Integrating supply and demand within the framework of mixed integer linear problems

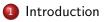
Meritxell Pacheco Shadi Sharif Azadeh, Michel Bierlaire, Bernard Gendron

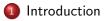
> Transport and Mobility Laboratory (TRANSP-OR) École Polytechnique Fédérale de Lausanne

> > July, 2017

IFORS 2017

Outline





2) General framework

3 Case study

Motivation

Demand

- Choices of customers
- Discrete choice models
- Nonlinear and nonconvex formulations

Supply

- Design and configuration of the system
- Mixed Integer Linear Problems (MILP)

Demand model

- Population of N customers (n)
- Choice set C(i)
- $C_n \subseteq C$: alternatives considered by customer n $(\mathcal{N}_i = \{n \ge 1 | i \in C_n\})$

Behavioral assumption

•
$$U_{in} = V_{in} + \varepsilon_{in}$$

•
$$V_{in} = \sum_{k} \beta_{ink} x^{e}_{ink} + q^{d}(x^{d})$$

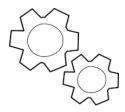
• $P_{n}(i|\mathcal{C}_{n}) = \Pr(U_{in} \ge U_{jn}, \forall j \in \mathcal{C}_{n})$

Simulation

- Distribution ε_{in}
- R draws $\xi_{in1}, \ldots, \xi_{inR}$

•
$$U_{inr} = V_{in} + \xi_{inr}$$

Supply model



- Operator selling services to a market
 - Price *p*_{in} (to be decided)
 - Capacity c_i
- Benefit (revenue cost) to be maximized
- Opt-out option (*i* = 0)

Price characterization

- Lower and upper bound
- Discretization: price levels
- Binary representation $(\lambda_{in\ell})$

Capacity allocation

- Exogenous priority list of customers
- Here it is assumed as given
- Capacity as decision variable

2 General framework

3 Case study

MILP (in words)

MILP

max benefit subject to availability utility definition discounted utility choice capacity allocation price selection

MILP

max benefit subject to **availability** utility definition discounted utility choice capacity allocation price selection $\begin{array}{ll} y_i \in \{0,1\} & \text{operator decision} \\ y_{in}^d \in \{0,1\} & \text{customer decision (data)} \\ y_{in} \in \{0,1\} & \text{product of decisions} \\ y_{inr} \in \{0,1\} & \text{capacity restrictions} \end{array}$

Relations between availabilities

$$y_{in} = y_{in}^{d} y_{i} \quad \forall i, n$$
(1)
$$y_{inr} \leq y_{in} \quad \forall i, n, r$$
(2)

General framework

MILP

MILP

max benefit subject to availability utility definition discounted utility choice capacity allocation price selection

$$U_{inr} \qquad \text{utility}$$

$$z_{inr} = \begin{cases} U_{inr} & \text{if } y_{inr} = 1\\ \ell_{nr} & \text{if } y_{inr} = 0 \end{cases} \quad \text{discounted utility}$$

$$(\ell_{nr} \text{ smallest lower bound})$$
Utility
$$U_{inr} = \overbrace{\beta_{in}p_{in} + q_d(x_d)}^{V_{in}} + \xi_{inr} \forall i, n, r \qquad (3)$$

Discounted utility

$$\ell_{nr} \leq z_{inr} \qquad \forall i, n, r \quad (4)$$

$$z_{inr} \leq \ell_{nr} + M_{inr}y_{inr} \quad \forall i, n, r \quad (5)$$

$$U_{inr} - M_{inr}(1 - y_{inr}) \le z_{inr} \qquad \forall i, n, r \quad (6)$$

$$z_{inr} \leq U_{inr}$$
 $\forall i, n, r$ (7)

MP, SSA, MB, BG

IFORS 2017

9 / 18

MILP

max benefit subject to availability utility definition discounted utility **choice** capacity allocation price selection

$$U_{nr} = \max_{i \in C} z_{inr}$$
$$w_{inr} = \begin{cases} 1 & \text{if } i = \arg \max\{U_{nr}\}\\ 0 & \text{otherwise} \end{cases}$$
 choice

Choice

$$z_{inr} \leq U_{nr}$$
 $\forall i, n, r$ (8)

$$U_{nr} \leq z_{inr} + M_{nr}(1 - w_{inr}) \qquad \forall i, n, r \qquad (9)$$

$$\sum_{i} w_{inr} = 1 \qquad \qquad \forall n, r \qquad (10)$$

$$w_{inr} \leq y_{inr}$$
 $\forall i, n, r$ (11)

MILP

max benefit subject to availability utility definition discounted utility choice **capacity allocation** price selection

Priority list

$$y_{in^{-}r} \ge y_{inr} \qquad \forall i > 0, n < N, r \qquad (12)$$

Capacity cannot be exceeded $\Rightarrow y_{inr} = 1$

$$\sum_{m=1}^{n-1} w_{imr} \le (c_i - 1) y_{inr} + (n-1)(1 - y_{inr}) \quad \forall i > 0, n > c_i, r \quad (13)$$

Capacity has been reached $\Rightarrow y_{inr} = 0$

$$c_i(y_{in}-y_{inr}) \leq \sum_{m=1}^{n-1} w_{imr} \quad \forall i > 0, n, r \quad (14)$$

MILP

max benefit subject to availability utility definition discounted utility choice capacity allocation **price selection**

$$p_{in} = \frac{1}{10^k} \left(\ell_{in} + \sum_{\ell=0}^{L_{in}-1} 2^\ell \lambda_{in\ell} \right)$$

When calculating the benefit: λ_{inℓ}w_{inr}
 α_{inℓ} = λ_{inℓ}w_{inr}

Linearization of $\alpha_{inr\ell}$ + Price bounded from above

$$\lambda_{in\ell} + w_{inr} \leq 1 + \alpha_{inr\ell} \quad \forall i > 0, n, r, \ell \quad (15)$$

$$\alpha_{inr\ell} \leq \lambda_{in\ell} \qquad \forall i > 0, n, r, \ell \quad (16)$$

$$\alpha_{inr\ell} \leq w_{inr} \qquad \forall i > 0, n, r, \ell \quad (17)$$

$$\ell_{in} + \sum_{\ell=0}^{L_{in}-1} 2^{\ell} \lambda_{in\ell} \leq m_{in} \qquad \forall i > 0, n \qquad (18)$$

IFORS 2017

9 / 18

MILP

max benefit subject to availability utility definition discounted utility choice capacity allocation price selection

$$\max \sum_{i>0} (R_i - C_i)$$

Revenue

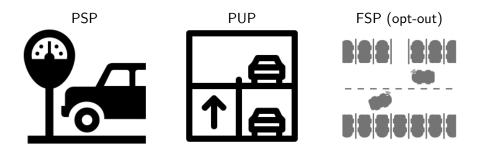
$$R_{i} = \frac{1}{R} \frac{1}{10^{k}} \left[\sum_{n} \sum_{r} \left(\ell_{in} w_{inr} + \sum_{\ell} 2^{\ell} \alpha_{inr\ell} \right) \right]$$

Cost

$$C_i = (f_i + v_i c_i) y_i$$

2 General framework

Parking choices¹



- N = 50 customers
- $C = \{PSP, PUP, FSP\}$
- $C_n = C \quad \forall n$

- $p_{in} = p_i \quad \forall n$
- Mixtures of a logit model

¹A. Ibeas, L. dellOlio, M. Bordagaray, <u>et al.</u>, "Modelling parking choices considering user heterogeneity," <u>Transportation Research Part A: Policy and Practice</u>, vol. 70, pp. 41 –49, 2014. MP, SSA, MB, BG IFORS 2017 11 / 18

General experiments

Uncapacitated vs Capacitated case

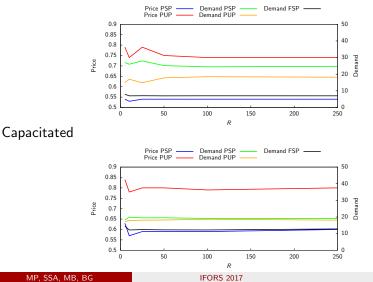
- Maximization of revenue
- Unlimited capacity
- Capacity of 20 spots for PSP and PUP

Price differentiation by population segmentation

- Reduced price for residents
- Two scenarios
 - Subsidy offered by the municipality
 - Operator is obliged to offer a reduced price

Uncapacitated vs Capacitated case

Uncapacitated



13 / 18

Computational time

	Uncapacitated case				Capacitated case			
R	Sol time	PSP	PUP	Rev	Sol time	PSP	PUP	Rev
5	2.58 s	0.54	0.79	26.43	12.0 s	0.63	0.84	25.91
10	3.98 s	0.53	0.74	26.36	54.5 s	0.57	0.78	25.31
25	29.2 s	0.54	0.79	26.90	13.8 min	0.59	0.80	25.96
50	4.08 min	0.54	0.75	26.97	50.2 min	0.59	0.80	26.10
100	20.7 min	0.54	0.74	26.90	6.60 h	0.59	0.79	26.03
250	2.51 h	0.54	0.74	26.85	1.74 days	0.60	0.80	25.93

IFORS 2017

2 General framework

3 Case study

Lagrangian relaxation

General idea

- Decompose the MILP into 2 subproblems
- Solve the subproblems independently
- Lagrangian dual to provide an upper bound

Operator subproblem

• Resulting problem: Capacitated Facility Location Problem

Customer supbroblem

- Assumption: utility decreases as a function of the price
- Iterate over customers (priority list) and over scenarios
- Highest price such that the customer does not change the choice

Ongoing research and future work

Ongoing research

- Implementation of the 2 subproblems
- Subgradient method to solve the Lagrangian dual

Future work

- Provide a lower bound on the original problem
- If the gap between bounds is significant \Rightarrow column generation

Questions?

meritxell.pacheco@epfl.ch