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We present a fully-implicit electromagnetic Particle-In-Cell Monte Carlo collision code, 
called NINJA, written for the simulation of inductively coupled plasmas. NINJA employs 
a kinetic enslaved Jacobian-Free Newton Krylov method to solve self-consistently the 
interaction between the electromagnetic field generated by the radio-frequency coil and 
the plasma response. The simulated plasma includes a kinetic description of charged and 
neutral species as well as the collision processes between them. The algorithm allows 
simulations with cell sizes much larger than the Debye length and time steps in excess 
of the Courant–Friedrichs–Lewy condition whilst preserving the conservation of the total 
energy. The code is applied to the simulation of the plasma discharge of the Linac4 H− ion 
source at CERN. Simulation results of plasma density, temperature and EEDF are discussed 
and compared with optical emission spectroscopy measurements. A systematic study of the 
energy conservation as a function of the numerical parameters is presented.
© 2017 The Authors. Published by Elsevier Inc. This is an open access article under the CC 

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

In recent years there has been a strong interest in applications based on Inductively Coupled Plasmas (ICP): large-area 
integrated circuit manufacturing [1], medical devices [2], ion sources for accelerators [3] and fusion [4]. Key features of ICP 
driven discharges are the capability of obtaining high density plasmas (1017–1018 m−3) even at low gas pressures, and to 
operate without direct contact of the electrodes with the plasma. Modern applications set demanding specifications on the 
design and operation of ICP discharges, making it essential to develop detailed plasma models to gain insights into the 
underlying physics.

Theoretical and experimental studies have highlighted the importance of kinetic effects in ICPs [5–7] as well as local and 
non-local kinetics [8]. Modeling work of ICPs has mainly been performed using fluid [9,10] and hybrid codes [11,12], while 
only few papers can be found on kinetic modeling that are particularly targeted at the low-density regime [13–15]. This is 
partially because kinetic simulations of high density, low temperature plasmas require very large computational resources 
and remained intractable for many years. One of the techniques to simulate plasmas from a kinetic point of view is the 
Particle-In-Cell (PIC) algorithm [16]. In its classical implementation, the time dependent governing equations are solved 
with an explicit leap-frog integration scheme. While this technique is simple and second order accurate, its limitations 
arise from the stringent time step �t and cell size �x required for its stability. In fact �t must be kept sufficiently small 
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to resolve the fastest wave propagations, typically electromagnetic radiation or plasma oscillations (Langmuir waves), in 
order to satisfy the Courant–Friedrichs–Lewy condition [16]. �x on the other hand must resolve the finest electron scales 
happening at the Debye length λDe to avoid a numerical plasma heating known in the literature as finite-grid instability 
[17]. This is a strong limitation for the simulation of ICPs, as λDe can be in the order of tens of μm, while the typical plasma 
chamber size is several centimeters large, leading to a considerable number of cells to be simulated.

To overcome these limitations, alternative PIC implementations using implicit integration schemes have been consid-
ered since the 80’s, starting with the pioneering work of Mason [18] and Denavit [19]. Implicit PICs require the concurrent 
solution of the non-linear coupling of the field equations with the particles’ equations of motion and originally, due to 
the complexity of the problem, a number of semi-implicit codes were first developed (implicit moment [18,19] and direct 
implicit [20]). Recently, thanks to advances in computing and numerical techniques, the fully-implicit solutions to the non-
linear field-particles problem has been successfully addressed [21,22]. These algorithms are shown to be unconditionally 
stable for any choice of �t and replace the constraint on �x to resolve λDe by a much more relaxed condition that particles 
should not cross more that one cell in one time step. This is a significant improvement over explicit codes because the 
choices of �t and �x are no longer bound to strict stability requirements, but can be chosen to resolve only the scales of 
interest in the plasma under investigation.

Based on these considerations, we have developed a fully-implicit electromagnetic PIC code, called NINJA, for the kinetic 
simulation of ICPs. Our motivation originated from the investigation of the Linac4 H− ion source at CERN [3], whose plasma 
is created in an ICP in cylindrical configuration. NINJA is a 2.5D PIC in cylindrical coordinates, where the electromagnetic 
(EM) fields are solved in 2D assuming azimuthal symmetry (∂/∂θ = 0), while the particles’ motion is solved in 3D3V. The 
model is supplemented with a Monte Carlo Collision (MCC) algorithm to describe the plasma chemistry as well as a neutral 
transport module including atomic and molecular (vibrationally resolved) particle tracking for hydrogen. This study repre-
sents, in our best knowledge, the first application of a fully-implicit algorithm for the simulation of bounded, collisional 
plasmas, including the coupling with a Monte Carlo Collision module. This extends the previous work on the fully-implicit 
algorithm for unbounded, collision-less plasmas described in [21,22]. We present a description of the algorithms, their im-
plementation, a performance analysis, a comparison to analytic solutions and the application of the code to the investigation 
of the hydrogen discharge in the Linac4 H− ion source.

2. Method

2.1. Governing equations

The goal of our simulations is to describe the plasma dynamics in an ICP. This requires modeling the interaction between 
the EM field generated by the Radio-Frequency (RF) coil and the corresponding plasma response, composed of the particles’ 
motion and the collision processes between them. We are interested in describing the high density regime of an ICP, in 
which the coupling between the coil and the plasma is of the inductive type (H-mode) [23]. The electric field E and 
magnetic field B are given by Maxwell’s equations in which the current density J is the sum of the plasma Jpl and the RF 
coil JR F contributions:

∇ · E = ρ

ε0
(1)

∇ · B = 0 (2)

∂B

∂t
= −∇ × E (3)

∂E

∂t
= 1

ε0μ0
∇ × B − 1

ε0
J J = JR F + Jpl (4)

with t representing time, ρ the charge density and ε0, μ0 the permittivity and permeability of free space respectively.
While JR F is externally imposed, the plasma contribution Jpl results from the motion of the charged particles in the 

plasma. Kinetically this is represented by the first moment of the distribution function f s (normalized to the plasma den-
sity ns) of each plasma species s (e.g. electron, ion), resulting in:

Jpl =
∑

s

qs

∫
V

v f s(x,v, t)dv (5)

with x the position, v the velocity and qs the electric charge of the species s. The particles’ position xp and velocity vp

define the distribution function f s , and are mathematically described by Newton’s equations of motion:

dxp

dt
= vp (6)

ms
dvp

dt
= qs(Ep + vp × Bp) + Fc (7)
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Fig. 1. Typical simulation domain: the plasma chamber is a cylinder of radius R and length L, while the calculation of the electromagnetic fields is performed 
on a larger domain. The RF coil is modeled as a perfect conductor with rectangular cross-section and given input current.

where ms is the mass of the particle species s; Ep, Bp represent the EM field acting on the particle p and Fc is the collisional 
force. Similarly, the motion of the neutral particles is described by equations (6), (7) with qs = 0. The self-consistent solution 
of the field equations (1), (2), (3), (4) and Newton’s equations of motion (6), (7), non-linearly coupled via equation (5)
represent the full system of equations to be solved.

The governing equations are solved on a domain similar to the one represented in Fig. 1: the plasma chamber is a cylin-
der of radius R and length L while the calculation of the electromagnetic fields is performed on a larger domain in order 
to include the coil and to avoid large EM reflections at the boundary. The coil is modeled as a perfect conductor, with rect-
angular cross-sectional area and a given input JR F . Our model is developed in cylindrical coordinates. Given the azimuthal 
symmetry of this configuration we assume that the EM field is independent of the azimuthal coordinate (∂/∂θ = 0), while 
the particle motion is fully 3D3V.

2.2. PIC scheme

We solve the governing equations using an implicit θ -scheme time integration and central differences on a Yee cell [24]
for the spatial discretization (standard and not explicitly indicated). The time-discretized Maxwell’s equations become:

Bn+1 − Bn

�t
= −∇ × En+θ (8)

En+1 − En

�t
= 1

ε0μ0
∇ × Bn+θ − 1

ε0
Jn+ 1

2 (9)

where the superscript indicates time in units of �t , and the fields on the right hand side are evaluated as a weighted 
average between the current time step n and the new one n + 1:

Xn+θ = θ Xn+1 + (1 − θ)Xn (10)

The parameter θ affects the energy conservation and must be chosen 0.5 ≤ θ ≤ 1 else the scheme is divergent, while J is 
weighted at the half time step to avoid unphysical plasma heating/cooling [25]. The two divergence equations (1), (2) are 
not explicitly solved as equation (1) is automatically satisfied as long as charge conservation holds while equation (2) is 
always valid if satisfied initially [16].

The particles’ equations of motion are first solved in the PIC scheme in their collision-less form, the inclusion of the 
collision operator is shown in section 2.5. Equations (6), (7) are discretized as follows:

xn+1 − xn

�t
= v

n+ 1
2

p (11)

vn+1 − vn

�t
= qs

ms
(En+θ

p + v
n+ 1

2
p × Bn+θ

p ) (12)

The fields En+θ
p , Bn+θ

p acting on the particle p are evaluated at x
n+ 1

2
p , interpolated from the 4 grid points surrounding the 

particle via a volume (r2 − z) weighting function W . The plasma current required by Maxwell’s equations is loaded to the 
grid by the same weighting function and is given by:

J
n+ 1

2
pl =

Ns∑
s

N p(s)∑
p

qsv
n+ 1

2
p W (13)

where we employ Verboncoeur volume corrections [26] to avoid errors in the charge accumulations arising in curvilinear 
coordinate systems. In equation (13), Ns is the number of charged species in the plasma and Np(s) the number of simulated 
particles of a given species s. Every charged particle has the same specific weight wc (ratio of real particles per simulated 
particle) independently of the species. We employ absorbing boundary conditions for the charged particles on the plasma 
chamber, removing them from the computation once they reach the wall.
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For the electromagnetic fields, absorbing boundary conditions are required at the edge of the simulation domain to 
truncate the unbounded space with a finite domain. On a Yee cell, only the electric field components E� require specific 
boundary conditions, as the magnetic ones can be computed by relevant finite difference equations [27]. At the axial ends 
we employ Mur’s boundary condition [27], solving:

(
∂ E�

∂z
+ 1

c

∂ E�

∂t

)
= 0 (14)

whereas at the radial end we employ the boundary conditions by Bayliss and Turkell [28]:

(
∂

∂r
+ 1

c

∂	

∂t
+ 1

2r

)
E� = 0 (15)

Both boundary conditions are solved by finite-differences implicitly.

2.3. Solution of the non-linear system

At each time step we seek the solution of 6Ng field equations (3 components of Bn+1 and 3 of En+1 on each grid point), 
together with 6Np(s)Ns equations of motion (3 spatial components of xn+1

p and 3 velocity ones of vn+1
p for each particle) 

coupled to each other via J. For a typical simulation with Ng ≈ 104 and Np ≈ 106–107 this would result in matrices whose 
size is impractical to solve. Following [29] we use a technique called kinetic enslavement which allows embedding the 
solution of the particles’ equations of motion within function evaluations of the EM fields, keeping the matrices’ size to the 
6Ng EM field equations only.

We solve the system of equations (8), (9), (11), (12), (13) using the Jacobian-Free Newton Krylov (JFNK) method available 
in the NITSOL package [30]. The field equations (8), (9) are first rewritten in residual form:

F(y) = 0 (16)

with y a vector containing the unknowns Bn+1, En+1 and F(y) a non-linear operator. The non-linearity arises since J depends 
on x,v which are coupled to E,B via equations (11), (12). Using a Newton method, we seek successive approximations to 
the system (16) based on information about the current guess ỹk and its derivative:

∂F(ỹk)

∂y
δyk = −F(ỹk) (17)

where the increment δyk defines the new guess:

ỹk+1 = ỹk + δyk (18)

for each Newton iteration k. The resulting system of equations (17) is linear and can be efficiently solved by the Generalized 
Minimal RESidual (GMRES) method. The Jacobian matrix ∂F(ỹk)/∂y required in (17) at each Newton iteration is approxi-
mated by finite-differences. We use the standard NITSOL termination criteria in which iterations are stopped based on an 
absolute tolerance on the function evaluation ‖F‖ ≤ ftol, or on a step tolerance: ‖δyk‖ ≤ stptol, as described in [30].

In the kinetic enslavement technique, the particles’ equations of motion are embedded within function evaluations of the 
system (16). More precisely, at each GMRES iteration the latest guess of the EM fields B̃n+1 and Ẽn+1 are available in the 
vector ỹ and can be used to advance the particles via equations (11), (12). With the new values of the particles’ position 
and velocity we have all the information needed to form a new guess for J̃pl via equation (13) and to advance to the next 
iteration. The operator F(y) besides containing the spatial discretization operators acting on B and E includes the particle 
mover used to update xp and vp as shown in Algorithm 1 and section 2.4.

2.4. Particle mover

The particle mover contains the routines used to solve equations (11), (12) leading to the update of xp and vp at each 
time step. Within the kinetic enslavement technique the particle mover can be chosen independently from the method used 
on the field solver, allowing greater freedom on the selection of the numerical techniques used.

To solve the particles’ equations of motion (11), (12) we seek to determine xn+1
p and vn+1

p based on the information of 
the grid values En+θ and Bn+θ stored in the vector ỹ at each GMRES iteration. While the EM field on the grid is available, 
the force acting on the particle p depends on the position at half time step xn+1/2

p which is yet unknown. Starting from 
the free streaming approximation we first estimate the position xn+1/2

p = xn
p + vn

p�t/2 that we then subsequently refine by 
Picard iteration until convergence is reached.
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Algorithm 1: Function evaluation routine.

Input: latest guess ỹ, containing B̃n+1 and Ẽn+1

Calculate B̃n+θ and Ẽn+θ

# For each particle find x̃n+ 1
2

p and ṽn+ 1
2

p :
for s = 1 to Ns do

for p = 1 to Np do
Solve equations of motion (11), (12), see section 2.4

if x̃
n+ 1

2
p is outside the plasma chamber then
Do not accumulate contribution to the plasma current

end
end

end

Calculate J̃n+ 1
2

pl via equation (13)
Evaluate residual via equation (16)

The velocity at half time step vn+ 1
2

p can be directly computed with an algebraic manipulation of equation (12) as shown 
in [31]. This leads to:

v∗
p = vn

p + αEn+θ
p with: α = qs�t

2ms
(19)

v
n+ 1

2
p = v∗

p + α
[
v∗

p × Bn+θ
p + α(v∗

p · Bn+θ
p )Bn+θ

p

]
1 + (αBn+θ

p )2
(20)

With vn+ 1
2

p available, the position xn+1
p and velocity vn+1

p at the new time step are computed as:

xn+1
p = xn

p + �tv
n+ 1

2
p (21)

vn+1
p = 2v

n+ 1
2

p − vn
p (22)

In cylindrical coordinates one should include the extra inertial forces arising from the curvilinear transformation. Fol-
lowing Boris [32] this can be avoided by employing a local Cartesian coordinate system for each particle. More precisely at 
each time step n we align a Cartesian frame to the particle position such that xn = rn , yn = 0 and zn = zn , with the velocity 
components vn

x = vn
r , vn

y = vn
θ and vn

z = vn
z . The particle advance is then performed in the local Cartesian frame where 

equations (20), (21), (22) are valid; the updated values are then re-transformed to their respective cylindrical coordinates. 
During the step, the EM forces acting on the particle must also be rotated to align with the local coordinate frame. The 
sequence of operations is described in detail in [33], of which we follow the same steps.

Absorbing boundary conditions are imposed at the end of the particle mover: all charged particles with xn+1
p lying out-

side the plasma chamber are removed from the computation. Within the kinetic enslavement technique absorbing boundary 
conditions are only temporarily imposed as each iteration only represent an approximation of the new particle position. In 

this case if a particle exits the plasma chamber at x̃n+ 1
2

p its contribution to the plasma current is neglected, while maintain-
ing the particle alive for the next JFNK iteration.

2.5. Monte Carlo Collision method

Particle collision processes (term Fc in equation (7)) are taken into account via a Monte Carlo Collision (MCC) method, 
in which electron-neutral, electron-ion and ion-neutral collisions are handled via a null-collision method [34], whereas 
Coulomb collisions are treated with the binary collision method [35] following the work of [36]. The sampling of the 
null-collision is performed on each cell to take into account the local density of the target particles.

We implemented the model for a hydrogen discharge; the list of cross-sections and the respective references are listed 
in Table 1, 2. Following [34] we employ a constant time-step approach, in which collisions are calculated separately from 
the motion of the particles and only need to be evaluated between time steps, see Algorithm 2. The method requires the 
collision time-step �tcoll to be much smaller than the mean free time τ . Empirically we observe no difference in the results 
as long as �tcoll < τ/100. The mean free time τ is calculated for each species as the inverse of the maximum collision 
frequency νmax in the energy range considered of 0–200 eV. When a collision happens, a partner particle is selected in the 
same cell. The post-collision energies are taken from [37] with their respective velocities isotropically distributed [34]. In all 
simulations we employ �t = �tcoll .
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Table 1
Electron impact processes.

Partner Reaction Formula Reference

H Elastic e + H −→ e + H [38]
Electr. exc. e + H −→ e + H(nl) [39]
Ionization e + H −→ e + H+ + e [39]

H2 Elastic e + H2 −→ e + H2 [40]
Vibr. exc. e + H2(v = 0) −→ e + H2(v = 1,2) [39] �

e + H2(v ≥ 1) −→ e + H2(v ± 1) [41] �

H2(B1�+
u ) −→ H2(v ′) + hν [42]

H2(C1�u) −→ H2(v ′) + hν [42]
Electr. exc. e + H2(v) −→ e + H2(B1�+

u ) [39]
e + H2(v) −→ e + H2(C1�u) [39]
e + H2(v = 0) −→

−→ e + H2(B ′, B ′′, D, D ′, E F ) [39]
Diss. via b3 e + H2(v) −→ e + H2(b3�+

u ) −→
−→ e + H + H [39]

Nondiss. ioniz. e + H2(v) −→ e + H+
2 + e [39]

Diss. ioniz. e + H2(v) −→ e + H+
2 (2�+

u ) + e −→
−→ e + H+ + H + e [39]

Diss. attach. e + H2(v) −→ H + H− [39]

H+
2 Diss. exc. e + H+

2 −→ e + H+ + H [39]
Diss. recomb. e + H+

2 −→ H + H [39]
Diss. ioniz. e + H+

2 −→ e + H+ + H+ + e [39]

H+
3 Diss. exc. e + H+

3 −→ e + H+ + 2H [39]
Diss. recomb. e + H+

3 −→ 3H [39]

H− e-detach. e + H−+ −→ e + H + e [39]

� inverse processes evaluated by detailed balance

Table 2
Ion impact processes.

H+ impact processes

Partner Reaction Formula Reference

H Elastic H+ + H −→ H+ + H [43]
Charge Exc. H+ + H −→ H + H+ [39]

H2 Elastic H+ + H2 −→ H+ + H2 [43]
Vibr. exc. H+ + H2(v = 0) −→ H+ + H2(v = 1–4) [39] �

Dissociation H+ + H2(v) −→ H+ + H + H [39]

H+
2 impact processes

Partner Reaction Formula Reference

H2 Charge exc. H+
2 + H2 −→ H2 + H+

2 [39]
CID H+

2 + H2 −→ H+ + H + H2 [39]
H+

3 ion form. H+
2 + H2 −→ H+

3 + H [39]

H+
3 impact processes

Partner Reaction Formula Reference

H2 Elastic H+
3 + H2 −→ H+

3 + H2 [44]
Proton transfer H+

3 + H2 −→ H2 + H+
3 [39]

CID to proton H+
3 + H2 −→ H+ + H2 + H2 [39]

CID to H+
2 H+

3 + H2 −→ H+
2 + H + H2 [39]

H− impact processes

Partner Reaction Formula Reference

H+ Mutual neutr. H− + H+ −→ H + H [39]

H Res. ch. exc. H− + H −→ H + H− [39]
Assoc. detach. H− + H −→ e + H2 [39]
NA detach. H− + H −→ e + H + H [39]

H2 e-detach. H− + H2(v) −→ H + H2(v ′) + e [39]
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2.6. Neutrals treatment

In a typical ICP discharge the ionization degree reaches values of a few %, implying that the largest populations are 
represented by neutrals. Their spatial distribution can be non-uniform in the plasma chamber, with depletion arising in the 
regions of highest ionization rate [45]. In molecular discharges (e.g. hydrogen) one must also take into account the long 
lived vibrational states, since those have significant effect on the electron and ion impact cross-sections [39].

We have implemented a neutral transport module for hydrogen, solving kinetically the equations of motion of the atomic 
H0 and the 15 vibrational states of the molecular H2(v). The electronic excited states of H0 and H2 are not tracked in the 
present case given their short decay time. Electronic excitation processes are nevertheless considered in the reaction set 
and represent an energy sink for electrons and ions. To cope with the high density and large number of species, we 
employ a variable weight scheme using a rezoning technique [46]. More precisely, each neutral particle has associated 
its own specific weight wn (ratio of real particles per simulated one). The scheme aims at keeping a constant number of 
neutral particles per species per cell N̄n (typically 100), merging and splitting the simulated particles following the density 
variations due to transport or collisions. When the number of particles in a cell Nn > N̄n , following algorithm C1 in [46], we 
select the two closest particles of the concerned species p = 1,2 in phase space and replace them with a single one p = A
with the weighted average position, velocity and the sum of their weights w: w A = w1 + w2, xA = (w1x1 + w2x2)/w A , 
vA = (w1v1 + w2v2)/w A . Similarly, if at any time the number of particles per cell Nn < N̄n following algorithm S1 in 
[46] we split the particle with the highest weight p = A in four particles p = 1,2,3,4 with the properties: w p = w A/4; 
r1,2 = rA ±�r/N̄n , r3,4 = rA ; θ1,...,4 = θA ; z3,4 = zA ±�z/N̄n , z1,2 = zA . With this technique the maximum number of neutral 
particles to be simulated is 16Ng N̄n (with 16 is the number of neutral species).

For compatibility with the MCC scheme, the range of neutral weights is larger and a multiple of the charged particle 
weights, i.e. wn ≥ wc . This because in the event of a collision, only a fraction of the neutral particle corresponding to 
wc must be considered in evaluating the post-collisional velocities, while leaving the fraction wn − wc unaffected on its 
trajectory. If wn < wc the scheme would be inconsistent. In practice therefore the merging technique is applied only when 
there are at least Nn = N̄n particles in a cell all with at least wn = wc . Splitting is also avoided for particles with wn ≤ 4wc .

The equation of motion for the neutrals only includes a collisional force as no EM field acts on them (equation (7)). 
This accounts for collisions with other particles or wall interactions. Since no change in velocity happens during a time step 
(section 2.5), the equation of motion for the neutrals can therefore be solved directly with:

xn+1
p = xn

p + �tvn
p (23)

At the wall we employ a simple reflection boundary condition for H2, inverting the velocity components in the directions 
in which the particle interacts with the wall. For H0 wall recombination into H2 is taken into account by a user-defined 
recombination coefficient γw that defines the reflected species by random sampling.

3. Code implementation

In this section we describe details of the NINJA code implementation (written in Fortran90) and additions to the model 
presented in order to improve its performance. Firstly, we find it convenient to express the operator F(y) in matrix form:

F(y) = Ay − b − Jpl(y) = 0 (24)

where the matrix A contains the discrete spatial operator acting on Bn+1, En+1; b is the known term from the time step 
n and Jpl(y) is the plasma current which is a function of y. This formulation is advantageous as, upon formation of the 
plasma current at each GMRES iteration, it leads directly to a vectorized implementation. Furthermore the matrix A has by 
construction a very low density and can efficiently be stored in sparse format, while b is a constant term at each time step 
and can be precomputed outside JFNK. For all sparse matrix computations we employ the SPARSKIT library [47]. The time 
loop proceeds therefore as illustrated in Algorithm 2.

Secondly, while SI units are convenient to describe the governing equations, they are not well suited for numerical 
computation as the numbers to be treated vary by many orders of magnitude. This may lead to a badly conditioned problem 
as well as to floating point rounding errors. To avoid these issues, we apply a normalization for which ε0 = μ0 = 1 leading 
to a speed of light c = 1. Furthermore we normalize time to the time step, mass to the electron mass and temperature 
to 1 eV. All other units follow accordingly. The conversion to normalized units is performed internally in the code, leaving 
inputs and outputs in SI units for ease of interpretation. As an example of the benefit of this transformation, the condition 
number of the matrix A decreases from k(A) > 1014 in SI units to k(A) = O(10) in normalized units for typical simulation 
parameters.

In terms of performance, code profiling for a typical simulation with N g = 104 and Np = 106–107 reveals that the 
majority of the computing time (> 90%) is spent in the particle mover. Within the kinetic enslavement technique, at each 
function evaluation (Algorithm 1) the full set of particles needs to be moved to calculate the new guess of the plasma 
current. This indicates that improvements in the code performance can be achieved either by seeking techniques to reduce 
the number of iterations required to achieve convergence in JFNK at each time step, or by parallelizing the computation, i.e. 
distributing the particles over several processes.
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Algorithm 2: Time loop.

for t = 1 to Niter do
Calculate b in equation (24)

# Find Bn+1 and En+1 with JFNK:
while ‖F‖ ≤ ftol, or ‖δyk‖ ≤ stptol do

Function evaluation via Algorithm 1
end
# Charged particles push
For each particle p calculate xn+1

p and vn+1
p

if xn+1
p is outside the plasma chamber then
delete particle

end
# Neutrals treatment
Neutral particles push, for each neutral h calculate xn+1

h and vn+1
h

if xn+1
h is outside the plasma chamber then
reflection or recombination

end
Perform neutrals merging/splitting

# Evaluate collisions
Monte Carlo Collision module

end

3.1. Preconditioning

To improve the performance of the code, it is highly desirable to reduce the number of GMRES iterations for each 
Newton step, which can be achieved by preconditioning the linear system (equation (17)). An efficient preconditioner should 
represent an approximation of the Jacobian matrix ∂F(ỹk)/∂y. From equation (24) we observe that the Jacobian matrix 
contains two components: the matrix A and a term depending on the plasma current. While the first term is known and 
constant, the second depends on the particular solution at any given GMRES iteration and it is not straightforward to 
calculate.

We employ a simple preconditioner in which the contribution acting on the plasma current is neglected. This represents 
a crude approximation of the Jacobian, which is sufficient to cut the number of GMRES iterations as long as the time step 
is not too large (see section 5.4). More precisely, we perform an incomplete Lower–Upper (LU) factorization of the matrix A
with the ilut routine from SPARSKIT, which is later supplied to the lusol routine of the same library for the preconditioning 
within the NITSOL solver.

3.1.1. Parallelization
Code parallelization is implemented with the MPI interface, in which we use a domain decomposition technique at the 

particle level, while the EM calculation is performed serially on the full simulation domain. During the simulation time, 
density variations may cause the load on each process to be unbalanced. Therefore the total number of particles on each 
process is constantly monitored and compared to the average value, calculated as the total number of particles divided 
by the number of processes. If the load unbalance is > 10%, the subdomains are resized to host an approximately equal 
number of particles, while maintaining the boundary between sub-domains to coincide with cell’s boundaries, to facilitate 
the treatment of the neutrals that require a constant number of particles per cell.

4. Electromagnetic fields in the plasma, comparison with analytic results

As a first code application we wish to present the simulation of an RF-ICP in the “infinitely-long configuration”, for which 
analytic solutions of the radial electromagnetic field profiles exist and provide a verification step for the code developed. 
Following [23], in the case of a uniform plasma density, the complex amplitudes of Hz(r) with Hz = Bz/μ0 and Eθ (r) are 
given by:

Hz(r) = Hz0
J0(kr)

J0(kr0)
(25)

Eθ (r) = −ikHz0

ωε0εp

J1(kr)

J0(kr0)
(26)

where Hz0 = Hz(R), k = k0
√

εp is the complex wavenumber in the plasma, εp is the plasma complex permittivity, k0 = ω/c
is the wavenumber in free space and Jn represent the Bessel function with complex argument of order n.

We performed a set of simulations on a domain with R = 20 mm, L = 200 mm (see Fig. 1), with a coil spanning 
the whole plasma chamber length with internal and external radii of 24 and 26 mm respectively. The plasma is initially 
uniformly loaded in the plasma chamber with densities ranging from 1016 to 1018 m−3 and the RF current is adjusted to 
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Table 3
Simulation parameters and initial conditions for the RF-ICP in “infinitely long” configuration.

Parameters Initial conditions

Cell size 1 × 1 mm N. particles 5’000’000
Time step 2.5 · 10−11 s e− density 1016, 1017, 1018 m−3

Implicit param. θ 0.6 e− temp. 1 eV
Particle weight 106, 107, 108 H+ : H+

2 : H+
3 0.4:0.4:0.2

RF current 120, 160, 350 A Ion temp. 0.1 eV
RF coil turns 1 Gas temp. 300 K
RF frequency 13.56 MHz Vib. temp. 3000 K
Gas pressure pH2 1 Pa (@300K) Diss. Degree 0.3
Wall recomb. γw 10−3

ftol, stptol 10−4, 10−5

Fig. 2. Comparison between analytical estimates (solid line) and simulation results (dots) of the electron density and electromagnetic fields radial profiles 
in the plasma chamber for the RF-ICP in “infinitely-long configuration”. (For interpretation of the references to color in this figure legend, the reader is 
referred to the web version of this article.)

maintain the plasma discharge approximately at the same average density. The integration time is 5 μs corresponding to 67 
RF cycles at 13.56 MHz, time at which no change in the EM profile nor in the density profile is observed. The simulation 
parameters are reported in Table 3.

Fig. 2 shows the comparison between the analytic estimates and the simulation results, evaluated at z = 100 mm (axial 
center of the plasma chamber) to best approximate the “infinitely long” configuration. The average value of the simulated 
density profile is used as input for the analytic calculation. An excellent agreement is found in the prediction of Eθ , whereas 
a slight underestimation of Hz results in the simulations particularly in the region close to the wall. This however could 
result from the difference in the density profiles, which is assumed uniform in the analytical estimate in contrast to the 
simulations where it is self-consistently calculated, leading to a drop close to the wall.

The density range analyzed corresponds to a variation of �x/λDe from 1 to 20. The agreement with the analytic solutions 
is a first indication of the code capability to simulate the plasma dynamics in RF-ICP with cell sizes in excess of the Debye 
length.

5. Simulation of the Linac4 H− ion source plasma generator

We present an application of the NINJA code for the plasma simulation of the Linac4 H− ion source at CERN [3], whose 
geometry is shown in Fig. 3. The plasma chamber has a radius of 24 mm and a length of 136 mm, surrounded by a 5 turn 
RF coil operated at 2 MHz. At one end of the plasma chamber a 45◦ molybdenum electrode is installed, which is taken 
into account in the model by a staircase grid. No external magnetic fields are taken into account in the present study. The 
simulation domain is taken 3 times larger than the plasma chamber to avoid large reflections at the end of the domain. The 
simulation parameters and the initial conditions are listed in Table 4. The plasma is initially seeded uniformly in the plasma 
chamber in a neutral state, i.e. the ion density equals to the electron plus the negative ion density. Neutrals are also initially 
seeded uniformly in the plasma chamber with a user-defined dissociation degree.

The choice of the cell size and time step follows from an analysis of the spatio-temporal scales of interest in the plasma 
under investigation. More precisely, it is known that in an ICP the power transfer from the coil RF field to the electrons 
happens in a skin depth δ close to plasma chamber wall where the coil is located [48]. This represents a critical scale length 
for the simulation of ICPs and the cell size should therefore be sufficiently fine to resolve its dynamics. For the pressure and 
driving frequency employed an estimate of δ can be obtained as shown in [48]:

δ = c
√

2

ω

√
ν

ω
(27)
pe
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Fig. 3. Plasma generator of the Linac4 H− ion source. The plasma chamber has a radius of 24 mm and a length of 136 mm. The 5 turn RF coil is surrounded 
by 6 ferrites and embedded in epoxy to avoid RF breakdown. The H2 gas inlet and the optical view port used to perform optical emission spectroscopy 
measurements are indicated. The magnetic Halbach octupole is formed by alternating magnets with clockwise and counter-clockwise magnetization, while 
the filter field is a dipole magnet with vertical magnetization. The plasma electrode has an angle of 45◦ and is made of molybdenum.

Table 4
Simulation parameters and initial conditions.

Parameters Initial conditions

Cell size 1 × 1 mm Particle number 448’624
Time step 2.5 · 10−11 s e− density 5 · 1017 m−3

Implicit parameter θ 0.6 e− temp. 1 eV
Particle weight 5 · 108 H+ : H+

2 : H+
3 0.8:0.1:0.1

RF coil current 70 A Ion temp. 0.1 eV
RF coil turns 5 Gas temp. 300 K
Gas pressure pH2 3 Pa (@300K) Vib. temp. 3000 K
Wall recomb. γw 10−3 Diss. Degree 0.3
ftol, stptol 10−4, 10−5

where c is the speed of light, ωpe the plasma frequency, ν the collision frequency and ω the angular frequency of the 
applied RF. For the case considered with ne ≈ 1019 m−3 (taken from previous simulations and experimental results [49]), 
ν ≈ 3.6 · 107 pH2 ≈ 108 Hz [50] we obtain δ ≈ 7 mm. The cell size is chosen in the range 0.5 ≤ �x ≤ 4 mm.

For the time scales, the strictest condition is represented by the collision frequency ν implying that �t < 10−10 s to 
satisfy the Monte Carlo condition �t < τ/100 with τ = 1/ν . Such time step allows a fine resolution of the driving frequency 
and several of its harmonics.

We first present a simulation with �r ×�z = 1 × 1 mm, �t = 2.5 · 10−11 s and θ = 0.6. The plasma distribution and the 
impact of the cell size on the simulation results is discussed in section 5.1, the Electron Energy Distribution Function (EEDF) 
is shown in section 5.2 and the energy conservation in section 5.3.

5.1. Plasma distribution

Starting from the initial uniform distribution we follow the plasma dynamics to reach steady state after 15 μs. Fig. 4
shows the electron density and energy profile averaged in time during the last RF cycle (0.5 μs) of simulation. The electron 
density peaks at ne = 1019 m−3 on the central axis of the plasma chamber, in the axial region where the coil is located. 
The highest electron energy Ee is located in the coil region, with the hottest electrons in the vicinity of the radial wall 
where the RF electric field is strongest. At steady state the ion population is comprised of 85% H+ , 10% H+

2 and 5% H+
3 , 

while H− represent 1% of the negative charges. The total number of simulated charged particles at steady state is ≈ 3
million. For completeness, the normalized quantities are: ωpe�t ≈ 4.25, �x/λDe ≈ 60, vth�t/�x ≈ 0.025. The simulation 
time is 2 weeks on a 12 core cluster (64 GB RAM with Intel(R) Xeon(R) CPU E5-2630L @ 2.00 GHz, no hyper-threading). The 
normalized variation of the simulation results as a function of the cell size is better visualized on a line profile. Fig. 5 shows 
the radial profile of ne and Ee in the center of the coil, i.e. z = 70 mm. For a cell size ≤ 1 mm no significant difference 
is observed neither in the density nor the energy distribution. For larger cell sizes, the grid does not have the required 
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Fig. 4. Electron density (top) and electron energy (bottom) profiles, time-averaged during the last RF cycle of simulation. The location of the RF coil is 
indicated by the blue rectangle. (For interpretation of the references to color in this figure, the reader is referred to the web version of this article.)

Fig. 5. Electron density ne and energy Ee radial profile in the center of the coil, i.e. z = 70 mm for different cell sizes (0.5, 1.0, 2.0 and 4.0 mm). All 
simulations are performed with �t = 2.5 · 10−11 s and θ = 0.6 and the profile represents the time averaged value in the last RF cycle of simulation. (For 
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

resolution to capture the large gradients present in the skin depth and a different trend is observed, particularly in the 
region close to the wall 16 ≤ r ≤ 24 mm.

5.2. Electron Energy Distribution Function

One of the most important characteristics of kinetic models is the self-consistent calculation of the EEDF in the plasma. 
From NINJA we can obtain the EEDF for any plasma region as a function of time. As an example we present the EEDF as a 
function of time during the last RF cycle in the region 0 ≤ r ≤ 4 mm and 0 ≤ z ≤ 136 mm. The region is selected to allow a 
direct comparison with Optical Emission Spectroscopy (OES) measurements performed on the axial view port of the plasma 
chamber (Fig. 3) [49].

Fig. 6 shows the EEDF at two specific times corresponding to the RF current phase φ = 0 and φ = π/2. A deviation of 
the high energy tail (Ee > 15 eV) of the EEDF is observed as a function of time. The time averaged-value, calculated from 
16 EEDF snapshots during the last RF cycle, is well approximated by a Maxwellian distribution with Te = 4 eV.

Previous studies [51] performed in low density regime showed that the EEDF deviation from Maxwellian is related to 
the acceleration of electrons from the inductive electric field. The impact is particularly noticeable for the high energy tail 
of the EEDF as the cross-section of Coulomb collisions decreases for increasing energies, whereas the frequent collisions at 
low energy lead to thermalization. It must be noted however that artificial thermalization effects could arise in PIC-MCC 
simulations [52] and further studies and experimental data will be required to assess their impact on the simulation results.

5.3. Energy and charge conservation

Monitoring of the conservation laws represents a crucial diagnostics to verify the implementation and the choice of the 
numerical parameters. If the total energy increases over time, it is an indication that numerical heating is taking place, 
which might lead to unphysical results. If the energy decreases, the method remains stable but one must be careful that 
important physics of interest is not suppressed. If charge is not conserved, the divergence equation (1) is no longer satisfied, 
which may impact the simulation results.
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Fig. 6. Electron Energy Distribution Function (EEDF) for the RF current as a function of time during the last RF cycle of simulation in the region 0 ≤ r ≤ 4 mm
and 0 ≤ z ≤ 136 mm. The time-averaged value fits a Maxwellian distribution of Te = 4 eV. (For interpretation of the references to color in this figure legend, 
the reader is referred to the web version of this article.)

Fig. 7. Time variation of the energy components (see equation (28)) for the simulation with �r ×�z = 1 × 1 mm, �t = 2.5 · 10−11 s and θ = 0.6 during last 
RF cycle of simulation, representing the condition at steady state. All components show a 4 MHz oscillation corresponding to double the driving frequency 
of 2 MHz.

The conservation of electromagnetic energy is given by the Poynting theorem:

∂

∂t
(U E M + Uk) = −P + Wcoll − W wall (28)

with: U E M =
∫
V

(ε0E2 + B2/μ0) (29)

Uk =
∑

s

N p,s∑
p

ms v2
p/2 (30)

P =
∮
∂V

(S · n̂)dA (31)

where U E M represents the energy stored in the fields B and E, the kinetic energy Uk is given by the sum of the kinetic 
energy of all particles and P represents the flux through the surface, which is given by the integral of the Poynting vector 
S = E × B/ε0. The collisional power Wcoll represent the energy, per unit of time, lost or gained by the charged particles 
in elastic or inelastic collisions (e.g. threshold energy lost by an electron in an atomic excitation process). The component 
W wall represents the power deposited on the wall, i.e. the kinetic energy of the charged particles lost on the wall per unit 
of time.

Fig. 7 shows the time-varying components of equation (28) for the simulation with �r × �z = 1 × 1 mm, �t = 2.5 ·
10−11 s and θ = 0.6 during last RF cycle of simulation, representing the condition at steady state. The variation of all 
components show a 4 MHz oscillation, double the RF driving frequency. To evaluate the energy conservation we calculate 
the difference between the left-hand side and the right-hand side of equation (28), integrated in space over the plasma 
chamber volume, in time during the last RF cycle and normalized it to the RMS value of the left-hand side. The result for 
different simulation conditions is shown in Fig. 8, where one parameter is varied while keeping the others fixed based on 
the reference simulation of �r × �z = 1 × 1 mm, �t = 2.5 · 10−11 s and θ = 0.6.



S. Mattei et al. / Journal of Computational Physics 350 (2017) 891–906 903
Fig. 8. Impact of the cell size, time step and implicit parameter θ on the energy conservation. Simulations are performed by varying only one parameter at 
the time, while keeping the others fixed based on the reference simulation of �r × �z = 1 × 1 mm, �t = 2.5 · 10−11 s and θ = 0.6. Energy conservation is 
evaluated during last RF cycle of simulation, representing the condition at steady state. Blue represents numerical cooling, while red numerical heating. In 
all simulations energy is conserved within 2%. (For interpretation of the references to color in this figure, the reader is referred to the web version of this 
article.)

Fig. 9. Average number of function evaluations (Feval) required to reach convergence at each time step within JFNK. All simulations are performed with 
�r × �z = 1 × 1 mm and θ = 0.6.

The variation of the cell size indicates that, for a fixed �t and θ , we have a tendency towards numerical heating by 
increasing the cell size. Increasing �t or θ leads on the other hand to larger cooling rates, indicating that stronger damping 
is taking place. In other words, the choice of the numerical parameters is of paramount importance to control the energy 
conservation in the simulations, with smaller cell sizes requiring less numerical damping to conserve the energy. We remark 
that in the parameter range investigated, all simulations show an energy conservation within 2%. In the cases analyzed 
numerical heating did not lead to unphysical results nor blow-up. However these could arise for longer integration times 
and the use of the code in these conditions is not recommended.

Charge conservation has been monitored in all simulations to ensure that Gauss’ law (equation (1)) is satisfied. This 
is required because the interpolation of the current density to the grid is not exactly charge conserving and may lead to 
unphysical results [22]. The error in charge conservation EGauss is calculated over the entire grid and the maximum value is 
recorded for over the entire simulation time:

EGauss = max |∇ · E − ρ/ε0|
max |ρ| (32)

In all simulations presented EGauss remained in the order of 10−5 indicating that no significant violation of Gauss’ law 
results.

5.4. Performance

Code performance largely depends on the number of iterations required to reach convergence at each time step in JFNK. 
We performed an investigation of the number of function evaluations (Feval) required as a function of the time step and 
evaluate the effectiveness of the preconditioner. Fig. 9 shows the number of Feval for a simulation with �r ×�z = 1 ×1 mm
and θ = 0.6. The preconditioner cuts by a factor 3 to 8 the number of Feval required to reach convergence, leading to an 
equivalent improvement in the computational time.

The benefit of the implicit formulation can be appreciated by estimating the computational cost with respect to its 
explicit counterpart. Following [21] the computational cost is given by:

C P U = T
Np

(
L

)d

C (33)

�t �x
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With T the time-span of the simulation, Np the number of particles per cell, L the simulation domain, d the number of 
dimensions and C the solver complexity. By assuming that the implicit solver is the number of function evaluations N F E
more complex than the explicit counterpart and with d = 2 we obtain:

C P Uexp

C P Uimp
= �timp

�texp

(
�ximp

�xexp

)d 1

N F E
(34)

For the Linac4 ion source application with ne = 1019 m−3, Te = 4 eV and taking in the explicit case �x = λDe = 1.5 ·10−5 m, 
and �t = �x/c (c the speed of light), whereas in the implicit case the values used of �x = 1 mm, �t = 2.5 · 10−11 s, 
NF E = 30 we obtain:

C P Uexp

C P Uimp
≈ 70000 (35)

showing that a significant improvement results from the implementation.

6. Discussion

A key feature of the model presented is the capability of simulating high density, low temperature plasmas with a cell 
size �x � λDe while maintaining the an accurate control the energy conservation. This is of paramount importance to 
guarantee accuracy and stability for long integration time.

The numerical parameters controlling the energy conservation are the cell size �x, the time step �t and the implicit 
parameter θ . Based on our experience the recommended approach is to first choose �x sufficiently fine to resolve the 
smallest spatial scale of interest; in the present case this is represented by the plasma skin depth δ required to capture 
the current channel in the vicinity of the RF coil. Other applications might require the detailed structure of the plasma 
sheath and therefore a much smaller cell size. Secondly, the time step should be chosen to resolve the temporal scales 
of interest including the driving frequency, the Monte Carlo condition on the collision frequency �t < τ/100 as well as 
resolving the electron gyro-frequency in case of magnetized plasmas. On the lower bound �t is limited by preserving the 
energy conservation, together with the parameter θ . As �t also strongly influences the performance, it is preferable to select 
�t to be the most computationally efficient and adjust θ to conserve the energy. Should the range 0.5 ≤ θ ≤ 1.0 not be 
sufficient, �t should be modified accordingly to preserve the energy conservation. While we have not pursued this option, 
in principle �t and θ could be adapted dynamically during the simulation. These results are in agreement with previous 
analytical investigation of the energy conservation as a function of θ which has been performed in detail in [25] for an 
implicit moment method. We would like to point out that in the case of unbounded, collision-less plasmas, the integration 
with θ = 0.5 is exactly energy conserving as shown in the simulations performed in [22]. The conservation of energy for 
the cases presented is an indication that an effective suppression of the finite-grid instability is achieved with �x � λDe , 
hence suppressing the unresolved scales, e.g. plasma oscillations. These empirical results should nevertheless be extended 
by a detailed finite-grid analysis [53] which will be the object of future studies.

Concerning the code performance, the computational time scales linearly with the number of function evaluations N F E
required at each time step. The simple preconditioner employed is capable of cutting N F E by a factor 3 to 8 depending 
on the time step. Further improvements could be achieved by employing a more sophisticated preconditioner, taking into 
account the plasma current component, e.g. [54]. Moreover, the domain decomposition technique only at the particle level 
only allows to parallelize ≈ 95% of the computational cost in a typical scenario (case analyzed of the Linac4 ion source). 
According to Amdahl’s law with 95% parallelizable code a maximum speedup of 20 can be achieved. A better scalability can 
be obtained by parallelizing the EM field calculation and the I/O procedures.

The range of plasma density and temperature simulated agrees with OES measurements performed on the plasma gen-
erator of the Linac4 H− ion source [49] in similar conditions. Along the central optical view port, OES measurements report 
a line-integrated plasma density in the range ne = 1019 m−3 with an electron temperature 3.5 ≤ Te ≤ 4 eV. The results 
presented give an average value over the central 4 mm radius of ne = 5 · 1018 m−3 with a time-averaged Maxwellian EEDF 
of Te = 4 eV (section 5.2).

An important result of this study is the characterization of the time-varying EEDF, which is directly linked to the plasma 
light emission. Its impact should be further investigated, coupling the simulation results with a collision-radiative model 
taking into account the EEDF features (e.g. [55]). In the present work we have not discussed details of the neutral population 
(atomic and vibrational density/temperatures). Their dynamics require a longer simulation time (≈ 25–30 μs in the Linac4 
ion source case), and this will be the object of a future publication. Furthermore, we plan to extend the model to address 
non-axisymmetric features, such as the external magnetic cusp and filter field.

In the specific case of the Linac4 H− ion source, the present results represent crucial input for beam formation sim-
ulations [56,57], that rely on the specifications of the plasma parameters in the extraction region (conical region at 
z > 116 mm). This is particularly important since spatially resolved measurements are difficult to achieve in this region 
due to space limitations. Coupling between these simulations, beam formation simulations and beam measurements could 
indicate possible improvements to the plasma generator configuration as well as a better understanding of the beam ex-
traction physics.
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7. Conclusions and outlook

We have presented the algorithms and the implementation of a fully-implicit PIC-MCC code, NINJA, for the simulation of 
inductively coupled plasmas. The model solves self-consistently the coupling between the electromagnetic field generated 
by the RF coil and the plasma dynamics, composed of the kinetic description of charged and neutral particles together with 
the collision processes between them. The governing equations are solved with a kinetic enslaved Jacobian-Free Newton 
Krylov method, in which a preconditioner is supplied to enhance the performance.

A key feature of the method is the possibility of performing kinetic simulations of high density, low temperature plasmas 
with cell sizes � λDe and time step in excess of the Courant–Friedrichs–Lewy condition whilst preserving the conservation 
of the total energy. The application to the CERN Linac4 H− ion source shows that with a cell size sufficient to resolve 
the plasma skin depth, an accurate representation of the plasma parameters is achieved. This is confirmed by agreement 
between simulations and optical emission spectroscopy measurements on the range of density and temperatures.

Simulation results show that the EEDF varies in time during one RF cycle, with a deviation of the high-energy tail 
from a Maxwellian distribution. Coupling with a collision-radiative model taking into account the simulated EEDF will 
allow to investigate its impact on the light emission and provide refined comparisons to optical emission spectroscopy 
measurements. The plasma parameters and neutral fluxes will be simulated for variable hydrogen densities, RF current 
and position of the RF coil to define the input for the optimization process of the Linac4 H− ion source. This will include 
coupling of the present simulation results to beam formation and extraction software-packages [56,58], capable of simulating 
effective beam emittance and intensity.

We have detailed the algorithms used for an ICP in cylindrical geometry with a solenoid RF coil, using hydrogen as the 
discharge gas. The model can easily be adapted to other gases provided the availability of collision cross-sections as well as 
to the simulations of ICPs in planar configuration.
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