A Unified Framework for Rich Routing Problems with Stochastic Demands

Iliya Markov^a, Michel Bierlaire^a, Jean-François Cordeau^b Yousef Maknoon^c, Sacha Varone^d

> ^aTransport and Mobility Laboratory École Polytechnique Fédérale de Lausanne

> > ^bHEC Montréal and CIRRELT

^cFaculty of Technology, Policy, and Management Delft University of Technology ^dHaute École de Gestion de Genève University of Applied Sciences Western Switzerland (HES-SO)

VeRoLog 2017

Vrije Universiteit Amsterdam, July 11, 2017

1 / 31

Iliya Markov EPFL

A Unified Framework for Rich Routing Problems with Stochastic Demands July 11, 2017

Outline

- 2 Key Modeling Elements
- 3 Capturing Demand Stochasticity
- Optimization Model
- 5 Numerical Experiments
- 6 Conclusions and Future Research

Outline

- 2 Key Modeling Elements
- 3 Capturing Demand Stochasticity
- Optimization Model
- 5 Numerical Experiments
- Conclusions and Future Research

• Rich routing features (Lahyani et al., 2015)

- Rich routing features (Lahyani et al., 2015)
- Distribution, collection, or other context

- Rich routing features (Lahyani et al., 2015)
- Distribution, collection, or other context
- Stochastic demands that can be non-stationary

- Rich routing features (Lahyani et al., 2015)
- Distribution, collection, or other context
- Stochastic demands that can be non-stationary
- Real-world demand forecasting

- Rich routing features (Lahyani et al., 2015)
- Distribution, collection, or other context
- Stochastic demands that can be non-stationary
- Real-world demand forecasting
- Bridging the gap between theory and practice (Gendreau et al., 2016)

• Complete or partial relaxation of iid normal assumption

- Complete or partial relaxation of iid normal assumption
- Probabilities and costs of undesirable events, resp. recourse actions:
 - Cost of demand uncertainty

- Complete or partial relaxation of iid normal assumption
- Probabilities and costs of undesirable events, resp. recourse actions:
 - Cost of demand uncertainty
- Computational tractability for a general inventory policy

- Complete or partial relaxation of iid normal assumption
- Probabilities and costs of undesirable events, resp. recourse actions:
 - Cost of demand uncertainty
- Computational tractability for a general inventory policy
- Generality and practical relevance of the approach

- Complete or partial relaxation of iid normal assumption
- Probabilities and costs of undesirable events, resp. recourse actions:
 - Cost of demand uncertainty
- Computational tractability for a general inventory policy
- Generality and practical relevance of the approach
- Real case study showing superiority wrt deterministic approaches

Outline

Introduction

2 Key Modeling Elements

- 3 Capturing Demand Stochasticity
- 4 Optimization Model
- 5 Numerical Experiments
- Conclusions and Future Research

 \bullet Planning horizon ${\cal T}$

- \bullet Planning horizon ${\cal T}$
- $\bullet\,$ Multiple depots, demand points $\mathcal{P},$ and supply points

- \bullet Planning horizon ${\cal T}$
- $\bullet\,$ Multiple depots, demand points $\mathcal P$, and supply points
- Heterogeneous fixed fleet ${\cal K}$

- Planning horizon ${\cal T}$
- $\bullet\,$ Multiple depots, demand points $\mathcal P$, and supply points
- Heterogeneous fixed fleet ${\cal K}$
- Demand stochasticity leads to stock-outs:
 - $\sigma_{it} = 1$ for stock-out of point $i \in \mathcal{P}$ in period $t \in \mathcal{T}$, 0 otherwise

- Planning horizon ${\cal T}$
- $\bullet\,$ Multiple depots, demand points $\mathcal{P},$ and supply points
- \bullet Heterogeneous fixed fleet ${\cal K}$
- Demand stochasticity leads to stock-outs:
 - $\sigma_{it} = 1$ for stock-out of point $i \in \mathcal{P}$ in period $t \in \mathcal{T}$, 0 otherwise
- And route failures:
 - Tours vs. trips: depot-delimited vs. supply point-delimited
 - $\mathscr{S} \in \mathfrak{S}_k$: a trip in the set of trips performed by vehicle $k \in \mathcal{K}$

Discretized Maximum Level (ML) Policy

- For tractable pre-processing of the stochastic information
- I_{it} : inventory of point $i \in \mathcal{P}$ at the start of period $t \in \mathcal{T}$
- Λ_{it} : inventory of point $i \in \mathcal{P}$ after delivery in period $t \in \mathcal{T}$
- ω_i : inventory capacity of point $i \in \mathcal{P}$

Figure 1: Discretization example for Λ_{it}

Outline

1 Introduction

2 Key Modeling Elements

3 Capturing Demand Stochasticity

- Optimization Model
- 5 Numerical Experiments
- Conclusions and Future Research

• Stochastic non-stationary demand ρ_{it} for point $i \in \mathcal{P}$ in period $t \in \mathcal{T}$:

$$\rho_{it} = \mathbb{E}\left(\rho_{it}\right) + \varepsilon_{it} \tag{1}$$

• Stochastic non-stationary demand ρ_{it} for point $i \in \mathcal{P}$ in period $t \in \mathcal{T}$:

$$\rho_{it} = \mathbb{E}\left(\rho_{it}\right) + \varepsilon_{it} \tag{1}$$

• Combine $\varepsilon_{it}, \forall t \in \mathcal{T}, i \in \mathcal{P}$ in a vector:

$$\boldsymbol{\varepsilon} = \left(\varepsilon_{11}, \dots, \varepsilon_{1|\mathcal{T}|}, \varepsilon_{21}, \dots, \varepsilon_{|\mathcal{P}||\mathcal{T}|}\right)$$
(2)

• Stochastic non-stationary demand ρ_{it} for point $i \in \mathcal{P}$ in period $t \in \mathcal{T}$:

$$\rho_{it} = \mathbb{E}\left(\rho_{it}\right) + \varepsilon_{it} \tag{1}$$

• Combine $\varepsilon_{it}, \forall t \in \mathcal{T}, i \in \mathcal{P}$ in a vector:

$$\boldsymbol{\varepsilon} = \left(\varepsilon_{11}, \dots, \varepsilon_{1|\mathcal{T}|}, \varepsilon_{21}, \dots, \varepsilon_{|\mathcal{P}||\mathcal{T}|}\right)$$
(2)

• Let $\varepsilon \sim \Phi$ satisfy var $(\varepsilon) = K$ for any covariance structure K

• Stochastic non-stationary demand ρ_{it} for point $i \in \mathcal{P}$ in period $t \in \mathcal{T}$:

$$\rho_{it} = \mathbb{E}\left(\rho_{it}\right) + \varepsilon_{it} \tag{1}$$

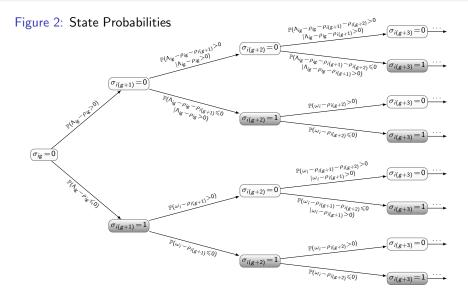
• Combine $\varepsilon_{it}, \forall t \in \mathcal{T}, i \in \mathcal{P}$ in a vector:

$$\boldsymbol{\varepsilon} = \left(\varepsilon_{11}, \dots, \varepsilon_{1|\mathcal{T}|}, \varepsilon_{21}, \dots, \varepsilon_{|\mathcal{P}||\mathcal{T}|}\right)$$
(2)

• Let $\varepsilon \sim \Phi$ satisfy var $(\varepsilon) = K$ for any covariance structure K

• Use any model that provides $\mathbb{E}(\rho_{it}), \forall t \in \mathcal{T}, i \in \mathcal{P}$ and Φ

Stock-out Probabilities: Branching



• DVar: $y_{ikt} = 1$ if vehicle $k \in \mathcal{K}$ visits point $i \in \mathcal{P}$ in period $t \in \mathcal{T}$

- DVar: $y_{ikt} = 1$ if vehicle $k \in \mathcal{K}$ visits point $i \in \mathcal{P}$ in period $t \in \mathcal{T}$
- Stock-out probability at point $i \in \mathcal{P}$ in period $t \in \mathcal{T}$:

$$\mathsf{p}_{it}^{\mathsf{DP}} = \mathbb{P}\left(\sigma_{it} = 1 \mid \Lambda_{im} \colon m = \max\left(0, g < t \colon \exists k \in \mathcal{K} \colon y_{ikg} = 1
ight)
ight)$$
 (3)

- DVar: $y_{ikt} = 1$ if vehicle $k \in \mathcal{K}$ visits point $i \in \mathcal{P}$ in period $t \in \mathcal{T}$
- Stock-out probability at point $i \in \mathcal{P}$ in period $t \in \mathcal{T}$:

$$\mathsf{p}_{it}^{\mathsf{DP}} = \mathbb{P}\left(\sigma_{it} = 1 \mid \Lambda_{im} \colon m = \max\left(0, g < t \colon \exists k \in \mathcal{K} \colon y_{ikg} = 1\right)\right) \quad (3)$$

For a discretized ML policy, we can pre-compute expression (3),
 ∀i ∈ P, t ∈ T, with ε ~ Φ and var (ε) = K using simulation

- DVar: $y_{ikt} = 1$ if vehicle $k \in \mathcal{K}$ visits point $i \in \mathcal{P}$ in period $t \in \mathcal{T}$
- Stock-out probability at point $i \in \mathcal{P}$ in period $t \in \mathcal{T}$:

$$\mathsf{p}_{it}^{\mathsf{DP}} = \mathbb{P}\left(\sigma_{it} = 1 \mid \Lambda_{im} \colon m = \max\left(0, g < t \colon \exists k \in \mathcal{K} \colon y_{ikg} = 1\right)\right) \quad (3)$$

- For a discretized ML policy, we can pre-compute expression (3),
 ∀i ∈ P, t ∈ T, with ε ~ Φ and var (ε) = K using simulation
- The complexity is linear in the number of discrete levels

Rte Failure Probabilities: Formulation

• $\mathcal{S}_t \in \mathscr{S}$: demand points in \mathscr{S} visited in period $t \in \mathcal{T}$

Rte Failure Probabilities: Formulation

• $\mathcal{S}_t \in \mathscr{S}$: demand points in \mathscr{S} visited in period $t \in \mathcal{T}$

• Quantity delivered by vehicle $k \in \mathcal{K}$ in trip $\mathscr{S} \in \mathfrak{S}_k$:

$$\Gamma_{\mathscr{S}} = \sum_{\mathcal{S}_0 \in \mathscr{S}} \sum_{s \in \mathcal{S}_0} (\Lambda_{s0} - I_{s0}) + \sum_{t \in \mathcal{T} \setminus 0} \sum_{\mathcal{S}_t \in \mathscr{S}} \sum_{s \in \mathcal{S}_t} \left(\Lambda_{st} - \Lambda_{sm} + \sum_{h=m}^{t-1} \rho_{sh} \right),$$
(4)
where $m = \max(0, g \in \mathcal{T} : g < t : \exists k' \in \mathcal{K} : y_{sk'g} = 1)$

Rte Failure Probabilities: Formulation

• $\mathcal{S}_t \in \mathscr{S}$: demand points in \mathscr{S} visited in period $t \in \mathcal{T}$

• Quantity delivered by vehicle $k \in \mathcal{K}$ in trip $\mathscr{S} \in \mathfrak{S}_k$:

$$\Gamma_{\mathscr{S}} = \sum_{\mathcal{S}_0 \in \mathscr{S}} \sum_{s \in \mathcal{S}_0} (\Lambda_{s0} - I_{s0}) + \sum_{t \in \mathcal{T} \setminus 0} \sum_{\mathcal{S}_t \in \mathscr{S}} \sum_{s \in \mathcal{S}_t} \left(\Lambda_{st} - \Lambda_{sm} + \sum_{h=m}^{t-1} \rho_{sh} \right),$$
(4)
where $m = \max(0, g \in \mathcal{T} : g < t : \exists k' \in \mathcal{K} : y_{sk'g} = 1)$

• Route failure probability:

$$\mathsf{p}_{\mathscr{S},k}^{\mathsf{RF}} = \mathbb{P}\left(\mathsf{\Gamma}_{\mathscr{S}} > \Omega_k\right) \tag{5}$$

Rte Failure Probabilities: Assumptions and pre-processing

• The route failure probabilities cannot be pre-computed

Rte Failure Probabilities: Assumptions and pre-processing

- The route failure probabilities cannot be pre-computed
- Impose iid error terms ε by setting:

$$\Phi\left(arepsilon
ight)=\prod_{t\in\mathcal{T}}\prod_{i\in\mathcal{P}}\Phi^{\prime}\left(arepsilon_{it}
ight),$$

(6)

where Φ' is the marginal distribution of ε_{it}

Rte Failure Probabilities: Assumptions and pre-processing

- The route failure probabilities cannot be pre-computed
- Impose iid error terms ε by setting:

$$\Phi(\varepsilon) = \prod_{t \in \mathcal{T}} \prod_{i \in \mathcal{P}} \Phi'(\varepsilon_{it}), \qquad (6)$$

where Φ' is the marginal distribution of ε_{it}

• Use simulation to pre-process empirical distribution functions to be used at runtime (limited number)

Outline

1 Introduction

- 2 Key Modeling Elements
- 3 Capturing Demand Stochasticity

Optimization Model

- 5 Numerical Experiments
- Conclusions and Future Research

 Expected Stock-Out and Emergency Delivery Cost (ESOEDC), using stock-out cost χ and emergency delivery cost ζ:

$$\sum_{t \in \mathcal{T}} \sum_{i \in \mathcal{P}} \left(\chi + \zeta - \zeta \sum_{k \in \mathcal{K}} y_{ikt} \right) \mathsf{p}_{it}^{\mathsf{DP}}$$
(7)

 Expected Stock-Out and Emergency Delivery Cost (ESOEDC), using stock-out cost χ and emergency delivery cost ζ:

$$\sum_{t \in \mathcal{T}} \sum_{i \in \mathcal{P}} \left(\chi + \zeta - \zeta \sum_{k \in \mathcal{K}} y_{ikt} \right) \mathsf{p}_{it}^{\mathsf{DP}}$$
(7)

• Expected Route Failure Cost (ERFC), using supply point detour cost $C_{\mathscr{S}}$ and weight multiplier ψ :

$$\sum_{k \in \mathcal{K}} \sum_{\mathscr{S} \in \mathfrak{S}_{k}} \psi C_{\mathscr{S}} p_{\mathscr{S},k}^{\mathsf{RF}}$$
(8)

 Expected Stock-Out and Emergency Delivery Cost (ESOEDC), using stock-out cost χ and emergency delivery cost ζ:

$$\sum_{t \in \mathcal{T}} \sum_{i \in \mathcal{P}} \left(\chi + \zeta - \zeta \sum_{k \in \mathcal{K}} y_{ikt} \right) \mathsf{p}_{it}^{\mathsf{DP}}$$
(7)

• Expected Route Failure Cost (ERFC), using supply point detour cost $C_{\mathscr{S}}$ and weight multiplier ψ :

$$\sum_{k \in \mathcal{K}} \sum_{\mathscr{S} \in \mathfrak{S}_{k}} \psi C_{\mathscr{S}} \mathfrak{p}_{\mathscr{S},k}^{\mathsf{RF}}$$
(8)

• Deterministic cost components (routing, work balancing, visits, etc.)

 Expected Stock-Out and Emergency Delivery Cost (ESOEDC), using stock-out cost χ and emergency delivery cost ζ:

$$\sum_{t \in \mathcal{T}} \sum_{i \in \mathcal{P}} \left(\chi + \zeta - \zeta \sum_{k \in \mathcal{K}} y_{ikt} \right) \mathsf{p}_{it}^{\mathsf{DP}}$$
(7)

• Expected Route Failure Cost (ERFC), using supply point detour cost $C_{\mathscr{S}}$ and weight multiplier ψ :

$$\sum_{k \in \mathcal{K}} \sum_{\mathscr{S} \in \mathfrak{S}_{k}} \psi C_{\mathscr{S}} \mathfrak{p}_{\mathscr{S},k}^{\mathsf{RF}}$$
(8)

- Deterministic cost components (routing, work balancing, visits, etc.)
- Overestimates the real cost due to modeling simplifications
 - Do-nothing vs. optimal reaction policy

Deterministic Constraints

- Open and multi-period tours
- Periodicities, service choice
- Accessibility restrictions
- Time windows, max tour duration, equity
- Inventory management (inventory policy)
- Vehicle capacity management
- etc...

Probabilistic Constraints

Instead of capturing stochasticity in the objective, control it in the constraints

Probabilistic Constraints

- Instead of capturing stochasticity in the objective, control it in the constraints
- Maximum stock-out probability, for a constant $\gamma^{\mathsf{DP}} \in (0,1]$:

$$\mathsf{p}_{it}^{\mathsf{DP}} \leqslant \gamma^{\mathsf{DP}} \qquad \forall t \in \mathcal{T}, i \in \mathcal{P}$$
(9)

• Maximum route failure probability, for a constant $\gamma^{\mathsf{RF}} \in (0,1]$:

$$\mathsf{p}_{\mathscr{S},k}^{\mathsf{RF}} \leqslant \gamma^{\mathsf{RF}} \qquad \forall k \in \mathcal{K}, \mathscr{S} \in \mathfrak{S}_k$$
(10)

Outline

1 Introduction

- 2 Key Modeling Elements
- 3 Capturing Demand Stochasticity
- Optimization Model

5 Numerical Experiments

Solution Methodology

- Adaptive large neighborhood search
- Developed by Markov et al. (2016)

Solution Methodology

- Adaptive large neighborhood search
- Developed by Markov et al. (2016)
- Excellent performance on classical VRP and IRP benchmarks
- Performance on real-world stochastic waste collection IRP instances:
 - Stability: on average 1-2% between best and worst over 10 runs
 - Speed: 10-15 min per problem, suitable for operational purposes

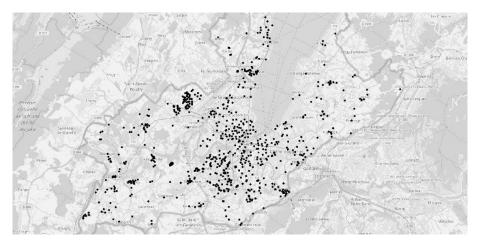
- 63 instances from Geneva, Switzerland
- Rich routing features

- 63 instances from Geneva, Switzerland
- Rich routing features
- Test stochastic policies varying the:
 - Emergency Collection Cost (ECC) ζ
 - Route Failure Cost Multiplier (RFCM) ψ

- 63 instances from Geneva, Switzerland
- Rich routing features
- Test stochastic policies varying the:
 - Emergency Collection Cost (ECC) ζ
 - Route Failure Cost Multiplier (RFCM) ψ
- Against deterministic policies varying the:
 - Container Effective Capacity (CEC)
 - Truck Effective Capacity (TEC)

- 63 instances from Geneva, Switzerland
- Rich routing features
- Test stochastic policies varying the:
 - Emergency Collection Cost (ECC) ζ
 - Route Failure Cost Multiplier (RFCM) ψ
- Against deterministic policies varying the:
 - Container Effective Capacity (CEC)
 - Truck Effective Capacity (TEC)
- Simulate undesirable events on final solution for original capacities

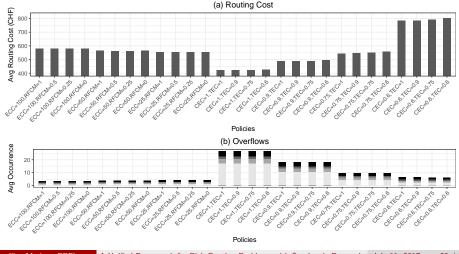
Figure 3: Geneva Service Area



Iliya Markov EPFL A Unified Framework for Rich Routing Problems with Stochastic Demands July 11, 2017 22 / 31

Waste Collection IRP: Stochastic vs. Deterministic

Figure 4: Routing Cost and Number of Overflows



Waste Collection IRP: Calculating Route Failures

Table 1: Impact of ECDFs on Tractability

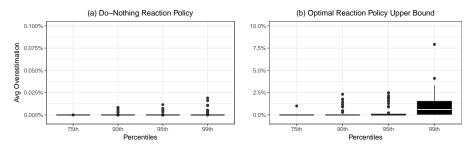
				Cost (CHF)			Runtime (s.)			ECDF calls (millions)		
ALNS version	Bins	ECC	RFCM	Best	Avg	Worst	Best	Avg	Worst	Best	Avg	Worst
Original	-	100.00	1.00	662.65	666.64	672.87	870.65	906.84	936.40	-	-	-
ECDFs	1000	100.00	1.00	662.63	666.74	673.35	909.06	948.77	982.68	52.95	58.90	65.00
ECDFs	100	100.00	1.00	662.49	666.46	672.73	869.52	903.81	932.79	52.94	58.44	63.90

Note. ECDF: Empirical Cumulative Distribution Function

Note. Bins: Number of bins in the ECDF binning implementation

Waste Collection IRP: Overestimation

Figure 5: Do-nothing vs. Optimal Reaction Policy



- 94 instances derived from the same data
- Probability of breakdown depends on last visit

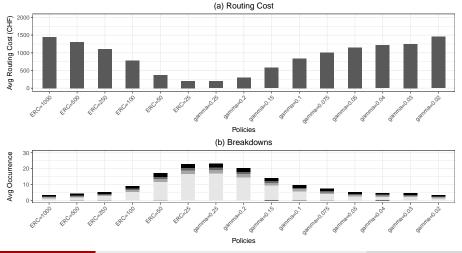
- 94 instances derived from the same data
- Probability of breakdown depends on last visit
- Compare stochastic policies varying the:
 - Emergency Repair Cost (ERC) ζ
 - Maximum allowed probability of breakdown $\gamma^{\rm DP}$

- 94 instances derived from the same data
- Probability of breakdown depends on last visit
- Compare stochastic policies varying the:
 - Emergency Repair Cost (ERC) ζ
 - Maximum allowed probability of breakdown $\gamma^{\rm DP}$
- Against deterministic policies varying the:
 - Minimum number u of required visits over \mathcal{T}

- 94 instances derived from the same data
- Probability of breakdown depends on last visit
- Compare stochastic policies varying the:
 - Emergency Repair Cost (ERC) ζ
 - Maximum allowed probability of breakdown $\gamma^{\rm DP}$
- Against deterministic policies varying the:
 - Minimum number u of required visits over \mathcal{T}
- Simulate undesirable events on final solution

Facility Maintenance Problem: Stochastic Approaches

Figure 6: Routing Cost and Breakdowns for Stochastic Approach



Facility Maintenance Problem: Stochastic vs. Deterministic

Table 2: Performance Indicators for Stochastic Approach

					Avg Num Breakdowns				
Model	ERC	γ^{DP}	Avg RC (CHF)	Avg EERC (CHF)	75th Perc.	90th Perc.	95th Perc.	99th Perc.	
Prob. obj	250.00	-	1108.69	312.94	2.59	3.49	4.13	5.34	
Prob. const	-	0.08	1010.44	0.00	3.91	5.06	5.84	7.29	

Table 3: Performance Indicators for Deterministic Approach

					Avg Num Breakdowns				
Model	ERC	ν	Avg RC (CHF)	Avg EERC (CHF)	75th Perc.	90th Perc.	95th Perc.	99th Perc.	
Deterministic	-	2	1945.96	0.00	3.16	4.10	4.56	5.71	
Deterministic	-	1	1140.10	0.00	4.28	5.47	6.26	7.77	

Note. Avg RC: Average routing cost

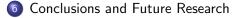
Note. Avg EERC: Average Expected Emergency Repair Cost

Iliya Markov EPFL A Unified Framework for Rich Routing Problems with Stochastic Demands July 11, 2017 28 / 31

Outline

Introduction

- 2 Key Modeling Elements
- 3 Capturing Demand Stochasticity
- Optimization Model
- 5 Numerical Experiments



Conclusions and Future Research

- Conclusions
 - Stochastic, non-stationary demands with few distributional assumptions
 - Rich routing features
 - Cost of demand uncertainty
 - Tractability through pre-processing
 - Negligible deviation of modeled from real cost

Conclusions and Future Research

- Conclusions
 - Stochastic, non-stationary demands with few distributional assumptions
 - Rich routing features
 - Cost of demand uncertainty
 - Tractability through pre-processing
 - Negligible deviation of modeled from real cost
- Future Research
 - More tests on real-world benchmarks
 - Lower bounds: column generation

Thank you

VeRoLog 2017, Vrije Universiteit Amsterdam

A Unified Framework for Rich Routing Problems with Stochastic Demands Iliya Markov, Michel Bierlaire, Jean-François Cordeau, Yousef Maknoon, Sacha Varone

Iliya Markov Transportation and Mobility Laboratory École Polytechnique Fédérale de Lausanne iliya.markov@epfl.ch

Outline

- Gendreau, M., Jabali, O., and Rei, W. (2016). 50th anniversary invited article–Future research directions in stochastic vehicle routing. *Transportation Science*, 50(4):1163–1173.
- Lahyani, R., Khemakhem, M., and Semet, F. (2015). Rich vehicle routing problems: From a taxonomy to a definition. *European Journal of Operational Research*, 241(1):1–14.
- Markov, I., Bierlaire, M., Cordeau, J.-F., Maknoon, Y., and Varone, S. (2016). Inventory routing with non-stationary stochastic demands. Technical Report TRANSP-OR 160825, Transport and Mobility Laboratory, École Polytechnique Fédérale de Lausanne, Switzerland.