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ABSTRACT

Convolutional neural networks are top-performers on image
classification tasks. Understanding how they make use of
color information in images may be useful for various tasks.
In this paper we analyze the representation learned by a pop-
ular CNN to detect and characterize color-related features.
We confirm the existence of some object- and color-specific
units, as well as the effect of layer-depth on color-sensitivity
and class-invariance.

Index Terms— Convolutional Neural Networks, Color
information, Color sensitivity, Latent features, Deep learning

1. INTRODUCTION

Over the past decade, deep neural networks have achieved
state-of-the-art performance on many and various bench-
marks. In particular, Convolutional Neural Networks (CNNs)
have shown top performance on image classification tasks.
However, in spite of their ubiquity, the representation learned
by such models remains not fully understood. For instance,
in [1] the authors show that a deep CNN may learn a feature
corresponding to the presence of human and animal faces,
even when the classification task does not involve a ’face’
class.

Similarly, we seek to gain a better understanding of how
a deep CNN might utilize color information, by detecting
spontaneous features that make use of such information.

The identification of units corresponding to color-sensitive
features can be useful for various tasks. For instance, sec-
ondary color-based classification, i.e. further classification of
the object by its color (e.g. red car, blue bird). While this
could be accomplished in various ways, we seek to make use
of what the network has already learned, while avoiding the
effort of manually annotating images with color labels.

The activation profile of color-sensitive units can also be
used to enrich the semantic descriptor derived at the final lay-
ers of the CNN. These unit activations could also be used for
manipulation of the input image via optimization methods.

We establish three unit properties we believe are useful
to that end:

• Color-sensitivity – how affected is the activation of a
unit by the presence or absence of color.

• Hue-specificity – how affected is the activation of a
color-sensitive unit by the presence or absence of a spe-
cific hue.

• Class-invariance – how affected is the activation of a
color-sensitive unit by the presence of a specific object
class.

In this paper we present methods to measure these prop-
erties. Our findings provide interesting insights. For instance,
we confirm the existence of class-specific and hue-specific fea-
tures, e.g. ’yellow bus’, and justify the use of deep pre-trained
models as general feature extractors by showing features to
be class-invariant through most of the CNN forward-pass
pipeline.

In section 4 we show a simple method for detecting units
that are sensitive to the presence or absence of color in im-
ages. In section 5 we continue to precisely characterize the
hue specificity of these units by studying their response to
monochrome images. Finally, in section 6 we present an anal-
ysis based on the co-activation matrix of color-sensitive units
and object class labels to test for class specificity or invari-
ance. The model and data on which we base our investigation
are presented in section 3.

2. RELATED WORK

We are not aware of any study focusing specifically on analyz-
ing how CNNs leverage color information. In [2] the authors
present anecdotal results demonstrating the impact of object
color on classification performance. In particular, they show
that manipulating the color of an object in a way that devi-
ates from the training data has a negative impact on classifi-
cation performance.

General approaches for visualizing deep features and acti-
vations have been proposed [3, 1, 4]. However, we have found
the visualizations produced by these methods correlate only
spuriously with the color-profiles that trigger unit activations
in practice, such as presented in section 5. We therefore ex-
cluded these methods from the current analysis.

To analyze the class invariance (or specificity) of a unit,
we utilize a method similar to that of [5], where we use the
co-activation matrix instead of the covariance matrix.

3. NETWORKS AND DATASETS

We chose to use the popular VGG-19 [6] and AlexNet [7]
networks. For ease of exposition, we show in detail results
obtained for VGG-19, although analogous conclusions were
found in AlexNet. The VGG-19 model consists of five convo-
lutional blocks, followed by three fully connected layers. Each
convolutional block consists of multiple convolutional layers
with the same filter size followed by a max-pooling opera-
tion. Convolutional layers are named according to the index
of their convolutional block and their position within it, e.g.
’conv4 3’ refers to the third convolutional layer in the fourth
block. Fully connected layers are indexed from 6 to 8, e.g.
’fc6’.



We used two datasets to verify our findings. The first is
PASCAL VOC [8], in particular, the subset of the dataset
which is annotated with precise segmentation masks, con-
sisting of 3K images distributed over 20 object classes. The
second dataset is a subset of ImageNet [9] where images were
extracted whose class label corresponded with a PASCAL
VOC class label, resulting in 15K images over 15 classes.

4. ANALYZING THE COLOR SENSITIVITY OF
THE NETWORK

In this section we characterize the propagation of color in-
formation through the network by searching for general color
sensitivity in unit activation.

4.1. Color-Sensitive Units

A unit is called color-sensitive if its activation value is af-
fected by the absence or presence of color. This effect can be
measured directly by observing unit activations in response
to a set of colored images against a grayscale version of the
same images. Our assumption is that units whose activation
changes significantly across the two image sets are those that
captures the presence or absence of color.
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(a) Histogram of the unit acti-
vation for color images.
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(b) Histogram of color-
sensitivity. Color-sensitive
units in green.

Fig. 1: Mean activation and color-sensitivity of units in the
4th layer of the 5th convolutional block (Conv5 4).

For units in fully-connected layers, we simply consider the
activation value in response to an input image. For units in
convolutional layers, we compute the mean activation across
the spatial dimension, resulting in a single scalar value. For
unit j and image i we denote the activation as a

(i)
j . Since

VGG-19 uses the ReLU activation function, we have that
a

(i)
j ∈ [0,∞).

In Figure 1(a) we show the histogram of unit activations,
i.e. Ei[a(i)

j ].
For every image with index i we denote its grayscale ver-

sion with the index i′. Of interest therefore is the difference
in activation a

(i)
j − a

(i′)
j . We measure the color sensitivity of

a unit, Colsens
j , as follows:

Colsens
j =

∑
i∈I

a
(i)
j

N
−

∑
i∈I

a
(i′)
j

N
(1)

Where N is the number of images in dataset I. The his-
togram of these residuals is shown in Figure 1(b). The re-
sulting distribution in centered close to zero, indicating that

the majority of units have a similar activation regardless of
whether the network is processing color or grayscale images.

Taking the absolute value of equation (1) allows us to
easily identify units that are sensitive to color: the larger the
absolute value is the more color sensitive a unit is.

To automatically select a threshold value, above which
we consider a unit to be color-sensitive, we use the standard
deviation across a layer. We define the threshold T as

T = 2 ∗ Std(Colsens
LayerL)

where Colsens
LayerL is the distribution of Colsens

j of all units in
layer L, e.g. Figure 1(b).

In Figure 1(b) the two vertical lines represent the thresh-
old over which we consider the units to be color-sensitive.
There are two lines because our threshold is defined with
respect to the absolute value of the color sensitivity. Color-
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Fig. 2: Percentage of color-sensitive units, out of all units,
for each layer of the network

sensitive units make up 7.1% of units in every layer, with
small variations. Figure 2 shows their distribution across net-
work layers.

5. HUE SPECIFICITY

With color-sensitive units identified, we proceed to more
precisely characterize their hue-specificity. We wish to know
for each unit whether its sensitivity is limited to specific col-
ors.

We start this analysis with a set of 100 monochrome im-
ages created using the HSV color space. We set the satura-
tion and value to 1, and vary the hue between 0 and 1 with
increments of 0.01.

These images are fed to the network and the resulting
activation is recorded for all color-sensitive units. Figure 3
shows the activation of six units that were chosen as to show
the different types of units we identified, and how unit be-
havior varies across network layers.

Figure 3(a) and 3(b) show units sensitive to a single color.
An interesting point to note is that while unit (b) displays
more degrees of freedom - allowed for by its position in a
deeper layer - it still retains a simple response curve similar
to that of unit (a).

Figure 3(c) depicts a curve with high activation for hue
values 0 and 1, consistent with the cyclic nature of the hue
spectrum. In Figure 3(e) we once more see that even at deep
layers, some unit exhibit simple activation curves responding
to a single hue in this case the color yellow. Figure 3(f) show
a unit can be sensitive to two different colors, e.g. red and
green.
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Fig. 3: Activation curves for various units in response to
monochrome images of varying hues.

Lastly, while some units seem to be sensitive to a limited
number of specific colors, some seem to have the opposite be-
havior: sensitive to almost everything except a specific color,
as shown in Figure 3(d). Thus, a low sensitivity to a specific
color results in a negative impact on activation when this
precise color is detected.
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Fig. 4: Distribution of the local maxima detected in the
activation curve of color-sensitive units for every layer.

The red dots in Figure 3 indicate local maxima of the
activation curves. The number of maxima on a curve can be
used as a rough measure of how “well-behaved” a unit is, i.e.
a single maximum indicates a simple sensitivity to a single
hue, with more maxima indicating more complex behaviors.
The distribution of the number of maxima is shown in Figure
4. We see that in spite of increasing degrees of freedom, most
units have a simple activation curve with one to two maxima.

We also notice color-sensitive units with no maxima.
These are color-sensitive units that have no activation at all
in response to monochrome images, presumably due to lack
of any shapes and texture.

6. CLASS INVARIANCE

So far we have identified color-sensitive units and charac-
terized their hue-specificity. In this section we study how
these units are used to perform object recognition, for which
VGG-19 was trained. This will answer whether a single color-

sensitive unit contributes to the classification of multiple ob-
ject classes in an invariant way, or if it is class-specific.

6.1. Unit Activation

To get a qualitative impression of the relation between
color-sensitive units and object classes, we return to the set
of units used in Figure 3. For each unit, we find the images in
the dataset which maximize the unit’s activation (see Figure
5). Unit (e) In the fifth row seems to be both color-specific
and class specific, while units in other rows show a degree of
class-invariance while being consistent with their color pref-
erence.
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Fig. 5: Top activation images, one unit per line. See Figure
3 for exact hue-specificity of these units.

6.2. Covariance and Co-activation

To analyze the relation between color-sensitive unit and ob-
ject classes, we start with the covariance. The empirical co-
variance matrix of some data matrices X and Y , both with
zero mean, is computed as follows:

cov(X, Y ) = E[X ∗ Y ] = 1
N

XT Y

In the case at hand we are interested in the correspon-
dence between ReLU activations, which are non-negative, and
class labels, which are binary. In both cases we refer to a
variable as being ’active’ if its value is non-zero. Similarly to
above, we define the co-activation matrix as:

coa(A, B) = AT B

Where A and B are such matrix variables whose values are
non-negative. Thus the co-activation is a view of how pairs
of variables are active at the same time. We compute the co-
activation between every color-sensitive unit of a layer and
every class label.

6.3. Co-activation Analysis

Analysis of the co-activation matrix offers insight into how
different layers interact with class information. Since we care
about the distribution of units activation across class labels
and not their absolute values, the matrix is normalized row-
wise such that the co-activation values of a single unit sum
to one. With this matrix one can identify units that are



skewed towards a set of specific classes, or which lean towards
uniformity.

To measure the tendency more precisely, we define a skew-
ness metric which takes a maximum value of 1 indicating the
unit corresponds with a single class, and a minimum of 0
indicating the unit activates uniformly across all classes:

S(L) = StD(L)
Max(StD) (2)

Where L is a row of the co-activation matrix, 0 <= S <=
1, and StD is the standard deviation. Normalization by
Max(StD) makes comparing different units possible.

6.3.1. Unit Level Analysis

Using the skewness metric on the color-sensitive units iden-
tified in section 4, we are able to verify the existence of both
class-invariant and class-specific color-sensitive units. Once
again using the set of units analyzed in Figures 3 and 5, com-
puting the co-activation matrix of these units with class labels
yields the distributions in Figure 6.
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(a) Skewness = 0.13

p
la

n
e

b
ic

y
cl

e
b
ir

d
b
o
a
t

b
o
tt

le
b
u
s

ca
r

ca
t

ch
a
ir

co
w

ta
b
le

d
o
g

h
o
rs

e
b
ik

e
p
e
rs

o
n

p
la

n
t

sh
e
e
p

so
fa

tr
a
in tv

0.00

0.05

0.10

0.15

0.20

0.25

C
la

ss
 

 c
o
-a

ct
iv

a
ti

o
n

Unit 220 of layer conv3_1

(b) Skewness = 0.09
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(c) Skewness = 0.10
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(d) Skewness = 0.11
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(e) Skewness = 0.22

p
la

n
e

b
ic

y
cl

e
b
ir

d
b
o
a
t

b
o
tt

le
b
u
s

ca
r

ca
t

ch
a
ir

co
w

ta
b
le

d
o
g

h
o
rs

e
b
ik

e
p
e
rs

o
n

p
la

n
t

sh
e
e
p

so
fa

tr
a
in tv

0.00

0.05

0.10

0.15

0.20

0.25

C
la

ss
 

 c
o
-a

ct
iv

a
ti

o
n

Unit 611 of layer fc6

(f) Skewness = 0.15

Fig. 6: Normalized co-activation of example units with every
class. See Figures 5 and 3.

In Figure 6 we show how each unit is skewed towards
the different classes. Among these eight units, we find unit
(e) is highly skewed, in accordance with Figure 5 where top
activation images of this unit all belong to a single class. This
is an example of a unit being color specific and class specific,
as it seems to correspond mainly with yellow buses. Units 14
and 32 in conv5 of AlexNet show a similar preference . Other
units of the figure are mostly class invariant with a skewness
factor around 0.12, and seem to respond primarily to color
information. Units 104 in Conv2 (purple) and 116 in Conv4
(red) of AlexNet are additional examples of this behavior.

Figure 7 shows for every class, how units are skewed to-
wards it. The average co-activation is similar for all classes,
and all classes have color-sensitive units skewed toward them,
(shown as outliers in the figure).
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Fig. 7: Average co-activation per class for all color-sensitive
units

6.3.2. Layer Level Analysis

Finally, we investigate the evolution of color-sensitivity
(equation 1) and class-specificity (equation 2) across the
layers of the network. This is shown in Figure 8. We can
see that the deeper the layer, the more units become class-
specific and less color-sensitive. This is expected since the
network is trained for the task of object recognition, making
it invariant to other aspects of the input.
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Fig. 8: Average color-sensitivity (above in green) and aver-
age skewness toward classes (below in black), for every layer.
Standard deviation in light color.

7. CONCLUSION AND FUTURE WORK

We have introduced and operationalized the concepts of
unit color-sensitivity, hue-specificity and class-invariance,
which we will be useful in picking out a subset of network
activation relevant to color-related tasks, such as secondary
color-based classification and color enhancement.

We showed that in the case of VGG-19 and AlexNet,
color information is processed by specific units that are color-
sensitive. Further analysis showed these units possess differ-
ent hue-specific characteristics, depending on which layer of
the network they belonged to. We find that units in earlier
layers being more sensitive to color and less so to class, while
units in deeper layers displaying the opposite trend, justifying
the use of pre-trained models as general feature extractors.
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