Ũs
ρBU

))

(d)
= 2

√
N

√∑
s∈Sn

EU,Ũs

(
1− Tr

(
ΠB

(s),ULs ,Ũs
ρBU

))

= 2
√
N

√√√√∑
s∈Sn

(
1− EŨs,ULs Tr

(
ΠB

(s),ULs ,Ũs
EUs,UUs |Ũs,ULs

(
ρBU
) ))

(e)
= 2

√
N

√√√√∑
s∈Sn

(
1− EŨs,ULs

(
Tr
(
ΠB

(s),ULs ,Ũs
ρB
Ũs,ULs

)))
,

where (a) follows from the “non-commutative union bound” of Lemma 8.1. (b)
follows from the concavity of the square root. (c) follows from the fact that U s =
fs(Ũ

s), which implies that U s mod Hs = Ũ s and U s = fs(U
s mod Hs), which in

turn implies that ΠB
(s),ULs ,Us = ΠB

(s),ULs ,Us mod Hs
. (d) follows from the fact that

Tr
(
ΠB

(s),ULs ,Ũsρ
B
U

)
depends only on Ũ s and U . (e) follows from the fact that for

every ũs ∈ G/Hs and every uLs ∈ GLs , we have:

EUs,UUs |Ũs=ũs,ULs=uLs

(
ρBU
)
=

1

|Hs| · q|Us|
∑
us∈ũs

∑
uUs∈GUs

ρBu = ρBũs,uLs .
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On the other hand, we have:

EŨs,ULs

(
Tr
(
ΠB

(s),ULs ,Ũsρ
B
Ũs,ULs

))
=

1

|G/Hs|
∑

ũs∈G/Hs

1

q|Ls|
∑

uLs∈GLs

Tr
(
ΠB

(s),uLs ,ũsρ
B
ũs,uLs

)

=
1

|G/Hs|
∑

ũs∈G/Hs

Tr
(
ΠB,ULs

(s),ũs ρB,ULs

s,ũs

)
.

Therefore,

P e ≤ 2
√
N

√√√√∑
s∈Sn

(
1− EŨs,ULs

(
Tr
(
ΠB

(s),ULs ,Ũs
ρB
Ũs,ULs

)))

= 2
√
N

√√√√√∑
s∈Sn

⎛
⎝1− 1

|G/Hs|
∑

ũs∈G/Hs

Tr
(
ΠB,ULs

(s),ũs ρB,ULs

s,ũs

)⎞⎠
(a)

≤ 2
√
N

√∑
s∈Sn

(|G/Hs| − 1)F (W [Hs]) ≤ 2
√
N

√∑
s∈Sn

(q − 1)2−2β′n

≤ 2
√
2n
√

(q − 1)2n2−2β′n ≤ 2−2βn ,

where (a) follows from Lemma 8.12.

The above upper bound was calculated on average over a random choice of the
frozen section mappings. Therefore, there is at least one choice of the frozen section
mappings for which the upper bound of the probability of error still holds.

It remains to study the rate of the constructed polar code. The rate at which we

are communicating is R =
1

2n

∑
s∈{−,+}n

log2 |G/Hs| =
1

2n

∑
s∈En

log2 |G/Hs|. On the

other hand, we have
∣∣I(W s) − log2 |G/Hs|

∣∣ < δ
2 for all s ∈ En. Now since we have∑

s∈{−,+}n
I(W s) = 2nI(W ), we conclude that:

I(W ) =
1

2n

∑
s∈{−,+}n

I(W s) =
1

2n

∑
s∈En

I(W s) +
1

2n

∑
s∈Ec

n

I(W s)

<
1

2n

∑
s∈En

(
log2 |G/Hs|+

δ

2

)
+

1

2n
|Ec

n| log2 q

< R+
1

2n
|En|

δ

2
+

δ

2 log2 q
log2 q

≤ R+
δ

2
+

δ

2
= R+ δ,

where Ec
n = {−,+}n \ En.

To this end we have proven the following theorem which is the main result of
this chapter:
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Theorem 8.4. Let W : x ∈ G −→ ρx ∈ DM(k) be an arbitrary cq-channel, where
the input alphabet is endowed with an Abelian group operation. For every δ > 0
and every 0 < β < 1

2 , there exists a polar code of blocklength N = 2n based on
the group operation which has a rate R > I(W ) − δ and an encoder algorithm of
complexity O(N logN). Moreover, the probability of error of the quantum successive

cancellation decoder is less than 2−Nβ
.

8.8 Polar Codes for Arbitrary Classical-Quantum MACs

An m-user classical-quantum multiples access channel (cq-MAC)

W : (x1, . . . , xm) ∈ G1 × · · · ×Gm −→ ρx1,...,xm ∈ DM(k)

takes classical inputs {xi ∈ Gi : 1 ≤ i ≤ m} from the m users and produces a
quantum output ρx1,...,xm ∈ DM(k). We assume that the input alphabets Gi are
finite but their sizes qi = |Gi| can be arbitrary.

The achievable rate-region is described by a collection of inequalities [50]:

∀S ⊂ {1, . . . ,m}, 0 ≤ RS ≤ I(XS ;B|XSc)ρ = I(XS ;BXSc)ρ,

where RS =
∑
i∈S

Ri, XS = (Xi)i∈S , Sc = {1, . . . ,m}\S, and the mutual information

I(XS ;Y |XSc)ρ is computed according to the following state:

ρX1,...,Xm,B =
∑

x1∈G1,
...

xm∈Gm

(
m∏
i=1

PXi(xi)

)⎛⎝ ⊗
1≤i≤m

|xi〉〈xi|Xi

⎞
⎠⊗ ρBx1,...,xm

,

for some independent probability distributions {PXi(xi) : xi ∈ Gi} on Gi for 1 ≤
i ≤ m.

We are interested in the case where the probability distributions of X1, . . . , Xm

are uniform in G1, . . . , Gm respectively. We define the symmetric-capacity region
J (W ) of W as

J (W ) =
{
(R1, . . . , Rm) ∈ Rm : 0 ≤ RS ≤ IS(W ), ∀S ⊂ {1, . . . ,m}

}
,

where IS(W ) := I(XS ;BXSc)ρ is computed according to

ρX1,...,Xm,B =
1

q1 · · · qm
∑

x1∈G1,
...

xm∈Gm

⎛
⎝ ⊗

1≤i≤m

|xi〉〈xi|Xi

⎞
⎠⊗ ρBx1,...,xm

.

The set
{
(R1, . . . , Rm) ∈ J (W ) : R1+· · ·+Rm = I(W )

}
is called the dominant face

of J (W ), where I(W ) := I[{1, . . . ,m}](W ) = I(X1 . . . Xm;B)ρ is the symmetric
sum-capacity of W .

For every 1 ≤ i ≤ m, we fix an Abelian group operation on Gi and we denote it
additively. It is possible to construct cq-MAC codes which achieve the rates in the
region J (W ) using one of the following two methods:
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• By using the monotone chain rule method of Arıkan [22] and applying a po-
larization transformation using the Abelian group operation for each user.

• By using the rate-splitting method described in [8] and applying a polarization
transformation using the Abelian group operation for each user.

By using the cq-channel polarization results of this chapter and a similar analysis
as in [22], [8] and [44], we can show that both methods yield cq-MAC codes that
achieve the whole region J (W ) for which the probability of error of the quantum

successive cancellation decoder decays faster than 2−Nβ
for any β < 1

2 , where N is
the blocklength of the code.

However, one may hesitate to call the codes obtained using these methods as
cq-MAC-polar codes because they are not based on the polarization of cq-MACs.
These methods are hybrid schemes which combine cq-channel polarization (not cq-
MAC polarization) with other techniques. Moreover, the code construction for these
methods is more complicated than cq-MAC-polar codes. In the rest of this section,
we describe how cq-MAC-polar codes are constructed.

We define the cq-MACs W− and W+ as follows:

W− : (u1,1, . . . , um,1) ∈ G1 × · · · ×Gm −→ ρ−u1,1,...,um,1
∈ DM(k2),

W+ : (u1,2, . . . , um,2) ∈ G1 × · · · ×Gm −→ ρ+u1,2,...,um,2
∈ DM(k2q1 · · · qm),

where

ρ−u1,1,...,um,1
=

1

q1 · · · qm
∑

u1,2∈G1,

...
um,2∈Gm

ρu1,1+u1,2,...,um,1+um,2 ⊗ ρu1,2,...,um,2 ,

and

ρ+u1,2,...,um,2
=

1

q1 · · · qm
∑

u1,1∈G1,

...
um,1∈Gm

ρu1,1+u1,1,...,um,1+um,2 ⊗ ρu1,1,...,um,2 ⊗

⎛
⎝ ⊗

1≤i≤m

|ui,1〉〈ui,1|

⎞
⎠ .

Note that the cq-MAC W can be seen as a cq-channel with input in G := G1 ×
· · ·×Gm. Moreover, W− andW+ when seen as cq-channels can be obtained from the
cq-channel W by applying the polarization transformation which uses the Abelian
group operation of the product group G. Therefore, the cq-channel polarization
results of the previous sections can be applied to W . In particular, we have:

• I(W−) + I(W+) = 2I(W ). This shows that the symmetric sum-capacity is
conserved by the polarization transformation and that for every n > 0, the

region
1

2n

∑
s∈{−,+}n

J (W s) contains points on the dominant face of J (W ).

• For every subgroup H of G, we have I(W−[H]) + I(W−[H]) ≥ 2I(W [H]) by
Lemma 8.3. Therefore, for every S ⊂ {1, . . . ,m}, we have

IS(W
−) + IS(W

+) =
(
I(W−)− I(W−[GS ])

)
+
(
I(W+)− I(W+[GS ])

)
≤ 2I(W )− 2I(W [GS ]) = 2IS(W ),

(8.6)
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where,

GS =

(∏
i∈S

Gi

)
×

⎛
⎝∏

j /∈S
{0}

⎞
⎠ .

Equation (8.6) shows that although the symmetric-sum capacity is conserved
by polarization, the highest achievable individual rates can decrease. In other
words, polarization can induce a loss in the symmetric-capacity region.

• Theorem 8.3 implies that

lim
n→∞

1

2n

∣∣∣{s ∈ {−,+}n : ∃Hs subgroup of G,

∣∣I(W s)− log2 |G/Hs|
∣∣ < δ,

∣∣I(W s[Hs])− log2 |G/Hs|
∣∣ < δ, F (W s[Hs]) < 2−2βn

}∣∣∣ = 1.

In other words, as the number of polarization steps becomes large, the syn-
thetic cq-MACs become close to deterministic homomorphism cq-channels
which project the input (U s

1 , . . . , U
s
m) onto some quotient group G/Hs of the

product group G.

One can employ the properties of subgroups of product groups to show that the
polarized cq-MAC W s is an “easy” cq-MAC in a sense similar to the way easy MACs
were defined in Definition 4.6. This allows the construction of cq-MAC-polar codes
for which the probability of error of the quantum successive cancellation decoder
decays faster than 2−Nβ

for any 0 < β < 1
2 , where N = 2n is the blocklength of the

code. The region of rates that are achievable by cq-MAC-polar codes is given by:

J pol(W ) =
⋂
n≥0

⎛
⎝ 1

2n

∑
s∈{−,+}n

J (W s)

⎞
⎠

=
{
(R1, . . . , Rm) ∈ Rm : RS ≤ IpolS (W ), ∀S ⊂ {1, . . . ,m}

}
,

where

IpolS (W ) = lim
n→∞

1

2n

∑
s∈{−,+}n

IS(W
s).

The cq-MAC-polar codes can be compared to the two cq-MAC coding methods
that were described at the beginning of this section:

• The cq-MAC-polar codes have the advantage that the code construction is
simpler.

• The other two coding methods have the advantage that they always achieve
the whole symmetric-capacity region J (W ), which may not be the case for
cq-MAC-polar codes in general.
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8.9 Appendix

8.9.1 Proof of Lemma 8.1

Let Πr+1 = I. We have:

1−Tr
(√

Πr . . .
√

Π1ρ
√

Π1 . . .
√

Πr

)
= Tr

(√
Πr+1ρ

√
Πr+1

)
− Tr

(√
Πr+1 . . .

√
Π1ρ

√
Π1 . . .

√
Πr+1

)
=

r∑
i=1

Tr
(√

Πr+1 . . .
√

Πi+1ρ
√

Πi+1 . . .
√

Πr+1

)
− Tr

(√
Πr+1 . . .

√
Πiρ

√
Πi . . .

√
Πr+1

)

=
r∑

i=1

Tr
(√

Πr+1 . . .
√

Πi+1

(
ρ−

√
Πiρ

√
Πi

)√
Πi+1 . . .

√
Πr+1

)
(a)

≤
r∑

i=1

Tr

(√
Πr+1 . . .

√
Πi+1 ·

∣∣∣ρ−√Πiρ
√

Πi

∣∣∣ ·√Πi+1 . . .
√

Πr+1

)

(b)

≤
r∑

i=1

Tr
∣∣∣ρ−√Πiρ

√
Πi

∣∣∣ = r∑
i=1

∥∥∥ρ−√Πiρ
√

Πi

∥∥∥
1

(c)

≤ 2

r∑
i=1

√
Tr
(
ρ−

√
Πiρ

√
Πi

)

= 2r
1

r

r∑
i=1

√
1− Tr(Πiρ)

(d)

≤ 2r

√√√√1

r

r∑
i=1

(1− Tr(Πiρ)) = 2
√
r

√√√√ r∑
i=1

(1− Tr(Πiρ)),

where (a) follows from the fact that
√
Πj ≥ 0 for every i + 1 ≤ j ≤ r + 1,

ρ −
√
Πiρ

√
Πi ≤

∣∣ρ−√
Πiρ

√
Πi

∣∣ and the fact that if A ≤ B and C ≥ 0, then
Tr(AC) ≤ Tr(BC). (b) follows from the fact that 0 ≤

√
Πj ≤ I for every i + 1 ≤

j ≤ r + 1,
∣∣ρ−√

Πiρ
√
Πi

∣∣ ≥ 0, and the fact that if A,B are two positive operators
with B ≤ I, then Tr(AB) ≤ Tr(AB) + Tr(A(I − B)) = Tr(A). (c) follows from

the fact that
∥∥∥ρ−√

Xρ
√
X
∥∥∥
1
≤ 2

√
Tr
(
ρ−

√
Xρ

√
X
)
for every positive operator

X ≤ I (see [51]). (d) follows from the concavity of the square root.

8.9.2 Proof of Proposition 8.1

In [52, Prop. 1], it was shown that for every 0 ≤ s ≤ 1, we have:

I(W ) ≥ −1

s
log2Tr

⎡
⎣(∑

x∈G
PX(x) · ρ

1
1+s
x

)1+s
⎤
⎦ .

By taking s = 1, we obtain:
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I(W ) ≥ − log2Tr

⎡
⎣(∑

x∈G

1

q
· √ρx

)2
⎤
⎦ = − log2Tr

⎛
⎝ 1

q2

∑
x,x′∈G

√
ρx
√
ρx′

⎞
⎠

= − log2Tr

⎛
⎜⎜⎝ 1

q2

∑
x∈G

ρx +
1

q2

∑
x,x′∈G,
x�=x′

√
ρx
√
ρx′

⎞
⎟⎟⎠

= − log2

⎛
⎜⎜⎝1

q
+

1

q2

∑
x,x′∈G,
x�=x′

Tr(
√
ρx
√
ρx′)

⎞
⎟⎟⎠

(a)

≥ − log2

⎛
⎜⎜⎝1

q
+

1

q2

∑
x,x′∈G,
x�=x′

F (ρx, ρx′)

⎞
⎟⎟⎠ = log2

q

1 + (q − 1)F (W )
,

where (a) follows from the fact that Tr(
√
ρx
√
ρx′) ≤ Tr(|√ρx

√
ρx′ |) = ‖√ρx

√
ρx′‖1 =

F (ρx, ρx′).

In order to prove the second inequality, define the cq-channel W̃ : x ∈ G −→
ρ̃x ∈ DM(k · q2) as follows:

ρ̃BS1S2
x = ρBx ⊗

⎛
⎜⎜⎝ 1

2(q − 1)

∑
x′∈G,
x′ �=x

(
|x〉〈x|S1 ⊗ |x′〉〈x′|S2 + |x′〉〈x′|S1 ⊗ |x〉〈x|S2

)⎞⎟⎟⎠ .

The two additional systems S1 and S2 can be interpreted as additional side
information about the input which is provided to the receiver. Note that if S1S2 are
traced out, we recover the cq-channel W .

Let ρ̃XBS1S2 =
1

q

∑
x∈G

|x〉〈x|X ⊗ ρ̃BS1S2
x . We have:

I(W ) = I(X;B)ρ̃ ≤ I(X;BS1S2)ρ̃ = I(X;S1S2)ρ̃ + I(X;B|S1S2)ρ̃

= H(X)−H(X|S1S2) + I(X;B|S1S2)ρ̃
(a)
= log2(q)− 1 +

∑
s1,s2∈G

I(X;B|S1 = s1, S2 = s2)PS1,S2(s1, s2)

(b)
= log2(q/2) +

1

q(q − 1)

∑
s1,s2∈G,
s1 �=s2

I(X;B|S1 = s1, S2 = s2)

(c)
= log2(q/2) +

1

q(q − 1)

∑
s1,s2∈G,
s1 �=s2

I(Ws1,s2),

where (a) follows from the fact that given {S1 = s1, S2 = s2}, the conditional
probability distribution of X is uniform in {s1, s2}. (b) follows from the fact that
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the distribution of (S1, S2) is uniform in the set

{(s1, s2) ∈ G×G : s1 �= s2}.

(c) is true because conditioning ρ̃XBS1S2 on {S1 = s2, S2 = s2} and then tracing

out S1S2 gives the state
1

2
|s1〉〈s1|X ⊗ ρBs1 +

1

2
|s2〉〈s2|X ⊗ ρBs2 which just represents

Ws1,s2 with uniform input, where Ws1,s2 : x ∈ {0, 1} −→ ρx,s1,s2 ∈ DM(k) is the
binary-input cq-channel defined as ρ0,s1,s2 = ρs1 and ρ1,s1,s2 = ρs2 . In other words,
the cq-channel Ws1,s2 is obtained from W by restricting the input to {s1, s2}.

Now since Ws1,s2 is a binary-input cq-channel, we have from [43, Prop. 1] that

I(Ws1,s2) ≤
√
1− F (Ws1,s2)

2 =
√
1− F (ρs1 , ρs2)

2.

Therefore,

I(W ) ≤ log2(q/2) +
1

q(q − 1)

∑
s1,s2∈G,
s1 �=s2

√
1− F (ρs1 , ρs2)

2

≤ log2(q/2) +
√

1− F (W )2,

where the last inequality follows from the concavity of the function t →
√
1− t2.

It remains to show the last inequality of Proposition 8.1. Define the following:

• ρXB =
1

q

∑
x∈G

|x〉〈x|X ⊗ ρBx .

• ΛXB =
∑
x∈G

|x〉〈x|X ⊗ EB
x , where {EB

x : x ∈ G} is an optimal POVM that

decodes W with the lowest probability of error.

We have:

• ρX = TrB(ρ
XB) =

1

q

∑
x∈G

|x〉〈x|X .

• ρB = TrX(ρXB) =
1

q

∑
x∈G

ρBx .

From [47, Sec 9.2.3], we have

D
(
ρXB, ρX ⊗ ρB

)2
+ F

(
ρXB, ρX ⊗ ρB

)2 ≤ 1, (8.7)

where D(ρ′, ρ′′) = 1
2‖ρ′ − ρ′′‖1 is the trace distance between ρ′ and ρ′′. We have:
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F
(
ρXB, ρX ⊗ ρB

)
=
∥∥∥√ρXB

√
ρX ⊗ ρB

∥∥∥
1

=

∥∥∥∥∥1q
(∑

x∈G
|x〉〈x|X ⊗

√
ρBx

)
·
(∑

x∈G
|x〉〈x|X ⊗

√
ρB

)∥∥∥∥∥
1

=
1

q

∥∥∥∥∥
∑
x∈G

|x〉〈x|X ⊗
√

ρBx
√
ρB

∥∥∥∥∥
1

=
1

q

∑
x∈G

∥∥∥∥
√

ρBx
√

ρB
∥∥∥∥
1

=
1

q

∑
x∈G

F
(
ρBx , ρ

B
)
=

1

q

∑
x∈G

F

(
ρBx ,

1

q

∑
x′∈G

ρBx′

)

(a)

≥ 1

q2

∑
x,x′∈G

F
(
ρBx , ρ

B
x′
)
=

1

q2

⎛
⎜⎜⎝q +

∑
x,x′∈G,
x�=x′

F
(
ρBx , ρ

B
x′
)
⎞
⎟⎟⎠

=
1

q
(1 + (q − 1)F (W )) ,

(8.8)

where (a) follows from the concavity of the fidelity.
Now let Pc(W ) = 1 − Pe(W ) be the probability of correct guess of the optimal

decoder {EB
x : x ∈ G}. We have:

Pc(W ) =
1

q

∑
x∈G

Tr
(
EB

x ρBx
)
=

1

q

∑
x∈G

Tr
(
|x〉〈x|X ⊗ EB

x ρBx
)
= Tr

(
ΛXBρXB

)
.

Therefore,

Tr
(
ΛXB

(
ρXB − ρX ⊗ ρB

))
= Pc(W )− Tr

(
1

q

∑
x∈G

|x〉〈x|X ⊗ EB
x ρB

)

= Pc(W )− 1

q

∑
x∈G

Tr(EB
x ρB) = Pc(W )− 1

q

(a)

≥ 0,

where (a) follows from the fact that a random guess gives a probability of correct
guess 1

q .

On the other hand, we know thatD(ρXB, ρX⊗ρB) = max
0≤Γ≤I

Tr(Γ(ρXB−ρX⊗ρB)).

Therefore,

0 ≤ Pc(W )− 1

q
= Tr

(
ΛXB

(
ρXB − ρX ⊗ ρB

)) (b)

≤ max
0≤Γ≤I

Tr(Γ(ρXB − ρX ⊗ ρB))

= D
(
ρXB, ρX ⊗ ρB

)
,

(8.9)
where (b) follows from the fact that 0 ≤ ΛXB ≤ I.

By combining (8.7), (8.8) and (8.9), we get:(
Pc(W )− 1

q

)2

+
1

q2
(1 + (q − 1)F (W ))2 ≤ 1.
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Thus,

Pc(W ) ≤ 1

q
+

√
1− 1

q2
(1 + (q − 1)F (W ))2 =

1 +
√

q2 − (1 + (q − 1)F (W ))2

q
,

which implies that

H(X|B)
(a)

≥ − log2 Pc(W ) ≥ log2 q − log2

(
1 +

√
q2 − (1 + (q − 1)F (W ))2

)
,

where (a) follows from [53, Prop 4.3] and the operational interpretation of the condi-
tional min-entropy of a cq-state in terms of the guessing probability [54]. Therefore,

I(W ) = I(X;B) = H(X)−H(X|B)

= log2 q −H(X|B) ≤ log2

(
1 +

√
q2 − (1 + (q − 1)F (W ))2

)
.

8.9.3 Proof of Proposition 8.2

Lemma 8.13. Let A and B be two positive semi-definite k×k matrices. We have15:

Tr
√
A+B ≤ Tr

√
A+Tr

√
B.

Proof. Let us first assume that A and B are invertible. Since the mapping C → C−1

is monotonically decreasing [56], we have (A + B)−1 ≤ A−1. Moreover, since the

square root is operator monotone [56], we have (A + B)−
1
2 ≤ A− 1

2 . Similarly,

(A+B)−
1
2 ≤ B− 1

2 . Therefore,

Tr
√
A+B = Tr

(
(A+B) · (A+B)−

1
2

)
= Tr

(
A · (A+B)−

1
2

)
+Tr

(
B · (A+B)−

1
2

)
(a)

≤ Tr
(
A ·A− 1

2

)
+Tr

(
B ·B− 1

2

)
= Tr

√
A+Tr

√
B,

where (a) follows from the fact that if C ≤ D and A ≥ 0, then Tr(AC) ≤ Tr(AD).
Now let A and B be two arbitrary positive semi-definite k × k matrices. We

have:

Tr
√
A+B = lim

ε→0
Tr

√
A+B + 2εI ≤ lim

ε→0
Tr

√
A+ εI +Tr

√
B + εI = Tr

√
A+Tr

√
B.

Lemma 8.14. Let ρ1, . . . , ρn and σ1, . . . , σm be n + m density matrices of the
same dimension. Let {p1, . . . , pn} and {q1, . . . , qm} be probability distributions on
{1, . . . , n} and {1, . . . ,m} respectively. We have:

F

⎛
⎝ n∑

i=1

piρi,

m∑
j=1

qjσj

⎞
⎠ ≤

n∑
i=1

m∑
j=1

√
piqjF (ρi, σj).

15The proof of Lemma 8.13 is due to Martin Argerami who thankfully answered my question on

Math Stack Exchange. In an earlier version of this work, we used a weaker inequality Tr

√√√√
n∑

i=1

Ai ≤

n

n∑
i=1

Tr
√
Ai which we proved using Weyl’s inequality [55] that relates the eigenvalues of A + B

with those of A and B.
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Proof. It is sufficient to show the lemma for the case where n = 1:

F

⎛
⎝ρ,

m∑
j=1

qjσj

⎞
⎠ = Tr

√√√√√ρ
1
2

⎛
⎝ m∑

j=1

qjσj

⎞
⎠ ρ

1
2

(a)

≤
m∑
j=1

√
qj Tr

√
ρ

1
2σjρ

1
2 =

m∑
j=1

√
qjF (ρ, σj),

where (a) follows from Lemma 8.13.

Now we are ready to prove Proposition 8.2:

Fd(W
+) =

1

q

∑
x∈G

F (ρ+x , ρ
+
x+d)

=
1

q

∑
x∈G

F

⎛
⎝1

q

∑
u1∈G

ρu1+x ⊗ ρx ⊗ |u1〉〈u1|,
1

q

∑
u1∈G

ρu1+x+d ⊗ ρx+d ⊗ |u1〉〈u1|

⎞
⎠

=
1

q

∑
x∈G

F

⎛
⎝
⎛
⎝1

q

∑
u1∈G

|u1〉〈u1| ⊗ ρu1+x

⎞
⎠⊗ ρx,

⎛
⎝1

q

∑
u1∈G

|u1〉〈u1| ⊗ ρu1+x+d

⎞
⎠⊗ ρx+d

⎞
⎠

=
1

q

∑
x∈G

F

⎛
⎝1

q

∑
u1∈G

|u1〉〈u1| ⊗ ρu1+x,
1

q

∑
u1∈G

|u1〉〈u1| ⊗ ρu1+x+d

⎞
⎠ · F (ρx, ρx+d)

=
1

q

∑
x∈G

⎛
⎝1

q

∑
u1∈G

F (ρu1+x, ρu1+x+d)

⎞
⎠ · F (ρx, ρx+d)

=
1

q

∑
x∈G

Fd(W ) · F (ρx, ρx+d) = Fd(W )2.

Fd(W
−) =

1

q

∑
x∈G

F (ρ−x , ρ
−
x+d)

=
1

q

∑
x∈G

F

⎛
⎝1

q

∑
u2∈G

ρx+u2 ⊗ ρu2 ,
1

q

∑
u2∈G

ρx+d+u2 ⊗ ρu2

⎞
⎠

(a)

≥ 1

q2

∑
x,u2∈G

F (ρx+u2 ⊗ ρu2 , ρx+d+u2 ⊗ ρu2)

=
1

q2

∑
x,u2∈G

F (ρx+u2 , ρx+d+u2) = Fd(W ),

where (a) follows from the joint concavity of the fidelity.
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Fd(W
−) =

1

q

∑
x∈G

F

⎛
⎝1

q

∑
u2∈G

ρx+u2 ⊗ ρu2 ,
1

q

∑
u′
2∈G

ρx+d+u′
2
⊗ ρu′

2

⎞
⎠

(a)

≤ 1

q

∑
x∈G

∑
u2,u′

2∈G

1√
q2

F
(
ρx+u2 ⊗ ρu2 , ρx+d+u′

2
⊗ ρu′

2

)

=
1

q2

∑
x,u2,u′

2∈G
F
(
ρx+u2 , ρx+d+u′

2

)
· F
(
ρu2 , ρu′

2

)

=
1

q2

∑
x,u2∈G

F (ρx+u2 , ρx+d+u2) +
1

q2

∑
x,u2∈G

F (ρu2 , ρu2−d)

+
1

q2

∑
x,u2,u′

2∈G,
u′
2 �=u2,

u′
2 �=u2−d

F
(
ρx+u2 , ρx+d+u′

2

)
· F
(
ρu2 , ρu′

2

)

= 2Fd(W ) +
1

q2

∑
Δ∈G,
Δ�=0,
Δ�=−d

∑
x′,u2∈G

F (ρx′ , ρx′+d+Δ)F (ρu2 , ρu2+Δ)

= 2Fd(W ) +
∑
Δ∈G,
Δ�=0,
Δ�=−d

FΔ(W )Fd+Δ(W ),

where (a) follows from Lemma 8.14.

8.9.4 Proof of Lemma 8.5

F (W [M |D])

=
1

|D/M |(|D/M | − 1)

∑
C,C′∈D/M,

C �=C′

F (ρC , ρC′)

=
|M |2

|H|(|H| − |M |)
∑

C,C′∈D/M,
C �=C′

F

(
1

|C|
∑
x∈C

ρx,
1

|C ′|
∑
x′∈C′

ρx′

)

(a)

≤ |M |2
|H|(|H| − |M |)

√
|C| · |C ′|

∑
C,C′∈D/M,

C �=C′

∑
x∈C,
x′∈C′

F (ρx, ρx′)

(b)

≤ |M |
|H|(|H| − |M |)

∑
x∈D,
d∈H,
d/∈M

F (ρx, ρx+d) ≤
|M |

|H|(|H| − |M |)
∑
d∈H,
d/∈M

q

q

∑
x∈G

F (ρx, ρx+d)

=
q · |M |

|H|(|H| − |M |)
∑
d∈H,
d/∈M

Fd(W ) ≤ q · |M |
|H|(|H| − |M |)(|H| − |M |)FM |H

max (W ),
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where (a) follows from Lemma 8.14, and (b) follows from the fact that |C| = |C ′| =
|M | and the fact that

{
∃C,C ′ ∈ D/M : x ∈ C, x′ ∈ C ′ and C �= C ′

}
if and only if{

x ∈ D, x′ − x ∈ H and x′ − x /∈ M
}
.

Now let us show the second inequality of Lemma 8.5. Assume that M is maximal

in H and let d ∈ H be such that d /∈ M and F
M |H
max (W ) = Fd(W ). Since 1−Fd(W ) =

1

q

∑
x∈G

(
1 − F (ρx, ρx+d)

)
, we have F (ρx, ρx+d) ≥ 1 − q(1 − Fd(W )) = 1 − q

(
1 −

F
M |H
max (W )

)
for every x ∈ G.

For every C ∈ D/M , we have:

F (ρC , ρd+C)
(a)

≥ 1−D(ρC , ρd+C) = 1−D

(
1

|C|
∑
x∈C

ρx,
1

|C|
∑
x∈C

ρx+d

)

= 1− 1

2

∥∥∥∥∥ 1

|C|
∑
x∈C

(ρx − ρx+d)

∥∥∥∥∥
1

≥ 1− 1

|C|
∑
x∈C

1

2
‖ρx − ρx+d‖1

= 1− 1

|C|
∑
x∈C

D(ρx, ρx+d)
(b)

≥ 1− 1

|C|
∑
x∈C

√
1− F (ρx, ρx+d)2

≥ 1−
√
1−

(
1− q

(
1− F

M |H
max (W )

))2
,

where (a) follows from the fact that D(ρ′, ρ′′) + F (ρ′, ρ′′) ≥ 1 (see [47]). (here
D(ρ′, ρ′′) = 1

2‖ρ′ − ρ′′‖1 is the trace distance between ρ′ and ρ′′.) (b) follows from
the fact that D(ρ′, ρ′′)2 + F (ρ′, ρ′′)2 ≤ 1 (see [47]).

Now let C,C ′ ∈ D/M be such that C �= C ′. Since |H/M | is prime, we can write
C ′ = ld+ C for some 0 ≤ l < |H/M |. We have:

F (ρC , ρC′) = F (ρC , ρld+C) = cosA(ρC , ρld+C)
(a)

≥ cos

(
l−1∑
i=0

A
(
ρid+C , ρ(i+1)d+C

))

= cos

(
l−1∑
i=0

arccosF
(
ρid+C , ρ(i+1)d+C

))

(b)

≥ cos

(
l · arccos

(
1−

√
1−

(
1− q

(
1− F

M |H
max (W )

))2))

(c)

≥ cos

(
|H| − |M |

|M | arccos

(
1−

√
1−

(
1− q

(
1− F

M |H
max (W )

))2))
,

where (a) follows from the fact that A(ρ′, ρ′′) = arccosF (ρ′, ρ′′) is a metric [47].

Note that since cos is a decreasing function on
[
0,

π

2

]
, (a), (b) and (c) become true

if we assume that 1 −
√

1−
(
1− q

(
1− F

M |H
max (W )

))2
≥ cos

(
π

2(q − 1)

)
. In other

words, we can take

δq =
1

q

⎛
⎝1−

√
1−

(
1− cos

(
π

2(q − 1)

))2
⎞
⎠ .
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We conclude that

F (W [M |D]) =
1

|D/M |(|D/M | − 1)

∑
C,C′∈D/M,

C �=C′

F (ρC , ρC′)

≥ cos

(
|H| − |M |

|M | arccos

(
1−

√
1−

(
1− q

(
1− F

M |H
max (W )

))2))
.

8.9.5 Proof of Lemma 8.10

Lemma 8.15. For every subgroup H of G, we have:

FH|G
max (W ) ≤ (q − |H|)F (W [H])

Proof.

F (W [H]) =
1

|G/H|(|G/H| − 1)

∑
C,C′∈G/H,

C �=C′

F (ρC , ρC′)

=
1

|G/H|(|G/H| − 1)

∑
C,C′∈G/H,

C �=C′

F

(
1

|C|
∑
x∈C

ρx,
1

|C ′|
∑
x′∈C′

ρx′

)

(a)

≥ 1

|G/H|(|G/H| − 1)
· 1

|H|2
∑

C,C′∈G/H,
C �=C′

∑
x∈C,
x′∈C′

F (ρx, ρx′)

=
1

q(q − |H|)
∑

x,d∈G,
d/∈H

F (ρx, ρx+d) =
1

q − |H|
∑
d∈G,
d/∈H

Fd(W )

≥ 1

q − |H|F
H|G
max (W ),

where (a) follows from the concavity of the fidelity and from the fact that |C| =
|C ′| = |H|.

Now we are ready to prove Lemma 8.10. The lemma is trivial for H = G.
Assume that H �= G. We have:

F (W−[H]) = F (W−[H|G])
(a)

≤ q · |H|
q

FH|G
max (W

−) = |H|max
d∈G,
d/∈H

Fd(W
−)

(b)

≤ |H|max
d∈G,
d/∈H

{
2Fd(W ) +

∑
Δ∈G,
Δ�=0,
Δ�=−d

FΔ(W )Fd+Δ(W )

}

(c)

≤ |H|
(
2FH|G

max (W ) + (q − 2)FH|G
max (W )

)
= |H|qFH|G

max (W )

(d)

≤ |H|q(q − |H|)F (W [H]),
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where (a) follows from Lemma 8.5. (b) follows from Proposition 8.2. (c) follows
from the fact that for every d,Δ ∈ G, if d /∈ H then either Δ /∈ H or d + Δ /∈ H,

and so FΔ(W )Fd+Δ(W ) ≤ F
H|G
max (W ). (d) follows from Lemma 8.15.

On the other hand,

F (W+[H]) = F (W+[H|G])
(a)

≤ q · |H|
q

FH|G
max (W

+) = |H|max
d∈G,
d/∈H

Fd(W
+)

(b)
= |H|max

d∈G,
d/∈H

Fd(W )2 = |H|FH|G
max (W )2

(c)

≤ |H|(q − |H|)2F (W [H])2,

where (a) follows from Lemma 8.5, (b) follows from Proposition 8.2 and (c) follows
from Lemma 8.15.

8.9.6 Proof of Lemma 8.12

It is sufficient to show the following simpler version:

Lemma 8.16. If W : x ∈ G −→ ρx ∈ DM(k · r) is a cq-channel such that

ρBU
x =

1

r

r∑
u=1

ρBx,u ⊗ |u〉〈u|U ,

where ρBx,u ∈ DM(k) and {|u〉U : 1 ≤ u ≤ r} is an orthonormal basis of the Hilbert

space of dimension r, then for every 1 ≤ u ≤ r, there exists a POVM
{
ΠB

u,x : x ∈ G
}

such that the POVM
{
ΠBU

x : x ∈ G
}
defined as

ΠBU
x =

r∑
u=1

ΠB
u,x ⊗ |u〉〈u|U ,

satisfies

1− 1

q

∑
x∈G

Tr
(
ΠBU

x ρBU
x

)
< (q − 1)F (W ).

Proof. For every 1 ≤ u ≤ r, define the cq-channel Wu : x ∈ G −→ ρx,u ∈ DM(k).
The optimal decoder for Wu satisfies Pe(Wu) ≤ (q− 1)F (Wu) [49]. Therefore, there
exists a POVM

{
ΠB

u,x : x ∈ G
}
satisfying,

1− 1

q

∑
x∈G

Tr
(
ΠB

u,xρ
B
u,x

)
< (q − 1)F (Wu).

For every x ∈ G, define

ΠBU
x =

r∑
u=1

ΠB
u,x ⊗ |u〉〈u|U .
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It is easy to see that
{
ΠBU

x : x ∈ G
}
is a valid POVM. We have:

1− 1

q

∑
x∈G

Tr
(
ΠBU

x ρBU
x

)

= 1− 1

qr

∑
x∈G

r∑
u=1

Tr
(
ΠB

u,xρ
B
u,x

)
=

1

r

r∑
u=1

(
1− 1

q

∑
x∈G

Tr
(
ΠB

u,xρ
B
u,x

))

≤ 1

r

r∑
u=1

(q − 1)F (Wu) =
q − 1

r

r∑
u=1

∑
x,x′∈G,
x�=x′

F (ρBu,x, ρ
B
u,x′)

= (q − 1)
∑

x,x′∈G,
x�=x′

F

(
1

r

r∑
u=1

ρBx,u ⊗ |u〉〈u|U , 1
r

r∑
u=1

ρBx′,u ⊗ |u〉〈u|U
)

= (q − 1)F (W ).





Conclusion of Part I 9
In this chapter, we summarize the main contributions of the first part of this thesis.
Furthermore, we briefly discuss some open problems and possible future directions
in polarization theory.

9.1 Ergodic Theory of Binary Operations

In Chapter 2, we developed an ergodic theory for binary operations. This theory
was applied in Chapter 3 to characterize the polarizing binary operations. The po-
tential applications of the ergodic theory of binary operations might extend beyond
polarization theory. The mathematical framework that is developed in chapter 2
is fairly general and might be useful to areas outside polarization and information
theory.

As we saw in Chapter 2, a uniformity-preserving operation is ergodic (resp.
irreducible, quasigroup operation) if and only if its right-inverse is ergodic (resp.
irreducible, quasigroup operation). A natural question to ask is whether the strong
ergodicity of a binary operation implies the strong ergodicity of its right-inverse.
This question remains an open problem.

9.2 Polarizing Binary Operations

In Chapter 3, we provided a complete characterization of polarizing binary opera-
tions. We showed that a binary operation is polarizing if and only if it is uniformity-
preserving and its right-inverse is strongly ergodic.

9.2.1 Structure of polarized channels

Let ∗ be a polarizing binary operation on a finite set X , and let W be a channel with
input alphabet X . We showed in Chapter 3 that as the number n of polarization
steps becomes large, the synthetic channels (W s)s∈{−,+}n polarize to channels that
project their input onto a stable partition of (X , /∗). For every stable partition H

225
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of (X , /∗), define

#H(W ) = lim
δ→0

lim
n→∞

1

2n

∣∣∣{s ∈ {−,+}n :∣∣I(W s)− log2 |H|
∣∣ < δ,

∣∣I(W s[H])− log2 |H|
∣∣ < δ

}∣∣∣.
It is not difficult to show that the limit in the above equation exists. The quan-
tity #H(W ) represents the asymptotic fraction of polarized synthetic channels that
project their input onto H. Clearly,

∑
H is a stable

partition of (X ,/∗)

#H(W ) = 1.

One problem that remains open is to find a method1 to compute #H(W ) for an
arbitrary channel W and an arbitrary stable partition H of (X , /∗).

9.2.2 General Arıkan-Style constructions

The Arıkan-style constructions that we considered in chapter 3 combine exactly two
channels in one polarization step. In the following, we explain more general Arıkan-
style constructions that can combine more than two channels in one polarization
step.

An l-ary kernel on the set X is a mapping f : X l → X l. For every 1 ≤ i ≤ l, we
denote the ith component of f(u1, . . . , ul) as fi(u1, . . . , ul), i.e.,

f(u1, . . . , ul) =
(
f1(u1, . . . , ul), . . . , fl(u1, . . . , ul)

)
.

For every l-ary kernel f on X , every 1 ≤ i ≤ l and every channel W : X −→ Y,
define the channel W (i) : X −→ Y l ×X i−1 as follows:

W (i)(y1, . . . ,yl, u1, . . . , ui−1|ui)

=
1

|X |l−1

∑
ui+1,...,ul∈X

W (y1|f1(u1, . . . , ul))× · · · ×W (yl|fl(u1, . . . , ul)).

For every n ≥ 1 and every s = (s1, . . . , sn) ∈ {1, . . . , l}n, define

W s = (. . . (W (s1))(s2) . . .)(sn).

An l-ary kernel f on X is said to be polarizing if it satisfies the following two
properties:

• Conservation property: For every channel W with input alphabet X , we have

l∑
i=1

I(W (i)) = l · I(W ).

1We seek a closed-form formula, or a low-complexity algorithm that can approximate #H(W )
with arbitrary precision.
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• Polarization property: For every channel W with input alphabet X and every
δ > 0, we have

lim
n→∞

1

ln
∣∣{s ∈ {1, . . . , l}n : W s is δ-easy

}∣∣ = 1.

It is easy to see that an l-ary kernel f satisfies the conservation property if and only
if f is a bijection.

The results of Chapter 3 can be seen as a characterization of the polarizing 2-
ary kernels of the form f∗(u1, u2) = (u1 ∗ u2, u2) for some binary operation ∗ on X .
A characterization of polarizing linear kernels over finite fields is given in [57, 58].
Sufficient conditions for a non-linear kernel to be polarizing can be found in [59, 60].

One problem that remains open is to find a necessary and sufficient condition
that characterizes all the polarizing kernels. A generalization of the ergodic theory
of binary operations that we developed in Chapter 2 is likely to provide such a
characterization.

9.3 MAC Polarization Theory

In Chapter 4, we showed that a sequence of binary operations is MAC-polarizing if
and only if every operation in the sequence is uniformity-preserving and its right-
inverse is strongly ergodic.

9.3.1 Region of Achievable Rate-Vectors

Let W : X1 × . . . × Xm −→ Y be an m-user MAC, and let (∗1, . . . , ∗m) be a MAC-
polarizing sequence of binary operations. It is easy to see that the region of rate-
vectors that are achievable by MAC-polar codes is given by

J pol(W ) :=
{
R = (R1, . . . , Rm) ∈ Rm :

0 ≤ R(S) ≤ IpolS (W ) for all S ⊂ {1, . . . ,m}
}
,

where R(S) :=
∑
k∈S

Rk, and IpolS (W ) = lim
n→∞

1

2n

∑
s∈{−,+}n

IS(W
s) (See Section 4.1 for

the definition of IS(W
s)).

An open problem in MAC polarization theory is to find a method to compute
J pol(W ) for an arbitrary MAC W . In other words, we seek a method to compute

IpolS (W ) for every S ⊂ {1, . . . ,m}. It is not difficult to show that

IpolS (W ) =
∑
H is a

stable partition of
(X ,/∗1⊗···⊗∗m )

#H(W ) · log2 |LS(H)|.

(See Notation 2.5 for the definition of LS(H).)

We conclude that in order to compute J pol(W ), it is sufficient to solve the
problem described in Section 9.2.1.
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9.3.2 General Arıkan-Style constructions

We can generalize the Arıkan-style construction of Section 9.2.2 to multiple-access
channels: Let f1, . . . , fm be l-ary kernels on X1, . . . ,Xm, respectively. For every
1 ≤ k ≤ m and every 1 ≤ i ≤ l, let fk,i be the ith component of fk, i.e.,

fk(uk,1, . . . , uk,l) =
(
fk,1(uk,1, . . . , uk,l), . . . , fk,l(uk,1, . . . , uk,l)

)
.

For every 1 ≤ i ≤ l and every MAC W : X1 × · · · × Xm −→ Y, define the MAC
W (i) : X1 × · · · × Xm −→ Y l × (X1 × · · · × Xm)i−1 as follows:

W (i)
(
y1, . . . , yl, (uk,1)1≤k≤m, . . . , (uk,i−1)1≤k≤m

∣∣u1,i, . . . , um,i

)
=

1

|X1|l−1 · · · |Xm|l−1

∑
u1,i+1,...,u1,l∈X1

...
um,i+1,...,um,l∈Xm

W
(
y1
∣∣f1,1(u1,1, . . . , u1,l), . . . , fm,1(um,1, . . . , um,l)

)

× · · · ×W
(
yl
∣∣f1,l(u1,1, . . . , u1,l), . . . , fm,l(um,1, . . . , um,l)

)
.

For every n ≥ 1 and every s = (s1, . . . , sn) ∈ {1, . . . , l}n, define

W s = (. . . (W (s1))(s2) . . .)(sn).

The sequence (f1, . . . , fl) is said to be MAC-polarizing if it satisfies the following
two properties:

• Conservation property: For everym-user MACW with input alphabets X1, . . . ,
Xm, we have

l∑
i=1

I(W (i)) = l · I(W ).

• Polarization property: For every m-user MACW with input alphabets X1, . . . ,
Xm, and every δ > 0, we have

lim
n→∞

1

ln
∣∣{s ∈ {1, . . . , l}n : W s is δ-easy

}∣∣ = 1.

It is easy to see that the sequence (f1, . . . , fm) satisfies the conservation property if
and only if f1, . . . , fm are bijections.

An open problem in MAC polarization theory is to find a necessary and sufficient
condition for a sequence of l-ary kernels to be MAC-polarizing.

9.4 Error Exponents

In Chapter 5, we showed that the exponent E∗ of a polarizing binary operation ∗
cannot exceed 1

2 . We proved that if ∗ is a quasigroup operation, then E∗ = 1
2 . We

conjectured that E∗ < 1
2 if ∗ is not a quasigroup operation. Finding a closed-form

formula for E∗ is an open problem.
If we wish to construct polar codes with an exponent that is strictly better than

1
2 , we have to use Arıkan-style constructions that are not based on binary operations.
Korada et. al. showed that it is possible to achieve exponents that exceed 1

2 by using
linear l-ary kernels [57].
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Presman et. al. showed that nonlinear kernels can achieve strictly better expo-
nents compared to all linear kernels [60]. A non-linear kernel is said to be excellent if
it outperforms all the linear kernels of the same size. One drawback of the excellent
kernels of [60] is that they have a large size (i.e., a large arity). Is it possible to find
excellent kernels of small size? Finding a necessary and sufficient condition for a
non-linear kernel to be excellent is an open problem.

9.5 Fourier Analysis of MAC Polarization

In Chapter 6, we characterized all the MACs W that do not lose any part of their
symmetric-capacity region by polarization (i.e., J pol(W ) = J (W )). The neces-
sary and sufficient condition that we provided is a single-letter characterization:
The mapping f̂W can be directly computed using the transition probabilities of
W . Moreover, since the number of pseudo-quadratic functions is finite, checking
whether f̂W is extendable to a pseudo-quadratic function can be accomplished in a
finite number of computations.

The characterization that we provided works in the setting where we use an
Abelian group operation on the input alphabet of each user. Generalizing the re-
sults of Chapter 6 to arbitrary MAC-polarizing sequences of binary operations re-
mains an open problem. Following a similar approach to that of Chapter 6 might
solve the problem in the case of non-Abelian groups because there is a notion of
discrete Fourier transforms on these groups. A completely different approach might
be needed to solve the problem in the general case of an arbitrary MAC-polarizing
sequence of binary operations.

9.6 Erasure Schemes Using Generalized Polar Codes

In Chapter 7, we studied the erasure schemes that use generalized polar (GP) codes.
We provided a closed-form formula for the zero-undetected-error capacity IGP

0 (W )
of GP codes for a given binary-input memoryless symmetric channel W under the
low-complexity successive cancellation decoder with erasure. We showed that for
every R < IGP

0 (W ), there exists a GP code of blocklength N and of rate at least
R where the undetected-error probability is zero and the erasure probability is less

than 2−N
1
2−ε

. Conversely, we showed that for any GP code of rate IGP
0 (W ) < R <

I(W ) and blocklength N , the undetected-error probability cannot be made less than

2−N
1
2+ε

unless the erasure probability is close to 1.

The tradeoff that we obtained between the undetected-error probability and the
erasure probability for rates R > IGP

0 (W ) is very sharp and does not depend on
the rate R. A more refined estimation of the tradeoff between pue and per, which
explicitly depends on R, remains an open problem.

Another problem that remains open is to generalize the results of Chapter 7
to channels with arbitrary input alphabet, and Arıkan-style constructions that are
based on arbitrary polarizing operations.
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9.7 Polar Codes for Arbitrary Classical-Quantum Channels

In Chapter 8, we showed that using an Arıkan-style construction that is based on
an Abelian group operation yields multilevel polarization for arbitrary classical-
quantum channels (in a similar way as in the case of classical channels). This result
made it possible to construct polar codes for arbitrary cq-channels and arbitrary
cq-MACs.

One weakness of the results presented in Chapter 8 is that the proposed quantum
successive cancellation decoder does not seem to have an efficient implementation.
This was also the case for the polar codes that were constructed for binary-input
cq-channels [43]. Finding an efficient decoder for the polar codes remains an open
problem.

If we define cq-polarizing binary operations as those that can polarize an arbi-
trary cq-channel to “easy” cq-channels (in a sense similar to Definitions 3.1 and 3.4),
then Chapter 8 shows that Abelian group operations are cq-polarizing. Therefore,
being an Abelian group operation is a sufficient condition to be cq-polarizing. On
the other hand, from the results of Chapter 3 we can deduce that being uniformity-
preserving and having a right-inverse that is strongly ergodic are necessary con-
ditions because classical channels are particular cq-channels. Finding a necessary
and sufficient condition for a binary operation to be cq-polarizing remains an open
problem. Trying to prove a quantum version of the results in Chapter 3 by using a
similar approach might not be successful because the proof of the sufficient condition
relies heavily on the entropy of the input conditioned on a particular output symbol,
and this does not have an analog in the case of cq-channels.

We also showed that cq-MAC polarization can induce a loss in the symmetric
capacity region. A necessary and sufficient condition for J pol(W ) = J (W ) in the
case of classical MACs was given in Chapter 6. Generalizing the results of Chapter
6 to cq-MACs is an open problem. Recall that the condition in Chapter 6 was
given in terms of the Fourier transform of the probability distribution of one input
conditioned on the output and on the other input. Since this conditional probability
does not have an analog in the case of cq-MACs, generalizing the results of Chapter
6 to cq-MACs might be challenging, and a completely different approach might be
needed.
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Characterizations of Various
Channel Orderings 10
In this chapter1, we provide several characterizations for various channel orderings.
In Section 10.1, we provide the preliminaries of this chapter. In Section 10.2, we
recall known properties of the output-degradedness ordering. In Section 10.3, we
introduce the input-degradedness ordering of communication channels. We show
that if W is input-degraded from another channel W ′, then any decoder that is good
for W is also good for W ′. We provide two characterizations for input-degradedness,
one of which is similar to the Blackwell-Sherman-Stein (BSS) theorem. In Section
10.4, we study the Shannon ordering of communication channels. We show that W ′

contains W if and only if W is the skew-composition of W ′ with a convex-product
channel. We use this fact to derive a characterization of the Shannon ordering that
is similar to the BSS theorem.

10.1 Preliminaries

10.1.1 Set-Theoretic Notations

For every integer n > 0, we denote the set {1, . . . , n} as [n].

The set of mappings from a set A to a set B is denoted as BA.

Let A be a subset of B. The indicator mapping 1A,B : B → {0, 1} of A in B is
defined as:

1A,B(x) = 1x∈A =

{
1 if x ∈ A,

0 otherwise.

If the superset B is clear from the context, we write 1A to denote the indicator
mapping of A in B.

The power set of B is the set of subsets of B. Since every subset of B can be
identified with its indicator mapping, we denote the power set of B as 2B := {0, 1}B.

1The material of this chapter is based on [61, 62, 63, 64, 65, 66].
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10.1.2 Probability Measures

If A ⊂ 2M is a collection of subsets of M , we denote the σ-algebra that is generated
by A as σ(A).

The set of probability measures on (M,Σ) is denoted as P(M,Σ). If the σ-
algebra Σ is known from the context, we write P(M) to denote the set of probability
measures.

If P ∈ P(M,Σ) and {x} is a measurable singleton, we write P (x) to denote
P ({x}).

For every P1, P2 ∈ P(M,Σ), the total variation distance between P1 and P2 is
defined as:

‖P1 − P2‖TV = sup
A∈Σ

|P1(A)− P2(A)|.

The space P(M,Σ) is a complete metric space under the total variation distance.

10.1.3 Probabilities on Finite Sets

We always endow finite sets with their finest σ-algebra, i.e., the power set. In this
case, every probability measure is completely determined by its value on singletons,
i.e., if P is a measure on a finite set X , then for every A ⊂ X , we have

P (A) =
∑
x∈A

P (x).

If X is a finite set, we denote the set of probability distributions on X as ΔX .
Note that ΔX is an (|X | − 1)-dimensional simplex in RX .

10.1.4 Meta-Probability Measures

Let X be a finite set and let ΔX be the set of probability measures on X . A meta-
probability measure on X is a probability measure on the Borel sets of ΔX . It is
called a meta-probability measure because it is a probability measure on the space
of probability distributions on X .

We denote the set of meta-probability measures on X as MP(X ). Clearly,
MP(X ) = P(ΔX ).

A meta-probability measure MP on X is said to be balanced if it satisfies∫
ΔX

p · dMP(p) = πX ,

where πX is the uniform probability distributions on X .

A meta-probability measure MP on X is said to be finitely supported if there
exists a finite subset A of ΔX such that MP(A) = 1. In this case, the support of
MP is defined as:

supp(MP) = {p ∈ ΔX : MP(p) > 0}.

We denote the set of all balanced meta-probability measures on X as MPb(X ).
The set of all balanced and finitely supported meta-probability measures on X is
denoted as MPbf (X ).
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10.1.5 Convex-Extreme Points

Let X be a finite set. For every A ⊂ ΔX , let co(A) be the convex hull of A. We
say that p ∈ A is convex-extreme if it is an extreme point of co(A), i.e., for every

p1, . . . , pn ∈ co(A) and every λ1, . . . , λn > 0 satisfying

n∑
i=1

λi = 1 and

n∑
i=1

λipi = p,

we have p1 = . . . = pn = p. It is easy to see that if A is finite, then the convex-
extreme points of A coincide with the extreme points of co(A). We denote the set
of convex-extreme points of A as CE(A).

10.1.6 The Space of Channels from X to Y
Let DMCX ,Y be the set of all channels having X as input alphabet and Y as output
alphabet.

If W ∈ DMCX ,Y and V ∈ DMCY,Z , we define the composition V ◦W ∈ DMCX ,Z
of W and V as follows:

(V ◦W )(z|x) =
∑
y∈Y

V (z|y)W (y|x), ∀x ∈ X , ∀z ∈ Z.

It is easy to see that the mapping (W,V ) → V ◦ W from DMCX ,Y ×DMCY,Z to
DMCX ,Z is continuous.

For every mapping f : X → Y, define the deterministic channel Df ∈ DMCX ,Y
as follows:

Df (y|x) =
{
1 if y = f(x),

0 otherwise.

It is easy to see that if f : X → Y and g : Y → Z, then Dg ◦Df = Dg◦f .
For every two channels W1 ∈ DMCX1,Y1 and W2 ∈ DMCX2,Y2 , define the channel

product W1 ⊗W2 ∈ DMCX1×X2,Y1×Y2 of W1 and W2 as:

(W1 ⊗W2)(y1, y2|x1, x2) = W1(y1|x1)W2(y2|x2).

W1⊗W2 arises when the transmitter has two channelsW1 andW2 at his disposal and
he uses both of them at each channel use. Channel products were first introduced
by Shannon in [67].

10.2 Output-Degradedness and Output-Equivalence

Let W ∈ DMCX ,Y and W ′ ∈ DMCX ,Z be two channels having the same input
alphabet. We say that W ′ is output-degraded from W if there exists a channel
V ∈ DMCY,Z such that W ′ = V ◦W . W and W ′ are said to be output-equivalent if
each one is output-degraded from the other. In the rest of this section, we describe
one way to check whether two given channels are output-equivalent.

Let ΔX and ΔY be the space of probability distributions on X and Y respectively.
Define P o

W ∈ ΔY as

P o
W (y) =

1

|X |
∑
x∈X

W (y|x), ∀y ∈ Y.
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This can be interpreted as the probability distribution of the output when the input
is uniformly distributed in X . The image of W is the set of output-symbols y ∈ Y
having strictly positive probabilities:

Im(W ) = {y ∈ Y : P o
W (y) > 0}.

For every y ∈ Im(W ), define W−1
y ∈ ΔX as follows:

W−1
y (x) =

W (y|x)
|X |P o

W (y)
, ∀x ∈ X .

W−1
y (x) can be interpreted as the posterior probability of x, given that the output

is y, and assuming a uniform prior distribution on the input. In other words, if X
is a random variable uniformly distributed in X and Y is the output of the channel
W when X is the input, then:

• P o
W (y) = PY (y) for every y ∈ Y.

• W−1
y (x) = PX|Y (x|y) for every (x, y) ∈ X × Im(W ).

Let (x, y) ∈ X × Y. If P o
W (y) = PY (y) > 0, we have

W (y|x) = PY |X(y|x) = PX,Y (x, y)

PX(x)
= |X |PY (y)PX|Y (x|y) = |X |P o

W (y)W−1
y (x).

On the other hand, if P o
W (y) = 0, then we must have W (y|x) = 0. We conclude

that P o
W and the collection {W−1

y }y∈Im(W ) uniquely determine W .
The Blackwell measure2 (denoted MPW ) of W is a probability distribution on

ΔX having masses P o
W (y) on W−1

y for each y ∈ Im(W ):

MPW (B) =
∑

y∈Im(W ),

W−1
y ∈B

P o
W (y), ∀B ∈ B(ΔX ).

Another way to express MPW is as follows:

MPW =
∑

y∈Im(W )

P o
W (y) · δW−1

y
,

where δW−1
y

is a Dirac measure centered at W−1
y ∈ ΔX .

MPW can be interpreted as follows: After the receiver obtains the output of the
channel, he can compute the posterior probabilities of the input as the conditional
probability distribution of the input given the output symbol that he received. But
before receiving the output symbol, the receiver does not know what he we will
receive. He just has different probabilities for different possible output symbols.
Therefore, the posterior probability distribution that will be computed by the re-
ceiver is itself random, and so we need a meta-probability measure to describe it.
MPW is exactly this meta-probability measure.

2In an earlier version of this work, I called MPW the posterior meta-probability distribution of
W . Maxim Raginsky thankfully brought to my attention the fact that MPW is called Blackwell
measure.
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Since Im(W ) is finite, the support of MPW is finite and it consists of all points
in ΔX having strictly positive mass:

supp(MPW ) = {p ∈ ΔX : MPW (p) > 0}.

The rank of W is the size of the support of its Blackwell measure:

rank(W ) = | supp(MPW )|.

Notice that for every x ∈ X , we have∫
ΔX

p(x) · dMPW (p) =
∑

p∈supp(MPW )

MPW (p) · p(x) =
∑

y∈Im(W )

P o
W (y)W−1

y (x)

=
∑

y∈Im(W )

1

|X |W (y|x) (a)
=
∑
y∈Y

1

|X |W (y|x) = 1

|X | ,

where (a) follows from the fact that W (y|x) = 0 for every y /∈ Im(W ). Therefore,
we can write ∫

ΔX
p · dMPW (p) = πX , (10.1)

where πX is the uniform probability distribution on X . This shows that MPW is a
balanced meta-probability measure.

The following proposition characterizes the Blackwell measures of DMCs with
input alphabet X :

Proposition 10.1. [68] A meta-probability measure MP on X is the Blackwell
measure of some DMC with input alphabet X if and only if MP is balanced and
finitely supported.

Proof. This proposition is known [68], but we provide a proof for the sake of com-
pleteness.

The above discussion shows that if MP is the Blackwell measure of some channel
with input alphabet X , then it is balanced and finitely supported.

Now assume that MP is balanced and finitely supported, and let Y = supp(MP).
Define the channel W ∈ DMCX ,Y as W (p|x) = |X |MP(p)p(x) for every x ∈ X and
every p ∈ Y = supp(MP). For every x ∈ X , we have:

∑
p∈Y

W (p|x) =
∑

p∈supp(MP)

|X |p(x)MP(p) = |X |
∫
ΔX

p(x) · dMP(p) = |X |πX (x) = 1.

Therefore, W is a valid channel. For every p ∈ Y, we have

P o
W (p) =

1

|X |
∑
x∈X

W (p|x) = 1

|X |
∑
x∈X

|X |p(x)MP(p)

=
∑
x∈X

p(x)MP(p) = MP(p) > 0,

which implies that Im(W ) = Y. For every (x, p) ∈ X × Y we have:

W−1
p (x) =

W (p|x)
|X |P o

W (p)
=

|X |MP(p)p(x)

|X |MP(p)
= p(x).
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Therefore, W−1
p = p for every p ∈ Y. For every Borel subset B of ΔX , we have:

MPW (B) =
∑

p∈Im(W ),

W−1
p ∈B

P o
W (p) =

∑
p∈supp(MP),

p∈B

MP(p) = MP(B).

We conclude that MPW = MP.

In [69], equivalent representations for binary memoryless symmetric (BMS) chan-
nels (namely L, D and G densities) were provided. A necessary and sufficient condi-
tion for the output-degradation of a BMS channel W ′ with respect to another BMS
channel W was given in [69] in terms of the |D|-densities of W and W ′. It imme-
diately follows from this condition that two BMS channels are output-equivalent if
and only if they have the same |D|-densities. One can deduce from this that two
BMS channels (with finite output alphabets) are output-equivalent if and only if
they have the same Blackwell measure. The following proposition shows that this
is also true for channels with arbitrary (but finite) input and output alphabets:

Proposition 10.2. [68] Let X ,Y and Z be three finite sets. Two channels W ∈
DMCX ,Y and W ′ ∈ DMCX ,Z are output-equivalent if and only if MPW = MPW ′ .

Proof. This proposition is known [68], but we provide a proof in Appendix 10.5.1
for the sake of completeness.

Corollary 10.1. If W ∈ DMCX ,Y and rank(W ) > |Z|, then W is not output-
equivalent to any channel in DMCX ,Z .

Proof. Since rank(W ′) = | supp(MPW ′)| ≤ |Z| for every W ′ ∈ DMCX ,Z , it is im-
possible for W to be output-equivalent to any channel W ′ in DMCX ,Z .

Corollary 10.2. If |X | = 1, all channels with input alphabet X are output-equivalent.

10.3 Input-Degradedness and Input-Equivalence

Let X ,X ′ and Y be three finite sets. Let W ∈ DMCX ,Y and W ′ ∈ DMCX ′,Y . We
say that W is input-degraded from W ′ if there exists a channel V ′ ∈ DMCX ,X ′ such
that W = W ′ ◦ V ′. The channels W and W ′ are said to be input-equivalent if each
one is input-degraded from the other.

LetW ∈ DMCX ,Y be a fixed channel with input alphabet X and output alphabet
Y. For every x ∈ X , define Wx ∈ ΔY as:

Wx(y) = W (y|x), ∀y ∈ Y.

Proposition 10.3. Let X ′,X and Y be three finite sets. W ∈ DMCX ,Y is input-
degraded from W ′ ∈ DMCX ′,Y if and only if co({Wx : x ∈ X}) ⊂ co({W ′

x′ : x′ ∈
X ′}).

Proof. Assume that W is input-degraded from W ′. There exists V ′ ∈ DMCX ,X ′

such that W = W ′ ◦ V ′. For every x ∈ X and y ∈ Y, we have:

Wx(y) = W (y|x) =
∑
x′∈X ′

W ′(y|x′)V ′(x′|x) =
∑
x′∈X ′

V ′(x′|x)W ′
x′(y).
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Therefore, Wx =
∑
x′∈X ′

V ′(x′|x)W ′
x′ which means that Wx ∈ co({W ′

x′ : x′ ∈ X ′}) for

every x ∈ X , hence co({Wx : x ∈ X}) ⊂ co({W ′
x′ : x′ ∈ X ′}).

Conversely, assume that co({Wx : x ∈ X}) ⊂ co({W ′
x′ : x′ ∈ X ′}) and let

x ∈ X . Since Wx ∈ co({W ′
x′ : x′ ∈ X ′}), there exists a set of numbers αx,x′ ≥ 0

satisfying
∑
x′∈X ′

αx,x′ = 1 such that Wx =
∑
x′∈X ′

αx,x′Wx′ . Define V ′ ∈ DMCX ,X ′ as

V (x′|x) = αx,x′ for every x ∈ X and every x′ ∈ X ′. We have W = W ′ ◦ V ′ and so
W is input-degraded from W ′.

For every channel W ∈ DMCX ,Y , we define the input-equivalence characteristic
of W , or simply the characteristic of W , as CE(W ) := CE({Wx : x ∈ X}). The
input-rank of W ∈ DMCX ,Y is the size of its characteristic: irank(W ) = |CE(W )|.

Proposition 10.4. Let X ′,X and Y be three finite sets. W ∈ DMCX ,Y is input-
equivalent to W ′ ∈ DMCX ′,Y if and only if CE(W ) = CE(W ′).

Proof. It follows from Proposition 10.3 that W is input-equivalent to W ′ if and
only if co({Wx : x ∈ X}) = co({W ′

x′ : x′ ∈ X ′}), which happens if and only if
CE(W ) = CE(co({Wx : x ∈ X})) = CE(co({W ′

x′ : x′ ∈ X ′})) = CE(W ′).

10.3.1 Operational Implication in Terms of Decoders

Let Y be a finite set. An (n,M)-decoder on Y is a mapping D : Yn → M, where
|M| = M . The set M is the message set of D, n is the blocklength of D, M is the
size of D and 1

n log2 |M| is the rate of D.

Let W ∈ DMCX ,Y be a channel with input alphabet X and output alphabet Y,
and let D : Yn → M be a decoder on Y. A maximum-likelihood (ML) encoder for
D when it is used for W is any encoder E : M → X n satisfying

∑
yn1 ∈Yn:

D(yn1 )=m

n∏
i=1

W (yi|Ei(m)) ≥
∑

yn1 ∈Yn:
D(yn1 )=m

n∏
i=1

W (yi|xi), ∀m ∈ M, ∀xn1 ∈ X n,

where (E1(m), . . . , En(m)) = E(m) ∈ X n.

It is easy to see that a maximum-likelihood encoder has the best probability of
error among all encoders (assuming that the decoder D is used). The probability of
error of D under ML-encoding for W is given by:

Pe,D(W ) = 1− 1

|M|
∑
m∈M

max
xn
1∈Xn

{ ∑
yn1 ∈Yn:

D(yn1 )=m

n∏
i=1

W (yi|xi)
}
.

Proposition 10.5. Let X ′,X and Y be three finite sets. If W ∈ DMCX ,Y is input-
degraded from W ′ ∈ DMCX ′,Y , then Pe,D(W ′) ≤ Pe,D(W ) for every decoder D on Y.
Moreover, if W and W ′ are input-equivalent, then Pe,D(W ) = Pe,D(W ′) for every
decoder D on Y.
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Proof. Assume that W ∈ DMCX ,Y is input-degraded from W ′ ∈ DMCX ′,Y . Let
V ′ ∈ DMCX ,X ′ be such that W = W ′ ◦ V ′.

Fix an (n,M) decoder D on Y and let M be its message set. We have:

1− Pe,D(W ) =
1

|M|
∑
m∈M

max
xn
1∈Xn

{ ∑
yn1 ∈Yn:

D(yn1 )=m

n∏
i=1

W (yi|xi)
}

=
1

|M|
∑
m∈M

max
xn
1∈Xn

{ ∑
yn1 ∈Yn:

D(yn1 )=m

n∏
i=1

( ∑
x′
i∈X ′

W ′(yi|x′i)V ′(x′i|xi)
)}

=
1

|M|
∑
m∈M

max
xn
1∈Xn

{ ∑
yn1 ∈Yn:

D(yn1 )=m

∑
x′n
1 ∈X ′n

n∏
i=1

(
W ′(yi|x′i)V ′(x′i|xi)

)}

=
1

|M|
∑
m∈M

max
xn
1∈Xn

{ ∑
x′n
1 ∈X ′n

(
n∏

i=1

V ′(x′i|xi)
) ∑

yn1 ∈Yn:
D(yn1 )=m

n∏
i=1

W ′(yi|x′i)
}

≤ 1

|M|
∑
m∈M

max
x′n
1 ∈X ′n

{ ∑
yn1 ∈Yn:

D(yn1 )=m

n∏
i=1

W ′(yi|x′i)
}

= 1− Pe,D(W ′).

Therefore, Pe,D(W ′) ≤ Pe,D(W ).
If W and W ′ are input-degraded from each other, then Pe,D(W ′) ≤ Pe,D(W ) and

Pe,D(W ) ≤ Pe,D(W ′), hence Pe,D(W ′) = Pe,D(W ).

10.3.2 A Characterization of Input-Degradedness

Let W ∈ DMCX ,Y and let U be a finite set. For every p ∈ ΔU and every D ∈
DMCY,U , define

Pc(p,W,D) = sup
E∈DMCU,X

∑
u∈U ,
x∈X ,
y∈Y

p(u)E(x|u)W (y|x)D(u|y).

Pc(p,W,D) can be interpreted as follows: Let U be a random variable in U
distributed as p. Assume that U was encoded using the random encoder E ∈
DMCU ,X to get X ∈ X . Send X through the channel W and let Y ∈ Y be the

output. Apply the random decoder D ∈ DMCY,U on Y to get an estimate Û of U .
We have:

P[{Û = U}] =
∑
u∈U ,
x∈X ,
y∈Y

p(u)E(x|u)W (y|x)D(u|y).

Therefore, Pc(p,W,D) is the optimal probability of successfully estimating U by the
fixed decoder D among all random encoders E ∈ DMCU ,X . Note that the optimal
encoder can always be chosen to be deterministic.

The following theorem provides a characterization of input-degradedness that is
somewhat similar to the characterization of output-degradedness given in [70].
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Theorem 10.1. A channel W ∈ DMCX ,Y is input-degraded from another channel
W ′ ∈ DMCX ′,Y if and only if Pc(p,W,D) ≤ Pc(p,W

′, D) for every p ∈ ΔU , every
D ∈ DMCY,U and every finite set U .

Proof. Assume thatW is input-degraded fromW ′. There exists V ′ ∈ DMCX ,X ′ such
that W = W ′ ◦ V ′. For every finite set U , every p ∈ ΔU and every D ∈ DMCY,U ,
we have:

Pc(p,W,D) = sup
E∈DMCU,X

∑
u∈U ,
x∈X ,
y∈Y

p(u)E(x|u)W (y|x)D(u|y)

= sup
E∈DMCU,X

∑
u∈U ,
x∈X ,
y∈Y

p(u)E(x|u)
( ∑

x′∈X ′
W ′(y|x′)V ′(x′|x)

)
D(u|y)

= sup
E∈DMCU,X

∑
u∈U ,
x′∈X ′,
y∈Y

p(u)

(∑
x∈X

V ′(x′|x)E(x|u)
)
W ′(y|x′)D(u|y)

= sup
E∈DMCU,X

∑
u∈U ,
x′∈X ′,
y∈Y

p(u)(V ′ ◦ E)(x′|u)W ′(y|x′)D(u|y)

≤ sup
E′∈DMCU,X′

∑
u∈U ,
x′∈X ′,
y∈Y

p(u)E′(x′|u)W ′(y|x′)D(u|y) = Pc(p,W
′, D).

Conversely, assume that Pc(p,W,D) ≤ Pc(p,W
′, D) for every p ∈ ΔU , every

D ∈ DMCY,U and every finite set U .
Let x0 be any symbol that does belong to X and let U = X ∪ {x0}. For every

n ≥ 1, define pn ∈ ΔU as follows:

pn(u) =

⎧⎪⎨
⎪⎩

1

|X |

(
1− 1

n+ 1

)
if u ∈ X ,

1

n+ 1
if u = x0.

pn was chosen in such a way that pn(x0)
pn(x)

= |X |
n for every x ∈ X . This is going to be

useful later. Define the channel W0 ∈ DMCU ,Y as follows:

W0(y|u) =

⎧⎪⎨
⎪⎩
W (y|u) if u ∈ X ,
1

|X |
∑
x∈X

W (y|x) if u = x0.

Fix the encoder E ∈ DMCU ,X as follows:

E(x|u) =

⎧⎪⎪⎨
⎪⎪⎩
1 if u = x,
1

|X | if u = x0,

0 otherwise.
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For every D ∈ DMCY,U , we have:∑
u∈U ,
y∈Y

pn(u)W0(y|u)D(u|y)

=

( ∑
x∈X ,
y∈Y

pn(x)W0(y|x)D(x|y)
)

+
∑
y∈Y

pn(x0)W0(y|x0)D(x0|y)

=

( ∑
x∈X ,
y∈Y

pn(x)W (y|x)D(x|y)
)

+
∑
y∈Y

pn(x0)
1

|X |
∑
x∈X

W (y|x)D(x0|y)

=

( ∑
u∈X ,
x∈X ,
y∈Y

pn(u)E(x|u)W (y|x)D(u|y)
)

+
∑
x∈X ,
y∈Y

pn(x0)E(x|x0)W (y|x)D(x0|y)

=
∑
u∈U ,
x∈X ,
y∈Y

pn(u)E(x|u)W (y|x)D(u|y) ≤ Pc(pn,W,D) ≤ Pc(pn,W
′, D)

= sup
E′∈DMCU,X′

∑
u∈U ,
x′∈X ′,
y∈Y

pn(u)E
′(x′|u)W ′(y|x′)D(u|y).

Therefore,

min
E′∈DMCU,X′

∑
u∈U ,
y∈Y

pn(u)

(
W0(y|x)−

∑
x′∈X ′

E′(x′|u)W ′(y|x′)
)
D(u|y) ≤ 0,

hence

max
D∈DMCY,U

min
E′∈DMCU,X′

∑
u∈U ,
y∈Y

pn(u)

(
W0(y|u)−

∑
x′∈X ′

E′(x′|u)W ′(y|x′)
)
D(u|y) ≤ 0,

or equivalently

max
D∈DMCY,U

min
E′∈DMCU,X′

∑
u∈U ,
y∈Y

pn(u)
(
W0(y|u)− (W ′ ◦ E′)(y|u)

)
D(u|y) ≤ 0. (10.2)

Note that the sets DMCY,U and DMCU ,X ′ are compact and convex. On the

other hand, since the function
∑
u∈U ,
y∈Y

pn(u)
(
W0(y|u)− (W ′ ◦E′)(y|u)

)
D(u|y) is affine

in both D ∈ DMCY,U and E′ ∈ DMCU ,X ′ , it is continuous, concave in D and convex
in E′. Therefore, we can apply the minimax theorem [71] to exchange the max and
the min in Equation (10.2). We obtain:

min
E′∈DMCU,X′

max
D∈DMCY,U

∑
u∈U ,
y∈Y

pn(u)
(
W0(y|u)− (W ′ ◦ E′)(y|u)

)
D(u|y) ≤ 0.
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Therefore, there exists E′
n ∈ DMCU ,X ′ such that

0 ≥ max
D∈DMCY,U

∑
u∈U ,
y∈Y

pn(u)
(
W0(y|u)− (W ′ ◦ E′

n)(y|u)
)
D(u|y)

(a)
=
∑
y∈Y

max
u∈U

pn(u)
(
W0(y|u)− (W ′ ◦ E′

n)(y|u)
)

≥
∑
y∈Y

1

|U|
∑
u∈U

pn(u)
(
W0(y|u)− (W ′ ◦ E′

n)(y|u)
)

=
1

|U|
∑
u∈U

pn(u)
∑
y∈Y

(
W0(y|u)− (W ′ ◦ E′

n)(y|u)
)
= 0,

where (a) follows from the fact that
∑
u∈U ,
y∈Y

pn(u)
(
W0(y|u)− (W ′ ◦E′

n)(y|u)
)
D(u|y) is

maximized when D is chosen to be deterministic in such a way that for every y ∈ Y,
D(uy|y) = 1 for some uy ∈ U satisfying pn(uy)(W0(y|uy) − (W ′ ◦ E′

n)(y|uy)) =

max
u∈U

{
pn(u)

(
W0(y|u)− (W ′ ◦ E′

n)(y|u)
)}

. We conclude that

∑
y∈Y

max
u∈U

pn(u)
(
W0(y|u)− (W ′ ◦ E′

n)(y|u)
)
= 0.

Assume there exists y ∈ Y and ũ ∈ U such that

pn(ũ)
(
W0(y|ũ)− (W ′ ◦ E′

n)(y|ũ)
)
< max

u∈U
pn(u)

(
W0(y|u)− (W ′ ◦ E′

n)(y|u)
)
.

In this case, we have

0 =
∑
u∈U

pn(u)
∑
y∈Y

(
W0(y|u)− (W ′ ◦ E′

n)(y|u)
)

=
∑
y∈Y

∑
u∈U

pn(u)
(
W0(y|u)− (W ′ ◦ E′

n)(y|u)
)

<
∑
y∈Y

|U| ·max
u∈U

pn(u)
(
W0(y|u)− (W ′ ◦ E′

n)(y|u)
)
= 0,

which is a contradiction. Therefore, for every y ∈ Y and every x ∈ X , we have

pn(x)
(
W (y|x)− (W ′ ◦ E′

n)(y|x)
)
= max

u∈U
pn(u)

(
W0(y|u)− (W ′ ◦ E′

n)(y|u)
)

= pn(x0)
(
W0(y|x0)− (W ′ ◦ E′

n)(y|x0)
)
,

which implies that

∣∣W (y|x)− (W ′ ◦ E′
n)(y|x)

∣∣ = pn(x0)

pn(x)

∣∣W0(y|x0)− (W ′ ◦ E′
n)(y|x0)

∣∣
≤ pn(x0)

pn(x)
=

|X |
n

.
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Since the space DMCU ,X ′ is compact, there exists a converging subsequence (E′
nk
)k≥0

of (E′
n)n≥1. Let E′ be the limit of (E′

nk
)k≥0. For every x ∈ X and every y ∈ Y, we

have:∣∣W (y|x)− (W ′ ◦ E′)(y|x)
∣∣ = lim

k→∞
∣∣W (y|x)− (W ′ ◦ E′

nk
)(y|x)

∣∣ ≤ lim
k→∞

|X |
nk

= 0,

which means that W (y|x) = (W ′ ◦ E′)(y|x). Define V ′ ∈ DMCX ,X ′ as V ′(x′|x) =
E′(x′|x) for every x ∈ X and every x′ ∈ X ′. For every x ∈ X and every y ∈ Y, we
have:

(W ′ ◦ V ′)(y|x) =
∑
x′∈X ′

W ′(y|x′)V ′(x′|x)

=
∑
x′∈X ′

W ′(y|x′)E′(x′|x) = (W ′ ◦ E′)(y|x) = W (y|x).

Therefore, W = W ′ ◦ V ′. We conclude that W is input-degraded from W ′.

10.3.3 A Characterization in Terms of Randomized Games

A randomized game is a 5-tuple G = (Z,X ,Y, l,W ) such that X ,Y and Z are finite
sets, l is a mapping from Z × Y to R, and W ∈ DMCX ,Y . The mapping l is called
the payoff function of the game G, and the channel W is called the randomizer of
G. During the game, a player sees a symbol z ∈ Z and decides on a symbol x ∈ X .
A random symbol y ∈ Y is then randomly generated according to the conditional
probability distribution W (y|x) and the player gets the payoff l(z, y).

A strategy for the game G is a channel S ∈ DMCZ,X . For every z ∈ Z, the payoff
gained by the strategy S for z in the game G is given by:

$(z, S,G) =
∑
x∈X ,
y∈Y

S(x|z)W (y|x)l(z, y).

The payoff vector gained by the strategy S in the game G is given by:


$(S,G) =
(
$(z, S,G)

)
z∈Z ∈ RZ .

It is easy to see that for every α ∈ [0, 1] and every S1, S2 ∈ DMCZ,X , we have


$(αS1 + (1− α)S2,G) = α
$(S1,G) + (1− α)
$(S2,G).

The achievable payoff region for the game G is given by:

$ach(G) =
{

$(S,G) : S ∈ DMCZ,X

}
⊂ RZ .

Clearly, $ach(G) is a convex subset of RZ . Moreover, since DMCZ,X is compact and

since the mapping S → 
$(S,G) is a continuous mapping from DMCZ,X to RZ , the
region $ach(G) is a compact subset of RZ .

The average payoff for the strategy S ∈ DMCZ,X for the game G is given by:

$̂(S,G) = 1

|Z|
∑
z∈Z

$(z, S,G) =
∑
z∈Z,
x∈X ,
y∈Y

1

|Z|S(x|z)W (y|x)l(z, y).
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The optimal average payoff for the game G is given by

$opt(G) = sup
S∈DMCZ,X

$̂(S,G).

Note that we can always find an optimal strategy that is deterministic.

The following theorem provides a characterization of input-degradedness that is
similar to the famous Blackwell-Sherman-Stein theorem [11, 12, 13].

Theorem 10.2. Let X ,X ′ and Y be three finite sets. Let W ∈ DMCX ,Y and
W ′ ∈ DMCX ′,Y . The following conditions are equivalent:

(a) W is input-degraded from W ′.

(b) For every finite set Z and every payoff function l : Z × Y → R, we have

$ach(Z,X ,Y, l,W ) ⊂ $ach(Z,X ′,Y, l,W ′).

(c) For every finite set Z and every payoff function l : Z × Y → R, we have

$opt(Z,X ,Y, l,W ) ≤ $opt(Z,X ′,Y, l,W ′).

Proof. Assume that (a) is true. There exists V ′ ∈ DMCX ′,X such that W = W ′ ◦V ′.
Fix a finite set Z and a payoff function l : Z × Y → R. Define G = (Z,X ,Y, l,W )
and G′ = (Z,X ′,Y, l,W ′).

Fix 
v = (vz)z∈Z ∈ $ach(G). There exists S ∈ DMCZ,X such that (vz)z∈Z = 
v =(
$(z, S,G)

)
z∈Z . Let S

′ = V ′ ◦ S. For every z ∈ Z, we have:

$(z, S′,G′) =
∑

x′∈X ′,
y∈Y

S′(x′|z)W ′(y|x′)l(z, y)

=
∑

x′∈X ′,
y∈Y

(∑
x∈X

V ′(x′|x)S(x|z)
)
W ′(y|x′)l(z, y)

=
∑
x∈X ,
y∈Y

S(x|z)
( ∑

x′∈X ′
W ′(y|x′)V ′(x′|x)

)
l(z, y)

=
∑
x∈X ,
y∈Y

S(x|z)W (y|x)l(z, y) = $(z, S,G).

Therefore, 
v = 
$(S′,G′) ∈ $ach(G′). Since this is true for every 
v ∈ $ach(G), we have
$ach(G) ⊂ $ach(G′). We conclude that (a) implies (b).

Now assume that (b) is true. Fix a finite set Z and a payoff function l : Z×Y →
R. Define G = (Z,X ,Y, l,W ) and G′ = (Z,X ′,Y, l,W ′). We have $ach(G) ⊂
$ach(G′). Therefore,

$opt(G) = sup
(vz)z∈Z∈$ach(G)

1

|Z|
∑
z∈Z

vz
(∗)
≤ sup

(v′z)z∈Z∈$ach(G′)

1

|Z|
∑
z∈Z

v′z = $opt(G′),
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where (∗) follows from the fact that $ach(G) ⊂ $ach(G′). This shows that (b) implies
(c).

Now assume that (c) is true. Fix a finite set U , p ∈ ΔU and D ∈ DMCY,U .
Define the payoff function l : U × Y → R as l(u, y) = |U|p(u)D(u|y). Define the
randomized games G = (U ,X ,Y,W, l) and G′ = (U ,X ′,Y,W ′, l). We have:

Pc(p,W,D) = sup
E∈DMCU,X

∑
u∈U ,
x∈X ,
y∈Y

p(u)E(x|u)W (y|x)D(u|y)

= sup
E∈DMCU,X

∑
u∈U ,
x∈X ,
y∈Y

1

|U|E(x|u)W (y|x)l(u, y)

= sup
E∈DMCU,X

$̂(E,G) = $opt(G).

Similarly, we can show that Pc(p,W
′, D) = $opt(G′). Since we assumed that (c)

is true, we have $opt(G) ≤ $opt(G′). Therefore, for every finite set U , every p ∈ ΔU
and every D ∈ DMCY,U , we have Pc(p,W,D) ≤ Pc(p,W

′, D). Theorem 10.1 now
implies that W is input-degraded from W ′, hence (c) implies (a). We conclude that
(a), (b) and (c) are equivalent.

10.4 Shannon Ordering and Shannon Equivalence

Let X ,X ′,Y and Y ′ be four finite sets. Let W ∈ DMCX ,Y and W ′ ∈ DMCX ′,Y ′ .
We say that W ′ contains W if there exist n pairs of channels (Ri, Ti)1≤i≤n and a
probability distribution α ∈ Δ[n] such that Ri ∈ DMCX ,X ′ and Ti ∈ DMCY ′,Y for

every 1 ≤ i ≤ n, and W =
n∑

i=1

α(i)Ti ◦W ′ ◦Ri, i.e.,

W (y|x) =
n∑

i=1

α(i)
∑

x′∈X ′,
y′∈Y ′

Ti(y|y′)W ′(y′|x′)Ri(x
′|x).

The channels W and W ′ are said to be Shannon-equivalent if each one contains the
other.

A channel V ∈ DMCX×Y ′,X ′×Y is said to be a convex-product channel if it is
the convex combination of the products of channels in DMCX ,X ′ with channels in
DMCY ′,Y . More precisely, V ∈ DMCX×Y ′,X ′×Y is a convex-product channel if there
exist n pairs of channels (Ri, Ti)1≤i≤n and a probability distribution α ∈ Δ[n] such
that Ri ∈ DMCX ,X ′ and Ti ∈ DMCY ′,Y for every 1 ≤ i ≤ n, and

V (x′, y|x, y′) =
n∑

i=1

α(i)Ri(x
′|x)Ti(y|y′).

We denote the set of convex-product channels from X×Y ′ to X ′×Y as CPCX×Y ′,X ′×Y .

Proposition 10.6. The space CPCX×Y ′,X ′×Y is a compact and convex subset of
DMCX×Y ′,X ′×Y .
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Proof. Define the set of product channels

PCX×Y ′,X ′×Y = {R⊗ T : R ∈ DMCX ,X ′ , T ∈ DMCY ′,Y}.
Clearly, CPCX×Y ′,X ′×Y is the convex hull of PCX×Y ′,X ′×Y and so CPCX×Y ′,X ′×Y is
convex. Now since PCX×Y ′,X ′×Y can be seen as a subset of RX×Y ′×X ′×Y , it follows
from the Carathéodory theorem that every channel V in CPCX×Y ′,X ′×Y can be
written as a convex combination of at most

n = |X × Y ′ ×X ′ × Y|+ 1

product channels in PCX×Y ′,X ′×Y . Define the mapping

f : Δ[n] × (DMCX ,X ′ ×DMCY ′,Y)n → DMCX×Y ′,X ′×Y

as

f
(
α, (Ri, Ti)1≤i≤n

)
=

n∑
i=1

α(i)Ri ⊗ Ti.

Since Δ[n], DMCX ,X ′ and DMCY ′,Y are compact, the space Δ[n] × (DMCX ,X ′ ×
DMCY ′,Y)n is compact. Moreover, since f is continuous, it follows that

CPCX×Y ′,X ′×Y = f
(
Δ[n] × (DMCX ,X ′ ×DMCY ′,Y)n

)
is compact.

Let X ,X ′,X ′′,Y,Y ′ and Y ′′ be finite sets. For every V ∈ CPCX×Y ′,X ′×Y and ev-
ery V ′ ∈ DMCX ′×Y ′′,X ′′×Y ′ , define the skew-composition V ◦s V ′ ∈ DMCX×Y ′′,X ′′×Y
of V ′ with V as follows:

(V ◦s V ′)(x′′, y|x, y′′) =
∑

x′∈X ′,
y′∈Y ′

V (x′, y|x, y′)V ′(x′′, y′|x′, y′′), (10.3)

for every x′′ ∈ X ′′, y ∈ Y, x ∈ X and y′′ ∈ Y ′′. It may not be immediately clear
from (10.3) that V ◦s V ′ is a valid channel in DMCX×Y ′′,X ′′×Y . In the following, we
show that V ◦s V ′ ∈ DMCX×Y ′′,X ′′×Y .

Let n ≥ 1, α ∈ Δ[n], (Ri, Ti)1≤i≤n be such that Ri ∈ DMCX ,X ′ and Ti ∈
DMCY ′,Y for every 1 ≤ i ≤ n, and

V =
n∑

i=1

α(i)Ri ⊗ Ti.

For every (x, y′′) ∈ X × Y ′′, we have∑
x′′∈X ′′,
y∈Y

(V ◦s V ′)(x′′, y|x, y′′) =
∑

x′′∈X ′′,
y∈Y

∑
x′∈X ′,
y′∈Y ′

V (x′, y|x, y′)V ′(x′′, y′|x′, y′′)

=
∑

x′′∈X ′′,
y∈Y

∑
x′∈X ′,
y′∈Y ′

n∑
i=1

α(i)Ri(x
′|x)Ti(y|y′)V ′(x′′, y′|x′, y′′)

=

n∑
i=1

α(i)
∑

x′′∈X ′′,
y∈Y

∑
x′∈X ′,
y′∈Y ′

Ri(x
′|x)Ti(y|y′)V ′(x′′, y′|x′, y′′).
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Hence,

∑
x′′∈X ′′,
y∈Y

(V ◦s V ′)(x′′, y|x, y′′) =
n∑

i=1

α(i)
∑

x′′∈X ′′

∑
x′∈X ′,
y′∈Y ′

Ri(x
′|x)V ′(x′′, y′|x′, y′′)

=

n∑
i=1

α(i)
∑
x′∈X ′

Ri(x
′|x) =

n∑
i=1

α(i) = 1.

Therefore, V ◦s V ′ ∈ DMCX×Y ′′,X ′′×Y . Note that if V ∈ DMCX×Y ′,X ′×Y and V /∈
CPCX×Y ′,X ′×Y , then the skew-composition of V ′ with V as defined in Equation
(10.3) does not always yield a valid channel in DMCX×Y ′′,X ′′×Y .

Lemma 10.1. If V ∈ CPCX×Y ′,X ′×Y and V ′ ∈ CPCX ′×Y ′′,X ′′×Y ′ , then V ◦s V ′ ∈
CPCX×Y ′′,X ′′×Y .

Proof. Let n ≥ 1, α ∈ Δ[n], (Ri, Ti)1≤i≤n be such that Ri ∈ DMCX ,X ′ and Ti ∈
DMCY ′,Y for every 1 ≤ i ≤ n, and

V =
n∑

i=1

α(i)Ri ⊗ Ti.

Let n′ ≥ 1, α′ ∈ Δ[n′], (R′
j , T

′
j)1≤j≤n′ be such that R′

j ∈ DMCX ′,X ′′ and T ′
j ∈

DMCY ′′,Y ′ for every 1 ≤ j ≤ n′, and

V ′ =
n′∑
j=1

α′(j)R′
j ⊗ T ′

j .

We have

(V ◦s V ′)(x′′, y|x, y′′) =
∑

x′∈X ′,
y′∈Y ′

V (x′, y|x, y′)V ′(x′′, y′|x′, y′′)

=
∑

x′∈X ′,
y′∈Y ′

n∑
i=1

α(i)Ri(x
′|x)Ti(y|y′)

n′∑
j=1

α′(j)R′
j(x

′′|x′)T ′
j(y

′|y′′)

=
n∑

i=1

n′∑
j=1

α(i)α′(j)
∑

x′∈X ′,
y′∈Y ′

Ri(x
′|x)Ti(y|y′)R′

j(x
′′|x′)T ′

j(y
′|y′′)

=
n∑

i=1

n′∑
j=1

α(i)α′(j)(R′
j ◦Ri)(x

′′|x)(Ti ◦ T ′
j)(y|y′′).

Therefore, V ◦s V ′ ∈ CPCX×Y ′′,X ′′×Y .

For every W ′ ∈ DMCX ′,Y ′ and every V ∈ CPCX×Y ′,X ′×Y , we define the skew-
composition V ◦s W ′ ∈ DMCX ,Y of W ′ with V as follows:

(V ◦s W ′)(y|x) =
∑

x′∈X ′,
y′∈Y ′

V (x′, y|x, y′)W ′(y′|x′). (10.4)
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Note that Equation (10.4) can be seen as a particular case of Equation (10.3) if we let
X ′′ = Y ′′ = {0} (i.e., a singleton) and we identify DMCX ′,Y ′ with DMCX ′×Y ′′,X ′′×Y ′ .

The following lemma is trivial:

Lemma 10.2. Let W ∈ DMCX ,Y and W ′ ∈ DMCX ′,Y ′. W ′ contains W if and only
if there exists V ∈ CPCX×Y ′,X ′×Y such that W = V ◦s W ′.

10.4.1 A Characterization of the Shannon Ordering

A blind randomized in the middle (BRM) game is a 6-tuple G = (U ,X ,Y,V, l,W )
such that U ,X ,Y and V are finite sets, l is a mapping from U × V to R, and
W ∈ DMCX ,Y . The mapping l is called the payoff function of the BRM game G,
and the channel W is called the randomizer of G. The BRM game consists of two
players that we call Alice and Bob. The BRM game takes place in two stages:

• Alice chooses a symbol u ∈ U and writes her choice on a piece of paper. Bob
chooses two functions f : U → X and g : Y → V, and writes a description of
f and g on a piece of paper. At this stage, no player has knowledge of the
choice of the other player.

• Alice and Bob simultaneously reveal their papers. They compute x = f(u) ∈
X and then randomly generate a symbol y ∈ Y according to the conditional
probability distribution W (y|x). Finally, v = g(y) is computed and then Alice
pays3 Bob an amount of money that is equal to l(u, v).

A strategy (for Bob) in the BRM game G is a 4-tuple S = (n, α, f ,g) satisfying:

• n ≥ 1 is a strictly positive integer.

• α ∈ Δ[n].

• f = (fi)1≤i≤n ∈ (X U )n, where X U is the set of functions from U to X .

• g = (gi)1≤i≤n ∈ (VY)n.

We denote n and α as nS and αS respectively. For every 1 ≤ i ≤ n = nS , we denote
fi and gi as fi,S and gi,S respectively. The set of strategies is denoted as SU ,X ,Y,V .

Bob implements the strategy S as follows: He randomly picks an index i ∈
{1, . . . , nS} according to the distribution αS ∈ Δ[nS ], and then commits to the
choice (fi,S , gi,S).

For every u ∈ U , the payoff gained by the strategy S for u in the BRM game G
is given by:

$(u, S,G) =
nS∑
i=1

αS(i)
∑
y∈Y

W (y|fi,S(u))l(u, gi,S(y)).

The payoff vector gained by the strategy S in the game G is given by:


$(S,G) =
(
$(u, S,G)

)
u∈U ∈ RU .

3If l(u, v) < 0, then Bob pays Alice an amount of money that is equal to −l(u, v).
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The achievable payoff region for the game G is given by:

$ach(G) =
{

$(S,G) : S ∈ SU ,X ,Y,V

}
⊂ RU .

The average payoff for the strategy S ∈ SU ,X ,Y,V in the game G is given by:

$̂(S,G) = 1

|U|
∑
u∈U

$(u, S,G).

$̂(S,G) is the expected gain of Bob assuming that Alice chooses u ∈ U uniformly at
random.

The optimal average payoff for the game G is given by

$opt(G) = sup
S∈SU,X ,Y,V

$̂(S,G).

For every strategy S ∈ SU ,X ,Y,V , we associate the convex-product channel VS ∈
CPCU×Y,X×V defined as

VS =

nS∑
i=1

αS(i)Dfi,S ⊗Dgi,S .

For every u ∈ U , we have

$(u, S,G) =
nS∑
i=1

αS(i)
∑
y∈Y

W (y|fi,S(u))l(u, gi,S(y))

=

nS∑
i=1

αS(i)
∑
x∈X ,
y∈Y,
v∈V

Dfi,S (x|u)W (y|x)Dgi,S (v|y)l(u, v)

=
∑
x∈X ,
y∈Y,
v∈V

(
nS∑
i=1

αS(i)Dfi,S (x|u)Dgi,S (v|y)
)
W (y|x)l(u, v)

=
∑
x∈X ,
y∈Y,
v∈V

VS(x, v|u, y)W (y|x)l(u, v).

(10.5)

Lemma 10.3. For every V ∈ CPCU×Y,X×V , there exists S ∈ SU ,X ,Y,V such that
V = VS.

Proof. Let n ≥ 1, α ∈ Δ[n], (Ri, Ti)1≤i≤n be such that Ri ∈ DMCU ,X and Ti ∈
DMCY,V for every 1 ≤ i ≤ n, and

V =
n∑

i=1

α(i)Ri ⊗ Ti. (10.6)

Since every channel can be written as a convex combination of deterministic channels
[10], we can rewrite (10.6) as a convex combination of products of deterministic
channels. Therefore, there exists S ∈ SU ,X ,Y,V such that V = VS .
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Equation (10.5) and Lemma 10.3 imply that $ach(G) is the image of CPCU×Y,X×V
by a linear function. Since CPCU×Y,X×V is convex and compact (Proposition 10.6),
$ach(G) is convex and compact as well.

Let U and V be two finite sets and let l : U × V → R be a payoff function. We
say that l is normalized and positive if l(u, v) ≥ 0 for every u ∈ U and every v ∈ V,
and ∑

u∈U ,
v∈V

l(u, v) = 1.

In other words, l is normalized and positive if l ∈ ΔU×V .
The following theorem provides a characterization of the Shannon ordering of

communication channels that is similar to the BSS theorem.

Theorem 10.3. Let X ,X ′,Y and Y ′ be four finite sets. Let W ∈ DMCX ,Y and
W ′ ∈ DMCX ′,Y ′ . The following conditions are equivalent:

(a) W ′ contains W .

(b) For every two finite sets U and V, and every payoff function l : U × V → R,
we have

$ach(U ,X ,Y,V, l,W ) ⊂ $ach(U ,X ′,Y ′,V, l,W ′).

(c) For every two finite sets U and V, and every payoff function l : U × V → R,
we have

$opt(U ,X ,Y,V, l,W ) ≤ $opt(U ,X ′,Y ′,V, l,W ′).

(d) For every two finite sets U and V, and every normalized and positive payoff
function l ∈ ΔU×V , we have

$ach(U ,X ,Y,V, l,W ) ⊂ $ach(U ,X ′,Y ′,V, l,W ′).

(e) For every two finite sets U and V, and every normalized and positive payoff
function l ∈ ΔU×V , we have

$opt(U ,X ,Y,V, l,W ) ≤ $opt(U ,X ′,Y ′,V, l,W ′).

Proof. Assume that (a) is true. Lemma 10.2 implies that there exists a convex-
product channel V ∈ CPCX×Y ′,X ′×Y such that W = V ◦s W ′. Let U and V be two
finite sets, and let l : U ×V → R be a payoff function. Define G = (U ,X ,Y,V, l,W )
and G′ = (U ,X ′,Y ′,V, l,W ′).

Fix 
v ∈ $ach(G). There exists S ∈ SU ,X ,Y,V such that


v = 
$(S,G) =
(
$(u, S,G)

)
u∈U .
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From equation (10.5) we have:

$(u, S,G) =
∑
x∈X ,
y∈Y,
v∈V

VS(x, v|u, y)W (y|x)l(u, v)

=
∑
x∈X ,
y∈Y,
v∈V

VS(x, v|u, y)
( ∑

x′∈X ′,
y′∈Y ′

V (x′, y|x, y′)W ′(y′|x′)
)
l(u, v)

=
∑

x′∈X ′,
y′∈Y ′,
v∈V

( ∑
x∈X ,
y∈Y

VS(x, v|u, y)V (x′, y|x, y′)
)
W ′(y′|x′)l(u, v)

=
∑

x′∈X ′,
y′∈Y ′,
v∈V

(VS ◦s V )(x′, v|u, y′)W ′(y′|x′)l(u, v).

Lemma 10.1 implies that VS ◦s V ∈ CPCU×Y ′,X ′×V and Lemma 10.3 implies that
there exists S′ ∈ SU ,X ′,Y ′,V such that VS′ = VS ◦s V . Therefore,

$(u, S,G) =
∑

x′∈X ′,
y′∈Y ′,
v∈V

VS′(x′, v|u, y′)W ′(y′|x′)l(u, v) (∗)
= $(u, S′,G′),

where (∗) follows from Equation (10.5). This shows that 
v =
(
$(u, S′,G′)

)
u∈U , hence

$ach(G) ⊂ $ach(G′). Therefore, (a) implies (b).
Now assume that (b) is true. Let U and V be two finite sets, and let l : U×V → R

be a payoff function. Define G = (U ,X ,Y,V, l,W ) and G′ = (U ,X ′,Y ′,V, l,W ′). We
have $ach(G) ⊂ $ach(G′). Therefore,

$opt(G) = sup
(vu)u∈U∈$ach(G)

1

|U|
∑
u∈U

vu
(∗∗)
≤ sup

(v′u)u∈U∈$ach(G′)

1

|U|
∑
u∈U

v′u = $opt(G′),

where (∗∗) follows from the fact that $ach(G) ⊂ $ach(G′). This shows that (b) implies
(c). We can show similarly that (d) implies (e).

Trivially, (b) implies (d), and (c) implies (e).
Now assume that (e) is true. Fix a normalized and positive payoff function

l ∈ ΔX×Y , and define the BRM games

G = (X ,X ,Y,Y, l,W ) and G′ = (X ,X ′,Y ′,Y, l,W ′).

We have $opt(G) ≤ $opt(G′).
Fix a strategy S ∈ SX ,X ,Y,Y satisfying nS = 1, f1,S(x) = x for all x ∈ X and

g1,S(y) = y for all y ∈ Y. Clearly αS(1) = 1, hence

$̂(S,G) = 1

|X |
∑
x∈X

$(x, S,G)

=
1

|X |
∑
x∈X

∑
y∈Y

W (y|f1,S(x))l
(
x, g1,S(y)

)
=

1

|X |
∑
x∈X ,
y∈Y

W (y|x)l(x, y).
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Therefore,

1

|X |
∑
x∈X ,
y∈Y

W (y|x)l(x, y) = $̂(S,G) ≤ $opt(G) ≤ $opt(G′) = sup
S′∈SX ,X′,Y′,Y

$̂(S′,G′)

= sup
S′∈SX ,X′,Y′,Y

1

|X |
∑
x∈X

$(x, S′,G′)

= sup
S′∈SX ,X′,Y′,Y

1

|X |
∑
x∈X

∑
x′∈X ′,
y′∈Y ′,
y∈Y

VS′(x′, y|x, y′)W ′(y′|x′)l(x, y)

= sup
S′∈SX ,X′,Y′,Y

1

|X |
∑
x∈X ,
y∈Y

(VS′ ◦s W ′)(y|x)l(x, y)

(†)
= sup

V ∈CPCX×Y′,X′×Y

1

|X |
∑
x∈X ,
y∈Y

(V ◦s W ′)(y|x)l(x, y),

where (†) follows from Lemma 10.3. Therefore,

inf
V ∈CPCX×Y′,X′×Y

1

|X |
∑
x∈X ,
y∈Y

(
W (y|x)− (V ◦s W ′)(y|x)

)
l(x, y) ≤ 0.

Since this is true for every l ∈ ΔX×Y , we have:

sup
l∈ΔX×Y

inf
V ∈CPCX×Y′,X′×Y

∑
x∈X ,
y∈Y

(
W (y|x)− (V ◦s W ′)(y|x)

)
l(x, y) ≤ 0.

Moreover, since ΔX×Y and CPCX×Y ′,X ′×Y are compact (see Proposition 10.6), the
sup and the inf are attainable. Therefore, we can write:

max
l∈ΔX×Y

min
V ∈CPCX×Y′,X′×Y

∑
x∈X ,
y∈Y

(
W (y|x)− (V ◦s W ′)(y|x)

)
l(x, y) ≤ 0. (10.7)

Since the function
∑
x∈X ,
y∈Y

(
W (y|x)− (V ◦s W ′)(y|x)

)
l(x, y) is affine in both l ∈ ΔX×Y

and V ∈ CPCX×Y ′,X ′×Y , it is continuous, concave in l and convex in V . On the other
hand, the sets ΔX×Y and CPCX×Y ′,X ′×Y are compact and convex (see Proposition
10.6). Therefore, we can apply the minimax theorem [71] to exchange the max and
the min in Equation (10.7). We obtain:

min
V ∈CPCX×Y′,X′×Y

max
l∈ΔX×Y

∑
x∈X ,
y∈Y

(
W (y|x)− (V ◦s W ′)(y|x)

)
l(x, y) ≤ 0.

Therefore, there exists V ∈ CPCX×Y ′,X ′×Y such that

0 ≥ max
l∈ΔX×Y

∑
x∈X ,
y∈Y

(
W (y|x)− (V ◦s W ′)(y|x)

)
l(x, y)

(††)
= max

x∈X ,
y∈Y

(
W (y|x)− (V ◦s W ′)(y|x)

)
,
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where (††) follows from the fact that
∑
x∈X ,
y∈Y

(
W (y|x)− (V ◦s W ′)(y|x)

)
l(x, y) is maxi-

mized when we choose l ∈ ΔX ,Y in such a way that l(x0, y0) = 1 for any (x0, y0) ∈
X × Y satisfying

(
W (y0|x0)− (V ◦s W ′)(y0|x0)

)
= max

x∈X ,
y∈Y

(
W (y|x)− (V ◦s W ′)(y|x)

)
.

We conclude that for every (x, y) ∈ X × Y, we have

W (y|x) ≤ (V ◦s W ′)(y|x).

Now since
∑
y∈Y

W (y|x) =
∑
y∈Y

(V ◦sW ′)(y|x) for every x ∈ X , we must have W (y|x) =

(V ◦sW ′)(y|x) for every (x, y) ∈ X ×Y . Therefore, W = V ◦sW ′. Lemma 10.2 now
implies that W ′ contains W , hence (e) implies (a). We conclude that the conditions
(a), (b), (c), (d) and (e) are equivalent.

10.5 Appendix

10.5.1 Proof of Proposition 10.2

For every A ⊂ ΔX , let co(A) be the convex hull of A. We say that p ∈ A is convex-
extreme if it is an extreme point of co(A), i.e., for every p1, . . . , pn ∈ co(A) and every

λ1, . . . , λn > 0 satisfying
n∑

i=1

λi = 1 and
n∑

i=1

λipi = p, we have p1 = . . . = pn = p. It

is easy to see that if A is finite, then the convex-extreme points of A coincide with
the extreme points of co(A). We denote the set of convex-extreme points of A as
CE(A).

Let W ∈ DMCX ,Y and W ′ ∈ DMCX ,Z be such that W ′ is output-degraded from
W . There exists V ∈ DMCY,Z such that W ′ = V ◦W . Let X be a random variable
uniformly distributed in X , let Y be the output of W when X is the input, and let
Z be the output of V when Y is the input in such a way that X−Y −Z is a Markov
chain. Clearly, PZ|X(z|x) = W ′(z|x) for every (x, z) ∈ X × Z.

For every z ∈ Z, we have:

P o
W ′(z) = PZ(z) =

∑
y∈Y

PY (y)PZ|Y (z|y) =
∑

y∈Im(W )

V (z|y)P o
W (y). (10.8)

Define V −1 ∈ DMCIm(W ′),Im(W ) as

V −1(y|z) = PY |Z(y|z) =
PY (y)PZ|Y (z|y)

PZ(z)
=

V (z|y)P o
W (y)∑

y′∈Im(W )

V (z|y′)P o
W (y′)

.

Note that for every (y, z) ∈ Im(W ) × Im(W ′), we have V −1(y|z) = 0 if and only if
V (z|y) = 0.
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For every (x, z) ∈ X × Im(W ′), we have:

W ′−1
z (x) = PX|Z(x|z) =

∑
y∈Y

PX,Y |Z(x, y|z) =
∑
y∈Y,

PY (y)>0

PX,Y |Z(x, y|z)

=
∑

y∈Im(W )

PY |Z(y|z)PX|Y,Z(x|y, z)
(a)
=

∑
y∈Im(W )

V −1(y|z)PX|Y (x|y)

=
∑

y∈Im(W )

V −1(y|z)W−1
y (x),

(10.9)

where (a) follows from the fact that X − Y − Z is a Markov chain.
Equation (10.9) shows that for every z ∈ Im(W ′), we have

W ′−1
z ∈ co({W−1

y : y ∈ Im(W )}) = co(supp(MPW )).

Therefore,

co(supp(MPW ′)) = co({W ′−1
z : z ∈ Im(W ′)}) ⊂ co(supp(MPW )). (10.10)

Now for every p ∈ ΔX , define

Yp := {y ∈ Im(W ) : W−1
y = p}.

Similarly,
Zp := {z ∈ Im(W ′) : W ′−1

z = p}.
Let pext ∈ CE(supp(MPW )) and let z ∈ Im(W ′). Equation (10.9) shows that if

z ∈ Zpext , then V −1(y|z) = 0 for every y ∈ Im(W ) \ Ypext . Now since V −1(y|z) =
0 ⇔ V (z|y) = 0 for every (y, z) ∈ Im(W ) × Im(W ′), we deduce that if z ∈ Zpext

then V (z|y) = 0 for every y ∈ Im(W ) \ Ypext . Therefore,

MPW ′(pext) =
∑

z∈Zpext

P o
W ′(z)

(a)
=

∑
z∈Zpext

∑
y∈Im(W )

V (z|y)P o
W (y)

(b)
=

∑
z∈Zpext

∑
y∈Ypext

V (z|y)P o
W (y) ≤

∑
z∈Im(W ′)

∑
y∈Ypext

V (z|y)P o
W (y)

=
∑

y∈Ypext

P o
W (y) = MPW (pext),

(10.11)
where (a) follows from Equation (10.8), and (b) follows from the fact that for every
y ∈ Im(W ) \ Ypext , we have V (z|y) = 0.

Now assume that W and W ′ are output-equivalent. Equation (10.10) (applied
twice) implies that we must have co(supp(MPW ′)) = co(supp(MPW )) which implies
that supp(MPW ′) and supp(MPW ) have the same convex-extreme points. Now fix
a convex-extreme point pext ∈ CE(supp(MPW ′)) = CE(supp(MPW )). Equation
(10.11) (applied twice) implies that MPW (pext) = MPW ′(pext). By using Equation
(10.11) again we obtain:∑

z∈Zpext

∑
y∈Ypext

V (z|y)P o
W (y) =

∑
z∈Im(W ′)

∑
y∈Ypext

V (z|y)P o
W (y),
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hence ∑
z∈Im(W ′)\Zpext

∑
y∈Ypext

V (z|y)P o
W (y) = 0.

But P o
W (y) > 0 for every y ∈ Ypext . Therefore, for every z ∈ Im(W ′) \ Zpext and

every y ∈ Ypext , we must have V (z|y) = 0 (which implies that V −1(y|z) = 0). We
conclude that for every z ∈ Im(W ′) \ Zpext , we can rewrite Equations (10.8) and
(10.9) as:

P o
W ′(z) =

∑
y∈Im(W )\Ypext

V (z|y)P o
W (y),

and

W ′−1
z =

∑
y∈Im(W )\Ypext

V −1(y|z)W−1
y .

We can now repeat the above argument but on supp(MPW )\{pext} and supp(MPW ′)\
{pext} instead of supp(MPW ) and supp(MPW ′). We deduce that co(supp(MPW ) \
{pext}) = co(supp(MPW ′) \ {pext}) so supp(MPW ) \ {pext} and supp(MPW ′) \
{pext} have the same convex-extreme points. We can also prove that MPW (p′ext) =
MPW ′(p′ext) for every p′ext ∈ CE(supp(MPW ′) \ {pext}) = CE(supp(MPW ) \ {pext}).

Notice that any point of supp(MPW ) (respectively supp(MPW ′)) becomes convex-
extreme after removing a finite number of elements from supp(MPW ) (respectively
supp(MPW ′)). Therefore, after inductively applying the above argument a finite
number of times, we can deduce that supp(MPW ) = supp(MPW ′) and MPW (p) =
MPW ′(p) for every p ∈ supp(MPW ) = supp(MPW ′), hence MPW = MPW ′ .

Now let W ∈ DMCX ,Y and W ′ ∈ DMCX ,Z be any two channels satisfying
MPW = MPW ′ . We have supp(MPW ) = supp(MPW ′). Furthermore, for every
p ∈ supp(MPW ) = supp(MPW ′), we have

∑
y∈Yp

P o
W (y) = MPW (p) = MPW ′(p) =

∑
z∈Zp

P o
W ′(z).

Define the channel V ∈ DMCY,Z as

V (z|y) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1

|Z| if y /∈ Im(W ),

P o
W ′(z)

MPW ′(W−1
y )

if y ∈ Im(W ) and z ∈ ZW−1
y

,

0 otherwise.

A simple calculation shows that
∑
z∈Z

V (z|y) = 1 for every y ∈ Y, so V is a valid

channel.

Notice that for every (y, z) ∈ Im(W )× Im(W ′), we have:

z ∈ ZW−1
y

⇔ W ′−1
z = W−1

y ⇔ y ∈ YW ′−1
z

.
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Moreover, if z ∈ Im(W ′) and y ∈ YW ′−1
z

, we have MPW ′(W−1
y ) = MPW (W ′−1

z ).
Therefore, we can rewrite V as:

V (z|y) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

P o
W ′(z)

MPW (W ′−1
z )

if z ∈ Im(W ′) and y ∈ YW ′−1
z

,

1

|Z| if y /∈ Im(W ),

0 otherwise.

Let W ′′ = V ◦W ∈ DMCX ,Z . For every z ∈ Z \ Im(W ′), Equation (10.8) implies
that:

P o
W ′′(z) =

∑
y∈Im(W )

V (z|y)P o
W (y)

(a)
= 0 = P o

W ′(z),

where (a) follows from the fact that V (z|y) = 0 if y ∈ Im(W ) and z /∈ Im(W ′).
On the other hand, for every z ∈ Im(W ′), Equation (10.8) implies that:

P o
W ′′(z) =

∑
y∈Im(W )

V (z|y)P o
W (y) =

∑
y∈Y

W ′−1
z

P o
W ′(z)

MPW (W ′−1
z )

P o
W (y)

=
P o
W ′(z)

MPW (W ′−1
z )

∑
y∈Y

W ′−1
z

P o
W (y) =

P o
W ′(z)

MPW (W ′−1
z )

MPW (W ′−1
z ) = P o

W ′(z).

Therefore, P o
W ′′(z) = P o

W ′(z) for every z ∈ Z, which implies that Im(W ′′) = Im(W ′).
Now define V −1 ∈ DMCIm(W ′′),Im(W ) as

V −1(y|z) = V (z|y)P o
W (y)∑

y′∈Im(W )

V (z|y′)P o
W (y′)

.

Equation (10.9) implies that for every z ∈ Im(W ′′) = Im(W ′), we have:

W ′′−1
z =

∑
y∈Im(W )

V −1(y|z)W−1
y

(a)
=

∑
y∈Y

W ′−1
z

V −1(y|z)W−1
y

=
∑

y∈Y
W ′−1

z

V −1(y|z)W ′−1
z

(b)
=

∑
y∈Im(W )

V −1(y|z)W ′−1
z = W ′−1

z ,

where (a) and (b) follow from the fact that for every (y, z) ∈ Im(W )× Im(W ′′), we
have V −1(y|z) = 0 if and only if V (z|y) = 0.

We conclude that P o
W ′′ = P o

W ′ , and for every z ∈ Im(W ′′) = Im(W ′), we have
W ′′−1

z = W ′−1
z . Therefore, W ′ = W ′′ = V ◦W and so W ′ is output-degraded from

W . By exchanging the roles of W and W ′ we get that W is also output-degraded
from W ′, hence W and W ′ are output-equivalent.





Topological Structures on
DMC Spaces 11
Let X and Y be two fixed finite sets. Every discrete memoryless channel (DMC)
with input alphabet X and output alphabet Y can be determined by its transition
probabilities. Since there are |X | × |Y| such probabilities, the space of all channels
from X to Y can be seen as a subset of R|X |×|Y|. Therefore, this space can be
naturally endowed with the Euclidean metric, or any other equivalent metric. A
generalization of this topology to infinite input and output alphabets was considered
in [72].

There are a few drawbacks for this approach. For example, consider the case
where X = Y = F2 := {0, 1}. The binary symmetric channels BSC(ε) and BSC(1−ε)
have non-zero Euclidean distance if ε �= 1

2 . On the other hand, BSC(ε) and BSC(1−ε)
are completely equivalent from an operational point of view: Both channels have
exactly the same probability of error under optimal decoding for any fixed code.
Moreover, any sub-optimal decoder for one channel can be transformed to a sub-
optimal decoder for the other channel without changing the probability of error nor
the computational complexity. This is why it makes sense, from an information-
theoretic point of view, to identify output-equivalent channels and consider them as
one point in the space of “output-equivalent channels”.

The limitation of the Euclidean metric is clearer when we consider channels
with different output alphabets. For example, BSC

(
1
2

)
and BEC (1) are completely

equivalent but they do not have the same output alphabet, and so there is no way
to compare them with the Euclidean metric because they do not belong to the same
space.

The standard approach to solve this problem is to find a “canonical sufficient
statistic” and find a representation of each channel in terms of this sufficient statis-
tic. This makes it possible to compare channels with different output-alphabets.
One standard sufficient statistic that has been widely used for binary-input chan-
nels is the log-likelihood ratio. Each binary-input channel can be represented as a
density of log-likelihood ratios (called L-density in [69]). This representation makes
it possible to “topologize” the space of “output-equivalent binary-input channels”
by considering the topology of convergence in distribution [69]. A similar approach
can be adopted for non-binary-input channels (see [73] and [74]). Another (equiv-
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alent) way to “topologize” the space of output-equivalent channels is by using the
Le Cam deficiency distance [75].

One drawback1 of the current formulation of this topology is that it does not
allow us to see it as a “natural topology”. Consider a fixed output alphabet Y and
let us focus on the space of “equivalent channels” from X to Y. Since this space is
the quotient of the space of channels from X to Y, which is naturally topologized
by the Euclidean metric, it seems that the most natural topology on this space is
the quotient of the Euclidean topology by the output-equivalence relation. This
motivates us to consider a topology on the space of “output-equivalent channels”
with input alphabet X and arbitrary but finite output alphabet as natural if and only
if it induces the quotient topology on the subspaces of “output-equivalent channels”
from X to Y for any finite output alphabet Y. A legitimate question to ask now is
whether the L-density topology is natural in this sense or not.

In this chapter2, we construct and study several topologies on the quotients of
the spaces of discrete memoryless channels by the output-equivalence, the input-
equivalence and the Shannon-equivalence relations.

In Section 11.1, we provide a brief summary of the basic concepts and theorems
in general topology. In Section 11.2, we introduce the measure-theoretic notations
that we use in this chapter. In Section 11.3, We define and study the space of
channels from X to Y.

In Section 11.4, we define and study the space of output-equivalent channels with
input alphabet X and output alphabet Y. In Section 11.5, we introduce the space
of output-equivalent channels with fixed input alphabet X and arbitrary but finite
output alphabet. We investigate the properties of general natural topologies, and we
study the finest natural topology. We introduce the noisiness metric on the space of
output-equivalent channels, and we show that its induced topology, which we call the
noisiness topology, is natural. We also study the topologies that are inherited from
the space of meta-probability measures by identifying output-equivalent channels
with their Blackwell measures. We show that the weak-∗ topology (which is the
standard generalization of the L-density topology to non-binary-input channels) is
exactly the same as the noisiness topology. Furthermore, we show that the Borel
σ-algebra is the same for all Hausdorff natural topologies.

In Section 11.6, we define and study the space of input-equivalent channels with
fixed input and output alphabets. In Section 11.7, we introduce the space of input-
equivalent channels with fixed output alphabet Y and arbitrary but finite input
alphabet. A topology on this space is said to be natural if it induces the quotient
topology on the subspaces of input-equivalent channels with fixed input alphabet.
We investigate the properties of general natural topologies, and we study the finest
natural topology. We introduce the similarity metric on the space of input-equivalent
channels, and we show that the topology induced by this metric is natural.

In Section 11.8, we define and study the space of Shannon-equivalent channels
with fixed input and output alphabets. In Section 11.9, we introduce the space of
Shannon-equivalent channels with arbitrary but finite input and output alphabets.
A topology on this space is said to be natural if it induces the quotient topology on
the subspaces of Shannon-equivalent channels with fixed input and output alphabets.

1The mentioned drawback is secondary, and it is relevant only for conceptual purposes.
2The material of this chapter is based on [61, 62, 63, 64, 65, 66].
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We investigate the properties of general natural topologies, and we study the finest
natural topology. We introduce the BRM metric on the space of Shannon-equivalent
channels, and we show that the topology induced by this metric is natural.

11.1 Introduction to General Topology

In this section, we recall basic definitions and well known theorems in general topol-
ogy. The reader who is already familiar with the basic concepts of topology may skip
this section and refer to it later if necessary. Proofs of all non-referenced facts can
be found in any standard textbook on general topology (e.g., [76]). Definitions and
theorems that may not be widely known can be found in Sections 11.1.10, 11.1.14
and 11.1.15.

11.1.1 Set-Theoretic Notations

A collection A ⊂ 2B of subsets of B is said to be finer than another collection
A′ ⊂ 2B if A′ ⊂ A. If this is the case, we also say that A′ is coarser than A.

Let (Ai)i∈I be a collection of arbitrary sets indexed by I. The disjoint union of

(Ai)i∈I is defined as
∐
i∈I

Ai =
⋃
i∈I

(Ai×{i}). For every i ∈ I, the ith-canonical injection

is the mapping φi : Ai →
∐
j∈I

Aj defined as φi(xi) = (xi, i). If no confusions can

arise, we can identify Ai with Ai × {i} through the canonical injection. Therefore,

we can see Ai as a subset of
∐
j∈I

Aj for every i ∈ I.

A relation R on a set T is a subset of T × T . For every x, y ∈ T , we write xRy
to denote (x, y) ∈ R.

A relation is said to be reflexive if xRx for every x ∈ T . It is symmetric if xRy
implies yRx for every x, y ∈ T . It is anti-symmetric if xRy and yRx imply x = y
for every x, y ∈ T . It is transitive if xRy and yRz imply xRz for every x, y, z ∈ T .

An order relation is a relation that is reflexive, anti-symmetric and transitive.
An equivalence relation is a relation that is reflexive, symmetric and transitive.

Let R be an equivalence relation on T . For every x ∈ T , the set x̂ = {y ∈ T :
xRy} is the R-equivalence class of x. The collection of R-equivalence classes, which
we denote as T/R, forms a partition of T , and it is called the quotient space of T by
R. The mapping ProjR : T → T/R defined as ProjR(x) = x̂ for every x ∈ T is the
projection mapping onto T/R.

11.1.2 Topological Spaces

A topological space is a pair (T,U), where U ⊂ 2T is a collection of subsets of T
satisfying:

• ø ∈ U and T ∈ U .

• The intersection of a finite collection of members of U is also a member of U .

• The union of an arbitrary collection of members of U is also a member of U .
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If (T,U) is a topological space, we say that U is a topology on T .
The power set 2T of T is clearly a topology. It is called the discrete topology on

T .
If A is a an arbitrary collection of subsets of T , we can construct a topology on

T starting from A as follows: ⋂
A⊂V⊂2T ,

V is a topology on T

V.

This is the coarsest topology on T that contains A. It is called the topology on T
generated by A.

Let (T,U) be a topological space. The subsets of T that are members of U are
called the open sets of T . Complements of open sets are called closed sets. We can
easily see that the closed sets satisfy the following:

• ø and T are closed.

• The union of a finite collection of closed sets is closed.

• The intersection of an arbitrary collection of closed sets is closed.

Let A be an arbitrary subset of T . The closure cl(A) of A is the smallest closed
set containing A:

cl(A) =
⋂

A⊂F⊂T,
F is closed

F.

The interior A◦ of A is the largest open subset of A:

A◦ =
⋃

U⊂A,
U is open

U.

If A ⊂ T and cl(A) = T , we say that A is dense in T .
(T,U) is said to be separable if there exists a countable subset of T that is dense

in T .
A subset O of T is said to be a neighborhood of x ∈ T if there exists an open set

U ∈ U such that x ∈ U ⊂ O.
A neighborhood basis of x ∈ T is a collection O of neighborhoods of x such that

for every neighborhood O of x, there exists O′ ∈ O such that O′ ⊂ O.
We say that (T,U) is first-countable if every point x ∈ T has a countable neigh-

borhood basis.
A collection of open sets B ⊂ U is said to be a base for the topology U if every

open set U ∈ U can be written as the union of elements of B.
We say that (T,U) is a second-countable space if the topology U has a countable

base.
It is a well known fact that every second-countable space is first-countable and

separable.
We say that a sequence (xn)n≥0 of elements of T converges to x ∈ T if for every

neighborhood O of x, there exists n0 ≥ 0 such that for every n ≥ n0, we have
xn ∈ O. We say that x is a limit of the sequence (xn)n≥0. Note that the limit does
not need to be unique if there is no constraint on the topology.
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11.1.3 Separation Axioms

(T,U) is said to be a T1-space if for every x, y ∈ T , there exists an open set U ∈ U
such that x ∈ U and y /∈ U . It is easy to see that (T,U) is T1 if and only if all
singletons are closed.

(T,U) is said to be a Hausdorff space (or T2-space) if for every x, y ∈ T , there
exist two open sets U, V ∈ U such that x ∈ U , y ∈ V and U ∩ V = ø.

If (T,U) is Hausdorff, then the limit of every converging sequence is unique.
(T,U) is said to be regular if for every x ∈ T and every closed set F not containing

x, there exist two open sets U, V ∈ U such that x ∈ U , F ⊂ V and U ∩ V = ø.
(T,U) is said to be normal if for every two disjoint closed sets A and B, there

exist two open sets U, V ∈ U such that A ⊂ U , B ⊂ V and U ∩ V = ø.
If (T,U) is normal, disjoint closed sets can be separated by disjoint closed neigh-

borhoods. I.e., for every two disjoint closed sets A and B, there exist two open sets
U,U ′ ∈ U and two closed sets K,K ′ such that A ⊂ U ⊂ K, B ⊂ U ′ ⊂ K ′ and
K ∩K ′ = ø.

(T,U) is said to be a T3-space if it is both T1 and regular.
(T,U) is said to be a T4-space if it is both T1 and normal.
It is easy to see that T4 ⇒ T3 ⇒ T2 ⇒ T1.

11.1.4 Relativization

If (T,U) is a topological space and A is an arbitrary subset of T , then A inherits a
topology UA from (T,U) as follows:

UA = {A ∩ U : U ∈ U}.

It is easy to check that UA is a topology on A.
If (T,U) is first-countable (respectively second-countable, or Hausdorff), then

(A,UA) is first-countable (respectively second-countable, or Hausdorff).
If (T,U) is normal and A is closed, then (A,UA) is normal.
The union of a countable number of separable subspaces is separable.

11.1.5 Continuous Mappings

Let (T,U) and (S,V) be two topological spaces. A mapping f : T → S is said to be
continuous if for every V ∈ V, we have f−1(V ) ∈ U .

f : T → S is an open mapping if f(U) ∈ V whenever U ∈ U . f : T → S is a
closed mapping if f(F ) is closed in S whenever F is closed in T .

A bijection f : T → S is a homeomorphism if both f and f−1 are continuous. In
this case, for every A ⊂ T , A ∈ U if and only if f(A) ∈ V. This means that (T,U) and
(S,V) have the same topological structure and share the same topological properties.

11.1.6 Compact and Sequentially Compact Spaces

(T,U) is a compact space if every open cover of T admits a finite sub-cover. I.e., if

(Ui)i∈I is a collection of open sets such that T =
⋃
i∈I

Ui then there exists n > 0 and

i1, . . . , in ∈ I such that T =

n⋃
j=1

Uij .
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If (T,U) is compact, then every closed subset of T is compact (with respect to
the inherited topology).

If f : T → S is a continuous mapping from a compact space (T,U) to an arbitrary
topological space (S,V), then f(T ) is compact.

If A is a compact subset of a Hausdorff topological space, then A is closed.

(T,U) is said to be locally compact if every point has at least one compact
neighborhood. A compact space is automatically locally compact.

If (T,U) is Hausdorff and locally compact, then for every point x ∈ T and every
neighborhood O of x, O contains a compact neighborhood of x.

A compact Hausdorff space is always normal.

(T,U) is a σ-compact space if it is the union of a countable collection of compact
subspaces.

(T,U) is countably compact if every countable open cover of T admits a finite
sub-cover. This is a weaker condition compared to compactness.

(T,U) is said to be sequentially compact if every sequence in T has a converging
subsequence. In general, compactness does not imply sequential compactness nor
the other way around.

11.1.7 Connected Spaces

(T,U) is a connected space if it satisfies one of the following equivalent conditions:

• T cannot be written as the union of two disjoint non-empty open sets.

• T cannot be written as the union of two disjoint non-empty closed sets.

• The only subsets of T that are both open and closed are ø and T .

• Every continuous mapping from T to {0, 1} is constant, where {0, 1} is endowed
with the discrete topology.

(T,U) is path-connected if every two points of T can be joined by a continuous
path. I.e., for every x, y ∈ T , there exists a continuous mapping f : [0, 1] → T such
that f(0) = x and f(1) = y, where [0, 1] is endowed with the well known Euclidean
topology3.

A path-connected space is connected but the converse is not true in general.

A subset A of T is said to be connected (respectively path-connected) if (A,UA)
is connected (respectively path-connected).

If (Ai)i∈I is a collection of connected (respectively path-connected) subsets of T

such that
⋂
i∈I

Ai �= ø, then
⋃
i∈I

Ai is connected (respectively path-connected).

11.1.8 Product of Topological Spaces

Let {(Ti,Ui)}i∈I be a collection of topological spaces indexed by I. Let T =
∏
i∈I

Ti

be the product of this collection. For every j ∈ I, the jth-canonical projection is the
mapping Projj : T → Tj defined as Projj

(
(xi)i∈I

)
= xj .

3See Section 11.1.11 for the definition of the Euclidean metric and its induced topology
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The product topology U :=
⊗
i∈I

Ui on T is the coarsest topology that makes all

the canonical projections continuous. It can be shown that U is generated by the

collection of sets of the form
∏
i∈I

Ui, where Ui ∈ Ui for all i ∈ I, and Ui �= Ti for only

finitely many i ∈ I.

The product of T1 (respectively, Hausdorff, regular, T3, compact, connected, or
path-connected) spaces is T1 (respectively, Hausdorff, regular, T3, compact, con-
nected, or path-connected).

11.1.9 Disjoint Union

Let {(Ti,Ui)}i∈I be a collection of topological spaces indexed by I. Let T =
∐
i∈I

Ti

be the disjoint union of this collection. The disjoint union topology U :=
⊕
i∈I

Ui on

T is the finest topology which makes all the canonical injections continuous. It can
be shown that U ∈ U if and only if U ∩ Ti ∈ Ui for every i ∈ I.

A mapping f : T → S from (T,U) to a topological space (S,V) is continuous if
and only if it is continuous on Ti for every i ∈ I.

The disjoint union of T1 (respectively Hausdorff) spaces is T1 (respectively Haus-
dorff). The disjoint union of two or more non-empty spaces is always disconnected.

Products are distributive with respect to the disjoint union, i.e., if (S,V) is a

topological space then S×
(∐

i∈I
Ti

)
=
∐
i∈I

(S × Ti) and V⊗
(⊕

i∈I
Ui

)
=
⊕
i∈I

(V ⊗ Ui).

11.1.10 Quotient Topology

Let (T,U) be a topological space and let R be an equivalence relation on T . The
quotient topology on T/R is the finest topology that makes the projection mapping
ProjR continuous. It is given by

U/R =
{
Û ⊂ T/R : Proj−1

R (Û) ∈ U
}
.

Lemma 11.1. Let f : T → S be a continuous mapping from (T,U) to (S,V). If
f(x) = f(x′) for every x, x′ ∈ T satisfying xRx′, then we can define a transcendent
mapping f : T/R → S such that f(x̂) = f(x′) for any x′ ∈ x̂. f is well defined on
T/R . Moreover, f is a continuous mapping from (T/R,U/R) to (S,V).

If (T,U) is compact (respectively, connected, or path-connected), then (T/R,U/R)
is compact (respectively, connected, or path-connected).

T/R is said to be upper semi-continuous if for every x̂ ∈ T/R and every open
set U ∈ U satisfying x̂ ⊂ U , there exists an open set V ∈ U such that x̂ ⊂ V ⊂ U ,
and V can be written as the union of members of T/R.

The following Lemma characterizes upper semi-continuous quotient spaces:

Lemma 11.2. [76] T/R is upper semi-continuous if and only if ProjR is a closed
mapping.
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The following theorem is very useful to prove many topological properties for
the quotient space:

Theorem 11.1. [76] Let (T,U) be a topological space, and let R be an equivalence
relation on T such that T/R is upper semi-continuous and x̂ is a compact sub-
set of T for every x̂ ∈ T/R. If (T,U) is Hausdorff (respectively, regular, locally
compact, or second-countable) then (T/R,U/R) is Hausdorff (respectively, regular,
locally compact, or second-countable).

11.1.11 Metric Spaces

A metric space is a pair (M,d), where d : M ×M → R+ satisfies:

• d(x, y) = 0 if and only if x = y for every x, y ∈ M .

• Symmetry: d(x, y) = d(y, x) for every x, y ∈ M .

• Triangle inequality: d(x, z) ≤ d(x, y) + d(y, z) for every x, y, z ∈ M .

If (M,d) is a metric space, we say that d is a metric (or distance) on M .
For every x ∈ M and every ε > 0, we define the open ball of center x and radius

ε as:

Bε(x) = {y ∈ M : d(x, y) < ε}.
The metric topology Ud on M induced by d is the coarsest topology on M which

makes d a continuous mapping from M ×M to R+. It is generated by all the open
balls.

The metric topology is always T4 and first-countable. Moreover, (M,Ud) is
separable if and only if it is second-countable.

Since every metric space is Hausdorff, we can see that every subset of a compact
metric space is closed if and only if it is compact.

Every σ-compact metric space is second-countable.
For metric spaces, compactness and sequential compactness are equivalent.
A function f : M1 → M2 from a metric space (M1, d1) to a metric space (M2, d2)

is said to be uniformly continuous if for every ε > 0, there exists δ > 0 such that for
every x, x′ ∈ M1 satisfying d1(x, x

′) < δ we have d2(f(x), f(x
′)) < ε.

If f : M1 → M2 is a continuous mapping from a compact metric space (M1, d1)
to an arbitrary metric space (M2, d2), then f is uniformly continuous.

A topological space (T,U) is said to be metrizable if there exists a metric d on
T such that U is the metric topology on T induced by d.

The disjoint union of metrizable spaces is always metrizable.
The following theorem shows that all separable metrizable spaces are character-

ized topologically:

Theorem 11.2. [76] A topological space (T,U) is metrizable and separable if and
only if it is Hausdorff, regular and second countable.

The Euclidean metric on Rn is defined as d(x, y) =

√√√√ n∑
i=1

(xi − yi)
2, where x =

(xi)1≤i≤n and y = (yi)1≤i≤n.
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Rn is second countable. Moreover, a subset of Rn is compact if and only if it is
bounded and closed.

11.1.12 Complete Metric Spaces

A sequence (xn)n≥0 is said to be a Cauchy sequence in (M,d) if for every ε > 0,
there exists n0 ≥ 0 such that for every n1, n2 ≥ n0 we have d(xn1 , xn2) < ε.

Every converging sequence is Cauchy, but the converse is not true in general.

A metric space is said to be complete if every Cauchy sequence converges in it.

A closed subset of a complete space is always complete.

A complete subspace of an arbitrary metric space is always closed.

Every compact metric space is complete, but the converse is not true in general.

For every metric space (M,d), there exists a superspace (M,d) containing M
such that:

• (M,d) is complete.

• M is dense in (M,d).

• d(x, y) = d(x, y) for every x, y ∈ M .

The space (M,d) is said to be a completion of (M,d).

11.1.13 Polish and Baire Spaces

A topological space (T,U) that is both separable and completely metrizable (i.e.,
has a metrization that is complete) is called a Polish space.

A topological space is said to be a Baire space if the intersection of countably
many dense open subsets is dense. The following facts can be found in [77]:

• Every completely metrizable space is Baire.

• Every compact Hausdorff space is Baire.

• Every open subset of a Baire space is Baire.

11.1.14 Sequential Spaces

Sequential spaces were introduced by Franklin [78] to answer the following question:
Assume we know all the converging sequences of a topological space. Is this enough
to uniquely determine the topology of the space? Sequential spaces are the most
general category of spaces for which converging sequences suffice to determine the
topology.

Let (T,U) be a topological space. A subset U ⊂ T is said to be sequentially open
if for every sequence (xn)n≥0 that converges to a point of U lies eventually in U , i.e.,
there exists n0 ≥ 0 such that xn ∈ U for every n ≥ n0. Clearly, every open subset
of T is sequentially open, but the converse is not true in general.

A topological space (T,U) is said to be sequential if every sequentially open
subset of T is open.
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A mapping f : T → S from a sequential topological space (T,U) to an arbitrary
topological space (S,V) is continuous if and only if for every sequence (xn)n≥0 in T
that converges to x ∈ T , the sequence (f(xn))n≥0 converges to f(x) in (S,V) [78].

The following facts were shown in [78]:

• Every first-countable space is sequential. Therefore, every metrizable space is
sequential.

• The quotient of a sequential space is sequential.

• All closed and open subsets of a sequential space are sequential.

• Every countably compact sequential Hausdorff space is sequentially compact.

• A topological space is sequential if and only if it is the quotient of a metric
space.

11.1.15 Compactly Generated Spaces

A topological space (T,U) is compactly generated if it is Hausdorff and for every
subset F of T , F is closed if and only if F ∩K is closed for every compact subset
K of T . Equivalently, (T,U) is compactly generated if it is Hausdorff and for every
subset U of T , U is open in T if and only if U ∩K is open in K for every compact
subset K of T .

The following facts can be found in [79]:

• All locally compact Hausdorff spaces are compactly generated.

• All first-countable Hausdorff spaces are compactly generated. Therefore, every
metrizable space is compactly generated.

• A Hausdorff quotient of a compactly generated space is compactly generated.

• If (T,U) is compactly generated and (S,V) is Hausdorff locally compact, then
(T × S,U ⊗ V) is compactly generated.

11.1.16 The Hausdorff Metric

Let (M,d) be a metric space. Let K(M) be the set of compact subsets of M . The
Hausdorff metric on K(M) is defined as:

dH(K1,K2) = max

{
sup

x1∈K1

d(x1,K2), sup
x2∈K2

d(x2,K1)

}

= max

{
sup

x1∈K1

inf
x2∈K2

d(x1, x2), sup
x2∈K2

inf
x1∈K1

d(x2, x1)

}
.

11.2 Measure-Theoretic Notations

In this section, we introduce the measure-theoretic notations that we are using. We
assume that the reader is familiar with the basic definitions and theorems of measure
theory.
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11.2.1 Probabilities on Finite Sets

If X is a finite set, we denote the set of probability distributions on X as ΔX . Note
that ΔX is an (|X | − 1)-dimensional simplex in RX . We always endow ΔX with the
total-variation distance and its induced topology. For every p1, p2 ∈ ΔX , we have:

‖p1 − p2‖TV =
1

2

∑
x∈X

|p1(x)− p2(x)| =
1

2
‖p1 − p2‖1.

Note that the total-variation topology on ΔX is the same as the one inherited from
the Euclidean topology of RX by relativisation. Since ΔX is a closed and bounded
subset of RX , it is compact.

11.2.2 Borel Sets and the Support of a Measure

Let (T,U) be a Hausdorff topological space. The Borel σ-algebra of (T,U) is the
σ-algebra generated by U . We denote the Borel σ-algebra of (T,U) as B(T,U). If the
topology U is known from the context, we write B(T ) to denote the Borel σ-algebra.
The sets in B(T ) are called the Borel sets of T .

The support of a probability measure P ∈ P(T,B(T )) is the set of all points
x ∈ T for which every neighborhood has a strictly positive measure:

supp(P ) = {x ∈ T : P (O) > 0 for every neighborhood O of x}.
If P is a probability measure on a Polish space, then P

(
T \ supp(P )

)
= 0.

11.2.3 Convergence of Probability Measures and the weak-∗ Topology

We have many notions of convergence of probability measures. If the measurable
space does not have a topological structure, we have two notions of convergence:

• The total-variation convergence: We say that a sequence (Pn)n≥0 of probability
measures in P(M,Σ) converges in total-variation to P ∈ P(M,Σ) if and only
if lim

n→∞ ‖Pn − P‖TV = 0.

• The strong convergence: We say that a sequence (Pn)n≥0 in P(M,Σ) strongly
converges to P ∈ P(M,Σ) if and only if lim

n→∞Pn(A) = P (A) for every A ∈ Σ.

Clearly, total-variation convergence implies strong convergence. The converse is
not true in general. However, if we are working in the Borel σ-algebra of a Polish
space T and (Pn)n≥0 strongly converges to a finitely supported probability measure
P , then

‖Pn − P‖TV

= sup
B∈B(T )

|Pn(B)− P (B)|

≤ sup
B∈B(T )

(∣∣Pn

(
B \ supp(P )

)
− P

(
B \ supp(P )

)∣∣+ ∑
x∈supp(P )

|Pn(x)− P (x)|
)

= sup
B∈B(T )

(∣∣Pn

(
B \ supp(P )

)∣∣+ ∑
x∈supp(P )

|Pn(x)− P (x)|
)
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hence,

‖Pn − P‖TV ≤ |Pn

(
T \ supp(P )

)∣∣+ ∑
x∈supp(P )

|Pn(x)− P (x)|

= |Pn

(
T \ supp(P )

)
− P

(
T \ supp(P )

)∣∣+ ∑
x∈supp(P )

|Pn(x)− P (x)| n→∞−→ 0,

which implies that (Pn)n≥0 also converges to P in total-variation. Therefore, in
a Polish space, total-variation convergence and strong convergence to finitely sup-
ported probability measures are equivalent.

Let (T,U) be a Hausdorff topological space. We say that a sequence (Pn)n≥0

of probability measures in P(T,B(T )) weakly-∗ converges to P ∈ P(T,B(T )) if and
only if for every bounded and continuous function f from T to R, we have

lim
n→∞

∫
T
f · dPn =

∫
T
f · dP.

Note that many authors call this notion “weak convergence” rather than weak-∗
convergence. We will refrain from using the term “weak convergence” in order to
be consistent with the functional analysis notation.

The weak-∗ topology on P(T,B(T )) is the coarsest topology which makes the
mappings

P →
∫
ΔX

f · dP

continuous over P(T,B(T )), for every bounded and continuous function f from T
to R.

11.2.4 Metrization of the Weak-∗ Topology

If (T,U) is a Polish space (i.e., separable and completely metrizable), then the weak-
∗ topology on P(T,B(T )) is also Polish [80]. There are many known metrizations
for the weak-∗ topology. One metrization that is particularly convenient for us is
the Wasserstein metric.

The 1st-Wasserstein distance on P(T,B(T )) is defined as

W1(P, P
′) = inf

γ∈Γ(P,P ′)

∫
T×T

d(x, x′) · dγ(x, x′),

where Γ(P, P ′) is the collection of all probability measures on T ×T with marginals
P and P ′ on the first and second factors respectively, and d is a metric on T that
induces the topology U . Γ(P, P ′) is also called the set of couplings of P and P ′.

If d is bounded and (T, d) is separable and complete, thenW1 metrizes the weak-∗
topology [80]. If (T,U) is compact, then (P(T ),W1) is also compact [80].

If D = sup
x,x′∈T

d(x, x′) is the diameter of (T, d), then W1(P, P
′) ≤ D‖P − P ′‖TV

[80]. In other words, the Wasserstein metric is controlled by total-variation.
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11.3 The Space of Channels from X to Y
Let DMCX ,Y be the set of all channels having X as input alphabet and Y as output
alphabet.

For every W,W ′ ∈ DMCX ,Y , define the distance between W and W ′ as follows:

dX ,Y(W,W ′) =
1

2
max
x∈X

∑
y∈Y

|W ′(y|x)−W (y|x)|.

It is easy to check the following properties of dX ,Y :

• 0 ≤ dX ,Y(W,W ′) ≤ 1.

• dX ,Y : DMCX ,Y ×DMCX ,Y → R+ is a metric distance on DMCX ,Y .

Throughout this chapter, we always associate the space DMCX ,Y with the metric
distance dX ,Y and the metric topology TX ,Y induced by it.

For every x ∈ X , the mapping y → W (y|x) is a probability distributions on Y.
Therefore, every channel W can be seen as a collection of probability distributions
on Y, and the collection is indexed by x ∈ X . This allows us to identify the space

DMCX ,Y with (ΔY)X =
∏
x∈X

ΔY , where ΔY is the set of probability distributions

on Y. It is easy to see that the topology given by the metric dX ,Y on DMCX ,Y is
the same as the product topology on (ΔY)X , which is also the same as the topology
inherited from the Euclidean topology of RX×Y by relativization.

It is known that ΔY is a closed and bounded subset of RY . Therefore, ΔY is
compact, which implies that (ΔY)X is compact. We conclude that the metric space
DMCX ,Y ≡ (ΔY)X is compact. Moreover, since ΔY a convex subset of RY , it is
path-connected, hence DMCX ,Y ≡ (ΔY)X is path-connected as well.

If W ∈ DMCX ,Y and V ∈ DMCY,Z , we define the composition V ◦W ∈ DMCX ,Z
of W and V as follows:

(V ◦W )(z|x) =
∑
y∈Y

V (z|y)W (y|x), ∀x ∈ X , ∀z ∈ Z.

It is easy to see that the mapping (W,V ) → V ◦ W from DMCX ,Y ×DMCY,Z to
DMCX ,Z is continuous.

For every mapping f : X → Y, define the deterministic channel Df ∈ DMCX ,Y
as follows:

Df (y|x) =
{
1 if y = f(x),

0 otherwise.

It is easy to see that if f : X → Y and g : Y → Z, then Dg ◦Df = Dg◦f .

11.4 Space of Output-Equivalent Channels from X to Y
11.4.1 The DMC

(o)
X ,Y Space

Let X and Y be two finite sets. Define the relation R
(o)
X ,Y on DMCX ,Y as follows:

∀W,W ′ ∈ DMCX ,Y , WR
(o)
X ,YW

′ ⇔ W is output-equivalent to W ′.
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It is easy to see that R
(o)
X ,Y is an equivalence relation on DMCX ,Y . R

(o)
X ,Y is called

the output-equivalence relation on DMCX ,Y .

Definition 11.1. The space of output-equivalent channels with input alphabet X
and output alphabet Y is the quotient of the space of channels from X to Y by the
output-equivalence relation:

DMC
(o)
X ,Y = DMCX ,Y /R

(o)
X ,Y .

We define the topology T (o)
X ,Y on DMC

(o)
X ,Y as the quotient topology TX ,Y/R

(o)
X ,Y .

Unless we explicitly state otherwise, we always associate DMC
(o)
X ,Y with the quo-

tient topology T (o)
X ,Y .

For every W ∈ DMCX ,Y , let Ŵ ∈ DMC
(o)
X ,Y be the R

(o)
X ,Y -equivalence class con-

taining W .

Lemma 11.3. The projection mapping Proj : DMCX ,Y → DMC
(o)
X ,Y defined as

Proj(W ) = Ŵ is continuous and closed.

Proof. See Appendix 11.10.1.

Corollary 11.1. For every W ∈ DMCX ,Y , Ŵ is a compact subset of DMCX ,Y .

Proof. Since DMCX ,Y is compact, then DMC
(o)
X ,Y = DMCX ,Y /R

(o)
X ,Y is compact as

well.

Let Proj : DMCX ,Y → DMC
(o)
X ,Y be as in Lemma 11.3. Since Proj is closed

and since {W} is closed in DMCX ,Y , {Ŵ} = Proj({W}) is closed in DMC
(o)
X ,Y .

Therefore, Ŵ = Proj−1({Ŵ}) is closed in DMCX ,Y because Proj is continuous.

Now since DMCX ,Y is compact, Ŵ is compact as well.

Theorem 11.3. DMC
(o)
X ,Y is a compact, path-connected and metrizable space.

Proof. Since DMCX ,Y is compact and path-connected, DMC
(o)
X ,Y = DMCX ,Y /R

(o)
X ,Y

is compact and path-connected as well.

Since the projection map Proj of Lemma 11.3 is closed, Lemma 11.2 implies that

the quotient space DMC
(o)
X ,Y = DMCX ,Y /R

(o)
X ,Y is upper semi-continuous. On the

other hand, Corollary 11.1 shows that all the members of DMC
(o)
X ,Y are compact in

DMCX ,Y . Therefore, the conditions of Theorem 11.1 are satisfied.

Since DMCX ,Y is a metric space, it is Hausdorff and regular. Moreover, since it
can be seen as a subspace of R|X |·|Y|, it is also second-countable. By Theorem 11.1

we get that DMC
(o)
X ,Y = DMCX ,Y /R

(o)
X ,Y is Hausdorff, regular and second-countable,

and from Theorem 11.2 we conclude that DMC
(o)
X ,Y is separable and metrizable.
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11.4.2 Canonical Embedding and Canonical Identification

Let X ,Y1 and Y2 be three finite sets such that |Y1| ≤ |Y2|. We will show that there is

a canonical embedding from DMC
(o)
X ,Y1

to DMC
(o)
X ,Y2

. In other words, there exists an

explicitly constructable compact subset A of DMC
(o)
X ,Y2

such that A is homeomorphic

to DMC
(o)
X ,Y1

. A and the homeomorphism depend only on X ,Y1 and Y2 (this is why
we say that they are canonical). Moreover, we can show that A depends only on
|Y1|, X and Y2.

Lemma 11.4. For every W ∈ DMCX ,Y1 and every injection f from Y1 to Y2, W
is output-equivalent to Df ◦W .

Proof. Clearly Df ◦W is output-degraded from W . Now let f ′ be any mapping from
Y2 to Y1 such that f ′(f(y1)) = y1 for every y1 ∈ Y1. We have W = (Df ′ ◦Df )◦W =
Df ′ ◦ (Df ◦W ), and so W is also output-degraded from Df ◦W .

Corollary 11.2. For every W,W ′ ∈ DMCX ,Y1 and every two injections f, g from
Y1 to Y2, we have:

WR
(o)
X ,Y1

W ′ ⇔ (Df ◦W )R
(o)
X ,Y2

(Dg ◦W ′).

Proof. Since W is output-equivalent to Df ◦ W and W ′ is output-equivalent to
Dg◦W ′, thenW is output-equivalent toW ′ if and only ifDf ◦W is output-equivalent
to Dg ◦W ′.

For every W ∈ DMCX ,Y1 , we denote the R
(o)
X ,Y1

-equivalence class of W as Ŵ ,

and for every W ∈ DMCX ,Y2 , we denote the R
(o)
X ,Y2

-equivalence class of W as W̃ .

Proposition 11.1. Let f : Y1 → Y2 be any fixed injection from Y1 to Y2. Define

the mapping F : DMC
(o)
X ,Y1

→ DMC
(o)
X ,Y2

as F (Ŵ ) = D̃f ◦W ′ = Proj2(Df ◦ W ′),

where W ′ ∈ Ŵ and Proj2 : DMCX ,Y2 → DMC
(o)
X ,Y2

is the projection onto the R
(o)
X ,Y2

-
equivalence classes. We have:

• F is well defined, i.e., Proj2(Df ◦W ′) does not depend on W ′ ∈ Ŵ .

• F is a homeomorphism from DMC
(o)
X ,Y1

to F
(
DMC

(o)
X ,Y1

)
.

• F does not depend on f , i.e., F depends only on X ,Y1 and Y2, hence it is
canonical.

• F
(
DMC

(o)
X ,Y1

)
depends only on |Y1|, X and Y2.

• For every W ′ ∈ Ŵ and every W ′′ ∈ F (Ŵ ), W ′ is output-equivalent to W ′′.

Proof. Corollary 11.2 implies that Proj2(Df ◦W ) = Proj2(Df ◦W ′) if and only if

WR
(o)
X ,Y1

W ′. Therefore, Proj2(Df ◦ W ′) does not depend on W ′ ∈ Ŵ , hence F is
well defined. Corollary 11.2 also shows that Proj2(Df ◦W ′) does not depend on the
particular choice of the injection f , hence it is canonical (i.e., it depends only on
X ,Y1 and Y2).
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On the other hand, the mapping W → Df ◦ W is a continuous mapping from
DMCX ,Y1 to DMCX ,Y2 , and Proj2 is continuous. Therefore, the mapping W →
Proj2(Df ◦ W ) is a continuous mapping from DMCX ,Y1 to DMC

(o)
X ,Y2

. Now since

Proj2(Df ◦W ) depends only on the R
(o)
X ,Y1

-equivalence class Ŵ of W , Lemma 11.1
implies that F is continuous. Moreover, we can see from Corollary 11.2 that F is
an injection.

For every closed subset B of DMC
(o)
X ,Y1

, B is compact since DMC
(o)
X ,Y1

is compact,
hence F (B) is compact because F is continuous. This implies that F (B) is closed in

DMC
(o)
X ,Y2

since DMC
(o)
X ,Y2

is Hausdorff (as it is metrizable). Therefore, F is a closed
mapping.

Now since F is an injection that is both continuous and closed, we can deduce

that F is a homeomorphism from DMC
(o)
X ,Y1

to F
(
DMC

(o)
X ,Y1

)
⊂ DMC

(o)
X ,Y2

.

We would like now to show that F
(
DMC

(o)
X ,Y1

)
depends only on |Y1|, X and

Y2. Let Y ′
1 be a finite set such that |Y1| = |Y ′

1|. For every W ∈ DMCX ,Y ′
1
, let

W ∈ DMC
(o)
X ,Y ′

1
be the R

(o)
X ,Y ′

1
-equivalence class of W .

Let g : Y ′
1 → Y1 be a fixed bijection from Y ′

1 to Y1 and let f ′ = f ◦ g. Define

F ′ : DMC
(o)
X ,Y ′

1
→ DMC

(o)
X ,Y2

as F ′(W ) = ˜Df ′ ◦W ′ = Proj2(Df ′ ◦W ′), where W ′ ∈
W . As above, F ′ is well defined, and it is a homeomorphism from DMC

(o)
X ,Y ′

1
to

F ′(DMC
(o)
X ,Y ′

1

)
. We want to show that F ′(DMC

(o)
X ,Y ′

1

)
= F

(
DMC

(o)
X ,Y1

)
. For every

W ∈ DMC
(o)
X ,Y ′

1
, let W ′ ∈ W . We have

F ′(W ) = Proj2(Df ′ ◦W ′) = Proj2(Df ◦(Dg ◦W ′)) = F
(
D̂g ◦W ′

)
∈ F

(
DMC

(o)
X ,Y1

)
.

Since this is true for every W ∈ DMC
(o)
X ,Y ′

1
, we deduce that F ′(DMC

(o)
X ,Y ′

1

)
⊂

F
(
DMC

(o)
X ,Y1

)
. By exchanging the roles of Y1 and Y ′

1 and using the fact that f =

f ′◦g−1, we get F
(
DMC

(o)
X ,Y1

)
⊂ F ′(DMC

(o)
X ,Y ′

1

)
. We conclude that F

(
DMC

(o)
X ,Y1

)
=

F ′(DMC
(o)
X ,Y ′

1

)
, which means that F

(
DMC

(o)
X ,Y1

)
depends only on |Y1|, X and Y2.

Finally, for every W ′ ∈ Ŵ and every W ′′ ∈ F (Ŵ ) = D̃f ◦W ′, W ′′ is output-
equivalent to Df ◦ W ′ and Df ◦ W ′ is output-equivalent to W ′ (by Lemma 11.4),
hence W ′′ is output-equivalent to W ′.

Corollary 11.3. If |Y1| = |Y2|, there exists a canonical homeomorphism from

DMC
(o)
X ,Y1

to DMC
(o)
X ,Y2

depending only on X ,Y1 and Y2.

Proof. Let f be a bijection from Y1 to Y2. Define the mapping F : DMC
(o)
X ,Y1

→
DMC

(o)
X ,Y2

as F (Ŵ ) = D̃f ◦W ′ = Proj2(Df ◦ W ′), where W ′ ∈ Ŵ and Proj2 :

DMCX ,Y2 → DMC
(o)
X ,Y2

is the projection onto the R
(o)
X ,Y2

-equivalence classes.

Also, define the mapping F ′ : DMC
(o)
X ,Y2

→ DMC
(o)
X ,Y1

as F ′(Ṽ ) = ̂Df−1 ◦ V ′ =

Proj1(Df−1 ◦V ′), where V ′ ∈ Ṽ and Proj1 : DMCX ,Y1 → DMC
(o)
X ,Y1

is the projection

onto the R
(o)
X ,Y1

-equivalence classes.

Proposition 11.1 shows that F and F ′ are well defined.
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For every W ∈ DMCX ,Y1 , we have:

F ′(F (Ŵ ))
(a)
= F ′(D̃f ◦W )

(b)
= ̂Df−1 ◦ (Df ◦W ) = Ŵ ,

where (a) follows from the fact that W ∈ Ŵ and (b) follows from the fact that

Df ◦W ∈ D̃f ◦W .

We can similarly show that F (F ′(Ṽ )) = Ṽ for every Ṽ ∈ DMC
(o)
X ,Y2

. Therefore,
both F and F ′ are bijections. Proposition 11.1 now implies that F is a homeomor-

phism from DMC
(o)
X ,Y1

to F
(
DMC

(o)
X ,Y1

)
= DMC

(o)
X ,Y2

. Moreover, F depends only on
X ,Y1 and Y2.

Corollary 11.3 allows us to identify DMC
(o)
X ,Y1

with DMC
(o)
X ,Y2

whenever |Y1| =
|Y2|. In the rest of this chapter, we identify DMC

(o)
X ,Y with DMC

(o)
X ,[n] through the

canonical identification, where n = |Y| and [n] = {1, . . . , n}.
Moreover, for every 1 ≤ n ≤ m, Proposition 11.1 allows us to identify DMC

(o)
X ,[n]

with the canonical subspace of DMC
(o)
X ,[m] that is homeomorphic to DMC

(o)
X ,[n]. In the

rest of this chapter, we consider that DMC
(o)
X ,[n] is a compact subspace of DMC

(o)
X ,[m].

Intuitively, DMC
(o)
X ,[n] has a “lower dimension” compared to DMC

(o)
X ,[m]. So one

expects that the interior of DMC
(o)
X ,[n] in (DMC

(o)
X ,[m], T

(o)
X ,[m]) is empty if m > n. The

following proposition shows that this intuition is accurate.

Proposition 11.2. If |X | ≥ 2, then for every 1 ≤ n < m, the interior of DMC
(o)
X ,[n]

in (DMC
(o)
X ,[m], T

(o)
X ,[m]) is empty.

Proof. See Appendix 11.10.2.

11.5 Spaces of Output-Equivalent Channels

We would like to form the space of all output-equivalent channels having the same
input alphabet X . The previous section showed that if |Y1| = |Y2|, there is a

canonical identification between DMC
(o)
X ,Y1

and DMC
(o)
X ,Y2

. This shows that if we are
interested in output-equivalent channels, it is sufficient to study the spaces DMCX ,[n]

and DMC
(o)
X ,[n] for every n ≥ 1. Define the space

DMCX ,∗ =
∐
n≥1

DMCX ,[n] .

The subscript ∗ indicates that the output alphabets of the considered channels are
arbitrary but finite.

We define the output-equivalence relation R
(o)
X ,∗ on DMCX ,∗ as follows:

∀W,W ′ ∈ DMCX ,∗, WR
(o)
X ,∗W

′ ⇔ W is output-equivalent to W ′.
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Definition 11.2. The space of output-equivalent channels with input alphabet X is
the quotient of the space of channels with input alphabet X by the output-equivalence
relation:

DMC
(o)
X ,∗ = DMCX ,∗ /R

(o)
X ,∗.

For every n ≥ 1 and every W,W ′ ∈ DMCX ,[n], we have WR
(o)
X ,∗W

′ if and only if

WR
(o)
X ,[n]W

′ by definition. Therefore, DMCX ,[n] /R
(o)
X ,∗ can be canonically identified

with DMCX ,[n] /R
(o)
X ,[n] = DMC

(o)
X ,[n]. But since we identified DMC

(o)
X ,[n] to its image

through the canonical embedding in DMC
(o)
X ,[m] for every m ≥ n, we have to make

sure that these identifications are consistent with each other.
Remember that for every m ≥ n ≥ 1 and every W ∈ DMCX ,[n], we identified Ŵ

with D̃f ◦W , where f is any injection from [n] to [m], Ŵ is the R
(o)
X ,[n]-equivalence

class of W and D̃f ◦W is the R
(o)
X ,[m]-equivalence class of Df ◦W . Since Df ◦W is

output-equivalent to W (by Lemma 11.4), W is R
(o)
X ,∗-equivalent to Df ◦W for every

W ∈ DMC
(o)
X ,[n]. We conclude that identifying DMC

(o)
X ,[n] to its image through the

canonical embedding in DMC
(o)
X ,[m] for every m ≥ n ≥ 1 is consistent with identifying

DMCX ,[n] /R
(o)
X ,∗ to DMC

(o)
X ,[n] for every n ≥ 1. Hence, we can write

DMC
(o)
X ,∗ =

⋃
n≥1

DMC
(o)
X ,[n] .

For any W,W ′ ∈ DMCX ,∗, Proposition 10.2 shows that WR
(o)
X ,∗W

′ if and only

if MPW = MPW ′ . Therefore, for every Ŵ ∈ DMC
(o)
X ,∗, we can define the Blackwell

measure of Ŵ as MPŴ := MPW ′ for any W ′ ∈ Ŵ . We also define the rank of Ŵ as

rank(Ŵ ) = | supp(MPŴ )|. Due to Proposition 10.2, we have

DMC
(o)
X ,[n] = {Ŵ ∈ DMC

(o)
X ,∗ : rank(Ŵ ) ≤ n}.

A subset A of DMC
(o)
X ,∗ is said to be rank-bounded if there exists n ≥ 1 such that

A ⊂ DMC
(o)
X ,[n]. A is rank-unbounded if it is not rank-bounded.

11.5.1 Natural Topologies on DMC
(o)
X ,∗

Since DMC
(o)
X ,∗ is the quotient of DMCX ,∗ and since DMCX ,∗ was not given any

topology, there is no “standard topology” on DMC
(o)
X ,∗.

However, there are many properties that one may require from any “reasonable”

topology on DMC
(o)
X ,∗. For example, one may require the continuity of all mappings

that are relevant to information theory such as capacity, mutual information, prob-
ability of error of any fixed code, optimal probability of error of a given rate and
blocklength, channel sums and products, etc . . . The continuity of these mappings

under different topologies on DMC
(o)
X ,∗ is studied in Chapter 12.

In this chapter, we focus on one particular requirement that we consider the

most basic property required from any “acceptable” topology on DMC
(o)
X ,∗:
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Definition 11.3. A topology T on DMC
(o)
X ,∗ is said to be natural if it induces the

quotient topology T (o)
X ,[n] on DMC

(o)
X ,[n] for every n ≥ 1.

The reason why we consider such topology as natural is because DMC
(o)
X ,[n] is

subset of DMC
(o)
X ,∗ and the quotient topology T (o)

X ,[n] is the “standard” and “most

natural” topology on DMC
(o)
X ,[n]. Therefore, we do not want to induce any non-

standard topology on DMC
(o)
X ,[n] by relativization.

Before discussing any particular natural topology, we would like to discuss a few
properties that are common to all natural topologies.

Proposition 11.3. Every natural topology on DMC
(o)
X ,∗ is σ-compact, separable and

path-connected.

Proof. Since DMC
(o)
X ,∗ is the countable union of compact and separable subspaces

(namely {DMC
(o)
X ,[n]}n≥1), DMC

(o)
X ,∗ is σ-compact and separable.

On the other hand, since
⋂
n≥1

DMC
(o)
X ,[n] = DMC

(o)
X ,[1] �= ø and since DMC

(o)
X ,[n]

is path-connected for every n ≥ 1, the union DMC
(o)
X ,∗ =

⋃
n≥1

DMC
(o)
X ,[n] is path-

connected.

Proposition 11.4. If |X | ≥ 2 and T is a natural topology, every non-empty open
set is rank-unbounded.

Proof. Assume to the contrary that there exists a non-empty open set U ∈ T such

that U ⊂ DMC
(o)
X ,[n] for some n ≥ 1. U ∩DMC

(o)
X ,[n+1] is open in DMC

(o)
X ,[n+1] because

T is natural. On the other hand, U ∩ DMC
(o)
X ,[n+1] ⊂ U ⊂ DMC

(o)
X ,[n]. Proposition

11.2 now implies that U ∩DMC
(o)
X ,[n+1] = ø. Therefore,

U = U ∩DMC
(o)
X ,[n] ⊂ U ∩DMC

(o)
X ,[n+1] = ø,

which is a contradiction.

Corollary 11.4. If |X | ≥ 2 and T is a natural topology, then for every n ≥ 1, the

interior of DMC
(o)
X ,[n] in (DMC

(o)
X ,∗, T ) is empty.

Proposition 11.5. If |X | ≥ 2 and T is a Hausdorff natural topology, then the space

(DMC
(o)
X ,∗, T ) is not a Baire space.

Proof. Fix n ≥ 1. Since T is natural, DMC
(o)
X ,[n] is a compact subset of (DMC

(o)
X ,∗, T ).

But T is Hausdorff, so DMC
(o)
X ,[n] is a closed subset of (DMC

(o)
X ,∗, T ). Therefore,

DMC
(o)
X ,∗ \DMC

(o)
X ,[n] is open.

On the other hand, Corollary 11.4 shows that the interior of DMC
(o)
X ,[n] in the

space (DMC
(o)
X ,∗, T ) is empty. Therefore, DMC

(o)
X ,∗ \DMC

(o)
X ,[n] is dense in the space

(DMC
(o)
X ,∗, T ).
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Now since

⋂
n≥1

(
DMC

(o)
X ,∗ \DMC

(o)
X ,[n]

)
= DMC

(o)
X ,∗ \

⎛
⎝⋃

n≥1

DMC
(o)
X ,[n]

⎞
⎠ = ø,

and since DMC
(o)
X ,∗ \DMC

(o)
X ,[n] is open and dense in (DMC

(o)
X ,∗, T ) for every n ≥ 1,

we conclude that (DMC
(o)
X ,∗, T ) is not a Baire space.

Corollary 11.5. If |X | ≥ 2, no natural topology on DMC
(o)
X ,∗ can be completely

metrizable.

Proof. The corollary follows from Proposition 11.5 and the fact that every com-
pletely metrizable topology is both Hausdorff and Baire.

Proposition 11.6. If |X | ≥ 2 and T is a Hausdorff natural topology, then the space

(DMC
(o)
X ,∗, T ) is not locally compact anywhere, i.e., for every Ŵ ∈ DMC

(o)
X ,∗, there is

no compact neighborhood of Ŵ in (DMC
(o)
X ,∗, T ).

Proof. Assume to the contrary that there exists a compact neighborhood K of Ŵ .
There exists an open set U such that Ŵ ∈ U ⊂ K.

Since K is compact and Hausdorff, it is a Baire space. Moreover, since U is an
open subset of K, U is also a Baire space.

Fix n ≥ 1. Since the interior of DMC
(o)
X ,[n] in (DMC

(o)
X ,∗, T ) is empty, the interior

of U ∩DMC
(o)
X ,[n] in U is also empty. Therefore, U \DMC

(o)
X ,[n] is dense in U . On the

other hand, since T is natural, DMC
(o)
X ,[n] is compact which implies that it is closed

because T is Hausdorff. Therefore, U \DMC
(o)
X ,[n] is open in U . Now since

⋂
n≥1

(
U \DMC

(o)
X ,[n]

)
= U \

⎛
⎝⋃

n≥1

DMC
(o)
X ,[n]

⎞
⎠ = ø,

and since U \ DMC
(o)
X ,[n] is open and dense in U for every n ≥ 1, U is not Baire,

which is a contradiction. Therefore, there is no compact neighborhood of Ŵ in

(DMC
(o)
X ,∗, T ).

11.5.2 Strong Topology on DMC
(o)
X ,∗

The first natural topology that we study is the strong topology T (o)
s,X ,∗ on DMC

(o)
X ,∗,

which is the finest natural topology.
Since the spaces {DMCX ,[n]}n≥1 are disjoint and since there is no a priori way to

(topologically) compare channels in DMCX ,[n] with channels in DMCX ,[n′] for n �= n′,
the “most natural” topology that we can define on DMCX ,∗ is the disjoint union

topology Ts,X ,∗ :=
⊕
n≥1

TX ,[n]. Clearly, the space (DMCX ,∗, Ts,X ,∗) is disconnected.

Moreover, Ts,X ,∗ is metrizable because it is the disjoint union of metrizable spaces.
It is also σ-compact because it is the union of countably many compact spaces.
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We added the subscript s to emphasize the fact that Ts,X ,∗ is a strong topology
(remember that the disjoint union topology is the finest topology that makes the
canonical injections continuous).

Definition 11.4. We define the strong topology T (o)
s,X ,∗ on DMC

(o)
X ,∗ as the quotient

topology Ts,X ,∗/R
(o)
X ,∗.

We call open and closed sets in (DMC
(o)
X ,∗, T

(o)
s,X ,∗) as strongly open and strongly

closed sets respectively.

Let Proj : DMCX ,∗ → DMC
(o)
X ,∗ be the projection onto the R

(o)
X ,∗-equivalence

classes, and for every n ≥ 1 let Projn : DMCX ,[n] → DMC
(o)
X ,[n] be the projection

onto the R
(o)
X ,[n]-equivalence classes. Due to the identifications that we made at the

beginning of Section 11.5, we have Proj(W ) = Projn(W ) for every W ∈ DMCX ,[n].

Therefore, for every U ⊂ DMC
(o)
X ,∗, we have

Proj−1(U) =
∐
n≥1

Proj−1
n (U ∩DMC

(o)
X ,[n]).

Hence,

U ∈ T (o)
s,X ,∗

(a)⇔ Proj−1(U) ∈ Ts,X ,∗
(b)⇔ Proj−1(U) ∩DMCX ,[n] ∈ TX ,[n], ∀n ≥ 1

⇔

⎛
⎝∐

n′≥1

Proj−1
n′ (U ∩DMC

(o)
X ,[n′])

⎞
⎠ ∩DMCX ,[n] ∈ TX ,[n], ∀n ≥ 1

⇔ Proj−1
n (U ∩DMC

(o)
X ,[n]) ∈ TX ,[n], ∀n ≥ 1

(c)⇔ U ∩DMC
(o)
X ,[n] ∈ T (o)

X ,[n], ∀n ≥ 1,

where (a) and (c) follow from the properties of the quotient topology, and (b) follows
from the properties of the disjoint union topology.

We conclude that U ⊂ DMC
(o)
X ,∗ is strongly open in DMC

(o)
X ,∗ if and only if

U ∩DMC
(o)
X ,[n] is open in DMC

(o)
X ,[n] for every n ≥ 1. This shows that the topology on

DMC
(o)
X ,[n] that is inherited from (DMC

(o)
X ,∗, T

(o)
s,X ,∗) is exactly T (o)

X ,[n]. Therefore, T
(o)
s,X ,∗

is a natural topology. On the other hand, if T is an arbitrary natural topology and

U ∈ T , then U ∩DMC
(o)
X ,[n] is open in DMC

(o)
X ,[n] for every n ≥ 1, so U ∈ T (o)

s,X ,∗. We

conclude that T (o)
s,X ,∗ is the finest natural topology.

We can also characterize the strongly closed subsets of DMC
(o)
X ,∗ in terms of the
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closed sets of the DMC
(o)
X ,[n] spaces:

F is strongly closed in DMC
(o)
X ,∗

⇔ DMC
(o)
X ,∗ \F is strongly open in DMC

(o)
X ,∗

⇔
(
DMC

(o)
X ,∗ \F

)
∩DMC

(o)
X ,[n] is open in DMC

(o)
X ,[n], ∀n ≥ 1

⇔ DMC
(o)
X ,[n] \

(
F ∩DMC

(o)
X ,[n]

)
is open in DMC

(o)
X ,[n], ∀n ≥ 1

⇔ F ∩DMC
(o)
X ,[n] is closed in DMC

(o)
X ,[n], ∀n ≥ 1.

Since DMC
(o)
X ,[n] is metrizable for every n ≥ 1, it is also normal. We can use this

fact to prove that the strong topology on DMC
(o)
X ,∗ is normal:

Lemma 11.5. (DMC
(o)
X ,∗, T

(o)
s,X ,∗) is normal.

Proof. See Appendix 11.10.3.

The following theorem shows that the strong topology satisfies a few desirable
properties.

Theorem 11.4. (DMC
(o)
X ,∗, T

(o)
s,X ,∗) is a compactly generated, sequential and T4 space.

Proof. Since (DMCX ,∗, Ts,X ,∗) is metrizable, it is sequential. Therefore, the space

(DMC
(o)
X ,∗, T

(o)
s,X ,∗), which is the quotient of a sequential space, is sequential.

Let us now show that DMC
(o)
X ,∗ is T4. Fix Ŵ ∈ DMC

(o)
X ,∗. For every n ≥ 1,

{Ŵ} ∩ DMC
(o)
X ,[n] is either {Ŵ} or ø depending on whether Ŵ ∈ DMC

(o)
X ,[n] or not.

Since DMC
(o)
X ,[n] is metrizable, it is T1 and so singletons are closed in DMC

(o)
X ,[n]. We

conclude that in all cases, {Ŵ} ∩ DMC
(o)
X ,[n] is closed in DMC

(o)
X ,[n] for every n ≥ 1.

Therefore, {Ŵ} is strongly closed in DMC
(o)
X ,∗. This shows that (DMC

(o)
X ,∗, T

(o)
s,X ,∗) is

T1. On the other hand, Lemma 11.5 shows that (DMC
(o)
X ,∗, T

(o)
s,X ,∗) is normal. This

means that (DMC
(o)
X ,∗, T

(o)
s,X ,∗) is T4, which implies that it is Hausdorff.

Now since (DMCX ,∗, Ts,X ,∗) is metrizable, it is compactly generated. On the

other hand, the quotient space (DMC
(o)
X ,∗, T

(o)
s,X ,∗) was shown to be Hausdorff. We

conclude that (DMC
(o)
X ,∗, T

(o)
s,X ,∗) is compactly generated.

Corollary 11.6. If |X | ≥ 2, (DMC
(o)
X ,∗, T

(o)
s,X ,∗) is not locally compact anywhere.

Proof. Since T (o)
s,X ,∗ is a natural Hausdorff topology, Proposition 11.6 implies that

T (o)
s,X ,∗ is not locally compact anywhere.

Although (DMCX ,∗, Ts,X ,∗) is second-countable (because it is a σ-compact metriz-

able space), the quotient space (DMC
(o)
X ,∗, T

(o)
s,X ,∗) is not second-countable. In fact,

we will show later that (DMC
(o)
X ,∗, T

(o)
s,X ,∗) fails to be first-countable (and hence it is
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not metrizable). This is one manifestation of the strength of the topology T (o)
s,X ,∗. In

order to show that (DMC
(o)
X ,∗, T

(o)
s,X ,∗) is not first-countable, we need to characterize

the converging sequences in (DMC
(o)
X ,∗, T

(o)
s,X ,∗).

A sequence (Ŵn)n≥1 in DMC
(o)
X ,∗ is said to be rank-bounded if rank(Ŵn) is

bounded. (Ŵn)n≥1 is rank-unbounded if it is not bounded.

The following proposition shows that every rank-unbounded sequence does not

converge in (DMC
(o)
X ,∗, T

(o)
s,X ,∗).

Proposition 11.7. A sequence (Ŵn)n≥0 converges in (DMC
(o)
X ,∗, T

(o)
s,X ,∗) if and only

if there exists m ≥ 1 such that Ŵn ∈ DMC
(o)
X ,[m] for every n ≥ 0, and (Ŵn)n≥0

converges in (DMC
(o)
X ,[m], T

(o)
X ,[m]).

Proof. Assume that a sequence (Ŵn)n≥0 in DMC
(o)
X ,∗ is rank-unbounded. This can-

not happen unless |X | ≥ 2. In order to show that (Ŵn)n≥0 does not converge,
it is sufficient to show that there exists a subsequence of (Ŵn)n≥0 which does not
converge.

Let (Ŵnk
)k≥0 be any subsequence of (Ŵn)n≥0 where the rank strictly increases,

i.e., rank(Wnk
) < rank(Wnk′ ) for every 0 ≤ k < k′. We will show that (Ŵnk

)k≥0

does not converge.

Assume to the contrary that (Ŵnk
)k≥0 converges to Ŵ ∈ DMC

(o)
X ,∗. Define the

set

A = {Ŵnk
: k ≥ 0} \ {Ŵ}.

For every m ≥ 1, the set A ∩ DMC
(o)
X ,[m] contains finitely many points. This means

that A ∩ DMC
(o)
X ,[m] is a finite union of singletons (which are closed in DMC

(o)
X ,[m]),

hence A ∩ DMC
(o)
X ,[m] is closed in DMC

(o)
X ,[m] for every m ≥ 1. Therefore A is closed

in (DMC
(o)
X ,∗, T

(o)
s,X ,∗).

Now define U = DMC
(o)
X ,∗ \A. Since A is strongly closed, U is strongly open.

Moreover, U contains Ŵ , so U is a neighborhood of Ŵ . Therefore, there exists
k0 ≥ 0 such that Ŵnk

∈ U for every k ≥ k0. Now since the rank of (Ŵnk
)k≥0 strictly

increases, we can find k ≥ k0 such that rank(Ŵnk
) > rank(Ŵ ). This means that

Ŵnk
�= Ŵ and so Ŵnk

∈ A. Therefore, Ŵnk
/∈ U which is a contradiction.

We conclude that every converging sequence in (DMC
(o)
X ,∗, T

(o)
s,X ,∗) must be rank-

bounded.

Now let (Ŵn)n≥0 be a rank-bounded sequence in DMC
(o)
X ,∗, i.e., there existsm ≥ 1

such that Ŵn ∈ DMC
(o)
X ,[m] for every n ≥ 0. If (Ŵn)n≥0 converges in (DMC

(o)
X ,∗, T

(o)
s,X ,∗)

then it converges in DMC
(o)
X ,[m] since DMC

(o)
X ,[m] is strongly closed.

Conversely, let us assume that (Ŵn)n≥0 converges in (DMC
(o)
X ,[m], T

(o)
X ,[m]) to Ŵ ∈

DMC
(o)
X ,[m]. Let O be any neighborhood of Ŵ in (DMC

(o)
X ,∗, T

(o)
s,X ,∗). There exists

a strongly open set U such that Ŵ ∈ U ⊂ O. Since U ∩ DMC
(o)
X ,[m] is open in

(DMC
(o)
X ,[m], T

(o)
X ,[m]), there exists n0 > 0 such that Ŵn ∈ U ∩ DMC

(o)
X ,[m] for every
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n ≥ n0. This implies that Ŵn ∈ O for every n ≥ n0. Therefore (Ŵn)n≥0 converges

to Ŵ in (DMC
(o)
X ,∗, T

(o)
s,X ,∗).

Corollary 11.7. If |X | ≥ 2, (DMC
(o)
X ,∗, T

(o)
s,X ,∗) is not first-countable anywhere, i.e.,

for every Ŵ ∈ DMC
(o)
X ,∗, there is no countable neighborhood basis of Ŵ .

Proof. Fix Ŵ ∈ DMC
(o)
X ,∗ and assume to the contrary that Ŵ admits a countable

neighborhood basis {On}n≥1 in (DMC
(o)
X ,∗, T

(o)
s,X ,∗). For every n ≥ 1, let U ′

n be a

strongly open set such that Ŵ ∈ U ′
n ⊂ On. Define Un =

n⋂
i=1

U ′
i . Un is strongly

open because it is the intersection of finitely many strongly open sets. Moreover,
Un ⊂ Om for every n ≥ m.

For every n ≥ 1, Proposition 11.4 implies that Un (which is non-empty and

strongly open) is rank-unbounded, so it cannot be contained in DMC
(o)
X ,[n]. Hence

there exists Ŵn ∈ Un such that Ŵn /∈ DMC
(o)
X ,[n].

Since Ŵn /∈ DMC
(o)
X ,[n], we have rank(Ŵn) > n for every n ≥ 1. Therefore,

(Ŵn)n≥1 is rank-unbounded. Proposition 11.7 implies that (Ŵn)n≥1 does not con-

verge in (DMC
(o)
X ,∗, T

(o)
s,X ,∗).

Now let O be a neighborhood of Ŵ in (DMC
(o)
X ,∗, T

(o)
s,X ,∗). Since {On}n≥1 is a

neighborhood basis for Ŵ , there exists n0 ≥ 1 such that On0 ⊂ O. For every
n ≥ n0, we have Ŵn ∈ Un ⊂ On0 ⊂ O. This means that (Ŵn)n≥1 converges to Ŵ in

(DMC
(o)
X ,∗, T

(o)
s,X ,∗) which is a contradiction. Therefore, Ŵ does not admit a countable

neighborhood basis in (DMC
(o)
X ,∗, T

(o)
s,X ,∗).

Compact Subspaces of (DMC
(o)
X ,∗, T

(o)
s,X ,∗)

It is well known that a compact subset of R is compact if and only if it is closed
and bounded. The following proposition shows that a similar statement holds for

(DMC
(o)
X ,∗, T

(o)
s,X ,∗).

Proposition 11.8. A subspace of (DMC
(o)
X ,∗, T

(o)
s,X ,∗) is compact if and only if it is

rank-bounded and strongly closed.

Proof. If |X | = 1, all channels are output-equivalent to each other and so DMC
(o)
X ,∗ =

DMC
(o)
X ,[1] consists of a single point. Therefore, all subsets of DMC

(o)
X ,∗ are rank-

bounded, compact and strongly closed.

Assume now that |X | ≥ 2. Let A be a subspace of (DMC
(o)
X ,∗, T

(o)
s,X ,∗). If A is

rank-bounded and strongly closed, then there exists n ≥ 1 such that A ⊂ DMC
(o)
X ,[n].

Since A is strongly closed, then A = A ∩ DMC
(o)
X ,[n] is closed in DMC

(o)
X ,[n] which is

compact. Therefore, A is compact.

Now let A be a compact subspace of (DMC
(o)
X ,∗, T

(o)
s,X ,∗). Since (DMC

(o)
X ,∗, T

(o)
s,X ,∗)

is Hausdorff, A is strongly closed. It remains to show that A is rank-bounded.
Assume to the contrary that A is rank-unbounded. We can construct a sequence

(Ŵn)n≥0 in A where the rank is strictly increasing, i.e., rank(Ŵn) < rank(Ŵn′) for
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every 0 ≤ n < n′. Since the rank of (Ŵn)n≥0 is strictly increasing, every subsequence
of (Ŵn)n≥0 is rank-unbounded. Proposition 11.7 implies that every subsequence of

(Ŵn)n≥0 does not converge in (DMC
(o)
X ,∗, T

(o)
s,X ,∗). On the other hand, we have:

• A is countably compact because it is compact.

• Since A is strongly closed and since (DMC
(o)
X ,∗, T

(o)
s,X ,∗) is a sequential space, A

is sequential.

• A is Hausdorff because (DMC
(o)
X ,∗, T

(o)
s,X ,∗) is Hausdorff.

Now since every countably compact sequential Hausdorff space is sequentially com-
pact [78], Amust be sequentially compact. Therefore, (Ŵn)n≥0 has a converging sub-
sequence which is a contradiction. We conclude that A must be rank-bounded.

11.5.3 The Noisiness Metric on DMC
(o)
X ,∗

Theorem 11.3 implies that DMC
(o)
X ,[n] is metrizable for every n ≥ 1. One might

ask whether the spaces DMC
(o)
X ,[n] are “simultaneously metrizable” in the sense that

we can define a metric dn on DMC
(o)
X ,[n] for every n ≥ 1 in such a way that dn

is the restriction of dn+1 for every n ≥ 1. If this is the case, we can then define

a metric on DMC
(o)
X ,∗ =

⋃
n≥1

DMC
(o)
X ,[n] as d(Ŵ , Ŵ ′) = dn(Ŵ , Ŵ ′) for any n ≥ 1

satisfying Ŵ , Ŵ ′ ∈ DMC
(o)
X ,[n]. In this section we will show that such metrics can be

constructed.

Noisiness Metric on DMC
(o)
X ,Y

For every m ≥ 1, let Δ[m]×X be the space of probability distributions on [m]×X .
Let Y be a finite set and let W ∈ DMCX ,Y . For every p ∈ Δ[m]×X , define

Pc(p,W ) as follows:

Pc(p,W ) = sup
D∈DMCY,[m]

∑
u∈[m],
x∈X ,
y∈Y

p(u, x)W (y|x)D(u|y). (11.1)

Pc(p,W ) can be interpreted as follows: Let (U,X) be a pair of random variables
distributed according to p, send X through the channel W , and let Y be the output
of W in such a way that U −X − Y is a Markov chain. Let Û be the estimate of
U obtained by applying a random decoder D ∈ DMCY,[m]. In this interpretation, p
can be seen as a random encoder. The probability of correctly guessing U by using
the decoder D is given by ∑

u∈[m],
x∈X ,
y∈Y

p(u, x)W (y|x)D(u|y).

Therefore, Pc(p,W ) is the optimal probability of correctly guessing U from Y . Note
that we can take the supremum in (11.1) over only deterministic channels D ∈
DMCY,[m] because we can always choose an optimal decoder that is deterministic.
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It is well known that ifW is output-degraded fromW ′, then Pc(p,W ) ≤ Pc(p,W
′)

for every p ∈ Δ[m]×X and every m ≥ 1. It was shown in [70] that the converse is also
true. Therefore, W is output-equivalent to W ′ if and only if Pc(p,W ) = Pc(p,W

′)
for every p ∈ Δ[m]×X and every m ≥ 1. This shows that the quantity Pc(p,W )

depends only on the R
(o)
X ,Y -equivalence class of W . Therefore, if Ŵ ∈ DMC

(o)
X ,Y , we

can define Pc(p, Ŵ ) := Pc(p,W
′) for any W ′ ∈ Ŵ .

Define the noisiness distance d
(o)
X ,Y : DMC

(o)
X ,Y ×DMC

(o)
X ,Y → R+ as follows:

d
(o)
X ,Y(Ŵ1, Ŵ2) = sup

m≥1,
p∈Δ[m]×X

|Pc(p, Ŵ1)− Pc(p, Ŵ2)|.

It is easy to see that 0 ≤ d
(o)
X ,Y(Ŵ1, Ŵ2) ≤ 1 for every Ŵ1, Ŵ2 ∈ DMC

(o)
X ,Y . Moreover,

we have:

• d
(o)
X ,Y(Ŵ , Ŵ ) = 0 for every Ŵ ∈ DMC

(o)
X ,Y .

• For every Ŵ1, Ŵ2 ∈ DMC
(o)
X ,Y , if d

(o)
X ,Y(Ŵ1, Ŵ2) = 0, then Pc(p, Ŵ1) = Pc(p, Ŵ2)

for every p ∈ Δ[m]×X and every m ≥ 1, which implies that the channels in Ŵ1

are output-equivalent to the channels in Ŵ2, hence Ŵ1 = Ŵ2.

• d
(o)
X ,Y(Ŵ1, Ŵ2) = d

(o)
X ,Y(Ŵ2, Ŵ1) for every Ŵ1, Ŵ2 ∈ DMC

(o)
X ,Y .

• For every Ŵ1, Ŵ2, Ŵ3 ∈ DMC
(o)
X ,Y , we have

d
(o)
X ,Y(Ŵ1, Ŵ3) ≤ d

(o)
X ,Y(Ŵ1, Ŵ2) + d

(o)
X ,Y(Ŵ2, Ŵ3).

This shows that d
(o)
X ,Y is a metric on DMC

(o)
X ,Y . d

(o)
X ,Y is called the noisiness metric

because it compares the “noisiness” of Ŵ1 with that of Ŵ2: If Pc(p, Ŵ1) is close to
Pc(p, Ŵ2) for every random encoder p, then Ŵ1 and Ŵ2 have close “noisiness levels”.

A natural question to ask is whether the metric topology on DMC
(o)
X ,Y that is

induced by d
(o)
X ,Y is the same as the quotient topology T (o)

X ,Y that we defined in Section
11.4.1. To answer this question, we need the following lemma.

Lemma 11.6. For every W1,W2 ∈ DMCX ,Y , we have:

d
(o)
X ,Y(Ŵ1, Ŵ2) ≤ dX ,Y(W1,W2),

where Ŵ1 and Ŵ2 are the R
(o)
X ,Y -equivalence classes of W1 and W2 respectively.

Proof. See Appendix 11.10.4.

Proposition 11.9. (DMC
(o)
X ,Y , d

(o)
X ,Y) and (DMC

(o)
X ,Y , T

(o)
X ,Y) are topologically equiva-

lent.

Proof. Consider the projection mapping Proj : DMCX ,Y → DMC
(o)
X ,Y defined as

Proj(W ) = Ŵ , where Ŵ is the R
(o)
X ,Y -equivalence class of W .
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Lemma 11.6 implies that Proj is a continuous mapping from (DMCX ,Y , dX ,Y)
to (DMC

(o)
X ,Y , d

(o)
X ,Y). Now since Proj(W ) = Proj(W ′) whenever WR

(o)
X ,YW

′, Lemma

11.1 implies that the identity mapping id : DMC
(o)
X ,Y → DMC

(o)
X ,Y is continuous from

(DMC
(o)
X ,Y , T

(o)
X ,Y) to (DMC

(o)
X ,Y , d

(o)
X ,Y). We have:

• For every U ⊂ DMC
(o)
X ,Y that is open in (DMC

(o)
X ,Y , d

(o)
X ,Y), U = id−1(U) ∈ T (o)

X ,Y
because id is a continuous mapping from (DMC

(o)
X ,Y , T

(o)
X ,Y) to (DMC

(o)
X ,Y , d

(o)
X ,Y).

• For every U ∈ T (o)
X ,Y , the set DMC

(o)
X ,Y \U is closed in (DMC

(o)
X ,Y , T

(o)
X ,Y) which

is compact. Therefore, DMC
(o)
X ,Y \U is a compact subset of (DMC

(o)
X ,Y , T

(o)
X ,Y).

Now since id is continuous from (DMC
(o)
X ,Y , T

(o)
X ,Y) to (DMC

(o)
X ,Y , d

(o)
X ,Y), the set

DMC
(o)
X ,Y \U = id(DMC

(o)
X ,Y \U) is a compact subspace of (DMC

(o)
X ,Y , d

(o)
X ,Y)

which is Hausdorff (because it is metric). This shows that DMC
(o)
X ,Y \U is

closed in (DMC
(o)
X ,Y , d

(o)
X ,Y), which implies that U is open in (DMC

(o)
X ,Y , d

(o)
X ,Y).

We conclude that U ⊂ DMC
(o)
X ,Y is open in (DMC

(o)
X ,Y , d

(o)
X ,Y) if and only if it is open

in (DMC
(o)
X ,Y , T

(o)
X ,Y).

Corollary 11.8. (DMC
(o)
X ,Y , d

(o)
X ,Y) is a compact path-connected metric space.

The reader might be wondering why we considered and studied the quotient

topology T (o)
X ,Y while it is possible to explicitly define a metric on the space DMC

(o)
X ,Y .

There are two reasons:

• The definition of d
(o)
X ,Y does not seem to be intuitive at the first sight and it

is not clear why one would adopt it as a standard metric on DMC
(o)
X ,Y . Just

being a metric is not convincing enough. On the other hand, the existence
of a natural standard topology on DMCX ,Y makes the quotient topology the
most natural starting point.

• If one wants to show that a mapping f : DMC
(o)
X ,Y → S is continuous from

(DMC
(o)
X ,Y , d

(o)
X ,Y) to a topological space (S,V), it is much easier to prove it

through the quotient topology T (o)
X ,Y rather than proving it directly using the

metric d
(o)
X ,Y . Therefore, it is important to show the topological equivalence

between (DMC
(o)
X ,Y , d

(o)
X ,Y) and (DMC

(o)
X ,Y , T

(o)
X ,Y).

It is worth mentioning that in the proof of Proposition 11.9, the only topological

property of (DMC
(o)
X ,Y , T

(o)
X ,Y) that we used is its compactness. This means that we

do not need Lemma 11.3 to prove Theorem 11.3. An alternative proof of Theo-
rem 11.3 would be to show the compactness and path-connectedness by inheriting

those properties from DMCX ,Y , and then show that (DMC
(o)
X ,Y , T

(o)
X ,Y) is topologically

equivalent to (DMC
(o)
X ,Y , d

(o)
X ,Y) as in Proposition 11.9.

The main reason why we restricted ourselves to topological methods in Section
11.4.1 is because they might be useful if one wants to generalize our results to spaces
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of non-discrete channels. It might not be easy to find an explicit metric for those
spaces, or even worse, those spaces might fail to be metrizable. Therefore, one might
want to prove weaker topological properties such as being Hausdorff and/or regular.
In such cases, the methods of Section 11.4.1 might be useful.

Noisiness Metric on DMC
(o)
X ,∗

For every Ŵ1, Ŵ2 ∈ DMC
(o)
X ,∗, define the noisiness metric on DMC

(o)
X ,∗ as follows:

d
(o)
X ,∗(Ŵ , Ŵ ′) := d

(o)
X ,[n](Ŵ , Ŵ ′) where n ≥ 1 satisfies Ŵ , Ŵ ′ ∈ DMC

(o)
X ,[n] .

d
(o)
X ,∗(Ŵ , Ŵ ′) is well defined because d

(o)
X ,[n](Ŵ , Ŵ ′) does not depend on n ≥ 1 as long

as Ŵ , Ŵ ′ ∈ DMC
(o)
X ,[n]. We can also express d

(o)
X ,∗ as follows:

d
(o)
X ,∗(Ŵ1, Ŵ2) = sup

m≥1,
p∈Δ[m]×X

|Pc(p, Ŵ1)− Pc(p, Ŵ2)|.

It is easy to see that d
(o)
X ,∗ is a metric on DMC

(o)
X ,∗. Let T

(o)
X ,∗ be the metric topology

on DMC
(o)
X ,∗ that is induced by d

(o)
X ,∗. We call T (o)

X ,∗ the noisiness topology on DMC
(o)
X ,∗.

Clearly, T (o)
X ,∗ is natural because the restriction of d

(o)
X ,∗ on DMC

(o)
X ,[n] is exactly

d
(o)
X ,[n], and the topology induced by d

(o)
X ,[n] is T

(o)
X ,[n]. If |X | ≥ 2, Proposition 11.6 and

Corollary 11.5 imply that (DMC
(o)
X ,∗, d

(o)
X ,∗) is not complete nor locally compact.

Since T (o)
s,X ,∗ is the finest natural topology, T (o)

s,X ,∗ is finer than T (o)
X ,∗. On the

other hand, if |X | ≥ 2, T (o)
X ,∗ is metrizable and T (o)

s,X ,∗ is not (because it is not first-

countable). Therefore, if |X | ≥ 2, the strong topology T (o)
s,X ,∗ is strictly finer than

the noisiness topology T (o)
X ,∗.

It is worth mentioning that Propositions 11.7 and 11.8 do not hold for the space

(DMC
(o)
X ,∗, T

(o)
X ,∗). It is easy to find a rank-unbounded sequence {Ŵn}n≥0 which con-

verges in (DMC
(o)
X ,∗, T

(o)
X ,∗) to a point Ŵ ∈ DMC

(o)
X ,∗. The set {Ŵn : n ≥ 0} ∪ {Ŵ} is

clearly compact and rank-unbounded.

11.5.4 Topologies from Blackwell Measures

We saw at the beginning of Section 11.5 that for every Ŵ ∈ DMC
(o)
X ,∗, a Blackwell

measure MPŴ on ΔX is defined. Moreover, Proposition 10.2 implies that Ŵ is

uniquely determined by MPŴ . Therefore, each R
(o)
X ,∗-equivalence class in DMC

(o)
X ,∗

can be identified with its Blackwell measure. On the other hand, Proposition 10.1
shows that the collection of Blackwell measures of the channels with input alphabet
X is the same as the collection of balanced and finitely supported meta-probability
measures on X .

Therefore, the mapping Ŵ → MPŴ is a bijection from DMC
(o)
X ,∗ to MPbf (X ).

We call this mapping the canonical bijection from DMC
(o)
X ,∗ to MPbf (X ). Similarly,

the inverse mapping is called the canonical bijection from MPbf (X ) to DMC
(o)
X ,∗.
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Since ΔX is a metric space, there are many standard ways to construct topologies
on MP(X ). If we choose any of these standard topologies on MP(X ) and then

relativize it to the subspace MPbf (X ), we can construct topologies on DMC
(o)
X ,∗

through the canonical bijection.

We saw in Section 11.2.3 that there are three topologies that can be constructed
on MP(X ): The total-variation topology, the strong convergence topology, and the
weak-∗ topology. But since every measure in MPbf (X ) is a finitely supported mea-
sure, strong convergence and total-variation convergence are equivalent inMPbf (X )
(see Section 11.2.3). Therefore, it is sufficient to study the total-variation topology
and the weak-∗ topology. We will start by studying the weak-∗ topology.

Weak-∗ Topology

We first note that in the case of binary input channels, the weak-∗ topology is
equivalent to the topology induced by the convergence in distribution of D-densities
(or L-densities, or G-densities) that was defined in [69]. Note also that the weak-∗
topology is equivalent to the topology that is induced by the Le Cam deficiency
distance [75].

Consider the topology on DMC
(o)
X ,∗ that is obtained by transporting the weak-∗

topology from MPbf (X ) to DMC
(o)
X ,∗ through the canonical bijection Fcan, i.e., we

let U ⊂ DMC
(o)
X ,∗ be open if and only if F−1

can(U) is weakly-∗ open. We will call this

topology the weak-∗ topology on DMC
(o)
X ,∗.

In this section, we show that the weak-∗ topology is the same as the noisiness

topology T (o)
X ,∗. We will show this using the Wasserstein metric.

Since ΔX is complete and separable, the 1st-Wasserstein distance metrizes the
weak-∗ topology [80]. Therefore, in order to show that the weak-∗ topology and

the noisiness topology T (o)
X ,∗ are the same, it is sufficient to show that the canonical

bijection Fcan from (MPbf (X ),W1) to (DMC
(o)
X ,∗, d

(o)
X ,∗) is a homeomorphism.

Note that since ΔX is compact, the metric space (MP(X ),W1) is compact as
well [80].

Lemma 11.7. For every Ŵ , Ŵ ′ ∈ DMC
(o)
X ,∗, we have

d
(o)
X ,∗(Ŵ , Ŵ ′) ≤ |X | ·W1(MPŴ ,MPŴ ′).

Proof. See Appendix 11.10.5.

Lemma 11.7 can also be expressed as follows: For every MP,MP′ ∈ MPbf (X ),

we have d
(o)
X ,∗(Fcan(MP), Fcan(MP′)) ≤ |X | · W1(MP,MP′). This shows that the

canonical bijection Fcan is continuous. Therefore, the weak-∗ topology is at least

as strong as T (o)
X ,∗. It remains to show that F−1

can is continuous. One approach to

prove the continuity of F−1
can is to find a lower bound of d

(o)
X ,∗(Ŵ , Ŵ ′) in terms of the

Wasserstein metric, but this is tedious. We will follow another approach in order to
show that the canonical bijection Fcan is a homeomorphism. We need the following
proposition:
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Proposition 11.10. The weak-∗ closure of MPbf (X ) is MPb(X ).

Proof. See appendix 11.10.6.

Theorem 11.5. The weak-∗ topology on DMC
(o)
X ,∗ is the same as the noisiness topol-

ogy T (o)
X ,∗.

Proof. Let (DMC
(o)
X ,∗, d

(o)
X ,∗) be a completion of (DMC

(o)
X ,∗, d

(o)
X ,∗). Since MPb(X ) is

the weak-∗ closure of MPbf (X ) (Proposition 11.10), we can extend the canonical

bijection Fcan : MPbf (X ) → DMC
(o)
X ,∗ to a mapping F : MPb(X ) → DMC

(o)
X ,∗ as

follows:
F (MP) = lim

n→∞Fcan(MPn), (11.2)

where (MPn)n≥0 is any sequence in MPbf (X ) that converges to MP ∈ MPb(X ),

and where the limit in (11.2) is taken inside DMC
(o)
X ,∗. In order to show that F is

well defined, we have to make sure that the limit in (11.2) exists and that it does
not depend on the sequence (MPn)n≥0.

Since the sequence (MPn)n≥0 converges, it is a Cauchy sequence. Therefore,
for every ε > 0 there exists n0 > 0 such that for every n1, n2 ≥ 1 we have

W1(MPn1 ,MPn2) <
ε

|X | . By Lemma 11.7, we have

d
(o)
X ,∗(Fcan(MPn1), Fcan(MPn2)) = d

(o)
X ,∗(Fcan(MPn1), Fcan(MPn2))

≤ |X | ·W1(MPn1 ,MPn2) < ε.

Therefore, (Fcan(MPn))n≥0 is a Cauchy sequence in (DMC
(o)
X ,∗, d

(o)
X ,∗) which is com-

plete, hence the limit in (11.2) exists. Now assume that (MP′
n)n≥0 is another se-

quence in MPbf (X ) which converges to MP. We have:

lim
n→∞ d

(o)
X ,∗
(
Fcan(MPn), Fcan(MP′

n)
)
= lim

n→∞ d
(o)
X ,∗
(
Fcan(MPn), Fcan(MP′

n)
)

(a)

≤ lim
n→∞ |X | ·W1(MPn,MP′

n)
(b)
= 0,

where (a) follows from Lemma 11.7 and (b) follows from the fact that (MPn)n≥0

and (MP′
n)n≥0 converge to the same point. Therefore, the sequences (Fcan(MPn))n≥0

and (Fcan(MP′
n))n≥0 converge to the same point in DMC

(o)
X ,∗. We conclude that F

is well defined.
Now fix MP,MP′ ∈ MPb(X ) and let (MPn)n≥0 and (MP′

n)n≥0 be two sequences
in MPbf (X ) that converge to MP and MP′ respectively. We have:

d
(o)
X ,∗

(
F (MP), F (MP′)

)
= d

(o)
X ,∗

(
lim
n→∞Fcan(MPn), lim

n→∞Fcan(MP′
n)
)

(a)
= lim

n→∞ d
(o)
X ,∗(Fcan(MPn), Fcan(MP′

n))

= lim
n→∞ d

(o)
X ,∗(Fcan(MPn), Fcan(MP′

n))

(b)

≤ lim
n→∞ |X | ·W1(MPn,MP′

n)
(c)
= |X | ·W1(MP,MP′),
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where (a) and (c) follow from the fact that metric distances are continuous, and
(b) follows from Lemma 11.7. Therefore, F is continuous from (MPb(X ),W1) to

(DMC
(o)
X ,∗, d

(o)
X ,∗). Moreover, since MPb(X ) is weakly-∗ closed in MP(X ) which

is compact, MPb(X ) is compact under the weak-∗ topology. Therefore for ev-
ery weakly-∗ closed subset A of MPb(X ), A is compact and so F (A) is com-

pact in (DMC
(o)
X ,∗, d

(o)
X ,∗) which is Hausdorff. This implies that F (A) is closed in

(DMC
(o)
X ,∗, d

(o)
X ,∗) for every weakly-∗ closed subset A of MPb(X ). Therefore, F is

both continuous and closed. In particular, F (MPb(X )) is closed in (DMC
(o)
X ,∗, d

(o)
X ,∗).

But F (MPb(X )) ⊃ F (MPbf (X )) = Fcan(MPbf (X )) = DMC
(o)
X ,∗, and DMC

(o)
X ,∗ is

dense in (DMC
(o)
X ,∗, d

(o)
X ,∗). Therefore, we must have F (MPb(X )) = DMC

(o)
X ,∗. We

conclude that F is a homeomorphism from (MPb(X ),W1) to (DMC
(o)
X ,∗, d

(o)
X ,∗).

Now since F
(
MPbf (X )

)
= DMC

(o)
X ,∗, the restriction of F to MPbf (X ) is a

homeomorphism from (MPbf (X ),W1) to (DMC
(o)
X ,∗, d

(o)
X ,∗). But the restriction of F

to MPbf (X ) is nothing but Fcan. We conclude that the canonical bijection is a

homeomorphism from (MPbf (X ),W1) to (DMC
(o)
X ,∗, d

(o)
X ,∗). Therefore, the weak-∗

topology on DMC
(o)
X ,∗ is the same as the noisiness topology T (o)

X ,∗.

Since (MPb(X ),W1) is homeomorphic to (DMC
(o)
X ,∗, d

(o)
X ,∗), we can interpret this

by saying that DMC
(o)
X ,∗ is the space of all output-equivalent channels with input

alphabet X and arbitrary output alphabet (with arbitrary cardinality). Moreover,

since DMC
(o)
X ,∗ is dense in (DMC

(o)
X ,∗, d

(o)
X ,∗), we can say that any channel with input

alphabet X can be approximated in the noisiness/weak-∗ sense by a channel having
a finite output alphabet.

Total-Variation topology

The total-variation metric distance d
(o)
TV,X ,∗ on DMC

(o)
X ,∗ is defined as

d
(o)
TV,X ,∗(Ŵ , Ŵ ′) = ‖MPŴ −MPŴ ′‖TV .

The total-variation topology T (o)
TV,X ,∗ is the metric topology that is induced by

d
(o)
TV,X ,∗ on DMC

(o)
X ,∗. We will refer to the open sets (respectively, closed sets, compact

sets, . . . ) of T (o)
TV,X ,∗ as TV-open (respectively, TV-closed, TV-compact, . . . ). The

same notation is also used for open sets of MPbf (X ), MPb(X ) and MP(X ) in the
total-variation topology.

Proposition 11.11. If |X | ≥ 2 and n ≥ 2, then DMC
(o)
X ,[n] is not TV-compact in

DMC
(o)
X ,∗.

Proof. Let p, p′ ∈ ΔX be such that p �= p′ and
1

2
p +

1

2
p′ = πX , where πX is the

uniform distribution on X . For every n ≥ 1, define pn, p
′
n ∈ ΔX as

pn =
1

n
p+

(
1− 1

n

)
πX ,
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and

p′n =
1

n
p′ +

(
1− 1

n

)
πX .

Clearly,
1

2
pn +

1

2
p′n = πX for every n ≥ 1.

Now let MPn = 1
2δpn + 1

2δp′n , where δpn and δp′n are Dirac measures centered at
pn and p′n respectively. Clearly, MPn is balanced and finitely supported for every
n ≥ 1. Let Ŵn = Fcan(MPn). We have

| supp(MPŴn
)| = | supp(MPn)| = |{pn, p′n}| = 2.

Therefore, Ŵn ∈ DMC
(o)
X ,[2] ⊂ DMC

(o)
X ,[m] for every n ≥ 1 and every m ≥ 2. It is easy

to see that d
(o)
TV,X ,∗(Ŵn1 , Ŵn2) = ‖MPn1 −MPn2 ‖TV = 1 for every n2 > n1 ≥ 1.

Therefore, no subsequence of (MPn)n≥1 can converge. This means that DMC
(o)
X ,[m]

is not sequentially compact for any m ≥ 2. Now since T (o)
TV,X ,∗ is metrizable, we

conclude that DMC
(o)
X ,[n] is not compact for any n ≥ 2.

Corollary 11.9. If |X | ≥ 2, then T (o)
TV,X ,∗ is not a natural topology.

Proof. If T (o)
TV,X ,∗ were natural, DMC

(o)
X ,[2] would be compact, and this is not the

case.

Since the noisiness topology is the same as the weak-∗ topology, T (o)
X ,∗ is coarser

than T (o)
TV,X ,∗. On the other hand, since T (o)

X ,∗ is natural and T (o)
TV,X ,∗ is not, T (o)

X ,∗ is

strictly coarser than T (o)
TV,X ,∗ when |X | ≥ 2.

Note that the sequence (MPn)n≥1 in the proof of Proposition 11.11 converges in

the strong topology because of Proposition 11.7. Therefore, T (o)
s,X ,∗ is not finer than

T (o)
TV,X ,∗.

Although T (o)
TV,X ,∗ is not a natural topology itself, it has many properties of

natural topologies.

Proposition 11.12. If |X | ≥ 2, every non-empty TV-open subset of DMC
(o)
X ,∗ is

rank-unbounded.

Proof. Let U be a non-empty TV-open set of DMC
(o)
X ,∗. Let Ŵ ∈ U and let ε > 0

be such that Ŵ ′ ∈ U whenever d
(o)
TV,X ,∗(Ŵ , Ŵ ′) < ε.

Let p, p′, (pn)n≥1 and (p′n)n≥1 be as in Proposition 11.11. For every n ≥ 1, define
MPn ∈ MP(X ) as follows:

MPn =
(
1− ε

4n

)
MPŴ +

ε

8n2
·

n∑
i=1

(δpi + δp′i).

Clearly, MPn is balanced and finitely supported, so MPn ∈ MPbf (X ). Moreover,

d
(o)
TV,X ,∗(Fcan(MPn), Ŵ ) = ‖MPn −MPŴ ‖TV ≤ ε

2n
< ε.
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Therefore, Fcan(MPn) ∈ U for every n ≥ 1. On the other hand, supp(MPn) ⊃
{pi, p′i : 1 ≤ i ≤ n}, which means that | supp(MPn)| ≥ 2n and so Fcan(MPn) /∈
DMC

(o)
X ,[n] for every n ≥ 1. We conclude that U is rank-unbounded.

Corollary 11.10. If |X | ≥ 2, the TV-interior of DMC
(o)
X ,[n] in DMC

(o)
X ,∗ is empty.

Note that the sequence (Fcan(MPn))n≥1 in the proof of Proposition 11.12 is
rank-unbounded and converges in total-variation to Ŵ . On the other hand, Propo-

sition 11.7 implies that (Fcan(MPn))n≥1 does not converge in (DMC
(o)
X ,∗, T

(o)
s,X ,∗). We

conclude that T (o)
TV,X ,∗ is not finer than T (o)

s,X ,∗.

Although DMC
(o)
X ,[n] is not TV-compact if |X | ≥ 2 and n ≥ 2, it is TV-complete:

Proposition 11.13. For every n ≥ 1, DMC
(o)
X ,[n] is TV-complete in DMC

(o)
X ,∗.

Proof. Let MPb,n(X ) be the set of balanced meta-probability measures whose sup-
port is of size at most n:

MPb,n(X ) = {MP ∈ MPb(X ) : | supp(MP)| ≤ n}.

Since (DMC
(o)
X ,[n], d

(o)
TV,X ,∗) is isometric to (MPb,n(X ), ‖·‖TV ), and since (MP(X ), ‖·

‖TV ) is complete, it is sufficient to show that MPb,n(X ) is TV-closed in MP(X ).
Let MP be in the TV-closure of MPb,n(X ). Since we are working in a metric

space, there exists a sequence (MPm)m≥0 in MPb,n(X ) that TV-converges to MP.
Assume that MP /∈ MPb,n(X ). There exist p1, . . . , pn+1 ∈ ΔX that are pairwise
different and which satisfy MP(pi) > 0 for every 1 ≤ i ≤ n+1. Since (MPm)m≥0 TV-
converges to MP, there existsm0 ≥ 0 such that MPm0(pi) > 0 for every 1 ≤ i ≤ n+1.
This contradicts the fact MPm0 ∈ MPb,n(X ). Therefore, MP ∈ MPb,n(X ) for every
MP in the TV-closure of MPb,n(X ). This shows that MPb,n(X ) is TV-closed.

Therefore, DMC
(o)
X ,[n] is TV-complete in DMC

(o)
X ,∗.

Proposition 11.14. If |X | ≥ 2, (DMC
(o)
X ,∗, T

(o)
TV,X ,∗) is neither Baire nor locally

compact anywhere.

Proof. Since DMC
(o)
X ,[n] is TV-complete, it is TV-closed. Since it also has empty

TV-interior, the same techniques that were used for natural topologies in Section

11.5.1 can be applied for T (o)
TV,X ,∗.

The above proposition shows that the space (DMC
(o)
X ,∗, T

(o)
TV,X ,∗) cannot be com-

pletely metrized. Note that since the space (DMC
(o)
X ,∗, d

(o)
TV,X ,∗) is isometric to the

space (MPbf (X ), ‖·‖TV ), and since (MP(X ), ‖·‖TV ) is complete, the completion of

(DMC
(o)
X ,∗, d

(o)
TV,X ,∗) is isometric to the closure of MPbf (X ) in (MP(X ), ‖ · ‖TV ). It

can be shown that the TV-closure of MPbf (X ) in MP(X ) is the set of all balanced
and countably supported meta-probability measures on X . Therefore, the com-

pletion of (DMC
(o)
X ,∗, d

(o)
TV,X ,∗) can be thought of as the space of output-equivalent

channels from X to a countably infinite output alphabet. This allows us to say that
any channel with input alphabet X and a countable output alphabet can be approx-
imated in the total-variation sense by a channel having a finite output alphabet.
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11.5.5 The Natural Borel σ-algebra on DMC
(o)
X ,∗

Let T be a Hausdorff natural topology on DMC
(o)
X ,∗. Since T

(o)
s,X ,∗ is the finest natural

topology, we have T ⊂ T (o)
s,X ,∗. Therefore, B(T ) ⊂ B(T (o)

s,X ,∗).

On the other hand, for every U ∈ T (o)
s,X ,∗ and every n ≥ 1, we have U∩DMC

(o)
X ,[n] ∈

T (o)
X ,[n]. But T is a natural topology, so there must exist Un ∈ T such that Un ∩

DMC
(o)
X ,[n] = U ∩DMC

(o)
X ,[n]. Since Un ∈ T , we have Un ∈ B(T ). Moreover, DMC

(o)
X ,[n]

is T -closed (because it is compact and T is Hausdorff). Therefore, DMC
(o)
X ,[n] ∈

B(T ). This implies that U ∩DMC
(o)
X ,[n] = Un ∩DMC

(o)
X ,[n] ∈ B(T ), hence

U =
⋃
n≥1

(U ∩DMC
(o)
X ,[n]) ∈ B(T ).

Since this is true for every U ∈ T (o)
s,X ,∗, we have T (o)

s,X ,∗ ⊂ B(T ) which implies that

B(T (o)
s,X ,∗) ⊂ B(T ). We conclude that all Hausdorff natural topologies on DMC

(o)
X ,∗

have the same σ-algebra. This σ-algebra deserves to be called the natural Borel

σ-algebra on DMC
(o)
X ,∗.

Note that for every n ≥ 1, the inclusion mapping in : DMC
(o)
X ,[n] → DMC

(o)
X ,∗

is continuous from (DMC
(o)
X ,[n], T

(o)
X ,[n]) to (DMC

(o)
X ,∗, T

(o)
s,X ,∗), hence it is measurable.

Therefore, for every B ∈ B(T (o)
s,X ,∗), we have i−1

n (B) = B ∩DMC
(o)
X ,[n] ∈ B(T (o)

X ,[n]). In
the following, we show a converse for this statement.

Fix n ≥ 1 and let U ∈ T (o)
X ,[n]. There exists U ′ ∈ T (o)

s,X ,∗ such that U = U ′ ∩
DMC

(o)
X ,[n]. Since U ′ and DMC

(o)
X ,[n] are respectively open and closed in the topology

T (o)
s,X ,∗, they are both in its Borel σ-algebra. Therefore, U = U ′ ∩ DMC

(o)
X ,[n] ∈

B(T (o)
s,X ,∗) for every U ∈ T (o)

X ,[n]. This means that T (o)
X ,[n] ⊂ B(T (o)

s,X ,∗) and B(T (o)
X ,[n]) ⊂

B(T (o)
s,X ,∗) for every n ≥ 1.

Assume now that A ⊂ DMC
(o)
X ,∗ satisfies A ∩ DMC

(o)
X ,[n] ∈ B(T (o)

X ,[n]) for every

n ≥ 1. This implies that A ∩DMC
(o)
X ,[n] ∈ B(T (o)

s,X ,∗) for every n ≥ 1, hence

A =
⋃
n≥1

(A ∩DMC
(o)
X ,[n]) ∈ B(T (o)

s,X ,∗).

We conclude that a subset A of DMC
(o)
X ,∗ is in the natural Borel σ-algebra if and

only if A ∩DMC
(o)
X ,[n] ∈ B(T (o)

X ,[n]) for every n ≥ 1.

11.6 Space of Input-Equivalent Channels from X to Y
11.6.1 The DMC

(i)
X ,Y Space

Let X and Y be two finite sets. Define the relation R
(i)
X ,Y on DMCX ,Y as follows:

WR
(i)
X ,YW

′ ⇔ W is input-equivalent to W ′.
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It is easy to see that R
(i)
X ,Y is an equivalence relation on DMCX ,Y . R

(i)
X ,Y is called

the input-equivalence relation on DMCX ,Y .

Definition 11.5. The space of input-equivalent channels with input alphabet X and
output alphabet Y is the quotient of the space of channels from X to Y by the input-
equivalence relation:

DMC
(i)
X ,Y = DMCX ,Y /R

(i)
X ,Y .

We define the topology T (i)
X ,Y on DMC

(i)
X ,Y as the quotient topology TX ,Y/R

(i)
X ,Y .

Due to proposition 10.4, we can define the input-equivalence characteristic of

Ŵ ∈ DMC
(i)
X ,Y as CE(Ŵ ) := CE(W ′) for anyW ′ ∈ Ŵ . Define co(Ŵ ) := co(CE(Ŵ )).

It is easy to see that co(Ŵ ) = co({W ′
x : x ∈ X}) for any W ′ ∈ Ŵ .

Let A and B be two sets. A coupling of A and B is a subset R of A × B such
that

{a ∈ A : ∃b ∈ B, (a, b) ∈ R} = A,

and

{b ∈ B : ∃a ∈ A, (a, b) ∈ R} = B.

We denote the set of couplings of A and B as R(A,B).

We define the similarity distance on DMC
(i)
X ,Y as follows:

d
(i)
X ,Y(Ŵ1, Ŵ2) = inf

R∈R(co(Ŵ1),co(Ŵ2))
sup

(P1,P2)∈R
‖P1 − P2‖TV

=
1

2
inf

R∈R(co(Ŵ1),co(Ŵ2))
sup

(P1,P2)∈R

∑
y∈Y

|P1(y)− P2(y)|.

Proposition 11.15. (DMC
(i)
X ,Y , d

(i)
X ,Y) is a metric space.

Proof. We will show that d
(i)
X ,Y(Ŵ1, Ŵ2) = dH

(
co(Ŵ1), co(Ŵ2)

)
, where dH is the

Hausdorff metric on K(ΔY) corresponding to the total-variation distance on ΔY .
Define K1 = co(Ŵ1) and K2 = co(Ŵ2), and let R ∈ R(K1,K2). For every (P1, P2) ∈
R, we have:

‖P1 − P2‖TV ≥ inf
P ′
2∈K2

‖P1 − P ′
2‖TV .

Therefore,

sup
(P1,P2)∈R

‖P1 − P2‖TV ≥ sup
P ′
1∈K1

inf
P ′
2∈K2

‖P ′
1 − P ′

2‖TV .

Similarly,

sup
(P1,P2)∈R

‖P1 − P2‖TV ≥ sup
P ′
2∈K2

inf
P ′
1∈K1

‖P ′
1 − P ′

2‖TV .

Hence,

sup
(P1,P2)∈R

‖P1 − P2‖TV ≥ max

{
sup

P ′
1∈K1

inf
P ′
2∈K2

‖P ′
1 − P ′

2‖TV , sup
P ′
2∈K2

inf
P ′
1∈K1

‖P ′
1 − P ′

2‖TV

}

= dH(K1,K2).
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We conclude that

d
(i)
X ,Y(Ŵ1, Ŵ2) = inf

R∈R(K1,K2)
sup

(P1,P2)∈R
‖P1 − P2‖TV ≥ dH(K1,K2).

Let P1 ∈ K1. Since K2 is compact, there exists P̃2(P1) ∈ K2 such that

‖P1 − P̃2(P1)‖TV = inf
P2∈K2

‖P1 − P2‖TV .

Similarly, for every P2 ∈ K2, there exists P̃1(P2) ∈ K1 such that ‖P2− P̃1(P2)‖TV =
inf

P1∈K1

‖P1 − P2‖TV . Define the coupling R0 ∈ R(K1,K2) as

R0 = {(P1, P̃2(P1)) : P1 ∈ K1} ∪ {(P̃1(P2), P2) : P2 ∈ K2}.

We have:

d
(i)
X ,Y(Ŵ1, Ŵ2) = inf

R∈R(K1,K2)
sup

(P1,P2)∈R
‖P1 − P2‖TV ≤ sup

(P1,P2)∈R0

‖P1 − P2‖TV

= max

{
sup

P1∈K1

‖P1 − P̃2(P1)‖, sup
P2∈K2

‖P2 − P̃1(P2)‖
}

= dH(K1,K2).

We conclude that d
(i)
X ,Y(Ŵ1, Ŵ2) = dH(K1,K2) = dH

(
co(Ŵ1), co(Ŵ2)

)
, hence d

(i)
X ,Y

is a metric.

Proposition 11.16. Let Ŵ , Ŵ ′ ∈ DMC
(i)
X ,Y be the R

(i)
X ,Y-equivalence classes of

W,W ′ ∈ DMCX ,Y , respectively. We have d
(i)
X ,Y(Ŵ , Ŵ ′) ≤ dX ,Y(W,W ′).

Proof. Define R0 ⊂ co(Ŵ )× co(Ŵ ′) as follows:

R0 =

{(∑
x∈X

λxWx,
∑
x∈X

λxW
′
x

)
:
∑
x∈X

λx = 1, and λx ≥ 0, ∀x ∈ X
}
.

Clearly, R0 is a coupling of co(Ŵ ) and co(Ŵ ′). For every (P1, P2) ∈ R0, there exists

(λx)x∈X ∈ [0, 1]X such that
∑
x∈X

λx = 1, P1 =
∑
x∈X

λxWx and P2 =
∑
x∈X

λxW
′
x. We

have:

‖P1 − P2‖TV =

∥∥∥∥∥
(∑

x∈X
λxWx

)
−
(∑

x∈X
λxW

′
x

)∥∥∥∥∥
TV

=

∥∥∥∥∥
∑
x∈X

λx(Wx −W ′
x)

∥∥∥∥∥
TV

≤
∑
x∈X

λx‖Wx −W ′
x‖TV ≤ sup

x∈X
‖Wx −W ′

x‖TV = dX ,Y(W,W ′).

Therefore,

d
(i)
X ,Y(Ŵ , Ŵ ′) = inf

R∈R(co(Ŵ ),co(Ŵ ′))
sup

(P1,P2)∈R
‖P1 − P2‖TV

≤ sup
(P1,P2)∈R0

‖P1 − P2‖TV ≤ dX ,Y(W,W ′).
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Theorem 11.6. The topology induced by d
(i)
X ,Y on DMC

(i)
X ,Y is the same as the

quotient topology T (i)
X ,Y . Moreover, (DMC

(i)
X ,Y , d

(i)
X ,Y) is compact and path-connected.

Proof. Since (DMCX ,Y , dX ,Y) is compact and path-connected, the quotient space

(DMC
(i)
X ,Y , T

(i)
X ,Y) is compact and path-connected.

Define the mapping Proj : DMCX ,Y → DMC
(i)
X ,Y as Proj(W ) = Ŵ , where Ŵ is

the R
(i)
X ,Y -equivalence class of W . Proposition 11.16 implies that Proj is a continuous

mapping from (DMCX ,Y , dX ,Y) to (DMC
(i)
X ,Y , d

(i)
X ,Y). Since Proj(W ) depends only

on Ŵ , Lemma 11.1 implies that the transcendent mapping of Proj defined on the

quotient space (DMC
(i)
X ,Y , T

(i)
X ,Y) is continuous. But the transcendent mapping of

Proj is nothing but the identity on DMC
(i)
X ,Y . Therefore, the identity mapping id on

DMC
(i)
X ,Y is a continuous mapping from (DMC

(i)
X ,Y , T

(i)
X ,Y) to (DMC

(i)
X ,Y , d

(i)
X ,Y). For

every subset U of DMC
(i)
X ,Y we have:

• If U is open in (DMC
(i)
X ,Y , d

(i)
X ,Y), then U = id−1(U) is open in (DMC

(i)
X ,Y , T

(i)
X ,Y).

• If U is open in (DMC
(i)
X ,Y , T

(i)
X ,Y), then its complement U c is closed in the space

(DMC
(i)
X ,Y , T

(i)
X ,Y) which is compact, hence U c is compact in (DMC

(i)
X ,Y , T

(i)
X ,Y).

This shows that U c = id(U c) is a compact subset of (DMC
(i)
X ,Y , d

(i)
X ,Y). But

(DMC
(i)
X ,Y , d

(i)
X ,Y) is a metric space, so U c is closed in (DMC

(i)
X ,Y , d

(i)
X ,Y). There-

fore, U is open in (DMC
(i)
X ,Y , d

(i)
X ,Y).

We conclude that (DMC
(i)
X ,Y , T

(i)
X ,Y) and (DMC

(i)
X ,Y , d

(i)
X ,Y) have the same open sets.

Therefore, the topology induced by d
(i)
X ,Y on DMC

(i)
X ,Y is the same as the quo-

tient topology T (i)
X ,Y . Now since (DMC

(i)
X ,Y , T

(i)
X ,Y) is compact and path-connected,

(DMC
(i)
X ,Y , d

(i)
X ,Y) is compact and path-connected as well.

In the rest of this chapter, we always associate DMC
(i)
X ,Y with the similarity

metric d
(i)
X ,Y and the quotient topology T (i)

X ,Y .

11.6.2 Canonical Embedding and Canonical Identification

Let X1,X2 and Y be three finite sets such that |X1| ≤ |X2|. We will show that there is

a canonical embedding from DMC
(i)
X1,Y to DMC

(i)
X2,Y . In other words, there exists an

explicitly constructable compact subset A of DMC
(i)
X2,Y such that A is homeomorphic

to DMC
(i)
X1,Y . A and the homeomorphism depend only on X1,X2 and Y (this is why

we say that they are canonical). Moreover, we can show that A depends only on
|X1|, X2 and Y.

Lemma 11.8. For every W ∈ DMCX1,Y and every surjection f from X2 to X1, W
is input-equivalent to W ◦Df .
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Proof. Clearly W ◦Df is input-degraded from W . Now let f ′ be any mapping from
X1 to X2 such that f(f ′(x1)) = x1 for every x1 ∈ X1. We have W = W ◦(Df ◦Df ′) =
(W ◦Df ) ◦Df ′ , and so W is also input-degraded from W ◦Df .

Corollary 11.11. For every W,W ′ ∈ DMCX1,Y and every two surjections f, g from
X2 to X1, we have:

WR
(i)
X1,YW

′ ⇔ (W ◦Df )R
(i)
X2,Y(W

′ ◦Dg).

Proof. Since W is input-equivalent to W ◦Df and W ′ is input-equivalent to W ′◦Dg,
then W is input-equivalent to W ′ if and only if W ◦ Df is input-equivalent to
W ′ ◦Dg.

For every W ∈ DMCX1,Y , we denote the R
(i)
X1,Y -equivalence class of W as Ŵ ,

and for every W ∈ DMCX2,Y , we denote the R
(i)
X2,Y -equivalence class of W as W̃ .

Proposition 11.17. Let X1,X2 and Y be three finite sets such that |X1| ≤ |X2|.
Let f : X2 → X1 be any fixed surjection from X2 to X1. Define the mapping F :

DMC
(i)
X1,Y → DMC

(i)
X2,Y as F (Ŵ ) = W̃ ′ ◦Df = Proj2(W

′ ◦Df ), where W ′ ∈ Ŵ and

Proj2 is the projection onto the R
(i)
X ,Y2

-equivalence classes. We have:

• F is well defined, i.e., F (Ŵ ) does not depend on W ′ ∈ Ŵ .

• F is a homeomorphism from DMC
(i)
X1,Y to F

(
DMC

(i)
X1,Y

)
⊂ DMC

(i)
X2,Y .

• F does not depend on the surjection f . It depends only on X1, X2 and Y,
hence it is canonical.

• F
(
DMC

(i)
X1,Y

)
depends only on |X1|, X2 and Y.

• For every W ′ ∈ Ŵ and every W ′′ ∈ F (Ŵ ), W ′ is input-equivalent to W ′′.

Proof. Corollary 11.11 implies that Proj2(W ◦Df ) = Proj2(W
′ ◦Df ) if and only if

WR
(i)
X1,YW

′. Therefore, Proj2(W
′ ◦ Df ) does not depend on W ′ ∈ Ŵ , hence F is

well defined. Corollary 11.11 also shows that Proj2(W
′ ◦ Df ) does not depend on

the particular choice of the surjection f , hence it is canonical (i.e., it depends only
on X1,X2 and Y).

On the other hand, the mapping W → W ◦ Df is a continuous mapping from
DMCX1,Y to DMCX2,Y , and Proj2 is continuous. Therefore, the mapping W →
Proj2(W ◦ Df ) is a continuous mapping from DMCX1,Y to DMC

(i)
X2,Y . Now since

Proj2(W ◦ Df ) depends only on the R
(i)
X1,Y -equivalence class Ŵ of W , Lemma

11.1 implies that the transcendent mapping of W → Proj2(W ◦ Df ) that is de-

fined on DMC
(i)
X1,Y is continuous. Therefore, F is a continuous mapping from

(DMC
(i)
X1,Y , T

(i)
X1,Y) to (DMC

(i)
X2,Y , T

(i)
X2,Y). Moreover, we can see from Corollary 11.11

that F is an injection.

For every closed subset B of DMC
(i)
X1,Y , B is compact since DMC

(i)
X1,Y is compact,

hence F (B) is compact because F is continuous. This implies that F (B) is closed in
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DMC
(i)
X2,Y since DMC

(i)
X2,Y is Hausdorff (as it is metrizable). Therefore, F is a closed

mapping.
Now since F is an injection that is both continuous and closed, F is a homeo-

morphism from DMC
(i)
X1,Y to F

(
DMC

(i)
X1,Y

)
⊂ DMC

(i)
X2,Y .

We would like now to show that F
(
DMC

(i)
X1,Y

)
depends only on |X1|, X2 and

Y. Let X ′
1 be a finite set such that |X1| = |X ′

1|. For every W ∈ DMCX ′
1,Y , let

W ∈ DMC
(i)
X ′

1,Y be the R
(i)
X ′

1,Y -equivalence class of W .

Let g : X1 → X ′
1 be a fixed bijection from X1 to X ′

1 and let f ′ = g ◦ f . Define

F ′ : DMC
(i)
X ′

1,Y → DMC
(i)
X2,Y as F ′(W ) = W̃ ′ ◦Df ′ = Proj2(W

′ ◦ Df ′), where W ′ ∈
W . As above, F ′ is well defined, and it is a homeomorphism from DMC

(i)
X ′

1,Y to

F ′(DMC
(i)
X ′

1,Y
)
. We want to show that F ′(DMC

(i)
X ′

1,Y
)
= F

(
DMC

(i)
X1,Y

)
. For every

W ∈ DMC
(i)
X ′

1,Y , let W
′ ∈ W . We have

F ′(W ) = Proj2(W
′ ◦Df ′) = Proj2((W

′ ◦Dg)◦Df ) = F
(
Ŵ ′ ◦Dg

)
∈ F

(
DMC

(i)
X1,Y

)
.

Since this is true for every W ∈ DMC
(i)
X ′

1,Y , we deduce that F ′(DMC
(i)
X ′

1,Y
)

⊂
F
(
DMC

(i)
X1,Y

)
. By exchanging the roles of X1 and X ′

1 and using the fact that f =

g−1◦f ′, we get F
(
DMC

(i)
X1,Y

)
⊂ F ′(DMC

(i)
X ′

1,Y
)
. We conclude that F

(
DMC

(i)
X1,Y

)
=

F ′(DMC
(i)
X ′

1,Y
)
, which means that F

(
DMC

(i)
X1,Y

)
depends only on |X1|, X2 and Y.

Finally, for every W ′ ∈ Ŵ and every W ′′ ∈ F (Ŵ ) = W̃ ′ ◦Df , W
′′ is input-

equivalent to W ′ ◦ Df and W ′ ◦ Df is input-equivalent to W ′ (by Lemma 11.8),
hence W ′′ is input-equivalent to W ′.

Corollary 11.12. If |X1| = |X2|, there exists a canonical homeomorphism from

DMC
(i)
X1,Y to DMC

(i)
X2,Y depending only on X1,X2 and Y.

Proof. Let f be a bijection from X2 to X1. Define the mapping F : DMC
(i)
X1,Y →

DMC
(i)
X2,Y as F (Ŵ ) = W̃ ′ ◦Df = Proj2(W

′ ◦ Df ), where W ′ ∈ Ŵ and Proj2 :

DMCX2,Y → DMC
(i)
X2,Y is the projection onto the R

(i)
X2,Y -equivalence classes.

Also, define the mapping F ′ : DMC
(i)
X2,Y → DMC

(i)
X1,Y as F ′(Ṽ ) = ̂V ′ ◦Df−1 =

Proj1(V
′ ◦Df−1), where V ′ ∈ Ṽ and Proj1 : DMCX1,Y → DMC

(i)
X1,Y is the projection

onto the R
(i)
X1,Y -equivalence classes.

Proposition 11.17 shows that F and F ′ are well defined.
For every W ∈ DMCX1,Y , we have:

F ′(F (Ŵ ))
(a)
= F ′(W̃ ◦Df )

(b)
= ̂(W ◦Df ) ◦Df−1 = Ŵ ,

where (a) follows from the fact that W ∈ Ŵ and (b) follows from the fact that

W ◦Df ∈ W̃ ◦Df .

We can similarly show that F (F ′(Ṽ )) = Ṽ for every Ṽ ∈ DMC
(i)
X2,Y . Therefore,

both F and F ′ are bijections. Proposition 11.17 now implies that F is a homeomor-

phism from DMC
(i)
X1,Y to F

(
DMC

(i)
X1,Y

)
= DMC

(i)
X2,Y . Moreover, F depends only on

X1,X2 and Y.
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Corollary 11.12 allows us to identify DMC
(i)
X ,Y with DMC

(i)
[n],Y through the canon-

ical homeomorphism, where n = |X | and [n] = {1, . . . , n}. Moreover, for every

1 ≤ n ≤ m, Proposition 11.17 allows us to identify DMC
(i)
[n],Y with the canoni-

cal subspace of DMC
(i)
[m],Y that is homeomorphic to DMC

(i)
[n],Y . In the rest of this

chapter, we consider that DMC
(i)
[n],Y is a compact subspace of DMC

(i)
[m],Y .

Intuitively, DMC
(i)
[n],Y has a “lower dimension” compared to DMC

(i)
[m],Y . So one

expects that the interior of DMC
(i)
[n],Y in (DMC

(i)
[m],Y , T

(i)
[m],Y) is empty if m > n. The

following proposition shows that this intuition is accurate when |Y| ≥ 3.

Proposition 11.18. We have:

• If |Y| = 1, then DMC
(i)
[n],Y = DMC

(i)
[1],Y for every n ≥ 1.

• If |Y| = 2, then DMC
(i)
[n],Y = DMC

(i)
[2],Y for every n ≥ 2.

• If |Y| ≥ 3, then for every 1 ≤ n < m, the interior of DMC
(i)
[n],Y in the space

(DMC
(i)
[m],Y , T

(i)
[m],Y) is empty.

Proof. See Appendix 11.10.7.

11.7 Spaces of Input-Equivalent Channels

The previous section showed that if we are interested in input-equivalent channels,

it is sufficient to study the spaces DMC[n],Y and DMC
(i)
[n],Y for every n ≥ 1, where

[n] = {1, . . . , n}. Define the space

DMC∗,Y =
∐
n≥1

DMC[n],Y ,

where
∐

is the disjoint union symbol. The subscript ∗ indicates that the input
alphabets of the considered channels are arbitrary but finite. We define the input-

equivalence relation R
(i)
∗,Y on DMC∗,Y as follows:

WR
(i)
∗,YW

′ ⇔ W is input-equivalent to W ′.

Definition 11.6. The space of input-equivalent channels with output alphabet Y is
the quotient of the space of channels with output alphabet Y by the input-equivalence
relation:

DMC
(i)
∗,Y = DMC∗,Y /R

(i)
∗,Y .

Clearly, DMC[n],Y /R
(i)
∗,Y can be canonically identified with DMC[n],Y /R

(i)
[n],Y =

DMC
(i)
[n],Y . Therefore, we can write

DMC
(i)
∗,Y =

⋃
n≥1

DMC
(i)
[n],Y .
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We define the input-rank of Ŵ ∈ DMC
(i)
∗,Y as the size of its characteristic:

irank(Ŵ ) = |CE(Ŵ )|. Due to Proposition 10.4, we have

DMC
(i)
[n],Y = {Ŵ ∈ DMC

(i)
∗,Y : irank(Ŵ ) ≤ n}.

A subset A of DMC
(i)
∗,Y is said to be rank-bounded if there exists n ≥ 1 such that

A ⊂ DMC
(i)
[n],Y .

11.7.1 Natural Topologies on DMC
(i)
∗,Y

As in Section 11.5.1, we can define natural topologies on the spaces of input-
equivalent channels:

Definition 11.7. A topology T on DMC
(i)
∗,Y is said to be natural if it induces the

quotient topology T (i)
[n],Y on DMC

(i)
[n],Y for every n ≥ 1.

Proposition 11.19. Every natural topology on DMC
(i)
∗,Y is σ-compact, separable

and path-connected.

Proof. We follow the same proof as in Proposition 11.3.

Proposition 11.18 implies that if |Y| = 1, then DMC
(i)
∗,Y = DMC

(i)
[1],Y , and so the

only natural topology on DMC
(i)
∗,Y is T (i)

[1],Y . Similarly, if |Y| = 2, then DMC
(i)
∗,Y =

DMC
(i)
[2],Y , and the only natural topology on DMC

(i)
∗,Y is T (i)

[2],Y . In the rest of this

section, we investigate the properties of natural topologies when |Y| ≥ 3.

Proposition 11.20. If |Y| ≥ 3 and T is a natural topology, every non-empty open
set is rank-unbounded.

Proof. We follow the same proof as in Proposition 11.4.

Corollary 11.13. If |Y| ≥ 3 and T is a natural topology, then for every n ≥ 1, the

interior of DMC
(i)
[n],Y in (DMC

(i)
∗,Y , T ) is empty.

Proposition 11.21. If |Y| ≥ 3 and T is a Hausdorff natural topology, then the

space (DMC
(i)
∗,Y , T ) is not a Baire space.

Proof. We follow the same proof as in Proposition 11.5.

Corollary 11.14. If |Y| ≥ 3, no natural topology on DMC
(i)
∗,Y can be completely

metrizable.

Proof. The corollary follows from Proposition 11.21 and the fact that every com-
pletely metrizable topology is both Hausdorff and Baire.

Proposition 11.22. If |Y| ≥ 3 and T is a Hausdorff natural topology, then the

space (DMC
(i)
∗,Y , T ) is not locally compact anywhere, i.e., for every Ŵ ∈ DMC

(i)
∗,Y ,

there is no compact neighborhood of Ŵ in (DMC
(i)
∗,Y , T ).

Proof. We follow the same proof as in Proposition 11.6.
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11.7.2 Strong Topology on DMC
(i)
∗,Y

The first natural topology on DMC
(i)
∗,Y that we study is the strong topology T (i)

s,∗,Y on

DMC
(i)
∗,Y , which is the finest natural topology.

Since the spaces {DMC[n],Y}n≥1 are disjoint and since there is no a priori way to
(topologically) compare channels in DMC[n],Y with channels in DMC[n′],Y for n �= n′,
the “most natural” topology that we can define on DMC∗,Y is the disjoint union

topology Ts,∗,Y :=
⊕
n≥1

T[n],Y . Clearly, the space (DMC∗,Y , Ts,∗,Y) is disconnected.

Moreover, Ts,∗,Y is metrizable because it is the disjoint union of metrizable spaces.
It is also σ-compact because it is the union of countably many compact spaces.

We added the subscript s to emphasize the fact that Ts,∗,Y is a strong topology
(remember that the disjoint union topology is the finest topology that makes the
canonical injections continuous).

Definition 11.8. We define the strong topology T (i)
s,∗,Y on DMC

(i)
∗,Y as the quotient

topology Ts,∗,Y/R(i)
∗,Y .

We call open and closed sets in (DMC
(i)
∗,Y , T

(i)
s,∗,Y) as strongly open and strongly

closed sets respectively.

Let Proj : DMC∗,Y → DMC
(i)
∗,Y be the projection onto the R

(i)
∗,Y -equivalence

classes, and for every n ≥ 1 let Projn : DMC[n],Y → DMC
(i)
[n],Y be the projection

onto the R
(i)
[n],Y -equivalence classes. Due to the identifications that we made at the

beginning of Section 11.7, we have Proj(W ) = Projn(W ) for every W ∈ DMC[n],Y .
Therefore, for every U ⊂ DMC

(i)
∗,Y , we have

Proj−1(U) =
∐
n≥1

Proj−1
n (U ∩DMC

(i)
[n],Y).

Hence,

U ∈ T (i)
s,∗,Y

(a)⇔ Proj−1(U) ∈ Ts,∗,Y
(b)⇔ Proj−1(U) ∩DMC[n],Y ∈ T[n],Y , ∀n ≥ 1

⇔

⎛
⎝∐

n′≥1

Proj−1
n′ (U ∩DMC

(i)
[n′],Y)

⎞
⎠ ∩DMC[n],Y ∈ T[n],Y , ∀n ≥ 1

⇔ Proj−1
n (U ∩DMC

(i)
[n],Y) ∈ T[n],Y , ∀n ≥ 1

(c)⇔ U ∩DMC
(i)
[n],Y ∈ T (i)

[n],Y , ∀n ≥ 1,

where (a) and (c) follow from the properties of the quotient topology, and (b) follows
from the properties of the disjoint union topology.

We conclude that U ⊂ DMC
(i)
∗,Y is strongly open in DMC

(i)
∗,Y if and only if U ∩

DMC
(i)
[n],Y is open in DMC

(i)
[n],Y for every n ≥ 1. This shows that the topology on

DMC
(i)
[n],Y that is inherited from (DMC

(i)
∗,Y , T

(i)
s,∗,Y) is exactly T (i)

[n],Y . Therefore, T
(i)
s,∗,Y
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is a natural topology. On the other hand, if T is an arbitrary natural topology and

U ∈ T , then U ∩ DMC
(i)
[n],Y is open in DMC

(i)
[n],Y for every n ≥ 1, so U ∈ T (i)

s,∗,Y . We

conclude that T (i)
s,∗,Y is the finest natural topology.

We can also characterize the strongly closed subsets of DMC
(i)
∗,Y in terms of the

closed sets of the DMC
(i)
[n],Y spaces:

F is strongly closed in DMC
(i)
∗,Y

⇔ DMC
(i)
∗,Y \F is strongly open in DMC

(i)
∗,Y

⇔
(
DMC

(i)
∗,Y \F

)
∩DMC

(i)
[n],Y is open in DMC

(i)
[n],Y , ∀n ≥ 1

⇔ DMC
(i)
[n],Y \

(
F ∩DMC

(i)
[n],Y

)
is open in DMC

(i)
[n],Y , ∀n ≥ 1

⇔ F ∩DMC
(i)
[n],Y is closed in DMC

(i)
[n],Y , ∀n ≥ 1.

Since DMC
(i)
[n],Y is metrizable for every n ≥ 1, it is also normal. We can use this

fact to prove that the strong topology on DMC
(i)
∗,Y is normal:

Lemma 11.9. (DMC
(i)
∗,Y , T

(i)
s,∗,Y) is normal.

Proof. We follow the same proof as in Lemma 11.5.

The following theorem shows that the strong topology satisfies a few desirable
properties.

Theorem 11.7. (DMC
(i)
∗,Y , T

(i)
s,∗,Y) is a compactly generated, sequential and T4 space.

Proof. We follow the same proof as in Theorem 11.4.

Corollary 11.15. If |Y| ≥ 3, (DMC
(i)
∗,Y , T

(i)
s,∗,Y) is not locally compact anywhere.

Proof. Since T (i)
s,∗,Y is a natural Hausdorff topology, Proposition 11.22 implies that

T (i)
s,∗,Y is not locally compact anywhere.

As in the case of the space of output-equivalent channels (Section 11.5.2), the

space (DMC
(i)
∗,Y , T

(i)
s,∗,Y) fails to be first-countable (and hence it is not metrizable)

when |Y| ≥ 3. This is one manifestation of the strength of the topology T (i)
s,∗,Y . In

order to show that (DMC
(i)
∗,Y , T

(i)
s,∗,Y) is not first-countable, we need to characterize

the converging sequences in (DMC
(i)
∗,Y , T

(i)
s,∗,Y).

A sequence (Ŵn)n≥1 in DMC
(i)
∗,Y is said to be rank-bounded if irank(Ŵn) is

bounded. (Ŵn)n≥1 is rank-unbounded if it is not bounded.

The following proposition shows that every rank-unbounded sequence does not

converge in (DMC
(i)
∗,Y , T

(i)
s,∗,Y).
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Proposition 11.23. A sequence (Ŵn)n≥0 converges in (DMC
(i)
∗,Y , T

(i)
s,∗,Y) if and only

if there exists m ≥ 1 such that Ŵn ∈ DMC
(i)
[m],Y for every n ≥ 0, and (Ŵn)n≥0

converges in (DMC
(i)
[m],Y , T

(i)
[m],Y).

Proof. We follow the same proof as in Proposition 11.7.

Corollary 11.16. If |Y| ≥ 3, (DMC
(i)
∗,Y , T

(i)
s,∗,Y) is not first-countable anywhere, i.e.,

for every Ŵ ∈ DMC
(i)
∗,Y , there is no countable neighborhood basis of Ŵ .

Proof. We follow the same proof as in Corollary 11.7.

Compact Subspaces of (DMC
(i)
∗,Y , T

(i)
s,∗,Y)

It is well known that a compact subset of R is compact if and only if it is closed
and bounded. The following proposition shows that a similar statement holds for

(DMC
(i)
∗,Y , T

(i)
s,∗,Y).

Proposition 11.24. A subspace of (DMC
(i)
∗,Y , T

(i)
s,∗,Y) is compact if and only if it is

rank-bounded and strongly closed.

Proof. If |Y| = 1, DMC
(i)
∗,Y = DMC

(i)
[1],Y consists of only one point, hence all subsets

of DMC
(i)
∗,Y are rank-bounded, compact and strongly closed.

If |Y| = 2, DMC
(i)
∗,Y = DMC

(i)
[2],Y and T (i)

s,∗,Y = T (i)
[2],Y , hence all subsets of DMC

(i)
∗,Y

are rank-bounded. But DMC
(i)
[2],Y is compact and Hausdorff. Therefore, a subset of

DMC
(i)
∗,Y is compact if and only if it is closed in T (i)

[2],Y = T (i)
s,∗,Y .

For |Y| ≥ 3, we follow the same proof as in Proposition 11.8.

11.7.3 The Similarity Metric on the Space of Input-Equivalent
Channels

We define the similarity metric on DMC
(i)
∗,Y as follows:

d
(i)
∗,Y(Ŵ1, Ŵ2) = min

R∈R(co(Ŵ1),co(Ŵ2))
max

(P1,P2)∈R
‖P1 − P2‖TV

=
1

2
min

R∈R(co(Ŵ1),co(Ŵ2))
max

(P1,P2)∈R

∑
y∈Y

|P1(y)− P2(y)|.

Let T (i)
∗,Y be the metric topology on DMC

(i)
∗,Y that is induced by d

(i)
∗,Y . We call

T (i)
∗,Y the similarity topology on DMC

(i)
∗,Y .

Clearly, T (i)
∗,Y is natural because the restriction of d

(i)
∗,Y on DMC

(i)
[n],Y is exactly

d
(i)
[n],Y , and the topology induced by d

(i)
[n],Y is T (i)

[n],Y (Theorem 11.6).
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11.8 Space of Shannon-Equivalent Channels from X to Y
11.8.1 The DMC

(s)
X ,Y space

Let X and Y be two finite sets. Define the relation R
(s)
X ,Y on DMCX ,Y as follows:

WR
(s)
X ,YW

′ ⇔ W is Shannon-equivalent to W ′.

It is easy to see that R
(s)
X ,Y is an equivalence relation on DMCX ,Y . R

(s)
X ,Y is called

the Shannon-equivalence relation on DMCX ,Y .

Definition 11.9. The space of Shannon-equivalent channels with input alphabet X
and output alphabet Y is the quotient of the space of channels from X to Y by the
Shannon-equivalence relation:

DMC
(s)
X ,Y = DMCX ,Y /R

(s)
X ,Y .

We define the topology T (s)
X ,Y on DMC

(s)
X ,Y as the quotient topology TX ,Y/R

(s)
X ,Y .

Notation 11.1. Let (U ,X ,Y,V, l,W ) be a BRM game. Since U ,X ,Y and V are
implicitly determined by l and W , we write $opt(l,W ) to denote $opt(U ,X ,Y,V, l,W )
for the sake of brevity.

Let W,W ′ ∈ DMCX ,Y . Theorem 10.3 shows that W ′ contains W if and only
if $opt(l,W ) ≤ $opt(l,W

′) for every l ∈ ΔU×V and every two finite sets U and V.
Therefore, WR

(s)
X ,YW

′ if and only if $opt(l,W ) = $opt(l,W
′) for every l ∈ ΔU×V and

every two finite sets U and V. This shows that $opt(l,W ) only depends on the R
(s)
X ,Y -

equivalence class of W . Therefore, if Ŵ ∈ DMC
(s)
X ,Y , we can define $opt(l, Ŵ ) :=

$opt(l,W
′) for any W ′ ∈ Ŵ .

Define the BRM metric d
(s)
X ,Y on DMC

(s)
X ,Y as follows:

d
(s)
X ,Y(Ŵ1, Ŵ2) = sup

n,m≥1,
l∈Δ[n]×[m]

|$opt(l, Ŵ1)− $opt(l, Ŵ2)|.

Proposition 11.25. Let Ŵ1, Ŵ2 ∈ DMC
(i)
X ,Y be the R

(s)
X ,Y -equivalence classes of

W1,W2 ∈ DMCX ,Y , respectively. We have d
(s)
X ,Y(Ŵ1, Ŵ2) ≤ dX ,Y(W1,W2).

Proof. See Appendix 11.10.8.

Theorem 11.8. The topology induced by d
(s)
X ,Y on DMC

(s)
X ,Y is the same as the

quotient topology T (s)
X ,Y . Moreover, (DMC

(s)
X ,Y , d

(s)
X ,Y) is compact and path-connected.

Proof. We use Proposition 11.25 and follow the same proof as in Theorem 11.6.

Throughout this chapter, we always associate DMC
(s)
X ,Y with the BRM metric

d
(s)
X ,Y and the quotient topology T (s)

X ,Y .
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11.8.2 Canonical Embedding and Canonical Identification

Let X1,X2,Y1 and Y2 be four finite sets such that |X1| ≤ |X2| and |Y1| ≤ |Y2|. We

will show that there is a canonical embedding from DMC
(s)
X1,Y1

to DMC
(s)
X2,Y2

. In

other words, there exists an explicitly constructable compact subset A of DMC
(s)
X2,Y2

such that A is homeomorphic to DMC
(s)
X1,Y1

. A and the homeomorphism depend
only on X1,X2,Y1 and Y2 (this is why we say that they are canonical). Moreover,
we can show that A depends only on |X1|, |Y1|, X2 and Y2.

Lemma 11.10. For every W ∈ DMCX1,Y1, every surjection f from X2 to X1, and
every injection g from Y1 to Y2, the channel W is Shannon-equivalent to Dg◦W ◦Df .

Proof. Clearly W contains Dg ◦W ◦Df . Now let f ′ be any mapping from X1 to X2

such that f(f ′(x1)) = x1 for every x1 ∈ X1, and let g′ be any mapping from Y2 to
Y1 such that g′(g(y1)) = y1 for every y1 ∈ Y1. We have

W = (Dg′ ◦Dg) ◦W ◦ (Df ◦Df ′) = Dg′ ◦ (Dg ◦W ◦Df ) ◦Df ′ ,

and so Dg ◦W ◦Df also contains W . Therefore, W and Dg ◦W ◦Df are Shannon-
equivalent.

Corollary 11.17. For every W,W ′ ∈ DMCX1,Y1, every two surjections f, f ′ from
X2 to X1, and every two injections g, g′ from Y1 to Y2, we have:

WR
(s)
X1,Y1

W ′ ⇔ (Dg ◦W ◦Df )R
(s)
X2,Y2

(Dg′ ◦W ′ ◦Df ′).

Proof. Since W is Shannon-equivalent to Dg ◦W ◦Df and W ′ is Shannon-equivalent
to Dg′ ◦W ′ ◦Df ′ , then W is Shannon-equivalent to W ′ if and only if Dg ◦W ◦Df

is Shannon-equivalent to Dg′ ◦W ′ ◦Df ′ .

For every W ∈ DMCX1,Y1 , we denote the R
(s)
X1,Y1

-equivalence class of W as Ŵ ,

and for every W ∈ DMCX2,Y2 , we denote the R
(s)
X2,Y2

-equivalence class of W as W̃ .

Proposition 11.26. Let X1,X2,Y1 and Y2 be four finite sets such that |X1| ≤ |X2|
and |Y1| ≤ |Y2|. Let f : X2 → X1 be any fixed surjection from X2 to X1, and
let g : Y1 → Y2 be any fixed injection from Y1 to Y2. Define the mapping F :

DMC
(s)
X1,Y1

→ DMC
(s)
X2,Y2

as F (Ŵ ) = ˜Dg ◦W ′ ◦Df = Proj2(Dg ◦ W ′ ◦ Df ), where

W ′ ∈ Ŵ , ˜Dg ◦W ′ ◦Df is the R
(s)
X2,Y2

-equivalence class of Dg ◦W ′ ◦Df , and Proj2

is the projection onto the R
(s)
X2,Y2

-equivalence classes. We have:

• F is well defined, i.e., F (Ŵ ) does not depend on W ′ ∈ Ŵ .

• F is a homeomorphism from DMC
(s)
X1,Y1

to F
(
DMC

(s)
X1,Y1

)
⊂ DMC

(s)
X2,Y2

.

• F does not depend on the surjection f nor on the injection g. It depends only
on X1, X2, Y1 and Y2, hence it is canonical.

• F
(
DMC

(s)
X1,Y1

)
depends only on |X1|, |Y1|, X2 and Y2.

• For every W ′ ∈ Ŵ and every W ′′ ∈ F (Ŵ ), W ′ is Shannon-equivalent to W ′′.
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Proof. See Appendix 11.10.9.

Corollary 11.18. If |X1| = |X2| and |Y1| = |Y2|, there exists a canonical homeo-

morphism from DMC
(s)
X1,Y1

to DMC
(s)
X2,Y2

depending only on X1,Y1,X2 and Y2.

Proof. Let f be a bijection from X2 to X1, and let g be a bijection from Y1 to

Y2. Define the mapping F : DMC
(s)
X1,Y1

→ DMC
(s)
X2,Y2

as F (Ŵ ) = ˜Dg ◦W ′ ◦Df =

Proj2(Dg ◦ W ′ ◦ Df ), where W ′ ∈ Ŵ and Proj2 : DMCX2,Y2 → DMC
(s)
X2,Y2

is the

projection onto the R
(s)
X2,Y2

-equivalence classes.

Also, define the mapping F ′ : DMC
(s)
X2,Y2

→ DMC
(s)
X1,Y1

as

F ′(Ṽ ) = ̂Dg−1 ◦ V ′ ◦Df−1 = Proj1(Dg−1 ◦ V ′ ◦Df−1),

where V ′ ∈ Ṽ and Proj1 : DMCX1,Y1 → DMC
(s)
X1,Y1

is the projection onto the R
(s)
X1,Y1

-
equivalence classes.

Proposition 11.26 shows that F and F ′ are well defined.

For every W ∈ DMCX1,Y1 , we have:

F ′(F (Ŵ ))
(a)
= F ′( ˜Dg ◦W ◦Df )

(b)
= Proj1(Dg−1 ◦ (Dg ◦W ◦Df ) ◦Df−1) = Ŵ ,

where (a) follows from the fact that W ∈ Ŵ and (b) follows from the fact that

Dg ◦W ◦Df ∈ ˜Dg ◦W ◦Df .

We can similarly show that F (F ′(Ṽ )) = Ṽ for every Ṽ ∈ DMC
(s)
X2,Y2

. Therefore,
both F and F ′ are bijections. Proposition 11.26 now implies that F is a homeomor-

phism from DMC
(s)
X1,Y1

to F
(
DMC

(s)
X1,Y1

)
= DMC

(s)
X2,Y2

. Moreover, F depends only
on X1,Y1,X2 and Y2.

Corollary 11.18 allows us to identify DMC
(s)
X ,Y with DMC

(s)
[n],[m] through the

canonical homeomorphism, where n = |X |, m = |Y|, [n] = {1, . . . , n} and [m] =
{1, . . . ,m}. Moreover, for every 1 ≤ n ≤ n′ and 1 ≤ m ≤ m′, Proposition 11.26

allows us to identify DMC
(s)
[n],[m] with the canonical subspace of DMC

(s)
[n′],[m′] that is

homeomorphic to DMC
(s)
[n],[m]. In the rest of this chapter, we consider that DMC

(s)
[n],[m]

is a compact subspace of DMC
(s)
[n′],[m′].

Conjecture 11.1. For every 1 ≤ n < m, the interior of DMC
(s)
[n],[n] in DMC

(s)
[m],[m]

is empty.

11.9 Space of Shannon-Equivalent Channels

The previous section showed that if we are interested in Shannon-equivalent chan-

nels, it is sufficient to study the spaces DMC[n],[m] and DMC
(s)
[n],[m] for every n,m ≥ 1.

Define the space

DMC∗,∗ =
∐
n≥1,
m≥1

DMC[n],[m] .



306 Topological Structures on DMC Spaces

The subscripts ∗ indicate that the input and output alphabets of the considered

channels are arbitrary but finite. We define the Shannon-equivalence relation R
(s)
∗,∗

on DMC∗,∗ as follows:

WR
(s)
∗,∗W ′ ⇔ W is Shannon-equivalent to W ′.

Definition 11.10. The space of Shannon-equivalent channels is the quotient of the
space of channels by the Shannon-equivalence relation:

DMC
(s)
∗,∗ = DMC∗,∗ /R

(s)
∗,∗.

Clearly, DMC[n],[m] /R
(s)
∗,∗ can be canonically identified with DMC[n],[m] /R

(s)
[n],[m] =

DMC
(s)
[n],[m] for every n,m ≥ 1. Therefore, we can write

DMC
(s)
∗,∗ =

⋃
n,m≥1

DMC
(s)
[n],[m]

(a)
=
⋃
n≥1

DMC
(s)
[n],[n] .

Note that (a) follows from the fact that DMC
(s)
[n],[m] ⊂ DMC

(s)
[k],[k] (see Section 11.8.2),

where k = max{n,m}.
We define the Shannon-rank of Ŵ ∈ DMC

(s)
∗,∗ as:

srank(Ŵ ) = min{n ≥ 1 : Ŵ ∈ DMC
(s)
[n],[n]}.

Clearly,

DMC
(s)
[n],[n] = {Ŵ ∈ DMC

(s)
∗,∗ : srank(Ŵ ) ≤ n}.

A subset A of DMC
(s)
∗,∗ is said to be rank-bounded if there exists n ≥ 1 such that

A ⊂ DMC
(s)
[n],[n].

11.9.1 Natural Topologies on DMC(s)
∗,∗

As in Section 11.5.1, we can define natural topologies on the space of Shannon-
equivalent channels:

Definition 11.11. A topology T on DMC
(s)
∗,∗ is said to be natural if it induces the

quotient topology T (s)
[n],[m] on DMC

(s)
[n],[m] for every n,m ≥ 1.

Proposition 11.27. Every natural topology on DMC
(s)
∗,∗ is σ-compact, separable and

path-connected.

Proof. We follow the same proof as in Proposition 11.3.

Remark 11.1. It is possible to show that if Conjecture 11.1 is true, then for every

natural topology T on DMC
(s)
∗,∗, we have:

• Every open set is rank-unbounded.

• For every n ≥ 1, the interior of DMC
(s)
[n],[n] in (DMC

(s)
∗,∗, T ) is empty.

• If T is Hausdorff, then

– (DMC
(s)
∗,∗, T ) is not a Baire space, hence no natural topology can be com-

pletely metrized.

– (DMC
(s)
∗,∗, T ) is not locally compact anywhere.
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11.9.2 Strong Topology on DMC(s)
∗,∗

Since the spaces {DMC[n],[m]}n,m≥1 are disjoint and since there is no a priori way
to (topologically) compare channels in DMC[n],[m] with channels in DMC[n′],[m′] for
(n,m) �= (n′,m′), the “most natural” topology that we can define on DMC∗,∗ is the

disjoint union topology Ts,∗,∗ :=
⊕

n,m≥1

T[n],[m]. Clearly, the space (DMC∗,∗, Ts,∗,∗)

is disconnected. Moreover, Ts,∗,∗ is metrizable because it is the disjoint union of
metrizable spaces. It is also σ-compact because it is the union of countably many
compact spaces.

We added the subscript s to emphasize the fact that Ts,∗,∗ is a strong topology
(remember that the disjoint union topology is the finest topology that makes the
canonical injections continuous).

Definition 11.12. We define the strong topology T (s)
s,∗,∗ on DMC

(s)
∗,∗ as the quotient

topology Ts,∗,∗/R(s)
∗,∗.

We call open and closed sets in (DMC
(s)
∗,∗, T (s)

s,∗,∗) as strongly open and strongly
closed sets respectively.

Let Proj : DMC∗,∗ → DMC
(s)
∗,∗ be the projection onto theR

(s)
∗,∗-equivalence classes,

and for every n,m ≥ 1 let Projn,m : DMC[n],[m] → DMC
(s)
[n],[m] be the projection

onto the R
(s)
[n],[m]-equivalence classes. Due to the identifications that we made at

the beginning of Section 11.9, we have Proj(W ) = Projn,m(W ) for every W ∈
DMC[n],[m]. Therefore, for every U ⊂ DMC

(s)
∗,∗, we have

Proj−1(U) =
∐

n,m≥1

Proj−1
n,m(U ∩DMC

(s)
[n],[m]).

Hence,

U ∈ T (s)
s,∗,∗

(a)⇔ Proj−1(U) ∈ Ts,∗,∗
(b)⇔ Proj−1(U) ∩DMC[n],[m] ∈ T[n],[m], ∀n,m ≥ 1

⇔
⎛
⎝ ∐

n′,m′≥1

Proj−1
n′,m′(U ∩DMC

(s)
[n′],[m′])

⎞
⎠ ∩DMC[n],[m] ∈ T[n],[m], ∀n,m ≥ 1

⇔ Proj−1
n,m(U ∩DMC

(s)
[n],[m]) ∈ T[n],[m], ∀n,m ≥ 1

(c)⇔ U ∩DMC
(s)
[n],[m] ∈ T (s)

[n],[m], ∀n,m ≥ 1,

where (a) and (c) follow from the properties of the quotient topology, and (b) follows
from the properties of the disjoint union topology.

We conclude that U ⊂ DMC
(s)
∗,∗ is strongly open in DMC

(s)
∗,∗ if and only if U ∩

DMC
(s)
[n],[m] is open in DMC

(s)
[n],[m] for every n,m ≥ 1. This shows that the topology on

DMC
(s)
[n],[m] that is inherited from (DMC

(s)
∗,∗, T (s)

s,∗,∗) is exactly T (s)
[n],[m]. Therefore, T

(s)
s,∗,∗

is a natural topology. On the other hand, if T is an arbitrary natural topology and



308 Topological Structures on DMC Spaces

U ∈ T , then U ∩DMC
(s)
[n],[m] is open in DMC

(s)
[n],[m] for every n,m ≥ 1, so U ∈ T (s)

s,∗,∗.

We conclude that T (s)
s,∗,∗ is the finest natural topology.

We can also characterize the strongly closed subsets of DMC
(s)
∗,∗ in terms of the

closed sets of the DMC
(s)
[n],[m] spaces:

F is strongly closed in DMC
(s)
∗,∗

⇔ DMC
(s)
∗,∗ \F is strongly open in DMC

(s)
∗,∗

⇔
(
DMC

(s)
∗,∗ \F

)
∩DMC

(s)
[n],[m] is open in DMC

(s)
[n],[m], ∀n,m ≥ 1

⇔ DMC
(s)
[n],[m] \

(
F ∩DMC

(s)
[n],[m]

)
is open in DMC

(s)
[n],[m], ∀n,m ≥ 1

⇔ F ∩DMC
(s)
[n],[m] is closed in DMC

(s)
[n],[m], ∀n,m ≥ 1.

Lemma 11.11. For every subset U of DMC
(s)
∗,∗, we have:

• U is strongly open if and only if U ∩DMC
(s)
[n],[n] is open in DMC

(s)
[n],[n] for every

n ≥ 1.

• U is strongly closed if and only if U ∩ DMC
(s)
[n],[n] is closed in DMC

(s)
[n],[n] for

every n ≥ 1.

Proof. If U is strongly open then U ∩ DMC
(s)
[n],[m] is open in DMC

(s)
[n],[m] for every

n,m ≥ 1. This implies that U ∩DMC
(s)
[n],[n] is open in DMC

(s)
[n],[n] for every n ≥ 1.

Conversely, assume that U ∩ DMC
(s)
[n],[n] is open in DMC

(s)
[n],[n] for every n ≥ 1.

Fix n,m ≥ 1 and let k = max{n,m}. We have DMC
(s)
[n],[m] ⊂ DMC

(s)
[k],[k]. Since

U ∩ DMC
(s)
[k],[k] is open in DMC

(s)
[k],[k], the set U ∩ DMC

(s)
[n],[m] = (U ∩ DMC

(s)
[k],[k]) ∩

DMC
(s)
[n],[m] is open in DMC

(s)
[n],[m]. Therefore, U ∩ DMC

(s)
[n],[m] is open in DMC

(s)
[n],[m]

for every n,m ≥ 1, which implies that U is strongly open.

We can similarly show that U is strongly closed if and only if U ∩ DMC
(s)
[n],[n] is

closed in DMC
(s)
[n],[n] for every n ≥ 1.

Since DMC
(s)
[n],[n] is metrizable for every n ≥ 1, it is also normal. We can use this

fact to prove that the strong topology on DMC
(s)
∗,∗ is normal:

Lemma 11.12. (DMC
(s)
∗,∗, T (s)

s,∗,∗) is normal.

Proof. We follow the same proof as in Lemma 11.5.

The following theorem shows that the strong topology satisfies a few desirable
properties.

Theorem 11.9. (DMC
(s)
∗,∗, T (s)

s,∗,∗) is a compactly generated, sequential and T4 space.

Proof. We follow the same proof as in Theorem 11.4.
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Remark 11.2. It is possible to show that if Conjecture 11.1 is true, then we have:

• T (s)
s,∗,∗ is not first-countable anywhere.

• A subset of DMC
(s)
∗,∗ is compact in Ts,∗,∗ if and only if it is rank-bounded and

strongly closed.

11.9.3 The BRM Metric on the Space of Shannon-Equivalent Channels

We define the BRM metric on DMC
(s)
∗,∗ as follows:

d
(s)
∗,∗(Ŵ1, Ŵ2) = sup

n,m≥1,
l∈Δ[n]×[m]

|$opt(l, Ŵ1)− $opt(l, Ŵ2)|.

Let T (s)
∗,∗ be the metric topology on DMC

(s)
∗,∗ that is induced by d

(s)
∗,∗. We call T (s)

∗,∗
the BRM topology on DMC

(s)
∗,∗.

Clearly, T (s)
∗,∗ is natural because the restriction of d

(s)
∗,∗ on DMC

(s)
[n],[m] is exactly

d
(s)
[n],[m], and the topology induced by d

(s)
[n],[m] is T

(s)
[n],[m] (Theorem 11.8).

11.10 Appendix

11.10.1 Proof of Lemma 11.3

We need the following lemma:

Lemma 11.13. The relation R
(o)
X ,Y is closed in DMCX ,Y ×DMCX ,Y .

Proof. Define the mapping f : (DMCX ,Y)2 × (DMCY,Y)2 → (DMCX ,Y)4 as:

f(W,W ′, V, V ′) = (W,V ′ ◦W ′,W ′, V ◦W ).

f is continuous because channel composition is continuous.

Define the set A ⊂ (DMCX ,Y)4 as:

A := {(W,W,W ′,W ′) : W,W ′ ∈ DMCX ,Y}.

It is easy to see that A is a closed subset of (DMCX ,Y)4. We have:

f−1(A) = {(W,W ′, V, V ′) ∈ (DMCX ,Y)2×(DMCY,Y)2 : V ′◦W ′ = W, V ◦W = W ′}.

Since f is continuous and since A is a closed subset of (DMCX ,Y)4, f−1(A) is a
closed subset of (DMCX ,Y)2 × (DMCY,Y)2 which is compact. Therefore, f−1(A) is
compact.

Now define the mapping g : (DMCX ,Y)2× (DMCY,Y)2 → (DMCX ,Y)2 as follows:

g(W,W ′, V, V ′) = (W,W ′).
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Since g is continuous and since f−1(A) is compact, g(f−1(A)) is a compact subset
of DMC2

X ,Y . Now notice that

g(f−1(A)) =
{
(W,W ′) ∈ (DMCX ,Y)2 : ∃V, V ′ ∈ DMCY,Y , (W,W ′, V, V ′) ∈ f−1(A)

}
=
{
(W,W ′) ∈ (DMCX ,Y)2 : ∃V, V ′ ∈ DMCY,Y , V ′ ◦W ′ = W, V ◦W = W ′}

=
{
(W,W ′) ∈ (DMCX ,Y)2 : W is output-equivalent to W ′}

=
{
(W,W ′) ∈ (DMCX ,Y)2 : WR

(o)
X ,YW

′} = R
(o)
X ,Y .

We conclude that R
(o)
X ,Y is compact, hence it is also closed because (DMCX ,Y)2 is a

metric space.

Now we are ready to prove Lemma 11.3:

Let Proj : DMCX ,Y → DMC
(o)
X ,Y be defined as Proj(W ) = Ŵ . The continuity of

Proj follows from the definition of the quotient topology.
Now let A be a closed subset of DMCX ,Y . We want to show that Proj(A) is

closed.
Since A is closed in DMCX ,Y , the set DMCX ,Y ×A is closed in (DMCX ,Y)2.

On the other hand, R
(o)
X ,Y is closed in (DMCX ,Y)2 by Lemma 11.13. Therefore,

(DMCX ,Y ×A) ∩ R
(o)
X ,Y is closed in (DMCX ,Y)2 which is compact, hence the set

(DMCX ,Y ×A) ∩R
(o)
X ,Y is compact. We have:

(DMCX ,Y ×A) ∩R
(o)
X ,Y =

{
(W,W ′) ∈ (DMCX ,Y)2 : WR

(o)
X ,YW

′ and W ′ ∈ A
}
.

Now define the mapping g : (DMCX ,Y)2 → DMCX ,Y as

g(W,W ′) = W.

LetAR := g
(
(DMCX ,Y ×A)∩R(o)

X ,Y
)
. Since g is continuous and since (DMCX ,Y ×A)∩

R
(o)
X ,Y is compact, AR is also compact. We have:

AR =
{
W ∈ DMCX ,Y : ∃W ′ ∈ A, WR

(o)
X ,YW

′} = Proj−1(Proj(A)).

Since DMCX ,Y is a metric space and since AR is compact, Proj−1(Proj(A)) = AR

is closed in DMCX ,Y . On the other hand, we have Proj−1
(
DMC

(o)
X ,Y \Proj(A)

)
=

DMCX ,Y \Proj−1(Proj(A)), hence Proj−1
(
DMC

(o)
X ,Y \Proj(A)

)
is open in DMCX ,Y ,

which implies that DMC
(o)
X ,Y \Proj(A) is open in DMC

(o)
X ,Y . Therefore, Proj(A) is

closed in DMC
(o)
X ,Y .

11.10.2 Proof of Proposition 11.2

let Û be an arbitrary non-empty open subset of (DMC
(o)
X ,[m], T

(o)
X ,[m]) and let Proj be

the projection onto the R
(o)
X ,[m]-equivalence classes. Proj−1(Û) is open in the metric

space (DMCX ,[m], dX ,[m]). Therefore, there exists W ∈ DMCX ,[m] and ε > 0 such

that Proj−1(Û) contains the open ball of center W and radius ε.
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We will show that there exists W ′ ∈ DMCX ,[m] such that rank(W ′) = m > n
and dX ,[m](W,W ′) < ε. If rank(W ) = m, take W ′ = W .

Assume that rank(W ) < m. Let P o
W ∈ Δ[m], Im(W ) and {W−1

y : y ∈ Im(W )}
be as in Section 10.2.

Let {vy}y∈[m] be a collection of m vectors in RX such that:

•
∑

y∈Im(W )

P o
W (y) · vy = 0.

•
∑

y∈[m]\Im(W )

vy = 0.

• For every y ∈ [m],
∑
x∈X

vy(x) = 0.

• The vectors {vy}y∈[m] are pairwise different.

Such collection can always be found.
Let 0 < δ, δ′ < 1 and define P o

W ′ ∈ R[m] as follows:

P o
W ′(y) =

⎧⎨
⎩
(1− δ)P o

W (y) if y ∈ Im(W ),
δ

m− | Im(W )| otherwise.

Clearly, P o
W ′ ∈ Δ[m] and P o

W ′(y) > 0 for every y ∈ [m]. Now for every y ∈ [m],
define W ′−1

y as follows:

W ′−1
y =

{
(1− δ)W−1

y + δπX + δ′vy if y ∈ Im(W ),

πX + δ′vy otherwise,

where πX ∈ ΔX is the uniform probability distribution on X . A simple calculation

shows that
∑
y∈[m]

P o
W ′(y)W ′−1

y = πX , and for every y ∈ [m] we have
∑
x∈X

W ′−1
y (x) = 1.

Notice that for y ∈ Im(W ), since 0 < δ < 1, (1 − δ)W−1
y + δπX lies inside the

interior of the probability distribution simplex ΔX . This means that for δ′ small
enough, (1− δ)W−1

y + δπX + δ′vy ∈ ΔX for every y ∈ Im(W ), and πX + δ′vy ∈ ΔX
for every y /∈ Im(W ). For every 0 < δ < 1, choose δ′ := δ′(δ) so that 0 < δ′ < δ and
W ′−1

y ∈ ΔX for every y ∈ [m].
It is easy to see that for δ small enough, W ′−1

y1 �= W ′−1
y2 for every y1, y2 ∈ [m]

satisfying y1 �= y2. Define the channel W ′ ∈ DMCX ,[m] as follows:

W ′(y|x) = |X |P o
W ′(y)W ′−1

y (x).

Since P o
W ′(y) > 0 for every y ∈ [m], we have supp(MPW ′) = {W ′−1

y : y ∈ [m]}.
Therefore, there exists δ0 > 0 such for every 0 < δ < δ0, we have rank(W

′) = m. On
the other hand, we have lim

δ→0
P o
W ′ = P o

W and lim
δ→0

W ′−1
y = W−1

y for every y ∈ Im(W ).

Therefore, lim
δ→0

W ′ = W (where the limit is taken in (DMCX ,[m], dX ,[m])). This shows

that there exists W ′ ∈ DMCX ,[m] such that rank(W ′) = m > n and dX ,[m](W,W ′) <
ε, which means that W ′ ∈ Proj−1(Û) and W ′ is not output-equivalent to any chan-
nel in DMCX ,[n] (see Corollary 10.1). Therefore, Proj(W ′) ∈ Û and Proj(W ′) /∈
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DMC
(o)
X ,[n] because W ′ is not output-equivalent to any channel in DMCX ,[n]. This

shows that every non-empty open subset of DMC
(o)
X ,[m] is not contained in DMC

(o)
X ,[n].

We conclude that the interior of DMC
(o)
X ,[n] in DMC

(o)
X ,[m] is empty.

11.10.3 Proof of Lemma 11.5

Define DMC
(o)
X ,[0] = ø, which is strongly closed in DMC

(o)
X ,∗.

Let A and B be two disjoint strongly closed subsets of DMC
(o)
X ,∗. For every n ≥ 0,

let An = A∩DMC
(o)
X ,[n] and Bn = B ∩DMC

(o)
X ,[n]. Since A and B are strongly closed

in DMC
(o)
X ,∗, An and Bn are closed in DMC

(o)
X ,[n]. Moreover, An ∩Bn ⊂ A ∩B = ø.

Construct the sequences (Un)n≥0, (U
′
n)n≥0, (Kn)n≥0 and (K ′

n)n≥0 recursively as
follows:

U0 = U ′
0 = K0 = K ′

0 = ø ⊂ DMC
(o)
X ,[0]. Since A0 = B0 = ø, we have A0 ⊂ U0 ⊂

K0 and B0 ⊂ U ′
0 ⊂ K ′

0. Moreover, U0 and U ′
0 are open in DMC

(o)
X ,[0], K0 and K ′

0 are

closed in DMC
(o)
X ,[0], and K0 ∩K ′

0 = ø.

Now let n ≥ 1 and assume that we constructed (Ui)0≤i<n, (U
′
i)0≤i<n, (Ki)0≤i<n

and (K ′
i)0≤i<n such that for every 0 ≤ i < n, we have Ai ⊂ Ui ⊂ Ki ⊂ DMC

(o)
X ,[i],

Bi ⊂ U ′
i ⊂ K ′

i ⊂ DMC
(o)
X ,[i], Ui and U ′

i are open in DMC
(o)
X ,[i], Ki and K ′

i are closed

in DMC
(o)
X ,[i], and Ki ∩ K ′

i = ø. Moreover, assume that Ki ⊂ Ui+1 and K ′
i ⊂ U ′

i+1

for every 0 ≤ i < n− 1.

Let Cn = An ∪ Kn−1 and Dn = Bn ∪ K ′
n−1. Since Kn−1 and K ′

n−1 are closed

in DMC
(o)
X ,[n−1] and since DMC

(o)
X ,[n−1] is closed in DMC

(o)
X ,[n], we can see that Kn−1

and K ′
n−1 are closed in DMC

(o)
X ,[n]. Therefore, Cn and Dn are closed in DMC

(o)
X ,[n].

Moreover, we have

Cn ∩Dn = (An ∪Kn−1) ∩ (Bn ∪K ′
n−1)

= (An ∩Bn) ∪ (An ∩K ′
n−1) ∪ (Kn−1 ∩Bn) ∪ (Kn−1 ∩K ′

n−1)

(a)
=
(
An ∩K ′

n−1 ∩DMC
(o)
X ,[n−1]

)
∪
(
Kn−1 ∩DMC

(o)
X ,[n−1] ∩Bn

)
= (An−1 ∩K ′

n−1) ∪ (Kn−1 ∩Bn−1) ⊂ (Kn−1 ∩K ′
n−1) ∪ (Kn−1 ∩K ′

n−1) = ø,

where (a) follows from the fact that An ∩Bn = Kn−1 ∩K ′
n−1 = ø and the fact that

Kn−1 ⊂ DMC
(o)
X ,[n−1] and K ′

n−1 ⊂ DMC
(o)
X ,[n−1].

Since DMC
(o)
X ,[n] is normal (because it is metrizable), and since Cn and Dn are

closed disjoint subsets of DMC
(o)
X ,[n], there exist two sets Un, U

′
n ⊂ DMC

(o)
X ,[n] that

are open in DMC
(o)
X ,[n] and two sets Kn,K

′
n ⊂ DMC

(o)
X ,[n] that are closed in DMC

(o)
X ,[n]

such that Cn ⊂ Un ⊂ Kn, Dn ⊂ U ′
n ⊂ K ′

n and Kn ∩K ′
n = ø. Clearly, An ⊂ Un ⊂

Kn ⊂ DMC
(o)
X ,[n], Bn ⊂ U ′

n ⊂ K ′
n ⊂ DMC

(o)
X ,[n], Kn−1 ⊂ Un and K ′

n−1 ⊂ U ′
n. This

concludes the recursive construction.

Now define U =
⋃
n≥0

Un =
⋃
n≥1

Un and U ′ =
⋃
n≥0

U ′
n =

⋃
n≥1

U ′
n. Since An ⊂ Un for
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every n ≥ 1, we have

A = A ∩DMC
(o)
X ,∗ = A ∩

⎛
⎝⋃

n≥1

DMC
(o)
X ,[n]

⎞
⎠

=
⋃
n≥1

(
A ∩DMC

(o)
X ,[n]

)
=
⋃
n≥1

An ⊂
⋃
n≥1

Un = U.

Moreover, for every n ≥ 1 we have

U ∩DMC
(o)
X ,[n] =

⎛
⎝⋃

i≥1

Ui

⎞
⎠ ∩DMC

(o)
X ,[n]

(a)
=

⎛
⎝⋃

i≥n

Ui

⎞
⎠ ∩DMC

(o)
X ,[n] =

⋃
i≥n

(
Ui ∩DMC

(o)
X ,[n]

)
,

where (a) follows from the fact that Ui ⊂ Ki ⊂ Ui+1 for every i ≥ 0, which means
that the sequence (Ui)i≥1 is increasing.

For every i ≥ n, we have DMC
(o)
X ,[n] ⊂ DMC

(o)
X ,[i] and Ui is open in DMC

(o)
X ,[i], hence

Ui∩DMC
(o)
X ,[n] is open in DMC

(o)
X ,[n]. Therefore, U∩DMC

(o)
X ,[n] =

⋃
i≥n

(
Ui ∩DMC

(o)
X ,[n]

)
is open in DMC

(o)
X ,[n]. Since this is true for every n ≥ 1, we conclude that U is strongly

open in DMC
(o)
X ,∗.

We can similarly show that B ⊂ U ′ and that U ′ is strongly open in DMC
(o)
X ,∗.

Finally, we have

U ∩ U ′ =

⎛
⎝⋃

n≥1

Un

⎞
⎠ ∩

⎛
⎝ ⋃

n′≥1

U ′
n′

⎞
⎠ =

⋃
n≥1,n′≥1

(Un ∩ U ′
n′)

(a)
=
⋃
n≥1

(Un ∩ U ′
n) ⊂

⋃
n≥1

(Kn ∩K ′
n) = ø,

where (a) follows from the fact that for every n ≥ 1 and every n′ ≥ 1, we have

Un ∩ U ′
n′ ⊂ Umax{n,n′} ∩ U ′

max{n,n′}

because (Un)n≥1 and (U ′
n)n≥1 are increasing. We conclude that (DMC

(o)
X ,∗, T

(o)
s,X ,∗) is

normal.

11.10.4 Proof of Lemma 11.6

Let W1,W2 ∈ DMCX ,Y , and let Ŵ1 and Ŵ2 be the R
(o)
X ,Y -equivalence classes of W1

and W2 respectively.

Fix m ≥ 1, p ∈ Δ[m]×X and D ∈ DMCY,[m]. We have:
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∑
u∈[m],
x∈X ,
y∈Y

p(u, x)W1(y|x)D(u|y)

=

( ∑
u∈[m],
x∈X ,
y∈Y

p(u, x)W2(y|x)D(u|y)
)

+
∑

u∈[m],
x∈X ,
y∈Y

p(u, x) ·
(
W1(y|x)−W2(y|x)

)
·D(u|y)

≤
(

sup
D′∈DMCY,[m]

∑
u∈[m],
x∈X ,
y∈Y

p(u, x)W2(y|x)D′(u|y)
)

+
∑

u∈[m],
x∈X ,
y∈Y

p(u, x) ·
(
W1(y|x)−W2(y|x)

)
·D(u|y)

≤ Pc(p,W2) +
∑

u∈[m],
x∈X

p(u, x) ·
∑
y∈Y:

W1(y|x)>W2(y|x)

(
W1(y|x)−W2(y|x)

)
·

⎛
⎝ ∑

u′∈[m]

D(u′|y)

⎞
⎠

= Pc(p,W2) +
∑

u∈[m],
x∈X

p(u, x) ·
( ∑

y∈Y:
W1(y|x)>W2(y|x)

(
W1(y|x)−W2(y|x)

))

(a)

≤ Pc(p,W2) +
∑

u∈[m],
x∈X

p(u, x) · dX ,Y(W1,W2) = Pc(p,W2) + dX ,Y(W1,W2),

where (a) follows from the fact that

∑
y∈Y:

W1(y|x)>W2(y|x)

(
W1(y|x)−W2(y|x)

)
=

1

2

∑
y∈Y

∣∣W1(y|x)−W2(y|x)
∣∣

≤ 1

2
sup
x∈X

∑
y∈Y

∣∣W1(y|x)−W2(y|x)
∣∣

= dX ,Y(W1,W2).

Therefore,

Pc(p,W1) = sup
D∈DMCY,[m]

∑
u∈[m],
x∈X ,
y∈Y

p(u, x)W1(y|x)D(u|y)

≤ Pc(p,W2) + dX ,Y(W1,W2).

Similarly, we can show that Pc(p,W2) ≤ Pc(p,W1) + dX ,Y(W1,W2), hence

|Pc(p,W1)− Pc(p,W2)| ≤ dX ,Y(W1,W2).
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We conclude that

d
(o)
X ,Y(Ŵ1, Ŵ2) = sup

m≥1,
p∈Δ[m]×X

|Pc(p, Ŵ1)− Pc(p, Ŵ2)|

= sup
m≥1,

p∈Δ[m]×X

|Pc(p,W1)− Pc(p,W2)|

≤ dX ,Y(W1,W2).

11.10.5 Proof of Lemma 11.7

Let γ ∈ Γ(MPŴ ,MPŴ ′) be a measure on ΔX ×ΔX that couples MPŴ and MPŴ ′ .

Let S = supp(MPŴ ) and S′ = supp(MPŴ ′) be the supports of Ŵ and Ŵ ′

respectively. Since MPŴ and MPŴ ′ are finitely supported, γ is also finitely sup-
ported and its support is a subset of S × S′. Therefore, there exists a collection of
coefficients αp,p′ ∈ [0, 1] such that

γ =
∑
p∈S,
p′∈S′

αp,p′δ(p,p′),

where δ(p,p′) is a Dirac measure centered at (p, p′) ∈ ΔX × ΔX . Since MPŴ and
MPŴ ′ are the marginals of γ on the first and the second factors respectively, we

have MPŴ (p) =
∑
p′∈S′

αp,p′ for every p ∈ S. Similarly, MPŴ ′(p
′) =

∑
p∈S

αp,p′ for every

p′ ∈ S′.
Let Y = S × S′ and define the channels W,W ′ ∈ DMCX ,Y as:

W (p, p′|x) = |X |αp,p′ · p(x),

and
W ′(p, p′|x) = |X |αp,p′ · p′(x).

For every x ∈ X , we have∑
(p,p′)∈Y

W (p, p′|x) = |X |
∑

(p,p′)∈S×S′
αp,p′ · p(x) = |X |

∑
p∈S

MPŴ (p) · p(x)

= |X |
∫
ΔX

p(x) · dMPŴ (p) = |X | 1

|X | = 1.

Similarly,
∑

(p,p′)∈Y
W ′(p, p′|x) = 1. Therefore, W and W ′ are valid channels.

For every (p, p′) ∈ Y, we have

P o
W (p, p′) =

∑
x∈X

1

|X |W (p, p′|x) =
∑
x∈X

αp,p′ · p(x) = αp,p′ .

Therefore, Im(W ) = {(p, p′) ∈ Y : αp,p′ > 0}. For every (p, p′) ∈ Im(W ) and every
x ∈ X , we have:

W−1
p,p′(x) =

W (p, p′|x)
|X |P o

W (p, p′)
=

|X |αp,p′ · p(x)
|X |αp,p′

= p(x),
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hence W−1
p,p′ = p for every (p, p′) ∈ Im(W ), which shows that supp(MPW ) ⊂ S.

Similarly, we can show that

Im(W ′) = {(p, p′) ∈ Y : αp,p′ > 0},

supp(MPW ′) ⊂ S′, and for every (p, p′) ∈ Y, P o
W ′(p, p′) = αp,p′ and W ′−1

p,p′ = p′.
For every p ∈ S, we have:

MPW (p) =
∑

y∈Im(W ),

W−1
y =p

P o
W (y) =

∑
p′∈S′,
αp,p′>0

αp,p′ =
∑
p′∈S′

αp,p′ = MPŴ (p) > 0.

This shows that supp(MPW ) = S = supp(MPŴ ) and MPW (p) = MPŴ (p) for every
p ∈ S. Therefore, MPW = MPŴ and so W is output-equivalent to every channel

in Ŵ . Similarly, we can show that MPW ′ = MPŴ ′ and W ′ is output-equivalent to
every channel in Ŵ ′.

Let W̃ and W̃ ′ be the R
(o)
X ,Y -equivalence classes of W and W ′ respectively. We

can write Ŵ = W̃ and Ŵ ′ = W̃ ′ because of the canonical identification of DMC
(o)
X ,Y

with DMC
(o)
X ,[n], where n = |Y|. We have:

d
(o)
X ,∗(Ŵ , Ŵ ′)

= d
(o)
X ,Y(W̃ , W̃ ′)

(a)

≤ dX ,Y(W,W ′) =
1

2
max
x∈X

∑
(p,p′)∈Y

|W (p, p′|x)−W ′(p, p′|x)|

=
1

2
max
x∈X

∑
p∈S,
p′∈S′

∣∣∣|X |αp,p′ · p(x)− |X |αp,p′ · p′(x)
∣∣∣ = 1

2
|X |max

x∈X

∑
p∈S,
p′∈S′

αp,p′ · |p(x)− p′(x)|

≤ 1

2
|X |

∑
x∈X

∑
p∈S,
p′∈S′

αp,p′ · |p(x)− p′(x)| = 1

2
|X |

∑
p∈S,
p′∈S′

αp,p′
∑
x∈X

|p(x)− p′(x)|

=
1

2
|X |

∑
p∈S,
p′∈S′

αp,p′‖p− p′‖1 = |X |
∑
p∈S,
p′∈S′

αp,p′d(p, p
′) = |X |

∫
ΔX×ΔX

d(p, p′) · dγ(p, p′),

where (a) follows from Lemma 11.6, and d(p, p′) = 1
2‖p− p′‖1 is the total-variation

distance between p and p′. Therefore,

d
(o)
X ,∗(Ŵ , Ŵ ′) ≤ |X | inf

γ∈Γ(MPŴ ,MPŴ ′ )

∫
ΔX×ΔX

d(p, p′) · dγ(p, p′)

= |X | ·W1(MPŴ ,MPŴ ′).

11.10.6 Proof of Proposition 11.10

If |X | = 1, ΔX consists of a single probability distribution and MP(X ) consists
of a single meta-probability measure which is balanced and finitely supported, so
MP(X ) = MPb(X ) = MPbf (X ).

Now assume that |X | ≥ 2. We start by showing that MPb(X ) is weakly-∗ closed.
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For every x ∈ X . Consider the mapping fx : ΔX → R defined as fx(p) = p(x).
Clearly, fx is bounded and continuous. Therefore, the mapping

Fx : MP(X ) → R

defined as

Fx(MP) =

∫
ΔX

fxdMP =

∫
ΔX

p(x) · dMP(p)

is continuous in the weak-∗ topology. Therefore, F−1
x

({
1

|X |

})
is weakly-∗ closed.

It is easy to see that MPb(X ) =
⋂
x∈X

F−1
x

({
1

|X |

})
. This proves that MPb(X ),

which is the finite intersection of weakly-∗ closed sets, is weakly-∗ closed.
It remains to show that MPbf (X ) is weakly-∗ dense in MPb(X ). We will show

that for every ε > 0 and every MP ∈ MPb(X ), there exists MP′ ∈ MPbf (X ) such
that W1(MP,MP′) < ε.

Fix 0 < ε < 1 and let MP ∈ MPb(X ) be any balanced meta-probability measure
on X , i.e., for every x ∈ X we have∫

ΔX
p(x)dMP(p) =

1

|X | .

Now fix x ∈ X . By the definition of the Lebesgue integral, there exists a finite
partition {Bx,i}1≤i≤kx of ΔX and a sequence of positive numbers (bx,i)1≤i≤kx such
that for every 1 ≤ i ≤ kx, Bx,i is a Borel set of ΔX , bx,i ≤ p(x) for every p ∈ Bx,i,
and

kx∑
i=1

bx,iMP(Bx,i) ≥
(∫

ΔX
p(x) · dMP(p)

)
− ε

12|X | =
1

|X | −
ε

12|X | .

By applying the same reasoning on the function 1 − p(x) ≥ 0, we can find a finite
partition {Cx,i}1≤i≤mx of ΔX and a sequence of positive numbers (cx,i)1≤i≤mx such
that for every 1 ≤ i ≤ mx, Cx,i is a Borel set of ΔX , cx,i ≥ p(x) for every p ∈ Cx,i

and
mx∑
i=1

cx,iMP(Cx,i) ≤
(∫

ΔX
p(x) · dMP(p)

)
+

ε

12|X | =
1

|X | +
ε

12|X | .

Let d be the total-variation distance on ΔX , i.e., d(p, p′) = 1
2‖p−p′‖1. Since ΔX

is compact, it can be covered by a finite number of open balls of radius ε
4 , i.e., there

exist h points p′1, . . . , p′h such that ΔX =
h⋃

i=1

B ε
4
(p′i) =

h⋃
i=1

{
p ∈ ΔX : d(p, p′i) <

ε

4

}
.

For every 1 ≤ i ≤ h, define the set

Di = B ε
4
(p′i) \

⎛
⎝ ⋃

1≤j<i

B ε
4
(p′j)

⎞
⎠ .

Clearly, the sets {Di}1≤i≤h are disjoint Borel sets that cover ΔX . Let n = h ×∏
x∈X

(kx ·mx), and let A1, . . . , An be the Borel sets obtained by intersecting the sets
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in the collections {D1, . . . , Dh}, {Bx,i}1≤i≤kx and {Cx,i}1≤i≤mx for every x ∈ X . In
other words,

{Ai : 1 ≤ i ≤ n}

=

{
Di ∩

⋂
x∈X

(Bx,ix ∩ Cx,jx) : 1 ≤ i ≤ h, and ∀x ∈ X , 1 ≤ ix ≤ kx and 1 ≤ jx ≤ mx

}
.

For every 1 ≤ i ≤ n, let lx,i = bx,i′ where i′ is the unique integer satisfying
1 ≤ i′ ≤ kx and Ai ⊂ Bx,i′ . Similarly, let ux,i = cx,i′′ where i′′ is the unique integer
satisfying 1 ≤ i′′ ≤ kx and Ai ⊂ Cx,i′′ . Clearly, lx,i ≤ p(x) ≤ ux,i for every x ∈ Ai.
Moreover,

n∑
i=1

lx,iMP(Ai) =

kx∑
i=1

bx,iMP(Bx,i) ≥
1

|X | −
ε

12|X | ,

and
n∑

i=1

ux,iMP(Ai) =

mx∑
i=1

cx,iMP(Cx,i) ≤
1

|X | +
ε

12|X | .

For every 1 ≤ i ≤ n, choose pi ∈ Ai arbitrarily. Let ji be the unique integer

such that Ai ⊂ Dji . Since Dji ⊂ B ε
4
(p′ji), we have d(p, p′ji) <

ε

4
for every p ∈ Ai.

Therefore, d(p, pi) ≤ d(p, p′ji) + d(p′ji , pi) <
ε

2
for every p ∈ Ai.

Define the mapping f : ΔX → ΔX as f(p) = pi for every p ∈ Ai. Clearly,
d(p, f(p)) < ε

2 for every p ∈ ΔX .
Now let MPf = f#(MP), where f#(MP) is the push-forward measure of MP by

the mapping f , i.e., MPf (B) = (f#(MP))(B) = MP
(
f−1(B)

)
for every Borel set B

of ΔX . We have:

MPf (B) =
∑
pi∈B

MP
(
f−1({pi})

)
=
∑
pi∈B

MP(Ai) =
∑
pi∈B

αi,

where αi = MP(Ai) for every 1 ≤ i ≤ n. Therefore, MPf is finitely supported and

supp(MPf ) ⊂ {pi : 1 ≤ i ≤ n}.

Moreover, MPf (pi) = αi for every 1 ≤ i ≤ n.
Now define the mapping f× : ΔX → ΔX×ΔX as f×(p) = (p, f(p)), and define the

measure γf on ΔX×ΔX as the push-forward of MP by f×, i.e., γf (B) = MP(f−1
× (B))

for every Borel set B of ΔX ×ΔX . It is easy to see that the marginals of γf on the
first and second factors are MP and MPf respectively. Therefore, γf is a coupling
between MP and MPf , hence

W1(MP,MPf ) = inf
γ∈Γ(MP,MPf )

∫
ΔX×ΔX

d(p, p′) · dγ(p, p′)

≤
∫
ΔX×ΔX

d(p, p′) · dγf (p, p′)
(a)
=

∫
ΔX

d(p, f(p)) · dMP(p)
(b)

≤ ε

2
,

where (a) follows from the fact that γf is the push-forward of MP by f×(p) =
(p, f(p)). (b) follows from the fact that d(p, f(p)) < ε

2 for every p ∈ ΔX . Therefore,
MPf well approximates MP and it is finitely supported. However, MPf may not be
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balanced, so more work needs to be done in order to find a balanced and finitely
supported meta-probability measure that well approximates MP.

For every x ∈ X , we have:

∫
ΔX

p(x) · dMPf (p)
(a)
=

∫
ΔX

(f(p))(x) · dMP(p) =
n∑

i=1

pi(x)MP(Ai)

(b)

≥
n∑

i=1

li,xMP(Ai) ≥
1

|X | −
ε

12|X | ,

where (a) follows from the fact that MPf is the push-forward of MP by f . (b)
follows from the fact that pi ∈ Ai and so pi(x) ≥ li,x for every 1 ≤ i ≤ n. Similarly,
we have

∫
ΔX

p(x) · dMPf (p) =
n∑

i=1

pi(x)MP(Ai)
(c)

≤
n∑

i=1

ui,xMP(Ai) ≤
1

|X | +
ε

12|X | ,

where (c) follows from the fact that pi ∈ Ai and so pi(x) ≤ ui,x for every 1 ≤ i ≤ n.
We conclude that for every x ∈ X , we have∣∣∣∣πX (x)−

∫
ΔX

p(x) · dMPf (p)

∣∣∣∣ ≤ ε

12|X | ,

where πX is the uniform distribution on X . Define p̃ ∈ ΔX as:

p̃ =

∫
ΔX

p · dMPf (p).

For every x ∈ X , define

p′(x) =
6(πX (x)− p̃(x))

ε
+ p̃(x).

Clearly,
∑
x∈X

p′(x) = 1. Moreover,

p′(x) =
6(πX (x)− p̃(x))

ε
+ p̃(x)

(a)

≥
6

(
πX (x)− πX (x)−

ε

12|X |

)
ε

+
1

|X | −
ε

12|X | =
1

2|X | −
ε

12|X | ≥ 0,

Where (a) follows from the fact that |πX (x) − p̃(x)| ≤ ε

12|X | . We conclude that

p′ ∈ ΔX . Now define the meta-probability measure MP′ as follows:

MP′ =
ε

6
· δp′ +

(
1− ε

6

)
MPf ,

where δp′ is a Dirac measure centered at p′.
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For every x ∈ X , we have∫
ΔX

p(x) · dMP′(p) =
ε

6
· p′(x) +

(
1− ε

6

)∫
ΔX

p(x) · dMPf (p)

=
ε

6
· p′(x) +

(
1− ε

6

)
· p̃(x)

= πX (x)− p̃(x) +
ε

6
· p̃(x) +

(
1− ε

6

)
p̃(x) = πX (x).

Therefore, MP′ is balanced and finitely supported. Moreover,

W1(MP,MP′) ≤ W1(MP,MPf ) +W1(MPf ,MP′)
(a)

≤ ε

2
+ ‖MPf −MP′‖TV

=
ε

2
+
∥∥∥MPf −

(
1− ε

6

)
MPf − ε

6
· δp′

∥∥∥
TV

≤ ε

2
+
∥∥∥ ε
6
·MPf

∥∥∥
TV

+
∥∥∥ ε
6
δp′
∥∥∥
TV

=
ε

2
+

ε

6
+

ε

6
< ε,

where (a) follows from the fact that the 1st Wasserstein metric is upper bounded by
the total-variation multiplied by the diameter of ΔX (which is equal to 1 in our case)
[80]. We conclude that MPbf (X ) is dense in MPb(X ) which is weakly-∗ closed.
Therefore, MPb(X ) is the weak-∗ closure of MPbf (X ).

11.10.7 Proof of Proposition 11.18

If |Y| = 1, then ΔY contains only one point and so |CE(W )| = 1 for every W ∈
DMC[n],Y and every n ≥ 1. Therefore, DMC

(i)
[n],Y = DMC

(i)
[1],Y for every n ≥ 1.

If |Y| = 2, then ΔY is a one dimensional segment. Therefore, there are at most
two convex-extreme points for any finite subset of ΔY . This means that |CE(W )| ≤
2 for every W ∈ DMC[n],Y and every n ≥ 2. Therefore, DMC

(i)
[n],Y = DMC

(i)
[2],Y for

every n ≥ 2.

Now assume that |Y| ≥ 3. Let Û be an arbitrary non-empty open subset of

(DMC
(i)
[m],Y , T

(i)
[m],Y) and let Proj be the projection onto the R

(i)
[m],Y -equivalence classes.

Proj−1(Û) is open in the metric space (DMC[m],Y , d[m],Y). Let Ŵ ∈ Û and define

r = irank(Ŵ ). Let P1, . . . , Pr ∈ ΔY be such that CE(Ŵ ) = {P1, . . . , Pr}. Define
the channel W ∈ DMC[m],Y as follows:

W (y|i) =
{
Pi(y) if 1 ≤ i < r,

Pr(y) if r ≤ i ≤ m.

Clearly CE(W ) = CE(Ŵ ) and so W ∈ Ŵ which implies that W ∈ Proj−1(Û). Since
Proj−1(Û) is open in the metric space (DMC[m],Y , d[m],Y), there exists ε > 0 such

that Proj−1(Û) contains the open ball of center W and radius ε.

We will show that there exists W ′ ∈ DMC[m],Y such that irank(W ′) = m > n
and d[m],Y(W,W ′) < ε. If r = irank(W ) = m, take W ′ = W .

Assume that r = irank(W ) < m. Since |Y| ≥ 3, the dimension of ΔY is at
least 2. Therefore, we can find Pr+1 ∈ ΔY such that ‖Pr − Pr+1‖TV < ε and
CE({P1, . . . , Pr+1}) = {P1, . . . , Pr+1}. By repeating this procedure m− r times, we
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obtain Pr+1, . . . , Pm ∈ ΔY such that ‖Pr − Pi‖TV < ε for every r + 1 ≤ i ≤ m, and
CE({P1, . . . , Pm}) = {P1, . . . , Pm}. Define the channel W ′ ∈ Δ[m],Y as:

W ′(y|i) = Pi(y).

We have CE(W ′) = CE({P1, . . . , Pm}) = {P1, . . . , Pm}. Therefore, irank(W ′) = m.
Moreover,

d[m],Y(W,W ′) = max
1≤i≤m

‖Wi −W ′
i‖TV = max

r+1≤i≤m
‖Pr − Pi‖TV < ε.

This means that W ′ ∈ Proj−1(Û) and W ′ is not input-equivalent to any channel
in DMC[n],Y (see Proposition 10.4). Therefore, Proj(W ′) ∈ Û and Proj(W ′) /∈
DMC

(i)
[n],Y because W ′ is not input-equivalent to any channel in DMC[n],Y . This

shows that every non-empty open subset of DMC
(i)
[m],Y is not contained in DMC

(i)
[n],Y .

We conclude that the interior of DMC
(i)
[n],Y in DMC

(i)
[m],Y is empty.

11.10.8 Proof of Proposition 11.25

Fix n,m ≥ 1 and let l ∈ Δ[n]×[m]. Define G1 = ([n],X ,Y, [m], l,W1) and G2 =
([n],X ,Y, [m], l,W2). For every S ∈ S[n],X ,Y,[m], we have:

$̂(S,G1)

=
1

n

∑
u∈[n]

$̂(u, S,G1) =
1

n

∑
u∈[n]

nS∑
i=1

αS(i)
∑
y∈Y

W1

(
y
∣∣fi,S(u))l(u, gi,S(y))

=

⎛
⎝ 1

n

∑
u∈[n]

nS∑
i=1

αS(i)
∑
y∈Y

W2

(
y
∣∣fi,S(u))l(u, gi,S(y))

⎞
⎠

+
1

n

∑
u∈[n]

nS∑
i=1

αS(i)
∑
y∈Y

(
W1

(
y
∣∣fi,S(u))−W2

(
y
∣∣fi,S(u)))l(u, gi,S(y))

≤ $̂(S,G2)

+

nS∑
i=1

αS(i)

n

∑
u∈[n]

∑
y∈Y,

W1(y|fi,S(u))≥W2(y|fi,S(u))

(
W1

(
y
∣∣fi,S(u))−W2

(
y
∣∣fi,S(u)))l(u, gi,S(y))

(a)

≤ $̂(S,G2) +

nS∑
i=1

αS(i)

n

∑
u∈[n]

∑
y∈Y,

W1(y|fi,S(u))≥W2(y|fi,S(u))

(
W1

(
y
∣∣fi,S(u))−W2

(
y
∣∣fi,S(u))),
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where (a) follows from the fact that l(u, gi,S(y)) ≤ 1 (because l ∈ Δ[n]×[m]). There-
fore,

$̂(S,G1) ≤ $̂(S,G2) +

nS∑
i=1

αS(i)

n

∑
u∈[n]

1

2

∑
y∈Y

∣∣W1

(
y
∣∣fi,S(u))−W2

(
y
∣∣fi,S(u))∣∣

≤ $̂(S,G2) +

nS∑
i=1

αS(i)

n

∑
u∈[n]

max
x∈X

1

2

∑
y∈Y

|W1(y|x)−W2(y|x)|

= $̂(S,G2) +

nS∑
i=1

αS(i)

n

∑
u∈[n]

dX ,Y(W1,W2) = $̂(S,G2) + dX ,Y(W1,W2)

≤ dX ,Y(W1,W2) + sup
S′∈S[n],X ,Y,[m]

$̂(S′,G2) = dX ,Y(W1,W2) + $opt(G2).

We conclude that

$opt(G1) = sup
S∈S[n],X ,Y,[m]

$̂(S,G1) ≤ $opt(G2) + dX ,Y(W1,W2),

hence
$opt(G1)− $opt(G2) ≤ dX ,Y(W1,W2).

We can show similarly that $opt(G2)− $opt(G2) ≤ dX ,Y(W1,W2). Therefore,

|$opt(l, Ŵ1)− $opt(l, Ŵ2)| = |$opt(l,W1)− $opt(l,W2)|
= |$opt(G1)− $opt(G2)| ≤ dX ,Y(W1,W2).

We conclude that

d
(s)
X ,Y(Ŵ1, Ŵ2) = sup

n,m≥1,
l∈Δ[n]×[m]

|$opt(l, Ŵ1)− $opt(l, Ŵ2)| ≤ dX ,Y(W1,W2).

11.10.9 Proof of Proposition 11.26

Corollary 11.17 implies that Proj2(Dg ◦W ◦Df ) = Proj2(Dg ◦W ′ ◦Df ) if and only

if WR
(s)
X1,Y1

W ′. Therefore, Proj2(Dg ◦W ′ ◦Df ) does not depend on W ′ ∈ Ŵ , hence
F is well defined. Corollary 11.17 also shows that Proj2(Dg ◦ W ′ ◦ Df ) does not
depend on the particular choice of the surjection f or the injection g, hence it is
canonical (i.e., it depends only on X1,X2,Y1 and Y2).

On the other hand, the mapping W → Dg ◦ W ◦ Df is a continuous mapping
from DMCX1,Y1 to DMCX2,Y2 , and Proj2 is continuous. Therefore, the mapping

W → Proj2(Dg ◦W ◦Df ) is a continuous mapping from DMCX1,Y1 to DMC
(s)
X2,Y2

.

Now since Proj2(Dg ◦W ◦Df ) depends only on the R
(s)
X1,Y1

-equivalence class Ŵ of W ,
Lemma 11.1 implies that the transcendent mapping of W → Proj2(Dg◦W ◦Df ) that

is defined on DMC
(s)
X1,Y1

is continuous. Therefore, F is a continuous mapping from

(DMC
(s)
X1,Y1

, T (s)
X1,Y1

) to (DMC
(s)
X2,Y2

, T (s)
X2,Y2

). Moreover, we can see from Corollary
11.17 that F is an injection.

For every closed subsetB of DMC
(s)
X1,Y1

, B is compact since DMC
(s)
X1,Y1

is compact,
hence F (B) is compact because F is continuous. This implies that F (B) is closed
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in DMC
(s)
X2,Y2

since DMC
(s)
X2,Y2

is Hausdorff (as it is metrizable). Therefore, F is a
closed mapping.

Now since F is an injection that is both continuous and closed, F is a homeo-

morphism from DMC
(s)
X1,Y1

to F
(
DMC

(s)
X1,Y1

)
⊂ DMC

(s)
X2,Y2

.

We would like now to show that F
(
DMC

(s)
X1,Y1

)
depends only on |X1|, |Y1|, X2

and Y2. Let X ′
1 and Y ′

1 be two finite sets such that |X1| = |X ′
1| and |Y1| = |Y ′

1|. For
every W ∈ DMCX ′

1,Y ′
1
, let W ∈ DMC

(s)
X ′

1,Y ′
1
be the R

(s)
X ′

1,Y ′
1
-equivalence class of W .

Let f ′ : X1 → X ′
1 be a fixed bijection from X1 to X ′

1 and let f ′′ = f ′ ◦ f . Also,
let g′ : Y ′

1 → Y1 be a fixed bijection from Y ′
1 to Y1 and let g′′ = g ◦ g′. Define F ′ :

DMC
(s)
X ′

1,Y ′
1
→ DMC

(s)
X2,Y2

as F ′(W ) = ˜Dg′′ ◦W ′ ◦Df ′′ = Proj2(Dg′′◦W ′◦Df ′′), where

W ′ ∈ W . As above, F ′ is well defined, and it is a homeomorphism from DMC
(s)
X ′

1,Y ′
1

to F ′(DMC
(s)
X ′

1,Y ′
1

)
. We want to show that F ′(DMC

(s)
X ′

1,Y ′
1

)
= F

(
DMC

(s)
X1,Y1

)
. For

every W ∈ DMC
(s)
X ′

1,Y ′
1
, let W ′ ∈ W . We have

F ′(W ) = Proj2(Dg′′ ◦W ′ ◦Df ′′) = Proj2(Dg ◦ (Dg′ ◦W ′ ◦Df ′) ◦Df )

= F
(

̂Dg′ ◦W ′ ◦Df ′
)
∈ F

(
DMC

(s)
X1,Y1

)
.

Since this is true for every W ∈ DMC
(s)
X ′

1,Y ′
1
, we deduce that F ′(DMC

(s)
X ′

1,Y ′
1

)
⊂

F
(
DMC

(s)
X1,Y1

)
. By exchanging the roles of (X1,Y1) and (X ′

1,Y ′
1) and using the fact

that f = f ′−1 ◦ f ′′ and g = g′′ ◦ g′−1, we get F
(
DMC

(s)
X1,Y1

)
⊂ F ′(DMC

(s)
X ′

1,Y ′
1

)
. We

conclude that F
(
DMC

(s)
X1,Y1

)
= F ′(DMC

(s)
X ′

1,Y ′
1

)
, which means that F

(
DMC

(s)
X1,Y1

)
depends only on |X1|, |Y1|, X2 and Y2.

Finally, for every W ′ ∈ Ŵ and every W ′′ ∈ F (Ŵ ) = ˜Dg ◦W ′ ◦Df , W ′′ is
Shannon-equivalent to Dg ◦W ′ ◦Df and Dg ◦W ′ ◦Df is Shannon-equivalent to W ′

(by Lemma 11.10), hence W ′′ is Shannon-equivalent to W ′.





Continuity of Channel
Parameters and Operations 12
Let X and Y be two finite sets and let W be a fixed channel with input alphabet X
and output alphabet Y. It is well known that the input-output mutual information is
continuous on the simplex of input probability distributions. Many other parameters
that depend on the input probability distribution were shown to be continuous on
the simplex in [28].

Polyanskiy studied in [81] the continuity of the Neyman-Pearson function for a
binary hypothesis test that arises in the analysis of channel codes. He showed that
for arbitrary input and output alphabets, this function is continuous in the input
distribution under the total-variation topology. He also showed that under some
regularity assumptions, this function is continuous in the weak-∗ topology.

If X and Y are finite sets, the space of channels with input alphabet X and
output alphabet Y can naturally be endowed with the topology of the Euclidean
metric, or any other equivalent metric. It is well known that the channel capacity is
continuous in this topology. If X and Y are arbitrary, one can construct a topology
on the space of channels using the weak-∗ topology on the output alphabet. It was
shown in [72] that the capacity is lower semi-continuous in this topology.

The continuity results that are mentioned in the previous paragraph do not take
into account the equivalence between channels. In [69], output-equivalent binary-
input channels were identified with their L-density (i.e., the density of log-likelihood
ratios). The space of output-equivalent binary-input channels was endowed with the
topology of convergence in distribution of L-densities. Since the symmetric-capacity
and the Bhattacharyya parameter can be written as an integral of a continuous func-
tion with respect to the L-density [69], it immediately follows that these parameters
are continuous in the L-density topology.

In this chapter1, we study the continuity of several channel parameters and
operations under the topologies that were defined in Chapter 11. In Section 12.1,
we introduce the preliminaries for this chapter. In Section 12.2, we introduce the
channel parameters and operations that we investigate in this chapter. In Section
12.3, we study the continuity of the channel parameters and operations on the

1The material of this chapter is based on [63, 64, 65, 66, 82, 83].
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spaces of output-equivalent channels. In Section 12.4, we study the continuity of
the channel parameters and operations on the spaces of input-equivalent channels.
In Section 12.5, we study the continuity of the channel parameters and operations
on the spaces of Shannon-equivalent channels.

12.1 Preliminaries

12.1.1 Topological Notations

A topological space (T,U) is said to be contractible2 to x0 ∈ T if there exists a
continuous mapping H : T × [0, 1] → T such that H(x, 0) = x and H(x, 1) = x0 for
every x ∈ T , where [0, 1] is endowed with the Euclidean topology. (T,U) is strongly
contractible to x0 ∈ T if we also have H(x0, t) = x0 for every t ∈ [0, 1].

Intuitively, T is contractible if it can be “continuously shrinked” to a single point
x0. If this “continuous shrinking” can be done without moving x0, T is strongly
contractible.

The following lemma is useful to show the continuity of many functions.

Lemma 12.1. Let (S,V) and (T,U) be two compact topological spaces and let f :
S × T → R be a continuous function on S × T . For every s ∈ S and every ε > 0,
there exists a neighborhood Vs of s such that for every s′ ∈ Vs, we have

sup
t∈T

|f(s′, t)− f(s, t)| ≤ ε.

Proof. See Appendix 12.6.1.

12.1.2 Quotient Topology

Let (T,U) and (S,V) be two topological spaces and let R be an equivalence relation
on T . Consider the equivalence relation R′ on T × S defined as (x1, y1)R

′(x2, y2) if
and only if x1Rx2 and y1 = y2. A natural question to ask is whether the canonical
bijection between

(
(T/R)×S, (U/R)⊗V

)
and

(
(T ×S)/R′, (U ⊗V)/R′) is a home-

omorphism. It turns out that this is not the case in general. The following theorem,
which is widely used in algebraic topology, provides a sufficient condition:

Theorem 12.1. [84] If (S,V) is locally compact and Hausdorff, then the canoni-
cal bijection between

(
(T/R) × S, (U/R) ⊗ V

)
and

(
(T × S)/R′, (U ⊗ V)/R′) is a

homeomorphism.

Corollary 12.1. Let (T,U) and (S,V) be two topological spaces, and let RT and
RS be two equivalence relations on T and S respectively. Define the equivalence
relation R on T ×S as (x1, y1)R(x2, y2) if and only if x1RTx2 and y1RSy2. If (S,V)
and (T/RT ,U/RT ) are locally compact and Hausdorff, then the canonical bijection
between

(
(T/RT ) × (S/RS), (U/RT ) ⊗ (V/RS)

)
and

(
(T × S)/R, (U ⊗ V)/R

)
is a

homeomorphism.

2Contractibility is a very strong notion of connectedness: Every contractible space is path-
connected and simply connected. Moreover, all its homotopy, homology and cohomology groups of
order ≥ 1 are zero.
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Proof. We just need to apply Theorem 12.1 twice. Define the equivalence relationR′
T

on T×S as follows: (x1, y1)R
′
T (x2, y2) if and only if x1RTx2 and y1 = y2. Since (S,V)

is locally compact and Hausdorff, Theorem 12.1 implies that the canonical bijection
from

(
(T/RT )×S, (U/RT )⊗V

)
to
(
(T ×S)/R′

T , (U ⊗V)/R′
T

)
is a homeomorphism.

Let us identify these two spaces through the canonical bijection.
Now define the equivalence relation R′

S on (T/RT )× S as follows:

(x̂1, y1)R
′
S(x̂2, y2) if and only if x̂1 = x̂2 and y1RSy2.

Since (T/RT ,U/RT ) is locally compact and Hausdorff, Theorem 12.1 implies that
the canonical bijection from

(
(T/RT )× (S/RS), (U/RT )⊗ (V/RS)

)
to
(
((T/RT )×

S)/R′
S , ((U/RT )⊗ V)/R′

S

)
is a homeomorphism.

Since we identified
(
(T/RT ) × S, (U/RT ) ⊗ V

)
and

(
(T × S)/R′

T , (U ⊗ V)/R′
T

)
through the canonical bijection (which is a homeomorphism), R′

S can be seen as an
equivalence relation on

(
(T×S)/R′

T , (U⊗V)/R′
T

)
. It is easy to see that the canonical

bijection from
((
(T × S)/R′

T

)
/R′

S ,
(
(U ⊗ V)/R′

T

)
/R′

S

)
to
(
(T × S)/R, (U ⊗ V)/R

)
is a homeomorphism. We conclude that the canonical bijection from

(
(T/RT ) ×

(S/RS), (U/RT )⊗ (V/RS)
)
to
(
(T × S)/R, (U ⊗ V)/R

)
is a homeomorphism.

12.1.3 Measure-Theoretic Notations

The push-forward probability measure

Let P be a probability measure on (M,Σ), and let f : M → M ′ be a measur-
able mapping from (M,Σ) to another measurable space (M ′,Σ′). The push-forward
probability measure of P by f is the probability measure f#P on (M ′,Σ′) defined as
(f#P )(A′) = P (f−1(A′)) for every A′ ∈ Σ′.

A measurable mapping g : M ′ → R is integrable with respect to f#P if and only
if g ◦ f is integrable with respect to P . Moreover,∫

M ′
g · d(f#P ) =

∫
M
(g ◦ f) · dP.

The mapping f# from P(M,Σ) to P(M ′,Σ′) is continuous if these spaces are
endowed with the total-variation topology:

‖f#P − f#P
′‖TV = sup

A′∈Σ′
|(f#P )(A′)− (f#P

′)(A′)|

= sup
A′∈Σ′

|P (f−1(A′))− P ′(f−1(A′))|

≤ sup
A∈Σ

|P (A)− P ′(A)| ≤ ‖P − P ′‖TV .

Products of probability measures

We denote the product of two measurable spaces (M1,Σ1) and (M2,Σ2) as (M1 ×
M2,Σ1 ⊗Σ2). If P1 ∈ P(M1,Σ1) and P2 ∈ P(M2,Σ2), we denote the product of P1

and P2 as P1 × P2.
If P(M1,Σ1), P(M2,Σ2) and P(M1 ×M2,Σ1 ⊗Σ2) are endowed with the total-

variation topology, then the mapping (P1, P2) → P1 × P2 is a continuous mapping
(see Appendix 12.6.2).
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Let A1 and A2 be two subsets of P(M1,Σ1) and P(M2,Σ2), respectively. We
define the tensor product of A1 and A2 as follows:

A1 ⊗A2 = {P1 × P2 : P1 ∈ A1, P2 ∈ A2} ⊂ P(M1 ×M2,Σ1 ⊗ Σ2).

12.1.4 Random Mappings

Let M and M ′ be two arbitrary sets and let Σ′ be a σ-algebra on M ′. A random
mapping fromM to (M ′,Σ′) is a mapping R fromM to P(M ′,Σ′). For every x ∈ M ,
R(x) can be interpreted as the probability distribution of the random output given
that the input is x.

Let Σ be a σ-algebra on M . We say that R is a measurable random mapping
from (M,Σ) to (M ′,Σ′) if the mapping RB : M → R defined as RB(x) = (R(x))(B)
is measurable for every B ∈ Σ′.

Note that this definition of measurability is consistent with the measurability of
ordinary mappings: Let f be a mapping from M to M ′ and let Df : M → P(M ′,Σ′)
be the random mapping defined as Df (x) = δf(x) for every x ∈ M , where δf(x) ∈
P(M ′,Σ′) is a Dirac measure centered at f(x). We have:

Df is measurable ⇔ (Df )B is measurable, ∀B ∈ Σ′

⇔ ((Df )B)
−1(B′) ∈ Σ, ∀B′ ∈ B(R), ∀B ∈ Σ′

(a)⇔ ((Df )B)
−1({1}) ∈ Σ, ∀B ∈ Σ′

(b)⇔ f−1(B) ∈ Σ, ∀B ∈ Σ′

⇔ f is measurable,

where (a) and (b) follow from the fact that ((Df )B)(x) is either 1 or 0 depending
on whether f(x) ∈ B or not.

Let P be a probability measure on (M,Σ) and let R be a measurable random
mapping from (M,Σ) to (M ′,Σ′). The push-forward probability measure of P by R
is the probability measure R#P on (M ′,Σ′) defined as:

(R#P )(B) =

∫
M

RB · dP, ∀B ∈ Σ′.

Note that this definition is consistent with the push-forward of ordinary mappings:
If f and Df are as above, then for every B ∈ Σ′, we have

((Df )#P )(B) =

∫
M
(Df )B · dP =

∫
M
(1B ◦ f) · dP =

∫
M ′

1B · d(f#P ) = (f#P )(B).

Proposition 12.1. Let R be a measurable random mapping from (M,Σ) to (M ′,Σ′).
If g : M ′ → R+ ∪ {+∞} is a Σ′-measurable mapping, then the mapping x →∫
M ′

g(y)·d(R(x))(y) is a measurable mapping from (M,Σ) to R+∪{+∞}. Moreover,

for every P ∈ P(M,Σ), we have∫
M ′

g · d(R#P ) =

∫
M

(∫
M ′

g(y) · d(R(x))(y)

)
dP (x).

Proof. See Appendix 12.6.3.
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Corollary 12.2. If g : M ′ → R is bounded and Σ′-measurable, then the mapping

x →
∫
M ′

g(y) · d(R(x))(y)

is bounded and Σ-measurable. Moreover, for every P ∈ P(M,Σ), we have∫
M ′

g · d(R#P ) =

∫
M

(∫
M ′

g(y) · d(R(x))(y)

)
dP (x).

Proof. Write g = g+ − g− (where g+ = max{g, 0} and g− = max{−g, 0}), and use
the fact that every bounded measurable function is integrable over any probability
distribution.

Lemma 12.2. For every measurable random mapping R from (M,Σ) to (M ′,Σ′),
the push-forward mapping R# is continuous from P(M,Σ) to P(M ′,Σ′) under the
total-variation topology.

Proof. See Appendix 12.6.4.

Lemma 12.3. Let U be a Polish3 topology on M , and let U ′ be an arbitrary topology
on M ′. Let R be a measurable random mapping from (M,B(M)) to (M ′,B(M ′)).
Moreover, assume that R is a continuous mapping from (M,U) to P(M ′,B(M ′))
when the latter space is endowed with the weak-∗ topology. Under these assumptions,
the push-forward mapping R# is continuous from P(M,B(M)) to P(M ′,B(M ′))
under the weak-∗ topology.

Proof. See Appendix 12.6.4.

12.1.5 Meta-Probability Measures

Let X be a finite set. The following lemma is useful to show the continuity of
functions that are defined on the set MP(X ) of meta-probability measures on X .

Lemma 12.4. Let (S,V) be a compact topological space and let f : S ×ΔX → R be
a continuous function on S ×ΔX . The mapping F : S ×MP(X ) → R defined as

F (s,MP) =

∫
ΔX

f(s, p) · dMP(p)

is continuous, where MP(X ) is endowed with the weak-∗ topology.

Proof. See Appendix 12.6.5.

Let f be a mapping from a finite set X to another finite set X ′. f induces
a push-forward mapping f# taking probability distributions in ΔX to probability
distributions in ΔX ′ . f# is continuous because ΔX and ΔX ′ are endowed with the
total-variation distance. f# in turn induces another push-forward mapping taking
meta-probability measures in MP(X ) to meta-probability measures in MP(X ′).

3This assumption can be dropped. We assumed that U is Polish just to avoid working with
Moore-Smith nets.
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We denote this mapping as f## and we call it the meta-push-forward mapping in-
duced by f . Since f# is a continuous mapping from ΔX to ΔX ′ , f## is a continuous
mapping from MP(X ) to MP(X ′) under both the weak-∗ and the total-variation
topologies.

Let X1 and X2 be two finite sets. Let Mul : ΔX1 × ΔX2 → ΔX1×X2 be defined
as Mul(p1, p2) = p1 × p2. For every MP1 ∈ MP(X1) and MP2 ∈ MP(X2), we
define the tensor product of MP1 and MP2 as MP1⊗MP2 = Mul#(MP1×MP2) ∈
MP(X1 ×X2).

Note that since ΔX1 , ΔX2 and ΔX1×X2 are endowed with the total-variation
topology, Mul(p1, p2) = p1×p2 is a continuous mapping from ΔX1 ×ΔX2 to ΔX1×X2 .
Therefore, Mul# is a continuous mapping from P(ΔX1 × ΔX2) to P(ΔX1×X2) =
MP(X1 × X2) under both the weak-∗ and the total-variation topologies. On the
other hand, Appendices 12.6.2 and 12.6.6 imply that the mapping (MP1,MP2) →
MP1 ×MP2 from MP(X1)×MP(X2) to P(ΔX1 ×ΔX2) is continuous under both
the weak-∗ and the total-variation topologies. We conclude that the tensor product
is continuous under both these topologies.

12.2 Channel Parameters and Operations

12.2.1 Useful Parameters

Let ΔX be the space of probability distributions on X . For every p ∈ ΔX and
every W ∈ DMCX ,Y , define I(p,W ) as the mutual information I(X;Y ), where X is
distributed as p and Y is the output of W when X is the input. The capacity of W
is defined as C(W ) = sup

p∈ΔX
I(p,W ).

For every p ∈ ΔX , the error probability of the MAP decoder of W under prior p
is defined as:

Pe(p,W ) = 1−
∑
y∈Y

max
x∈X

{p(x)W (y|x)}.

Clearly, 0 ≤ Pe(p,W ) ≤ 1.

For every W ∈ DMCX ,Y , define the Bhattacharyya parameter of W as:

Z(W ) =

⎧⎪⎪⎨
⎪⎪⎩

1

|X | · (|X | − 1)

∑
x1,x2∈X ,
x1 �=x2

∑
y∈Y

√
W (y|x1)W (y|x2) if |X | ≥ 2,

0 if |X | = 1.

It is easy to see that 0 ≤ Z(W ) ≤ 1.

As we saw in Proposition 5.1, we have
1

4
Z(W )2 ≤ Pe(πX ,W ) ≤ (|X | − 1)Z(W ),

where πX is the uniform distribution on X .

An (n,M)-encoder on the alphabet X is a mapping E : M → X n such that
|M| = M . The set M is the message set of E , n is the blocklength of E , M is the
size of E , and 1

n log2M is the rate of E . We denote the size M of E as |E|. Moreover,
for every xn1 ∈ X n, we write xn1 ∈ E if and only if there exists m ∈ M such that
xn1 = E(m).
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The error probability of the ML decoder for the encoder E when it is used for a
channel W ∈ DMCX ,Y is given by:

Pe,E(W ) = 1− 1

M

∑
yn1 ∈Yn

max
m∈M

{
n∏

i=1

W (yi|Ei(m))

}

= 1− 1

|E|
∑

yn1 ∈Yn

max
xn
1∈E

{
n∏

i=1

W (yi|xi)
}
,

where (E1(m), . . . , En(m)) = E(m).

The optimal error probability of (n,M)-encoders for a channel W is given by:

Pe,n,M (W ) = min
E is an

(n,M)-encoder

Pe,E(W ).

Let D : Yn → M be a decoder on Y. The probability of error of D under
ML-encoding for W is given by:

Pe,D(W ) = 1− 1

|M|
∑
m∈M

max
xn
1∈Xn

{ ∑
yn1 ∈Yn:

D(yn1 )=m

n∏
i=1

W (yi|xi)
}
.

The following proposition shows that all the above parameters are continuous:

Proposition 12.2. We have:

• I : ΔX ×DMCX ,Y → R+ is continuous, concave in p, and convex in W .

• C : DMCX ,Y → R+ is continuous and convex.

• Pe : ΔX ×DMCX ,Y → [0, 1] is continuous, concave in p and concave in W .

• Z : DMCX ,Y → [0, 1] is continuous.

• For every encoder E on X , Pe,E : DMCX ,Y → [0, 1] is continuous.

• For every decoder D on Y, Pe,D : DMCX ,Y → [0, 1] is continuous.

• For every n,M > 0, the mapping Pe,n,M : DMCX ,Y → [0, 1] is continuous.

Proof. These facts are well known, especially the continuity of I, its concavity in
p, and its convexity in W [3]. Since C is the supremum of a family of mappings
that are convex in W , it is also convex in W . For a proof of the continuity of C,
see Appendix 12.6.7. The continuity of Z, Pe, Pe,E and Pe,D follows immediately
from their definitions. Moreover, since Pe,n,M is the minimum of a finite number of
continuous mappings, it is continuous. The concavity of Pe in p and in W can also
be easily seen from the definition.
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12.2.2 Channel Operations

If W ∈ DMCX ,Y and V ∈ DMCY,Z , we define the composition V ◦W ∈ DMCX ,Z
of W and V as follows:

(V ◦W )(z|x) =
∑
y∈Y

V (z|y)W (y|x), ∀x ∈ X , ∀z ∈ Z.

For every function f : X → Y, define the deterministic channel Df ∈ DMCX ,Y
as follows:

Df (y|x) =
{
1 if y = f(x),

0 otherwise.

It is easy to see that if f : X → Y and g : Y → Z, then Dg ◦Df = Dg◦f .
For every two channels W1 ∈ DMCX1,Y1 and W2 ∈ DMCX2,Y2 , define the channel

sum W1 ⊕W2 ∈ DMCX1
∐X2,Y1

∐Y2
of W1 and W2 as:

(W1 ⊕W2)(y, i|x, j) =
{
Wi(y|x) if i = j,

0 otherwise.

W1 ⊕W2 arises when the transmitter has two channels W1 and W2 at his disposal
and he can use exactly one of them at each channel use. It is an easy exercise to
check that 2C(W1⊕W2) = 2C(W1) + 2C(W2).

We define the channel product W1 ⊗W2 ∈ DMCX1×X2,Y1×Y2 of W1 and W2 as:

(W1 ⊗W2)(y1, y2|x1, x2) = W1(y1|x1)W2(y2|x2).

W1 ⊗W2 arises when the transmitter has two channels W1 and W2 at his disposal
and he uses both of them at each channel use. It is an easy exercise to check
that C(W1 ⊗W2) = C(W1) + C(W2), or equivalently 2C(W1⊗W2) = 2C(W1) · 2C(W2).
Channel sums and products were first introduced by Shannon in [67].

For every W1 ∈ DMCX ,Y1 , W2 ∈ DMCX ,Y2 and every 0 ≤ α ≤ 1, we define the
α-interpolation [αW1, (1− α)W2] ∈ DMCX ,Y1

∐Y2
between W1 and W2 as:

[αW1, (1− α)W2](y, i
∣∣x) =

{
αW1(y|x) if i = 1,

(1− α)W2(y|x) if i = 2.

Channel interpolation arises when a channel behaves as W1 with probability α and
as W2 with probability 1−α. The transmitter has no control on which behavior the
channel chooses, but on the other hand, the receiver knows which one was chosen.
Channel interpolations were used in [85] to construct interpolations between polar
codes and Reed-Muller codes.

Now fix a binary operation ∗ on X . For every W ∈ DMCX ,Y , define W− ∈
DMCX ,Y2 and W+ ∈ DMCX ,Y2×X as:

W−(y1, y2|u1) =
1

|X |
∑
u2∈X

W (y1|u1 ∗ u2)W (y2|u2),

and

W+(y1, y2, u1|u2) =
1

|X |W (y1|u1 ∗ u2)W (y2|u2).

These operations generalize Arıkan’s polarization transformations [2].
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Proposition 12.3. We have:

• The mapping (W,V ) → V ◦W from DMCX ,Y ×DMCY,Z to DMCX ,Z is con-
tinuous.

• The mapping (W1,W2) → W1 ⊕W2 from DMCX1,Y1 ×DMCX2,Y2 to DMCX1
∐X2,Y1

∐Y2
is

continuous.

• The mapping (W1,W2) → W1 ⊗W2 from DMCX1,Y1 ×DMCX2,Y2 to DMCX1×X2,Y1×Y2 is
continuous.

• The mapping (W1,W2, α) → [αW1, (1− α)W2] from DMCX ,Y1 ×DMCX ,Y2 ×[0, 1] to
DMCX ,Y1

∐Y2
is continuous.

• For any binary operation ∗ on X , the mapping W → W− from DMCX ,Y to
DMCX ,Y2 is continuous.

• For any binary operation ∗ on X , the mapping W → W+ from DMCX ,Y to
DMCX ,Y2×X is continuous.

Proof. The continuity immediately follows from the definitions.

12.3 Continuity on the Spaces of Output-Equivalent
Channels

12.3.1 Continuity on DMC
(o)
X ,Y

It is well known that with the exception of Pe,D, all the parameters defined in

Section 12.2.1 depend only on the R
(o)
X ,Y -equivalence class of W . Therefore, we can

define those parameters for any Ŵ ∈ DMC
(o)
X ,Y through the transcendent mapping

(defined in Lemma 11.1). The following proposition shows that those parameters

are continuous on DMC
(o)
X ,Y :

Proposition 12.4. We have:

• I : ΔX ×DMC
(o)
X ,Y → R+ is continuous and concave in p.

• C : DMC
(o)
X ,Y → R+ is continuous.

• Pe : ΔX ×DMC
(o)
X ,Y → [0, 1] is continuous and concave in p.

• Z : DMC
(o)
X ,Y → [0, 1] is continuous.

• For every encoder E on X , Pe,E : DMC
(o)
X ,Y → [0, 1] is continuous.

• For every n,M > 0, the mapping Pe,n,M : DMC
(o)
X ,Y → [0, 1] is continuous.
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Proof. Since the corresponding parameters are continuous on DMCX ,Y (Proposition

12.2), Lemma 11.1 implies that they are continuous on DMC
(o)
X ,Y . The only cases

that need a special treatment are those of I and Z. We will only prove the continuity
of I since the proof of continuity of Z is similar.

Define the relation R on ΔX ×DMCX ,Y as

(p1,W1)R(p2,W2) ⇔ p1 = p2 and W1R
(o)
X ,YW2.

It is easy to see that I(p,W ) depends only on the R-equivalence class of (p,W ).
Since I is continuous on ΔX ×DMCX ,Y , Lemma 11.1 implies that the transcendent
mapping of I is continuous on (ΔX × DMCX ,Y)/R. On the other hand, since ΔX
is locally compact, Theorem 12.1 implies that (ΔX ×DMCX ,Y)/R can be identified

with ΔX × (DMCX ,Y /R
(o)
X ,Y) = ΔX × DMC

(o)
X ,Y and the two spaces have the same

topology. Therefore, I is continuous on ΔX ×DMC
(o)
X ,Y .

With the exception of channel composition, all the channel operations that were
defined in Section 12.2.2 can also be “quotiented”. We just need to realize that
the output-equivalence class of the resulting channel depends only on the output-
equivalence classes of the channels that were used in the operation. Let us illustrate
this in the case of channel sums:

Let W1,W
′
1 ∈ DMCX1,Y1 and W2,W

′
2 ∈ DMCX2,Y2 and assume that W1 is de-

graded from W ′
1 and W2 is degraded from W ′

2. There exists V1 ∈ DMCY1,Y1 and
V2 ∈ DMCY2,Y2 such that W1 = V1 ◦W ′

1 and W2 = V2 ◦W ′
2. It is easy to see that

W1 ⊕ W2 = (V1 ⊕ V2) ◦ (W ′
1 ⊕ W ′

2), which shows that W1 ⊕ W2 is degraded from
W ′

1 ⊕W ′
2. This was proved by Shannon in [10].

Therefore, if W1 is output-equivalent to W ′
1 and W2 is output-equivalent to

W ′
2, then W1 ⊕ W2 is output-equivalent to W ′

1 ⊕ W ′
2. This allows us to define the

channel sum for every Ŵ1 ∈ DMC
(o)
X1,Y1

and every W 2 ∈ DMC
(o)
X2,Y2

as Ŵ1 ⊕W 2 =

˜W ′
1 ⊕W ′

2 ∈ DMC
(o)
X1

∐X2,Y1
∐Y2

for anyW ′
1 ∈ Ŵ1 and anyW ′

2 ∈ W 2, where ˜W ′
1 ⊕W ′

2

is the R
(o)
X1

∐X2,Y1
∐Y2

-equivalence class of W ′
1 ⊕W ′

2.
With the exception of channel composition, we can “quotient” all the channel

operations of Section 12.2.2 in a similar fashion. Moreover, we can show that they
are continuous:

Proposition 12.5. We have:

• The mapping (Ŵ1,W 2) → Ŵ1 ⊕W 2 from DMC
(o)
X1,Y1

×DMC
(o)
X2,Y2

to DMC
(o)
X1

∐X2,Y1
∐Y2

is
continuous.

• The mapping (Ŵ1,W 2) → Ŵ1 ⊗W 2 from DMC
(o)
X1,Y1

×DMC
(o)
X2,Y2

to DMC
(o)
X1×X2,Y1×Y2

is
continuous.

• The mapping (Ŵ1,W 2, α) → [αŴ1, (1− α)W 2] from DMC
(o)
X ,Y1

×DMC
(o)
X ,Y2

×[0, 1] to

DMC
(o)
X ,Y1

∐Y2
is continuous.

• For any binary operation ∗ on X , the mapping Ŵ → Ŵ− from DMC
(o)
X ,Y to

DMC
(o)
X ,Y2 is continuous.
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• For any binary operation ∗ on X , the mapping Ŵ → Ŵ+ from DMC
(o)
X ,Y to

DMC
(o)
X ,Y2×X is continuous.

Proof. We only prove the continuity of the channel sum because the proof of conti-
nuity of the other operations is similar.

Let Proj : DMCX1
∐X2,Y1

∐Y2
→ DMC

(o)
X1

∐X2,Y1
∐Y2

be the projection onto the

R
(o)
X1

∐X2,Y1
∐Y2

-equivalence classes. Define the mapping f : DMCX1,Y1 ×DMCX2,Y2 →
DMC

(o)
X1

∐X2,Y1
∐Y2

as f(W1,W2) = Proj(W1 ⊕W2). Clearly, f is continuous.
Now define the equivalence relation R on DMCX1,Y1 ×DMCX2,Y2 as:

(W1,W2)R(W ′
1,W

′
2) ⇔ W1R

(o)
X1,Y1

W ′
1 and W2R

(o)
X2,Y2

W ′
2.

The discussion before the proposition shows that f(W1,W2) = Proj(W1 ⊕W2) de-
pends only on the R-equivalence class of (W1,W2). Lemma 11.1 now shows that the
transcendent map of f defined on (DMCX1,Y1 ×DMCX2,Y2)/R is continuous.

Since (DMCX1,Y1 ×DMCX2,Y2)/R can be identified with DMC
(o)
X1,Y1

×DMC
(o)
X2,Y2

,

we can define f on DMC
(o)
X1,Y1

×DMC
(o)
X2,Y2

through this identification. Moreover,

since DMCX1,Y1 and DMC
(o)
X2,Y2

are locally compact and Hausdorff, Corollary 12.1
implies that the canonical bijection between (DMCX1,Y1 ×DMCX2,Y2)/R and the

space DMC
(o)
X1,Y1

×DMC
(o)
X2,Y2

is a homeomorphism.

Now since the mapping f on DMC
(o)
X1,Y1

×DMC
(o)
X2,Y2

is just the channel sum, we

conclude that the mapping (Ŵ1,W 2) → Ŵ1 ⊕W 2 from DMC
(o)
X1,Y1

×DMC
(o)
X2,Y2

to

DMC
(o)
X1

∐X2,Y1
∐Y2

is continuous.

12.3.2 Continuity in the Strong Topology

The following lemma provides a way to check whether a mapping defined on the

space (DMC
(o)
X ,∗, T

(o)
s,X ,∗) is continuous:

Lemma 12.5. Let (S,V) be an arbitrary topological space. A mapping f : DMC
(o)
X ,∗ →

S is continuous on the space (DMC
(o)
X ,∗, T

(o)
s,X ,∗) if and only if it is continuous on

(DMC
(o)
X ,[n], T

(o)
X ,[n]) for every n ≥ 1.

Proof.

f is continuous on (DMC
(o)
X ,∗, T

(o)
s,X ,∗)

⇔ f−1(V ) ∈ T (o)
s,X ,∗ ∀V ∈ V

⇔ f−1(V ) ∩DMC
(o)
X ,[n] ∈ T (o)

X ,[n] ∀n ≥ 1, ∀V ∈ V

⇔ f is continuous on (DMC
(o)
X ,[n], T

(o)
X ,[n]) ∀n ≥ 1.

Since the channel parameters I, C, Pe, Z, Pe,E and Pe,n,M are defined on

DMC
(o)
X ,[l] for every l ≥ 1 (see Section 12.3.1), they are also defined on DMC

(o)
X ,∗ =
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⋃
l≥1

DMC
(o)
X ,[l]. The following proposition shows that those parameters are continuous

in the strong topology:

Proposition 12.6. Let UX be the standard topology on ΔX . We have:

• I : ΔX × DMC
(o)
X ,∗ → R+ is continuous on (ΔX × DMC

(o)
X ,∗,UX ⊗ T (o)

s,X ,∗) and
concave in p.

• C : DMC
(o)
X ,∗ → R+ is continuous on (DMC

(o)
X ,∗, T

(o)
s,X ,∗).

• Pe : ΔX ×DMC
(o)
X ,∗ → [0, 1] is continuous on (ΔX ×DMC

(o)
X ,∗,UX ⊗T (o)

s,X ,∗) and
concave in p.

• Z : DMC
(o)
X ,∗ → [0, 1] is continuous on (DMC

(o)
X ,∗, T

(o)
s,X ,∗).

• For every encoder E on X , Pe,E : DMC
(o)
X ,∗ → [0, 1] is continuous on (DMC

(o)
X ,∗, T

(o)
s,X ,∗).

• For every n,M > 0, the mapping Pe,n,M : DMC
(o)
X ,∗ → [0, 1] is continuous on

(DMC
(o)
X ,∗, T

(o)
s,X ,∗).

Proof. The continuity of C,Z, Pe,C and Pe,n,M immediately follows from Proposition
12.4 and Lemma 12.5. Since the proofs of continuity of I and Z are similar, we only
prove the continuity for I.

Due to the distributivity of the product with respect to disjoint unions, we have

ΔX ×DMCX ,∗ =
∐
n≥1

(
ΔX ×DMCX ,[n]

)
,

and

UX ⊗ Ts,X ,∗ =
⊕
n≥1

(
UX ⊗ TX ,[n]

)
.

Therefore, (ΔX × DMCX ,∗,UX ⊗ Ts,X ,∗) is the disjoint union of the spaces (ΔX ×
DMCX ,[n])n≥1. Moreover, I is continuous on ΔX × DMCX ,[n] for every n ≥ 1. We
conclude that I is continuous on (ΔX ×DMCX ,∗,UX ⊗ Ts,X ,∗).

Define the relation R on ΔX × DMCX ,∗ as follows: (p1,W1)R(p2,W2) if and

only if p1 = p2 and W1R
(o)
X ,∗W2. Since I(p,W ) depends only on the R-equivalence

class of (p,W ), Lemma 11.1 shows that the transcendent map of I is a continuous
mapping from

(
(ΔX × DMCX ,∗)/R, (UX ⊗ Ts,X ,∗)/R

)
to R+. On the other hand,

since ΔX is locally compact and Hausdorff, Theorem 12.1 implies that
(
(ΔX ×

DMCX ,∗)/R, (UX ⊗Ts,X ,∗)/R
)
can be identified with

(
ΔX × (DMCX ,∗ /R

(o)
X ,∗),UX ⊗

(Ts,X ,∗/R
(o)
X ,∗)

)
= (ΔX ×DMC

(o)
X ,∗,UX ⊗T (o)

s,X ,∗). Therefore, I is continuous on (ΔX ×
DMC

(o)
X ,∗,UX ⊗ T (o)

s,X ,∗).

It is also possible to extend the definition of all the channel operations that were

defined in Section 12.3.1 to DMC
(o)
X ,∗. Moreover, it is possible to show that many

channel operations are continuous in the strong topology:
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Proposition 12.7. Assume that all output-equivalent channel spaces are endowed
with the strong topology. We have:

• The mapping (Ŵ1,W 2) → Ŵ1 ⊕W 2 from DMC
(o)
X1,∗×DMC

(o)
X2,Y2

to DMC
(o)
X1

∐X2,∗ is
continuous.

• The mapping (Ŵ1,W 2) → Ŵ1 ⊗W 2 from DMC
(o)
X1,∗×DMC

(o)
X2,Y2

to the space

DMC
(o)
X1×X2,∗ is continuous.

• The mapping (Ŵ1,W 2, α) → [αŴ1, (1− α)W 2] from DMC
(o)
X ,∗×DMC

(o)
X ,Y2

×[0, 1] to

DMC
(o)
X ,∗ is continuous.

• For any binary operation ∗ on X , the mapping Ŵ → Ŵ− from DMC
(o)
X ,∗ to

DMC
(o)
X ,∗ is continuous.

• For any binary operation ∗ on X , the mapping Ŵ → Ŵ+ from DMC
(o)
X ,∗ to

DMC
(o)
X ,∗ is continuous.

Proof. We only prove the continuity of the channel interpolation because the proof
of the continuity of other operations is similar.

Let U be the standard topology on [0, 1]. Due to the distributivity of the product
with respect to disjoint unions, we have:

DMCX ,∗×DMCX ,Y2 ×[0, 1] =
∐
n≥1

(DMCX ,[n]×DMCX ,Y2 ×[0, 1]),

and
Ts,X ,∗ ⊗ TX ,Y2 ⊗ U =

⊕
n≥1

(
TX ,[n] ⊗ TX ,Y2 ⊗ U

)
.

Therefore, the space DMCX ,∗×DMCX ,Y2 ×[0, 1] is the topological disjoint union
of the spaces (DMCX ,[n]×DMCX ,Y2 ×[0, 1])n≥1.

For every n ≥ 1, let Projn be the projection onto the R
(o)
X ,[n]

∐Y2
-equivalence

classes and let in be the canonical injection from DMC
(o)
X ,[n]

∐Y2
to DMC

(o)
X ,∗.

Define the mapping f : DMCX ,∗×DMCX ,Y2 ×[0, 1] → DMC
(o)
X ,∗ as

f(W1,W2, α) = in(Projn([αW1, (1− α)W2])) = [αŴ1, (1− α)W 2],

where n is the unique integer satisfying W1 ∈ DMCX ,[n]. Ŵ1 and W 2 are the R
(o)
X ,[n]

and R
(o)
X ,Y2

-equivalence classes of W1 and W2 respectively.
Due to Proposition 12.3 and due to the continuity of Projn and in, the mapping

f is continuous on DMCX ,[n]×DMCX ,Y2 ×[0, 1] for every n ≥ 1. Therefore, f is
continuous on (DMCX ,∗×DMCX ,Y2 ×[0, 1], Ts,X ,∗ ⊗ TX ,Y2 ⊗ U).

Let R′ be the equivalence relation defined on DMCX ,∗×DMCX ,Y2 as follows:

(W1,W2)R
′(W ′

1,W
′
2) if and only if W1R

(o)
X ,∗W

′
1 and W2R

(o)
X ,Y2

W ′
2. Also, define the

equivalence relation R on DMCX ,∗×DMCX ,Y2 ×[0, 1] as follows:

(W1,W2, α)R(W ′
1,W

′
2, α

′) if and only if (W1,W2)R
′(W ′

1,W
′
2) and α = α′.
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Since f(W1,W2, α) depends only on the R-equivalence class of (W1,W2, α),
Lemma 11.1 implies that the transcendent mapping of f is continuous on the space
(DMCX ,∗×DMCX ,Y2 ×[0, 1])/R.

Since [0, 1] is Hausdorff and locally compact, Theorem 12.1 implies that the
canonical bijection from the space (DMCX ,∗×DMCX ,Y2 ×[0, 1])/R to the space(
(DMCX ,∗×DMCX ,Y2)/R

′)× [0, 1]) is a homeomorphism. On the other hand, since

(DMCX ,∗, Ts,X ,∗) and DMC
(o)
X ,Y2

= DMCX ,Y2 /R
(o)
X ,Y2

are Hausdorff and locally com-

pact, Corollary 12.1 implies that the canonical bijection from DMC
(o)
X ,∗×DMC

(o)
X ,Y2

to (DMCX ,∗×DMCX ,Y2)/R
′ is a homeomorphism. We conclude that the channel

interpolation is continuous on (DMC
(o)
X ,∗×DMC

(o)
X ,Y2

×[0, 1], T (o)
s,X ,∗ ⊗ T (o)

X ,Y ⊗ U).

Corollary 12.3. (DMC
(o)
X ,∗, T

(o)
s,X ,∗) is strongly contractible to every point in DMC

(o)
X ,∗.

Proof. Fix Ŵ0 ∈ DMC
(o)
X ,∗. Define the mapping H : DMC

(o)
X ,∗×[0, 1] → DMC

(o)
X ,∗ as

H(Ŵ , α) = [αŴ0, (1 − α)Ŵ ]. H is continuous by Proposition 12.7. We also have

H(Ŵ , 0) = Ŵ and H(Ŵ , 1) = Ŵ0 for every Ŵ ∈ DMC
(o)
X ,∗. Moreover, H(Ŵ0, α) =

Ŵ0 for every 0 ≤ α ≤ 1. Therefore, (DMC
(o)
X ,∗, T

(o)
s,X ,∗) is strongly contractible to

every point in DMC
(o)
X ,∗.

The reader might be wondering why channel operations such as the channel

sum were not shown to be continuous on the whole space DMC
(o)
X1,∗×DMC

(o)
X2,∗

instead of the smaller space DMC
(o)
X1,∗×DMC

(o)
X2,Y2

. The reason is because we cannot

apply Corollary 12.1 to DMCX1,∗×DMCX2,∗ and DMC
(o)
X1,∗×DMC

(o)
X2,∗ since neither

DMC
(o)
X1,∗ nor DMC

(o)
X2,∗ is locally compact (under the strong topology).

One potential method to show the continuity of the channel sum on the whole

space (DMC
(o)
X1,∗×DMC

(o)
X2,∗, T

(o)
s,X1,∗ ⊗ T (o)

s,X2,∗) is as follows: Let R be the equiva-
lence relation on DMCX1,∗×DMCX2,∗ defined as (W1,W2)R(W ′

1,W
′
2) if and only

if W1R
(o)
X1,∗W

′
1 and W2R

(o)
X2,∗W

′
2. We can identify (DMCX1,∗×DMCX2,∗)/R with

DMC
(o)
X1,∗×DMC

(o)
X2,∗ through the canonical bijection. Using Lemma 11.1, it is

easy to see that the mapping (Ŵ1,W 2) → Ŵ1 ⊕ W 2 is continuous from the space(
DMC

(o)
X1,∗×DMC

(o)
X2,∗, (Ts,X1,∗ ⊗ Ts,X2,∗)/R

)
to (DMC

(o)
X1

∐X2,∗, T
(o)
s,X1

∐X2,∗).
It was shown in [79] that the topology (Ts,X1,∗ ⊗ Ts,X2,∗)/R is homeomorphic

to κ(T (o)
s,X1,∗ ⊗ T (o)

s,X2,∗) through the canonical bijection, where κ(T (o)
s,X1,∗ ⊗ T (o)

s,X2,∗) is

the coarsest topology that is both compactly generated and finer than T (o)
s,X1,∗ ⊗

T (o)
s,X2,∗. Therefore, the mapping (Ŵ1,W 2) → Ŵ1 ⊕ W 2 is continuous on the space(
DMC

(o)
X1,∗×DMC

(o)
X2,∗, κ(T

(o)
s,X1,∗ ⊗ T (o)

s,X2,∗)
)
. This means that if T (o)

s,X1,∗ ⊗ T (o)
s,X2,∗ is

compactly generated, we will have T (o)
s,X1,∗ ⊗ T (o)

s,X2,∗ = κ(T (o)
s,X1,∗ ⊗ T (o)

s,X2,∗) and so the

channel sum will be continuous on (DMC
(o)
X1,∗×DMC

(o)
X2,∗, T

(o)
s,X1,∗⊗T (o)

s,X2,∗). Note that

although T (o)
s,X1,∗ and T (o)

s,X2,∗ are compactly generated, their product T (o)
s,X1,∗ ⊗ T (o)

s,X2,∗
might not be compactly generated.
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12.3.3 Continuity in the Noisiness/Weak-∗ and the Total-Variation
Topologies

We need to express the channel parameters and operations in terms of the Blackwell
measures.

Channel Parameters

The following proposition shows that many channel parameters can be expressed as
an integral of a continuous function with respect to the Blackwell measure:

Proposition 12.8. If Ŵ ∈ DMC
(o)
X ,∗, then:

• For every p ∈ ΔX , we have

I(p, Ŵ ) = H(p)− |X | ·
∫
ΔX

⎛
⎜⎜⎝∑

x∈X
p(x)p′(x) log2

p(x)p′(x)∑
x′

p(x′)p′(x′)

⎞
⎟⎟⎠ · dMPŴ (p′),

where H(p) is the entropy of p. Note that we adopt the standard convention
that 0 log2

0
0 = 0.

• For every p ∈ ΔX , we have

Pe(p, Ŵ ) = 1− |X |
∫
ΔX

max
x∈X

{
p(x)× p′(x)

}
· dMPŴ (p′).

• If |X | ≥ 2, we have

Z(Ŵ ) =
1

|X | − 1

∑
x,x′∈X ,
x�=x′

∫
ΔX

√
p(x)p(x′) · dMPŴ (p).

• For every (n,M)-encoder E on X , we have

Pe,E(Ŵ ) = 1− |X |n
|E|

∫
Δn

X
max
xn
1∈E

{
n∏

i=1

pi(xi)

}
dMPn

Ŵ
(pn1 ),

where MPn
Ŵ

is the product measure on Δn
X obtained by multiplying MPŴ with

itself n times.

Proof. By choosing any representative channel W ∈ Ŵ and replacing W (y|x) by
|X |P o

W (y)W−1
y (x) in the definitions of the channel parameters, all the above formulas
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immediately follow. Let us show how this works for Pe:

Pe(p, Ŵ ) = Pe(p,W )
(a)
= 1−

∑
y∈Im(W )

max
x∈X

{p(x)W (y|x)}

= 1−
∑

y∈Im(W )

max
x∈X

{
p(x) · |X | · P o

W (y)W−1
y (x)

}

= 1− |X |
∑

y∈Im(W )

max
x∈X

{p(x)W−1
y (x)} · P o

W (y)

= 1− |X |
∫
ΔX

max
x∈X

{p(x)p′(x)} · dMPW (p′)

= 1− |X |
∫
ΔX

max
x∈X

{p(x)p′(x)} · dMPŴ (p′),

where (a) is true because W (y|x) = 0 for y /∈ Im(W ).

Proposition 12.9. Let UX be the standard topology on ΔX . We have:

• I : ΔX × DMC
(o)
X ,∗ → R+ is continuous on (ΔX × DMC

(o)
X ,∗,UX ⊗ T (o)

X ,∗) and
concave in p.

• C : DMC
(o)
X ,∗ → R+ is continuous on (DMC

(o)
X ,∗, T

(o)
X ,∗).

• Pe : ΔX ×DMC
(o)
X ,∗ → [0, 1] is continuous on (ΔX ×DMC

(o)
X ,∗,UX ⊗ T (o)

X ,∗) and
concave in p.

• Z : DMC
(o)
X ,∗ → [0, 1] is continuous on (DMC

(o)
X ,∗, T

(o)
X ,∗).

• For every encoder E on X , Pe,E : DMC
(o)
X ,∗ → [0, 1] is continuous on (DMC

(o)
X ,∗, T

(o)
X ,∗).

• For every n,M > 0, the mapping Pe,n,M : DMC
(o)
X ,∗ → [0, 1] is continuous on

(DMC
(o)
X ,∗, T

(o)
X ,∗).

Proof. We associate the space MP(X ) with the weak-∗ topology. Define the map-
ping

I : ΔX ×MP(X ) → R+

as follows:

I(p,MP) = H(p)− |X | ·
∫
ΔX

⎛
⎜⎜⎝∑

x∈X
p(x)p′(x) log2

p(x)p′(x)∑
x′

p(x′)p′(x′)

⎞
⎟⎟⎠ · dMP(p′),

Lemma 12.4 implies that I is continuous. On the other hand, Proposition 12.8 shows

that I(p, Ŵ ) = I(p,MPŴ ). Therefore, I is continuous on (ΔX×DMC
(o)
X ,∗,UX⊗T (o)

X ,∗).
We can prove the continuity of Pe and Z similarly.

Now define the mapping C : MP(X ) → R as

C(MP) = sup
p∈ΔX

I(p,MP).
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Fix MP ∈ MP(X ) and let ε > 0. Since MP(X ) is compact (under the weak-∗
topology), Lemma 12.1 implies the existence of a weakly-∗ open neighborhood UMP

of MP such that |I(p,MP)− I(p,MP′)| < ε for every MP′ ∈ UMP and every p ∈ ΔX .
Therefore, for every MP′ ∈ UMP and every p ∈ ΔX , we have

I(p,MP) < I(p,MP′) + ε ≤ C(MP′) + ε,

hence,

C(MP) = sup
p∈ΔX

I(p,MP) ≤ C(MP′) + ε.

Similarly, we can show that C(MP′) ≤ C(MP) + ε. This shows that |C(MP′) −
C(MP)| ≤ ε for every MP′ ∈ UMP. Therefore, C is continuous. But C(Ŵ ) =

C(MPŴ ), so C is continuous on (DMC
(o)
X ,∗, T

(o)
X ,∗).

Now let E be an (n,M)-encoder on X . For every 0 ≤ i ≤ n, define the mapping
fi : Δ

i
X ×MP(X ) → R backward-recursively as follows:

• fn(p
n
1 ,MP) = max

xn
1∈E

{
n∏

i=1

pi(xi)

}
.

• For every 0 ≤ i < n, define

fi(p
i
1,MP) =

∫
ΔX

fi+1(p
i+1
1 ,MP) · dMP(pi+1).

Clearly, fn is continuous. Now let 0 ≤ i < n and assume that fi+1 is continuous.
If we let S = Δi

X ×MP(X ), Lemma 12.4 implies that the mapping

Fi : Δ
i
X ×MP(X )×MP(X ) → R

defined as

Fi(p
i
1,MP,MP′) =

∫
ΔX

fi+1(p
i+1
1 ,MP) · dMP′(pi+1)

is continuous. But fi(p
i
1,MP) = Fi(p

i
1,MP,MP), so fi is also continuous. Therefore,

f0 is continuous. By noticing that Pe,E(Ŵ ) = 1− |X |n
|E| f0(MPŴ ), we conclude that

Pe,E is continuous on (DMC
(o)
X ,∗, T

(o)
X ,∗). Moreover, since Pe,n,M is the minimum of a

finite family of continuous mappings, it is continuous.

It is worth mentioning that Proposition 12.6 can be shown from Proposition 12.9
because the noisiness topology is coarser than the strong topology.

Corollary 12.4. All the mappings in Proposition 12.9 are also continuous if we

replace the noisiness topology T (o)
X ,∗ with the total-variation topology T (o)

TV,X ,∗.

Proof. This is true because T (o)
TV,X ,∗ is finer than T (o)

X ,∗.
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Channel Operations

In the following, we show that we can express the channel operations in terms of
Blackwell measures. We have all the tools to achieve this for the channel sum,
channel product and channel interpolation. In order to express the channel polar-
ization transformations in terms of the Blackwell measures, we need to introduce
new definitions.

Let X be a finite set and let ∗ be a binary operation on a finite set X . We say
that ∗ is uniformity-preserving if the mapping (a, b) → (a∗b, b) is a bijection from X 2

to itself. For every a, b ∈ X , we denote the unique element c ∈ X satisfying c ∗ b = a
as c = a/∗b. Note that /∗ is a binary operation and it is uniformity-preserving. /∗

is called the right-inverse of ∗. We saw in Chapter 3 that a binary operation is
polarizing if and only if it is uniformity-preserving and its right-inverse is strongly
ergodic.

Binary operations that are not uniformity-preserving are not interesting for po-
larization theory because they do not preserve the symmetric capacity (see Remark
3.1). Therefore, we will only focus on polarization transformations that are based
on uniformity-preserving operations.

Let ∗ be a fixed uniformity-preserving operation on X . Define the mapping
C−,∗ : ΔX ×ΔX → ΔX as

(C−,∗(p1, p2))(u1) =
∑
u2∈X

p1(u1 ∗ u2)p2(u2).

The probability distribution C−,∗(p1, p2) can be interpreted as follows: Let X1

and X2 be two independent random variables in X that are distributed as p1 and
p2 respectively, and let (U1, U2) be the random pair in X 2 defined as (U1, U2) =
(X1/

∗X2, X2), or equivalently (X1, X2) = (U1 ∗ U2, U2). C−,∗(p1, p2) is the proba-
bility distribution of U1.

Clearly, C−,∗ is continuous. Therefore, the push-forward mapping C−,∗
# is con-

tinuous from P(ΔX × ΔX ) to P(ΔX ) = MP(X ) under both the weak-∗ and the
total-variation topologies (see Section 12.1.5). For every MP1,MP2 ∈ MP(X ), we
define the (−, ∗)-convolution of MP1 and MP2 as:

(MP1,MP2)
−,∗ = C−,∗

# (MP1 ×MP2) ∈ MP(X ).

Since the product of meta-probability measures is continuous under both the weak-
∗ and the total-variation topologies (Appendices 12.6.2 and 12.6.6), the (−, ∗)-
convolution is also continuous under these topologies.

For every p1, p2 ∈ ΔX and every u1 ∈ supp(C−,∗(p1, p2)), define C+,u1,∗(p1, p2) ∈
ΔX as

(C+,u1,∗(p1, p2))(u2) =
p1(u1 ∗ u2)p2(u2)
(C−,∗(p1, p2))(u1)

.

The probability distribution C+,u1,∗(p1, p2) can be interpreted as follows: If X1, X2,
U1 and U2 are as above, C+,u1,∗(p1, p2) is the conditional probability distribution of
U2 given U1 = u1.

Define the mapping C+,∗ : ΔX ×ΔX → P(ΔX ) = MP(X ) as follows:

C+,∗(p1, p2) =
∑

u1∈supp(C−,∗(p1,p2))

(C−,∗(p1, p2))(u1) · δC+,u1,∗(p1,p2),
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where δC+,u1,∗(p1,p2) is a Dirac measure centered at C+,u1,∗(p1, p2).
If X1, X2, U1 and U2 are as above, C+,∗(p1, p2) is the meta-probability measure

that describes the possible conditional probability distributions of U2 that are seen
by someone having knowledge of U1. Clearly, C+,∗ is a random mapping from
ΔX ×ΔX to ΔX . In Appendix 12.6.8, we show that C+,∗ is a measurable random
mapping. We also show in Appendix 12.6.8 that C+,∗ is a continuous mapping from
ΔX ×ΔX to MP(X ) when the latter space is endowed with the weak-∗ topology.
Lemmas 12.2 and 12.3 now imply that the push-forward mapping C+,∗

# is continuous
under both the weak-∗ and the total-variation topologies.

For every MP1,MP2 ∈ MP(X ), we define the (+, ∗)-convolution of MP1 and
MP2 as:

(MP1,MP2)
+,∗ = C+,∗

# (MP1 ×MP2) ∈ MP(X ).

Since the product of meta-probability measures is continuous under both the weak-
∗ and the total-variation topologies (Appendices 12.6.2 and 12.6.6), the (+, ∗)-
convolution is also continuous under these topologies.

Proposition 12.10. We have:

• For every Ŵ1 ∈ DMC
(o)
X1,∗ and W 2 ∈ DMC

(o)
X2,∗, we have:

MPŴ1⊕W 2
=

|X1|
|X1|+ |X2|

MP′
Ŵ1

+
|X2|

|X1|+ |X2|
MP′

W 2
,

where MP′
Ŵ1

(respectively MP′
Ŵ2

) is the meta-push-forward of MPŴ1
(respec-

tively MPŴ2
) by the canonical injection from X1 (respectively X2) to X1

∐X2.

• For every Ŵ1 ∈ DMC
(o)
X1,∗ and W 2 ∈ DMC

(o)
X2,∗, we have:

MPŴ1⊗W 2
= MPŴ1

⊗MPW 2
.

• For every α ∈ [0, 1] and every Ŵ1, Ŵ2 ∈ DMC
(o)
X ,∗, we have

MP[αŴ1,(1−α)Ŵ2]
= αMPŴ1

+ (1− α)MPŴ2
.

• For every uniformity-preserving binary operation ∗ on X , and every Ŵ ∈
DMC

(o)
X ,∗, we have

MPŴ− = (MPŴ ,MPŴ )−,∗.

• For every uniformity-preserving binary operation ∗ on X , and every Ŵ ∈
DMC

(o)
X ,∗, we have

MPŴ+ = (MPŴ ,MPŴ )+,∗.

Proof. See Appendix 12.6.9.

Note that the polarization transformation formulas in Proposition 12.10 gener-
alize the formulas given by Raginsky in [86] for binary-input channels.

Proposition 12.11. Assume that all output-equivalent channel spaces are endowed
with the noisiness/weak-∗ or the total-variation topology. We have:
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• The mapping (Ŵ1,W 2) → Ŵ1⊕W 2 from DMC
(o)
X1,∗×DMC

(o)
X2,∗ to DMC

(o)
X1

∐X2,∗
is continuous.

• The mapping (Ŵ1,W 2) → Ŵ1⊗W 2 from DMC
(o)
X1,∗×DMC

(o)
X2,∗ to DMC

(o)
X1×X2,∗

is continuous.

• The mapping (Ŵ1,W 2, α) → [αŴ1, (1−α)W 2] from DMC
(o)
X ,∗×DMC

(o)
X ,∗×[0, 1]

to DMC
(o)
X ,∗ is continuous.

• For every uniformity-preserving binary operation ∗ on X , the mapping Ŵ →
Ŵ− from DMC

(o)
X ,∗ to DMC

(o)
X ,∗ is continuous.

• For every uniformity-preserving binary operation ∗ on X , the mapping Ŵ →
Ŵ+ from DMC

(o)
X ,∗ to DMC

(o)
X ,∗ is continuous.

Proof. The proposition directly follows from Proposition 12.10 and the fact that
all the meta-probability measure operations that are involved in the formulas are
continuous under both the weak-∗ and the total-variation topologies.

Corollary 12.5. Both (DMC
(o)
X ,∗, T

(o)
X ,∗) and (DMC

(o)
X ,∗, T

(o)
TV,X ,∗) are strongly con-

tractible to every point in DMC
(o)
X ,∗.

Proof. We can use the same proof of Corollary 12.3.

12.4 Continuity on the Spaces of Input-Equivalent
Channels

12.4.1 Channel Parameters

Since input-degradedness is a particular case of the Shannon ordering [10], we
can easily see that if W and W ′ are input-equivalent, then C(W ) = C(W ′) and
Pe,n,M (W ) = Pe,n,M (W ′) for every n ≥ 1 and every M ≥ 1. Therefore, for every

Ŵ ∈ DMC
(i)
∗,Y , we can define C(Ŵ ) := C(W ′) for any W ′ ∈ Ŵ . We can define

Pe,n,M (Ŵ ) similarly. Moreover, due to Proposition 10.5, we can also define Pe,D(Ŵ )
for any decoder D on the output alphabet Y.

Proposition 12.12. Let X and Y be two finite sets. We have:

• C : DMC
(i)
X ,Y → R+ is continuous on (DMC

(i)
X ,Y , T

(i)
X ,Y).

• For every n ≥ 1 and every M ≥ 1, the mapping Pe,n,M : DMC
(i)
X ,Y → [0, 1] is

continuous on (DMC
(i)
X ,Y , T

(i)
X ,Y).

• For every decoder D on Y, the mapping Pe,D : DMC
(i)
X ,Y → [0, 1] is continuous

on (DMC
(i)
X ,Y , T

(i)
X ,Y).
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Proof. Since C : DMCX ,Y → R+ is continuous, and since C(W ) depends only on

the R
(i)
X ,Y -equivalence class of W , Lemma 11.1 implies that C : DMC

(i)
X ,Y → R+ is

continuous on (DMC
(i)
X ,Y , T

(i)
X ,Y). We can show the continuity of Pe,n,M and Pe,D on

(DMC
(i)
X ,Y , T

(i)
X ,Y) similarly.

The following lemma provides a way to check whether a mapping defined on

(DMC
(i)
∗,Y , T

(i)
s,∗,Y) is continuous:

Lemma 12.6. Let (S,V) be an arbitrary topological space. A mapping f : DMC
(i)
∗,Y →

S is continuous on the space (DMC
(i)
∗,Y , T

(i)
s,∗,Y) if and only if it is continuous on

(DMC
(i)
[n],Y , T

(i)
[n],Y) for every n ≥ 1.

Proof. Same proof as Lemma 12.5.

Proposition 12.13. Let Y be a finite set. We have:

• C : DMC
(i)
∗,Y → R+ is continuous on (DMC

(i)
∗,Y , T

(i)
s,∗,Y).

• For every n ≥ 1 and every M ≥ 1, the mapping Pe,n,M : DMC
(i)
∗,Y → [0, 1] is

continuous on (DMC
(i)
∗,Y , T

(i)
s,∗,Y).

• For every decoder D on Y, the mapping Pe,D : DMC
(i)
∗,Y → [0, 1] is continuous

on (DMC
(i)
∗,Y , T

(i)
s,∗,Y).

Proof. The proposition follows from Proposition 12.12 and Lemma 12.6.

12.4.2 Channel Operations

Channel sums and products can be “quotiented” by the input-equivalence relation.
We just need to realize that the input-equivalence class of the resulting channel
depends only on the input-equivalence classes of the channels that were used in the
operation. Let us illustrate this in the case of channel sums:

Let W1,W
′
1 ∈ DMCX1,Y1 and W2,W

′
2 ∈ DMCX2,Y2 and assume that W1 is input-

degraded from W ′
1 and W2 is input-degraded from W ′

2. There exists V
′
1 ∈ DMCX1,X1

and V ′
2 ∈ DMCX2,X2 such that W1 = W ′

1 ◦ V ′
1 and W2 = W ′

2 ◦ V ′
2 . It is easy to see

that W1⊕W2 = (W ′
1⊕W ′

2)◦ (V ′
1⊕V ′

2), which shows that W1⊕W2 is input-degraded
from W ′

1 ⊕W ′
2.

Therefore, ifW1 is input-equivalent toW
′
1 andW2 is input-equivalent toW

′
2, then

W1 ⊕W2 is input-equivalent to W ′
1 ⊕W ′

2. This allows us to define the channel sum

for every Ŵ1 ∈ DMC
(i)
X1,Y1

and every W 2 ∈ DMC
(i)
X2,Y2

as Ŵ1 ⊕ W 2 = ˜W ′
1 ⊕W ′

2 ∈
DMC

(i)
X1

∐X2,Y1
∐Y2

for any W ′
1 ∈ Ŵ1 and any W ′

2 ∈ W 2, where ˜W ′
1 ⊕W ′

2 is the

R
(i)
X1

∐X2,Y1
∐Y2

-equivalence class of W ′
1 ⊕ W ′

2. We can define the product on the
quotient spaces similarly.

Proposition 12.14. We have:
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• The mapping (Ŵ1,W 2) → Ŵ1 ⊕W 2 from DMC
(i)
X1,Y1

×DMC
(i)
X2,Y2

to DMC
(i)
X1

∐X2,Y1
∐Y2

is
continuous.

• The mapping (Ŵ1,W 2) → Ŵ1 ⊗W 2 from DMC
(i)
X1,Y1

×DMC
(i)
X2,Y2

to DMC
(i)
X1×X2,Y1×Y2

is
continuous.

Proof. Same proof as Proposition 12.5.

Proposition 12.15. Assume that all spaces of input-equivalent channels are en-
dowed with the strong topology. We have:

• The mapping (Ŵ1,W 2) → Ŵ1 ⊕W 2 from DMC
(i)
∗,Y1

×DMC
(i)
X2,Y2

to DMC
(i)
∗,Y1

∐Y2
is

continuous.

• The mapping (Ŵ1,W 2) → Ŵ1 ⊗W 2 from DMC
(i)
∗,Y1

×DMC
(i)
X2,Y2

to DMC
(i)
∗,Y1×Y2

is
continuous.

Proof. Same proof as Proposition 12.7.

As in the case of output-equivalent channels4, the continuity of channel sums and

products on the whole space (DMC
(i)
∗,Y1

×DMC
(i)
∗,Y2

, T (i)
s,∗,Y1

⊗ T (i)
s,∗,Y2

) can be shown

by proving that T (i)
s,∗,Y1

⊗ T (i)
s,∗,Y2

is compactly generated. Note that although T (i)
s,∗,Y1

and T (i)
s,∗,Y2

are compactly generated, their product T (i)
s,∗,Y1

⊗ T (i)
s,∗,Y2

might not be
compactly generated.

Proposition 12.16. Let Y1 and Y2 be two finite sets. Let Ŵ1 ∈ DMC
(i)
∗,Y1

and

W 2 ∈ DMC
(i)
∗,Y2

. We have:

co(Ŵ1 ⊕W 2) =
⋃

0≤λ≤1

(
(1− λ)φ1#(co(Ŵ1)) + λφ2#(co(Ŵ2))

)
,

where φ1# and φ2# are the push-forwards by the canonical injections from Y1 and
Y2 to Y1

∐Y2 respectively. On the other hand,

co(Ŵ1 ⊗W 2) = co
(
co(Ŵ1)⊗ co(Ŵ2)

)
.

Proof. See Appendix 12.6.10.

Proposition 12.17. Assume that all spaces of input-equivalent channels are en-
dowed with the similarity topology. We have:

• The mapping (Ŵ1,W 2) → Ŵ1⊕W 2 from DMC
(i)
∗,Y1

×DMC
(i)
∗,Y2

to DMC
(i)
∗,Y1

∐Y2

is continuous.

• The mapping (Ŵ1,W 2) → Ŵ1⊗W 2 from DMC
(i)
∗,Y1

×DMC
(i)
∗,Y2

to DMC
(i)
∗,Y1×Y2

is continuous.

Proof. See Appendix 12.6.11.

4See the discussion after Corollary 12.3.
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12.5 Continuity on the Space of Shannon-Equivalent
Channels

12.5.1 Channel parameters

For every W ∈ DMC∗,∗, C(W ) depends only on the Shannon-equivalence class of

W [10]. Therefore, for every Ŵ ∈ DMC
(s)
∗,∗, we can define C(Ŵ ) := C(W ′) for any

W ′ ∈ Ŵ . We can define Pe,n,M (Ŵ ) similarly.

Proposition 12.18. Let X and Y be two finite sets. We have:

• C : DMC
(s)
X ,Y → R+ is continuous on (DMC

(s)
X ,Y , T

(s)
X ,Y).

• For every n ≥ 1 and every M ≥ 1, the mapping Pe,n,M : DMC
(s)
X ,Y → [0, 1] is

continuous on (DMC
(s)
X ,Y , T

(s)
X ,Y).

Proof. Since C : DMCX ,Y → R+ is continuous, and since C(W ) depends only

on the R
(s)
X ,Y -equivalence class of W , Lemma 11.1 implies that C : DMC

(s)
X ,Y →

R+ is continuous on (DMC
(s)
X ,Y , T

(s)
X ,Y). We can show the continuity of Pe,n,M on

(DMC
(s)
X ,Y , T

(s)
X ,Y) similarly.

The following lemma provides a way to check whether a mapping defined on

(DMC
(s)
∗,∗, T (s)

s,∗,∗) is continuous:

Lemma 12.7. Let (S,V) be an arbitrary topological space. A mapping f : DMC
(s)
∗,∗ →

S is continuous on (DMC
(s)
∗,∗, T (s)

s,∗,∗) if and only if it is continuous on the space

(DMC
(s)
[n],[n], T

(s)
[n],[n]) for every n ≥ 1.

Proof.

f is continuous on (DMC
(s)
∗,∗, T (s)

s,∗,∗) ⇔ f−1(V ) ∈ T (s)
s,∗,∗, ∀V ∈ V

⇔ f−1(V ) ∩DMC
(s)
[n],[n] ∈ T (s)

[n],[n], ∀n ≥ 1, ∀V ∈ V

⇔ f is continuous on (DMC
(s)
[n],[n], T

(s)
[n],[n]), ∀n ≥ 1.

Proposition 12.19. We have:

• C : DMC
(s)
∗,∗ → R+ is continuous on (DMC

(s)
∗,∗, T (s)

s,∗,∗).

• For every n ≥ 1 and every M ≥ 1, the mapping Pe,n,M : DMC
(s)
∗,∗ → [0, 1] is

continuous on (DMC
(s)
∗,∗, T (s)

s,∗,∗).

Proof. The proposition follows from Proposition 12.18 and Lemma 12.7.
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12.5.2 Channel operations

Channel sums and products can be “quotiented” by the Shannon-equivalence rela-
tion. We just need to realize that the Shannon-equivalence class of the resulting
channel depends only on the Shannon-equivalence classes of the channels that were
used in the operation [10].

Proposition 12.20. We have:

• The mapping (Ŵ1,W 2) → Ŵ1 ⊕W 2 from DMC
(s)
X1,Y1

×DMC
(s)
X2,Y2

to DMC
(s)
X1

∐X2,Y1
∐Y2

is
continuous.

• The mapping (Ŵ1,W 2) → Ŵ1 ⊗W 2 from DMC
(s)
X1,Y1

×DMC
(s)
X2,Y2

to DMC
(s)
X1×X2,Y1×Y2

is
continuous.

Proof. Same proof as Proposition 12.5.

Proposition 12.21. Assume that the space DMC
(s)
∗,∗ is endowed with the strong

topology. We have:

• The mapping (Ŵ1,W 2) → Ŵ1 ⊕W 2 from DMC
(s)
∗,∗×DMC

(s)
X2,Y2

to DMC
(s)
∗,∗ is

continuous.

• The mapping (Ŵ1,W 2) → Ŵ1 ⊗W 2 from DMC
(s)
∗,∗×DMC

(s)
X2,Y2

to DMC
(s)
∗,∗ is

continuous.

Proof. Same proof as Proposition 12.7.

As in the case of the space of output-equivalent channels5, we can show the

continuity of channel sums and products on (DMC
(s)
∗,∗×DMC

(s)
∗,∗, T (s)

s,∗,∗ ⊗ T (s)
s,∗,∗) by

proving that T (s)
s,∗,∗ ⊗ T (s)

s,∗,∗ is compactly generated. Note that although T (s)
s,∗,∗ and

T (s)
s,∗,∗ are compactly generated, their product T (s)

s,∗,∗ ⊗ T (s)
s,∗,∗ might not be compactly

generated.

12.6 Appendix

12.6.1 Proof of Lemma 12.1

Fix ε > 0 and let (s, t) ∈ S × T . Since f is continuous, there exists a neighborhood
Os,t of (s, t) in S×T such that for every (s′, t′) ∈ Os,t, we have |f(s′, t′)−f(s, t)| < ε

2 .
Moreover, since products of open sets form a base for the product topology, there
exists an open neighborhood Vs,t of s in (S,V) and an open neighborhood Us,t of t
in T such that Vs,t × Us,t ⊂ Os,t.

Since (S,V) and (T,U) are compact, the product space is also compact. On the

other hand, we have
⋃

(s,t)∈S×T

Vs,t ×Us,t = S × T so {Vs,t ×Us,t}(s,t)∈S×T is an open

cover of S × T . Therefore, there exist s1, . . . , sn ∈ S and t1, . . . , tn ∈ T such that
n⋃

i=1

Vsi,ti × Usi,ti = S × T .

5See the discussion after Corollary 12.3.
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Now fix s ∈ S and define Vs =
⋂

1≤i≤n,
s∈Vsi,ti

Vsi,ti . Since Vs is the intersection of finitely

many open sets containing s, Vs is an open neighborhood of s in (S,V). Let s′ ∈ Vs

and t ∈ T . Since
n⋃

i=1

Vsi,ti × Usi,ti = S × T , there exists 1 ≤ i ≤ n such that

(s, t) ∈ Vsi,ti × Usi,ti ⊂ Osi,ti . Since s ∈ Vsi,ti , we have Vs ⊂ Vsi,ti and so s′ ∈ Vsi,ti .
Therefore, (s′, t) ∈ Vsi,ti × Usi,ti ⊂ Osi,ti , hence

|f(s′, t)− f(s, t)| ≤ |f(s′, t)− f(si, ti)|+ |f(si, ti)− f(s, t)| < ε

2
+

ε

2
= ε.

But this is true for every t ∈ T . Therefore,

sup
t∈T

|f(s′, t)− f(s, t)| ≤ ε.

12.6.2 Continuity of the Product of Measures

For every subset A of M1 × M2 and every x1 ∈ M1, define Ax1
2 = {x2 ∈ M2 :

(x1, x2) ∈ A}. Similarly, for every x2 ∈ M2, define Ax2
1 = {x1 ∈ M1 : (x1, x2) ∈ A}.

Let P1, P
′
1 ∈ P(M1,Σ1) and P2, P

′
2 ∈ P(M2,Σ2). We have:

‖P1 × P2 − P ′
1 × P ′

2‖TV

= sup
A∈Σ1⊗Σ2

|(P1 × P2)(A)− (P ′
1 × P ′

2)(A)|

≤ sup
A∈Σ1⊗Σ2

{∣∣(P1 × P2)(A)− (P ′
1 × P2)(A)

∣∣+ ∣∣(P ′
1 × P2)(A)− (P ′

1 × P ′
2)(A)

∣∣}

= sup
A∈Σ1⊗Σ2

{∣∣∣∣
∫
M2

P1(A
x2
1 ) · dP2(x2)−

∫
M2

P ′
1(A

x2
1 ) · dP2(x2)

∣∣∣∣
+

∣∣∣∣
∫
M1

P2(A
x1
2 ) · dP ′

1(x1)−
∫
M1

P ′
2(A

x1
2 ) · dP ′

1(x1)

∣∣∣∣
}

≤ sup
A∈Σ1⊗Σ2

{∫
M2

∣∣P1(A
x2
1 )− P ′

1(A
x2
1 )
∣∣ · dP2(x2) +

∫
M1

∣∣P2(A
x1
2 )− P ′

2(A
x1
2 )
∣∣ · dP ′

1(x1)

}

≤
∫
M2

(
sup

A1∈Σ1

∣∣P1(A1)− P ′
1(A1)

∣∣) dP2 +

∫
M1

(
sup

A2∈Σ2

∣∣P2(A2)− P ′
2(A2)

∣∣) dP ′
1

= ‖P1 − P ′
1‖TV + ‖P2 − P ′

2‖TV .

This shows that the product of measures is continuous under the total-variation
topology.

12.6.3 Proof of Proposition 12.1

Define the mapping G : M → R+ ∪ {+∞} as follows:

G(x) =

∫
M ′

g(y)d(R(x))(y).

For every n ≥ 0, define the mapping gn : M ′ → R+ as follows:

gn(y) =
1

2n
⌊
2n ×min{n, g(y)}

⌋
.
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Clearly, for every y ∈ M ′ we have:

• gn(y) ≤ g(y) for all n ≥ 0.

• gn(y) ≤ gn+1(y) for all n ≥ 0.

• lim
n→∞ gn(y) = g(y).

Moreover, for every fixed n ≥ 0, we have:

• gn is Σ′-measurable.

• gn takes values in
{

i
2n : 0 ≤ i ≤ n2n

}
.

For every 0 ≤ i ≤ n2n, let Bi,n = {y ∈ M ′ : gn(y) =
i
2n }. Since gn is Σ′-measurable,

we have Bi,n ∈ Σ′ for every 0 ≤ i ≤ n2n. Now for every n ≥ 0, define the mapping
Gn : M → R ∪ {+∞} as follows:

Gn(x) =

∫
M ′

gn(y)d(R(x))(y) =

∫
M ′

(
n2n∑
i=0

i

2n
1Bi,n(y)

)
d(R(x))(y)

=

n2n∑
i=0

i

2n
(R(x))(Bi,n) =

n2n∑
i=0

i

2n
RBi,n(x).

Since the random mapping R is measurable and since Bi,n ∈ Σ′, the mapping RBi,n

is Σ-measurable for every 0 ≤ i ≤ n2n. Therefore, Gn is Σ-measurable for every
n ≥ 0. Moreover, for every x ∈ Σ, we have:

lim
n→∞Gn(x) = lim

n→∞

∫
M ′

gn(y)d(R(x))(y)
(a)
=

∫
M ′

g(y)d(R(x))(y) = G(x),

where (a) follows from the monotone convergence theorem. We conclude that G is
Σ-measurable because it is the point-wise limit of Σ-measurable functions. On the
other hand, we have∫

M ′
gn · d(R#P ) =

n2n∑
i=0

i

2n
(R#P )(Bi,n) =

n2n∑
i=0

i

2n

∫
M

RBi,n(x) · dP (x)

=

n2n∑
i=0

i

2n

∫
M
(R(x))(Bi,n) · dP (x)

=

n2n∑
i=0

i

2n

∫
M

(∫
M ′

1Bi,n(y) · d(R(x))(y)

)
dP (x)

=

∫
M

(∫
M ′

(
n2n∑
i=0

i

2n
1Bi,n(y)

)
d(R(x))(y)

)
dP (x)

=

∫
M

(∫
M ′

gn(y)d(R(x))(y)

)
dP (x) =

∫
M

Gn · dP.

Therefore,∫
M ′

g · d(R#P )
(a)
= lim

n→∞

∫
M ′

gn · d(R#P ) = lim
n→∞

∫
M

Gn · dP (b)
=

∫
M

G · dP,

where (a) and (b) follow from the monotone convergence theorem.
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12.6.4 Continuity of the Push-Forward by a Random Mapping

Let R be a measurable random mapping from (M,Σ) to (M ′,Σ′). Let P1, P2 ∈
P(M,Σ). Define the signed measure μ = P1 − P2 and let {μ+, μ−} be the Jordan
measure decomposition of μ. It is easy to see that ‖P1−P2‖TV = μ+(M) = μ−(M).
For every B ∈ Σ′, we have:

(R#(P1))(B)− (R#(P2))(B) =

∫
M

RB · dP1 −
∫
M

RB · dP2 =

∫
M

RB · d(P1 − P2)

=

∫
M

RB · d(μ+ − μ−) ≤
∫
M

RB · dμ+

≤ ‖RB‖∞ · μ+(M)
(a)

≤ μ+(M) = ‖P1 − P2‖TV ,

where (a) follows from the fact that |RB(x)| = |(R(x))(B)| ≤ 1 for every x ∈ M .
We can similarly show that

(R#(P2))(B)− (R#(P1))(B) ≤ ‖RB‖∞ · μ−(M) ≤ ‖P1 − P2‖TV .

Therefore,

‖R#(P1)−R#(P2)‖TV = sup
B∈Σ′

|(R#(P1))(B)− (R#(P2))(B)| ≤ ‖P1 − P2‖TV .

This shows that the push-forward mapping R# from P(M,Σ) to P(M ′,Σ′) is con-
tinuous under the total-variation topology. This concludes the proof of Lemma 12.2.

Now assume that U is a Polish topology on M and U ′ is an arbitrary topology
on M ′. Let R be measurable random mapping from (M,B(M)) to (M ′,B(M ′)).
Moreover, assume that R is a continuous mapping from (M,U) to P(M ′,B(M ′))
when the latter space is endowed with the weak-∗ topology. Let (Pn)n≥0 be a
sequence of probability measures in P(M,B(M)) that weakly-∗ converges to P ∈
P(M,B(M)).

Let g : M ′ → R be a bounded and continuous mapping. Define the mapping
G : M → R as follows:

G(x) =

∫
M ′

g(y) · d(R(x))(y).

For every sequence (xn)n≥0 converging to x in M , the sequence (R(xn))n≥0 weakly-∗
converges to R(x) in P(M ′,B(M ′)) because of the continuity of R. This implies that
the sequence (G(xn))n≥0 converges to G(x). Since U is a Polish topology (hence
metrizable and sequential [78]), this shows that G is a bounded and continuous
mapping from (M,U) to R. Therefore, we have:

lim
n→∞

∫
M ′

g · d(R#Pn)
(a)
= lim

n→∞

∫
M

G · dPn
(b)
=

∫
M

G · dP (c)
=

∫
M ′

g · d(R#P ),

where (a) and (c) follow from Corollary 12.2, and (b) follows from the fact that
(Pn)n≥0 weakly-∗ converges to P . This shows that (R#Pn)n≥0 weakly-∗ converges
to R#P . Now since U is Polish, the weak-∗ topology on P(M,B(M)) is metrizable
[80], hence it is sequential [78]. This shows that the push-forward mapping R# from
P(M,B(M)) to P(M ′,B(M ′)) is continuous under the weak-∗ topology.
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12.6.5 Proof of Lemma 12.4

For every s ∈ S, define the mapping fs : ΔX → R as fs(p) = f(s, p). Clearly fs is
continuous for every s ∈ S. Therefore, the mapping Fs : MP(X ) → R defined as

Fs(MP) =

∫
ΔX

fs · dMP

is continuous in the weak-∗ topology of MP(X ).
Fix ε > 0 and let (s,MP) ∈ S ×MP(X ). Since Fs is continuous, there exists a

weakly-∗ open neighborhood Us,MP of MP such that |Fs(MP′) − Fs(MP)| < ε

2
for

every MP′ ∈ Us,MP. On the other hand, Lemma 12.1 implies the existence of an
open neighborhood Vs of s in (S,V) such that for every s′ ∈ Vs we have

sup
p∈ΔX

|f(s′, p)− f(s, p)| ≤ ε

2
.

Clearly Vs×Us,MP is an open neighborhood of (s,MP) in S×MP(X ). For every
(s′,MP′) ∈ Vs × Us,MP, we have

|F (s′,MP′)− F (s,MP)| ≤ |F (s′,MP′)− F (s,MP′)|+ |F (s,MP′)− F (s,MP)|

=

∣∣∣∣
∫
ΔX

(
f(s′, p)− f(s, p)

)
· dMP′(p)

∣∣∣∣+ |Fs(MP′)− Fs(MP)|

<

(∫
ΔX

|f(s′, p)− f(s, p)| · dMP′(p)
)
+

ε

2

(a)

≤ ε

2
+

ε

2
= ε,

where (a) follows from the fact that MP′ is a meta-probability measure and |f(s′, p)−
f(s′, p)| ≤ ε

2
for every p ∈ ΔX . We conclude that F is continuous.

12.6.6 Weak-∗ Continuity of the Product of Meta-Probability
Measures

Let (MP1,n)n≥0 and (MP2,n)n≥0 be two sequences that weakly-∗ converge to MP1

and MP2 in MP(X1) and MP(X2) respectively. Let f : ΔX1 × ΔX2 → R be a
continuous and bounded mapping. Define the mapping F : ΔX1 × MP(X2) as
follows:

F (p1,MP′
2) =

∫
ΔX2

f(p1, p2)dMP′
2(p2).

Fix ε > 0. Since f(p1, p2) is continuous, Lemma 12.4 implies that F is continuous.
Therefore, the mapping p1 → F (p1,MP2) is continuous on ΔX1 , which implies that
it is also bounded because ΔX1 is compact. Therefore,

lim
n→∞

∫
ΔX1

F (p1,MP2)dMP1,n(p1) =

∫
ΔX1

F (p1,MP2)dMP1(p1)

because (MP1,n)n≥0 weakly-∗ converges to MP1. This means that there exists n1 ≥ 0
such that for every n ≥ n1, we have∣∣∣∣∣

∫
ΔX1

F (p1,MP2)dMP1,n(p1)−
∫
ΔX1

F (p1,MP2)dMP1(p1)

∣∣∣∣∣ < ε

2
.
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On the other hand, since F is continuous and since MP(X2) is compact under
the weak-∗ topology [80], Lemma 12.1 implies the existence of a weakly-∗ open

neighborhood UMP2 of MP2 such that |F (p1,MP′
2) − F (p1,MP2)| ≤ ε

2
for every

MP′
2 ∈ UMP2 and every p1 ∈ ΔX1 . Moreover, since MP2,n weakly-∗ converges to

MP2, there exists n2 ≥ 0 such that MP2,n ∈ UMP2 for every n ≥ n2.

Therefore, for every n ≥ max{n1, n2}, we have

∣∣∣∣∣
∫
ΔX1

(∫
ΔX2

f(p1, p2)dMP2,n(p2)

)
dMP1,n(p1)−

∫
ΔX1

(∫
ΔX2

f(p1, p2)dMP2(p2)

)
dMP1(p1)

∣∣∣∣∣
≤
∣∣∣∣∣
∫
ΔX1

(∫
ΔX2

f(p1, p2)dMP2,n(p2)

)
dMP1,n(p1)−

∫
ΔX1

(∫
ΔX2

f(p1, p2)dMP2(p2)

)
dMP1,n(p1)

∣∣∣∣∣
+

∣∣∣∣∣
∫
ΔX1

(∫
ΔX2

f(p1, p2)dMP2(p2)

)
dMP1,n(p1)−

∫
ΔX1

(∫
ΔX2

f(p1, p2)dMP2(p2)

)
dMP1(p1)

∣∣∣∣∣
=

∣∣∣∣∣
∫
ΔX1

(F (p1,MP2,n)− F (p1,MP2)) dMP1,n(p1)

∣∣∣∣∣
+

∣∣∣∣∣
∫
ΔX1

F (p1,MP2)dMP1,n(p1)−
∫
ΔX1

F (p1,MP2)dMP1(p1)

∣∣∣∣∣
<

∫
ΔX1

|F (p1,MP2,n)− F (p1,MP2)| dMP1,n(p1) +
ε

2

(a)

≤
∫
ΔX1

ε

2
· dMP1,n(p1) +

ε

2
= ε,

where (a) follows from the fact MP2,n ∈ UMP2 for every n ≥ n2. Therefore,

lim
n→∞

∫
ΔX1

×ΔX2

f ·d(MP1,n ×MP2,n)

(a)
= lim

n→∞

∫
ΔX1

(∫
ΔX2

f(p1, p2)dMP2,n(p2)

)
dMP1,n(p1)

=

∫
ΔX1

(∫
ΔX2

f(p1, p2)dMP2(p2)

)
dMP1(p1)

(b)
=

∫
ΔX1

×ΔX2

f · d(MP1 ×MP2),

where (a) and (b) follow from Fubini’s theorem. We conclude that (MP1,n ×
MP2,n)n≥0 weakly-∗ converges to (MP1×MP2)n≥0. Therefore the product of meta-
probability measures is weakly-∗ continuous.

12.6.7 Continuity of the Capacity

Since the mapping I is continuous, and since the space ΔX ×DMCX ,Y is compact,
the mapping I is uniformly continuous, i.e., for every ε > 0, there exists δ(ε) > 0

such that for every (p1,W1), (p2,W2) ∈ ΔX ×DMCX ,Y , if ‖p1−p2‖1 :=
∑
x∈X

|p1(x)−

p2(x)| < δ(ε) and dX ,Y(W1,W2) < δ(ε), then

|I(p1,W1)− I(p2,W2)| < ε.
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Let W1,W2 ∈ DMCX ,Y be such that dX ,Y(W1,W2) < δ(ε). For every p ∈ ΔX ,
we have ‖p− p‖1 = 0 < δ(ε) so we must have |I(p,W1)− I(p,W2)| < ε. Therefore,

I(p,W1) < I(p,W2) + ε ≤ sup
p′∈ΔX

I(p′,W2) + ε = C(W2) + ε.

Therefore,

C(W1) = sup
p∈ΔX

I(p,W1) ≤ C(W2) + ε.

Similarly, we can show that C(W2) ≤ C(W1) + ε. This implies that |C(W1) −
C(W2)| ≤ ε, hence C is continuous.

12.6.8 Measurability and Continuity of C+,∗

Let us first show that the random mapping C+,∗ is measurable. We need to show
that the mapping C+,∗

B : ΔX ×ΔX → R is measurable for every B ∈ B(ΔX ), where

C+,∗
B (p1, p2) = (C+,∗(p1, p2))(B), ∀p1, p2 ∈ ΔX .

For every u1 ∈ X , define the set

Au1 = {(p1, p2) ∈ ΔX ×ΔX : (C−,∗(p1, p2))(u1) > 0}.

Clearly, Au1 is open in ΔX × ΔX (and so it is measurable). The mapping C+,u1,∗

is defined on Au1 and it is clearly continuous. Therefore, for every B ∈ B(ΔX ),
(C+,u1,∗)−1(B) is measurable. We have:

C+,∗
B (p1, p2) = (C+,∗(p1, p2))(B) =

∑
u1∈supp(C−,∗(p1,p2)),

C+,u1,∗(p1,p2)∈B

(C−,∗(p1, p2))(u1)

=
∑

u1∈X ,
(p1,p2)∈Au1 ,

C+,u1,∗(p1,p2)∈B

(C−,∗(p1, p2))(u1)

(a)
=
∑
u1∈X

(C−,∗(p1, p2))(u1) · 1(C+,u1,∗)−1(B)(p1, p2),

where (a) follows from the fact that (p1, p2) ∈ (C+,u1,∗)−1(B) if and only if (p1, p2) ∈
Au1 and C+,u1,∗(p1, p2) ∈ B. This shows that C+,∗

B is measurable for every B ∈
B(ΔX ). Therefore, C+,∗ is a measurable random mapping.

Let (p1,n, p2,n)n≥0 be a converging sequence to (p1, p2) in ΔX ×ΔX . Since C−,∗

is continuous, we have lim
n→∞(C−,∗(p1,n, p2,n))(u1) = (C−,∗(p1, p2))(u1) for every u1 ∈

X . Therefore, for every u1 ∈ supp(C−,∗(p1, p2)), there exists nu1 ≥ 0 such that
for every n ≥ nu1 , we have C−,∗(p1,n, p2,n) > 0. Let n0 = max{nu1 : u1 ∈
supp(C−,∗(p1, p2))}. For every n ≥ n0, we have

supp(C−,∗(p1, p2)) ⊂ supp(C−,∗(p1,n, p2,n)).
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Therefore, for every continuous and bounded mapping g : ΔX → R, we have

lim
n→∞

∫
ΔX

g · d(C+,∗(p1,n, p2,n))

= lim
n→∞

∑
u1∈supp(C−,∗(p1,n,p2,n))

g(C+,u1,∗(p1,n, p2,n)) · (C−,∗(p1,n, p2,n))(u1)

(a)
= lim

n→∞
∑

u1∈supp(C−,∗(p1,p2))

g(C+,u1,∗(p1,n, p2,n)) · (C−,∗(p1,n, p2,n))(u1)

(b)
=

∑
u1∈supp(C−,∗(p1,p2))

g(C+,u1,∗(p1, p2)) · (C−,∗(p1, p2))(u1)

=

∫
ΔX

g · d(C+,∗(p1, p2)),

where (b) follows from the continuity of g and C−,∗, and the continuity of C+,u1,∗

on Au1 for every u1 ∈ X . (a) follows from the fact that:

lim
n→∞

∑
u1∈supp(C−,∗(p1,n,p2,n)),

u1 /∈supp(C−,∗(p1,p2))

∣∣g(C+,u1,∗(p1,n, p2,n)) · (C−,∗(p1,n, p2,n))(u1)
∣∣

≤ ‖g‖∞ lim
n→∞

∑
u1∈supp(C−,∗(p1,n,p2,n)),

u1 /∈supp(C−,∗(p1,p2))

(C−,∗(p1,n, p2,n))(u1)

= ‖g‖∞ lim
n→∞

⎛
⎝1−

∑
u1∈supp(C−,∗(p1,p2))

(C−,∗(p1,n, p2,n))(u1)

⎞
⎠

= ‖g‖∞

⎛
⎝1−

∑
u1∈supp(C−,∗(p1,p2))

(C−,∗(p1, p2))(u1)

⎞
⎠ = 0.

We conclude that the mapping C+,∗ is a continuous mapping from ΔX ×ΔX to
MP(X ) when the latter space is endowed with the weak-∗ topology.

12.6.9 Proof of Proposition 12.10

Let Ŵ1 ∈ DMC
(o)
X1,∗ and W 2 ∈ DMC

(o)
X2,∗. Fix W1 ∈ Ŵ1 and W2 ∈ W 2 and let Y1 and

Y2 be the output alphabets of W1 and W2 respectively. We may assume without
loss of generality that Im(W1) = Y1 and Im(W2) = Y2.

Let y ∈ Y1. We have

P o
W1⊕W2

(y) =
1

|X1
∐X2|

∑
x∈X1

∐X2

(W1 ⊕W2)(y|x)

=
1

|X1|+ |X2|
∑
x∈X1

W1(y|x) =
|X1|

|X1|+ |X2|
P o
W1

(y) > 0.

For every x ∈ X1, we have

(W1 ⊕W2)
−1
y (x) =

(W1 ⊕W2)(y|x)
(|X1|+ |X2|)P o

W1
(y)

=
W1(y|x)

|X1|P o
W1

(y)
= (W1)

−1
y (x).
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On the other hand, for every x ∈ X2, we have

(W1 ⊕W2)
−1
y (x) =

(W1 ⊕W2)(y|x)
(|X1|+ |X2|)P o

W1
(y)

= 0.

Therefore (W1 ⊕W2)
−1
y = φ1#(W1)

−1
y , where φ1 is the canonical injection from X1

to X1
∐X2.

Similarly, for every y ∈ Y2, we have P o
W1⊕W2

(y) =
|X2|

|X1|+ |X2|
P o
W1

(y) > 0 and

(W1⊕W2)
−1
y = φ2#(W2)

−1
y , where φ2 is the canonical injection from X2 to X1

∐X2.
For every B ∈ B(ΔX1

∐X2
), we have:

MPW1⊕W2(B)

=
∑

y∈Y1
∐Y2,

(W1⊕W2)
−1
y ∈B

P o
W1⊕W2

(y)

=

( ∑
y∈Y1,

φ1#(W1)
−1
y ∈B

|X1|
|X1|+ |X2|

P o
W1

(y)

)
+

( ∑
y∈Y2,

φ2#(W2)
−1
y ∈B

|X2|
|X1|+ |X2|

P o
W2

(y)

)

=
|X1|

|X1|+ |X2|
MPW1

(
(φ1#)

−1(B)
)
+

|X2|
|X1|+ |X2|

MPW2

(
(φ2#)

−1(B)
)

=
|X1|

|X1|+ |X2|
(φ1##MPW1)(B) +

|X2|
|X1|+ |X2|

(φ2##MPW2)(B).

Therefore,

MPŴ1⊕W 2
=

|X1|
|X1|+ |X2|

φ1##MPŴ1
+

|X2|
|X1|+ |X2|

φ2##MPW 2
.

This shows the first formula of Proposition 12.10.

For every y = (y1, y2) ∈ Y1 × Y2, we have

P o
W1⊗W2

(y) =
∑

(x1,x2)∈X1×X2

1

|X1 ×X2|
(W1 ⊗W2)(y1, y2|x1, x2)

=
∑

x1∈X2,
x2∈X2

W1(y1|x1)
|X1|

· W2(y2|x2)
|X2|

= P o
W1

(y1)P
o
W2

(y2) > 0.

For every x = (x1, x2) ∈ X1 ×X2, we have

(W1 ⊗W2)
−1
y (x) =

(W1 ⊗W2)(y|x)
|X1 ×X2|P o

W1⊗W2
(y)

=
W1(y1|x1)
|X1|P o

W1
(y1)

· W2(y2|x2)
|X2|P o

W2
(y2)

= (W1)
−1
y1 (x1) · (W2)

−1
y2 (x2) =

(
(W1)

−1
y1 × (W2)

−1
y2

)
(x).
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For every B ∈ B(ΔX1×X2), we have

MPW1⊗W2(B) =
∑

y∈Y1×Y2,

(W1⊗W2)
−1
y ∈B

P o
W1⊗W2

(y) =
∑

y∈Y1×Y2,

(W1)
−1
y1

×(W2)
−1
y2

∈B

P o
W1

(y1)P
o
W2

(y2)

=
∑

y∈Y1×Y2,

Mul((W1)
−1
y1

,(W2)
−1
y2 )∈B

P o
W1

(y1)P
o
W2

(y2)

= (MPW1 ×MPW2)(Mul−1(B)) =
(
Mul#(MPW1 ×MPW2)

)
(B)

= (MPW1 ⊗MPW2)(B).

Therefore,

MPŴ1⊗W 2
= MPŴ1

⊗MPW 2
.

This shows the second formula of Proposition 12.10.

Now let α ∈ [0, 1] and Ŵ1, Ŵ2 ∈ DMC
(o)
X ,∗. Fix W1 ∈ Ŵ1 and W2 ∈ Ŵ2 and let Y1

and Y2 be the output alphabets of W1 and W2 respectively. We may assume without
loss of generality that Im(W1) = Y1 and Im(W2) = Y2. Let W = [αW1, (1− α)W2].
If α = 0, then W is output-equivalent to W2 and MPW = MPW2 = αMPW1 +(1 −
α)MPW2 . If α = 1, then W is output-equivalent to W1 and MPW = MPW1 =
αMPW1 +(1− α)MPW2 .

Assume now that 0 < α < 1. For every y ∈ Y1, we have:

P o
W (y) =

1

|X |
∑
x∈X

W (y|x) = 1

|X |
∑
x∈X

α ·W1(y|x) = αP o
W1

(y) > 0.

For every x ∈ X , we have:

W−1
y (x) =

W (y|x)
|X |P o

W (y)
=

αW1(y|x)
|X |αP o

W1
(y)

= (W1)
−1
y (x).

Similarly, for every y ∈ Y2, we have P o
W (y) = (1 − α)P o

W2
(y) > 0 and W−1

y =
(W2)

−1
y . Therefore,

MPW =
∑

y∈Y1
∐Y2

P o
W (y) · δW−1

y

=

⎛
⎝∑

y∈Y1

αP o
W1

(y) · δ(W1)
−1
y

⎞
⎠+

⎛
⎝∑

y∈Y2

(1− α)P o
W2

(y) · δ(W2)
−1
y

⎞
⎠

= αMPW1 + (1− α)MPW2 .

Therefore,

MP[αŴ1,(1−α)Ŵ2]
= αMPŴ1

+ (1− α)MPŴ2
.

This shows the third formula of Proposition 12.10.

Now let Ŵ ∈ DMC
(o)
X ,∗ and let ∗ be a uniformity-preserving binary operation on

X . Fix W ∈ Ŵ and let Y be the output alphabet of W . We may assume without
loss of generality that Im(W ) = Y.
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Let U1, U2 be two independent random variables uniformly distributed in X . Let
X1 = U1 ∗U2 and X2 = U2. Send X1 and X2 through two independent copies of W
and let Y1 and Y2 be the output respectively.

For every (y1, y2) ∈ Y2, we have

P o
W−(y1, y2) = PY1,Y2(y1, y2) = PY1(y1)PY2(y2) = P o

W (y1)P
o
W (y2) > 0.

For every u1 ∈ X , we have:

(W−)−1
y1,y2(u1) = PU1|Y1,Y2

(u1|y1, y2) =
∑

u2∈X2

PU1,U2|Y1,Y2
(u1, u2|y1, y2)

=
∑

u2∈X2

PX1,X2|Y1,Y2
(u1 ∗ u2, u2|y1, y2)

=
∑

u2∈X2

PX1|Y1
(u1 ∗ u2|y1)PX2|Y2

(u2|y2)

=
∑

u2∈X2

W−1
y1 (u1 ∗ u2)W−1

y2 (u2) =
(
C−,∗(W−1

y1 ,W−1
y2 )

)
(u1).

For every B ∈ B(ΔX ), we have

MPW−(B) =
∑
y∈Y2,

(W−)−1
y ∈B

P o
W−(y) =

∑
(y1,y2)∈Y2,

C−,∗(W−1
y1

,W−1
y2

)∈B

P o
W1

(y1)P
o
W2

(y2)

= (MPW ×MPW )
(
(C−,∗)−1(B)

)
=
(
C−,∗
# (MPW ×MPW )

)
(B) = (MPW ,MPW )−,∗(B).

Therefore,

MPŴ− = (MPŴ ,MPŴ )−,∗.

This shows the forth formula of Proposition 12.10.

For every (y1, y2, u1) ∈ Y2 ×X , we have:

P o
W+(y1, y2, u1) = PY1,Y2,U1(y1, y2, y1) = PY1,Y2(y1, y2)PU1|Y1,Y2

(u1|y1, y2)
= P o

W (y1)P
o
W (y2) ·

(
C−,∗(W−1

y1 ,W−1
y2 )

)
(u1).

Therefore,

Im(W+) =
⋃

(y1,y2)∈Y2

{(y1, y2)} × supp(C−,∗(W−1
y1 ,W−1

y2 )).

For every (y1, y2, u1) ∈ Im(W+), we have:

(W+)−1
y1,y2,u1

(u2) = PU2|Y1,Y2,U1
(u2|y1, y2, u1) =

PU1,U2|Y1,Y2
(u1, u2|y1, y2)

PU1|Y1,Y2
(u1|y1, y2)

=
PX1|Y1

(u1 ∗ u2|y1)PX2|Y2
(u2|y2)(

C−,∗(W−1
y1 ,W−1

y2 )
)
(u1)

=
W−1

y1 (u1 ∗ u2)W−1
y2 (u2)(

C−,∗(W−1
y1 ,W−1

y2 )
)
(u1)

=
(
C+,u1,∗(W−1

y1 ,W−1
y2 )

)
(u2).
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For every B ∈ B(ΔX ), we have

MPW+(B)

=
∑

(y1,y2)∈Y2

∑
u1∈supp(C−,∗(W−1

y1
,W−1

y2
),

C+,u1,∗(W−1
y1

,W−1
y2

)∈B

P o
W (y1)P

o
W (y2) ·

(
C−,∗(W−1

y1 ,W−1
y2 )

)
(u1)

=
∑

(y1,y2)∈Y2

P o
W (y1)P

o
W (y2)

∑
u1∈supp(C−,∗(W−1

y1
,W−1

y2
),

C+,u1,∗(W−1
y1

,W−1
y2

)∈B

(
C−,∗(W−1

y1 ,W−1
y2 )

)
(u1)

=
∑

(y1,y2)∈Y2

P o
W (y1)P

o
W (y2)

(
C+,∗(W−1

y1 ,W−1
y2 )

)
(B)

=
∑

(y1,y2)∈Y2

P o
W (y1)P

o
W (y2)(C

+,∗
B (W−1

y1 ,W−1
y2 )

=

∫
ΔX×ΔX

C+,∗
B (p1, p2) · d(MPW ×MPW )(p1, p2)

=
(
C+,∗
# (MPW ×MPW )

)
(B) = (MPW ,MPW )+,∗(B).

Therefore,

MPŴ+ = (MPŴ ,MPŴ )+,∗.

This shows the fifth and last formula of Proposition 12.10.

12.6.10 Proof of Proposition 12.16

Fix W1 ∈ Ŵ1 and W2 ∈ W 2, and let X1 and X2 be the input alphabets of W1 and
W2 respectively.

For every x1 ∈ X1, we have (W1 ⊕ W2)x1 = φ1#(W1)x1 . Similarly, for every
x2 ∈ X2, we have (W1 ⊕W2)x2 = φ2#(W2)x2 . Therefore,

co(Ŵ1 ⊕W 2)

= co
({

(W1 ⊕W2)x : x ∈ X1

∐
X2

})
= co({(W1 ⊕W2)x1 : x1 ∈ X1} ∪ {(W1 ⊕W2)x2 : x2 ∈ X2})
= co({φ1#(W1)x1 : x1 ∈ X1} ∪ {φ2#(W2)x2 : x2 ∈ X2})
=

⋃
0≤λ≤1

(
(1− λ) co({φ1#(W1)x1 : x1 ∈ X1}) + λ co({φ2#(W2)x2 : x2 ∈ X2})

)

=
⋃

0≤λ≤1

(
(1− λ)φ1#

(
co({(W1)x1 : x1 ∈ X1})

)
+ λφ2#

(
co({(W2)x2 : x2 ∈ X2})

))

=
⋃

0≤λ≤1

(
(1− λ)φ1#(co(W1)) + λφ2#(co(W2))

)

=
⋃

0≤λ≤1

(
(1− λ)φ1#(co(Ŵ1)) + λφ2#(co(W 2))

)
.
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For every (x1, x2) ∈ X1 × X2, we have (W1 ⊗ W2)(x1,x2) = (W1)x1 × (W2)x2 .
Therefore,

co(Ŵ1 ⊗W 2) = co({(W1 ⊗W2)(x1,x2) : (x1, x2) ∈ X1 ×X2})
= co({(W1)x1 × (W2)x2 : (x1, x2) ∈ X1 ×X2})
= co({(W1)x1 : x1 ∈ X1} ⊗ {(W2)x2 : x2 ∈ X2})
= co

(
co
(
{(W1)x1 : x1 ∈ X1}

)
⊗ co

(
{(W2)x2 : x2 ∈ X2}

))
= co

(
co(W1)⊗ co(W2)

)
= co

(
co(Ŵ1)⊗ co(W 2)

)
.

12.6.11 Proof of Proposition 12.17

Fix Ŵ1, Ŵ
′
1 ∈ DMC

(i)
∗,Y1

and W 2,W
′
2 ∈ DMC

(i)
∗,Y2

. Let R1 ∈ R(co(Ŵ1), co(Ŵ
′
1)) and

R2 ∈ R(co(W 2), co(W
′
2)). Fix 0 ≤ λ ≤ 1, (P1, P

′
1) ∈ R1 and (P2, P

′
2) ∈ R2. Let

P = (1 − λ)φ1#P1 + λφ2#P2 and P ′ = (1 − λ)φ1#P
′
1 + λφ2#P

′
2, where φ1# and

φ2# are the push-forwards by the canonical injections from Y1 and Y2 to Y1
∐Y2

respectively. We have:

‖P − P ′‖TV =
∥∥((1− λ)φ1#P1 + λφ2#P2

)
−
(
(1− λ)φ1#P

′
1 + λφ2#P

′
2

)∥∥
TV

≤ (1− λ)‖φ1#P1 − φ1#P
′
1‖TV + λ‖φ2#P2 − φ2#P

′
2‖TV

= (1− λ)‖P1 − P ′
1‖TV + λ‖P2 − P ′

2‖TV

≤ ‖P1 − P ′
1‖TV + ‖P2 − P ′

2‖TV .
(12.1)

Proposition 12.16 shows that

co(Ŵ1 ⊕W 2) =
⋃

0≤λ≤1

(
(1− λ)φ1#(co(Ŵ1)) + λφ2#(co(Ŵ2))

)
,

and

co(Ŵ ′
1 ⊕W

′
2) =

⋃
0≤λ≤1

(
(1− λ)φ1#(co(Ŵ

′
1)) + λφ2#(co(Ŵ

′
2))
)
.

Define R ⊂ co(Ŵ1 ⊕W 2)× co(Ŵ ′
1 ⊕W

′
2) as follows:

R =
{(

(1− λ)φ1#P1 + λφ2#P2,(1− λ)φ1#P
′
1 + λφ2#P

′
2

)
:

0 ≤ λ ≤ 1, (P1, P
′
1) ∈ R1, (P2, P

′
2) ∈ R2

}
.

It is easy to see that R is a coupling of co(Ŵ1 ⊕W 2) and co(Ŵ ′
1 ⊕W

′
2). We have:

d
(i)
∗,Y1

∐Y2
(Ŵ1 ⊕W 2, Ŵ

′
1 ⊕W

′
2) ≤ sup

(P,P ′)∈R
‖P − P ′‖TV

(a)

≤ sup
(P1,P ′

1)∈R1

‖P1 − P ′
1‖TV + sup

(P2,P ′
2)∈R2

‖P2 − P ′
2‖TV ,
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where (a) follows from (12.1). Since this is true for every R1 ∈ R(co(Ŵ1), co(Ŵ
′
1))

and every R2 ∈ R(co(Ŵ2), co(Ŵ
′
2)), we conclude that

d
(i)
∗,Y1

∐Y2
(Ŵ1 ⊕W 2, Ŵ

′
1 ⊕W

′
2)

≤ inf
R1∈R(co(Ŵ1),co(Ŵ ′

1))
sup

(P1,P ′
1)∈R1

‖P1 − P ′
1‖TV

+ inf
R2∈R(co(Ŵ2),co(Ŵ ′

2))
sup

(P2,P ′
2)∈R2

‖P2 − P ′
2‖TV

= d
(i)
∗,Y1

(Ŵ1, Ŵ
′
1) + d

(i)
∗,Y2

(Ŵ2, Ŵ
′
2).

This shows that the mapping (Ŵ1,W 2) → Ŵ1 ⊕W 2 from DMC
(i)
∗,Y1

×DMC
(i)
∗,Y2

to

DMC
(i)
∗,Y1

∐Y2
is continuous in the similarity topology.

Fix again R1 ∈ R(co(Ŵ1), co(Ŵ
′
1)) and R2 ∈ R(co(W 2), co(W

′
2)). Let λ1, . . . ,

λk ≥ 0 be such that

k∑
i=1

λi = 1. Let (P1,1, P
′
1,1), . . . , (P1,k, P

′
1,k) ∈ R1 and (P2,1, P

′
2,1),

. . . , (P2,k, P
′
2,k) ∈ R2. Define P =

k∑
i=1

λiP1,i × P2,i and P ′ =
k∑

i=1

λiP
′
1,i × P ′

2,i. We

have:

‖P − P ′‖TV =

∥∥∥∥∥
(

k∑
i=1

λiP1,i × P2,i

)
−
(

k∑
i=1

λiP
′
1,i × P ′

2,i

)∥∥∥∥∥
TV

≤
k∑

i=1

λi‖(P1,i × P2,i)− (P ′
1,i × P ′

2,i)‖TV

(a)

≤
k∑

i=1

λi

(
‖P1,i − P ′

1,i‖TV + ‖P2,i − P ′
2,i‖TV

)
≤ sup

(P1,P ′
1)∈R1

‖P1 − P ′
1‖TV + sup

(P2,P ′
2)∈R2

‖P2 − P ′
2‖TV ,

(12.2)

where (a) follows from Appendix 12.6.2. Proposition 12.16 shows that

co(Ŵ1 ⊗W 2) = co
(
co(Ŵ1)⊗ co(W 2)

)
,

and

co(Ŵ ′
1 ⊗W

′
2) = co

(
co(Ŵ ′

1)⊗ co(W
′
2)
)
.

Define R ⊂ co(Ŵ1 ⊗W 2)× co(Ŵ ′
1 ⊗W

′
2) as follows:

R =

{(
k∑

i=1

λiP1,i × P2,i,
k∑

i=1

λiP
′
1,i × P ′

2,i

)
: k ≥ 1, λ1, . . . , λk ≥ 0,

k∑
i=1

λi = 1,

(P1,1, P
′
1,1), . . . , (P1,k, P

′
1,k) ∈ R1,

(P2,1, P
′
2,1), . . . , (P2,k, P

′
2,k) ∈ R2

}
.
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It is easy to see that R is a coupling of co(Ŵ1 ⊗W 2) and co(Ŵ ′
1 ⊗W

′
2). We have:

d
(i)
∗,Y1×Y2

(Ŵ1 ⊗W 2, Ŵ
′
1 ⊗W

′
2) ≤ sup

(P,P ′)∈R
‖P − P ′‖TV

(a)

≤ sup
(P1,P ′

1)∈R1

‖P1 − P ′
1‖TV + sup

(P2,P ′
2)∈R2

‖P2 − P ′
2‖TV ,

where (a) follows from (12.2). Since this is true for every R1 ∈ R(co(Ŵ1), co(Ŵ
′
1))

and every R2 ∈ R(co(Ŵ2), co(Ŵ
′
2)), we conclude that

d
(i)
∗,Y1×Y2

(Ŵ1 ⊗W 2, Ŵ
′
1 ⊗W

′
2)

≤ inf
R1∈R(co(Ŵ1),co(Ŵ ′

1))
sup

(P1,P ′
1)∈R1

‖P1 − P ′
1‖TV

+ inf
R2∈R(co(Ŵ2),co(Ŵ ′

2))
sup

(P2,P ′
2)∈R2

‖P2 − P ′
2‖TV

= d
(i)
∗,Y1

(Ŵ1, Ŵ
′
1) + d

(i)
∗,Y2

(Ŵ2, Ŵ
′
2).

This shows that the mapping (Ŵ1,W 2) → Ŵ1 ⊗W 2 from DMC
(i)
∗,Y1

×DMC
(i)
∗,Y2

to

DMC
(i)
∗,Y1

∐Y2
is continuous in the similarity topology.



Conclusion of Part II 13
In this chapter, we summarize the main contributions of the second part of this
thesis. Furthermore, we briefly discuss some open problems and possible future
directions in the channel ordering topic.

13.1 Characterization of Various Channel Orderings

In Chapter 10, we introduced the input-degradedness ordering of communication
channels, and provided several characterizations for this ordering. We showed that
if W is input-degraded from W ′, then any decoder that is good for W is also good
for W ′. We also studied the Shannon ordering of communication channels, and pro-
vided a characterization of it that is similar to the Blackwell-Sherman-Stein (BSS)
theorem.

The output-degradedness ordering has been applied in network information the-
ory, e.g., in the context of broadcast channels [87, 88, 89]. It is not clear whether
input-degradedness can play a similar role for multiple-access channels.

As we explained in Chapter 10, the output-equivalence class of a channel can
be identified by its Blackwell measure [68]. Similarly, the input-equivalence class of
a channel can be identified by its input-equivalence characteristic (see Proposition
10.4). Finding a canonical representation1 of the Shannon-equivalence class of a
channel remains an open problem.

13.2 Topological Structures on DMC Spaces

13.2.1 Spaces of Output-Equivalent Channels

The fact that the noisiness and weak-∗ topologies are the same gives us more freedom
in proving theorems. Statements that might be difficult to prove using the weak-∗
formulation might be easier to prove using the noisiness formulation. For example,

1By canonical representation, we mean a mathematical object SW that is computable from the
channel W , and which satisfies: SW = SW ′ if and only if W is Shannon-equivalent to W ′.
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the convergence of the polarization process is slightly easier to prove in the noisiness
formulation.

The strong topology is too strong to be adopted as the “standard natural topol-
ogy”. However, it can still be useful because it is relatively easy to work with as
it has a quotient formulation. Moreover, since it is finer than the noisiness/weak-∗
topology, many statements that are true for the strong topology are also true for
coarser topologies, e.g., any sequence that converges in the strong topology also
converges in the noisiness/weak-∗ one.

Although the total variation topology is not natural, it can still be useful because
it is finer than the noisiness/weak-∗ topology.

Many interesting questions remain open: Are all natural topologies Hausdorff?
Can we find more topological properties that are common for all natural topologies?
Is there a coarsest natural topology? Is there a natural topology that is coarser than
the noisiness/weak-∗ one?

Finding meaningful measures on DMC
(o)
X ,∗ might be challenging. One might be

tempted to require that the measure of DMC
(o)
X ,[n] should be zero because it is “finite

dimensional” whereas DMC
(o)
X ,∗ is “infinite dimensional”. On the other hand, if

DMC
(o)
X ,[n] has a zero measure for every n ≥ 1, the whole space DMC

(o)
X ,∗ will have

a zero measure because it is a countable union of these subspaces. Nevertheless,
statements such as “the property X is true for almost all channels” can still make
sense. One possible definition of null-sets is as follows: for every set A in the natural
Borel σ-algebra, we say that A is a null-set if and only if there exists n0 ≥ 1 such that

Pn

(
Proj−1

n (A ∩DMC
(o)
X ,[n])

)
= 0 for every n ≥ n0, where Projn is the projection

onto the R
(o)
X ,[n]-equivalence classes and Pn is the uniform probability measure on

DMCX ,[n] ≡ (Δ[n])
X . Another possible definition, which is weaker, is to say that A

is a null-set if and only if lim
n→∞Pn

(
Proj−1

n (A ∩DMC
(o)
X ,[n])

)
= 0.

13.2.2 Spaces of Input-Equivalent Channels

Since T (i)
∗,Y is a natural topology, it is not completely metrizable because of Corol-

lary 11.14 (assuming that |Y| ≥ 3). Therefore, the metric space (DMC
(i)
∗,Y , d

(i)
∗,Y) is

not complete. In contrast with the case of output-equivalence2, the completion of

(DMC
(i)
∗,Y , d

(i)
∗,Y) does not represent the space of all input-equivalent channels with

output alphabet Y and arbitrary input alphabet (with arbitrary cardinality). It is

possible to show that the completion of (DMC
(i)
∗,Y , d

(i)
∗,Y) represents all the channels

W : X −→ Y for which co(W ) := co({Wx : x ∈ X}) is closed in ΔY . Therefore,
not every channel with output alphabet Y can be approximated (in the similarity
metric sense) by a channel with finite input alphabet.

Is it possible to find a metric d on DMC
(i)
∗,Y whose induced topology is natural,

and such that the completion of (DMC
(i)
∗,Y , d) represents the space of input-equivalent

channels with output alphabet Y and arbitrary input-alphabet (with arbitrary car-
dinality)?

2See the discussion after the proof of Theorem 11.5.
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Some of the questions of Section 13.2.1 can also be asked for the spaces of
input-equivalent channels: Are all natural topologies Hausdorff? Can we find more
topological properties that are common for all natural topologies? Is there a coarsest
natural topology? Is there a natural topology that is coarser than the similarity one?

13.2.3 Space of Shannon-Equivalent Channels

From Remark 11.1, we can see that if Conjecture 11.1 is true, then T (s)
∗,∗ is not

completely metrizable. A natural question to ask is: What does the completion of

(DMC
(s)
∗,∗, d

(s)
∗,∗) represent?

Some of the questions of Section 13.2.1 can also be asked for the space of
Shannon-equivalent channels: Are all natural topologies Hausdorff? Can we find
more topological properties that are common for all natural topologies? Is there a
coarsest natural topology? Is there a natural topology that is coarser than the BRM
one?

13.3 Continuity of Channel Parameters and Operations

In Chapter 12, we studied the continuity of many channel parameters and operations
under various topologies on the space of output-equivalent channels, the space of
input-equivalent channels, and the space of Shannon-equivalent channels. As we
mentioned in the introduction, the continuity of channel parameters and operations
might be helpful in the following two problems:

1. If a parameter (such as the optimal probability of error of a given code) is
difficult to compute for a channel W , one can approximate it by computing
the same parameter for a sequence of channels (Wn)n≥0 that converges to W
in some topology where the parameter is continuous.

2. The study of robustness of a communication system against the imperfect
specification of the channel.

Many continuity-related problems remain open:

• The continuity of the channel sum and the channel product on the whole

product space (DMC
(o)
X1,∗×DMC

(o)
X2,∗, T

(o)
s,X1,∗ ⊗ T (o)

s,X2,∗). As we mentioned in

Section 12.3.2, it is sufficient to prove that the product topology T (o)
s,X1,∗⊗T (o)

s,X2,∗
is compactly generated.

• The continuity of the channel parameters C, Pe,n,M and Pe,D in the similarity

topology T (i)
∗,Y .

• The continuity of the channel sum and the channel product on the whole prod-

uct space (DMC
(i)
∗,Y1

×DMC
(i)
∗,Y2

, T (i)
s,∗,Y1

⊗ T (i)
s,∗,Y2

). As we explained in Section

12.4.2, it is sufficient to prove that the product topology T (i)
s,∗,Y1

⊗ T (i)
s,∗,Y2

is
compactly generated.

• The continuity of the channel parameters C and Pe,n,M in the BRM topology

T (s)
∗,∗ .
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• The continuity of the channel sum and the channel product on the whole prod-

uct space (DMC
(s)
∗,∗×DMC

(s)
∗,∗, T (s)

s,∗,∗⊗T (s)
s,∗,∗). As we explained in Section 12.5.2,

it is sufficient to prove that the product topology T (s)
s,∗,∗ ⊗ T (s)

s,∗,∗ is compactly
generated.

• The continuity of the channel sum and the channel product in the BRM topol-
ogy.
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[57] S. Korada, E. Şaşoğlu, and R. Urbanke, “Polar codes: Characterization of
exponent, bounds, and constructions,” Information Theory, IEEE Transactions
on, vol. 56, no. 12, pp. 6253–6264, Dec 2010.

[58] R. Mori and T. Tanaka, “Source and channel polarization over finite fields and
Reed-Solomon matrices,” IEEE Transactions on Information Theory, vol. 60,
no. 5, pp. 2720–2736, May 2014.

[59] ——, “Channel polarization on q-ary discrete memoryless channels by arbitrary
kernels,” in 2010 IEEE International Symposium on Information Theory, June
2010, pp. 894–898.

[60] N. Presman, O. Shapira, S. Litsyn, T. Etzion, and A. Vardy, “Binary polar-
ization kernels from code decompositions,” IEEE Transactions on Information
Theory, vol. 61, no. 5, pp. 2227–2239, May 2015.

[61] R. Nasser, “Topological structures on DMC spaces,” in 2017 IEEE Interna-
tional Symposium on Information Theory (ISIT), June 2017, pp. 3175–3179.

[62] ——, “Topological structures on DMC spaces,” submitted, 2017. [Online].
Available: http://arxiv.org/abs/1701.04467

[63] ——, “On the input-degradedness and input-equivalence between channels,”
in 2017 IEEE International Symposium on Information Theory (ISIT), June
2017, pp. 2453–2457.

[64] ——, “On the input-degradedness and input-equivalence between channels,”
submitted, 2017. [Online]. Available: http://arxiv.org/abs/1702.00727

[65] ——, “A characterization of the Shannon ordering of communication channels,”
in 2017 IEEE International Symposium on Information Theory (ISIT), June
2017, pp. 2448–2452.

[66] ——, “A characterization of the Shannon ordering of communication channels,”
submitted, 2017. [Online]. Available: http://arxiv.org/abs/1705.01394

[67] C. Shannon, “The zero error capacity of a noisy channel,” IRE Transactions
on Information Theory, vol. 2, no. 3, pp. 8–19, September 1956.

[68] E. Torgersen, Comparison of Statistical Experiments, ser. Encyclopedia of
Mathematics and its Applications. Cambridge University Press, 1991.



372 Bibliography

[69] T. Richardson and R. Urbanke, Modern Coding Theory. New York, NY, USA:
Cambridge University Press, 2008.

[70] F. Buscemi, “Degradable channels, less noisy channels, and quantum statistical
morphisms: An equivalence relation,” Probl. Inf. Transm., vol. 52, no. 3, pp.
201–213, Jul. 2016.

[71] D. Du and P. Pardalos, Minimax and Applications, ser. Nonconvex Optimiza-
tion and Its Applications. Springer US, 2013.

[72] H. Schwarte, “On weak convergence of probability measures, channel capac-
ity and code error probabilities,” IEEE Transactions on Information Theory,
vol. 42, no. 5, pp. 1549–1551, Sep 1996.

[73] V. Rathi and R. Urbanke, “Density evolution, thresholds and the stability
condition for non-binary LDPC codes,” IEE Proceedings - Communications,
vol. 152, no. 6, pp. 1069–1074, Dec 2005.

[74] A. Bennatan and D. Burshtein, “Design and analysis of nonbinary LDPC codes
for arbitrary discrete-memoryless channels,” IEEE Transactions on Informa-
tion Theory, vol. 52, no. 2, pp. 549–583, Feb 2006.

[75] L. Cam and G. Yang, Asymptotics in Statistics: Some Basic Concepts, ser.
Springer Series in Statistics. Springer New York, 2000.

[76] J. Kelley, General Topology, ser. Graduate Texts in Mathematics. Springer
New York, 1975.

[77] J. Munkres, Topology, ser. Featured Titles for Topology Series. Prentice Hall,
Incorporated, 2000.

[78] S. Franklin, “Spaces in which sequences suffice,” Fundamenta Mathematicae,
vol. 57, no. 1, pp. 107–115, 1965.

[79] N. E. Steenrod, “A convenient category of topological spaces.” Michigan Math.
J., vol. 14, no. 2, pp. 133–152, 05 1967.

[80] C. Villani, Topics in Optimal Transportation, ser. Graduate studies in mathe-
matics. American Mathematical Society, 2003.

[81] Y. Polyanskiy, “Saddle point in the minimax converse for channel coding,”
IEEE Transactions on Information Theory, vol. 59, no. 5, pp. 2576–2595, May
2013.

[82] R. Nasser, “Continuity of channel parameters and operations under various
DMC topologies,” in 2017 IEEE International Symposium on Information The-
ory (ISIT), June 2017, pp. 3185–3189.

[83] ——, “Continuity of channel parameters and operations un-
der various DMC topologies,” submitted, 2017. [Online]. Available:
http://arxiv.org/abs/1701.04466

[84] R. Engelking, General topology, ser. Monografie matematyczne. PWN, 1977.



Bibliography 373

[85] M. Mondelli, S. H. Hassani, and R. L. Urbanke, “From polar to Reed-Muller
codes: A technique to improve the finite-length performance,” IEEE Transac-
tions on Communications, vol. 62, no. 9, pp. 3084–3091, Sept 2014.

[86] M. Raginsky, “Channel polarization and Blackwell measures,” in 2016 IEEE
International Symposium on Information Theory (ISIT), July 2016, pp. 56–60.

[87] T. Cover, “Broadcast channels,” IEEE Transactions on Information Theory,
vol. 18, no. 1, pp. 2–14, Jan 1972.

[88] P. Bergmans, “Random coding theorem for broadcast channels with degraded
components,” IEEE Transactions on Information Theory, vol. 19, no. 2, pp.
197–207, March 1973.

[89] R. Gallager, “Capacity and coding for degraded broadcast channels,” Problemy
Peredaci Informaccii, vol. 10, no. 3, pp. 3–14, July-Sept 1974.





Curriculum Vitae

Education
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