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Urbanization

1950: 30% of the population lives in cities
2014: 54% of the population lives in cities

Challenges

Energy consumption, pollution, climate change
Increased tra�c and congestion
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Congestion: Pedestrian movements

Research challenges

Understand, describe and predict

Optimization of current
infrastructure and operations

E�cient planning and management
of future pedestrian facilities
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Characterization

Quantities

Density k (ped/m2)

Speed v (m/s)

Flow q (ped/m·s)
Limitations

Highly inspired by vehicular tra�c

Arbitrary spatial and temporal discretization
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Discretization

low congestion                   high congestion 

Research challenges

Results sensitive to minor changes
Arbitrary discretization may introduce noise in data
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How to de�ne the discretization...

...independent of arbitrary chosen values?

Data-driven approach: Voronoi diagrams
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Context

Model

Space-time representation: Ω ⊂ R3

Units: meters and seconds

p = (x , y , t) ∈ Ω: physical position (x , y) in space at a
speci�c time t

Assumption: Ω is convex (obstacle-free and bounded)

Data: trajectories

Continuous: Γi : {pi (t)|pi (t) = (xi (t), yi (t), t)}
Discrete (sample):
Γi : {pis |pis = (xis , yis , ts)},ts = [t0, t1, ..., tf ]
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3D Voronoi diagrams: 3DVoro

De�nition
Associate p ∈ Ω with the closest Γi :

δΓ(p, Γi ) =

{
1, D(p, Γi ) ≤ D(p, Γj), ∀j
0, otherwise

D(p, Γi ) = min
pi
{d(p, pi )}

Voronoi cell for Γi :

Vi = {p ∈ |δΓ(p, Γi ) = 1}

t 

x 

y 

Γj 

Γi  

p Γi  

Γi  

Γi  

t 

x 

y 
Γi  

Γi  

Γj 

Vi 



3DVoro: Distances

Spatial Euclidean distance

dE (p, pi ) =

{ √
(x − xi )2 + (y − yi )2, t = ti
∞, otherwise

Each point in time is independent

Motivated by the availability of snapshots of the �oor area

All pedestrians must be observed at the exact same time
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3DVoro: Distances

Time-Transform distances

dTT1(p, pi ) =
√

(x − xi )2 + (y − yi )2 + v2(t − ti )2

dTT2(p, pi ) =
√

(x − xi )2 + (y − yi )2 + v̂i (ti )2(t − ti )2

dTT3(p, pi ) =
√

(x − xi )2 + (y − yi )2 + v̂i (ti )|t − ti |

Convert seconds into meters using speed

dTT1(p, pi ), dTT2(p, pi ): combine components based on the
Euclidean norm

dTT3 : weighted sum of two norms
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3DVoro: Distances

Predictive distance

dP(p, pi ) =

{ √
(xai − x)2 + (yai − y)2, t − ti ≥ 0

∞, otherwise

xai = xai (t) = xi + (t − ti )v
x
i (ti )

yai = yai (t) = yi + (t − ti )v
y
i (ti )

Accounts for the pedestrian dynamics

Anticipates future position when performing the assignment

Anticipation time: from zero to t − ti

Points backward in time: in�nitely distant
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3DVoro: Distances

Mahalanobis distance

dM(p, pi ) =
√

(p − pi )TMi (p − pi )

Mi : a change of variable matrix

Points in the movement direction of a pedestrian are �closer�
than the points from other directions
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Intersection with a plane

P(a,b,c),p0 : plane through p0 with normal vector (a, b, c)
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Voronoi-based tra�c quantities

Consider (x , y , t) ∈ Ω, and i such that (x , y , t) ∈ Vi

Density: k(x , y , t) = 1
|Vi∩P(0,0,1),(x,y,t)|

Flow: ~q(a,b,0)(x , y , t) = 1
|Vi∩P(a,b,0),(x,y,t)|

Velocity: ~v(a,b,0)(x , y , t) =
|Vi∩P(0,0,1),(x,y,t)|
|Vi∩P(a,b,0),(x,y,t)|
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Lausanne train station



Lausanne train station: Data set

A large-scale network of smart sensors: a sparsity driven
tracking (Alahi et al., 2014)

Dataset: 25,603 trajectories; February 2013
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3DVoro illustration: Lausanne train station
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3DVoro performance: Synthetic data

NOMAD simulation tool (Campanella et al.; 2014)

Flow composition: uni-directional and bi-directional
Scenarios: low/high demand, homogenous/heterogeneous
population

Analysis

3DVoro and XY-T methods

x x x 
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Nature of the results
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Robustness to sampling of trajectories
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Conclusion

Main �ndings

Data-driven spatio-temporal discretization

Well de�ned, �exible and general framework

Smooth transitions in measured characteristics

Robust to noise in the data

Robust to sampling of trajectories

Future directions

Anisotropy and presence of obstacles
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Thank you

Intelligent Tra�c Control and Service in Big Data Environment

Data-driven spatio-temporal discretization for pedestrian

�ow characterization
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- marija.nikolic@ep�.ch
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Characteristics of methods

Method Scale
Spatial aggregation Temporal aggregation

Data type
Unit Assumptions Unit Assumptions

XY-T Macroscopic Area
Shape
Size

Location
Interval Duration Trajectories

Grid-based (GB) Macroscopic Cell
Size

Location
Interval Duration

Trajectories
Sync. sample

Range-based (RB) Macroscopic Circle
Radius
Location

Interval Duration
Trajectories
Sync. sample

Exponentially-weighted (EW) Macroscopic Range
In�uence function
Range of in�uence

Interval Duration
Trajectories
Sync. sample

Voronoi-based (VB) Microscopic Voronoi cell Boundary conditions Interval Duration
Trajectories
Sync. sample
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3DVoro: Distances

Mahalanobis distance

d1(ti ) =
vi (ti )

||vi (ti )||
, ||d1(ti )|| = 1

d2(ti ) =

 d1
x (ti )

d2
y (ti )
0


d3(ti ) =

 0
0

∆t



dM(Sj , pi ) = α, j = 1, ..., 6

S1(ti , α) = pi +∆tvi (ti )+αd1(ti )

S2(ti , α) = pi−∆tvi (ti )−αd1(ti )

S3(ti , α) = pi + αd2(ti )

S4(ti , α) = pi − αd2(ti )

S5(ti , α) = pi + αd3(ti )

S6(ti , α) = pi − αd3(ti )
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Edie (1963)

k(A) =

N∑
i=1

ti

dxdt

q(A) =

N∑
i=1

xi

dxdt

v(A) =

N∑
i=1

xi

N∑
i=1

ti
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Jabari et al. (2014)

k(x , t) =
1

si (t)
, for x ∈ [xi (t), xi−1(t))

q(x , t) =
1

hi (x)
, for t ∈ (ti−1(x), ti (x)]

v(x , t) =
si (t)

hi (x)
, for x ∈ [xi (t), xi−1(t)), t ∈ (ti−1(x), ti (x)]
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Fruin (1971)

k(x , y , t) =
NA(t)

|A|
, for (x , y) ∈ A

~q(x , y , t) = k(x , y , t)~v(x , y , t)

~vi (t) =

(
xi (t2)
yi (t2)

)
−
(

xi (t1)
yi (t1)

)
t2 − t1

~v(x , y , t) =

∑NA
i=1 ~vi (t)

NA
, for (x , y) ∈ A

35 / 27



van Wageningen-Kessels et al. (2014)
Saberi and Mahmassani (2014)

k(A) =

N∑
i=1

ti

dxdydt

~q(A) =

(
qx(A)
qy (A)

)
=


N∑
i=1

xi

dxdydt
N∑
i=1

yi

dxdydt



~v(A) =

(
vx(A)
vy (A)

)
=



N∑
i=1

xi

N∑
i=1

ti

N∑
i=1

yi

N∑
i=1

ti
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Helbing et al. (2007)

f

((
xi (t)
yi (t)

)
−
(

x
y

))
=

1

πR2
exp

(
−

∥∥∥∥( xi (t)
yi (t)

)
−
(

x
y

)∥∥∥∥2
R2

)

k(x , y , t) =
∑
i

f

((
xi (t)
yi (t)

)
−
(

x
y

))

~q(x , y , t) = k(x , y , t)~v(x , y , t)

~vi (t) =

(
xi (t2)
yi (t2)

)
−
(

xi (t1)
yi (t1)

)
t2 − t1

~v(x , y , t) =

∑
i

~vi (t)f

((
xi (t)
yi (t)

)
−
(

x
y

))
∑
i
f

((
xi (t)
yi (t)

)
−
(

x
y

))
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Voronoi diagrams: 2D
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Voronoi diagrams: 2D
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Ste�en and Seyfried (2010)

k(x , y , t) =
1

|Ai |
, for (x , y) ∈ Ai

~v(x , y , t) =

(
xi (t2)
yi (t2)

)
−
(

xi (t1)
yi (t1)

)
t2 − t1

q: half a person has passed a
segment if half of the Voronoi cell
has passed it
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Lausanne data

Tracklet generation

A graph-based tracking algorithm is
implemented to link the detected
points

A directed graph: vertices
representing the 3D coordinates of
detected pedestrians, edges de�ning
the connectivity between vertices

The connectivity prevents too long
or unrealistic connections

Tracklet association

Task: �nd the set of trajectories Θ
that best explains the extracted
tracklets

Formally:maximizing the a-posterior
probability of Θ given the set of
tracklets
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3DVoro: Robustness to noise in the data

100 sets of pedestrian trajectories synthesized per scenario

θMr (p) = (kM
r (p), vM

r (p), qMr (p)): a vector of indicators at point p obtained by
applying the method M to the r th set of trajectories

The standard deviation of the indicators at p as

σM
R (p) =

√√√√ 1

R

R∑
r=1

(θMr (p)− µMR (p))2

µMR (p) = 1
R

∑R
r=1 θ

M
r (p), R = 100

The procedure is repeated for 1000 randomly selected points p
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3DVoro: Robustness to noise in the data - Sc.I
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3DVoro: Robustness to noise in the data - Sc.II
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3DVoro: Robustness to sampling frequency
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3DVoro: Robustness to sampling frequency

Interpolation

Higher sampling frequency

Time-Transform distances lead to the best performance (TT1-3DVoro)

Samples

Lower sampling frequency

UniLD−HomoPop : the distances that take into account the speed and/or direction
of pedestrians ( TT2-3DVoro, P-3DVoro and M-3DVoro)

UniHD−HeteroPop : Time-Transform distances (TT1-3DVoro)

General

Time-Transform: more data available (the sampling frequency equal to 3 s−1 or
the demand equal to 3.6 pedestrians per second)

Distances accounting for the dynamics: less data available (the sampling
frequency equal to 0.5 s−1 and the demand equal to 1.2 pedestrians per second)
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