A Unified Framework for Rich Routing Problems with Stochastic Demands

Iliya Markova, Michel Bierlairea, Jean-François Cordeaub
Yousef Maknoonc, Sacha Varoned

aTransport and Mobility Laboratory
École Polytechnique Fédérale de Lausanne

bHEC Montréal and CIRRELT

cFaculty of Technology, Policy, and Management
Delft University of Technology

dHaute École de Gestion de Genève
University of Applied Sciences Western Switzerland (HES-SO)

VeRoLog 2017
Vrije Universiteit Amsterdam, July 11, 2017
Outline

1. Introduction
2. Key Modeling Elements
3. Capturing Demand Stochasticity
4. Optimization Model
5. Numerical Experiments
6. Conclusions and Future Research
Outline

1. Introduction
2. Key Modeling Elements
3. Capturing Demand Stochasticity
4. Optimization Model
5. Numerical Experiments
6. Conclusions and Future Research
- Rich routing features (Lahyani et al., 2015)
Introduction

- Rich routing features (Lahyani et al., 2015)
- Distribution, collection, or other context
Introduction

- Rich routing features (Lahyani et al., 2015)
- Distribution, collection, or other context
- Stochastic demands that can be non-stationary
Introduction

- Rich routing features (Lahyani et al., 2015)
- Distribution, collection, or other context
- Stochastic demands that can be non-stationary
- Real-world demand forecasting
Introduction

- Rich routing features (Lahyani et al., 2015)
- Distribution, collection, or other context
- Stochastic demands that can be non-stationary
- Real-world demand forecasting
- Bridging the gap between theory and practice (Gendreau et al., 2016)
Contributions

- Complete or partial relaxation of iid normal assumption
Contributions

- Complete or partial relaxation of iid normal assumption

- Probabilities and costs of undesirable events, resp. recourse actions:
 - Cost of demand uncertainty
Contributions

- Complete or partial relaxation of iid normal assumption
- Probabilities and costs of undesirable events, resp. recourse actions:
 - Cost of demand uncertainty
- Computational tractability for a general inventory policy
Contributions

- Complete or partial relaxation of iid normal assumption
- Probabilities and costs of undesirable events, resp. recourse actions:
 - Cost of demand uncertainty
- Computational tractability for a general inventory policy
- Generality and practical relevance of the approach
Contributions

- Complete or partial relaxation of iid normal assumption
- Probabilities and costs of undesirable events, resp. recourse actions:
 - Cost of demand uncertainty
- Computational tractability for a general inventory policy
- Generality and practical relevance of the approach
- Real case study showing superiority wrt deterministic approaches
Outline

1 Introduction

2 Key Modeling Elements

3 Capturing Demand Stochasticity

4 Optimization Model

5 Numerical Experiments

6 Conclusions and Future Research
Key Notations and Terms

- Planning horizon \mathcal{T}
Key Modeling Elements

Key Notations and Terms

- Planning horizon \mathcal{T}
- Multiple depots, demand points \mathcal{P}, and supply points

- Heterogeneous fixed fleet K
- Demand stochasticity leads to stock-outs:
 - $\sigma_{it} = 1$ for stock-out of point $i \in \mathcal{P}$ in period $t \in \mathcal{T}$, 0 otherwise
- And route failures:
 - Tours vs. trips: depot-delimited vs. supply point-delimited
 - $S \in S_k$: a trip in the set of trips performed by vehicle $k \in K$
Key Notations and Terms

- Planning horizon \mathcal{T}
- Multiple depots, demand points \mathcal{P}, and supply points
- Heterogeneous fixed fleet \mathcal{K}
Key Notations and Terms

- Planning horizon \mathcal{T}
- Multiple depots, demand points \mathcal{P}, and supply points
- Heterogeneous fixed fleet \mathcal{K}
- Demand stochasticity leads to stock-outs:
 - $\sigma_{it} = 1$ for stock-out of point $i \in \mathcal{P}$ in period $t \in \mathcal{T}$, 0 otherwise
Key Notations and Terms

- Planning horizon \mathcal{T}
- Multiple depots, demand points \mathcal{P}, and supply points
- Heterogeneous fixed fleet \mathcal{K}
- Demand stochasticity leads to stock-outs:
 - $\sigma_{it} = 1$ for stock-out of point $i \in \mathcal{P}$ in period $t \in \mathcal{T}$, 0 otherwise
- And route failures:
 - Tours vs. trips: depot-delimited vs. supply point-delimited
 - $\mathcal{S} \in \mathcal{G}_k$: a trip in the set of trips performed by vehicle $k \in \mathcal{K}$
Discretized Maximum Level (ML) Policy

- For tractable pre-processing of the stochastic information
- l_{it}: inventory of point $i \in \mathcal{P}$ at the start of period $t \in \mathcal{T}$
- Λ_{it}: inventory of point $i \in \mathcal{P}$ after delivery in period $t \in \mathcal{T}$
- ω_i: inventory capacity of point $i \in \mathcal{P}$

Figure 1: Discretization example for Λ_{it}
Outline

1. Introduction
2. Key Modeling Elements
3. Capturing Demand Stochasticity
4. Optimization Model
5. Numerical Experiments
6. Conclusions and Future Research
Demand Forecasting

- Stochastic non-stationary demand ρ_{it} for point $i \in P$ in period $t \in T$:
 \[
 \rho_{it} = \mathbb{E}(\rho_{it}) + \varepsilon_{it}
 \]

Demand Forecasting

- Stochastic non-stationary demand ρ_{it} for point $i \in \mathcal{P}$ in period $t \in \mathcal{T}$:
 \[
 \rho_{it} = \mathbb{E}(\rho_{it}) + \varepsilon_{it}
 \]
 \(1\)

- Combine ε_{it}, $\forall t \in \mathcal{T}, i \in \mathcal{P}$ in a vector:
 \[
 \varepsilon = (\varepsilon_{11}, \ldots, \varepsilon_{1|\mathcal{T}|}, \varepsilon_{21}, \ldots, \varepsilon_{|\mathcal{P}||\mathcal{T}|})
 \]
 \(2\)
Demand Forecasting

- Stochastic non-stationary demand ρ_{it} for point $i \in \mathcal{P}$ in period $t \in \mathcal{T}$:

$$\rho_{it} = \mathbb{E}(\rho_{it}) + \varepsilon_{it}$$ \hspace{1cm} (1)

- Combine $\varepsilon_{it}, \forall t \in \mathcal{T}, i \in \mathcal{P}$ in a vector:

$$\varepsilon = (\varepsilon_{11}, \ldots, \varepsilon_{1|\mathcal{T}|}, \varepsilon_{21}, \ldots, \varepsilon_{|\mathcal{P}||\mathcal{T}|})$$ \hspace{1cm} (2)

- Let $\varepsilon \sim \Phi$ satisfy $\text{var}(\varepsilon) = K$ for any covariance structure K

Demand Forecasting

- Stochastic non-stationary demand ρ_{it} for point $i \in \mathcal{P}$ in period $t \in \mathcal{T}$:
 \[
 \rho_{it} = \mathbb{E}(\rho_{it}) + \varepsilon_{it}
 \tag{1}
 \]

- Combine ε_{it}, $\forall t \in \mathcal{T}, i \in \mathcal{P}$ in a vector:
 \[
 \varepsilon = (\varepsilon_{11}, \ldots, \varepsilon_{1|\mathcal{T}|}, \varepsilon_{21}, \ldots, \varepsilon_{|\mathcal{P}||\mathcal{T}|})
 \tag{2}
 \]

- Let $\varepsilon \sim \Phi$ satisfy $\text{var}(\varepsilon) = K$ for any covariance structure K

- Use any model that provides $\mathbb{E}(\rho_{it}), \forall t \in \mathcal{T}, i \in \mathcal{P}$ and Φ
Capturing Demand Stochasticity

Stock-out Probabilities: Branching

Figure 2: State Probabilities

\[
\begin{align*}
\sigma_{ig} &= 0 \\
\sigma_{ig} &= 1
\end{align*}
\]

\[
\begin{align*}
\sigma_{i(g+1)} &= 0 \\
\sigma_{i(g+1)} &= 1
\end{align*}
\]

\[
\begin{align*}
\sigma_{i(g+2)} &= 0 \\
\sigma_{i(g+2)} &= 1
\end{align*}
\]

\[
\begin{align*}
\sigma_{i(g+3)} &= 0 \\
\sigma_{i(g+3)} &= 1
\end{align*}
\]

\[
\begin{align*}
P(\Lambda_{ig} - \rho_{ig} - \rho_{i(g+1)} > 0 | \Lambda_{ig} - \rho_{ig} > 0) &= \sigma_{i(g+2)} = 0 \\
P(\Lambda_{ig} - \rho_{ig} - \rho_{i(g+1)} \leq 0 | \Lambda_{ig} - \rho_{ig} > 0) &= \sigma_{i(g+2)} = 1
\end{align*}
\]

\[
\begin{align*}
P(\Lambda_{ig} - \rho_{ig} - \rho_{i(g+2)} > 0 | \Lambda_{ig} - \rho_{ig} > 0) &= \sigma_{i(g+3)} = 0 \\
P(\Lambda_{ig} - \rho_{ig} - \rho_{i(g+2)} \leq 0 | \Lambda_{ig} - \rho_{ig} > 0) &= \sigma_{i(g+3)} = 1
\end{align*}
\]

\[
\begin{align*}
P(\omega_i - \rho_{i(g+1)} > 0) &= \sigma_{i(g+2)} = 0 \\
P(\omega_i - \rho_{i(g+1)} \leq 0) &= \sigma_{i(g+2)} = 1
\end{align*}
\]

\[
\begin{align*}
P(\omega_i - \rho_{i(g+2)} > 0) &= \sigma_{i(g+3)} = 0 \\
P(\omega_i - \rho_{i(g+2)} \leq 0) &= \sigma_{i(g+3)} = 1
\end{align*}
\]
Stock-out Probabilities: Formulation and pre-computing

- DVar: $y_{ikt} = 1$ if vehicle $k \in \mathcal{K}$ visits point $i \in \mathcal{P}$ in period $t \in \mathcal{T}$
Stock-out Probabilities: Formulation and pre-computing

- **DVar:** \(y_{ikt} = 1 \) if vehicle \(k \in \mathcal{K} \) visits point \(i \in \mathcal{P} \) in period \(t \in \mathcal{T} \)

- Stock-out probability at point \(i \in \mathcal{P} \) in period \(t \in \mathcal{T} \):

 \[
 p_{it}^{\text{DP}} = \mathbb{P} (\sigma_{it} = 1 | \bigwedge_{im} : m = \max (0, g < t: \exists k \in \mathcal{K} : y_{ikg} = 1)) \tag{3}
 \]
Stock-out Probabilities: Formulation and pre-computing

- DVar: $y_{ikt} = 1$ if vehicle $k \in \mathcal{K}$ visits point $i \in \mathcal{P}$ in period $t \in \mathcal{T}$

- Stock-out probability at point $i \in \mathcal{P}$ in period $t \in \mathcal{T}$:
 \[
 p_{it}^{\text{DP}} = \mathbb{P}(\sigma_{it} = 1 \mid \Lambda_{im}: m = \max(0, g < t: \exists k \in \mathcal{K}: y_{ikg} = 1)) \quad (3)
 \]

- For a discretized ML policy, we can pre-compute expression (3), $\forall i \in \mathcal{P}, t \in \mathcal{T}$, with $\varepsilon \sim \Phi$ and $\text{var}(\varepsilon) = K$ using simulation
Stock-out Probabilities: Formulation and pre-computing

- DVar: \(y_{ikt} = 1 \) if vehicle \(k \in K \) visits point \(i \in P \) in period \(t \in T \)

- Stock-out probability at point \(i \in P \) in period \(t \in T \):

\[
\hat{p}_{it}^{DP} = \mathbb{P}(\sigma_{it} = 1 \mid \Lambda_{im} : m = \max(0, g < t : \exists k \in K : y_{ikg} = 1)) \quad (3)
\]

- For a discretized ML policy, we can pre-compute expression (3), \(\forall i \in P, t \in T \), with \(\varepsilon \sim \Phi \) and \(\text{var}(\varepsilon) = K \) using simulation

- The complexity is linear in the number of discrete levels
Capturing Demand Stochasticity

Rte Failure Probabilities: Formulation

- $S_t \in \mathcal{I}$: demand points in \mathcal{I} visited in period $t \in \mathcal{T}$
Rte Failure Probabilities: Formulation

- \(S_t \in \mathcal{I} \): demand points in \(\mathcal{I} \) visited in period \(t \in \mathcal{T} \)

- Quantity delivered by vehicle \(k \in \mathcal{K} \) in trip \(\mathcal{I} \in \mathcal{G}_k \):

\[
\Gamma_{\mathcal{I}} = \sum_{S_0 \in \mathcal{I}} \sum_{s \in S_0} (\Lambda_{s0} - l_{s0}) + \sum_{t \in \mathcal{T} \setminus 0} \sum_{S_t \in \mathcal{I}} \sum_{s \in S_t} \left(\Lambda_{st} - \Lambda_{sm} + \sum_{h=m}^{t-1} \rho_{sh} \right),
\]

where \(m = \max(0, g \in \mathcal{T} : g < t : \exists k' \in \mathcal{K} : y_{sk'g} = 1) \)
Capturing Demand Stochasticity

Rte Failure Probabilities: Formulation

- \(S_t \in \mathcal{I} \): demand points in \(\mathcal{I} \) visited in period \(t \in \mathcal{T} \)

- Quantity delivered by vehicle \(k \in \mathcal{K} \) in trip \(\mathcal{I} \in \mathcal{G}_k \):

 \[
 \Gamma_{\mathcal{I}} = \sum_{S_0 \in \mathcal{I}} \sum_{s \in S_0} (\Lambda_{s0} - I_{s0}) + \sum_{t \in \mathcal{T} \setminus 0} \sum_{S_t \in \mathcal{I}} \sum_{s \in S_t} \left(\Lambda_{st} - \Lambda_{sm} + \sum_{h=m}^{t-1} \rho_{sh} \right)
 \]

 where \(m = \max(0, g \in \mathcal{T}: g < t: \exists k' \in \mathcal{K}: y_{sk'g} = 1) \)

- Route failure probability:

 \[
 p^{RF}_{\mathcal{I}, k} = \mathbb{P}(\Gamma_{\mathcal{I}} > \Omega_k)
 \]
The route failure probabilities cannot be pre-computed
The route failure probabilities cannot be pre-computed.

Impose iid error terms ε by setting:

$$
\Phi(\varepsilon) = \prod_{t \in T} \prod_{i \in P} \Phi'(\varepsilon_{it}),
$$

where Φ' is the marginal distribution of ε_{it}.
The route failure probabilities cannot be pre-computed

Impose iid error terms ε by setting:

$$\Phi (\varepsilon) = \prod_{t \in T} \prod_{i \in P} \Phi' (\varepsilon_{it}),$$ \hspace{1cm} (6)

where Φ' is the marginal distribution of ε_{it}

Use simulation to pre-process empirical distribution functions to be used at runtime (limited number)
Objective

- Expected Stock-Out and Emergency Delivery Cost (ESOEDC), using stock-out cost χ and emergency delivery cost ζ:

$$\sum_{t \in T} \sum_{i \in P} \left(\chi + \zeta - \zeta \sum_{k \in K} y_{ikt} \right) p_{it}^{DP} \quad (7)$$

- Expected Route Failure Cost (ERFC), using supply point detour cost C_S and weight multiplier ψ:

$$\sum_{k \in K} \sum_{S \in S_k} \psi C_S p_{RF,S,k} \quad (8)$$

- Deterministic cost components (routing, work balancing, visits, etc.)

Overestimates the real cost due to modeling simplifications

- Do-nothing vs. optimal reaction policy
Objective

- **Expected Stock-Out and Emergency Delivery Cost (ESOEDC),** using stock-out cost χ and emergency delivery cost ζ:
 \[
 \sum_{t \in T} \sum_{i \in P} \left(\chi + \zeta - \zeta \sum_{k \in K} y_{ikt} \right) p_{it}^{DP} \quad (7)
 \]

- **Expected Route Failure Cost (ERFC),** using supply point detour cost $C_{\mathcal{J}}$ and weight multiplier ψ:
 \[
 \sum_{k \in K} \sum_{\mathcal{J} \in \mathcal{S}_k} \psi C_{\mathcal{J}} p_{\mathcal{J},k}^{RF} \quad (8)
 \]
Objective

- **Expected Stock-Out and Emergency Delivery Cost (ESOEDC)**, using stock-out cost χ and emergency delivery cost ζ:

$$\sum_{t \in T} \sum_{i \in P} \left(\chi + \zeta - \zeta \sum_{k \in K} y_{ikt} \right) p_{it}^{\text{DP}}$$ \hspace{1cm} (7)

- **Expected Route Failure Cost (ERFC)**, using supply point detour cost $C_{\mathcal{S}}$ and weight multiplier ψ:

$$\sum_{k \in K} \sum_{\mathcal{S} \in \mathcal{S}_k} \psi C_{\mathcal{S}} p_{\mathcal{S},k}^{\text{RF}}$$ \hspace{1cm} (8)

- **Deterministic cost components** (routing, work balancing, visits, etc.)

- Overestimates the real cost due to modeling simplifications

- Do-nothing vs. optimal reaction policy
Objectives

- **Expected Stock-Out and Emergency Delivery Cost (ESOEDC)**, using stock-out cost χ and emergency delivery cost ζ:
 \[
 \sum_{t \in T} \sum_{i \in P} \left(\chi + \zeta - \zeta \sum_{k \in K} y_{ikt} \right) p_{it}^{DP} \tag{7}
 \]

- **Expected Route Failure Cost (ERFC)**, using supply point detour cost C_{S} and weight multiplier ψ:
 \[
 \sum_{k \in K} \sum_{S \in S_k} \psi C_{S} p_{RF,S,k} \tag{8}
 \]

- Deterministic cost components (routing, work balancing, visits, etc.)
- Overestimates the real cost due to modeling simplifications
 - Do-nothing vs. optimal reaction policy
Deterministic Constraints

- Open and multi-period tours
- Periodicities, service choice
- Accessibility restrictions
- Time windows, max tour duration, equity
- Inventory management (inventory policy)
- Vehicle capacity management
- etc...
Probabilistic Constraints

- Instead of capturing stochasticity in the objective, control it in the constraints
Probabilistic Constraints

- Instead of capturing stochasticity in the objective, control it in the constraints.

- Maximum stock-out probability, for a constant $\gamma^{DP} \in (0, 1]$:
 \[p_{it}^{DP} \leq \gamma^{DP} \quad \forall t \in T, i \in P \] (9)

- Maximum route failure probability, for a constant $\gamma^{RF} \in (0, 1]$:
 \[p^{RF}_{\mathcal{S}, k} \leq \gamma^{RF} \quad \forall k \in K, \mathcal{S} \in \mathcal{S}_k \] (10)
Outline

1. Introduction
2. Key Modeling Elements
3. Capturing Demand Stochasticity
4. Optimization Model
5. Numerical Experiments
6. Conclusions and Future Research
Numerical Experiments

Solution Methodology

- Adaptive large neighborhood search
- Developed by Markov et al. (2016)
Solution Methodology

- Adaptive large neighborhood search
- Developed by Markov et al. (2016)
- Excellent performance on classical VRP and IRP benchmarks
- Performance on real-world stochastic waste collection IRP instances:
 - Stability: on average 1-2% between best and worst over 10 runs
 - Speed: 10-15 min per problem, suitable for operational purposes
Waste Collection IRP: Instances

- 63 instances from Geneva, Switzerland
- Rich routing features
Waste Collection IRP: Instances

- 63 instances from Geneva, Switzerland
- Rich routing features
- Test stochastic policies varying the:
 - Emergency Collection Cost (ECC) ζ
 - Route Failure Cost Multiplier (RFCM) ψ
Waste Collection IRP: Instances

- 63 instances from Geneva, Switzerland
- Rich routing features
- Test stochastic policies varying the:
 - Emergency Collection Cost (ECC) ζ
 - Route Failure Cost Multiplier (RFCM) ψ
- Against deterministic policies varying the:
 - Container Effective Capacity (CEC)
 - Truck Effective Capacity (TEC)
Waste Collection IRP: Instances

- 63 instances from Geneva, Switzerland
- Rich routing features
- Test stochastic policies varying the:
 - Emergency Collection Cost (ECC) ζ
 - Route Failure Cost Multiplier (RFCM) ψ
- Against deterministic policies varying the:
 - Container Effective Capacity (CEC)
 - Truck Effective Capacity (TEC)
- Simulate undesirable events on final solution for original capacities
Figure 3: Geneva Service Area
Waste Collection IRP: Stochastic vs. Deterministic

Figure 4: Routing Cost and Number of Overflows
Waste Collection IRP: Calculating Route Failures

Table 1: Impact of ECDFs on Tractability

<table>
<thead>
<tr>
<th>ALNS version</th>
<th>Bins</th>
<th>ECC</th>
<th>RFCM</th>
<th>Cost (CHF)</th>
<th>Runtime (s.)</th>
<th>ECDF calls (millions)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Best</td>
<td>Avg</td>
<td>Worst</td>
</tr>
<tr>
<td>Original</td>
<td>–</td>
<td>100.00</td>
<td>1.00</td>
<td>662.65</td>
<td>666.64</td>
<td>672.87</td>
</tr>
<tr>
<td>ECDFs</td>
<td>1000</td>
<td>100.00</td>
<td>1.00</td>
<td>662.63</td>
<td>666.74</td>
<td>673.35</td>
</tr>
<tr>
<td>ECDFs</td>
<td>100</td>
<td>100.00</td>
<td>1.00</td>
<td>662.49</td>
<td>666.46</td>
<td>672.73</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Best</td>
<td>Avg</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>870.65</td>
<td>906.84</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>909.06</td>
<td>948.77</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>869.52</td>
<td>903.81</td>
</tr>
</tbody>
</table>

Note. ECDF: Empirical Cumulative Distribution Function

Note. Bins: Number of bins in the ECDF binning implementation
Waste Collection IRP: Overestimation

Figure 5: Do-nothing vs. Optimal Reaction Policy
Facility Maintenance Problem: Instances

- 94 instances derived from the same data
- Probability of breakdown depends on last visit
Facility Maintenance Problem: Instances

- 94 instances derived from the same data
- Probability of breakdown depends on last visit
- Compare stochastic policies varying the:
 - Emergency Repair Cost (ERC) ζ
 - Maximum allowed probability of breakdown γ^{DP}
Facility Maintenance Problem: Instances

- 94 instances derived from the same data
- Probability of breakdown depends on last visit

Compare stochastic policies varying the:
- Emergency Repair Cost (ERC) \(\zeta \)
- Maximum allowed probability of breakdown \(\gamma^{DP} \)

Against deterministic policies varying the:
- Minimum number \(\nu \) of required visits over \(T \)
Facility Maintenance Problem: Instances

- 94 instances derived from the same data
- Probability of breakdown depends on last visit
- Compare stochastic policies varying the:
 - Emergency Repair Cost (ERC) ζ
 - Maximum allowed probability of breakdown γ^{DP}
- Against deterministic policies varying the:
 - Minimum number ν of required visits over T
- Simulate undesirable events on final solution
Figure 6: Routing Cost and Breakdowns for Stochastic Approach

(a) Routing Cost

(b) Breakdowns
Facility Maintenance Problem: Stochastic vs. Deterministic

Table 2: Performance Indicators for Stochastic Approach

<table>
<thead>
<tr>
<th>Model</th>
<th>ERC</th>
<th>γ_{DP}</th>
<th>Avg RC (CHF)</th>
<th>Avg EERC (CHF)</th>
<th>Avg Num Breakdowns</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>75th Perc.</td>
</tr>
<tr>
<td>Prob. obj</td>
<td>250.00</td>
<td>–</td>
<td>1108.69</td>
<td>312.94</td>
<td>2.59</td>
</tr>
<tr>
<td>Prob. const</td>
<td>–</td>
<td>0.08</td>
<td>1010.44</td>
<td>0.00</td>
<td>3.91</td>
</tr>
</tbody>
</table>

Table 3: Performance Indicators for Deterministic Approach

<table>
<thead>
<tr>
<th>Model</th>
<th>ERC</th>
<th>ν</th>
<th>Avg RC (CHF)</th>
<th>Avg EERC (CHF)</th>
<th>Avg Num Breakdowns</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>75th Perc.</td>
</tr>
<tr>
<td>Deterministic</td>
<td>–</td>
<td>2</td>
<td>1945.96</td>
<td>0.00</td>
<td>3.16</td>
</tr>
<tr>
<td>Deterministic</td>
<td>–</td>
<td>1</td>
<td>1140.10</td>
<td>0.00</td>
<td>4.28</td>
</tr>
</tbody>
</table>

Note. Avg RC: Average routing cost

Note. Avg EERC: Average Expected Emergency Repair Cost
Outline

1. Introduction
2. Key Modeling Elements
3. Capturing Demand Stochasticity
4. Optimization Model
5. Numerical Experiments
6. Conclusions and Future Research
Conclusions and Future Research

Conclusions

- Stochastic, non-stationary demands with few distributional assumptions
- Rich routing features
- Cost of demand uncertainty
- Tractability through pre-processing
- Negligible deviation of modeled from real cost

Future Research

- More tests on real-world benchmarks
- Lower bounds: column generation
Conclusions and Future Research

Conclusions

- Stochastic, non-stationary demands with few distributional assumptions
- Rich routing features
- Cost of demand uncertainty
- Tractability through pre-processing
- Negligible deviation of modeled from real cost

Future Research

- More tests on real-world benchmarks
- Lower bounds: column generation
Conclusions and Future Research

Thank you

VeRoLog 2017, Vrije Universiteit Amsterdam

A Unified Framework for Rich Routing Problems with Stochastic Demands
Iliya Markov, Michel Bierlaire, Jean-François Cordeau, Yousef Maknoon, Sacha Varone

Iliya Markov
Transportation and Mobility Laboratory
École Polytechnique Fédérale de Lausanne
iliya.markov@epfl.ch
References
