
A Unified Framework for Rich Routing Problems
with Stochastic Demands

Iliya Markova, Michel Bierlairea, Jean-François Cordeaub

Yousef Maknoonc, Sacha Varoned

aTransport and Mobility Laboratory
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Key Modeling Elements

Key Notations and Terms

Planning horizon T

Multiple depots, demand points P, and supply points

Heterogeneous fixed fleet K

Demand stochasticity leads to stock-outs:

- σit = 1 for stock-out of point i ∈ P in period t ∈ T , 0 otherwise

And route failures:

- Tours vs. trips: depot-delimited vs. supply point-delimited

- S ∈ Sk : a trip in the set of trips performed by vehicle k ∈ K
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Key Modeling Elements

Discretized Maximum Level (ML) Policy

For tractable pre-processing of the stochastic information

Iit : inventory of point i ∈ P at the start of period t ∈ T

Λit : inventory of point i ∈ P after delivery in period t ∈ T

ωi : inventory capacity of point i ∈ P

Figure 1: Discretization example for Λit

Discrete level 1

Discrete level 2

Discrete level 3
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Capturing Demand Stochasticity

Demand Forecasting

Stochastic non-stationary demand ρit for point i ∈ P in period t ∈ T :

ρit = E (ρit) + εit (1)

Combine εit ,∀t ∈ T , i ∈ P in a vector:

ε =
(
ε11, . . . , ε1|T |, ε21, . . . , ε|P||T |

)
(2)

Let ε∼ Φ satisfy var (ε) = K for any covariance structure K

Use any model that provides E(ρit),∀t ∈ T , i ∈ P and Φ
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Capturing Demand Stochasticity

Stock-out Probabilities: Branching

Figure 2: State Probabilities
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Capturing Demand Stochasticity

Stock-out Probabilities: Formulation and pre-computing

DVar: yikt = 1 if vehicle k ∈ K visits point i ∈ P in period t ∈ T

Stock-out probability at point i ∈ P in period t ∈ T :

pDP
it = P (σit = 1 | Λim : m = max (0, g < t : ∃k ∈ K : yikg = 1)) (3)

For a discretized ML policy, we can pre-compute expression (3),
∀i ∈ P, t ∈ T , with ε∼ Φ and var (ε) = K using simulation

The complexity is linear in the number of discrete levels
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Capturing Demand Stochasticity

Rte Failure Probabilities: Formulation

St ∈ S : demand points in S visited in period t ∈ T

Quantity delivered by vehicle k ∈ K in trip S ∈ Sk :

ΓS =
∑
S0∈S

∑
s∈S0

(Λs0 − Is0) +
∑

t∈T \0

∑
St∈S

∑
s∈St

(
Λst − Λsm +

t−1∑
h=m

ρsh

)
,

where m = max(0, g ∈ T : g < t : ∃k ′ ∈ K : ysk ′g = 1)

(4)

Route failure probability:

pRF
S ,k = P (ΓS > Ωk) (5)
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Capturing Demand Stochasticity

Rte Failure Probabilities: Assumptions and pre-processing

The route failure probabilities cannot be pre-computed

Impose iid error terms ε by setting:

Φ (ε) =
∏
t∈T

∏
i∈P

Φ′ (εit) , (6)

where Φ′ is the marginal distribution of εit

Use simulation to pre-process empirical distribution functions to be
used at runtime (limited number)
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Optimization Model

Objective

Expected Stock-Out and Emergency Delivery Cost (ESOEDC), using
stock-out cost χ and emergency delivery cost ζ:

∑
t∈T

∑
i∈P

(
χ+ ζ − ζ

∑
k∈K

yikt

)
pDP
it (7)

Expected Route Failure Cost (ERFC), using supply point detour cost
CS and weight multiplier ψ:∑

k∈K

∑
S∈Sk

ψCS pRF
S ,k (8)

Deterministic cost components (routing, work balancing, visits, etc.)

Overestimates the real cost due to modeling simplifications

- Do-nothing vs. optimal reaction policy
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Optimization Model

Deterministic Constraints

Open and multi-period tours

Periodicities, service choice

Accessibility restrictions

Time windows, max tour duration, equity

Inventory management (inventory policy)

Vehicle capacity management

etc...
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Optimization Model

Probabilistic Constraints

Instead of capturing stochasticity in the objective, control it in the
constraints

Maximum stock-out probability, for a constant γDP ∈ (0, 1]:

pDP
it 6 γDP ∀t ∈ T , i ∈ P (9)

Maximum route failure probability, for a constant γRF ∈ (0, 1]:

pRF
S ,k 6 γRF ∀k ∈ K,S ∈ Sk (10)
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Numerical Experiments
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Numerical Experiments

Solution Methodology

Adaptive large neighborhood search

Developed by Markov et al. (2016)

Excellent performance on classical VRP and IRP benchmarks

Performance on real-world stochastic waste collection IRP instances:

- Stability: on average 1-2% between best and worst over 10 runs

- Speed: 10-15 min per problem, suitable for operational purposes

Iliya Markov EPFL A Unified Framework for Rich Routing Problems with Stochastic Demands July 11, 2017 20 / 31



Numerical Experiments

Solution Methodology

Adaptive large neighborhood search

Developed by Markov et al. (2016)

Excellent performance on classical VRP and IRP benchmarks

Performance on real-world stochastic waste collection IRP instances:

- Stability: on average 1-2% between best and worst over 10 runs

- Speed: 10-15 min per problem, suitable for operational purposes

Iliya Markov EPFL A Unified Framework for Rich Routing Problems with Stochastic Demands July 11, 2017 20 / 31



Numerical Experiments

Waste Collection IRP: Instances

63 instances from Geneva, Switzerland

Rich routing features

Test stochastic policies varying the:

- Emergency Collection Cost (ECC) ζ

- Route Failure Cost Multiplier (RFCM) ψ

Against deterministic policies varying the:

- Container Effective Capacity (CEC)

- Truck Effective Capacity (TEC)

Simulate undesirable events on final solution for original capacities
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Numerical Experiments

Waste Collection IRP: Instances

Figure 3: Geneva Service Area
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Numerical Experiments

Waste Collection IRP: Stochastic vs. Deterministic

Figure 4: Routing Cost and Number of Overflows

400

500

600

700

800

ECC=1
00

,R
FCM

=1

ECC=1
00

,R
FCM

=0
.5

ECC=1
00

,R
FCM

=0
.2

5

ECC=1
00

,R
FCM

=0

ECC=5
0,

RFCM
=1

ECC=5
0,

RFCM
=0

.5

ECC=5
0,

RFCM
=0

.2
5

ECC=5
0,

RFCM
=0

ECC=2
5,

RFCM
=1

ECC=2
5,

RFCM
=0

.5

ECC=2
5,

RFCM
=0

.2
5

ECC=2
5,

RFCM
=0

CEC=1
,T

EC=1

CEC=1
,T

EC=0
.9

CEC=1
,T

EC=0
.7

5

CEC=1
,T

EC=0
.6

CEC=0
.9

,T
EC=1

CEC=0
.9

,T
EC=0

.9

CEC=0
.9

,T
EC=0

.7
5

CEC=0
.9

,T
EC=0

.6

CEC=0
.7

5,
TEC=1

CEC=0
.7

5,
TEC=0

.9

CEC=0
.7

5,
TEC=0

.7
5

CEC=0
.7

5,
TEC=0

.6

CEC=0
.6

,T
EC=1

CEC=0
.6

,T
EC=0

.9

CEC=0
.6

,T
EC=0

.7
5

CEC=0
.6

,T
EC=0

.6

Policies

A
vg

 R
ou

tin
g 

C
os

t (
C

H
F

) (a) Routing Cost

0

10

20

ECC=1
00

,R
FCM

=1

ECC=1
00

,R
FCM

=0
.5

ECC=1
00

,R
FCM

=0
.2

5

ECC=1
00

,R
FCM

=0

ECC=5
0,

RFCM
=1

ECC=5
0,

RFCM
=0

.5

ECC=5
0,

RFCM
=0

.2
5

ECC=5
0,

RFCM
=0

ECC=2
5,

RFCM
=1

ECC=2
5,

RFCM
=0

.5

ECC=2
5,

RFCM
=0

.2
5

ECC=2
5,

RFCM
=0

CEC=1
,T

EC=1

CEC=1
,T

EC=0
.9

CEC=1
,T

EC=0
.7

5

CEC=1
,T

EC=0
.6

CEC=0
.9

,T
EC=1

CEC=0
.9

,T
EC=0

.9

CEC=0
.9

,T
EC=0

.7
5

CEC=0
.9

,T
EC=0

.6

CEC=0
.7

5,
TEC=1

CEC=0
.7

5,
TEC=0

.9

CEC=0
.7

5,
TEC=0

.7
5

CEC=0
.7

5,
TEC=0

.6

CEC=0
.6

,T
EC=1

CEC=0
.6

,T
EC=0

.9

CEC=0
.6

,T
EC=0

.7
5

CEC=0
.6

,T
EC=0

.6

Policies

A
vg

 O
cc

ur
re

nc
e

Percentiles 75th  90th  95th  99th  

(b) Overflows

Iliya Markov EPFL A Unified Framework for Rich Routing Problems with Stochastic Demands July 11, 2017 23 / 31



Numerical Experiments

Waste Collection IRP: Calculating Route Failures

Table 1: Impact of ECDFs on Tractability

Cost (CHF) Runtime (s.) ECDF calls (millions)

ALNS version Bins ECC RFCM Best Avg Worst Best Avg Worst Best Avg Worst

Original – 100.00 1.00 662.65 666.64 672.87 870.65 906.84 936.40 – – –
ECDFs 1000 100.00 1.00 662.63 666.74 673.35 909.06 948.77 982.68 52.95 58.90 65.00
ECDFs 100 100.00 1.00 662.49 666.46 672.73 869.52 903.81 932.79 52.94 58.44 63.90

Note. ECDF: Empirical Cumulative Distribution Function

Note. Bins: Number of bins in the ECDF binning implementation
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Numerical Experiments

Waste Collection IRP: Overestimation

Figure 5: Do-nothing vs. Optimal Reaction Policy
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Numerical Experiments

Facility Maintenance Problem: Instances

94 instances derived from the same data

Probability of breakdown depends on last visit

Compare stochastic policies varying the:

- Emergency Repair Cost (ERC) ζ

- Maximum allowed probability of breakdown γDP

Against deterministic policies varying the:

- Minimum number ν of required visits over T

Simulate undesirable events on final solution
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Numerical Experiments

Facility Maintenance Problem: Stochastic Approaches

Figure 6: Routing Cost and Breakdowns for Stochastic Approach
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Numerical Experiments

Facility Maintenance Problem: Stochastic vs. Deterministic

Table 2: Performance Indicators for Stochastic Approach

Avg Num Breakdowns

Model ERC γDP Avg RC (CHF) Avg EERC (CHF) 75th Perc. 90th Perc. 95th Perc. 99th Perc.

Prob. obj 250.00 – 1108.69 312.94 2.59 3.49 4.13 5.34
Prob. const – 0.08 1010.44 0.00 3.91 5.06 5.84 7.29

Table 3: Performance Indicators for Deterministic Approach

Avg Num Breakdowns

Model ERC ν Avg RC (CHF) Avg EERC (CHF) 75th Perc. 90th Perc. 95th Perc. 99th Perc.

Deterministic – 2 1945.96 0.00 3.16 4.10 4.56 5.71
Deterministic – 1 1140.10 0.00 4.28 5.47 6.26 7.77

Note. Avg RC: Average routing cost

Note. Avg EERC: Average Expected Emergency Repair Cost
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Conclusions and Future Research

Outline
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Conclusions and Future Research

Conclusions and Future Research

Conclusions

- Stochastic, non-stationary demands with few distributional assumptions

- Rich routing features

- Cost of demand uncertainty

- Tractability through pre-processing

- Negligible deviation of modeled from real cost

Future Research

- More tests on real-world benchmarks

- Lower bounds: column generation
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Conclusions and Future Research

Thank you
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