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Abstract

The integration of customer behavioral models in operations research (OR) is appealing to
operators and policy makers (the supply) because it provides a better understanding of the prefer-
ences of customers (the demand) while planning for their systems. These preferences are formal-
ized with discrete choice models, which are the state-of-the-art for the mathematical modeling of
demand, whereas mixed integer linear programming (MILP) models are considered to design and
configure the systems. Notwithstanding the clear advantages of this integration, the complexity of
discrete choice models leads to mathematical formulations that are highly nonlinear and noncon-
vex in the variables of interest, and therefore difficult to be included in MILP. In this paper, we
present a general framework that overcomes these limitations by integrating in MILP advanced
discrete choice models. A concrete application on benefit maximization from an operator selling
services to a market is used to illustrate the employment of the framework. A case study from
the recent literature is considered to perform various experiments, such as price differentiation
by population segmentation. The results show that this approach is a powerful tool to configure
systems based on the heterogeneous behavior of customers, and it allows to investigate advanced
marketing strategies and business models.

Keywords: mixed integer linear programming; discrete choice models; customer behavior;
simulation; combinatorial optimization; supply-demand interaction
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1 Introduction
The success stories of operations research (OR) are countless. The tremendous development of ad-
vanced mathematical formulations, and of efficient algorithms, able to solve problems of gigantic
sizes, allow to deal with an impressive spectrum of applications in transportation, finance, business,
health, manufacturing, and supply chain, to name just a few.

Interestingly, the vast majority of OR models found in the literature focus almost exclusively on
the “supply” side of the problem. The “demand” side is often neglected, assumed given, or modeled
in a simple way (see the discussion in Section 2).

Since the Nobel Prize in Economics was awarded to Daniel McFadden in 2000, the research
on discrete choice models has also experienced a tremendous development. Advanced disaggregate
behavioral models, predicting the choice of individuals or groups of individuals, accounting for sub-
jective aspects such as attitudes and perceptions, have successfully been specified, calibrated from
data, validated and applied to predict the demand in a great deal of contexts.

Although the “supply” and the “demand” closely interact in the real world, the two fields of
research have developed independently, with little interaction between the two. The main reason
of this lack of interaction is certainly the completely different types of focus of each field. In OR,
the tractability of mathematical formulations requires the linearity or the convexity of the involved
functions. Mixed integer linear programming (MILP) formulations represent a significant share of
the models reported in the literature. In discrete choice, the focus is on behavioral realism, building
on the micro-economic theory of utility. The methodological developments in this field are mainly
about the relaxation of unrealistic assumptions in order to better reproduce the actual behavior. As
a consequence, the mathematical formulations are complex, and certainly not linear or even convex.
They are therefore not appealing for the OR modelers.

The objective of this paper is to bridge this gap. We propose a general framework that allows
to integrate in a MILP formulation a choice model based on the random utility principle. The only
condition that is required to obtain a MILP model is that the variables appearing both in the demand
and the supply side of the problem appear linearly in the utility function.

The key idea is to rely on simulation to linearize the choice model. The main consequence is
the potentially large size of the resulting formulations. However, the advantage of simulation is that
the trade-off between model accuracy and tractability can be explicitly controlled by the modeler.
Moreover, recent advances in decomposition methods, particularly well suited for this framework,
allow to handle MILP models of very large sizes.

The remainder of the paper is organized as follows. Section 2 includes several references from the
literature where demand and supply closely interact. Section 3 describes the general framework and
characterizes the mathematical model. Section 4 contains a concrete application to illustrate the use
of the formulation, and the case study used for the proof of concept is detailed in Section 5. Finally,
the conclusions and future work are discussed in Section 6.
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2 Literature review
For many problems addressed within the scope of OR, the demand-supply tradeoff plays an important
role. Facility location, revenue management, transportation, supply chain management and logistics
are some general topics in which the demand assumptions are a key element when it comes to the
complexity and reliability of the associated mathematical models.

In the context of facility location, the difficulties associated with the decisions on spatial resource
allocation lead to complicated formulations (Laporte et al.; 2015). This has historically limited the
research to deterministic problems, where all input parameters (including the demand) are considered
as known quantities. Since in reality these parameters may broadly fluctuate, researchers have focused
on the development of formulations capturing this uncertainty. In these models, demand is generally
assumed to follow a probability distribution or to change its patterns under different hypothetical
scenarios. In addition to these modeling strategies, and even if conveying to inaccurate demand
estimates, simplifications such as aggregating demand points are commonly employed (Snyder; 2006,
Francis and Lowe; 2015).

Demand forecasting is also a critical aspect in revenue management (RM) systems because of
its direct influence on the booking limits, which determine the profits. Price is an essential factor
in operational planning, as it is one of the most effective variables that managers can manipulate
to encourage or discourage demand in the short run (Bitran and Caldentey; 2003, Sharif Azadeh
et al.; 2014). Despite its relevance, in the immense majority of RM systems (such as airlines or
retail), demand is assumed to be independent, i.e., isolated from its market environment (van Ryzin;
2005). Furthermore, the lack of information about customers’ preferences, as well as the complexity
of the resulting mathematical formulations, make disaggregate forecasting extremely difficult and
infrequently used in practice (Talluri and Van Ryzin; 2006).

Understanding the underlying behavior of individuals and incorporating it into the modeling
framework are equally crucial in other application areas. For instance, in transportation, some travel-
ers may modify their travel arrangements (e.g., departure time, route) depending on the level of service
of the network. In supply chain management, appropriate supply responses based on customers’ re-
actions need to be provided in case of stockouts. The discussed application areas represent a small
collection of examples illustrating the necessity of a better representation of the demand that accounts
for the heterogenous behavior of users by means of modeling the demand (either deterministic or
stochastic) in a disaggregate way, so that the individuals constitute the fundamental unit of demand.
To address this issue, behavioral models capturing the heterogeneity of the demand are required.

The most advanced and operational behavioral models are choice models. First introduced by
McFadden (1974), they are able to predict the choice behavior of individuals in detail, taking into ac-
count not only attributes of the goods, such as price or quality, but also socio-economic characteristics
of the individuals, such as age or income. Consequently, they allow to capture the heterogeneity of
the behavioral patterns in the population, which in turn generate the demand.

The integration of choice models in optimization problems is an increasing trend. Besides ac-
counting for the demand heterogeneity, these models enable to include other features of the demand,
such as complex substitution patterns, and to investigate other phenomena, such as demand elasticity.
Recent literature can be found in the application areas mentioned above.
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In facility location, Benati (1999) and Benati and Hansen (2002) address the problem of a firm
that wants to enter a competitive market by locating p new facilities in order to maximize its market
share. Since the firm cannot predict customers’ behavior deterministically, a logit model is employed.
In the former paper, the resulting optimization model is reformulated as a p-median problem and it is
solved by Lagrangian relaxation and branch and bound. In the latter, the model is a hyperbolic sum
integer optimization problem that proves to be NP-hard. The authors develop three solution methods
(one exploiting the concavity of the objective function and the other two reformulating the problem
as a MILP model), and they show that only moderate size problems can be solved up to optimality.

A similar problem is considered in Marianov et al. (2008). They assume that customers decide
what facility to patronize based on the travel and waiting times by means of a logit model, which
results in a nonlinear integer problem. Due to its complexity, a heuristic method is proposed. In Haase
(2009), two new models for discrete location planning under static competition are defined. The first
one considers the IIA property of the basic logit model (i.e., constant substitution patterns among
alternatives), whereas the second one relaxes this property (i.e., it allows for flexible substitution
patterns). An analogous model is presented in Aros-Vera et al. (2013). In both cases, the probability
equation given by the logit model is replaced by an equivalent set of constraints that transforms the
formulation into a MILP model. Again, a heuristic is proposed to solve large instances.

In the context of school location with free school choice, Müller et al. (2009) define a two-step
approach in order to minimize the location and transportation costs over a given time horizon with
respect to students choosing the school with the highest utility. As in a spatial context, the IIA property
of the logit is unlikely to hold. A mixture of logit models, which allows for flexible substitution
patterns and random taste variation among individuals, is applied. The first step allocates students
for each scenario (combination of open and closed schools) according to capacity and utility, and in
the second step, a scenario is selected for each period, while minimizing the total costs. Haase and
Müller (2013) propose a MILP model where the objective is to maximize the standardized expected
utility of all students, whose values are simulated with a mixture of logit models. They show that real
problems can be solved optimally (or closed to optimality) within a few minutes with state-of-the-art
solvers.

In Zhang et al. (2012), two alternative models for designing a service facility network are intro-
duced: a “probabilistic-choice model,” in which the logit probabilities to patronize each facility (in-
cluding the option of not patronizing any facility) are characterized, and an “optimal-choice model,”
which specifies that each customer will go to the most attractive facility. Both problems are formulated
as MILP models, and are solved to optimality with standard MILP solvers for small- and medium-size
instances, and with heuristics for large instances. This linear reformulation for the logit probabilities
is compared in Haase and Müller (2014) with the linearizations defined in Benati and Hansen (2002)
and Haase (2009), concluding that the approach in Haase (2009) seems to be promising for large
problems.

Customer-behavior-oriented models of demand represent a promising approach for RM, and re-
search on choice models applied to RM problems is advancing rapidly (van Ryzin; 2005, Shen and
Su; 2007). These models were first introduced in Andersson (1998), where a logit model is assumed
to compute the probability of a passenger that was rejected at one flight-class combination to request
a seat at another flight-class, called the recapture rate (or buy-up rate). An example is considered to
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show that an increase in the revenue is experienced when implementing recapture and buy-up.
In Talluri and Van Ryzin (2004), the authors provide a general analysis of the impact of choice

behavior in RM. In particular, they explicitly model consumer choice behavior using a general choice
model where the probabilities of purchasing each fare product depend on the set of available fare
products. They test their method against the traditional ones, and show that significant improvements
in the revenue can be achieved with choice-based RM models. Similar results are obtained in Vulcano
et al. (2010), where the authors rely on a multisegment (i.e., customers belonging to discrete segments)
logit model. As discussed by the authors, other approaches such as nested logit models might be more
appropriate, but at the same time more difficult to tackle computationally. In Sharif Azadeh et al.
(2015), a non-parametric approach for demand forecasting is defined. The authors propose a mixed
integer nonlinear programming (MINLP) model to estimate product utilities, as well as to capture
seasonal effects. The MINLP model is linearized with local convexification and relaxation techniques,
and solved using global optimization by introducing a tailored branch-and-bound algorithm.

In Liu and Van Ryzin (2008), the analysis performed in Talluri and Van Ryzin (2004) is extended
to the network setting. The authors formulate a general model of RM under customer choice behavior,
for which they characterize the corresponding choice-based deterministic linear programming model
(CDLP), as proposed in Gallego et al. (2004) (which can be considered as a deterministic approxi-
mation of the original stochastic problem). The authors show that the performance of the CDLP is
asymptotically optimal as capacity and demand are scaled up. Furthermore, they develop a decompo-
sition heuristic to convert the static CDLP solution into a dynamic control policy. Even if the CDLP
and the decomposition heuristic are computationally complex, they show that under logit with disjoint
segments model (i.e., customers divided into segments, each of them having a disjoint choice set) both
can be solved efficiently.

The problem of setting profit maximizing tolls over a subset of arcs of a transportation network
where the users minimize a disutility function (comprising the fixed costs and tolls from their origin
to their destination) is addressed in Gilbert et al. (2014a) and Gilbert et al. (2014b). In the former, a
logit route choice model is assumed to account for users’ awareness of the network conditions. The
resulting optimization problem is nonlinear and nonconvex, and may have several local optima. In the
latter, a mixture of logit models (i.e., price sensitivity distributed across users) is assumed. In contrast
with simpler random utility models, no closed form solution is available for the assignment of users
to paths of the transportation network, which makes this framework numerically challenging.

In the discussed examples, the probabilistic representation of the choice is either included in a
deterministic way, i.e., the utility is considered as exogenous to the optimization model, or the decision
variables of the optimization problem appear in the utility function, i.e., the utility is endogenous to the
optimization model. The second approach is obviously more challenging, since it leads to nonlinear
and nonconvex formulations, but it allows for capturing the interaction between demand and supply.
Furthermore, in order to come up with tractable and more efficient solutions, various authors have
placed simplistic assumptions on the choice model, which might be inappropriate in reality (Vulcano
et al.; 2010, Liu and Van Ryzin; 2008). However, more advanced demand models, based on mixtures
of logit (such as hybrid choice models), even if they have shown to better forecast the behavior of
individuals, have no closed-form, and are therefore difficult to integrate into optimization models.

The review of the literature illustrates that the momentum for using choice models into optimiza-
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tion models is building. Nevertheless, the capability of choice models to predict heterogeneous and
disaggregate demand is by far not enough exploited in the OR literature. In this paper, we propose
a mathematical formulation that is designed to integrate discrete choice models inside MILP. The
formulation is linear, in order to ensure the tractability of the optimization model, but remains fairly
general, in the sense that the framework can be employed with any choice model.

3 General framework
The framework aims at providing a mathematical representation of a behavioral model of the demand,
which can be integrated into an optimization model characterizing the supply.

The demand is the result of the choice of many individuals, who we call “customers”: the choice
of buying a given product, the choice of traveling with a given mode of transportation, the choice of
going to a specific movie theater, etc. Such a representation of demand is referred to as “disaggregate.”
It allows to account for the heterogeneity of the population of interest, where customers have different
tastes and preferences. The choice itself is captured by a discrete choice model that predicts the choice
of each customer from a finite set of discrete alternatives.

The supply is characterized by the decisions of the entity in charge of the configuration of the
system, who we call the “operator”: the price of a product, the schedule of a public transportation
service, the type of movie that is displayed in a theater, etc. The typical focus of OR is to optimize
the supply.

In the modeling framework that we are describing, the demand and the supply are characterized
by variables of three types:

1. the exogenous demand variables xd ∈ RD,

2. the exogenous supply variables xs ∈ RS, and

3. the endogenous variables xe ∈ RE, involved both in the demand and the supply representations.

As discussed below, these variables can be restricted to take integer or binary values, depending
on the specific model. The exogenous variables appear either in the demand model or in the supply
model, but not in both. The endogenous variables are present in both, and characterize the interactions
between demand and supply.

A typical example of an endogenous variable is the price of a service. The operator decides on
a price for a service in order to maximize its revenue, and the customer reacts to the price in order
to decide if she buys the service or not. If the operator sets a price that is too high, few customers
will access the service, and a low revenue will be generated. If the price is too low, many customers
will use the service, but the generated revenue will also be low. This example is treated extensively in
Section 5. Other examples of endogenous variables are the schedule of an event (e.g., opening hours
of a shop, departure of a train, show time of a performance) and the capacity of a facility.
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3.1 The supply model
We assume that the supply model is composed of:

• an objective function gs : RS+E → R that relates the decisions at the supply level to an aggregate
performance of the system:

gs(xs, xe) (1)

• a set of constraints that identifies the feasible configurations of the variables:

hs(xs, xe) ≤ 0, (2)
le ≤ xe ≤ me, (3)

where hs : RS+E → RI, I ≥ 0 is the number of constraints, `e ∈ RE is the vector of lower
bounds on xe andme ∈ RE is the vector of upper bounds.

Any typical OR model fits this general representation. In the following, it is assumed that the functions
gs and hs are linear in the variables of interest in order to derive a MILP formulation.

To illustrate the idea, consider the case of a company running movie theaters that needs to decide
what movies to schedule at what time, in what theater, and at what price. The show time, the choice
of the movie and the price are endogenous variables. Decisions about staff and equipments are ex-
ogenous variables. The objective function gs computes the total benefit, calculated as the difference
between the total revenue generated by the ticket sales and the operational costs. The constraints hs

may include the fact that two movies cannot be displayed in the same theater at the same time, that a
given theater cannot fit more spectators than the number of seats, etc.

3.2 The demand model
Regarding the demand model, the set of all potential alternatives is called the choice set and is denoted
by C. The alternatives in C are indexed by i. We consider a population of N customers, indexed by
n ≥ 1. Generally, it is impossible to have access to the full population, and a sample must be used.
The following description, based on the full population, can be easily adapted to a representative
sample.

Note that the choice set of two different customers may not be the same. The choice set of
customer n is denoted by Cn ⊆ C. For instance, some people just do not like action movies, and are
therefore not even considering them. These decisions are modeled with the following binary variables:

ydin =

{
1 if i ∈ Cn,
0 otherwise, ∀i, n. (4)

These variables are the result of exogenous demand decisions that are known in advance.
Also, some alternatives may not be offered by the operator for certain reasons. For example, from

a benefit maximization point of view, a movie that is not profitable will not be proposed (see Section
4). These decisions are endogenous and are modeled with the binary variables yi, which are 1 if
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alternative i is offered to the customers and 0 otherwise. The endogenous variables yi belong to the
vector xe. We define the variables yin as the product of both decisions, i.e.,

yin = ydinyi. (5)

These variables are equal to 1 when customer n considers alternative i and this is proposed by the
operator, and 0 otherwise.

For each alternative i, we denote by ci its capacity, that is, the maximum number of customers
who can choose it. In the case of the movie theater, this is typically the number of seats available in a
given theater for a given show time.

The choice of customers is modeled using a discrete choice model. These models rely on the
assumption that each customer n associates a score, called utility, with each alternative i ∈ Cn. This
utility is defined as

Uin(x
d, xe), (6)

where Uin : RD+E → R is a function of the demand variables xd and xe. The behavioral assumption
is that customer n chooses alternative i if the associated utility is the largest within the choice set Cn,
i.e., if

Uin ≥ Ujn, ∀j ∈ Cn. (7)

It is also assumed that each customer chooses one and only one alternative.
In practice, the analyst does not have access to the complete specification of the utility function

Uin. Thus, utility is modeled as a random variable Uin(xd, xe; εin), where εin is a random variable.
The most common specification involves an additive error term:

Uin(x
d, xe; εin) = Vin(x

d, xe) + εin, (8)

where Vin : RD+E → R is the deterministic part of the utility function, that includes everything that
can be modeled by the analyst, and εin is the error term, that captures everything that has not been
included explicitly in the model and is independent of the variables xd and xe. Operational choice
models are obtained by assuming a distribution for εin. For example, the logit model is obtained by
assuming that εin are independent and identically distributed (across both i and n), with an extreme
value distribution. Other assumptions lead to different models, such as the nested logit, the cross
nested logit or the mixtures of logit models, to cite a few.

In the case study described in Section 5, a mixture of logit models is considered. In this case,
the deterministic part of the utility specification of the standard logit model (generally Vin = βxin,
where β is the vector of coefficients and xin the demand variables for alternative i and customer n)
is generalized by allowing the coefficients to be randomly distributed among the customers, i.e., by
assuming βn instead of β, where βn ∼ f(β|θ), θ being the parameters of the distribution of βn, such
as their mean and variance.

The probability that customer n chooses alternative i within the choice set Cn is

Pn(i|Cn) = Pr(Uin ≥ Ujn, ∀j ∈ Cn). (9)
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In the following, it is assumed that Uin is linear in the endogenous variables. This is not required
as such for the derivation of the choice model, but important in our context for its integration in a
MILP formulation. For instance, the deterministic term in (8) can be written as

Vin(x
d, xe) =

∑
k

βkx
e
ink + q

d(xd), (10)

where xeink is the kth endogenous variable associated by customer n with alternative i and xd are the
exogenous demand variables. The function qd : RD → R does not need to be linear since these
variables are not involved in the supply side, and can be calculated separately.

In the case of the logit model, it can be shown that (9) is written as

Pn(i|x
d, xe, yi) =

yine
Vin(x

d,xe)∑
j∈C yjne

Vjn(xd,xe)
. (11)

Note that the formulation (11) is nonlinear as a function of the endogenous variables xe and yi.
In the case of the mixture of logit models, the probability that customer n chooses service i is

given by the standard logit formula conditional on βn:

Γ(i|xd, xe, yi;βn) =
yine

Vin(x
d,xe;βn)∑

j∈C yjne
Vjn(xd,xe;βn)

. (12)

As βn is random and unknown, the (unconditional) choice probability (9) is the integral of the logit
formula over the density of βn:

Pn(i|x
d, xe, yi) =

∫
Γ(i|xd, xe;β)f(β|θ)dβ. (13)

The expected demand for each alternative i ∈ C is then given by

Di =

N∑
n=1

Pn(i|x
d, xe, yi). (14)

In summary, we assume that the following is provided as an input for the supply model:

• the values of the exogenous supply variables xs,

• the functions gs and hs, characterizing the optimization problem,

and the following for the demand model:

• the values of the exogenous demand variables xd,

• the universal choice set C,

• the size of the population N,

• the values of the availability variables yd,

• the capacities ci, and

• the function qd.
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3.3 Linearization through simulation
In this section, we derive a formulation of the demand model that is linear in its endogenous variables,
so that it can be integrated in a MILP model. The nonlinearity of the demand model (14) is due to the
random nature of the utility function. In order to circumvent it, we rely on simulation. For each εin
in (8), we generate R draws ξin1,. . . ,ξinR based on the distributional assumption. For example, if the
model is logit, we generate draws from an extreme value distribution.

Once the draws have been generated, for each scenario r we obtain the utility associated with
alternative i by customer n. For the specification (10), we have

Uinr = Vin + ξinr =
∑
k

βkx
e
ink + q

d(xd) + ξinr. (15)

As the variables xeink are bounded (see (3)), and the variables xd are given, lower and upper bounds
on Uinr, denoted by `inr andminr, can be derived:

`inr ≤ Uinr ≤ minr. (16)

Availability of alternatives An alternative may be unavailable for three reasons. First, an alternative
might not be considered by the customer (ydin = 0). Second, the operator decides that the
alternative is not made available (yi = 0). Third, the alternative may be unavailable because
its capacity has already been reached. In the case of the movie theater, the movie that a certain
customer would like to watch is proposed by the theater, but is fully booked. This type of
unavailability is more complex to model, as it is not a direct decision as such, but the result of
the decisions of other customers. Note that, in our framework, this can vary from one scenario
to the next. Indeed, an alternative might be attractive in one scenario, generating more demand
than its capacity, and less attractive in another.

We model the availability of alternative i to customer n in scenario r using the binary variables
yinr. Note that the variables yin and yinr are related as follows:

yinr ≤ yin, ∀i, n, r, (17)

which means that alternative i is not available at scenario level if it is not made available by the
operator or considered by the customer.

Discounted utility The basic behavioral assumption states that the customer selects the alternative
associated with the largest utility. In order to avoid that an alternative that is not available is
associated with the highest utility, we introduce the concept of discounted utility, that is equal
to the utility when the alternative is available, and to a low value otherwise. The discounted
utility associated by customer n with alternative i for scenario r is denoted by zinr and defined
as

zinr =

{
Uinr if yinr = 1,
`nr if yinr = 0,

∀i, n, r, (18)
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where

`nr = min
j∈C
`jnr (19)

is the smallest lower bound across all alternatives. The linear formulation of (18) is given by

`nr ≤ zinr, ∀i, n, r, (20)
zinr ≤ `nr +Minryinr, ∀i, n, r, (21)

Uinr −Minr(1− yinr) ≤ zinr, ∀i, n, r, (22)
zinr ≤ Uinr, ∀i, n, r, (23)

where

Minr = minr − `nr. (24)

To prove the equivalence between (18) and (20)–(23), we consider two cases:

• If yinr = 0, constraints (20)–(23) become

`nr ≤ zinr, (25)
zinr ≤ `nr, (26)

Uinr −Minr ≤ zinr, (27)
zinr ≤ Uinr. (28)

Constraints (25) and (26) impose that zinr = `nr. Using (24), constraint (27) is written

Uinr −minr + `nr ≤ `nr
which is always verified from the definition (16) of the upper boundminr. Constraint (28)
is written

`nr ≤ Uinr,
which is always verified as `nr is the smallest lower bound (see (16) and (19)).

• If yinr = 1, constraints (20)–(23) become

`nr ≤ zinr, (29)
zinr ≤ `nr +Minr, (30)
Uinr ≤ zinr, (31)
zinr ≤ Uinr. (32)

Constraints (31) and (32) impose that zinr = Uinr. Constraint (29) is written

`nr ≤ Uinr,

which is always verified (same argument as above). Using (24), constraint (30) is written

Uinr ≤ `nr +minr − `nr,

which is always verified from the definition (16) of the upper boundminr.
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Choice The choice of customer n in scenario r is characterized by the following binary variables:

winr =

{
1 if i is chosen,
0 otherwise, ∀i, n, r. (33)

As each customer is choosing exactly one alternative, we impose∑
i∈C

winr = 1, ∀n, r. (34)

Since an alternative that is not available cannot be selected, we add the following constraint to
the model:

winr ≤ yinr, ∀i, n, r. (35)

Based on the behavioral assumption, the chosen alternative corresponds to the one with the
highest discounted utility. We introduce a continuous variable to capture it. It is denoted byUnr
and is defined as

Unr = max
i∈C

zinr, ∀n, r. (36)

The linear formulation of (36) is given by

zinr ≤ Unr, ∀i, n, r, (37)
Unr ≤ zinr +Mnr(1−winr), ∀i, n, r, (38)

where

Mnr = mnr − `nr (39)

is the difference between the largest upper bound and the smallest lower bound, where the
largest upper bound is defined as

mnr = max
j∈C

mjnr. (40)

To prove the equivalence between (33) and the formulation (37)–(38), we consider two cases:

• If winr = 0, constraints (37) and (38) become

zinr ≤ Unr, (41)
Unr ≤ zinr +Mnr. (42)

Constraint (41) is consistent with the definition (36). Using (39), constraint (42) is written

Unr ≤ mnr + (zinr − `nr),

which is always verified as zinr − `nr ≥ 0.
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• If winr = 1, constraints (37) and (38) become

zinr ≤ Unr, (43)
Unr ≤ zinr, (44)

which implies that Unr = zinr, meaning that alternative i is associated with the highest
discounted utility.

Expected demand The above formulation allows to represent the total expected demand of alterna-
tive i ∈ C by averaging over the number of considered scenarios:

Di =
1

R

R∑
r=1

N∑
n=1

winr. (45)

Capacity allocation If the demand for alternative i is larger than its capacity, it is necessary to decide
which customers have access to the alternative. In this framework, we have decided to model
it exogenously, using an externally defined priority list of customers, similarly to Binder et al.
(2017). A customer has access to an alternative if all customers before her in the list have also
access to it. Note that the construction of this priority list can consider various aspects of the
relationship between the operator and the customers, such as fidelity programs, VIP customers,
etc. Therefore, the numbering of customers is important and reflects the priority list.

Based on the definition of the individual choice sets Cn, we denote by Ni the set of customers
considering alternative i, i.e., Ni = {n ≥ 1|i ∈ Cn}. By assuming that Ni is ordered according
to the priority list, the constraint referring to the order of customers is written as

yinr ≤ yin−r, ∀i, n ∈ Ni, n > 1, r, (46)

which says that if customer n−, the predecessor of n in Ni, does not have access to alternative
i for scenario r, then neither does customer n.

The capacity restrictions are expressed by the following set of constraints:∑
m≤n−

wimr ≤ (ci − 1)yinr + (n− 1)(1− yinr), ∀i, n ∈ Ni, n > ci, r, (47)

ci(yin − yinr) ≤
∑
m≤n−

wimr, ∀i, n ∈ Ni, n > 1, r. (48)

Constraint (47) ensures that the capacity cannot be exceeded, and it can be verified by consid-
ering two cases:

• If yinr = 0, (47) is written ∑
m≤n−

wimr ≤ n− 1,

which is always satisfied.
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• If yinr = 1, (47) is written

1+
∑
m≤n−

wimr ≤ ci,

which means that the number of customers up to and including n who have chosen alter-
native i does not exceed ci, so there is still room for customer n.

Constraint (48) forbids the access of customers to a certain alternative when its capacity has
been reached. To verify the validity of this constraint we consider the three possible cases for
the values of yinr and yin (note that yinr = 1 and yin = 0 is infeasible due to constraint (17)):

• If yinr = 1, then yin = 1 (because of (17)), and (48) is written∑
m≤n−

wimr ≥ 0, (49)

which is clearly satisfied.

• If yinr = 0 and yin = 0, (48) is also written as (49).

• If yinr = 0 and yin = 1, (48) is written∑
m≤n−

wimr ≥ ci,

which implies that the capacity has been reached due to the choices of customers inNi up
to and including n−, and even if the alternative is proposed to customer n by the operator
(yin = 1), there is no room left for her.

Note that if alternative i is not offered by the operator (yi = 0), the variables yin, yinr and
winr are equal to 0 ∀n ∈ Ni (due to constraints (5), (17) and (35), respectively), and therefore
constraints (46)–(48) are always satisfied.

3.4 Capacities as decision variables
In terms of capacity allocation, although capacities ci are supposed to be given, the formulation can
easily be extended to include capacity as a decision variable. In order to avoid the nonlinearity that
would appear in the capacity constraints (47) and (48), the model should be specified as follows. For
each decision variable ci, a predefined list of Q feasible values for the capacity must be proposed:
ci1, . . . , ciQ. Then, alternative i is duplicated Q times, each instance being associated with the same
utility function, but with a different capacity. It is sufficient to include the constraint

Q∑
q=1

yiq ≤ 1, ∀i, (50)
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to guarantee that at most one of the duplicates is actually available. The variables yiq are the extension
of the variables yi, and control the actual capacity of the facility. Note that it is still possible for the
operator to decide not to open it. In that case, the sum on the left hand side of (50) would be zero.

The rest of the variables and constraints introduced so far have to be adapted accordingly. The
binary variables yin, yinr, zinr and winr are replaced by the variables yinq, yinrq, zinrq and winrq,
respectively. Constraints (17), (20)–(23), (35), (37)–(38) and (46)–(48) need to incorporate the index
q. Constraint (34) is written ∑

i∈C

Q∑
q=1

winrq = 1, ∀n, r, (51)

and the expected demand of alternative i is written

Di =
1

R

R∑
r=1

N∑
n=1

Q∑
q=1

winrq. (52)

Since the utility function is the same, both the utility variables Uinr and the associated constraint (15)
remain unchanged.

The number of constraints involved in this specification is of the order of JNRQ, where J = |C| is
the number of alternatives within the choice set C. In real applications, where the number of customers
can be really large, this comes with a high computational price. In order to reduce the size of the
model, customers can be grouped into classes of homogeneous behavior. A synthetic population,
which is constructed by combining different data sources, is convenient here (Farooq et al.; 2013).

The complexity of the probability distributions of the random variables involved in the choice
models and their correlation structure are irrelevant in this context as long as it is possible to draw
from these distributions. Indeed, the generation of draws is performed at a preprocessing stage. The
complexity of the formulation is only affected by the number of draws, and not by the nature of the
underlying distributions. This is a strength of the framework, that is relevant for any existing complex
model, and for other models to be developed in the future.

The supply, in terms of the alternatives offered to customers, is flexible in the sense that there exists
the possibility not to propose an alternative i thanks to the variables yi. This allows the operator to
investigate marketing solutions and business models. In certain contexts, it might be interesting to
extend this feature in order to be able to propose an alternative to some customers but not to others.
This will increase the complexity of the model, especially when it comes to identify consecutive
customers who are competing for the same alternative, and it is out of the scope of the paper.

The formulation developed in this section is linear, and applies to a great deal of choice models.
It can be integrated in any MILP model derived from a relevant OR application. To exemplify that,
we consider the example of a benefit maximization problem in Section 4.

4 Demand-based benefit maximization
A relevant application where the use of advanced demand models plays an important role is the max-
imization of benefit, understood as the difference between the generated revenue and the operating
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costs. We use this approach to illustrate how the framework described in Section 3 can be employed.
Concrete examples can be found in transportation, for instance, where services are offered in a com-
petitive market. In such cases, it is expected that a detailed representation of the heterogeneity of the
demand might lead to a better planning of the associated transport operations.

We are aiming at finding the best strategy in terms of pricing and capacity allocation in order to
maximize the benefit of the operator. We assume that it is selling services to a market, each of them at
a certain capacity and at a certain price, both to be decided. With respect to the cost of each service,
we assume that it is composed of a fixed cost associated with operating the service and a variable cost
associated with each sold unit of the service.

The market is composed ofN customers, which are assumed to be heterogeneous and price elastic,
in the sense that each costumer may have a different behavior and sensitivity towards price. The
operator is considering J services to offer, each of them having Q associated levels of capacity, as
described in Section 3.4.

In a benefit maximization context, we need to model competition. Indeed, if we do not account for
competitive alternatives, customers are captive, and the benefit maximization problem is unbounded.
Competitive alternatives can be explicitly modeled in the choice set, or grouped into an opt-out al-
ternative that captures customers leaving the market, either because they choose an alternative from
a competitor or because they do not choose anything at all. Here we consider the second approach.
The main assumption behind is that the decisions of the competitors are given, and not adjusted as a
consequence of the decisions of the operator. The opt-out option is denoted by i = 0. Note that it is
always available to all customers, i.e., 0 ∈ Cn ∀n ≥ 1.

We consider the price as an endogenous variable in the utility function (15). We define pin ∈ R
as the price that customer n must pay to access service i ∈ Cn \ {0}. Note that the index n allows the
operator to propose different prices to different customers or, more realistically, to different groups of
customers (e.g., students, seniors, families). In that case, the model includes as many p variables as
the number of groups.

The expected revenue obtained from service i > 0 can be derived directly from the demand
expression (52) and the price specification:

Ri =
1

R

∑
n∈Ni

R∑
r=1

Q∑
q=1

pinwinrq. (53)

As the price is an endogenous variable, (53) is nonlinear. The product of a binary and a continuous
variable can be easily linearized if an upper bound for the continuous variable is known, which in
this case can be assumed by the operator. However, it is in general more convenient, both from
an application and a modeling point of view, to assume that pin can only take a finite number of
predetermined values, called price levels.

Note that any integer variable that is bounded and can take only a finite number of values can be
written as a linear combination of binary variables. In our case, pin is not defined as an integer vari-
able, and neither its price levels, but they can be expressed as integer numbers by setting a precision
of k decimals and multiplying them by 10k.

Consider pin ∈ 1/10k{`in, . . . ,min}, where {`in, . . . ,min} are the integer price levels for customer
n and service i ∈ Cn \ {0}, sorted from the smallest level (`in) to the largest (min). We define Lin
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binary variables λin` for each customer n and service i ∈ Cn \ {0}, where Lin is the smallest integer
such thatmin − `in ≤ 2Lin − 1, that is

Lin = dlog2(min − `in + 1)e. (54)

We can then write pin as follows:

pin =
1

10k

(
`in +

Lin−1∑
`=0

2`λin`

)
. (55)

If it is important to generate prices belowmin, the following constraint must be included:

`in +

Lin−1∑
`=0

2`λin` ≤ min, ∀n, i ∈ Cn \ {0}. (56)

The expected revenue Ri is now written as

Ri =
1

R

1

10k

∑
n∈Ni

R∑
r=1

Q∑
q=1

(
`in +

Lin−1∑
`=0

2`λin`

)
winrq. (57)

In order to linearize the product of the binary variables λin` and winrq, we introduce the binary vari-
ables αinrq` = λin`winrq, so that Ri becomes linear:

Ri =
1

R

1

10k

[∑
n∈Ni

R∑
r=1

Q∑
q=1

(
`inwinrq +

Lin−1∑
`=0

2`αinrq`

)]
, (58)

with the linearizing constraints

λin` +winrq ≤ 1+ αinrq`, ∀n, i ∈ Cn \ {0}, r, q, `, (59)
αinrq` ≤ λin`, ∀n, i ∈ Cn \ {0}, r, q, `, (60)
αinrq` ≤ winrq, ∀n, i ∈ Cn \ {0}, r, q, `. (61)

Regarding the costs, we assume that the operating cost of service i > 0 is calculated as

Ci =

Q∑
q=1

(fiq + viqciq)yiq, (62)

where fiq is the fixed cost and viq is the cost per sold unit of service i with capacity level ciq.
The total benefit is computed by subtracting from the generated revenues the total operating costs.

These quantities are obtained by adding the revenues and costs from all the services proposed by the
operator (given by (58) and (62), respectively) except the opt-out option (i.e., the services proposed
by the competitors are excluded):

max
∑
i>0

(Ri − Ci) =
∑
i>0

(
1

R

1

10k

[∑
n∈Ni

R∑
r=1

Q∑
q=1

(
`inwinrq +

Lin−1∑
`=0

2`αinrq`

)]
−

Q∑
q=1

(fiq + viqciq)yiq

)
.

(63)

The constraints of the model are itemized next:
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• Utility: (15),

• Availability: (5), (17),

• Discounted utility: (20), (21), (22), (23),

• Choice: (35), (37), (38), (51),

• Capacity allocation: (46), (47), (48), (50) and

• Pricing: (56), (59), (60), (61).

Note that the size of the above optimization model can be large (see final discussion in Section 3).
Nevertheless, the structure of the model is particularly well suited for decomposition methods. Indeed,
most constraints are independent across customers, and across scenarios. The coupling occurs only
when the benefit is calculated. Investigating decomposition methods is out of the scope of the paper,
and left for future research.

In Section 5, we illustrate the use of the model with a case study of moderate size, based on a real
choice model taken from the recent literature.

5 Case study
We consider the case study of a parking services operator, which is motivated by the availability of
a published disaggregate choice model for parking choice (Ibeas et al.; 2014). For the sake of illus-
tration, and to avoid solving huge optimization problems, the size of the sample under consideration
is N = 50 customers. The choice set consists of three services: paid on-street parking (PSP), paid
parking in an underground car park (PUP) and free on-street parking (FSP). Since the latter does not
provide any revenue to the operator, it is considered as the opt-out option.

The objective of the operator is to maximize the benefit obtained from PSP and PUP. Together
with the technical variables used for the linearization of the constraints, the decision variables of the
model for this case study are characterized as follows:

• Availability variables yiq: We assume ydin = 1 ∀i, n, that is, all customers consider all parking
facilities when deciding where to park. Therefore, yinq = yiq ∀n (see (5));

• Availability variables yinrq;

• Choice variables winrq;

• Price variables λin`: We do not offer a different price for each customer (pin), but a general
price for everyone (pi). Therefore, the price variables to be considered are λi`. Furthermore, we
assume that the number of price levels is the same for both PSP and PUP (LPSP = LPUP = L).
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The demand model is the parking choice model proposed in Ibeas et al. (2014), whose data was
kindly provided by the authors and used to perform the experiments discussed in the upcoming sec-
tions. They characterize a mixture of logit models to describe the behavior of potential car park users
when choosing a parking place.

The specification table of the utility functions is provided in Table 1. The random coefficients are
those associated with the access time to the parking place once the user arrives to the parking area
(AT ) and the parking fee (FEE). As mentioned by the authors, the latter is related to an hour of use
of the parking place, regardless of the time that the spot was needed. The units are not specified. For
these two variables the associated parameters βAT and βFEE are assumed to be normally distributed.
Furthermore, these coefficients are correlated, with cov(AT, FEE) = −12.8.

FSP PSP PUP
ASCPSP 32 0 1 0
ASCPUP 34 0 0 1
βAT ∼ N(−0.788, 1.06) ATFSP ATPSP ATPUP
βTD -0.612 TDFSP TDPSP TDPUP

βOriginINT_FSP -5.76 OriginINT_FSP 0 0
βFEE ∼ N(−32.3, 14.2) 0 FEEPSP FEEPUP

βFEEPSP(LowInc)
-11 0 FEEPSPLowInc 0

βFEEPSP(Resident)
-11.4 0 FEEPSPResident 0

βFEEPUP(LowInc)
-13.7 0 0 FEEPUPLowInc

βFEEPUP(Resident)
-10.7 0 0 FEEPUPResident

βAgeVeh≤3 4.04 0 0 AgeVeh ≤ 3

Table 1: Specification table of the mixed logit model

The other variables appearing in the utility specification are the following: access time to the
destination from the parking spot (TD), a dummy variable that is 1 if the origin of the trip is internal
to the town (OriginINT_FSP), a dummy variable that is 1 if the income of the customer is below
1200e/month (LowInc), a dummy variable that is 1 if the customer is resident (Resident) and a
dummy variable that is 1 if the age of the vehicle is lower than 3 years (AgeVeh≤3). Two interactions
to address the variations in taste among customers are also considered: FEE with having a low income
and FEEwith being resident. Note that in the optimization model FEE is the only endogenous variable,
and all others are exogenous demand variables.

This section is divided into four experiments. In the first three, we assume that the paid services
have a fixed capacity of cPSP = cPUP = 20 spots each. This value is large enough so that it is realistic
for the size of the sample but restrictive enough so that some customers are forced to opt-out because
there is not enough room for everyone. Therefore, the index q is dropped from the formulation and
both the fixed and variable costs are equal to 0, which converts the objective function into revenue
maximization. This will decrease the complexity of the model for the first tests. More precisely,
Section 5.1 characterizes the optimal prices of the parking services as well as their expected demands,
Section 5.2 describes two scenarios for price differentiation by market segmentation, and Section
5.3 evaluates the impact of the priority list on the optimal prices and expected revenue. The last
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experiment is presented in Section 5.4, and analyzes the effects of considering the cost of capacity
allocation. Here we assume 4 different capacity levels for both PSP and PUP. In all cases, FSP is
assumed to have unlimited capacity and the priority list is defined as the order of the customers in the
original dataset, which can be interpreted as a random arrival.

The computer codes used in our experiments have been implemented in C++ with CPLEX 12.7
callable libraries. All experiments were performed using 6 threads in a 3.33 GHz Intel Xeon X5680
server running a 64-bit Ubuntu 16.04.2.

5.1 Price calibration
In this section, we aim at deciding the optimal price for both parking services so that the revenue of
the operator is maximized. We start by considering an unlimited capacity for the parking services,
i.e., constraints (46)–(48) are ignored, and afterwards, we include them back in order to analyze the
expected increase of solution time due to the increase in complexity, and the changes in the obtained
results.

We determine 16 price levels (L = 4) for PSP and PUP based on the values of the variable FEE in
the dataset (0.6 and 0.8 respectively):

• PSP: {0.50, 0.51, . . . , 0.65}, and

• PUP: {0.70, 0.71, . . . , 0.85}.

Note that these levels are defined in a way that all combinations of the associated binary variables
are feasible (i.e., constraint (56) is not needed). Indeed, there is no reason to discard any price level
because we do not have any external restriction on the price.

Figure 1 shows the variation of solution time (in a logarithmic scale) and expected revenue with
respect to the number of draws R, and Figure 2 shows the variation of price and expected demand
of each service, both for the uncapacitated case. In general terms, the values for the demand and the
total revenue stabilize as the number of scenarios increases. In the case of PSP, the price is set to 0.54
in the last 4 instances, and for PUP it is set to 0.74 in the last two. However, the increase in solution
time is considerable, as expected. For example, from R = 100 to R = 250 it changes from 21 minutes
to almost 2.5 hours.

For the capacitated case, Figure 3 shows that the increase in solution time is high compared to the
uncapacitated case for the large instances. For instance, for R = 100 the solution time increases from
21 minutes to more than 6 hours, and for R = 250 from 2.5 hours to almost 2 days. This manifests that
the implementation of the priority list and the tracking of the occupancy for each alternative hugely
complicate the solution approach.

Regarding the optimal prices, we can see in Figure 4 that both PSP and PUP are more expensive
in the capacitated case. Since the demand of PSP was already higher in the uncapacitated case than
its current capacity, its price can be increased so that the operator obtains a higher revenue from the
customers accessing the service. In the case of PUP, the price is also higher, but the demand is similar
to the one in the uncapacitated case, which might also be influenced by the capacity restriction on PSP,
since normally the opt-out option is the least attractive one. This service is experiencing an increase in
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the demand because it is capturing the customers that cannot be allocated due to capacity limitations
or that are not willing to pay the current price of the paid alternatives.
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Figure 1: Variation of solution time and revenue with respect to the number of draws for the uncapacitated case
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Figure 3: Variation of solution time and revenue with respect to the number of draws for the capacitated case
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Figure 4: Variation of price and demand with respect to the number of draws for the capacitated case

The values of the solution time, optimal prices, expected demand and expected revenue for the
described instances can be found in Appendix A.1 (see Tables 3 and 4). Since the results stabilize
after 50 draws, the experiments performed in the remainder of the paper consider R = 50.
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5.2 Price differentiation by population segmentation
Imagine now that the municipality provides reduced fees to residents (R) who want to access one
of the paid alternatives. This is actually done in many cities, where residents get reduced prices for
common parking services or even exclusive areas, where only them have the right to park. In this case,
we assume a discount factor that is applied to the prices offered to non residents (NR). Regarding the
revenue obtained by the operator, two scenarios are considered:

1. The difference between the actual price of the service and the contribution of the resident is
paid by the municipality in the form of a subsidy and, therefore, contributes to the revenue of
the operator.

2. The operator is obliged by the municipality to offer reduced fees to residents, without any other
compensation than the right to operate the parking.

Note that in the first scenario, the reduced prices have an impact on the utility functions of the resi-
dents, and therefore on their choice, but not on the revenue of the operator. In the second case, the
reduced fares cause a decrease in the total revenue.

Since residents only pay a part of the fee that non residents pay, the former customers might be
attracted to higher fares, and we expect the prices of both services to increase. Therefore, we modify
the price levels for both PSP and PUP accordingly:

• PSP: {0.60, 0.64, . . . , 1.20}, and

• PUP: {0.80, 0.84, . . . , 1.40}.

Note that we keep the same number of price levels (L = 16), but we change the step between price
levels from 0.1 to 0.4 to extend the range.

The optimal prices for different discount rates are included in Figures 5 and 6 for scenarios 1 and
2, respectively. In both cases, the higher the discount, the higher the prices offered to non residents,
as expected. However, in the second scenario, this increase in the price is more moderate because it
leads to a decrease in the total revenue. We note that when the discount substantially increases, the
prices in scenario 1 are larger than those in scenario 2, as well as the number of residents choosing
the paid alternatives, as shown in Figures 7 and 8.

In terms of demand, we see that the higher the discount, the higher the number of non residents
deciding to opt-out, because they are not willing to pay the offered fares and they choose FSP instead.
We also note that the demand values for PSP and PUP remain similar among instances in both sce-
narios (for PSP they oscillate between 18.5 and 19.5, and for PUP between 17.9 and 18.9, with an
exception of 15.7, see Tables 5 and 6 in Appendix A.2), but with increasing number of residents and
decreasing number of non residents with the increase in the discount.
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Figure 5: Prices per segment for different discount rates in scenario 1
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Figure 6: Prices per segment for different discount rates in scenario 2
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5.3 Impact of the arrival of customers
The priority list described in Section 3.3 states the order in which customers are considered to access
the services. As mentioned above, the priority list in this case study is defined as the order of cus-
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tomers in the data. We can analyze the impact of such priority list on the obtained results by testing
different priority lists. For this experiment we consider the second scenario in Section 5.2, i.e., the
operator is forced by law to offer a discount on the fares for residents. For the sake of simplicity we
only consider the 30% discount rate.

We construct 100 different priority lists by shuffling the customers, so that they might arrive in a
different order. We also run these instances with R = 50. Figures 9 and 10 show the distribution of
the prices for the paid alternatives and the expected revenue, respectively.

The results show that the framework performs similarly in terms of the obtained results when a
random arrival of the customers is assumed. Regarding the prices, the same price levels are determined
for almost all the instances for both PSP and PUP, and with respect to the obtained revenues, the
variation is small, with values that oscillate between 25.7 and 26.1. This is consistent with the findings
of Binder et al. (2017), who show that the aggregate indicators are stable across realizations of a
random priority list.
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We have also tested priority lists set deterministically. We have considered two extreme cases,
one in which all residents have priority over the non residents and the other way around, which can
be interpreted as the arrival of all residents first and last, respectively. A higher revenue is expected
when the residents arrive last, since they produce a lower revenue (because of the offered discount)
and they leave room for non residents. For this case study, the obtained results are very similar, with
the revenue gained from residents coming last slightly higher.

5.4 Benefit maximization through capacity allocation
In this experiment, we test 4 different capacity levels for both services. As described in Section 3.4,
we replicate the services PSP and PUP as many times as capacity levels we want to evaluate. We
consider 5, 10, 15 and 20 parking spots, which makes 4 copies of PSP and 4 copies of PUP, each of
them with the same utility function but a different level of capacity. Together with the opt-out option
(FSP), this experiment contains 9 different services.

Note that constraint (50) does not force the opening of both services, since it might be more
convenient from a benefit maximization point of view to allocate all the resources of the operator to
only one of the facilities. However, in case we want to make sure that both PSP and PUP are offered,
we can modify this constraint as follows:

Q∑
q=1

yiq = 1, ∀i > 0. (64)
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As mentioned in Section 4, the cost associated with operating a parking facility is composed of a
fixed cost and a variable cost (in this case, a cost per parking spot). For the sake of illustration, we
assume that both types of cost are the same among capacity levels, i.e.,

• PSP: fPSP,q = 1.5 and vPSP,q = 0.35 ∀q = 1, . . . , 4, and

• PUP: fPUP,q = 3 and vPUP,q = 0.5 ∀q = 1, . . . , 4.

The results for both approaches (constraint (50) and (64)) are included in Table 2. We see that in
this case it makes sense to close PUP and only open PSP with the highest level of capacity. Indeed,
when we impose that both parking facilities have to be opened, PUP is offered at the lowest capacity
level available, and a lower benefit is generated. The obtained solution time gives us an idea of the
increase in complexity with respect to the revenue maximization problem. Indeed, for R = 50, it goes
from 50 minutes (capacitated revenue maximization) to almost 19 hours (benefit maximization with
constraint (50)).

Solution Capacity Demand Prices
Constraint time (h) PSP PUP PSP PUP FSP PSP PUP Benefit

(50) 18.7 20 - 19.4 - 30.6 0.76 - 6.27

(64) 33.7 15 5 14.8 4.56 30.7 0.76 1.32 4.99

Table 2: Capacity and pricing characterization for approaches (50) and (64)

The experiments performed in Section 5 illustrate the great flexibility of the framework proposed
in this paper. It has been employed to calibrate the prices of the services being offered, to offer
different prices to different segments of the population, and to evaluate different capacity levels from a
benefit maximization point of view. Indeed, the possibilities are endless, and features such as complex
behavioral patterns and alternative supply configurations can be investigated with the framework.

6 Conclusions and future work
We have proposed a general formulation of an advanced choice model that is designed to be included
in MILP. It is general in the sense that any assumption can be made on the probability distribution
of the error term of the utility function, so that this approach is not limited to simple discrete choice
models, and that it can be included in any optimization problem that requires a demand represen-
tation. The stochasticity of the model is captured by drawing from the distribution of the random
variables involved in the model specification. This allows us to avoid the explicit formulation of
choice probabilities and to work directly with the utility functions, using the first principles of utility
maximization.

Regarding the supply aspects of the framework, an illustrative MILP model is developed in order
to define a pricing strategy that maximizes the total benefit of the operator when the offered services
have a certain capacity. The model takes into account the preferences of customers by means of the
utility function when determining the prices of the services. Since the customers are not captive, i.e.,
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they can leave the market by choosing the opt-out option, there exists a tradeoff between price and
customers’ choices.

The results exhibit that this formulation is a powerful tool to configure systems based on the
heterogeneous behavior of customers. Some properties of the systems, such as the price, can be set
specifically for different market segments, which tailors the systems to the users at the same time that
the benefit is maximized.

Nevertheless, the disaggregate representation of customers’ preferences, together with the lin-
earity of the formulation, implies that the dimension of the resulting problem is high, and therefore
solving it is computationally expensive. This is an issue that needs to be addressed because in prac-
tice, populations are large and a high number of draws is desirable to be as close as possible to the
true value.

Decomposition techniques are convenient in this case in order to speed up the solution approach.
The model, by design, can naturally be decomposed along two dimensions. On the one hand, each
draw r constitutes an independent scenario, and all scenarios are considered together solely in the ob-
jective function (for the calculation of revenue). On the other hand, each customer n has an associated
optimization problem, which consists of choosing the alternative among the available ones maximiz-
ing her utility. All customers are coupled in the capacity constraints to ensure that the capacity of
each alternative is not exceeded, and in the objective function, to calculate the total demand.

To sum up, in this paper, we highlight the importance and significance of taking supply and
demand interactions into account in an optimization framework from both operators’ (benefit) and
consumers’ (convenience) points of view. The framework can be used in various contexts, such as
facility location, revenue management, transportation, supply chain management, and logistics. The
main challenge that researchers in the above mentioned contexts face while integrating choice models
inside optimization problems concerns the definition of a closed-form tractable mathematical model.
Here, we propose a state-of-the-art mathematical model that addresses this issue profoundly and sheds
light for future research avenues in these topics.
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A Exhaustive results of the case study

A.1 Price calibration

Prices Demand
R Solution time PSP PUP PSP PUP FSP Revenue
5 2.58 s 0.54 0.79 27.0 15.0 8.00 26.43

10 3.98 s 0.53 0.74 26.0 17.0 7.00 26.36
25 29.2 s 0.54 0.79 28.0 14.9 7.08 26.90
50 4.08 min (*) 0.54 0.75 25.2 17.8 7.00 26.97

100 20.7 min (*) 0.54 0.74 24.4 18.5 7.04 26.90
250 2.51 h (*) 0.54 0.74 24.8 18.2 7.03 26.85

(*) Instances not solved to optimality, gap of 0.01% for the MIP best bound found

Table 3: Solution time, optimal price, expected demand and expected revenue in the uncapacitated case

Prices Demand
R Solution time PSP PUP PSP PUP FSP Revenue
5 12.0 s 0.63 0.84 18.2 17.2 14.6 25.91

10 54.5 s (*) 0.57 0.78 19.9 17.9 12.2 25.31
25 13.8 min 0.59 0.80 19.5 18.1 12.4 25.96
50 50.2 min (*) 0.59 0.80 19.5 18.2 12.3 26.10

100 6.60 h 0.59 0.79 19.1 18.7 12.2 26.03
250 1.74 days 0.60 0.80 19.0 18.1 12.8 25.93

(*) Instances not solved to optimality, gap of 0.01% for the MIP best bound found

Table 4: Solution time, optimal price, expected demand and expected revenue in the capacitated case

A.2 Price differentiation by population segmentation

Discount Solution Prices R Demand R Prices NR Demand NR
(%) time (min) PSP PUP PSP PUP FSP PSP PUP PSP PUP FSP Revenue
20 23.1 0.54 0.74 11.8 9.40 5.78 0.68 0.92 7.46 8.60 6.94 29.7
25 54.2 0.51 0.69 12.2 10.2 4.64 0.68 0.92 7.34 8.72 6.94 30.7
30 51.3 0.50 0.67 12.7 10.4 3.86 0.72 0.96 6.16 8.50 8.34 31.8
40 63.9 0.48 0.65 13.7 10.7 2.60 0.80 1.08 4.88 7.20 10.9 34.2
50 67.3 0.46 0.64 15.0 10.4 1.62 0.92 1.28 3.74 5.32 13.9 37.3

Table 5: Solution time, optimal price and expected demand by segment and expected revenue for different
subsidies for approach 1
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Discount Solution Prices R Demand R Prices NR Demand NR
(%) time (min) PSP PUP PSP PUP FSP PSP PUP PSP PUP FSP Revenue
20 44.1 0.54 0.74 11.8 9.40 5.78 0.68 0.92 7.46 8.60 6.94 26.3
25 24.6 0.51 0.69 12.2 10.2 4.64 0.68 0.92 7.34 8.72 6.94 26.2
30 35.7 0.50 0.67 12.7 10.4 3.86 0.72 0.96 6.16 8.50 8.34 26.0
40 130 0.46 0.62 13.5 11.2 2.30 0.76 1.04 5.88 7.36 9.76 25.3
50 174 0.42 0.58 14.1 11.8 1.08 0.84 1.16 4.76 6.18 12.1 23.9

Table 6: Solution time, optimal price and expected demand by segment and expected revenue for different
subsidies for approach 2
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