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Summary 

Switzerland will face higher temperature increases than the global average, which will 

have strong impacts on the mountain ecosystems. How tree species will respond to future 

climate change scenarios, and what mechanisms will they adopt, remains as a gap of 

knowledge in ecological research. Foresters will have to make short-term decisions and 

plan future managements under the great uncertainty of climate change and they demand 

answers to know if the current species will cope with the predicted climate change and to 

what extent the ecological goods and services will be affected (e.g. timber industry). The 

project CLIMARBRE was developed in order to ease and support their decision making by 

providing an advanced knowledge about the responses of beech and spruce regeneration to 

simulated climate change (specifically, warmer and drier conditions) in the wooded 

pastures of the Swiss Jura mountains. This project, which was built on the interface 

between fundamental research in forestry ecology and applied sciences, should attract the 

attention of foresters, managers of natural environments and of the general public.  

By using transplantation along an elevational gradient, including four sites in the Jura 

mountains, “realistic” climate conditions were created to specifically simulated three 

potential future climatic scenarios from the IPCC (from A1B to A2). This space for time 

approach enabled the assessment of saplings’ responses of beech and spruce to simulated 

climate change and their acclimation abilities. Saplings adapted to subalpine conditions at 

1350 m were collected and transplanted towards lower altitudes exposing them to an 

average increase of 6.3ᵒC and a reduction in 30% of precipitation, at the lowest site 

throughout the study period.  

The main findings include i) a longer growing season due to induced-elevation warming 

(downward shift) could not fully account for the species-specific positive growth 

responses; (ii) the contrasting species growth responses were linked to different 

sensitivities to elevated vapor-pressure deficits; (iii) models could better account for the 

growth response to warming after incorporating extreme climatic thresholds and their 
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effects; iv) beech leaves showed an increase of xeromorphism through the increase of the 

cuticle thickness, vein network and smaller stomata, associated, to a higher leaf area v) 

which allowed it to grow in warmer conditions while coping with an increase of 

evaporative demand of the air; vi) and finally, the linkage between responses at tree, leaf, 

tissue and soil level, through a multiple level approach, improved the mechanistic 

understanding of these species capacities to respond to simulated climate change. 

Keywords 

Mountain ecosystems, response, Climate Change, elevational gradient, beech, spruce, 

saplings, acclimation, multiple level approach 
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Résumé 

Dans le futur une augmentation des températures est attendue en Suisse et plus élevées 

que la moyenne au niveau mondial. Dans la recherche écologique, un manque de 

connaissances demeure quant à la réponse des arbres aux scénarios futurs de 

changement climatique et aux mécanismes qu’ils adopteront. Les forestiers devront 

prendre des décisions à court terme et planifier les futurs plans de gestion sous la grande 

incertitude du changement climatique. Ainsi, ils exigent des réponses sur l’habilité des 

espèces actuelles à résister aux changements climatiques prévus et dans quelle mesure 

les biens et services écologiques seront affectés (e.g. l'industrie du bois). Le projet 

CLIMARBRE a été développé afin de faciliter et soutenir leur prise de décision en 

fournissant une connaissance approfondie des réponses de la régénération du hêtre et de 

l'épicéa aux changements climatiques simulés (spécifiquement, conditions plus chaudes 

et plus sèches) dans les pâturages boisés des montagnes du Jura suisse. Ce projet, fondé 

à l'interface entre la recherche fondamentale dans l'écologie forestière et les sciences 

appliquées, devrait attirer l'attention des forestiers, des gestionnaires de milieux naturels 

et du grand public. 

En utilisant la transplantation le long d’un gradient altitudinal dans quatre sites dans les 

montagnes du Jura, des conditions climatiques «réalistes» ont été créées pour simuler 

spécifiquement trois scénarios climatiques futurs potentiels du IPCC (de A1B à A2). 

Cette approche espace pour temps a permis d'évaluer les réponses des jeunes arbres du 

hêtre et de l’épicéa au changement climatique simulé et à leurs capacités d'acclimatation. 

Des plants adaptés à des conditions subalpines à 1350 m ont été recueillis et 

transplantés vers des altitudes plus basses, les exposant à une augmentation moyenne de 

6,3 ° C et à une réduction de 30% des précipitations, au site le plus bas tout au long de 

la période d'étude. 

Les principaux résultats comprennent i) une période de croissance plus longue en raison 

du réchauffement induit par l'élévation (décalage vers le bas) qui ne pouvait pas prendre 

pleinement en compte les réponses positives spécifiques à l'espèce; (ii) les réponses de 

croissance contrastées des espèces étaient liées à différentes sensibilités aux déficits 

élevés de pression de vapeur; (iii) les modèles pourraient mieux tenir compte de la 
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réponse de la croissance au réchauffement après incorporation de seuils climatiques 

extrêmes et de leurs effets; iv) les feuilles de hêtre ont montré une augmentation du 

xéromorphisme par l'augmentation de l'épaisseur de la cuticule, du réseau de veines et 

des stomates plus petits, associés à une surface foliaire plus élevée v) qui lui a permis de 

pousser dans des conditions plus chaudes tout en faisant face à une augmentation de 

l'évaporation; vi) et enfin, le lien entre les réponses au niveau des arbres, des feuilles, 

des tissus et du sol, grâce à une approche à plusieurs niveaux, a amélioré la 

compréhension mécanique des capacités des espèces à répondre aux changements 

climatiques simulés. 

 

Mots-clés 

Écosystèmes de montagne, réponse, Changement climatique, gradient altitudinal, hêtre, 

épicéa, jeunes arbres, acclimatation, approche à plusieurs niveaux
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 Chapter 1     General introduction 

 

 

Spruce saplings growing among adult spruce trees in a wooded pasture (Col de Marchairuz) 

P. Sanginés (2015) 

 

 

 

 

“Global warming isn’t a prediction. It is happening.” 

(James Hansen) 
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1.1 Forest ecosystems under climate change 

 

Climate is a key factor shaping forest ecosystems; thus climate change is expected to 

have impacts on the phenology, growth, mortality and regeneration of tree species 

worldwide (Zimmermann et al., 2014). In Europe, 38% of the total land area is covered 

by forests (European Parliament, 2017). This ecosystem not only provides with wood 

for the forest industry but also other ecological goods and services that range from 

erosion protection to recreation and tourism (Hengeveld et al., 2013). The extent to 

which current trees and forests are able to cope with climate change will highly depend 

on the current site conditions and current stand properties (CH2014-Impacts, 2014). For 

instance, important changes will take place in sites where forest growth is currently 

limited by water availability or low temperatures (Way and Oren, 2010).  Notable 

changes in biomass, forest composition and the provision of ecosystem services have 

already been evidenced at the low elevations in the Swiss inner-alpine valley (CH2014-

Impacts, 2014), where the defoliation and mortality in scots pine has been associated to 

reduced precipitation and increased temperatures (Zweifel et al., 2009). 

 

Forecasting climate change impacts and to which extent forests are able to cope with it, 

remains today an important unsolved issue. It is extremely difficult to predict what the 

impacts of changing climate will be on the various tree species, and ecosystems at the 

various localities (Hengeveld et al., 2013). In addition, forest management practices 

typically encompass many decades and are based on long-term climate change 

projections, which are highly uncertain and unprecise. Nevertheless, substantial effort 

has been put to provide foresters with the necessary decision-support tools for adapting 

forest managements to future climate change scenarios (IPCC, 2012).   

 

1.1.1 Situation in Switzerland 

Throughout the current century, temperate mountains in the northern hemisphere will 

experience the most intensive temperature rise, between two and three times higher 

temperatures (range +2.8ºC to +5.3ºC) than those recorded over the 20th century 
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(Nogués-Bravo et al., 2007). Specifically, Switzerland will face higher temperature 

increases than the global average (MétéoSuisse, 2013), which will have strong impacts 

in the mountain ecosystems (IPCC, 2007). In the Swiss mountains, a rise in mean 

annual air temperature of 1.5ºC was observed during the 20th century (Beniston et al., 

1997) with associated increases in the frequency of extreme warm summers and 

prolonged droughts (Schar et al., 2004; Beniston, 2009). More precisely, the CH2011 

scenarios predict warmer summers (up to 6ºC until 2085) and precipitation reduction 

(up to 40%) to occur all over Switzerland (Modeling, 2011). At the regional scale, an 

increase of 1ºC in air temperature was observed in the past century in the Jura, within 

the climate change scenario A1B, and an increase of 1.1 to 3.5ºC is predicted towards 

2060 (MétéoSuisse, 2013). Therefore, changes in summer soil water availability, plant 

phenology and growing season length, related to warming, will ultimately have 

repercussions in forest ecosystem distributions (Parry, 2000). Therefore, in the Swiss 

Jura region, the distribution of the two dominant tree species Picea abies (L.) H.Karst 

(Norway spruce) and Fagus sylvatica (L.) (European beech) will most likely be affected 

by future climate change projections. Currently, considerable concern has raised among 

forest managers and stakeholders to how climate change will affect the performance and 

distribution of these species, especially regarding Norway spruce, which is an evergreen 

conifer economically important in Switzerland (Cioldi et al., 2010). According to the 

Swiss Federal Office for the Environment (OFEV) and the Swiss Federal Institute for 

Forest, Snow and Landscape research (WSL), the ecological goods and services 

provided by the Swiss forests will be compromised at the mid and long term. Therefore, 

it is imperative to develop sylvicultural practices that facilitate the transition of forests 

to future climate conditions (Brang et al., 2016). For this reason, OFEV and WSL 

together launched a research program (2009-2017) entitled “Forests and climate 

changes” that aimed to gather and synthesize results from 42 research projects occurred 

all across Switzerland. The final report presents to what extent climate changes will 

affect forests and their ecological goods and services  (Pluess et al., 2016). 

One of the research studies included in this program was the PorTree project 

(Zimmermann et al., 2014), which generated maps of Switzerland (Figure 1-1) 

representing the climatic habitat suitability of these species, based on species 

distribution models (SDMs). They illustrate the habitat potential at certain time periods 

in the future, but do not give any indication on how fast these changes will occur. 
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Moreover, it is most likely that species will survive for a certain time in the areas that 

become unsuitable, so careful interpretation has to be done from these maps. 

Nevertheless, they provide managers with useful information of which species are likely 

to be suitable or not today and in the future.  

Species distribution models project that spruce and beech will shift away from the Swiss 

plateau and towards higher elevations, as the growth conditions in the plateau will 

become unsuitable for these species (Zimmermann et al., 2014). Therefore, the potential 

of conifer timber production might also shift from the Swiss Plateau to the Alps and the 

Jura (CH2014-Impacts, 2014). The disappearance of spruce on the Swiss Plateau 

(Figure 1-1) shows that the future climate in this region will become warmer (and partly 

also drier) than in any observed current distribution of Picea. However, according to 

Zimmerman et al. (2014), it is most likely that until 2050 the climate will not be 

extreme enough to drive spruce to extinction and that the out competition by 

immigrating competitor species, such as oaks or beech, will probably take 100s if not 

1000s of years to occur.  

Buttler et al. (2012) showed that for the Jura mountains, under simulated moderate 

climate change (IPCC-scenario B2, +4 K projected until 2100), spruce initially profits 

from higher temperatures, but around 2100, drought stress leads to tree cover 

fluctuations and partial forest breakdown. Pioneer tree species (rowan berry, Sorbus 

aucuparia) indicate the ongoing shift in the forest community towards a dominance of 

beech. For extreme climate warming (IPCC-scenario A1FI, +8 K projected until 2100), 

spruce is replaced by Scots pine.  

1.2 Tree responses to climate change 

Changes in environmental conditions (i.e. higher temperatures and more frequent 

drought periods) can expose plants to an increasing abiotic stress (i.e. water availability). 

Stress can be defined as “an environmental factor that reduces the rate of some 

physiological process (e.g. growth or photosynthesis) below the maximum rate that the 

plant could otherwise sustain” (Lambers et al., 2008). In this context, plants present a 

wide range of responses to stress, which scope from alterations in gene expressions and 

cellular metabolism to changes in growth rate and plant productivity (Shao et al., 2008).  
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To evaluate the response of individual processes (e.g. the photosynthesis response) to 

stress, three different time scales have been established: (1) the stress response, (2) the 

acclimation and (3) the adaptation (Lambers et al., 2008). In general terms, when an 

environmental factor has a negative effect on a plant process an immediate stress 

response appears during a time that can span from seconds to days. In order to 

compensate this decline in performance, plants adjust their morphological and 

physiological properties through acclimation, within the life time of an individual. As a 

result, the biochemical changes that occur induce changes on physiological processes, 

such as photosynthesis and growth rate, as well as changes in the morphology of organs 

(Sanginés de Cárcer et al., 2017). Eventually, a population becomes adapted to a 

specific environmental stress when the compensation for the decline in performance is 

achieved through genetic changes (Lambers et al., 2008). 

Tree species in the forest ecosystems may respond to climate change in three different 

ways: (i) persistence in the modified climate, by adjusting to the novel conditions 

through phenotypic plasticity or adaptation through natural selection, (ii) migration 

following conditions to which they are adapted or (iii) extinction (Theurillat and Guisan, 

2001; Nicotra et al., 2010). Several studies showed how elevational upward shifts of 

species’ ranges have occurred during the past century in response to current climate 

warming. As a way of example, Peñuelas and Boada (2003) have provided a detailed 

investigation about the elevational shift of beech (Fagus sylvatica L.) which has been 

progressively replaced by Mediterranean holm oak forest (Quercus ilex L.) in the 

Montseny Mountains (Spain). Moreover, the decline in growth and vitality of silver fir 

(Abies alba Mill.) has led this species to shift towards higher elevations and facilitating 

more drought tolerant species, such as beech and pubescent oak, to take over the lower 

elevations (Maxime and Hendrik, 2011). Thus, environmental changes cause the loss of 

some species and the gain of others, resulting in the change in species traits and 

interactions in plant communities; with cascading effects on the functioning of 

ecosystems and services they provide (Gimmi et al., 2010; Wardle et al., 2011). This 

will inevitably lead to a change in the composition of forests, timber production, and 

thus the forest economy and landscape in general (Peringer et al., 2013). However, the 

ongoing climate warming might be too rapid for natural migration to successfully allow 

species to reach more suitable habitats (Rice and Emery, 2003). In this context, 
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individual plants would need to remain in their current location and withstand 

environmental changes (Bonn, 2000; Petriccione, 2005; Allen et al., 2010) through 

short-term phenotypic plasticity (Vitasse et al., 2010).  

Phenotype is defined as “the appearance of an organism resulting from both genetic 

and environmental influences” (Nicotra et al., 2010) (Figure 1-2). Therefore, 

“phenotypic plasticity is the range of phenotypes that a single genotype can express as a 

function of its environment”.  In fact, the main challenge of evolutionary ecology is to 

understand how small modifications in phenotypes can have an effect on the natural 

selection of individuals (Vitasse, 2009). Literature supports a remarkable range of 

plastic responses among plant species and populations to comparable environmental 

challenges (Valladares et al., 2007). This wide range of responses will most likely have 

an effect on the inter-specific competition and distribution of species. Thus,  phenotypic 

plasticity will play a key role to determine plant responses, both in short- and long-term, 

and requires the understanding of the phenotypic variation of individual plants for a 

given species or population (Nicotra et al., 2010; Gratani, 2014). 

 

Figure 1-2 (a) In the evolutionary and ecological literature, plastic responses are commonly 
presented as reaction norms. Here the blue and red lines indicate the reaction norms of two 
different genotypes responding to a change from a low light environment (Env 1) to a high light 
one (Env 2.)  The extent of phenotypic change in response to a signal is its phenotypic plasticity. 
Asterisks in the panels denote whether there is a significant effect of environment (E) or 
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genotype (G), and whether there is a significant genotype by environment interaction (G x E). 
(b) Visual example of plastic responses. Adapted from Nicotra et al. (2010). 

In the following subsections tree responses have been discerned into three different 

topics: (1) growth and phenology  (2) physiology (i.e. photosynthesis) and (3) 

morphology (Ahmad and Prasad, 2012). 

1.2.1 Tree growth and leaf phenology 

Growth responses to warming have been observed to vary between latitudes and 

between functional groups (i.e. between deciduous trees and conifers). While temperate 

forests seem to benefit from warmer conditions with an increase in growth (Way and 

Oren, 2010), Mediterranean and tropical ecosystems are likely to respond with a decline 

in biomass allocation (Ogaya and Peñuelas, 2007; Way and Oren, 2010). This is partly 

explained by the fact that the growth of trees in high latitudes or altitudes are usually 

temperature-limited while Mediterranean forests are mainly limited by water 

availability (Penuelas et al., 2004; Way and Oren, 2010). A review with synthesized 

data from 63 studies, comprising trees from different functional groups and thermal 

niches, showed that deciduous species would be highly more responsive than 

evergreens to warming, revealing a more conservative response of the last (Way and 

Oren, 2010). However, the authors of this review also state the importance of taking 

into account other factors, such as water and nutrient availability, which also influence 

the growth response of trees to warming conditions. 

Strong evidence is found in literature that an increase in biomass in temperate zones is 

related to a lengthening of the vegetative season. Most of the studies of terrestrial 

biological systems report consistent changes on plant phenology (the timing of seasonal 

events) and on the growing season lengthening (time span between leaf unfolding and 

leaf fall) due to global warming (IPCC, 2007). During the second half of the 20th 

century it has been reported that the length of the European annual growing season was 

in average of 10.8 days longer and it was mainly attributed to changes in air temperature 

(Menzel and Fabian, 1999). In particular, a lengthening of 2.7 days/decade was recorded 

in Switzerland during the same period (IPCC, 2007). Moreover, due to the important 

role the vegetative period has on the global carbon fixation, as well as in the related 
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global water and nutrient cycles (Peñuelas and Filella, 2001), we can expect these 

processes to be affected by  a longer duration of forest canopy. 

In addition, recent studies performed in temperate forests show how the sensitivity of 

phenology to an increase in temperatures commonly leads to an advanced leaf unfolding 

(Vitasse et al., 2011) and thus to longer growing seasons (Menzel, 2000). More 

precisely, in temperate-zone deciduous tree species, temperature is the main driver of 

phenology (Kramer et al., 2000), although photoperiod is also known to play an 

important role in the budburst of some species, such as common beech (Basler and 

Körner, 2012). These shifts in phenology timing events have been reported for a 

widespread number of species and locations (Cornelius et al., 2013; IPCC, 2007; 

Vitasse et al., 2009).  

Autumn phenology also plays a key role in the determination of the growing period. It 

has recently been hypothesized that a delay on leaf senescence could also lead to a 

longer growing season (Menzel and Fabian, 1999; Vitasse et al., 2011). However, as 

senescence timing is poorly understood (Estrella and Menzel, 2006) further research is 

necessary in order to understand the mechanisms and the factors that trigger the process 

(i.e. photoperiod, content of nonstructural carbohydrates in leaves or decrease and 

temperatures during autumn). In addition, phenological responses to temperature can be 

species-dependent which could affect biotic interactions under climate warming 

(Vitasse et al., 2009), leading to a change in species distribution. As a general 

conclusion, studies on growth rates and tree phenology are good indicators for assessing 

climate change impacts on temperate forests. 

1.2.2 Ecophysiology 

Atmospheric changes (i.e.  partial pressure of CO  and temperature) associated with 

altitude (Körner, 2007) have an impact on the main physiological processes that control 

the carbon fixation (photosynthesis) and the transpiration in plants (stomata 

conductance) (Bresson et al., 2009). Indeed, a reduction in the total and partial pressure 

of atmospheric gases has a significant impact on the respiration and gas exchange of 

plants (Bresson et al., 2009; Körner, 2007). 
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Phenotypic plasticities in photosynthetic traits are found in certain plants (Berry and 

Bjorkman, 1980) under different environmental conditions. Discrepancies have been 

found between the results of studies that compared photosynthetic performances along 

an elevational gradient. For instance, some studies find no variation on photosynthetic 

rates, whereas others find that it decreases with elevation (Bresson et al., 2009). The 

lack of consensus regarding the elevational effect on CO  assimilation rates is due to the 

absence of current comparative field studies (Körner et al., 1986). For instance, some 

studies use CO  molar concentrations while others use CO  partial pressure. Moreover, 

gas exchange measurements based on CO  partial pressure are usually performed at 

ambient pressure, while very few studies have used CO  constant pressure (Bresson et 

al., 2009). In fact, Bresson et al. (2009) found different results in photosynthetic 

capacities when performing gas exchange measurements along an elevational gradient 

at ambient and constant CO  partial pressure. These authors insist on the fact that this 

discrepancy may lead to controversial conclusions. They state the importance of 

keeping all microclimatic variables constant (CO  partial pressure, temperature, light 

and humidity) in order to compare the photosynthetic performance of populations at 

various elevations. The results of this study performed at uniform CO  partial pressure 

revealed an increase in the maximum assimilation rate with elevation for beech and oak. 

These results suggest that alpine species compensate harsh environmental conditions 

and short growing seasons by having a higher photosynthetic performance. 

Photosynthetic assimilation rate is also strongly related with the leaf nitrogen content 

(Reich et al., 1998; Hikosaka, 2004), as a high percentage of this component is located 

in the principal enzyme (ribulose-1,5- bisphosphate carboxylase/oxygenase) that 

catalyses the carboxylation process. In fact, some findings reveal an increase of 

photosynthetic capacity associated to an increase of nitrogen content per leaf area and 

increasing elevation (Körner et al., 1986; Körner, 1989; Reich et al., 1998). This 

suggests that plant’s growth from higher elevations is not significantly restricted by 

nutritional status nor by the gas exchange capacity of leaves (Körner et al., 1986; 

Körner, 1989). 

The allocation of nitrogen within leaves is related to the photosynthetic nitrogen use 

efficiency (PNUE, photosynthetic capacity per unit leaf nitrogen), which is another 

important factor when studying the interspecific difference in photosynthetic capacity 
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(Hikosaka and Hirose, 2000; Takashima et al., 2004). Lower PNUE values are usually 

found in evergreen more than in deciduous species, explained by the smaller allocation 

of nitrogen in photosynthetic apparatus. This puts into manifest the different strategies 

followed by trees, either focusing in persistence (toughness under constraint 

environments) in evergreen species, or productivity (photosynthesis) in deciduous 

species (Takashima et al., 2004). 

Stomatal conductance regulates the gas exchange and transpiration in vascular plants, 

thus influencing the carbon fixation and transpiration. The closure mechanism of 

stomata plays an important role in plants growing under drought conditions. However, 

non-stomatal limitations (i.e. mesophyll conductance, leaf diffusive resistance and 

metabolic impairments) may also affect the photosynthetic performance under drought 

stress. The response of the leaf’s net assimilation rate (to sub-stomatal CO2 

concentration, An-Ci curve) and chlorophyll a fluorescence (Fv/Fm) are two methods 

used for determining these non- stomatal limitations (Signarbieux and Feller, 2011). 

1.2.3 Anatomy and morphology of tree foliage 

Stress factors eventually manifest themselves as macroscopic leaf symptoms 

(Günthardt-Goerg and Vollenweider, 2007) when physiological and structural 

alterations are presented in the targeted tissues (Vollenweider and Günthardt-Goerg, 

2005). For instance, related changes on the cell and tissue structure have been 

associated to drought (Olmos et al., 2007) ozone concentrations (Kivimaenpaa et al., 

2001; Günthardt-Goerg et al., 2013) and different light environments (Ashton and 

Berlyn, 1994). Moreover, several studies reveal correlations between certain 

morphological and anatomical adaptations (i.e. leaf size, stomata density, cuticle 

thickness, etc.), and physiological processes (i.e. net photosynthesis, water potential, 

etc.) (Ashton and Berlyn, 1994; Royo et al., 2001; Gratani et al., 2003). For Quercus 

ilex L. seedlings under high temperature conditions, an increase in water use efficiency 

and photosynthetic rate was correlated to higher leaf mass area and to the proportion of 

palisade in the mesophyll thickness (Gratani et al., 2003). In addition, leaf structure (i.e. 

specific leaf area, SLA) has an influence in the maximum assimilation rate and leaf 

nitrogen (Amax-N) relationship (Reich et al., 1998), which differs among different 

functional groups (i.e. deciduous and conifer). For instance, deciduous species have 
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higher SLA than evergreen species. A relationship between leaf size and elevation has 

also been reported within different plant life forms in New Zealand. The main finding is 

a decreasing trend of leaf size and SLA towards higher elevations, suggesting that 

changes on these characteristics are related to temperature regimes (Körner et al., 1986). 

A decrease in the photosynthetic rate has also been associated to changes in stomata 

density and mesophyll proportions (Greenwood et al., 2008). As way of example, 

stomata density, length and dry weight of pine needles increased with elevation up to 

3000 m (Qiang et al., 2003). Therefore, plants are able to manage and respond to 

environmental changes through phenotypic plasticity in morpho-anatomical traits 

(Bradshaw, 1965). 

In the present research I intend to study the acclimation abilities to simulated climate 

change of spruce and beech through different response levels (individual, organ and 

tissue level), by comparing saplings from the same population growing in different 

environmental conditions. To achieve this, I will analyze the variation in morpho-

anatomical traits and physiological processes of these species along an elevational 

gradient in the Swiss Jura Mountains.  

1.3 Assessing future climate change impacts in the present 

The evaluation of climate change impacts in the forest ecosystems is very challenging, 

as it takes several decades to observe an ecological response. However, we cannot 

afford waiting to observe how climate change is going to evolve and affect these 

ecosystems as the loss in ecological goods and services and associated consequences 

can be devastating.  

Many modelling approaches exist to assess climate change impacts on trees and forests. 

Most of these are constrained to small comparable regions or to selected species. 

Hengeveld et al. (2013) list the following approaches frequently used: biogeochemistry 

models, population dynamics models with competition, demographic models of a single 

species, phenological models of single species and species distributions models. The 

main limitation of these approaches is their incapability of predicting the future fate of 

species at large spatial scale while predicting responses at fine spatial resolution that is 
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useful for forest managements. Moreover, they generally do not take into account 

changes in climate variability and extremes as their predictions are based on the use of 

average changes of climate.  

Other approaches, related to empirical studies, are the climate-controlled chamber 

experiments often conducted ex situ, which are valuable for understanding the impact of 

a single factor on tree physiology but does not represent real in situ conditions that 

involve many abiotic and biotic interactions that determine tree responses 

(Zimmermann et al., 2009; De Boeck et al., 2010; Körner et al., 2016; Vicca et al., 

2016). However, elevational gradient experiments (Körner et al., 1986; Vitasse et al., 

2010; Gavazov et al., 2014; Kong et al., 2014; Pescador et al., 2015) are used in 

ecological research as a “natural” approach to the impacts of future climate change by 

means of “space-for-time/warming experiments” (Körner, 2007). Elevational gradients 

are characterized by steep changes in the physical environment such as temperature and 

atmospheric pressure. However, it is important to distinguish changes in climatic 

variables associated with altitude from those that are related to local peculiarities. Thus, 

a reduction in land area, decrease in atmospheric pressure (declines by c.a. 11 % for 

every km gain in altitude), reduction of atmospheric temperature (on average 5.5 K per 

km of altitude) and increasing radiation (under cloudless sky) are climatic factors 

relevant for organisms that are associated with altitude (Körner, 2007). Climatic trends 

that are generally not related to altitude are precipitation, moisture, wind velocity and 

seasonality. These two main group of drivers are generally not distinguished in transect 

experiments, leading to controversy conclusions.  

The general use of monthly or annual climatic means to assess species responses to 

climate change has ignored the question of how climatic extremes could help to explain 

species distributions. However, climate change implies simultaneously changes in mean 

climatic variables and changes in extreme events (IPCC, 2007). Moreover, both 

adaptation and future responses of species to changing climates will certainly be 

affected by extremes in addition to means (Zimmermann et al., 2009). Despite this fact, 

extreme climatic events can have a large effect on tree growth and have been rarely 

studied (Lendzion and Leuschner, 2008; Teskey et al., 2015) and there is no accurate 

definition related to the existence of an “extreme” (Stephenson, 2008). An established 

definition would be “an episode or occurrence in which a statistically rare or unusual  
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climatic period alters ecosystem structure and/or function well outside the bounds of 

what is considered typical or normal variability” (Smith, 2011). A special report of 

IPCC (2012) defined an “extreme climate or weather event” or “climate extreme” as 

“the occurrence of a value of a weather of climate variable above (or below) a 

threshold value near the upper (or lower) ends of the range of observed values of the 

variable”. They clarify this definition by stating that it includes absolute thresholds as 

extreme events and give the example of specific critical temperatures for health impacts. 

Moreover, changes in extremes can be related to variations in the mean, variance or 

shape of probability distribution, or as combination of all (Figure 1-3). 

To conclude, the intrinsic uncertainty of climate change implies that no single method is 

sufficient enough to predict and understand species responses. Therefore, it seems more 

Figure1-3 The effect of changes in temperature distribution on extremes. Different changes in temperature 
distributions between present and future climate and their effects on extreme values of the distributions: a) 
effects of a simple shift of the entire distribution towards a warmer climate; b) effects of an increased 
temperature variability with no shift of the mean; and c) effects of an altered shape of the distribution, in 
this example an increased asymmetry towards the hotter part of the distribution (IPCC, 2012). 
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appropriate to evaluate potential impacts of climate change from an array of methods 

(Zimmermann et al., 2014) at multiple scales (Sass-Klaassen et al., 2016).   

1.4 Thesis overview 

The silvopastoral ecosystems of the Swiss Jura Mountains are traditionally used as a 

source of forage and timber, but their sensitivity to land-use changes and climatic 

conditions puts them at risk (Buttler, 2014). The regeneration and growth of the two 

main species, spruce (Norway spruce) and beech (European beech), is crucial for 

structuring these ecosystems and the semi-wooded landscape, and in particular for 

maintaining dynamic coexistence in space and time, isolated trees, shreds of forests and 

pastures. It is therefore important to understand the processes of regeneration of trees 

for the sustainable use of these ecosystems and to maintain their multifunctional value, 

including their biodiversity. From the inevitable perspective of landscape 

transformation under climate change (Peringer et al., 2013), adaptive management is 

crucial to ensure the expected ecological goods and services, including pasture forage, 

wood, biodiversity and beauty of the landscape. In this context, the response of young 

trees to climate change becomes more important.  

The main objective of the present thesis was to better understand the mechanisms of 

response to simulated climate change of two of the main tree species in central 

European forests, European common beech (Fagus sylvatica L.) and Norway spruce 

(Picea abies (L.) H. Karst). Because from a response at the individual level begins a 

cascade of ecological processes observed at the ecosystem level (Hansen et al., 2001), 

our main source of information was the individual tree. Moreover, due to the 

complexity of tree responses to changing environmental conditions, I assessed the 

acclimation abilities at different levels of response (Figure 1-4). In other words, I intend 

to explain the growth patterns observed in beech and spruce saplings by looking at the 

phenology, morphology and physiology of tree foliage and the tree-soil-atmosphere 

relationship. This makes this project original as it integrates results from 

multidisciplinary approaches, which are commonly studied separately.  

In addition to increases in air temperature, it has been predicted an increase in frequency 

and intensity of extreme events (IPCC, 2013), which will have stronger impacts on tree 
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physiology than gradual temperature shifts (Teskey et al., 2015). Therefore, I assessed 

the impacts of extreme climatic variables on tree performance (i.e. tree growth) and 

evaluated their importance for the ecological understanding of tree physiology in 

increasing climatic variability. 

       Specifically, this thesis intended to give answers to the following research questions and 

to test the following hypothesis: 

Q1: Will spruce and beech saplings acclimate to simulated climate change? 

H1: Spruce and beech saplings will acclimate to simulated climate change. 

Q2: Which is the main climatic driver (either temperature or precipitation) influencing 

the performance of these species within our latitudes? 

H2: Within our latitudes, temperature is the main driver of saplings’ responses, as 

precipitation is not a limiting factor in the Jura mountains. 

Q3: Will phenotypic plasticity (at different structural levels) lead to species-specific 

responses and, therefore, to different degrees of acclimation to the simulated climate 

change?  

H3: Beech will present a higher phenotypic plasticity than spruce. 

Q4: Do extreme climatic variables improve the interpretation of species responses to 

climate change? 

Figure 1-4 Levels of study in this thesis 
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H4: Climatic extremes have stronger impacts on tree growth than gradual changes in 

climate and will explain better tree growth responses. 

To address these research questions, I assessed the acclimation abilities of beech and 

spruce saplings native to the montane belt of the Jura Mountains by performing a 

transplantation experiment along an elevational transect (Figure 1-5). This “space-for-

time” approach (Körner, 2003) is based on the variation of environmental conditions 

(e.g. temperature) with elevation within a very short distance, enabling to simulate the 

impacts of future climate change scenarios on vegetation in the present.  

 

Figure 1-5 Experimental design of the translocation of saplings native of Col de Marchairuz to 
three lower recipient sites. The  mean temperature and the accumulative precipitation during the 
growing season is presented for the control site at 1350 m, while for the recipient sites the 
difference in temperature and precipitation is presented. Values correspond to the average of the 
data collected between the years 2013, 2014 and 2015. 

Saplings of beech (Fagus sylvatica L.) and spruce (Picea abies (L.) H.Karst.) were 

collected at the donor site (1350 m) immediately before the budburst of the 2012 

growing season. The surface of collection was assumed to be reduced enough to ensure 

the same provenance of saplings. The saplings had similar sizes (average height of 33 

cm for beech and 31 cm for spruce) and were excavated with intact root systems and 

soil. They were then transplanted to 20-L pots and randomly reallocated in four plots, 

one at each altitude, in open spaces and far enough from the forest to avoid shade from 

surroundings adult trees. Half of the saplings were transplanted a second time to 40-45-

L pots in autumn 2014, two years after the first transplantation, due to the potential 

limitation of growth by the initial pots. The other half was harvested for analysis. The 
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soil of the harvested saplings was used for the transplantation of the remaining 

individuals to maintain the same soil characteristics for each species, treatment and site.   

The experimental design was a generalized block with repeated measures (2013, 2014 

and 2015). The four blocks were considered as fixed and corresponded to the four sites 

at altitudes of 1350, 1010, 570 and 395 m. Ten replicate saplings per species (beech and 

spruce) and treatment (non-irrigated and irrigated) were randomly allocated within each 

block. The experimental unit was a pot with one sapling, which was randomly placed on 

a grid with a spacing of 0.3 × 0.9 m to avoid light competition. The pots were recessed 

belowground, and a geotextile cap was placed at the top and bottom of the pots to 

reduce both the evaporation of soil water and the penetration of roots into the soil of the 

site. All sites were equipped with wireless meteorological stations (Sensorscope, 

Climaps. available at: https://www.climaps.com/) that continuously recorded climatic 

parameters (precipitation and air temperature), enabling us to add water weekly during 

the growing season to ensure equal amounts of precipitation at the donor and recipients 

sites for the irrigated treatment. The saplings in the non-irrigated treatment were 

subjected to the local environmental conditions of each site. The purpose of the 

irrigation treatment was to identify the effect of rainfall for studying the responses of the 

saplings to temperature alone (Figure 1-6). 

 

Figure 1-6 Experimental design: treatments applied along the elevational gradient  
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To summarize, I assessed the vitality of saplings by measuring the annual tree growth 

(Chapter 2) through a specific allometric equation which allowed estimating the 

biomass increase of each individual tree in a non-destructive way. I also assessed to 

what extent a longer growing season did increase tree growth (Chapter 2). In order to 

explain the species-specific growth responses observed, I sought to further understand 

the mechanisms of response at the leaf level (Chapters 3 and 4). I characterized the 

short-term responses of foliar traits in beech and spruce saplings through phenotypic 

plasticity (Chapter 3). This allowed me to assess the potential plasticity of the foliage 

of these species to respond to simulated climate change and give indications of their 

acclimation abilities at leaf level. Finally, any changes at micro-morphological traits of 

the leaf (e.g. stomata density and stomata size) may have a cascading effect on 

physiological process such as the regulation of leaf gas exchange that allows carbon 

fixation. For this reason, through a multiple-level approach I related ecophysiological 

measurements (e.g. photosynthesis capacity) in foliage and soil conditions with the 

growth performance of saplings (Chapter 4).  Additionally, I tested for beech the 

legacy effects of advanced or delayed budburst on the budset timing (Chapter 5). This 

high resolution growth and physiological monitoring provides with needed data to 

assess the dynamic responses of trees to stress factors (Sass-Klaassen et al., 2016). 

Therefore, this study can improve the parametrization of mechanistic models predicting 

future species distributions. Specifically, the results from the project CLIMARBRE will 

serve to calibrate the spatial and dynamic WoodPam model, which has already been 

used to predict the evolution of landscapes and tree species in the Jura Mountains 

(Peringer et al., 2013).  

This thesis is divided in chapters corresponding to the different manuscripts prepared 

for submission to peer-reviewed journals (Table 1-1). In addition, to introduce each 

chapter a brief introduction is presented at the beginning and references are presented at 

the end of the dissertation. Supplementary material is presented at the end of the 

dissertation, as appendices.  
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Table 1-1 Overview of manuscripts included in this thesis 

Chapter Research topic Journal Submission status 

2 Tree growth Global Change Biology Under revisión 

3 Leaf morphology 
Environmental and Experimental 
Botany In press¹ 

4 Multi-level approach  Undefined In preparation 

5 Phenology Global Change Biology In press² 

 ¹ P. Sanginés de Cárcer, C. Signarbieux, R. Schlaepfer, A. Buttler, P. Vollenweider, Responses of antinomic 

foliar traits to experimental climate forcing in beech and spruce saplings, Environmental and Experimental 

Botany, Volume 140, August 2017, Pages 128-140, ISSN 0098-8472, 

https://doi.org/10.1016/j.envexpbot.2017.05.013. 

 ² Signarbieux C, Toledano E, Sanginés de Carcer P, et al. Asymmetric effects of cooler and warmer winters on 

beech phenology last beyond spring, Glob Change Biol. 2017;00:1–12. https://doi.org/10.1111/gcb.13740 
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 Tree growth responses Chapter 2

 

 

Growth contrasts between beech saplings at control site (left) vs the lowest site (right) 

P. Sanginés (2015) 

 

 

 

 

 

“Of all the circumstances that affect the habitation of plants, temperature is 

undoubtedly the most essential” 

(Lamark, de Candolle, Flore française, 1805)
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Growth of individual trees is directly related with the productivity of a forest, which 

will most likely be challenged by increasing temperatures and more frequent extreme 

events. Therefore, it is important to understand and assess climate-growth relationships 

to adapt future managements. Forest practices that take into account the suitability of 

species to future climate conditions will most likely reduce the risk of timber loss 

related to climate change impacts.  

Tree growth is determined by various site and environmental factors such as 

temperature, water, nutrients and light availability, as well as, inter and intra-specific 

competitions. In this chapter we focused in assessing species-specific growth responses 

to variation in temperature, precipitation and evaporative demand of the air.  

The estimation of aboveground biomass in adult trees is generally obtained by 

allometric equations that relate diameter (at breast level) and tree height with biomass. 

Experimental studies performed in saplings tend to use also these variables as an 

estimation of tree growth. However, at early stages of a tree, strong differences in 

growth patterns can be observed between species. For instance, spruce presents a more 

conservative growth strategy than beech, which tends to growth faster in height. 

Moreover, because of the different functional groups they belong to (i.e. evergreen 

conifer vs. broadleaf deciduous), they also allocated biomass differently. For this reason 

in this study additional saplings, not included in the experiment, were harvested to build 

a biomass model that would accurately estimate the aboveground biomass of both 

species. We found that the measurement of total volume, combining the diameter and 

the length of stem and four longest branches, was the best approach to estimate the 

biomass increase of the saplings of both species.  

This chapter is divided into two sections. In the first (2.1), the procedure for preliminary 

model selection is presented. In the second (2.2), growth responses of beech and spruce 

saplings subjected to changing environmental conditions is presented as the following 

submitted scientific article: 
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Article 1:    Vapor-pressure deficit and extreme climatic variables limit tree 

growth 

Sanginés de Cárcer, P, Vitasse, Y, Peñuelas, J, Jassey, V.E.J., Buttler, and Signarbieux, 
C. 

Under revision in Global Change Biology (17.7.2017) 

2.1 Models estimating the biomass of beech and spruce saplings  

Precise biomass estimations are essential for assessing climate change. Tree growth is a 

central part in this study so preliminary models, relating biomass with non-destructive 

measurements, were carefully evaluated to select the most parsimonious one. A detailed 

description of the methodology is presented in section 2.2. Here I focus in the 

Figure 2-1 Correlation between selected independent variables and biomass 
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comparison of four different preliminary models.  

Previous to the model comparison, I graphically analyzed the relationship between 

explanatory variables and aboveground biomass (Figure 2-1). Visually, there is an 

increase in the variability (heteroscedasticity) of biomass with increase tree size (funnel 

shape), which is a common pattern observed in biology. A log transformation of the 

data solved this problem and satisfied the assumption of constant variance of residuals.  

To be able to compare the different models I followed several criteria to select the 

optimal allometric equation for the biomass estimation of each species: 

1. the highest value of the adjusted coefficient of determination (R²) 

2. the lowest root-mean-square error (RMSE) 

3. significances of F-test < 0.05  

4. the regression model that best estimates the biomass of both species 

5. the practical use of the model (cost of the independent variable measurements) and 

biological meaning 

I present in Table 2-1 the preliminary allometric equations developed for each species 

and a summary of the statistical analysis. Close relationships (R² > 0.9) were observed 

between the explanatory variables (D, H, Vs, Vt) and the estimated aboveground 

woody biomass (AGB), and all models were highly significant. However, models 4 

and 8 presented the lowest root-mean-square errors. Moreover, in Figure 2-2, I further 

assessed the accuracy of all models by comparing them to the linear regression y=x, 

that would represent the 100% accuracy of the biomass estimation.   

Because I aimed for a model that best explained the morphology and different growth 

strategies of both species (e.g. beech has a tendency to grow more in height than 

spruce), I chose the total volume model (Vt-B) as the final one. Unlike the model 

considering only the basal diameter, this final model takes into account both the fast 

growth in height of beech and the lateral growth of spruce, which is very notable at the 

sapling stage. In fact, from Figure 2-2 the model including exclusively stem diameter 

underestimated considerably the actual biomass for beech while overestimating that for 

spruce. Meanwhile, the total volume model (Vt) slightly overestimated, at same extent, 
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the actual biomass for both species.Table 2-1 Statistical summary of models for estimating 

aboveground wood biomass (B) as a function of basal diameter D (mm), stem volume Vs 

(cm3), stem length H (cm) and total volume (stem and branches) Vt.

 

 

Figure 2-2 Comparison of the accuracy of the different biomass models 

# Model c a b R² RMSE Signif.
1 Ln (B) = c + a Ln (D) -4.48 3.08 0.959 0.273 ***
2 Ln (B) = c + a Ln (Vs) -0.47 0.99 0.987 0.153 ***
3 Ln (B) = c + a Ln (D) + b Ln (H) -5.69 1.91 0.91 0.985 0.166 ***
4 Ln (B) = c + a Ln (Vt) -0.54 0.96 0.974 0.134 ***

# Model c a b R² RMSE Signif.
5 Ln (B) = c + a Ln (D) -3.23 2.52 0.942 0.287 ***
6 Ln (B) = c + a Ln (Vs) 0.46 0.93 0.963 0.228 ***
7 Ln (B) = c + a Ln (D) + b Ln (H) -4.49 1.85 0.82 0.965 0.223 ***
8 Ln (B) = c + a Ln (Vt) 0.09 0.98 0.975 0.118 ***

Coefficients
Beech

Coefficients
Spruce

Signif. Codes: 0 `***` 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
All coefficients are significant
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Finally, I improved the selected model for each species by the harvest of additional 

saplings (to sum 95 individuals) to cover the diameter class range presented in the field 

experiment. Moreover, I validated the models with a sum 20 saplings of each species 

harvested from the field experiment during fall 2014. The final models I used for 

assessing the response of tree growth to changing environmental conditions (section 

2.2) were for beech, B = exp ^ (1.012535 * (Ln(V))-0.585528), with an R²adj of 0.995 

and P < 0.0001 and for spruce,  B = exp^1.00926 * (LnV), with an R²adj of 0.997 and 

P < 0.0001. 

2.2 Vapor-pressure deficit and extreme climatic variables limit tree 

growth 

2.2.1 Abstract 

Assessing the effect of global warming on forest growth requires a better understanding 

of species-specific responses to climate change conditions. Norway spruce and 

European beech are among the dominant tree species in Europe and are largely used by 

the timber industry. Their sensitivity to changes in climate and extreme climatic events, 

however, endangers their future sustainability. Identifying the key climatic factors 

limiting their growth and survival is therefore crucial for assessing the responses of 

these two species to ongoing climate change. We studied the vulnerability of beech and 

spruce to warmer and drier conditions by transplanting saplings from the top to the 

bottom of an elevational gradient in the Jura Mountains in Switzerland. We (1) 

demonstrated that a longer growing season due to warming could not fully account for 

the positive growth responses, and the positive effect on sapling productivity was 

species-dependent, (2) demonstrated that the contrasting growth responses of beech and 

spruce were mainly due to different sensitivities to elevated vapor-pressure deficits, (3) 

determined the species specific limits to vapor-pressure deficit above which growth rate 

began to decline and (4) demonstrated that models incorporating extreme climatic 

events could account for the response of growth to warming better than models using 

only average values. This results support that the sustainability of forest trees in the 

coming decades will depend on how extreme climatic events will change, irrespective 

of the overall warming trend. 
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2.2.2 Introduction 

Climate change is currently escalating so rapidly that many trees may not be able to 

adapt (Rogers, Jantz, and Goetz, 2017). In addition to the gradual global warming, the 

frequency and severity of extreme events such as heat waves, heavy precipitation, 

summer droughts and cold spells are expected to increase in the coming decades (IPCC, 

2013; Schar et al., 2004), which may ultimately determine future tree distributions 

(Zimmermann et al., 2009). Extreme events can have strong impacts on tree growth and 

survival, due to typically stronger responses and shorter response times than for normal 

climatic events (Hanson, Palutikof, Dlugolecki, and Giannakopoulos, 2006; Kreyling, 

Jentsch, and Beierkuhnlein, 2011). Forest researchers must estimate the resilience of 

forests to expected climate change and extreme climatic events to guide sustainable 

forest management (Lindner et al., 2014). An increasing number of studies are therefore 

testing the impact of extreme events on forest growth (Ciais et al., 2005; Teskey et al., 

2015), some under controlled conditions (Lendzion and Leuschner, 2008). Experiments 

are often conducted ex situ (e.g. in climate-controlled chambers), which is valuable for 

understanding the impact of a single factor on tree physiology but does not represent 

real in situ conditions that involve many abiotic and biotic interactions that determine 

tree growth (De Boeck, Dreesen, Janssens, and Nijs, 2010; Körner et al., 2016; Vicca et 

al., 2016; Zimmermann et al., 2009).  

Increased tree growth has been correlated with warmer temperatures (Way and Oren, 

2010) and longer growing seasons (Keenan, 2015; Menzel and Fabian, 1999; Piao, 

Friedlingstein, Ciais, Viovy, and Demarty, 2007; Signarbieux et al., 2017). However, 

divergent responses to warming among co-existing tree species have been also widely 

reported (C. Allen et al., 2010; Carnicer, Barbeta, Sperlich, Coll, and Penuelas, 2013), 

reflecting different physiological needs and growth strategies. A change in 

environmental conditions due to altitude is one of the factors leading to this divergence. 

For instance, tree growth during the extremely hot and dry summer in 2003 in the Swiss 
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Alps increased at high altitudes but decreased at low altitudes (Jolly, Dobbertin, 

Zimmermann, and Reichstein, 2005). This contrasting growth response was explained 

by the differences in resource, temperature and water limitations between lower and 

higher elevations.  

Shifts in the onset of spring phenology, due to increasing temperatures, generally are 

related to an increase in growing season length (Keenan, 2015). It has been reported that 

leaf unfolding of European woody species has advanced by about 13 days during the 

period 1982-2011 in Europe, which together with delayed autumn phenology has 

contributed to extend the growing vegetative period (Fu et al., 2014) by 24 days during 

the same period (Kolářová, Nekovář, and Adamík, 2014). Moreover, it has been 

hypothesized that the length of the growing season affects productivity to a larger extent 

in angiosperms than in conifers (Carnicer et al., 2013). However, Körner (2017) argued 

that longer growing seasons may contribute to higher annual tree growth, but only to a 

certain limit, which is not yet clearly identified (Delpierre, Guillemot, Dufrêne, 

Cecchini, and Nicolas, 2017).  

The stomatal response of trees to changing environmental conditions is complex and it 

is a process which is still not well understood (Damour et al., 2010). The closure of 

stomata at midday is regulated by the water available in the soil, leaf and atmosphere, 

and it is highly species-specific (Bond and Kavanagh, 1999). Stomatal responses to 

increasing evaporative demand of the air seem to be another explanation for the 

contrasting growth responses between functional groups. Carnicer et al. (2013) 

reviewed various hypotheses that could account for the contrasting responses of growth 

to temperature in Mediterranean angiosperm and coniferous trees. They included a 

hypothesis involving the effect of eco-physiological and hydraulic traits on tree growth. 

More specifically, they suggested that different sensitivities of stomatal conductance to 

vapor-pressure deficit (VPD) lead to different growth responses. Several studies have 

been performed in order to understand the mechanisms triggering stomatal closure in 

response to vapor pressure deficit (Sellin, 2001; Brodribb and McAdam, 2011; Mott and 

Peak, 2013) and agree that stomata typically close at high VPD and open at low VPD 

(McAdam and Brodribb, 2015). The sensitivity of VPD to changes in air temperature 

differs among plant functional groups (Ogaya and Peñuelas, 2007; Way and Oren, 

2010) and underlies the strategies optimizing carbon uptake with reduced water loss 
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(Franks and Farquhar, 1999). For instance, the positive response of growth to increased 

temperature in angiosperms could be due to a narrower hydraulic safety margin and a 

higher capacity to reverse embolisms (Carnicer et al., 2013). The higher hydraulic 

safety margin in conifers implies an earlier response of stomatal closure before 

cavitation (Carnicer et al., 2013), at a cost of reducing carbon uptake. Therefore, vapor-

pressure deficit (VPD) can limit tree growth (C. D. Allen, Breshears, and McDowell, 

2015), but its importance has not been fully recognized (Lendzion and Leuschner, 2008). 

Leaf-to-air VPD is expected to increase with the predicted increase in air temperature 

(Novick et al., 2016), with subsequent impacts on plant transpiration and photosynthesis. 

Reciprocal common garden experiments along altitudinal transects have been suggested 

to be a powerful tool for testing ecological responses to changes in environmental 

conditions (Carnicer et al., 2013; Körner, 2007), such as increasing temperature and 

evaporative demand of the air. This type of experiment is based on the variation of 

environmental conditions (temperature, atmospheric pressure, etc.) with elevation, 

simulating climate change conditions without needing to wait decades to observe an 

impact and therefore predict responses and adapt forest managements. Most studies of 

the impacts of climate change on vegetation are based on changes in the averages of 

climatic variables (Miyamoto, Griesbauer, and Scott Green, 2010), such as the mean 

annual or summer temperature. Extreme climatic events can have a large effect on tree 

growth but have been rarely studied (Lendzion and Leuschner, 2008; Teskey et al., 

2015) and there is no accurate definition related to the existence of an “extreme” 

(Stephenson, 2008). In this study, we defined “extreme” according to IPCC (Murray 

and Ebi, 2012), i.e. we quantified climate extremes by determining specific thresholds 

above which tree growth could be largely affected. We thus analyzed the effects of 

changes in climatic factors on the growth of beech and spruce saplings and compared 

the variances of the data for averages vs. extremes. Specifically, our main questions 

were: 1) how does species-specific growth respond to warmer and drier conditions, 2) to 

what extent does a longer growing season increase tree growth, 3) how does an elevated 

VPD affect tree growth and 4) what benefit does the study of “extreme conditions” have 

on a mechanistic understanding of the responses of tree growth under various 

environmental conditions? The novelty in this study is that we used a ‘natural warming 

experiment’ to assess how trees adapted to cold and wet environments respond to 

warmer and drier conditions by a translocation experiment along a transect across an 

elevational gradient. Generally, elevational gradient experiments compare populations 
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of a same species but growing at different elevations, or use climate chambers to control 

climatic variables, without taking into account the effects of extreme climatic variables. 

In our approach, we transplanted beech and spruce saplings from a donor site at a high 

elevation to three recipient sites at lower elevations to assess the effects of warmer and 

drier conditions on growth of individuals adapted to cold and wet environments. We 

focused on the saplings of the two dominant sylvopastoral species of the Jura Mountains, 

Norway spruce and European common beech. A good understanding of regeneration 

and its consequences under conditions of climate change are crucial for both species 

conservation and the sustainable and adaptive management of landscapes (Buttler 2014). 

These two species are also among the dominant trees in central Europe and are key to 

the timber industry, so forest managers need to know whether they will be sustainable in 

the coming decades.  

2.2.3. Materials and methods 

2.2.3.1. Study site and elevational gradient 

The conditions of climate change were simulated using an elevational gradient along a 

south-facing slope of the Jura Mountains in Switzerland. This space-for-time 

substitution (Körner, 2003) simulated a climatic gradient, i.e. an increase in temperature 

and a decrease in precipitation towards lower altitudes. A detailed description of the site 

selection is given by Gavazov et al. (2014). Briefly, the donor site was at Combe des 

Amburnex (N46°54′, E6°23′; 1350 m a.s.l.), with an oceanic climate, a mean annual 

temperature and precipitation of 4.5°C and 1750 mm, respectively, and a permanent 

snow cover from November to may (K. S. Gavazov, Peringer, Buttler, Gillet, and 

Spiegelberger, 2013). The three recipient sites were at St.-George at 1010 m a.s.l. 

(N46°52′, E6°26′), Arboretum d’Aubonne at 570 m a.s.l. (N46°51′, E6°37′) and Les 

Bois Chamblard at 395 m a.s.l. (N46°47′, E6°41′). Combe des Amburnex was the 

control site with native climatic conditions, so this climatic gradient covered three 

possible warming scenarios of the Intergovernmental Panel on Climate Change (K. S. 

Gavazov et al., 2013; K. Gavazov et al., 2014): moderate at 1010 m a.s.l. (on average + 

2°C and 20 % rainfall reduction), intermediate at 570 m a.s.l. (+ 4°C and 40 % rainfall 

reduction) and extreme at 395 m a.s.l. (+ 5°C and 50 % rainfall reduction). In this study 

we mainly focused on the impact of changes in air temperature and precipitation in the 
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tree growth of saplings. However, we acknowledge that there is a decrease in total 

atmospheric pressure and partial pressure of gases with altitude, as well as an increase 

in radiation under cloudless sky due to a decrease in atmospheric turbidity (Körner, 

2007). Sanginés et al. (2017) showed that temperature gradients had a major effect on 

the morphological changes of leaves as compared to changes in partial pressure. 

Regarding solar radiation, the actual dose received by a plant will also depend on 

scattering elements such as clouds, which generally increase with altitude in mountain 

regions (Körner, 2007). Therefore, we assume that the increase in solar radiation at high 

elevations during the growing season is, to some extent, compensated with the 

associated increase in cloudiness. To support this assumption, we visually inspected the 

data of solar radiation recorded by meteo-stations placed at our study sites and observed 

similar July solar radiation averages and same trends along the spatial-temporal gradient 

(data not shown). 

2.2.3.2. Experimental design and species 

Saplings of beech (Fagus sylvatica L.) and spruce (Picea abies (L.) H.Karst.) were 

collected at the donor site (1350 m) immediately before the budburst of the 2012 

growing season. The surface of collection was assumed to be reduced enough to ensure 

the same provenance of saplings. The saplings had similar sizes (average height of 33 

cm for beech and 31 cm for spruce) and were excavated with intact root systems and 

soil. They were then transplanted to 20-L pots and randomly reallocated in four plots, 

one at each altitude, in open spaces and far enough from the forest to avoid shade from 

surroundings adult trees. Half of the saplings were transplanted a second time to 40-45-

L pots in autumn 2014, two years after the first transplantation, due to the potential 

limitation of growth by the initial pots. The other half was harvested for analysis. The 

soil of the harvested plants was used for the transplantation of the remaining individuals 

to maintain the same soil characteristics for each species and site.   

The experimental design was a generalized block with repeated measures (2013, 2014 

and 2015). The four blocks were considered as fixed and corresponded to the four sites 

at altitudes of 1350, 1010, 570 and 395 m. Ten replicate saplings per species (beech and 

spruce) and treatment (non-irrigated and irrigated) were randomly allocated within each 

block. The experimental unit was a pot with one sapling, which was randomly placed on 

a grid with a spacing of 0.3 × 0.9 m to avoid light competition. The pots were recessed 
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belowground, and a geotextile cap was placed at the top and bottom of the pots to 

reduce both the evaporation of soil water and the penetration of roots into the soil of the 

site. All sites were equipped with wireless meteorological stations (Sensorscope, 

Climaps. available at: https://www.climaps.com/) that continuously recorded climatic 

parameters (precipitation and air temperature), enabling us to add water weekly during 

the growing season to ensure equal amounts of precipitation at the recipient and donor 

sites for the irrigated treatment. The saplings in the non-irrigated treatment were 

subjected to the local environmental conditions of each site. The purpose of the 

irrigation treatment was to identify the effect of rainfall for studying the responses of the 

saplings to temperature alone.  

2.2.3.3. Biomass estimation: in situ measurements of growth rate 

Growth was monitored twice (before budburst and after senescence) for all saplings and 

for three consecutive growth periods (2013, 2014 and 2015) to evaluate the effects of 

the changes in environmental conditions on aboveground biomass. Overall growth was 

estimated by dasometric measurements of the stem and four main branches. The four 

longest branches for each sapling were identified and tagged to allow continuous 

monitoring. Stem and branch diameters (basal and apical) were measured using an 

electronic caliper with an accuracy of 0.01 mm. The basal diameter (Sb) of the stem was 

an average of two perpendicular measurements approximately 1-2 cm from the base of 

the root collar. The basal diameter of a branch (Bb) was recorded at the base. The apical 

diameter of the branches (Ba) and the stem (Sa) were measured below the dormant bud. 

Stem length (H) and branch length (l) were measured with a ruler from the base to the 

below winter bud (accuracy of 0.1 cm). 

2.2.3.4. Biomass models: sampling and independent variables 

We expressed tree growth as total aboveground woody biomass using an allometric 

equation. This equation estimated the aboveground woody biomass from non-

destructive measurements of easily measured variables (e.g. basal diameter). This model 

was constructed using a total of 95 additional saplings per species collected from the 

donor site and harvested. The allometric equation based on these additional saplings 

served to estimate the biomass of the saplings included in the study in a non-destructive 
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way. Tree components (stem, four longest branches, remaining branches and roots) 

were separated in the laboratory and placed in paper bags. Sa, Sb, H, Ba, Bb and l were 

measured on the stems and main branches, which were then oven-dried at 65°C to 

constant weights. These independent variables and their combinations (e.g. stem 

diameter and height) were then correlated with the total dry weight (g) using linear 

regressions to obtain the most parsimonious model.  

2.2.3.5. Biomass models: model construction and validation 

Several criteria were followed for selecting the optimal allometric equation for each 

species: (1) the highest adjusted coefficient of determination (R²adj), (2) the lowest root-

mean-square error RMSE, (3) F < 0.05, (4) the regression model with the best biomass 

estimates for both species and (5) and the practicality of the model (cost of measuring 

the independent variables).  

The selected model indirectly estimated the aboveground biomass using the total 

volume of the stem and the four main branches (Eq. 1). This method was the best for 

quantifying and comparing the aboveground biomass of the two species with different 

growth patterns (i.e. beech growing in height and spruce producing more branches). The 

model developed was: 

 

Equation 1 Estimation of aboveground woody biomass 

Where B is the aboveground woody biomass (g), V is the total volume of the four main 

branches and stem (cm3) and c is the intercept and a is the slope coefficient of the 

regression line. The allometric equation for beech was B = exp ^ (1.012535 * (Ln(V))-

0.585528), with an R²adj of 0.995 and P < 0.0001. The model for spruce was B = 

exp^1.00926 * (LnV), with an R²adj of 0.997 and P < 0.0001. The model selected for 

each species was then validated with half of the saplings used in the study harvested in 

autumn 2014 during the transplantation to larger pots.  
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We used these models to calculate the initial and final biomasses of each sapling for 

each growing season. The difference between the final and initial biomasses was 

divided by the initial biomass to normalize for sapling size, allowing the removal of any 

possible effect of sapling size.  

2.2.3.6. Definition of length of the growing season 

Onset of the vegetative period 

Phenological variables were observed along the elevational gradient during the entire 

study period. Leaf emergence was monitored in spring every 2-3 days by the same 

observer. The developmental stages that were chosen were based on Vitasse (2009). The 

stages for beech were: (0) dormant buds, (1) swollen and/or elongated buds, (2) 

budburst and (3) at least one fully unfolded leaf. The stages for spruce were: (0) 

dormant buds, (1) expanded buds with new green visible behind the transparent cupule 

and (2) unfolded needles. The date of leaf unfolding was defined as the date when 50% 

of the buds had reached this stage. 

End of the vegetative period 

Leaf colouring and/or leaf fall in autumn were the criteria used to assess the senescence 

of beech leaves and therefore the end of the vegetative period. Senescence was defined 

as the time when 50% of the leaves of a sapling were no longer functional, i.e. either 

coloured or fallen, using the equation (Vitasse, 2009): 

 

Equation 2 Calculation of the amount of senescent leaves 

  Where xt is the percentage of coloured or fallen leaves for a sapling at time t, αt is the 

percentage of coloured leaves at time t and βt is the percentage of missing leaves at time 

t. 
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Norway spruce is an evergreen coniferous tree, so determining the exact end of the 

vegetative period is challenging. We therefore also monitored budset for both species 

three times per week from August to October in 2014 and 2015. The stages recorded 

were: (0) ongoing leaf development, (1) newly formed green and soft buds, (2) small 

and brown buds and (3) elongated (> 1 cm) and brown buds. The time of budset was 

recorded when 50% of the buds of a sapling had reached stage 3. The two proxies used 

for the definition of the cessation of primary growth were compared for beech to further 

understand bud formation and hardening before winter.  

Length of the growing season 

We defined the length of the beech growing season as the number of days between the 

date of leaf unfolding and the date of leaf senescence. We assumed that spruce ended its 

primary growth at beech senescence at the latest (see Results). The mean dates of beech 

senescence were thus calculated per site and year and assigned to the corresponding site 

and year of the spruce saplings. The length of the spruce growing season was 

consequently defined as the number of days between needle unfolding and the 

corresponding mean date of beech senescence.  

2.2.3.7. Defining mean climatic variables 

We took into consideration three mean climatic variables to explain the tree growth 

observed (Table 1): mean air temperature during the growing season (Tmean), the 

precipitation rate per day (Rain mm/day) and the soil moisture by measurements of 

volumetric water content in the soil (VWC, m3/m3) during the growing season between 

the months of May and July of each year (primary growth was mainly suppressed at the 

end of the summer (August) when the winter bud formation takes place; Figure 2-3. For 

the VWC measurements, we used sensors 5TM (Decagon S.A) placed at 20cm soil 

depth measuring at hour resolution. Soil moisture was also monitored weekly by means 

of a TDR probe (Time Domain Reflectometry) from May to September but these data 

were not considered for the mean climatic variables as they covered only the vegetation 

season 2013 and 2014 (See Figure S1).  
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2.2.3.8 Defining climatic extremes 

There is no accurate definition related to the existence of an “extreme” (Stephenson, 

2008). An established definition would be “an episode or occurrence in which a 

statistically rare or unusual climatic period alters ecosystem structure and/or function 

well outside the bounds of what is considered typical or normal variability” (Smith, 

2011). A special report of IPCC (Murray and Ebi, 2012) defined an “extreme climate or 

weather event” or “climate extreme” as “the occurrence of a value of a weather of 

climate variable above (or below) a threshold value near the upper (or lower) ends of 

the range of observed values of the variable”. They clarify definition by stating that it 

includes absolute thresholds as extreme events and give the example of specific critical 

temperatures for health impacts.  

In this study, we defined “extreme” as done by IPCC (Murray and Ebi, 2012) in a 

special report about managing the risks of extreme events. Therefore, we established 

impact-related thresholds in beech and spruce performance for saplings growing in the 

Swiss Jura. The thresholds were based in thermal-hydric requirements of each species. 

Vapor pressure deficit (VPD) is a measure of the difference between the pressure 

exerted by the moisture currently in the air and the pressure at saturation. We calculated 

the VPD, as a measure of the drying power of the air, as follows: 

VPD = (1 – (RH/100)*SVP   

Equation 3 Vapor pressure deficit 

where RH is the relative humidity and SVP is the saturated vapor pressure for a given 

temperature.  

A VPD threshold of 1.5 kPa was chosen to represent the approximate value above 

which stomata close in both species (Kurjak et al., 2012; Lendzion and Leuschner, 

2008; Zweifel, Bohm, and Hasler, 2002). We used this VPD to represent the extremely 

dry air during an extended summer drought. Heat waves and cold spells were 

represented by two predefined temperature thresholds: above 25°C and below 5°C. The 

superior threshold (25°C during the vegetative period), was based on the thermal 



Chapter 2 Tree growth responses 

57 

 

requirements of the two species (Gelete, 2010). Additionally, photosynthesis 

temperature-response curve performed in saplings growing at the extremes sites 

revealed that from 25°C the net photosynthesis starts to decline for both species. The 

lower limit was established at 5°C  as it appears to be the limit for higher plant tissue 

growth (Körner, 2008). We thus calculated i) the accumulation of hours over threshold 

25°C (AOT25) during the growing season and ii) the accumulation of hours below 

threshold 5°C (ABT5). We also calculated the number of events with thirty consecutive 

days without rain during the growing season at each site (P30). 

2.2.3.9. Statistical analysis 

General additive mixed effects models (GAMMs) were used to explore the response of 

aboveground tree biomass to changing climate over time. Briefly, GAMMs allow the 

change in mean biomass to follow any smooth curve, not just a linear form or a 

sequence of unrelated estimates. The form of the predictor function is the principal 

difference between the classical generalized mixed-effects models and GAMMs. All 

models were fitted according to a Gaussian distribution. We assessed five fixed effects 

(mean climate and extreme events) and one random effect (site nested into date) to take 

into account the inflation of the residual degrees of freedom that would occur if we were 

using repeated measurements within sites as true replicates. Several combinations of 

models were tested to find the most parsimonious model that would best explain the 

biomass response. We used Akaike’s Information Criterion (AIC) (Akaike, 1973), R²adj 

and the normality of residuals to compare the different models. As explanatory variables, 

we included soil moisture (m³/m³) along with the other “average” variables Tmean (ᵒC), 

Rain (mm/day) and the defined “extreme” temperature variables AOVPD1.5 (hours) 

and ABT5 (hours). According to Dormann’s et al. review (2013), correlation 

coefficients between variables of |r|>0.7 is an appropriate indicator for when collinearity 

begins to severely distort model estimation. Therefore, for all models, we ensured that 

none of the explanatory variables were correlated between each other with a Pearson’s 

correlation coefficient higher than 0.6, which gives us relatively good confidence that 

collinearity among predictors is not affecting our inference. Using effect size (Eq.4) 

allowed to quantify the impact of changing environmental conditions on the growth of 

the transplanted saplings. All statistical analyses were performed in R 3.1.2 using the 

mgcv package. 
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Equation 4 Standardized effect size 

where x is the variable considered for each observation [i],   and  are the mean 

and standard deviation of the control population.  

We measured the interannual climatic variability along the elevational gradient to 

identify the factors influencing tree growth (Table 2-2). The wireless meteorological 

stations continuously recorded the climatic parameters needed for calculating the 

duration of extreme events. Data from nearby stations were used when necessary to 

complete the data set (Agroscope, 2016). The climatic variables were calculated 

individually for each sapling as a function of the growing season.  

2.2.4. Results 

2.2.4.1. Interannual climatic variability 

The elevational gradient provided a distinct climatic gradient, with warmer and drier 

conditions towards the lower sites (Table 2-2). The mean annual temperature increased 

by an average of 5.5°C between the highest and lowest sites during the study period. 

Precipitation was 20 to 47% (data not shown) lower at the two lower sites compared to 

the donor site. The number of cold days (ATB5) was generally considerably higher at 

1350 and 1010 m than at 570 and 395 m, and the number of warm days (ATO25) had 

the opposite trend. The lower altitudes had warmer conditions, but precipitation was not 

linear along the elevational gradient. Precipitation varied widely between years, and the 

saplings received considerable rainwater during spring and summer, despite the lower 

rainfall at the lower altitudes (especially in 2015).  

Higher mean temperatures during the 2015 growing season led to a higher evaporative 

demand compared to the two previous years. For example, the accumulation of hours of 

VPD > 1.5 kPa (AOVPD1.5) in the growing season 2015, were 107, 220, 444 and 366, 

respectively at 1350, 1010, 570 and 395 m, but were 41, 33, 65 and 92 h, respectively, 

at the same sites in the previous year (Table 2-2). Mean temperature, however, was not 
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always a good indicator of the dryness of the air. The mean temperatures at the lowest 

site during the 2013 and 2014 beech growing seasons were 16.5 and 16.1°C, 

respectively, but AOVPD1.5 was 2.5-fold higher in 2013 than 2014. Similarly, the 

mean temperatures at 570 m during the 2013 and 2015 beech growing seasons were 

17.6 and 17.2°C, and the corresponding AOVPD1.5 were 160 and 444 h, respectively. 

Comparison of soil moisture along the gradient 

Globally, we observed a soil moisture gradient between the highest (1350 m and 1010 

m) and the lowest (395 m and 570 m) sites (Table 2-2, see also supplementary Figure. 

S2-1). This gradient was notable during the growing season 2015.  

 2.2.4.2. Phenological responses to the simulated conditions of climate changeSpring 

phenology shifted along the elevational gradient for both species (Figure 2-3). Budburst 

was delayed towards the higher altitudes by averages of ~4.8 d 100 m-1 (± 0.16) and 4.0 

d 100 m-1 (± 0.42) for beech and spruce, respectively. Autumn phenology, i.e. budset 

and leaf senescence, tended to occur later at the lower altitudes, but the pattern was 

more variable and less pronounced than for budburst. Overall, a decrease in elevation 

extended the growing season. The growing season length (GSL) at 1350 and 395 m over 

the three years averaged 115 ± 10 d (mean ± 1 SE) and 179 ± 3 d for beech and 113 ± 

10 and 165 ± 3 d for spruce, respectively. Interestingly, the interannual variation of GSL 

was higher at the donor than the lowest site for both species, at ± 10 and ± 3 at 1350 and 

395 m, respectively. The time lag between budset and senescence varied between years. 

For example, budset for both species in 2014 was very advanced compared to beech 

senescence, but budset and senescence in 2015 occurred at nearly the same time. 

 2.2.4.3. Growth responses to the simulated conditions of climate change 

Exposure to the warmer and drier conditions at the lower altitudes for three years had 

contrasting effects on beech and spruce saplings from 1350 m (Figure 2-4). The growth 

of the spruce saplings did not differ significantly along the elevational gradient, but 

beech growth increased significantly between the donor and lower altitudes (Figure 2-

4a). Growth increased more for spruce than beech at 1350 m but more for beech than 

spruce at 395 m. Standardizing the growth data by the growing season length produced 

similar patterns, which varied with altitude and species (Figure 2-4b). 
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Figure. 2-3. Time of budburst, budset and leaf senescence for the beech and spruce saplings 
along the elevational gradient in 2013, 2014 and 2015. The length of the growing season was 
defined as the time between the dates of budburst and senescence, represented by the numbers 
above the black lines (mean ± 1 SE). We pooled the treatments (irrigated and non-irrigated), 
because irrigation did not have a significant effect on the phenological dates. The number of 
replicates for each species and altitude were thus 20 in 2013 and 2014 and 10 in 2015.  
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Figure 2-4 Relative increase in biomass after three growing seasons (2013-2015) at the control 
site (1350 m) and the three recipient sites. (a) Relative biomass increase and (b) relative biomass 
increase standardized by the length of the growing season, which varied along the gradient and 
for each species. The data for the irrigated and non-irrigated treatments were pooled because 
irrigation did not have a significant effect (P < 0.05) on the increase in biomass during this 
period. Different letters represent significant differences within a species, uppercase for beech 
and lowercase for spruce, along the gradient identified by an ANOVA. The asterisks represent 
significant differences between the means (± 1 SE) for each species at an altitude (n = 5) 
identified by a Tukey's post hoc test. 

2.2.4.4. Effect size for tree growth under warmer and drier conditions 

The transplantation to warmer and drier conditions generally had a positive impact on 

beech growth and a negative impact on spruce growth. The growth of the beech saplings 

from 1350 m differed significantly between 2013 and 2015 (Figure 2-5a), but the tree 

effect size was similar along the gradient in 2014, with an overall very positive effect 

relative to the donor site. We also observed a species-specific effect size at the same 

altitude. The effect size was mostly positive for beech but was negative for spruce 

(except in 2014). The irrigation treatment significantly mitigated the lower soil moisture, 

thus negative impact of warming on spruce growth in 2015 (p = 0.001). 
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Figure 2-5 The effect size (1350 m as the control site) of the biomass increase along the gradient 
and throughout the three years for both species and for the non-irrigated (a) and irrigated (b) 
treatments. The larger the absolute value, the higher the impact of the local conditions on the 
relative biomass increase (standardized by GSL). Different upper- and lowercase letters 
represent significant differences within a species and year, respectively, identified by Tukey's 
post hoc tests. Significant differences between the species at each altitude are indicated by 
asterisks above each graph. The biomass annual increase (∆ % d-1) was calculated for each 
sapling. 
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2.2.4.5. Impacts of the extreme climatic conditions on sapling growth 

The relationship between effect size for growth and the measured extreme conditions 

identified a distinct interannual climatic variability (Figure 2-6). The AOVPD1.5 was 

lowest in 2014, whereas 2015 had the longest period of dry air during the growing 

season, with more than 400 h of AOVPD1.5. The effect size was negative beyond 300 h 

of AOVPD1.5 for beech and beyond 100 h for spruce. The effect size for cold days was 

negative for beech in 2013, with growth decreasing as the number of cold days 

increased. In contrast, the effect size for spruce had no clear pattern, suggesting that 

other variables limited its growth. The irrigation treatment mitigated the negative effect 

of increasing VPD, especially for spruce during the dry 2015 growing season.  

 

Figure 2-6 Effect size (1350 m as the control) for biomass increase compared to the number of 
hours of VPD > 1.5 kPa and the number of hours with T < 5°C for both species and treatments. 
The larger the absolute value, the larger the impact of the extreme on the increase in biomass 
(standardized by GSL and initial biomass). Each dot is the mean at a site ± 1 SE, with n = 10 for 
2013 and 2014 and n = 5 for 2015.  
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The results from GAMM models of beech showed that the model including only mean 
variables (i.e. Rain, Tmean and Soil VWC; model 1) was the less accurate for explaining 
beech saplings’ growth. However, when considering the extreme variables (i.e. ABT5 
and AOVPD1.5), we observed an important increase in the explanation of beech 
biomass with a R² > 0.75 (model 2). Moreover, replacing the AOVPD1.5 by Soil VWC, 
in order to answer the question whether it is VPD and not soil moisture that best 
explains the growth patterns observed, showed a significant drop in the model 
performance for both species (models 3 and 6). Models explained in lesser extent the 
growth patterns of spruce than those of beech, with still a higher model performance 
when considering only the extreme climatic variables (R2 = 0.40; model 5) and none of 
the models presented a significant effect of soil moisture (Table 2-3). 

Table 2-3: Results from the GAMM model comparing means and extremes for beech and 
spruce. Biomass was used as the response variable explained by the climatic variables Rain 
(amount of precipitation per day during the growing season), AOVPD1.5 (number of hours 
during the growing season with VPD > 1.5 kPa), ABT5 (number of hours during the growing 
season with temperatures < 5°C), Tmean (mean temperature during the growing season) and Soil 
VWC (May-July). All explanatory variables were measured during the growing season. The 
model selection was based on the Bayesian information criterion (BIC), the Akaike information 
criterion (AIC) and log likelihood (logLik).  

Beech 

Model Response variable Explanatory 
variable Signif var. R-sq(adj) df AIC BIC logLik 

1 sqrt (Biomass) Rain n.s.      

  Tmean *** 0.15 10 140.9 152.7 -60.5 
  Soil VWC n.s.      

2 sqrt (Biomass) ABT5 *** 0.77 8 110.9 120.3 -47.5 
 AOVPD1.5 *** 

3 sqrt (Biomass) ABT5 *** 
0.50  8 124.8 134.2 -54.4 

   Soil VWC ** 
 

Spruce 

Model Response variable Explanatory 
variable Signif var. R-sq(adj) df AIC BIC logLik 

4 Biomass Rain n.s.      
 Tmean ** 0.34 10 267.6 278.1 -124.8 

  Soil VWC n.s.      
5 Biomass ABT5 *** 

0.40 8 256.8 266.2 -120.4 
 AOVPD1.5 *** 

6 Biomass ABT5 n.s. 
0.04 8 271.1 277.4 -126 

   Soil VWC n.s. 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
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2.2.5. Discussion 

Transplanting saplings to lower elevation provides crucial insights on how trees in their 

juvenile life stage will face climate change. The analysis of growth response over 

contrasted climatic conditions from year to year allowed us to differentiate responses 

due to mean over extreme climatic conditions. Here, focusing on growth performances, 

we showed that beech saplings may benefit to warmer conditions and even drier 

conditions, whereas spruce seems already constrained by water limitation and air 

dryness (VPD) at low elevations of the Jura mountains. The higher sensitivity of spruce 

to increasing VPD, compared to beech, likely explain its limited growth at the lower 

elevations. This study highlights the importance to account for the effects of extreme 

climatic events when assessing the impact of climate warming on tree performance 

because these events are likely to deviate from the overall expected growth response to 

change in the mean climatic conditions.  

Contrasting growth responses of beech and spruce saplings exposed to simulated 

climate change  

Beech and spruce saplings’ growth was differently affected when transplanted towards 

lower elevations during the three monitored years. In these drier and warmer conditions, 

beech growth was significantly enhanced, whereas spruce growth was similar to the 

growth at the native higher elevation site. The extension of the growing season may 

explain such tendencies. Our phenological observations showed a lengthening of the 

growing season towards the lower altitudes for both species, regardless of the proxy 

used for the end of the growing season (budset or beech senescence). The time lag 

between budset and senescence varied between years. For example, budset for both 

species was substantially advanced in 2014 compared to beech senescence, but budset 

and senescence occurred at nearly the same time in 2015, likely influencing the 

effective period of nutrient mobilization. The growing season was nonetheless 

consistently longer at the lower altitudes, which may partly account for the increase in 

beech biomass at the lower altitudes, as also suggested by Lenz et al. (2014), but does 

not account for the patterns of spruce growth. However, we found similar responses to 

warming when standardizing the growth data by the length of the growing season. 

Increasing the length of the growing season thus had a positive effect on tree growth 

only to a certain limit, which was species-dependent. This suggests that additional 
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factors (e.g. air temperature, VPD, nutrient turnover) than phenological variations 

promoted beech growth while limiting spruce growth at lower elevations.  

The continuum of soil-plant-atmosphere is critical for tree growth and their respective 

impacts in tree growth are very difficult to disentangle. However, depending on the site 

conditions there is always one factor being more limiting than the others. In this study, 

we aimed to find which factors explained best tree growth variation during years with 

contrasted climate and at different elevations. Because the two species are known to be 

sensitive to drought, one may expect that the transplantation of saplings to lower 

elevations with warmer and drier conditions would expose them to water deficits and 

limit their growth. However, we found that saplings were not water limited at the lower 

sites during the growing seasons 2013 and 2014, which was also supported by the 

ecophysiological measurements of leaf water potential (see supplementary Table S2-1).  

To answer the question as to whether it is VPD and not soil moisture that best explains 

beech growth responses, we can compare the performance of models 2 and 3 and see 

that the replacement of the VPD explanatory variable (AOVPD1.5) by the soil moisture 

explanatory variable (Soil VWC) even decreases the overall performance of the model. 

Therefore, by including the soil moisture variable (model 3), we did not add any 

valuable information to the model. To sum up, model 2, which includes only “extreme 

variables” (ABT5, AOVPD1.5) best explained the growth response of beech with a R² 

of 0.77. All explanatory variables were significant; the residuals of the model followed 

a normal distribution, and AIC and BIC were the lowest compared to the other models. 

Generally, models explained in lesser extent the growth patterns of spruce than the 

growth patterns of beech, suggesting that other factors, not taken into account in this 

study, may explain part of spruce’s biomass variance, and none of the models presented 

a significant effect of the soil moisture. Following the same logical procedure than 

beech, we found that model 5, including only the “extreme” variables, had a higher R² 

adj coefficient (0.4). In conclusion, GAMM models showed that soil moisture was not a 

significant factor explaining tree growth in this humid area of study. Interestingly, the 

“extreme” climatic variables, ABT5 and AOVPD1.5, significantly explained tree 

growth and even more than the models integrating exclusively “average” variables, such 

as mean temperature. 
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Growth rates between years revealed an interannual variability within species (Figure 

S2-2). The growth patterns of beech showed that in 2013 and 2014 tree growth was 

higher at the lowest elevation compared to the control site. In the growing season 2015, 

beech saplings grew at the same rate along the gradient except at 1010 m. In contrast, 

spruce showed a decrease in growth rate at lower altitudes compared to the control site, 

for years 2013 and 2015. Yet, interestingly higher growth rates were observed at lower 

altitudes (Figure S2-2 blue rectangle) during the growing season 2014, in spite of the 

lower soil moisture and lower amount of precipitation recorded during this year. 

Regarding atmospheric conditions, average temperatures during the growing season 

hardly differed in 2013 and 2014, but significantly differed in the amount of hours 

during which saplings were exposed to elevated VPD. It has been hypothesized that 

VPD may trigger stomatal closure to avoid an excess of water loss due to high 

evaporative demand of the air (Carnicer et al., 2013). The degree of sensitivity of 

stomatal closure to elevated VPD is highly species-specific. Two main hydraulic 

functional groups have been distinguished in the literature depending on their strategies 

to cope with higher evaporative demand (Bond and Kavanagh, 1999; Carnicer et al., 

2013). Isohydric trees (e.g. spruce) avoid drought-induced hydraulic failure via stomatal 

closure, reducing the carbon assimilation (McDowell et al., 2008; Carnicer et al., 2013). 

This greater stomatal control maintains a relatively constant day-time leaf water 

potential (see supplementary Table S2-1). This allows them to prevent leaf water 

potential from falling below a threshold associated with cavitation (McDowell et al., 

2008; Pangle et al., 2015) Typically, anisohydric tree species are associated with a 

higher ability to reverse embolisms leading to this narrower hydraulic safety margins 

compared to isohydric species (Carnicer et al., 2013). Therefore, the difference in 

amount of hours with elevated VPD to which saplings were exposed in this study may 

cause important physiological responses and cannot be disregarded.  

Our findings show that beech and spruce respond differently to high VPD. Leaf water 

potential of these species also revealed different patterns of regulating water 

transpiration (see supplementary Table S2-1). It is known from literature that species 

may exhibit intraspecific variation in degree of anisohydricity or isohydricity (Cocozza 

et al., 2016) meaning that no species is strictly anisohydric or isohydric. However, in 

our study, beech did present a more anisohydric behavior than spruce (see 
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supplementary Table S2-1). Therefore, we suggest that the different responses to 

elevated VPD could be linked to a difference in isohydric behavior. 

This hypothesis is in agreement with a previous study carried out in a mixed forest in 

Pennsylvania, where the authors assessed the stomatal sensitivity to VPD of seven co-

occurring temperate tree species (Meinzer et al., 2013). They found that ring-porous 

species had a lower stomatal responsiveness to VPD than the diffuse-porous and 

coniferous species. In this paper, they suggest that these findings are linked to the 

isohydric behavior of the diffuse-porous and coniferous species, and the rather extreme 

anisohydric behavior in oaks.  

Our results show that increasing VPD limits tree growth even before soil moisture starts 

to be limiting. Moreover, tree growth reduction is greater when both VPD and soil 

moisture reach limiting thresholds. The key finding of this paper is the demonstration of 

the different degree of sensitivity of these species to increasing VPD. The degree of 

isohydricity of these two species is likely to be linked to this different sensitivity. 

Many other authors have hypothesized that contrasting growth responses between 

angiosperms and gymnosperms are due to the different sensitivities of their stomatal 

conductance to vapor pressure deficit, leading to contrasting growth responses 

(Martínez-Ferri et al., 2000; Brodersen et al., 2010; Carnicer et al., 2013; Coll et al., 

2013; Meinzer et al., 2013). In contrast, Martínez-Vilalta and Garcia-Forner (2016) 

have recently argued that  water potential regulation and stomatal behavior are 

decoupled across species, so it remains today as an open debate whether isohydric and 

anisohydric trees lead to different responses to VPD. Further research in this topic is 

warranted. 

The use of means and extremes for analyzing the impact of interannual climatic 

variability on the growth responses of the saplings 

Growth responses are commonly correlated with mean temperatures (Bowman, 

Williamson, Keenan, and Prior, 2014; Jump, Hunt, and Peñuelas, 2006; Lévesque, 

Rigling, Bugmann, Weber, and Brang, 2014; Miyamoto et al., 2010; Way and Oren, 

2010). Mean annual temperature in our study differed by ca. 5.5°C between the native 

and lowest sites. Growth of saplings inhabiting high elevation (1350 m) are likely to be 

limited by temperature and we expect warmer temperatures to elicit positive effects on 
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growth, in the absence of water stress (Way and Oren, 2010). Yet, growth was not 

enhanced for spruce when transplanted towards lower elevations in contrast to beech. 

This difference or response may root in different sensitivity of the two species to 

extreme climatic conditions, in particular to high VPD, which can be observed by 

analyzing growth response of the two species to interannual climatic variations. 

For instance, cold spells at the beginning of the season were about twice as long in 2013 

as in the other two years. Important precipitation deficits were further observed in the 

two lowest sites for more than 30 consecutive days (at 570 m in 2013 and at 395 m in 

2015) compared to the native site. Thus, the mean interannual climatic variability of 

2°C did not fully explain tree growth pattern because it hides substantial variations in 

the extreme climatic values and their frequency. The mean temperature during the 

growing season at the lowest site (395 m) was similar in 2013 and 2014, with 16.5 and 

16.1°C, respectively, which was 3.8 - 4.8°C higher than at the donor site. The 

quantification of the effect size, however, identified contrasting growth responses for 

spruce between these two years: the effect size was negative in spruce’s growth 

response to warming in 2013 whilst a positive effect size was found in 2014. Spruce 

saplings were subjected to 228 hours of AOVPD1.5 at the lowest site in 2013, which is 

more than twice as much as in 2014 (92 hours). An exceedance in VPD above the 

threshold of 1.5kPa can stimulate the closure of stomata in spruce (Kurjak et al., 2012; 

Zweifel et al., 2002). Assuming that there is a reduction in carbon up take, or even 

suppression depending on the degree of stomatal closure, these results suggest that 

spruce growth was limited by a large amount of VPD hours above 1.5 kPa in 2013 but 

not in 2014. Spruce is more sensitive to VPD increases than beech as it closes rapidly its 

stomata to reduce hydraulic conductivity before substantial cavitation occurs. By 

contrast, stomatal conductance in beech, an angiosperm, can remain high even at very 

high evaporative demands due to its higher capacity to reverse embolisms (Carnicer et 

al., 2013). 

Saplings’ growth transplanted at 1010 m were likely constrained by temperature (Koch, 

1958; Modrzyński and Eriksson, 2002). There was a strong contrasting growth response 

for beech between 2013 and 2014 at this site associated to the 2ᵒC difference in mean 

temperature during the two growing seasons, i.e. warmer temperature during summer 

2014 may have contributed to enhance beech growth. Conversely, the growth of the 

saplings at the lowest sites was likely strongly limited by water in 2015. Rainfall was 
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47% lower at 395 m, accompanied by an increase in AOVPD1.5 of 259 h compared to 

the donor site. A water deficit also occurred at the treatment level; irrigation had a lower 

negative impact on the growth response, i.e. the impact of a water deficit in 2015 for 

spruce was mitigated by the irrigation treatment (P = 0.001).   

Difference in species sensitivities to extreme conditions due to different tolerance 

thresholds 

The quantitative assessment of the impacts of an increase in the AOVPD1.5 and ABT5 

on tree growth provided new insights for assessing climate-growth relationships. The 

higher sensitivity of spruce than beech to increasing VPD could account for the limited 

growth of spruce at the lower altitudes. We used a scatterplot of VPD vs. growth effect 

size to determine the approximate upper limit threshold for each species. The lower 

tolerance limit of spruce (~100 h) compared to beech (~300 h) partly could account for 

the contrasting growth responses between these species. The negative impacts of 

extreme conditions also depended on the conditions of the site, i.e. the impact on growth 

was not the same at 1010 and 395 m for the same duration of increased VPD, mainly 

due to the differences in the limitation of tree growth at higher and lower altitudes 

(temperature vs. water deficit). The absence of a clear response of spruce to the length 

of cold spells during the growing season suggested that spruce growth was limited by 

other variables. In contrast, beech growth was negatively affected by an ABT5 above 

200 h during the growing season. The large range of responses of both species under 

this threshold of 200 h indicated that lower temperatures were not the main limitation to 

growth at the recipient sites. Our results suggest that both spruce and beech are limited 

by increasing air dryness but present different degrees of tolerance. The final GAMMs 

identified VPD as the main explanatory variables of the increases in biomass for both 

species. As second main explanatory variable the precipitation rate during the growing 

season (mm/day GS) was determinant factor for beech while the number consecutive 

days without precipitation during the growing season was for spruce. This leads to a 

differentiation between the main factor which is common for both species (VPD) and 

more species-dependent factors related to precipitation and consecutive days without 

rain.   

We conclude that elevated vapor deficit limits tree growth. Our results showed that (i) a 

longer growing season due to induced-elevation warming (downward shift) could not 
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fully account for the species-specific positive growth responses; (ii) the contrasting 

species growth responses were linked to different sensitivities to elevated vapor-

pressure deficits; (iii) models could better account for the growth response to warming 

after incorporating extreme climatic events and their effects. On the top of that, for the 

first time we determined the threshold above which tree growth starts to decline for each 

species when soil moisture was not limiting. It is however likely that if soil moisture 

would have been lower during these high VPD conditions saplings growth would have 

been further reduced. Finally, the inclusion of climate extremes will likely improve 

models predicting species distribution under future climatic conditions (Zimmermann et 

al., 2009). The potential extrapolation of this approach and results, through further 

research on adult trees, will be crucial for a better understanding of forest response to 

climate change and for adapting forest management to the predicted increase in duration 

and in frequency of extreme climate conditions. 
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Chapter 3     Foliage plasticity 

 

Picture: Microscope cross section (x60) of spruce needle. Close up of epidermis tissue and stomata 

P. Sanginés, January 2014 

 

 

 

“We sometimes underestimate the influence of little things” 

(Charles W Chestnutt)
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Stress factors eventually manifest themselves as macroscopic leaf symptoms 

(Günthardt-Goerg and Vollenweider, 2007) when physiological and structural 

alterations are presented in the targeted tissues (Vollenweider and Günthardt-Goerg, 

2005). For instance, related changes on the cell and tissue structure have been 

associated to drought (Olmos et al., 2007), ozone concentrations (Kivimäenpää et al., 

2001; Vollenweider et al., 2013) and different light environments (Ashton and Berlyn, 

1994).  That is why leaf traits are a good proxy for tracking environmental changes and 

disturbances (Nicotra et al., 2010).  

In the following chapter I present published results regarding the phenotypic plasticity 

of leaves and needles to simulated climate change. These findings give a further 

understanding of the responses of foliage at the structural level that will be further 

related, in chapter 4, to physiological functioning of leaves (e.g. photosynthetic 

capacity). 

Article 2:    Responses of antinomic foliar traits to experimental climate forcing in 
beech and spruce saplings 

Sanginés de Cárcer, P., Signarbieux, C., Schaelpfer, R., Buttler, A. and Vollenweider, P. 

In press: Environmental and Experimental Botany (2017) 

3.1 Abstract 

Global warming is predicted to have a strong impact on mountain ecosystems. 

Subalpine sylvopastoral systems are very sensitive to climate change, which puts their 

future sustainability at stake. These ecosystems are mostly dominated by spruce and 

beech, and therefore their regeneration abilities are critical in this context. The main 

objective was to characterize the short-term responses, of foliar traits in beech and 

spruce saplings through phenotypic plasticity with regard of actual scenarios of climate 

change. Therefore, we transplanted saplings from a cold environment at 1350 m a.s.l. in 

the Swiss Jura Mountains to three recipient sites at lower altitudes along an altitudinal 

gradient, in the experimental framework of a space-for-time substitution approach and 

measured morpho-anatomical foliar traits. The results revealed for beech an increase of 
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xeromorphism through the increase of the cuticle thickness, vein network and smaller 

stomata, associated, surprisingly, to a higher leaf area.  This antinomic response allowed 

beech to grow in warmer conditions while coping with an increase of evaporative 

demand during summer. Spruce did not present as much plasticity as compared to beech 

due to its inherent xeromorphic traits. Our findings further suggest a strong correlation 

between the timing of the leaf development, extreme conditions and tree growth. These 

contrasting strategies may lead to the competitive advantage of beech over spruce under 

climate change. 

Keywords 

Tree regeneration, altitudinal gradient, temperature, precipitation, foliar traits, 

xeromorphy, plasticity. 

 

3.2 Introduction 

The world’s climate is expected to change significantly over the next century with an 

overall increase of temperature, changes in precipitation and greater frequency of 

extreme climatic events, leading to more climate variability (IPCC, 2002). Global 

warming is predicted to have a particularly strong impact on mountain ecosystems 

(IPCC, 2007). The observed trend in Swiss mountains during the 20th century for a 

1.5°C rise in mean annual air temperature (Beniston et al., 1997) is paralleled by 

increased event frequency of extreme summer temperature maxima and prolonged 

droughts (Schar et al., 2004; Beniston, 2009). Throughout the current century, these 

tendencies are predicted to become more pronounced, and northern hemisphere 

temperate mountains will experience the most intensive temperature rise with a rate of 

warming typically of about two to three times higher (range +2.8 °C to +5.3 °C) than 

that recorded over the 20th century (Nogués-Bravo et al., 2007). For example, at the 

tree line in the Swiss Alps, an increase of 2.5 °C of the mean air temperature has been 

observed during the 20th century, but a marked increase of 1°C was observed since 

1980 (Gehrig-Fasel et al., 2007). Alongside, predicted hot spells and a 30% diminishing 

precipitation during the growing season will intensify droughts in Central Europe 
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(Beniston et al., 2007; C2SM, 2011). These will lead to changes in summer soil water 

availability, plant phenology, and growing season length, which would ultimately have 

repercussions for ecosystem distributions and functioning (Parry, 2000; FOEN/FSO, 

2011). Temperate forests seem to benefit from warmer conditions with an increase in 

growth (Way and Oren, 2010), while Mediterranean and tropical forests are likely to 

respond with a decline in biomass allocation (Ogaya and Peñuelas, 2007; Way and Oren, 

2010). This is partly because the growth of trees at high latitudes or altitudes is usually 

temperature-limited, while Mediterranean forests are mainly limited by water 

availability (Peñuelas et al., 2004; Way and Oren, 2010).  

In mountain ecosystems, plants are more sensitive to climate change and may respond 

to it in three different ways: (i) persistence in the modified climate, (ii) migration to 

more suitable climates or (iii) extinction (Theurillat and Guisan, 2001). The change in 

species range, and in particular upward shifts of species, has already been demonstrated 

(Walther et al., 2005; Peñuelas et al., 2007; Lenoir et al., 2008; Wardle et al., 2011). 

Nevertheless, ongoing climate warming may be too rapid for natural migration to 

successfully allow species to reach more suitable habitats (Rice and Emery, 2003). In 

this context, individual plants would need to remain in their current location and 

withstand environmental changes (Bonn, 2000; Petriccione, 2005; Allen et al., 2010) 

through short-term phenotypic plasticity (Vitasse et al., 2010), defined as the ability of a 

genotype to develop different phenotypes in response to environmental changes 

(Bradshaw, 1965). These short-term responses of plant traits will be important in 

assessing plants’ persistence under climatic change (Nicotra et al., 2010) as acclimation 

is the first step prior adaptation (i.e. genetic changes in morphological and physiological 

traits). Through acclimation, individual plants compensate the decline in performance 

due to a stress factor by adjusting their morphology and physiology (without genetic 

changes), and usually occurs within days to weeks within the lifetime of an individual 

(Lambers et al., 1998). Foliage organs, particularly during foliage development, are thus 

most responsive to environmental constraints, especially regarding the water availability 

(Dickson and Tomlinson, 1996; Fink, 1999). Hence, some desert plants have a dry and 

wet season foliage with distinct morphology (Fahn and Cutler 1992) and a spring 

drought treatment caused the formation of smaller and more xeromorphic needles in 

Pinus canariensis (Grill et al. 2004). Once the foliage organs and their tissues have 

completed elongation and differentiation however, only the cell physiology and 
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structure remain responsive to primarily acute environmental stress (Fink, 1999; Wyka 

et al., 2007). Moreover, Wyka et al. (2007) tested the ability of spruce and beech foliage 

to shade acclimation during two years of study (2003 and 2004). 

Leaf functional traits have been proven to provide good indicators for tracking the 

impact of environmental changes on plants (Nicotra et al., 2010). Indeed, leaf 

phenotypic plasticity has been recognized as a key process by which plants cope with 

rapid climate changes (Nicotra et al., 2010; Vitasse et al., 2010; Stojnić et al., 2015). 

However, the extent to which phenotypic plasticity manifests in response to new climate 

conditions remains unclear. It was shown that some species will be affected more than 

others in terms of growth due to differing sensitivities to stress conditions (Davis and 

Shaw, 2001). Ultimately, foliar trait changes will affect tree performance and 

physiology (Niinemets et al., 1998) and this could lead to changes in wood production 

and even forest species composition, potentially impacting important sectors of forest 

economy, as being demonstrated in the Swiss Jura mountains (Peringer et al., 2013). In 

this region, sylvopastoral systems serve as a traditional source of forage and timber in 

the subalpine vegetation belt, but their sensitivity to historic land-use and climate 

change puts their future sustainability at stake (Buttler, 2014). The two dominant 

species in this ecosystem are Picea abies (L.) Karst (Norway spruce) and Fagus 

sylvatica L. (European common beech). Beech and spruce are mesomorphic species 

(Ellenberg, 1988) with foliage showing mesomorphic and xeromorphic traits, 

respectively. Beech is a anisohydric deciduous species  (Zang et al., 2014) that presents 

a large geographical distribution in Europe due to its tolerance to a wide range of 

environmental conditions, but its water requirement lies between 550-2000 mm, thus 

defining this species as sensitive to drought (Gelete, 2010). Spruce, an isohydric 

evergreen conifer (Zang et al., 2014), naturally occurs in low temperature regions 

(Modrzyński and Eriksson, 2002) and is also susceptible to summer drought making it 

more predispose to bark beetle attack (Netherer et al., 2015). 

Stress can be defined as “an environmental factor that reduces the rate of some 

physiological process (e.g., growth or photosynthesis) below the maximum rate that the 

plant could otherwise sustain” (Lambers et al., 2008). In this context, plants present a 

wide range of responses to stress, which scope from alterations to gene expression and 

cellular metabolism to changes in growth rate and plant productivity through macro and 
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micro-morphological symptoms (Fink, 1999; Vollenweider and Günthardt-Goerg, 2005; 

Shao et al., 2008). Körner et al. (1986) showed that leaf size and SLA decreased with 

higher altitudes, as a consequence of lower temperatures, which has been confirmed by 

several other studies (Scheepens et al.,  2010; Woodward 1983). Typical and in some 

instance specific changes to the cell and tissue structure are observed in response to 

stress factors such as drought (Olmos 2007; Vollenweider et al. 2016), elevated ozone 

levels (Kivimaenpaa et al., 2001) or shading of foliage (Ashton and Berlyn, 1994). 

Moreover, plants growing in water-limited environments, either as a result of rain 

deficit (e.g. chaparral), winter drought (e.g. cold habitats), physiological dryness (e.g. 

saline soils, acid bogs) or high rates of evaporation, usually exhibit xeromorphic 

adaptations such as e.g. thick cuticula, thickened epidermis and hypodermis, sunken 

stomata or compact mesophyll (Khan, 2002). 

In this study, the main objective was to characterize the phenotypic plasticity of foliar 

traits in spruce and beech saplings, with regard to actual scenarios of climate change. 

Therefore, we transplanted saplings from one population per species growing in a cold 

environment at 1350 m a.s.l. in the southern Swiss Jura mountains to three recipient 

sites at lower altitudes along an altitudinal gradient. We thus exposed sapling to warmer 

and drier climate conditions for 2 years (2013-2014), with contrasted weather during the 

vegetation season, using a space-for-time substitution approach (Körner, 2003b). We 

assessed the species-specific foliar plasticity measuring macro- and micro-

morphological foliar traits. We hypothesized that i) leaf traits of spruce and beech 

would develop more xeromorphic characteristics in response to transplantation and 

warmer and drier conditions as a consequence, indicating an overall higher evaporative 

demand, and ii) the phenotypic plasticity of the mesomorphic beech leaves would be 

higher, as compared to that of already xeromorphic spruce needles. 

3.3 Materials and methods 

3.3.1 Study sites and altitudinal gradient 

An altitudinal gradient was used along the south-facing slope of the Jura Mountain in 

Switzerland to simulate climate change impacts. Specifically, the increase of 

temperature and the decrease of precipitation were achieved through a down-hill 
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transplantation experiment, i.e. using a space-for-time substitution approach (Körner, 

2003b). It is known that there is also a decreasing in total atmospheric pressure and 

partial pressure of gases with elevation. However, the observed decrease of partial 

pressure of CO2 does not occur in isolation but together with that of other gases, and its 

direct influence on plants may be diminished or enhanced by three factors as cited by 

Körner (2003b): “(1) the oxygen partial pressure decreases as well, hence 

photorespiration, (2) “thinner” air allows CO2 molecules to diffuse faster through 

stomata and the intercellular spaces in the leaf and (3) the air temperature drops and so 

does leaf temperature, which counteracts (2) and enhances (1)”. So, whenever molecular 

gas diffusion comes into play, reduced temperature (slowing diffusion) is counteracting 

the effect of reduced pressure alone (increasing the rate of diffusion) (Körner, 2007).  

Therefore, we estimate that other factors, such as temperature regimes, have a superior 

effect on the leaf morphology than changes in partial pressure of gases. As morpho-

anatomical changes are integrative in nature, an eventual effect of changing air pressure 

is likely to be too weak to have any significant consequences. Hence, changes in the 

partial pressure of gases are primarily a concern with regard to leaf gas exchanges. 

A detail description for site selection is given in Gavazov et al. (2014). Briefly, the 

donor site was located at Combe des Amburnex (N 46ᵒ54’, E 6ᵒ23’, 1350 m a.s.l) within 

the boundaries of the Parc Jurassien Vaudois natural area. In this subalpine area, 

Norway spruce is generally the dominant tree species of the pasture-woodland 

landscape, especially on shallow humic soils at stony sites, while on deeper soils beech 

is also present, together with spruce. At lower altitudes spruce expends its distribution 

beyond the limits of natural range, favored over beech by forest managers due to 

economic reasons.  

The region is characterized by an oceanic climate, with a mean annual temperature and 

rainfall of 4.5ºC and 1750 mm, respectively, and presents a permanent snow cover from 

November to May  (Gavazov et al., 2013, 2014). The three recipient sites were situated 

at: St.-George at 1010 m a.s.l. (N 46ᵒ52’, E 6ᵒ26’), Arboretum d’Aubonne at 570 m a.s.l.  

(N 46ᵒ51’, E 6ᵒ37’) and Les Bois Chamblard at 395 m a.s.l. (N 46ᵒ47’, E 6ᵒ41’). Thus, 

by establishing Amburnex as the control site with native climate conditions, we covered 

three possible IPCC warming scenarios, according to Gavazov et al. (2013, 2014): 

moderate at 1010 m a.s.l (on average +2ᵒC and 20% rainfall reduction), intermediate at 
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570 m a.s.l (+4ᵒC and 40% rainfall reduction) and extreme at 395 m a.s.l (+5ᵒC and 

50 % rainfall reduction). These data for each site were spatially interpolated from 

nearby weather stations (source: MeteoSwiss, Agroscope 2016). The temperature 

increments were chosen in accordance with the moderate A1B and the intensive A2 

climate change scenarios outlined in the IPCC report (Meehl et al., 2007) and the 

predicted concurrent decrease in precipitation for temperate regions (Frei et al., 2006; 

C2SM, 2011). 

3.3.2 Experimental Design 

Saplings of beech and spruce were collected in spring 2012 in the Amburnex site in two 

areas that were limited enough in surface to assume that the saplings belonged to a same 

population (provenance). Saplings of beech were taken in a clearing within a beech 

dominated forest, while spruce saplings were taken in a spruce dominated wooded 

pasture. Saplings of similar size (average height of 33 cm for beech and 31 cm for 

spruce) were dug out with their intact soil, transplanted in 20 L pots and reallocated in 

the four common gardens, respectively at each altitude within the same day. 

The experimental design is a generalized block design with repeated measures. The four 

blocks, considered as fixed, are the four study sites at altitudes 1350, 1010, 570 and 395 

m a.s.l. Within each block, the two levels of the factor treatment (irrigated and non-

irrigated)  and the factor species, also with two levels (beech and spruce), each 

combination with 10 repetitions, were allocated at random to the 20 pots of the block. 

The aim of the irrigation treatment was to disentangle the rainfall effect and study the 

responses of leaf to temperature per se. In order to achieve this, at each recipient site, 

water was added weekly during the growing season in accordance to the rainfall at the 

donor site. The factor year is repeated within pot and has 2 levels (2013 and 2014). The 

experimental unit is a pot with one plant. Within each site, pots were placed randomly 

on a grid with 0.3 x 0.9 m spacing to avoid light competition. Pots were pushed into the 

soil and, in order to reduce soil water evaporation and to avoid roots’ breaking through 

the pot, a geotextile cap was placed on top and at the bottom of the pot. All sites were 

equipped with wireless meteorological stations (Sensorscope, Climaps. available at: 

https://www.climaps.com/.) that recorded continuously climate parameters (i.e. 

precipitation and air temperature) and allowed to calculate vapour pressure deficit 
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(VPD). VPD is highly sensitive to air temperature increases (Novick et al., 2016) and 

reflects the air dryness and therefore the potential water loss through stomatal 

conductance. When necessary, data from nearby stations were used to complete the data 

set (Agroscope, 2016). 

3.3.3 Leaves and needles sampling and morpho-anatomical observations 

In order to assess the phenotypic plasticity of foliar traits in spruce and beech saplings 

with regard to actual scenarios of climate change, foliar macro-and micromorphological 

traits were comprehensively assessed. Therefore, triplicate samples were collected on 

August 6th 2013 and 4th 2014 at the donor as well as recipient sites. Only undamaged 

and fully expanded foliage was collected, avoiding second-flush leaves. Macro-

morphological measurements (i.e. lamina fresh and dry weight) were immediately 

performed in the laboratory on the day following sampling. Foliage fresh weights and 

surface (LICOR-3100 area meter) were measured prior to oven-drying at 65ºC until 

constant mass. Two discs of beech leaves and three mid-segments of spruce needles 

were fixed by infiltration using 2.5% glutaraldehyde buffered at pH 7.0 with 0.067 M 

Soerensen phosphate buffer and stored at 4 ºC until further processing. In beech leaves, 

the intercellular volume (Vair) was determined using Va/Vf (%), where Va (ml) is the 

leaf air volume and Vf (ml) the total volume of fresh leaf (Koike, 1988). Within beech 

leaves, the veinlet network was assessed, mounting two fresh unstained disks (7mm 

diameter) per beech sample in water and observing in diascopic light using 5x objective 

and a Leica DMRB microscope. Micrographs were taken using the Lumenera 

INFINITY 2 ANALYZE camera and Lumenera software (Lumenera Corporation, 

Canada). Light intensity and color settings were standardized with a view to high 

quality and comparable images (i.e. exposure= 13.42, gain=3.16, gamma=2.07, 

saturation=0.91 and hue=8). The transparent network of 2nd to 4th order veinlets versus 

green assimilative patches in one selected zone per micrograph was quantified using 

color image analysis and adapting procedures from the WinCELL software (Regent 

Instruments Inc., Canada). The size and density of stomata was determined using nail 

varnish imprints, the 5x and 40x objectives and aforementioned microscope, imaging 

system and software. In spruce needles, only the amount of stomata lines per needle 

segment was estimated, using a binocular. For both species, the size of tissues and tissue 

composition of foliar organs were assessed, using hand-microtomed 30 μm (spruce) and 
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70 μm (beech) cross-sections of hydrated and fixed foliar material. Sections were 

mounted in water, either directly or after staining for contrasting cuticula against cell 

wall material, using either Sudan Black B (modified according to Gerlach, 1984) for 

spruce needles or Alcian Blue (modified according to Arend et al., 2008) for beech 

leaves. Sections were observed and photographed using the 10x to 100x objectives and 

aforementioned microscope and imaging system. The width of cuticula and leaf tissues 

was directly measured on the microscope using the Lumenera software. Due to the 

anisotropy of needles, the tissue area in the case of spruce samples was determined, 

using image analysis and the measurement tools in the Adobe Photoshop software (Cs5, 

version 12.0.0.0, Adobe Systems Inc.). Altogether, twenty morpho-anatomical variables 

were measured on beech leaves, and thirty-eight on spruce needles. Detailed description 

of variables is provided in Table 3-1. 

3.3.4 Growth estimation 

In order to estimate the overall growth of each sapling, dasometric measurements of the 

stem and four main branches were recorded. For each individual, the four longest 

branches were initially selected and identified to allow a continuous monitoring. Stem 

and branch diameters (basal and apical) were measured in mm using an electronic 

caliper (accuracy of 0.01 mm) while stem and branch length was determined with a 

measuring ruler, from the base to below the winter bud (accuracy of 0.1 cm). The total 

volume was calculated geometrically by considering these components as circular 

truncated cones. In order to remove tree size effect, volume increments (final volume – 

initial volume) were standardized by the initial biomass at the beginning of the growing 

season, obtaining a relative volume increment for each sapling during two growing 

seasons (2013 and 2014). 
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Table 3-1 Description of macro and micro-morphological variables measured on foliage of 
spruce and beech 

 

3.3.5 Statistical analysis 

We used repeated-measures three-way ANOVA’s to detect the effects of altitude (1350, 

1010, 570 and 395 m a.s.l.), treatment (TP and T) and year (2013 and 2014) on the 

macro- and micromorphological adjustments of leaves and needles at organ, tissue, cell 

(stomata) and subcellular (cuticula) level to changing environmental conditions. Focus 

was put on traits potentially responsive to varying water availability (Fahn and Cutler, 

1992). The full data set was visually inspected for normality and homoscedasticity of 

variance prior to analysis and log-transformed if necessary. All final models were 

checked for homogeneity of the residuals. The same data were also explored with a 

correlation matrix in order to detect correlations between morpho-anatomical response 

variables (Supporting Information Figure S3-3 and Figure S3-4). Based on these two 

           Study Species Variable Acronym-Units
Beech Leaf mass per area LMA [mg cm¯ ²]

Leaf area La [cm2] 
Intercellular space Vair [%]

Spruce Leaf mass area LMA [mg mm¯²]
Needle length L [ mm] 
Frequency of stomata 
lines

Lst [lines mm¯¹]

 Beech Vein network Wall [%] 
Stomata density Std [mm¯²]
Stomata area Sta [μm²]
Upper cuticle S.C. [μm]
Upper epidermis S.E. [μm]
Palisade parenchyma I P.P.I [μm]
Palisade parenchyma II P.P.II [μm]
Spongy parenchyma S.P. [μm]
Lower epidermis  I.E. [μm]
Lower cuticle  I.C. [μm]  

Spruce Cross-section Cross.sect. [mm²]
Cuticle thickness C [μm]
Epidermis Ep [%]
Resin ducts RC [%]
Mesophyll M [%]
Endodermis En [%]
Transfer Tr [%]
Phloem Ph [%]
Xylem Xy [%]

 Micro-morphology

Macro-morphology
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univariate methods, we selected the best response variables to be considered in a further 

step, following two criteria: 1) avoiding as much as possible collinearity between 

response variables in further statistical analyses and 2) considering their importance for 

a good understanding of morpho-anatomical plasticity and for answering the hypotheses. 

Results from ANOVA’s for the twelve traits variables which have been retained for 

both beech and spruce are given in supplementary Supplementary Information Tables 

S2-1 and S2-2. 

To further understand the potential effects of changing climatic conditions with varying 

altitude on the foliar morphology and anatomy, we compared the multivariate data set of 

foliar traits with the more extreme temperature conditions during warm and cold spells, 

as well as with rainfall and vapor pressure deficit (VPD) during the vegetation period. 

Hence, proxies in the form of the amount of days above and below a given temperature 

threshold, during the period elapsed between budburst and sampling (mid-August), 

were calculated for each sapling. This sampling period largely covered that of foliage 

elongation and differentiation at all sites. Beech always presented an earlier budburst 

than spruce, especially at lower altitudes. We selected two specific temperature 

thresholds to represent extreme conditions considering the thermal requirements of each 

species (Gelete, 2010): (i) number of days during which the daily maximum 

temperature was above 25 ºC (extreme warm conditions) and (ii) number of days during 

which the daily minimum temperature was below 5 ºC (extreme cold conditions).  We 

assessed the relationships between selected morphological and anatomical traits of 

leaves from tree saplings and the environmental variables by means of RDA ordination, 

using as explanatory variables extreme warm conditions (1), extreme cold conditions 

(2), rainfall (3) and number of days with VPD higher than 1.5 kPa (4) during the leaf 

development. Canonical axes and explanatory variables were tested by means of 

ANOVA’s. Separate analyses were performed for each species and year after observing 

a clear differentiation between years 2013 and 2014. All analyses were carried out using 

R v3.2.3 (R Core Development Team, 2016) and vegan package.  

Finally, we quantified the degree of plasticity of traits through a Phenotypic Plasticity 

Index (Valladares et al., 2000) based on the maximum and minimum means of the traits 

[(maximum mean-minimum mean)/maximum mean]. This index enables the 

standardization of the phenotypic plasticity of different traits in a certain species, and 
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thereby facilitates their comparison (Valladares et al. 2006).  Since it assumes normality, 

all variables were transformed using the “Hellinger method”. This index ranges from 0, 

implying no plasticity, to 1, which represents the maximum plasticity. We calculated the 

index for each leaf and needle variable and then grouped these variables in three indices 

for each species; the first index included only macro-morphological traits, the second 

index included the micro-morphological traits and the third index included all the 

studied traits (see Table 3-1). These indexes were calculated as the average of the 

included variables of each group and enabled us to assess the degree of plasticity 

between these two morphological levels. Non-parametric, Wilcoxon 2- sample test was 

then applied in order to compare the mean plasticity values of the different groups of 

traits. 

3.4 Results 

3.4.1 Overall climatic conditions at each site during the leaf development 

At the donor site at 1350 m a.s.l., giving the long-term average of mean annual 

temperature and precipitation (4.5°C and 1750 mm, respectively), the years 2013 and 

2014 were warmer than the long-term average with 5.0 and 5.9°C, respectively, while 

the mean annual precipitation was similar in 2013 with 1706 mm, but not in 2014, 

which was much drier with 1124 mm (Table 3-2).    

The transplantation downhill in the three recipient sites exposed the saplings to an 

expected increase in ambient air temperature and reduced precipitation (Table 3-2). In 

2013, the increase in mean temperature during the vegetation period, compared to the 

donor site, was +0.5, +6.7 and +6.3°C at 1010, 570 and 350 m a.s.l., respectively, with 

an equivalent reduction in precipitation of -0.1, -44.4 and -19.7 %. In 2014, the changes 

in mean temperature for the same period and sites were +2.3, +5.6 and +6.3°C, while 

the associated changes in precipitation were -18.2, -12.3 and -26.2% compared to the 

donor site. When considering the difference between the donor site (1350 m a.s.l.) and 

the lowest recipient site (395 m a.s.l.) during the two growing seasons 2013 and 2014, 

the mean temperature increase was 6.3ºC at the lowest site, and at the same time 

precipitations were reduced by 20 to 26% compared to the donor site. An inter-annual 

variability in climatic conditions within each site during the leaf development was 
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detected, with an inverse climatic trend between the season of spring and summer in 

2013 and 2014. While the onset of spring 2014 was characterized by warmer and drier 

environmental conditions compared to spring 2013, in summer 2014 the weather was 

generally milder and wetter as compared to 2013, despite mean temperature in 2014 

being higher than in 2013. 

At the highest site, a sum of 86 to 107 days with daily minimum temperatures below 5 

ºC were recorded during the two vegetation periods 2013 and 2014 (Table 3-2). These 

values decreased consistently along the gradient with up to six to thirteen days at the 

lowest site. While at the highest site there were fewer than 10 days with daily maximum 

temperatures above 25ºC, this reached a maximum of 46 days at the lowest site in 2013. 

We defined VPD as the mean of the ten highest daily values during the growing season. 

Some studies report that the closure of stomata of Norway spruce starts between 1 and 

1.5 kPa (Zweifel et al., 2002; Kurjak et al., 2012) but, up to date, the determination of 

this VPD threshold remains limited to some plant species. During this study, the 

threshold of 2 was reached at 570 m in 2013, and in both years at the lowest site.  

3.4.2 Variations of leaf traits under changing environmental conditions 

Foliar response of beech 

A significant site effect (repeated anova, p-value < 0.05), i.e. altitude, was found for 

half of the variables considered, while a strong year effect (p-value < 0.01) was 

observed for most variables except for stomata density and area (Supplementary 

Information Table S3-1). However, no significant effect was found for the irrigation 

treatment (T and TP), therefore for the following analyses these data were pooled 

together to increase the robustness of the analysis. 
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Morphological changes that have been observed on the leaves along the gradient during 

the growing seasons 2013 and 2014 are given in Figure 3-1. Overall, more variables 

presented significant responses between sites in 2013, while in 2014 the variables were 

less responsive. Particularly in 2013, leaf area and lower cuticle increased towards 

lower altitudes, while stomata area and upper epidermis decreased along the gradient. 

Similar but less consistent trends of increase towards lower altitudes were observed for 

vein network and palisade parenchyma. Leaf mass per area, stomata density and spongy 

parenchyma increased their values from the highest site up to the intermediate lower site 

at 570 m but then significantly decreased at the lowest site. In 2014, the trend was 

similar to 2013 for leaf mass area, while other trends appeared for intercellular space 

which decreased towards lower altitude and for upper cuticle, which increased along 

this gradient. 

Response of needles 

Repeated measures ANOVA revealed more variables responding significantly to site, i.e. 

altitude effects as compared to beech, while less variables responded to the year effect 

(Supplementary Information Table S3-2). No significant irrigation treatment (T and TP) 

was observed, except for phloem tissue, and therefore, as done previously for beech, 

data from both treatments were pooled together, excluding the phloem.  

Morphological changes that have been observed on the needles, which developed in 

warmer and drier conditions during the growing seasons 2013 and 2014 are given in 

Figure 3-2. Contrarily to what was observed for beech, more variables measured on 

spruce responded in 2014, but trends were often similar between years (Figure 3-2). 

Albeit the altitudinal gradient did not fully mirror the variable responses, variables such 

as resin ducts, endodermis and transfer tissues tended to decrease towards lower 

altitudes, especially in 2014, but the frequency of stomata line and the xylem did also in 

2013. Interestingly, at the second highest site (1010 m), the cross section and mesophyll 

proportion was lowest, especially in 2013, while epidermis, endodermis and transfer 

tissue had the highest values. As for beech, leaf mass area was highest in the 

intermediate low site (570 m), in both years. 
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Figure 3-1 Variation along the gradient of the twelve selected variables for beech (see 
Table 3-1) during two consecutive years. Mean (N=3) ± 1xSE are indicated. Letters 
indicate the results of the post-hoc Tukey test after one-way Anova (p-value < 0.05), with site 
as factor and treatments T and TP pooled together to increase robustness (as no difference was 
found, see Supplementary Information Tables S1). When normality was not achieved, non-
parametric tests were performed, namely for LMA and P.P 
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Figure 3-2 Variation along the gradient of the twelve selected variables for spruce (see Table 3-
1) during two consecutive years. Mean (N=3) ± 1xSE are indicated Letters indicate the results 
of the post-hoc Tukey test after one-way Anova (p-value < 0.05), with site as factor and 
treatments T and TP pooled together to increase robustness (as no difference was found, see 
Supplementary Information Tables S2). When normality was not achieved, non-parametric tests 
were performed, namely for LMA and M. 
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3.4.3 Multivariate analysis of leaf trait responses 

A redundancy analysis (RDA) using the morpho-anatomical data set under the 

constraints of climatic explanatory variables was performed separately for each species 

due to their difference in growth strategy. Because of contrasted weather conditions in 

2013 and 2014, the analysis was kept separate for each year. 

Gradient for beech leaves 

The first canonical axis was highly significant in both years (p-values < 0.001 and < 

0.01, in 2013 and 2014, respectively) while the second axis was less significant (p-

values < 0.05 and < 0.01, in 2013 and 2014, respectively), explaining 35 % of total 

variance in 2013, and 27.6 % in 2014 (Figure 3-3). 

Overall, we observed a high response of most variables to higher extreme temperatures, 

resulting in larger leaves with thicker cuticle and increased vein network, while having 

smaller stomata. In year 2013, we observed a clear separation along axis one between 

the lowest sites (395 and 570 m ), with warmer and drier conditions, and the higher sites 

(1010 and 1350 m ), with cooler and wetter conditions. This axis was mainly explained 

by the proportion of extreme warm days, T > 25 ºC (p-value < 0.01) and of cold days 

(p-value <0.05), as well as by the amount of rainfall (p-value < 0.05) and VPD > 1.5 

kPa (marginally significant, p-value < 0.1). The leaf variables such as leaf area, 

parenchyma palisade, vein network and cuticle thickness were positively correlated to 

extreme warmer temperatures and high VPD, while epidermis thickness and stomata 

area were negatively correlated to these conditions. Moreover, the proportion of 

intercellular space, thickness of spongy parenchyma and stomata density were mainly 

related to the second axis, for which the amount of rainfall had the strongest weight, a 

pattern which was related to the extreme position of the intermediate lower site at 570 

m.  

The general picture of the biplot for 2014 was similar but the sites were less clearly 

separated as compared to 2013. While both the proportion of extreme warm and cold 

days as well as VPD were significant (p-values < 0.05, < 0.01 and < 0.05, respectively), 

the amount of rainfall was only marginally significant (p-value < 0.1). Some responses 
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to higher temperatures found in 2013 were maintained in 2014 such as increasing 

cuticle thickness, vein-network and leaf area, but epidermis thickness and stomata area 

were no longer inversely related to the high temperature and VPD. Furthermore, 

parenchyma palisade was strongly related to cold temperature in 2014, as opposed to 

2014. 

Gradient for spruce needles 

The RDA models for spruce had the first axis highly significant in both years (p-values 

< 0.001), but the second axis was significant only in 2014 (p-value < 0.01). Together, 

the first two axes explained 29.7% of variance and 33.8%, in 2013 and 2014, 

respectively (Figure 3-4).  

In 2013, only the first axis was possible for interpretation, which is mainly explained by 

the proportion of extreme warm (p-value < 0.01) and cold days (marginally significant), 

as well as VPD (p-value < 0.05). This first axis isolated the site at 1010 m, while the 

other three sites were more intermingled, revealing similar responses. Most variables of 

needle tissues such as epidermis, endodermis, phloem, transfer and xylem were 

positively correlated to rainfall and cold temperature, and characterized mostly the site 

at 1010 m, while variables such as needle length, mesophyll, cross section, cuticle 

thickness and leaf mass area had an opposite response and related to higher 

temperatures and VPD’s. The climatic data revealed a four consecutive-days period 

with minimum daily temperatures around 0ºC and a hail event few days after spruce 

sapling budburst in this site (data not shown), which might have affected the young 

needles. 

In 2014, the environmental variables which explained most the distribution were the 

VPD (p-value < 0.001) and temperature variables (p-values < 0.05).  Needle variables 

were grouped in a similar way as in 2013, but since both axes were significant, a clearer 

pattern appeared. Variables such as xylem, resin ducts, transfer, frequency of stomata 

lines, needle length, endodermis and phloem were strongly related to the extreme cold 

conditions, while epidermis is now less related to the main gradient of temperature and 

could be linked to other not measured environmental variables. 
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Figure 3-3 Redundancy analysis (RDA) of beech using twelve morpho-anatomical variables for 
years 2013 (upper graph) and 2014 (lower graph). Explanatory variables are temperature 
thresholds (number of days with temperature maxima above 25°C and number of days with 
temperature minima below 5°C), vapour pressure deficit (number of days with VPD > 1.5 kPa) 
and cumulative precipitation during the growing season (from budburst to August as the 
sampling date).   
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Figure 3-4 Redundancy analysis (RDA) of spruce using twelve morpho-anatomical variables for 
years 2013 a) and 2014 b). Explanatory variables are temperature thresholds (number of days 
with temperature maxima above 25°C and number of days with temperature minima below 5°C), 
vapour pressure deficit (number of days with VPD > 1.5 kPa) and cumulative precipitation 
during the growing season (from budburst to August). 
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3.4.4 Phenotypic plasticity index 

On the level of individual leaf variables (same variables as in the previous analysis 

(Table 3-1), we could observe for both species a large variability of plasticity indexes, 

ranging roughly from 0.60 to less than 0.10 (Figure 3-5). For beech, the highest 

plasticity was observed for leaf area and leaf mass per area (Figure 3-5a) while for 

spruce needle cross-section and resin conducts showed the largest variation (Figure 3-

5b). The overall phenotypic plasticity index of beech was 0.20 in 2013 and 0.14 in 2014 

(Supplementary Information Figure S3-5), and for spruce the index was 0.23 and 0.22 

for the respective years. The plasticity indexes were slightly higher in 2013, as 

compared to 2014, but the differences were not significant. However, we can observe 

that beech presented a different degree of plasticity between the macro- and micro-

morphology in 2013, compared to a more stable plasticity between years for spruce. 

3.5 Discussion 

The results of the study confirmed the hypothesis that some leaf traits of spruce and 

beech developed more xeromorphic characteristics in response to warmer and drier 

conditions and that the phenotypic plasticity of the foliar traits studied were higher in 

beech than  in spruce needles. 

3.5.1 Tolerance range to warmer and drier conditions  

Transplantation from the donor site downhill simulated gradually warmer and drier 

conditions, thus approximating three possible IPCC climate change scenarios (see 

Gavazov et al., 2013). Overall, the climatic conditions suggest that saplings were 

exposed to similar warmer conditions at the two lowest sites, but were not water limited 

(Table 3-2), which is generally the main factor limiting tree growth at low altitudes 

(Way and Oren, 2010). Indeed, considering that the rainfall fulfilled the water 

requirements of beech, even at the lowest site, it can be assumed that this species was 

not water limited, nor was Norway spruce, which has a similar water requirement 

(Modrzyński and Eriksson, 2002). This suggests that in this study, the determinant 

factors were temperatures and VPD. 
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Figure 3-5 Phenotypic plasticity index of beech leaf variables (upper graph) and spruce needle 
variables (lower graph) for 2013 (black bars) and 2014 (grey bars). Index is calculated 
according to Valladares et al. 2000. Mean phenotypic plasticity for both species together was 
0.21 in 2013 and 0.13 in 2014. 
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At the lowest site in our study, the months with highest mean temperature in 2013 were 

July and August, with mean values of 21.5ºC and 19.6ºC, respectively. These 

temperatures are above the optimal range established in literature for beech (Gelete, 

2010). On the contrary, in 2014, highest mean monthly temperatures were 18.8ºC and 

18.0ºC in June and July, respectively. Spruce has a lower thermal requirement than 

beech (Modrzyński, 2007) and therefore, as for beech, the saplings experienced 

temperatures above the optimal range. As the reduced precipitations at lower sites were 

not sufficient to expose the saplings to drought stress, changes in the morpho-

anatomical traits due to warmer conditions might have been somewhat mitigated. 

Overall, if one considers VPD, as a proxy of the dryness of the air, it appears that the 

most stressful conditions were experienced during the summer 2013 at the two lowest 

sites. The different sensitivity to VPD between angiosperms and gymnosperms leads to 

a different tolerance of VPD to which the stomata remains open (Carnicer et al., 2013). 

Moreover, it has been reported a higher stomata density of a range of tree species in 

response to increasing VPD (Stojnić et al., 2015). 

3.5.2 Beech shows higher leaf plasticity than spruce 

The higher temperatures at the lower altitude increased the xeromorphy of some of the 

traits measured in beech leaves, such as the increase of cuticle thickness, vein network 

and also, but only in 2013, parenchyma palisade and leaf mass per area, concomitantly 

with decreased stomata area. In agreement with the literature, a well-developed palisade 

parenchyma, formed at the expense of spongy parenchyma, is considered as a 

characteristic of xeromorphic leaves (Bačić and Miličić, 1985). This trade-off between 

spongy and palisade parenchyma reduces the air space characteristic of the spongy 

parenchyma, and thereby also reducing transpiration. Smaller stomata are generally able 

to open and close more quickly, which in combination with a high stomatal density per 

unit area provides a greater capacity to rapidly increase stomatal conductance and 

optimize photosynthetic performance (Drake et al., 2013) by reducing the water loss via 

gas exchange. Nevertheless, at the lowest site, the stomata density was the lowest, 

contradicting what is generally described in literature for xeromorphic features (Strobel 

and Sundberg, 1983), suggesting that the conditions at this site were not sufficiently 

stressful to present changes in this trait. If the measured climate gradient is considered, 

the second lowest site at 570 m a.s.l. might have experienced sometimes more extreme 
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conditions than the lowest one in 2013, and indeed at this altitude stomata density was 

highest. Regarding other factors regulating the water evaporation of leaves, the increase 

of cuticle thickness, together with the reduction of stomata size, reduced the gas flow 

between the leaf and the air (Jenks, 2007), and consequently the water loss by 

transpiration of beech leaves developed in warmer conditions.  

Contrary to what is commonly reported in literature as xeromorphic feature, beech 

leaves had a larger leaf area at lower altitudes (warmer and drier conditions) than at 

higher altitudes (cooler and wetter). Leaf flushing of beech occurs at lower altitudes 

around April-May when there is ample rainfall (see Table 3-2) in this region; thus, in 

our study the main climatic factor influencing the response of leaf expansion along the 

altitudinal gradient was air temperature, as the plants at this period were not at all water-

limited. Therefore, the increase of temperatures at lower altitudes stimulated beech’s 

leaf growth. Another study, performed in mature beech forests along an altitudinal 

gradient, also observed an exclusive effect of temperature in May on leaf size, for 

mature trees, while the number of leaves was affected by the mid-summer conditions, 

during which buds are formed for the following year (Meier and Leuschner, 2008). 

These authors therefore concluded that leaf area development in spring (April-May) and 

the impacts of summer droughts on matured leaves (July and August) were decoupled. 

They also described the risk of physiological failure later in summer as an unavoidable 

trade-off in the competitive strategy of beech to promote early leaf expansion and 

consequently tree growth. We related the leaf area with the annual volume increment of 

tree saplings and we observed a strong relationship between leaf area and increasing 

biomass in beech (Figure 3-6). As a consequence, beech saplings were able to increase 

their growth along the temperature gradient, most likely through larger leaves at the 

onset of spring, while they developed xeromorphic traits in foliage, later in the season, 

to cope with the higher evaporative demand in summer at the lower elevations. Spruce 

did not present as much plasticity as beech due to its inherent xeromorphic traits.  

The phenotypic plasticity indexes of the different traits measured in both species reveal 

a general low degree of variation (c.a. 0.2), except for leaf area in beech and resin 

conducts in spruce (c.a. 0.6). However, this index enabled us to compare the plasticity 

among traits within species and highlights the higher response of traits of beech leaves 

to environmental conditions in 2013. This demonstrates that in case of marked 
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environmental changes, beech is able to acclimate faster than spruce. Another possible 

point of view is a higher tolerance of spruce to the observed changing environmental 

conditions, probably linked to an inherent xeromorphy of needles.  

 

Figure 3-6 Relationship between annual volume increment of beech and leaf area a) and altitude 
b). Mean (N=3) ± 1xSE are indicated. 

The equal mean temperature of 15.8ºC during the growing seasons at 395 m did not 

explain the difference in leaf responses of beech between the years 2013 and 2014, 

which indicates that the interannual climatic variability and its impact on tree 

physiology are not well assessed by mean temperature approach. The increase of 2.5 

times the exposure of saplings to temperatures above 25ºC and the mean of ten maximal 

daily VPD values are better related to this interannual variabiliy. The higher plasticity 

found in beech is linked to the mesomorphic characteristics of leaves compared to the 
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xeromorphic origin of needles. Due to the short-tem of this study, the climate variability 

approach was limited. We expect that leaves developed during a drier year with marked 

drought events would reveal a higher xeromorphy in the foliage of both species.  

We confirm that the use of two contrasted years to study the phenotypic plasticity of 

foliar traits is sufficient to assess the acclimation abilities at leaf level of these species to 

these specific changing environmental conditions. However, we cannot predict the leaf 

morphological changes on the long-term but we demonstrate the potential plasticity of 

these species as a response to warmer and drier conditions and we prove the fast 

adjustment of leaves, which is the first step towards a potential adaptation. Finally, 

findings from this short-term experiment and findings from long term studies are not 

exclusive, but give together an insight on the mechanistic strategies of plants to cope 

with rapid environmental changes. This further understanding of the mechanisms 

underlying short-term foliar plasticity can serve as basis to design long-term 

experiments. 
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Chapter 4    Integrating tree responses in a 

multi-level assessment 

 

Framework used to assess species-specific responses to warming at different structural and temporal 

scales (P. Sanginés, 2017). 

 

“The First Draft of Anything is Shit” 

(Ernest Hemingway)
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The responses of ecological systems to climate change reflect the responses of the 

organisms that are within them. Therefore, forests functioning under climate change 

cannot be understood without knowledge of individual tree responses (Hansen et al., 

2001). Moreover, the individual scale is a desirable scale for characterizing 

ecophysiological behavior and responses of trees as it integrates the activities and 

processes that contributes to features such as survival, growth and reproductive success 

(Körner, 1994). 

In the following chapter I aimed to assess by a multi-level approach, the mechanisms 

underlying the ecological response of spruce and beech saplings’ to warming forcing. 

This will improve the understanding of these tree species capacities to respond to 

increasing temperatures by relating the structural and functional responses of beech and 

spruce to changing environmental conditions.  

 

Article 3:    Mechanistic understanding of the ecological response of spruce and 
beech saplings’ to warming: a multi-level assessment 

Sanginés de Cárcer, P., Signarbieux, Mariotte, P.,Wohlgemuth, T. and Buttler, A.  

In preparation 

 

4.1 Abstract 

Forecasting climate change impacts and to which extent forests are able to cope with it 

remains today an important unsolved issue. Switzerland will face higher temperature 

increases than the global average, which will have strong impacts in mountain 

ecosystems. In the Swiss mountains, a rise in mean annual air temperature of 1.5ºC was 

observed during the 20th century with associated increases in the frequency of extreme 

warm summers and prolonged droughts. The major constraint in predicting vegetation 

responses to climate change resides in the complexity of interactions between plants and 
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the environment. This study advances the mechanistic understanding of the ecological 

functioning of spruce and beech regeneration under warmer and drier conditions. Native 

tree saplings from a cold and wet environment (1350 m a.s.l.) were transplanted 

downhill along an elevation gradient, resulting in a mean air temperature difference of 

6ᵒC and a 30% rainfall reduction between the two extreme sites. We evaluated the 

growth efficiency using three-years monitoring of annual biomass increment. To further 

understand the potential difference in growth strategy, we determined the growing 

season length, the photosynthetic performance and morphological traits of the leaves. 

These high-resolution growth and physiology measurements provide data needed to 

assess the dynamic responses of trees to stress factors. Our results will serve to calibrate 

the spatial and dynamic WoodPam model, which has already been used to predict the 

evolution of landscapes and tree species in the Jura Mountains. Moreover, our findings 

will generally improve the parametrization of mechanistic models used to predict future 

species distributions.  

4.2 Introduction 

Understanding how climate and vegetation interact in order to define past, current and 

future vegetation distributions remains a principal challenge for plant ecologists. An 

approach to overcome this challenge is to model growth, mortality and reproduction 

rates of individual plants, and relate these to the abiotic and biotic environment 

(Scheiter et al., 2013). A major constraint in predicting vegetation responses to climate 

change resides in the complexity of interactions between plants and the environment. 

One question is whether relationships between species localities and environmental 

conditions are sufficient for predicting future species distributions, or whether accurate 

predictions require a more mechanistic understanding of the processes underlying 

distributions (Kearney, 2006). Correlative models prediction species distributions 

estimate parameters phenomenologically by relating current distributions to 

environmental conditions, while mechanistic models explicitly capture hypothetical 

biological processes and derive their parameters from the phenotypes of organisms 

(estimated independently from current distributions). These parameters are then used to 

construct distributional models (Buckley et al., 2010).  Simply put, correlative 

approaches statistically link spatial data to species distribution records (Holdridge Life 

Zone model) while mechanistic models incorporate the links between the functional 
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traits of organism and their environments (spatial distribution models) (Kearney and 

Porter, 2009). The principal assumption of correlative models is that processes setting 

range limits remain fixed in time and space, ignoring the dynamics of ongoing climatic 

changes (Williams and Jackson, 2007). Mechanistic models, however, rely on an 

understanding of the dominant processes that underlie survival and production to predict 

a geographic range  and determine species’ ecological niche through space and time 

(Kearney and Porter, 2009). The relevance of large spatial-temporal observations 

resides in the broad view given by the responses of forest ecosystems to climate change 

at the global scale. For instance, dynamic global vegetation models (DGVMs) provide 

valuable information on growth responses related to the interaction between vegetation 

and the atmosphere (Sass-Klaassen et al., 2016). However, their ability to explain the 

variability of growth responses between and within species is limited, as they usually 

generalize tree species as plant functional types (Sass-Klaassen et al., 2016).  

Models are good predictors of species distributions but are sensitive to the accuracy of 

parametrization, which usually stems from empirical studies of tree responses to 

stressful conditions. However, models usually omit individual scale responses and thus 

cannot provide information on which species are vulnerable to which variables in the 

different habitats (Clark et al., 2012). Therefore, an improvement of model 

parameterization by a mechanistic understanding of organisms’ responses to climate 

change is needed.  Furthermore, given that the response of an ecosystem to climate 

change is reflected in the responses of the organisms that composes it, responses of 

organisms at the individual level can begin a cascade of ecological change that may be 

observed at the ecosystem level (Hansen et al., 2001).  Moreover, Sass-Klassen et al. 

(2016) proposed the individual tree “as main source of information for understanding 

variability in growth responses as it has the potential to convey more details on specific 

tree responses to a given factor.  

Stress can be defined as “an environmental factor that reduces the rate of some 

physiological process (e.g., growth or photosynthesis) below the maximum rate that the 

plant could otherwise sustain” (Lambers et al., 2008). In this context, plants present a 

wide range of responses to stress, which scope from alterations in gene expressions and 

cellular metabolism to changes in growth rate and plant productivity (Shao et al., 2008). 

In general terms, when an environmental factor has a negative effect on a plant process, 
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an immediate stress response appears during a time that can span from seconds to days 

(Lambers et al., 2008). In order to compensate this decline in performance, plants adjust 

their morphological and physiological properties through acclimation within the life 

time of an individual. As a result, the biochemical changes that occur induce changes in 

physiological processes, such as photosynthesis and growth rate, as well as changes in 

the morphology of organs. Eventually, a population becomes adapted to a specific 

environmental stress when the compensation for the decline in performance is achieved 

through genetic changes (Lambers et al., 2008). Thus, tree responses can be discerned at 

three different levels: (1) growth and phenology (2) physiology (i.e. photosynthesis) and 

(3) morphology (Ahmad and Prasad, 2012). 

The aim of this paper was to better understand the relationship between an individual 

tree and environmental climate changes at multi-organizational levels (tree, leaf, tissue). 

This high resolution growth and physiology monitoring provides with needed data to 

assess the dynamic responses of trees to stress factors (Sass-Klaassen et al., 2016) in 

order to improve the parametrization of mechanistic models predicting future species 

distributions.  

4.3 Materials and methods 

4.3.1 Experiment design and set up 

The experimental design consisted of a transplantation experiment along an elevational 

gradient of the two dominant tree species of the Swiss Jura Mountains, Picea abies (L.) 

Karst (Norway spruce) and Fagus sylvatica L.  (common beech). The transect was 

determined by the project Mountland (Gavazov, 2013), in which two study sites were 

established based on IPCC climate change scenarios: Combe des Amburnex (N 46ᵒ52’, 

E 6ᵒ26’) as the control site at 1340 m a.s.l., and Les Bois Chamblard (N 46ᵒ47’, E 6ᵒ41’) 

at 395 m a.s.l. We obtain a notable climatic gradient with temperature increases of +5ᵒC 

as well as a precipitation reduction of 50%. This type of experiment provides us with an 

approach of the impacts of future climate change by a “space-for-time/warming 

experiments” (Körner, 2003).  
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In May 2012, a common garden experiment of 60 saplings (30 spruce and 30beech) was 

established along the elevation gradient. Saplings, adapted to the environmental 

conditions at 1340 m., were collected in the surroundings of Combe des Amburnex 

(donor site) and transplanted to a lower elevation (395 m) 

A generalized randomized block design was adopted, where block was matched with 

the transplantation altitude. The design of experiment included two blocks allocated one 

at each site, where the highest elevation served as a control site with an unchanged 

climate. Following a random selection procedure at each elevation, saplings were 

transplanted in 22 L pots into the ground and in rows with 0.3 x 0.9 m spacing to avoid 

light competition. A geotextile was placed at the bottom of the pots to avoid roots 

breaking through the recipient soil. Another geotextile was placed on the top to reduce 

soil water evaporation during the summer. In addition, within each block, treatments 

were randomly assigned to experimental units, which correspond to the saplings 

growing in the pots. An irrigation treatment (n=10 per species and recipient sites) was 

established and water was added weekly during the growing season, in accordance with 

the precipitation in the donor site.  

Climatic variation is the baseline for our experiment, thus continuous monitoring of 

climate parameters (i.e. precipitation and air temperature) is required. For this matter, 

each site was equipped with wireless meteorological stations (Sensorscope Ag, EPFL).. 

In addition, sensor probes connected to Em50 data-loggers (Decagon Devices, Inc., 

USA) were installed at each elevation to record, at topsoil horizon and at one -minute 

interval, the soil temperature and the volumetric water content. These sensors were 

placed in a limited number of saplings in each site. Because of this, additional manual 

measurements (Fieldscout TDR-100-Spectrum Technologies,Inc. and Hanna 

Instruments-HI9850) were performed during the growing season once per week, for half 

of the replicates of each species and treatment. 

4.3.2 Growth rate 

To evaluate how changes in environmental conditions affect aboveground biomass an 

exhaustive monitoring of tree growth was carried out for all saplings during the growing 

season of 2013 and 2014 (before budburst and after senescence). In order to estimate the 
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overall growth of each sapling, dasometric measurements of the stem and four main 

branches were recorded. For each individual, the four longest branches were previously 

selected and identified with colored cable to allow a continuous monitoring. Stem and 

branch diameters (basal and apical) were measured in mm using an electronic caliper 

with 0.01 mm of accuracy. The basal diameter of the stem corresponded to the average 

of two perpendicular measurements and was determined at approximately 1-2 cm from 

the base of the root collar. The basal diameter of a branch was recorded at the base. The 

apical diameter of the branches and the stem were measured below the dormant bud. 

Moreover, the stem and the branch length were determined with a measuring ruler, from 

the base to below the winter bud (accuracy of 0.1 cm). An allometric equation was 

developed to relate aboveground biomass with these above mentioned non-destructive 

measurements (i.e. stem basal diameter). 

4.3.3 Phenology 

Budburst 

Phenological observations were carried out along the elevation gradient for all saplings 

during the 2013 growing season. In spring, the monitoring of the leaf emergence was 

followed every 2-3 days by the same observer. The development stages that were 

considered were based on Vitasse (2009). The stages considered for beech include: (0) 

dormant buds, (1) swollen and/or elongating buds, (2) budburst and (3) at least one leaf 

is fully unfolded. For spruce we considered: (0) dormant buds, (1) buds expanding with 

visible new green behind the transparent cupule and (2) needles unfolded. The budburst 

date was recorded when 50% of the buds, at individual level, had reached the stage. 

Senescence 

In autumn, leaf colouring and/or leaf fall were the criteria followed in order to assess the 

leaf senescence of beech. The phenophase of senescence was considered reached when 

50% of the leaves of an individual were no longer functional, i.e. either coloured or 

fallen according to Vitasse (2009). Finally, the growing season length was determined 

as the difference between the day of the year of senescence and the day of the year of 

budburst. 
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4.3.4 Ecophysiology 

In situ eco-physiological measures of photosynthesis (CO  assimilation rate, An), leaf 

stomatal conductance (gs), water status of the plant (water potential, ψ) and efficiency 

of photosystem II apparatus (chlorophyll a fluorescence), were performed in two 

campaigns during the growing season of 2013 and 2014. The first of each year took 

place at the beginning of the summer and the second one at the end of the summer. A 

novel aspect of these campaigns is the performance of these measurements at the same 

environmental conditions (i.e. same air temperature, same humidity and, most 

importantly, at the same partial pressure of CO ). In order to achieve this, the measured 

saplings (3 replicates x species x treatment x site) were brought to the same intermediate 

location (Saint George, 1010 m a.s.l) and left there for a window of 24h for acclimation 

to the local conditions prior to the eco-physiological campaign. This enabled a real and 

strong comparison of the photosynthetic capacity between the saplings and treatments 

growing along the elevation gradient. Moreover, leaves and last generation shoot 

needles that were measured were also sampled in order to preform further laboratory 

analysis, which include N and C leaf content.  

In the following, a detailed description of experimental protocols employed for each 

measurement is presented. 

Leaf gas exchange 

Leaf gas exchange measurements were performed between 11 a.m. and 3 p.m. on clear 

sunny days, when the photon flux density (PFD) reached values of around 1800 μmol 

m−2 s−1. These measurements include the stomatal conductance (gs, mmol H O m−2 

s−1 ) and the CO  assimilation rate (An, μmol CO  m−2 s−1) which were determined 

using an open infrared gas analyzer (IRGA) system (CIRAS-2, PP-System, Hitchin, 

UK) equipped with a leaf clip. Two leaf clips were used, one for each species. A PLC6 

universal leaf cuvette (18 mm diameter), equipped with light units (LED), was 

employed for beech leaves. A special conifer leaf cuvette (PLC5) was used for spruce 

needles using natural ambient light. As needles did not cover the whole cuvette (80 mm 

x 30 mm), the photosynthetic surface area was recalculated by means of a leaf area 

meter (LICOR-3100 area meter). For both leaf clips, the inside temperature was kept 
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constant at 25 °C, whereas the relative humidity was always close to the ambient air. 

Moreover, an external CO  cartridge plugged into the CIRAS-2 allowed us to maintain 

a constant level of CO  (380 ± 5 ppm) in the cuvette during the measurements. 

Chl a fluorescence 

Chl a fluorescence was performed at the same environmental conditions and period of 

time as the leaf gas exchange with an additional predawn measurement. These were 

recorded using a portable pulse amplitude fluoremeter (PAM-2500, Heinz Walz GmbH, 

Effeltrich, Germany) where all associated parameters (ФPSII, Fv/Fm) were determined 

and calculated according to Maxwell and Johnson (2000). The measure of chlorophyll a 

fluorescence served as an indicator of non-stomatal limitation of photosynthesis 

(Signarbieux and Feller, 2011). 

Leaf water potential 

In order to evaluate the water status of saplings, leaf water potential was measured at 

predawn and at midday using a Scholander pressure chamber (Scholander et al., 1965). 

The minimum leaf water potential (ψm, MPa) was measured between 11 a.m. and 3 

p.m, whereas pre-dawn leaf water potential was recorded between 4 a.m. and 6 a.m. 

4.3.5 Leaf macro- and micro-morphology 

In order to assess the presence or not of morphological and anatomical stress symptoms 

in leaves and needles, samples were collected at the beginning of August 2013, within 

the same individuals measured during the eco-physiological campaigns, following 

specific criteria (i.e. avoiding sylleptic branches). Two leafs were collected for each 

beech replicate and three generation needles shoots (2011, 2012 and 2013) for each 

replicate of spruce. Macro-morphological measurements (i.e. fresh and dry weight) 

were immediately performed in the laboratory after the sampling. Then, leaf discs of 

beech and mid-portion segments of spruce needles were fixed by infiltration with 

buffered 2.5% glutaraldehyde at pH 7.0 and stored at 4ᵒC until further processing. For 

microscopic examination, cross sections were obtained with a manual microtome and 

either directly observed under transmitted and fluorescence light or stained before 
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microscopic observations. All sections were observed in a Leica microscope and images 

were processed using Adobe Photoshop Cs5 (version 12.0.0.0). 

4.3.6 Statistical analysis 

Using effect size (Eq.5) allowed to quantify the impact of changing environmental 

conditions on the different variables measured at individual tree (Table 4-1). All 

statistical analyses were performed in R 3.1.2 using the mgcv package. 

 

Equation 3 Calculation effect size 

where  is the variable considered for each observation [i],   and  are the mean 

and standard deviation of the control population.  

We divided by the standard deviation of the control to standardize the measurements. 

We use this instead of the total deviation because the control consists of a representative 

group of the population who has not been affected by the experimental intervention. The 

effect sizes were calculated for each explanatory variable and also the 95% intervals of 

confidence. Through a simple one way t-test we tested the significance of traits being 

different to zero. The resulting statistical analysis enabled to assess which of the 

explanatory variables were more or less affected by the warming treatment.  

We performed all the measurements on the same triplicated saplings in each treatment, 

species and elevation during the two consecutive years (2013-2014). 
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Table 4-1 Measured traits and variables during the experimental period (2013-2014) on beech 
and spruce sapling and on the soil 

Code Trait/variables definition Time scale 
T mean Mean temperature Growing season 
Biomass Annual increment of aboveground biomass End of growing season 
Budburst Date of budburst Beginning of growing season 
GSL Growing season length Growing season 
N Leaf nitrogen content Mid-growing season measure 
C:N Leaf carbon nitrogen ratio Mid-growing season measure 
SLA Specific leaf area Mid-growing season measure 
Surface Leaf surface Growing season 
Cuticle Thickness of the cuticle tissue Mid-growing season measure 

Epidermis Thickness (beech) or area (spruce) of the 
epidermis tissue Mid-growing season measure 

St.density Stomata density (beech) or frequency of 
stomata lines (spruce) Mid-growing season measure 

Mesophyll Thickness (beech) or area (spruce) of the 
photosynthetic tissue Mid-growing season measure 

An Photosynthetic net assimilation rate Mid-growing season measure 
Gs Stomatal conductance Mid-growing season measure 
NBI Nitrogen balance index of the leaf Growing season 
ψ predawn Basal water potential  Mid-growing season measure 
ψ midday Midday water potential  Mid-growing season measure 
Fv/Fm predawn Chl fluorescence at predawn Mid-growing season measure 
Fv/Fm midday Chl fluorescence at midday Mid-growing season measure 
ФPSII Efficiency of photosystem II Mid-growing season measure 
Soil VWC  Soil moisture  Growing season 
Soil temperature Soil temperature Growing season 
Soil respiration Soil respiration Mid-growing season measure 

 

4.4 Results 

4.4.1 Biomass allocation 

The harvest of trees at the end of the study allowed us to assess the distribution of 

biomass in the different compartments (Figure 4-1). Overall we observed that beech 

allocates more biomass belowground than aboveground. For both warming treatments, 

there was an increase in the aboveground biomass compared to the control treatment, 

and higher in the irrigated treatment compared to the non-irrigated. Similar allocations 

above and belowground biomass were observed for spruce. Interestingly, there was a 

notable increase (3-5%) in leaf biomass in the saplings subjected to warming compared 

to the control treatment. 
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Figure 4-1 Biomass allocation (percentage of dry weight) of saplings (N=5) in each species and 
treatment at final harvest in autumn 2014 in control (1350 m) and warming treatments (395 m.) 

The relative aboveground biomass increase is presented in Figure 4-2, where we found 

distinct interannual variability in tree growth. In 2013, a significant positive trend in 

aboveground increase was observed for the warming treatment in beech, while spruce 

presented a decreasing trend. Moreover, a significant difference between species was 

observed for the warming irrigated treatment. No significant differences were found 

between species and treatments in 2014.  

 

Figure 4-2 Annual relative aboveground biomass increases (n=3 ± SE) per species and 
treatments (control at 1350 m, warming non- irrigated and warming irrigated at 395 m). For the 
warming irrigated, trees had the same amount of rainfall then the control at highest elevation 
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(donor site). Letters represent the results of a Tukey multiple comparison of means test (95% 
family-wise confidence level) within each year between treatments and species. 

4.4.2 Multiple comparisons 

Standardized effect sizes (Figure 4-3) provided with an assessment of which 

explanatory variable was more affected by the warming treatments and which of the two 

species was more responsive (Novick et al., 2016). Moreover, it enabled the comparison 

of the magnitude of these effects at multiple levels. Overall, beech responded more than 

spruce to warming (13 significant variables in beech versus 6 in spruce in 2013). 

Growing season 2013 

For beech, warming significantly (P < 0.05) increased biomass, growing season length 

(GSL), cuticle thickness, C:N leaf ratio, leaf surface and thickness of the mesophyll 

tissue, while having a negative effect on the timing of budburst, leaf nitrogen content, 

epidermis thickness, net CO2 assimilation rate  and soil moisture. For spruce, warming 

increased growing season length and the epidermis thickness, while the opposite was 

observed for biomass increase, budburst timing and stomatal conductance. 

Growing season 2014 

Biomass increase, budburst timing, growing season length, cuticle thickness and soil 

moisture presented the same trends than 2013 for beech. Similarly occurred with spruce 

except for biomass increase which did was not significant different to zero.  

Opposite trends were observed for the following beech variables leaf nitrogen content 

and epidermis thickness stomatal conductance. Leaf surface, C:N leaf ratio, mesophyll 

thickness and stomatal conductance were not significantly different from zero in 2013.  

Spruce presented significant differences in variables measured in 2014 compared to 

2013. Specific leaf area was lower while mesophyll thickness and leaf water potential 

presented a positive size effect. Stomata density and soil respiration did no change 

between the control and the warming site for neither of the species and for neither of the 

years. 
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4.5 Discussion 

4.5.1 Tree growth-climate relationship 

Tree growth rates revealed contrasting growth responses of beech and spruce to 

warming in 2013 while no difference in responses was observed in 2014. This suggests 

a high sensitivity of biomass increment to changing environmental changes and 

interannual climatic conditions. Beech saplings adapted to high elevation conditions 

experienced an enhanced growth with increasing temperatures. Studies have related 

increases in tree growth to warmer temperatures in longer growing seasons in locations 

provided with enough water supplies (Lindner et al., 2014). Same increasing 

temperatures were applied to both species, which might suggest a lower tolerance of 

spruce to increasing temperatures and drier conditions. However, the average 

temperature increase of 6.3ᵒᵒᵒC was the same for both growing seasons (2013 and 2014), 

while the reduction in precipitation was higher in 2014 than in 2013. No direct link was 

observed between the growth patterns and the mean climatic variables. Due to the 

drought sensitivity of these species, one could expect that warmer temperatures 

associated with a decrease in precipitation would decrease growth rates. However, 

spruce decline in growth rate during 2013 was not observed in 2014 where the 

precipitation was lower. It can be arguable that the precipitation rate does not reflect the 

water availability in the soil. In this study the weekly monitoring of volumetric water 

content in the soil revealed that no differences between control and warming treatments 

was observed for spruce. Contrarily, beech presented significant negative size effects in 

soil moisture for both years, which once again are not in agreement with the growth 

patterns.    

Regarding evaporative demand of the air, significant differences were found in the 

amount of hours during which saplings were exposed to elevated VPD (Figure 4-4). It 

has been hypothesized that VPD may trigger stomatal closure to avoid an excess of 

water loss (Carnicer et al., 2013) and that the degree of sensitivity of stomatal closure to 

elevated VPD is highly species-specific. This notable difference in amount of hours 

with elevated VPD is most likely to have a strong impact in the growth rates of these 

species. 
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Figure 4-4 Comparison between average climatic variables (mean temperature; left panel) and 
extreme climatic variables (number of hours with VPD > 1.5 kPa; right panel) throughout the 
growing seasons (GS) 2013, 2014 and 2015, and between the two extreme sites. 

4.5.2 Most responsive variables to changing environmental conditions 

The selection of parameters included in a model for species distributions predictions 

requires a detailed understanding of the factors responding to changing environmental 

conditions and its relationship with growth rates. The standardized effect size of 

measured variables at tree, leaf and tissue level, together with soil measurements, 

enabled to pin point those with a higher degree of response. Tree level associated 

variables such as biomass increments; budburst and growing season lengths were the 

most responsive variables for both species. Therefore, the growing season length, 

defined as the period of time between budburst and budset, must be considered in the 

parametrization of models. Most models include spring phenology in their predictions 

but none take into account shifts in autumn phenology. 

To conclude the multi-level assessment of species-specific responses to simulated 

climate change provided with useful information regarding the sensitivity of the 

explanatory variables to warming treatments. The overall higher response of beech 

suggests a higher phenotypic plasticity of this species to modify its leaf phenology and 

morphology and physiological processes in accordance to the changes in environmental 

conditions to maintain a certain level of growth performance. Finally, growth related 

variables were the most responsive together with variables related to uptake of carbon 

(e.g. leaf surface and proportion of photosynthetic tissue) and those to the control of 

water loss (e.g. cuticle and epidermis thickness). 
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Chapter 5    Climate change and phenology 

 

 

Pictures from the upper row corresponds to the budburst stages of spruce needles¹ and the lower row  

corresponds to the senescence process of beech leaves² 

P. Sanginés ( ¹Aubonne 2014 and ²Bois Chamblard 2013) 

 

 

 

 “Autumn is a second spring when every leaf is a flower” 

(Albert Camus)
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Phenology is defined as “the study of recurring plant and animal life cycles stages, 

especially their timing and relationships with weather and climate” (Schwartz, 2013). 

Phenology has a key role in the coordination of tree performance with climate 

conditions. The timing of budburst and leaf senescence determines the length of the 

vegetative period and thus the growth performance of individuals (Loustau et al., 2005). 

Moreover, the coordination of the different phenophases with annual climate variations 

is a key factor leading to species adaptations to climatic constraints. Therefore, the 

capacity of species to alter their phenology in response to environmental changes will 

partly define their abilities to survive, or not, to future climate changes (Vitasse, 2009).   

5.1 On-set spring phenology 

Increasing temperatures, associated to climate change, will influence both dormancy 

release in winter (chilling temperatures) and the initiation of bud development in spring 

(forcing temperatures) (Harrington and Gould, 2015). In fact, warming may not 

necessary mean an advance budburst in spring (Chuine, 2010) as some species might 

need an increase in forcing hours to compensate the insufficient chilling requirement for 

bud dormancy release (Fu et al., 2014a, 2014b). However, there is no consensus about i) 

how the decreasing in chilling hours will affect the timing of budburst, ii) at what range 

of chilling temperatures bud dormancy breaks occurs and iii)  how dependent is spring 

phenology to the previous spring (Keenan and Richardson 2015). Moreover, many 

studies focus exclusively on one phenological stage, but do not evaluate the correlation 

between phenophases within the same cycle (Delpierre et al., 2015). 

In this section, I present unpublished results regarding the chilling and forcing 

requirements of spruce and beech saplings provided by a the Master’s Thesis of Rocio 

Andrey (2015). These results are important to further understand the phenological 

mechanisms of these species to warming. Additionally, in section 5.3 and on I present 

published results from a side project regarding the legacy effects of advanced or delayed 

budburst on the budset timing of beech leaves. My main contribution in this project was 

related to the experimental set up, and the definition of the methodology together with 

the field work during the growing season 2014. To a lesser extent, I participated in the 

analysis of results and the manuscript preparation.   
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5.1.1 Chilling and forcing requirements of spruce and beech saplings 

Chilling and forcing hours were estimated using a parallel model, and a threshold of 

5ᵒC was established. The number of chilling hours (-1ᵒ < temperature ≤ 5ᵒC) was 

calculated from the second of November until budburst date, while the forcing hours 

(temperature > 5ᵒC) was calculated for the period between the second of February to 

budburst. Temperature data was collected at hour resolution by in situ meteo-stations 

(Senseroscope, S.A.) placed along the elevation gradient.  

A strong exponential relationship (R² spruce=0.82 and R² beech=0.79) was found 

between forcing and chilling hours for both species (Figure 5-1). This indicates that the 

more number of chilling hours experienced by an individual the less forcing hours it 

requires for budburst. Furthermore, spruce saplings require more forcing hours for a 

given chilling requirement than beech. For instance, for a same amount of chilling hours 

of c.a. 1900, beech’s forcing requirement is 1000 h while spruce requires a sum of 1200 

h. 

This further knowledge, of the temperature effects on the timing of dormancy release 

and budburst, will help to evaluate the impacts of climate change on tree species 

(Søgaard et al., 2008). 

Figure 5-1 Relationship between the number of chilling hours and the number of forcing hours 
during the years 2014 and 2015 (Andrey, 2015)  
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5.2 Off-set growing season 

Autumn phenology also plays a key role in the determination of the growing period. It 

has recently been hypothesized that a delay on leaf senescence could also lead to a 

longer growing season (Menzel and Fabian, 1999; Vitasse et al., 2011). In contrast to 

spring phenology, budset and leaf senescence in temperate trees have received fewer 

attention and the factors that trigger the process (i.e. photoperiod, content of 

nonstructural carbohydrates in leaves or decrease and temperatures during autumn) are 

still poorly understood (Estrella and Menzel, 2006). 

In the current section, I present unpublished results linking leaf nitrogen content, 

measured with Dualex Dx4 (FORCE-A, Orsay, France), the net assimilation rate of 

CO2 (Ciras-2 PP-System) and leaf (Biesalski codes (1957)) during the senescence 

period of beech 2013.  The Dualex 4 Scientific (Dx4) is a recent developed leaf-clip that 

measures leaf epidermal flavonoids (Flav) at 375 nm, using the Chl fluorescence 

screening method (Agati et al., 2005), simultaneously to chlorophyll content in the same 

measured point. Moreover, I wanted to assess to what extent the device Dualex (Dx4) 

was accurate in measuring leaf nitrogen content. In total, six beech saplings were 

selected at 395 m of elevation to follow a continuous monitoring of the senescent 

process (October-November).  

Measurements were performed weekly on two to four leaves per individual tree and 

further sampled for subsequent laboratory analyses. Gas exchange measurements were 

performed prior leaf sampling and corresponded to the average of three measurements 

of nitrogen balance index. All measurements were carried out in the center of the leaf to 

maintain consistency in the measurement protocol.  

The follow-up of leaf senescence showed a strong correlation between nitrogen balance 

index (NBI) and the net assimilation rate (Figure 5-2). Similarly, a relationship between 

these variables and leaf coloring was also observed (Figure 5-3).  

The results suggest that the Dualex is a useful device for monitoring nitrogen leaf 

content when leaves are still green. When leaves start to be senescent this device is less 

accurate giving a wide range of responses to a given content of nitrogen. Moreover, gas 
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exchange measurements are usually carried out when leaves are mature, however, the 

exact moment of this stage is not clearly defined (can range from 2 weeks to 1.5. 

months). Therefore, the accurate timing for photosynthesis measurements is crucial for 

the correct evaluation of photosynthesis responses, and in particular, when comparing 

photosynthetic capacities between trees growing at different elevations (which present 

different budburst timing and leaf development). That is why I found that this device 

was very useful for assessing maturity of leaves prior photosynthetic measurements. As 

leaf nitrogen content increases through leaf development, this device indicates the 

moment in which [N] in the leaf has stopped increasing and remains stable (i.e. maturity 

stage of the leaf).  

 

Figure 5-2 Relationship in beech leaves between the nitrogen balance index (NBI) and the CO2 
assimilation rate (An). The measurements were made during the leaf senescence period in 2013. 
The coloring of leaves was measured using the Biesalski codes (1957) and correspondent colors 

are associated to each of the dots in the graph.

  

Figure 5-3 Correspondence of each color code with the assimilation rate (An) ± standard error 
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Article 4:    Asymmetric effects of cooler and warmer winters on beech phenology 
last beyond spring 

Signarbieux, C., Toledano, E., Sanginés de Cárcer, P., Yongshuo, H.F., Schlaepfer, R., 
Buttler, A. and Vitasse, Y. 

In press: Global Change Biology (2017) 

5.3 Abstract 

In temperate trees, the timings of plant growth onset and cessation affect 

biogeochemical cycles, water, and energy balance. Currently, phenological studies 

largely focus on specific phenophases and on their responses to warming. How 

differently spring phenology responds to the warming and cooling, and affects the 

subsequent phases, has not been yet investigated in trees. Here, we exposed saplings of 

Fagus sylvatica L. to warmer and cooler climate during the winter 2013–2014 by 

conducting a reciprocal transplant experiment between two elevations (1,340 vs. 371 m 

a.s.l., ca. 6°C difference) in the Swiss Jura mountains. To test the legacy effects of 

earlier or later budburst on the budset timing, saplings were moved back to their original 

elevation shortly after the occurrence of budburst in spring 2014. One degree decrease 

in air temperature in winter/spring resulted in a delay of 10.9 days in budburst dates, 

whereas one degree of warming advanced the date by 8.8 days. Interestingly, we also 

found an asymmetric effect of the warmer winter vs. cooler winter on the budset timing 

in late summer. Budset of saplings that experienced a cooler winter was delayed by 31 

days compared to the control, whereas it was delayed by only 10 days in saplings that 

experienced a warmer winter. Budburst timing in 2015 was not significantly impacted 

by the artificial advance or delay of the budburst timing in 2014, indicating that the 

legacy effects of the different phenophases might be reset during each winter. Adapting 

phenological models to the whole annual phenological cycle, and considering the 

different response to cooling and warming, would improve predictions of tree 

phenology under future climate warming conditions. 
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5.4 Introduction 

Phenology of temperate and boreal trees plays a crucial role in ecosystems structure and 

functioning (Fu et al., 2016). An advance or a delay in the beginning and/or end of tree 

growth may considerably impact biogeochemical cycles and therefore feedback on the 

global earth’s climate (Cleland, Chuine, Menzel, Mooney, and Schwartz, 2007; IPCC, 

2014; Ma, Pitman, Lorenz, Kala, and Srbinovsky, 2016; Peñuelas, Rutishauser, and 

Filella, 2009; Richardson, Keenan, and Migliavacca, 2013; Wolf et al., 2016). For 

instance, increasing temperatures have extended the growing season of temperate and 

boreal trees and resulted in a larger carbon uptake (Keenan, Gray, Friedl, and Toomey, 

2014). Earlier leaf-out as a result of warmer spring may even compensate for the carbon 

loss occurring in more frequent dry summers (Wolf et al., 2016). In addition, as 

phenological response to temperature and photoperiod was shown to highly differ 

among coexisting species, climate change will likely affect the competition among 

species (Vitasse et al., 2011) and ultimately lead to shifts in species distributions 

(Chuine, 2010). Long-term phenological observations and experiments showed that 

spring tree phenology does not only depend on warm temperatures in spring because 

chilling temperatures during winter control the dormancy release, so that spring 

phenophases respond in a nonlinear manner to temperature increase (Fu, Zhao et al., 

2015; Morin, Roy, Sonie , and Chuine, 2010). While much attention has been paid to 

the effect of warming on trees, tree phenological responses to cooling have got little 

attention in the scientific literature (but see a recent study conducted on alpine meadows 

Li et al., 2016). In particular, the advance of spring phenophases in response to global 

warming may put leaves in colder conditions that in turn may affect the subsequent 

phenophases. Understanding how plant phenology will respond to both warmer and 

cooler conditions is thus essential to predict the overall effect of ongoing climate change 

on plants. 

Numerous studies have reported significant phenological shifts worldwide in response 

to ongoing climate warming (Fu, Piao, de Beeck, and Cong, 2014; Menzel and Fabian, 

1999; Menzel, Sparks, Estrella, and Koch, 2006). Over the period 1980–2012, the dates 

of spring leaf phenology have advanced by 6–19 days in Europe and North America, 

respectively (Fu, Piao et al., 2015). But warmer climate may not necessarily induce 

earlier leaf-out in spring because temperature has a dual role that affects both dormancy 
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release in winter and the initiation of bud development in spring (Chuine, 2010; 

Harrington and Gould, 2015). It has been recently reported that warmer temperature 

recorded during the last two decades has resulted in an increase in forcing requirement 

for budburst of temperate trees in Europe, which is likely the result of insufficient 

chilling requirement for a full dormancy release or an increasing photoperiodic 

limitation (Fu, Zhao et al., 2015). For example, for Fagus sylvatica L. (European beech), 

photoperiod plays an important role in regulating the timing of budburst, which then 

limits the extent of the phenological response to global warming (Basler and 

Körner,2014; Vitasse and Basler, 2013). The complex interaction between chilling, 

forcing temperatures, and photoperiod involved in bud dormancy is probably the reason 

why numerous questions remain open to predict future spring phenology. For instance, 

there is no agreement on how the expected decrease of chilling in winter will affect the 

budburst timing in the coming decades or which range of chilling temperatures is 

actually efficient to break the bud dormancy. In contrast to spring phenology, budset 

and leaf senescence in temperate trees have received fewer attention and the 

environmental cues that influence autumn senescence are still poorly understood 

(Gallinat, Primack, and Wagner, 2015; Panchen et al., 2015). Photoperiod and 

temperature are considered as the main drivers of growth cessation and leaf senescence 

(Delpierre, Vitasse, Chuine, and Guillemot, 2016), but precipitation and nutrient 

availability may also play a non-negligible role (Liu et al., 2016; Panchen et al., 2015). 

Most of the studies focus on a single phenophase and therefore do not consider any 

potential effect of one phenophase to the other phenophases occurring within the same 

growing season (Delpierre et al., 2016) or even from 1 year to the next one, that is, the 

so-called carryover effect. Yet, growing evidences show that the different phenophases 

are not independent from each other (Delpierre et al., 2016; Fu, Piao, Zhao et al., 2014; 

Keenan and Richardson, 2015). Based on a manipulative warming experiment, Fu, 

Campioli, et al. (2014) found a carryover effect of spring over autumn phenology or 

even to the next year spring phenology. Considering that most experiments have been 

performed in climate chambers by manipulating temperature and photoperiod (Basler 

and Korner, 2012; Chung et al., 2013; Fu, Campioli, Deckmyn, and Janssens, 2013; Fu, 

Piao, Zhao et al., 2014; Sherry et al., 2007), experiments conducted in natural 

conditions could provide precious insights to further explore these mechanisms and 
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improve our understanding of the potential carryover effect of one phenophase to the 

next one. 

In this study, we conducted a reciprocal transplant experiment between two elevations 

(1,340 m a.s.l. vs. 371 m a.s.l.) in the Swiss Jura mountains using saplings of Fagus 

sylvatica L. The upward and downward transplantation allowed us to simulate cooler or 

warmer temperatures during winter and early spring. Then, the saplings were moved 

back to their original elevations shortly after budburst in order to test the legacy effects 

of the budburst timing on the timing of budset in autumn and next year budburst. More 

specifically, we expect (i) an impact of warmer- and cooler-induced winter on autumn 

phenology through shifts in the beginning of growth onset, (ii) a stronger effect of a 

cooler winter than a warmer winter both on spring phenology and on the legacy effects 

for autumn phenology, and (iii) a carryover effect of autumn phenology on next year 

spring phenology. 

5.5 Materials and methods 

5.5.1 Study sites and experimental design 

The experiment was conducted at two sites, at low and high elevation in the Swiss Jura 

mountains, in order to simulate warmer (transplant from the higher site to the lower site) 

and cooler (transplant from lower to higher site) conditions. The high-elevation site 

(Alpage des Amburnex: N46°540 , E6°230 ) was located at 1,340 m a.s.l. and has a 

mean annual rainfall of ca. 1,450 mm and a mean annual temperature of 5.5°C (2009–

2015). The low-elevation site (Bois Chamblard: N46°270, E6°240) was situated at 371 

m a.s.l. and has a mean annual rainfall of 1,180 mm with a mean annual temperature of 

11.4°C (2009–2015). Hereafter, these two sites are referred to as “high site” and “low 

site” according to their elevation. 

 Figure 5-4 represents the configuration of the experiment at different time of the 

experiment that took place from autumn 2013 to spring 2015. In early September 2013, 

60 six-year-old saplings of Fagus sylvatica L. (European beech) were collected in the 

vicinity of the two study sites, referred hereafter as the donor forests (Figure 5-4a), with 

30 saplings from each donor forest. The saplings were selected for having similar height 
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and morphology (diameter of 7–9 mm and height of 70–80 cm). When the plants were 

collected, we paid particular attention not to disturb the roots of the saplings by taking 

as much as possible untouched soil around the roots, in order to minimize 

transplantation stress. These saplings with their clods of about 30 cm diameter and 30 

cm depth were then planted in pots (22 L, 35 cm of diameter and 40 cm depth) filled 

with their local soil. The transplant experiment (Figure 5-4b) was conducted on the 

week from the 23 to 27 of September 2013, as follows: At the low site, 15 of the 30 

potted saplings served as a control for the cooling treatment and were kept at the low 

site in a protected common garden (low site common garden) during the whole 

experiment. They are referred hereafter as control cooling (CC). The other 15 saplings 

 

Figure 5-4 Experimental design of the transplant experiment before (a), during (b), and after the 
transplantation (c). The scheme represents the situation of the saplings of the different 
treatments at their different locations during the experiment. C refers to the cooling treatment 
and represents the trees moved to high elevation during winter/spring 2013–2014 (b) and then 
moved back to their original (donor) low-elevation site (c). CC refers to the control cooling 
treatment in which trees remained during the whole experiment at the low site. W refers to the 
warming treatment and represents the trees moved to low elevation during winter/spring 2013–
2014 (b) and then moved back to their original site at high elevation (c). CW refers to the 
control warming treatment in which trees remained during the whole experiment at the high site 

were moved to the high site in another protected common garden (high site common 

garden) to experience a cooler climate and are referred hereafter as cooling (C). 

Similarly, at the high site, 15 of the 30 potted saplings served as a control for the 

warming treatment and were kept at the high site common garden during the whole 

experiment. They are referred hereafter as control warming (CW). The other 15 

individuals were moved to the low site common garden to experience a warmer climate 
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and are referred hereafter as warming (W). All pots were placed in an open area near the 

donor forest and buried into the ground, so that the top of the pots was about the soil 

surface. We monitored bud development in spring 2014, and approximately 2 weeks 

after budburst for each individual tree separately, they were transplanted back to their 

original site. The timing of 2 weeks allowed the leaves of each sapling to reach a 

minimum of maturation to increase their freezing resistance once back at its original site, 

especially important for the saplings going back to the high-elevation site. By that time, 

the tree reached the phenological stage 4 (fully unfolded leaf), but the shoot elongation 

was only at its beginning. At the end, all the potted trees were moved back to their 

original site from April 20th to May 9th and from May 29th to June 7th at the low- and 

high-elevation sites, respectively (Figure 5-4c). With this procedure, treatments and 

controls were under the same environmental conditions during the growing season 2014 

and only differed in their budburst timing and previous winter conditions. It is also 

noteworthy that the elevational gradient allowed to induce contrasting temperature 

regime (mean difference of 4.2°C for the period from October 2013 to April 2014 

between the two sites), while keeping similar day length between the two sites. Saplings 

only received water from natural rainfall. Except three individuals at the low site, all 

individuals survived during the whole experimental period up to spring 2015. 

5.5.2 Phenological observations 

Bud development was monitored during springs 2014 and 2015 using five distinct 

stages: dormant bud (0), swollen bud (1), budburst (2), leaves folded in a single plan (3), 

and at least one leaf fully unfolded (4), as commonly used for deciduous trees (e.g., 

Vitasse, Lenz, Hoch, and Körner, 2014). The observations were conducted on the apical 

bud of each sapling in each site by the same observer three times a week from March 24, 

2014, until all saplings reached the stage 4. In summer/autumn 2014, while all 

transplanted saplings were back in their site of origin, we monitored budset on the shoot 

apical meristem three times a week using four different stages: ongoing leaf 

development (0), newly formed green and soft bud (1), small and brown bud (2), 

elongated (>1 cm), and brown bud (3). Budset timing was defined when a given sapling 

reached the stage 3, which was taken as a proxy for the cessation of the primary growth. 

Leaf coloration and leaf fall were also monitored, but we chose to use only budset data 
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in this study as a proxy for growth cessation. The growing season length for each 

sapling was defined as the time in days between budburst and budset. 

 

5.5.3 Climatic data 

Relative air humidity, soil, and air temperature were recorded hourly in each site using 

EM50 data-loggers (Decagon Devices, Inc., Pullman, WA, USA). Air temperature 

sensors (VP3. Decagon Devices, Inc.) were placed at the average height of the saplings 

(i.e., 60 cm from the ground). Note that the high-elevation site was characterized by a 

snow cover up to ca. 1 m from the end of December to mid-March. Thus, saplings at the 

high site were covered by snow during some period in winter and may have experienced 

cooler temperatures than a few meters aloft. However, our temperature logger 

positioned at the tree canopy sapling captures the temperature as experienced by buds. 

Although numerous studies consider chilling temperatures to be comprised between 0 

and +5°C, we considered temperatures between 1 and +5°C as efficient for chilling, 

because when the saplings of the high site were covered by snow, air temperature was 

slightly below 0°C and we assumed the temperature induced by snow to contribute to 

the chilling requirement. In order to assess the requirement of chilling and forcing 

temperatures for budburst, we calculated chilling hours as follows: We cumulated the 

chilling hours received from 1 November until budburst both in 2014 and in 2015. To 

evaluate the forcing temperature requirement to budburst, we calculated the number of 

hours above 5°C from 1st of February to the budburst date in both 2014 and 2015. 

5.5.4 Growth and bud morphology 

For each sapling, we measured the stem apical diameter (mm), the stem basal diameter 

at 3 cm from the ground (mm), and the stem length (cm). The four longest branches 

were labeled by colored strings, and their diameter and length were also measured. All 

growth parameters were assessed at the beginning and at the end of the growing season 

2014. Additional measurements of the length and diameter of five buds were taken for 

each sapling including the apical and four surrounded buds at the end of the growing 

season 2014, as well as the total number of buds per saplings. The diameter of the buds 
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was measured at one-third of the bud length from the base. All diameter and bud length 

measurements were made with a digital caliper (MarCal 16 EWR, accuracy 0.01 mm) 

while the stem and main branches length were measured with a tape (accuracy 0.1 cm). 

We calculated the volume of the stem and branches assuming a truncated cone shape: 

 

 

Equation 4 Volume estimation of stem and branches 

where V is the volume of the stem or branch i, “D” is the basal diameter of the stem, 

and “d” is the apical diameter of the stem. The total volume of one individual sapling 

was then calculated as the sum of the volumes of the stem and the four main branches. 

 

 

Equation 5 Total volume for each individual sapling 

The increase in the stem length and total volume was calculated as the difference 

between measurements conducted at the end (EGS) and at the beginning (BGS) of the 

growing season.  

 

Equation 6 Calculation of increase total volume 

 

 

Equation 7 Calculation of increase stem length 
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where “ΔV” is the total volume increase and “ΔSL” is the stem length increment.  

 

5.5.5 Nonstructural carbohydrate (NSC) analysis 

The NSCs are defined as low molecular weight sugars (glucose, fructose, and sucrose) 

plus starch. In November 2014, when leaves of all saplings were senescent (i.e., either 

colored or fallen), we collected one woody twig of 6 cm from each sapling (i.e., 58 

samples) corresponding to the tissue produced in 2014. Within 2 hr after collection, the 

samples were heated at the laboratory in a microwave oven at 800 W for three times for 

25 s, allowing to denature enzymes and stop microbial activity. Samples were then 

immediately dried to constant weight at 60°C. NSC was analyzed as described in Hoch, 

Popp, and Korner (2002) using an enzymatic digest technique with subsequent 

spectrophotometric glucose tests (Li, Hoch, and Korner, 2002). Samples were boiled in 

distilled water and after centrifugation, treated with invertase and isomerase to convert 

fructose and sucrose into glucose. Glucose was converted to gluconate-6phosphate 

using a Hexosekinase reaction kit (Sigma Diagnostics, St. Louis, Mo., USA). The 

insoluble material was kept at 40°C with the dialyzed crude enzyme clarase from 

Aspergillus oryzae to break down starch to glucose. Starch and sugar standards as well 

as laboratory standard of plant powder were used as controls for analyses. Finally, sugar, 

starch, and NSC concentrations (%) were calculated on a dry matter basis.  

5.5.6 Data analysis 

The experiment followed a one-factor design with repeated measurements. The studied 

factor consisted in four treatments: C = cooling, CC= control cooling, W = warming, 

and CW = control warming. The experimental unit was a pot with a single individual, 

which is also the observational unit. For the analysis of budburst, chilling, and forcing 

hours, each plant was observed twice, on year 1 (2014) and on year 2 (2015), while 

budset was observed only during year 1. Year is therefore a within factor and is 

considered in the analysis as repeated measurement. The design was slightly unbalanced 

due to some mortality in the warming treatment: treatments C and CC with n = 15 

individuals, treatment CW with n = 12, and treatment W with n = 14 individuals. An 
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analysis of variance was performed for testing the treatment effect (either cooling or 

warming) on budburst and budset timing, on chilling and forcing hours requirement, as 

well as on NSC content. Tukey tests adapted for repeated measurement designs were 

used to compare the statistical differences among the treatments. The relation between 

chilling and forcing was analyzed with linear regressions, both through the means of the 

different treatments (n = 4) over the 2 years 2014 and 2015 and through the individual 

sapling data. Growth and bud morphology parameters were analyzed using an analysis 

of variance at one factor for both treatments separately.  

All analyses were performed using R 2.5.3 (R Core Team, 2013) using the R-package 

“easyanova” (Arnhold, 2013) to perform the ANOVA and calculate the Tukey tests.  

5.6 Results 

5.6.1 Budburst in spring 2014 after a cooling or warming winter 

The mean budburst date in the cooling treatment (C; saplings transplanted to the high 

site) was significantly later than in the control treatment (CC; saplings kept at the low 

site), with a mean delay of 46 ± 2 days (Figure 5-5a). Likewise, the mean budburst date 

for saplings in the warming treatment (W; saplings transplanted to low site) in 2014 was 

significantly advanced (mean 37 ± 2 days) compared to the control warming (CW; 

saplings kept at the high site) (Figure 5-5a). No difference was detected in the budburst 

timing of saplings at the high-elevation site between the control warming and the 

cooling treatments, whereas at the low site budburst occurred 8 days earlier in the 

control cooling treatment than in the warming treatment (p < .001).  

The magnitude of the impact of warming and cooling on the timing of budburst was 

significantly different. Giving the temperature difference of 4.2°C (see first section of 

Material and Methods) between the two sites during the reciprocal transplantation, that 

is, from October 2013 to April 2014, the cooling treatment showed a delay of 10.9 days 

per degree decrease in air temperature measured at sapling height, whereas the warming 

treatment showed an advance of 8.8 days per degree increase in air temperature (Figure 

5-5a).  
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Figure 5-5 Budburst timing in 2014 (day of year) of European beech (a) and number of forcing 
hours and chilling hours required to budburst for each site (low and high elevation) and 
treatment (b). C refers to the cooling treatment and represents the trees moved to high elevation 
during winter/spring 2013–2014 and then moved back to their original site at low elevation. CC 
refers to the control cooling treatment in which trees remained during the whole experiment at 
the low site. W refers to the warming treatment and represents the trees moved to low elevation 
during winter/spring 2013–2014 and then moved back to their original site at high elevation. 
CW refers to the control warming treatment in which trees remained during the whole 
experiment at the high site. Bars represent mean values `1 SE for each treatment (n = 15). 
Different letters in the histograms (a) denote significant differences (at p < .05). The square 
brackets above the histograms (b) are used to compare chilling hours and forcing hours per 
treatment at the same site, respectively, with ns for nonsignificant difference and *** for p 
< .001 

Although saplings under cooling control (CC) and warming treatments (W) at the low 

site experienced similar duration of chilling, that is, 2,051 and 2,055 hr, respectively, 

from 1st of November to budburst (Figure 5-5b), saplings under warming treatment 

required 189 additional forcing hours to budburst as compared to saplings under the 

cooling control (p < .001; Figure 5-5b). By contrast, saplings of the cooling treatment 
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(C) and warming control (WC) at the high site required almost the same duration of 

forcing hours to budburst, that is, 560 and 566 hr, respectively (Figure 5-5b).  

5.6.2. Carryover effects of the timing of budburst on budset, and next year budburst 

The cooling treatment in winter 2013–2014 induced a significant delay of 31 days in 

budset in autumn 2014 (p < .001; Figure 5-6a) while the warming treatment induced an 

advance of 10 days in budset compared to the control, but not significant (Figure 5-6b). 

Interestingly, we observed the same trend on the leaf senescence date as no effect of 

treatment, warming, or cooling was found on the time lag between budset to leaf 

senescence at each site (Table 5-1). Nevertheless, the two populations showed 

differences in their time lag, with 27–33 days for the control cooling (CC) and the 

cooling treatments (C), and 2–6 days for the control warming (CW) and the warming 

treatments (W), respectively. In detail, we found that 10-day delay in spring budburst 

induced by the cooling treatment was associated with 6.7-day delay in the timing of 

budset in autumn compared to the control, whereas no significant change of the budset 

timing was observed in the warming treatment with 10day advance in budburst 

associated with 2.7 days in the budset date (Figure 5-6b).  

Table 5-1 Time lag expressed in days between the date of budset and the date of leaf senescence 
for control cooling (CC) and cooling (C) treatments at the low site and of control warming 
(CW) and warming (W) treatments at the high site in autumn 2014. Additionally to the budset, 
leaf coloration and leaf fall were also monitored and we considered individual sapling as 
senescent when 50% of its leaves were colored or fallen according to the methodology 
employed in Vitasse, Porte et al. (2009). Data are means ± SE with n = 10. 
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Figure 5-6 Budset timing in 2014 and budburst timing in 2015 (day of year) of control cooling 
(CC) and cooling (C) treatments at low elevation (a) and of control warming (CW) and warming 
(W) treatments at high elevation (b). Number of forcing and chilling hours required to budburst, 
respectively to their treatments, is indicated in the insets. Bars represent the mean values `± SE 
for each treatment (n = 12 for CW, n = 14 for W and n = 15 for CC and C). The stars denote a 
significant difference (at p < .001) between treatment at the different timings while ns is used 
for nonsignificant difference 

In spring 2015, that is, 1 year after the saplings were moved back to their original sites, 

we did not find significant differences in the budburst date between the cooling 

treatment and its control (Figure 5-6a) or in their forcing requirement (1,041 and 1,053 

hr, respectively; inset Figure 5-6a). Moreover, despite 4-day advance in the warming 

treatment (Figure 5-6b) that required 68 forcing hours less than the control (inset Figure 

3b), the shifts, that is, both budburst timing and forcing requirement, were not 

significant (p = .16) between the warming and control treatments. Nonetheless, during 

that second spring, the first individuals that tended to budburst first were all from the 
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warming treatment, as shown in Figure 5-7. Actually, frost damages were observed on 

the developing new leaves at the high-elevation site on May 11, 2015 (red arrow, Figure 

Figure 5-7), and at that time, among the damaged individuals, seven saplings of 14 from 

the warming treatment reached budburst, while only three over 12 reached the same 

stage for the control warming saplings (Figure 5-7). Before this specific date, we found 

that air temperature (blue line, Figure 5-7) dropped three times to freezing temperatures, 

up to 2.5°C. After this date when temperatures got warmer, all saplings from the 

warming treatment reached budburst by the 17th of May, while the rest of the saplings 

from the control warming treatment reached this stage by the 26th of May.  

 

Figure 5-7 Air temperature (blue line) and cumulative number of trees (histograms) that have 
reached the budburst stage for the warming treatment and control warming in spring 2015 at the 
high site. The red arrow indicates when frost-damaged leaves (brownish young leaves) were 
observed in the field 

Interestingly, for all saplings in each treatment over 2014 and 2015, the duration of 

forcing hours required to budburst was negatively correlated to the duration of chilling 
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hours experienced by the saplings (R2 = .89, p < .001). The more chilling experienced 

by the saplings, the less forcing was required to budburst (Figure 5-8( 

 

Figure 5-8 Relationship between the accumulated number of chilling hours received (for air 
temperature between 1 and +5°C) from the 1st November to budburst, and the number of 
forcing hours required to budburst, calculated as the sum of hours above 5°C from the 1st of 
February to budburst date for each treatment in both 2014 and 2015 (linear regression). Air 
temperature was recorded at the canopy level, i.e. around 60 cm above the ground 

5.6.3 Carryover effect on growth, bud morphology, and non-structural carbohydrates 

(NSCs) 

Stem length increment and total growth in volume during the growing season 2014 were 

found to be associated with the previous year’s warming–cooling treatments (Table 5-2). 

Cooling treatment (C) had a negative impact on both parameters. Although saplings in 

the cooling treatment experienced the growing season at the low site (as they were 

moved back to low elevation shortly after budburst), the cooler winter and early spring 

conditions and delayed-induced budburst had significantly decreased their growth (i.e., 

volume growth and stem length increment; Table 5-2) compared to saplings of the 

cooling control (CC) (p < .001). At high elevation, the difference in growth between 
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warming (W) and control warming (CW) was less marked (with 5.0 and 7.8 cm3 in 

volume growth for W and CW, respectively), but the stem length increased consistently 

(.01 < p < .001) between CW and W (with 3.8 and 7.1 mm, respectively). The number 

of buds was not statistically affected by both treatment warming and cooling compared 

to their respective controls. Interestingly, saplings from the cooling treatment (C) had 

smaller buds (p < .001), in length and diameter, after the end of the growing season, 

than those from the control treatment (CC). Conversely, saplings from the warming 

treatment (W) had longer and larger buds (.05 < p < .01), compared to their control 

(CW).  

Table 5-2 Growth and bud morphology parameters measured at the beginning and at the end of 
the growing season 2014 for a given site and treatments. C refers to the cooling treatment and 
represents the trees moved to high elevation during winter/spring 2013–2014 and then moved 
back to their original site at low elevation, and CC refers to the control cooling treatment in 
which remained during the whole experiment at the low site. W refers to the warming treatment 
and represents the trees moved to low elevation during winter/spring 2013– 2014 and then 
moved back to their original site at high elevation, and CW refers to the control warming in 
which remained during the whole experiment at the high site. Data represent mean `1 SE with n 
= 10. The stars denote a significant difference (at p < .001) between treatments at the different 
timings while ns is used for nonsignificant difference. 

 

The NSC concentration did not show significant differences between warming–cooling 

treatments and their controls (Figure 5-9). Indeed, in spite of the substantial shift of 

budburst timing due to the cooling or warming treatments, the proportion of NSC stored 

in the twigs produced during the current growing season reached similar levels. The 

weak differences seem to root more in the origin of saplings (donor site) rather than the 

result of the treatments. Saplings coming from the lower site tended to have higher 

concentrations of total NSC and higher starch proportion compared to sugar. Only 

saplings from the warming treatment produced as much sugars as starch, showing a 

significant change in the proportion of sugar (p < .001) (Figure 5-7; Table S1), 

compared to the other treatments. Furthermore, no apparent relationships were observed 
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between the total NSC content and the growing season length 2014 (GSL), as the 

population from the low site (CC and C), showing the higher NSC content, had a GSL 

comprised between 123 and 137 days (p < .06), while the population from the high site 

(CW and W) showed a GSL between 131 and 159 days (p < .001; Figure 5-7). 

Interestingly, the cooling and the warming treatment did not affect the GSL in the same 

way, that is, cooling reduced the GSL by 14 days whereas warming increased the GSL 

by 28 days.  

 

Figure 5-9 Percentage of nonstructural carbohydrates (sugar and starch) and growing season 
length 2014 (numbers above histograms) of control cooling (CC) and cooling (C) treatments at 
the low site and of control warming (CW) and warming (W) treatments at the high site. Bars 
represent the mean values ± SE (n = 10), for which significance level between treatments and 
their controls are indicated for the total nonstructural carbohydrates (sugar + starch content) 

5.7 Discussion 

Using an original transplant experiment from a ~1,000-m elevation gradient allowed us 

to induce natural warming and cooling to European beech saplings. We showed that 

spring budburst phenology has a significant but different response to warming and 

cooling. In particular, we found that beech trees had a greater budburst response to 

cooling than to warming, that is ~11-day delay vs. ~9day advance per degree cooling 

and warming, respectively. Interestingly, the induced advance or delay in the budburst 
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due to the downward or upward transplantation significantly affects the budset timing in 

the following autumn, while the saplings were growing at their site of origin during the 

duration of the growing season. Earlier budburst correlated with earlier budset timing 

and vice versa. However, the magnitude of this legacy effect of spring phenology over 

autumn phenology differed between the warming and the cooling treatments with higher 

legacy effect found in the cooling treatment. Additionally, this asymmetric effect of 

warming and cooling is reflected on the growing season length (GSL), where cooling 

reduced the GSL by 14 days whereas warming increased GSL by 28 days. Our study 

provides evidence in natural conditions of the carryover effect of spring phenophases 

over following phenophases in a temperate tree.  

5.7.1 Asymmetric budburst response to cooling and warming 

Our study showed that one degree of temperature change induced a larger phenological 

shift in the cooling treatment than in the warming treatment. This result is consistent 

with the theory that warmer temperatures may reduce the duration of chilling to fully 

release winter endodormancy and therefore increase the duration of forcing required to 

budburst. Similarly, Fu et al. (2013) found no further advance in the leaf-out timing of 

oak and beech when temperature was artificially warmed by 6°C compared to the 5°C 

warming, in which earlier leaf-out was still observed. European beech is known to have 

a high chilling requirement for the dormancy release and to interact with photoperiod 

(Vitasse and Basler, 2013). The population from high elevation was exposed to a 

warming of about 6°C. We therefore suggest that spring phenology in the warming 

treatment has responded less than in the cooling treatment due to a lack of chilling 

exposure or too short photoperiod that has reduced the sensitivity of buds to respond to 

forcing temperatures (Basler and Körner, 2014). To our knowledge, only one study has 

shown an asymmetric phenological response to warming and cooling by moving plants 

in different climate conditions, but on alpine meadows (Li et al., 2016). The authors 

showed that prolonged phenological stage, such as flowering, induced by 

transplantation to warmer locations, led to longer reproductive phases and activity 

period, whereas cooler conditions led to shorter vegetative and reproductive phases. 

Studies using natural climatic gradient “as experiments by nature” are particularly 

relevant as plant phenological responses to artificial warming in experiments were 
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found to significantly differ from long-term series of observations (Wolkovich et al., 

2012).  

Interestingly, we found that during the first spring 2014, saplings in warming treatment 

required 189 forcing hours more than the control cooling treatment, although they were 

under the same conditions during winter, and hence received the same duration of 

chilling hours. This difference in forcing requirement to budburst at the lowest site may 

be caused by a genetic differentiation between low- and high-elevation populations as it 

is often found for the timing of budburst (Vitasse, Delzon, Bresson, Michalet, and 

Kremer, 2009; Vitasse, Porte , Kremer, Michalet, and Delzon, 2009). Nevertheless, the 

difference between the two populations vanished at the high site and might be due to 

genes vs. environment interactions (Vitasse et al., 2013; Vitasse, Lenz, Kollas et al, 

2014). Indeed, Vitasse et al. (2013) found a higher differentiation in the timing of 

budburst between different populations of beech trees in their lower elevation common 

garden, and as in our study, this differentiation vanished or was reduced at the high-

elevation common garden. It could be that under warmer conditions (low elevation), 

warm-adapted individuals for which dormancy is released can start their growth, while 

cold-adapted individuals get less chilling and therefore need more forcing requirement 

(Figure 5-8). Conversely, under colder climate (high elevation), even if some 

individuals are released from dormancy—that is, warm-adapted population—and have 

fulfilled their chilling requirement, temperatures are still too cold, so that when 

temperature gets finally warmer, all populations start at the same time. The fact that 

phenological processes are not only affected by climatic differences across space, but 

also by underlying geographic variations in plant genetics, due to long-term climatic 

adaptation, has been already described on a broader scale and larger number of 

temperate species (Liang, 2016). This author demonstrates that spring phenology of 

colder climate-adapted populations can be either advanced compared to warmer 

climate-adapted populations through lower thermal requirements, or delayed because of 

higher chilling demands for dormancy release. Our results may also be explained by a 

carryover effect from the previous growing season since warming saplings originate 

from a forest located at higher elevation.  
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5.7.2 One phenophase can affect subsequent phenophases 

The induced delay or advance of budburst had a strong impact on the timing of budset, 

used here as a proxy for primary growth cessation. The carryover effect of spring 

phenology over budset timing and leaf senescence was different in the two treatments: 

A delay in budburst induced by a cooler winter had more effect on budset timing than 

an advance of budburst induced by a warmer winter. This, again, highlights that effects 

of cooler conditions on phenological events will not simply mirror effects of warmer 

conditions in the opposite direction (Li et al., 2016). It is noteworthy that the time lag 

between budset and leaf senescence timing was not affected by either treatment but 

differed in duration between the two populations. This could be explained by genetic 

differentiation between low and high populations as high populations may have evolved 

to start senescence and subsequent cold acclimation earlier than low elevational 

populations (Arora, Rowland, and Tanino, 2003; Vitasse, Lenz, and Körner, 2014). Our 

findings confirm that spring phenophases could affect autumn phenophases, as recently 

found in experimental conditions (Delpierre et al., 2016; Fu, Campioli et al., 2014; 

Keenan and Richardson, 2015). The relationship between spring and budset or autumn 

phenology might be explained by the effect of NSC storage (Fu, Campioli et al., 2014). 

In agreement with Fu, Campioli et al. (2014), no significant difference in the NSC 

concentration was found between the treatments and their respective controls. Saplings 

in control and treatment were under the same environmental conditions during the 

whole growing season but differ in their spring phenology (due to warmer- or cooler-

induced winter conditions). Thus, irrespective of the growing season, beech trees 

maintain a minimum of NSC content. The dynamic of NSC storage on branchlet may be 

seen as a balance between promoting primary growth or accumulating reserves in case 

of stress. Noteworthy, plants from the cooling treatment have grown 84% less (total 

volume growth) than the control even though they have spent the majority of the 

growing season in the same conditions at low elevation but have finally accumulated 

slightly more reserves than saplings in the control. This result suggests that an artificial 

delay of budburst promotes the accumulation of sugars until reaching a minimum 

threshold before to allocate carbon to growth. Similarly, in the warming treatment, 

saplings did not have higher NSC content even though they leaf-out earlier and had 

extended their growing season and growth was therefore promoted (stem elongation 

increased by 186% in comparison with the control). In these favorable conditions, the 
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minimum threshold of NSC accumulation must have been reached way earlier, leaving 

more time for growth. Our study therefore supports the hypothesis of a minimum 

threshold of NSC reserves to ensure tree survival (Nardini et al., 2016), tree resilience 

against stress conditions (Hartmann and Trumbore, 2016), and enough reserves in the 

twigs for next spring phenology, which strongly rely on the breakdown of branchlet 

starch as the main carbon source for budburst and leaf development (Klein, Vitasse, and 

Hoch, 2016). The relation between NSC content and budset or senescence is unclear, 

but trees may have a specific requirement of NSC storage that would inhibit growth and 

promote budset, which might be slightly different among the two provenances (Herold, 

1980). A possible explanation is that once the trees fulfil their NSC requirement 

(storage capacity), they start the senescence process, because an excess of NSC may 

inhibit photosynthesis (Gent and Seginer, 2012; Seginer and Gent, 2014). Further 

investigations about the dynamics of NSC accumulation during this period would be 

relevant to better understand to what extent autumn phenology plays a role in the carbon 

pools of trees (but see Klein and Hoch, 2015; Klein et al., 2016).  

We did not find a significant carryover effect on next year spring phenology in both 

cooling and warming treatments, on the contrary to what was observed in previous 

warming experiment (Fu, Campioli et al., 2014), although a non-negligible advance in 

the number of trees that reached budburst was observed for the saplings that 

experienced a warmer winter the year before, compared to their control. It is likely that 

this advance disappeared because of a freezing event that occurred shortly after the first 

signs of budburst, buffering the potential differences between the treatments, and also 

indicating that despite a potential memory effect from a previous warm winter/spring 

the year before (2013/2014), the climatic variables of the previous months (2015) were 

the dominant drivers of spring phenology.  

5.7.3 Relationship between chilling and forcing requirements 

Our study also supports the negative relationship between the duration of chilling and 

the forcing requirements for budburst: the more chilling beech saplings experienced, the 

less forcing they required to budburst. Even if the number of chilling hours was quite 

high at the high site (around 2,700 hr), trees required a significant duration of forcing 

(around 550 hr) to budburst, which is supposed to be a minimum heat requirement when 
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chilling exceeds requirement for a full dormancy break. At the low site, beech saplings 

required significantly more forcing hours to budburst (around 1,000 hr). The low 

number of chilling hours received compared to the plants placed at the high-elevation 

site (around 2,000 hr compared to 2,700 hr) together with the short photoperiod during 

early spring may have enhanced the forcing requirement to budburst, especially as this 

species has been shown to require long duration of chilling to fully break dormancy and 

its sensitivity to forcing temperatures is higher under longer photoperiod (Basler and 

Körner, 2014; Vitasse and Basler, 2013). This control of chilling and photoperiod has 

been seen as a mechanism to avoid a too early flushing when late winter temperatures 

get warmer and therefore limit the risk of young leaves to be exposed to late spring frost 

(Vitasse, Lenz, Hoch et al., 2014). This is particularly important because emerging 

leaves are the most sensitive stage to freezing temperatures (Lenz, Hoch, Vitasse, and 

Körner, 2013).  

5.7.4. Limitations of the study 

Although the phenology of saplings may not represent the phenology of adult trees 

(Vitasse, 2013), assessing their response to climatic variability is relevant as young trees 

represent the next generation in mature forests. The carryover effect of one phenophase 

to the next ones might be less pronounced for saplings compared to mature trees for 

which other factors such as flowering and seed formation might play a regulating role. 

Furthermore, other limitations such as precipitation or soil nutrient availability that were 

not controlled in our experiment may have also affected the timing of budset.  

The legacy effects of earlier or late budburst on next year spring phenology is not fully 

discarded as late spring frosts observed in May in our study may have buffered the 

possible differences as previously mentioned. Because our study was focused on the 

legacy effect of the timing of budburst on the next phenophases, our experimental 

design was not appropriate to test the legacy effect of autumn phenology on next year 

spring phenology. The timing of leaf senescence and/or budset may postpone the 

dormancy period and therefore influence spring phenology on the following year, 

possibly counterbalancing the effect of global warming (Heide, 2003). A similar 

experiment focusing on the legacy effect of the timing of growth cessation would 
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therefore be relevant to complement our understanding of relationships between 

phenophases.  

Our study focused on a single species which is dominant in Europe but very particular 

in terms of phenology compared to coexisting species (Vitasse and Basler, 2013). 

Investigating the legacy effect of spring phenology over autumn phenophases in an 

array of species would be crucial to know whether we can generalize our results to other 

species and to better understand the future phenological responses of trees to ongoing 

climate warming.  

In conclusion, we found that budburst timing of beech trees responds more to cooling 

than to warming. Furthermore, the induced delay or advance of budburst had a strong 

impact on the timing of budset, used here as a proxy for primary growth cessation, with 

again a stronger legacy effect of a cooler winter than of a warmer winter. As shown 

using in situ long-term series of observations (Keenan et al., 2014), we suggest that the 

potential delay in senescence processes due to global warming might be smaller than 

expected because of this positive relationship between spring budburst timing and 

autumn phenophases. Our study also supports that a carryover effect could either 

modify the temperature sensitivity of the buds, that is, changing the chilling and forcing 

requirements for dormancy break and initiation of bud development, respectively or 

postpone the different phenophases. Overall, our experimental study provides direct 

evidence that besides the abiotic factors, the internal biotic effects should be considered 

in phenological models to improve predictions of trees response to climate change and 

models’ performance.  
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The main objective of this thesis was to determine the growth response of European 

beech and Norway spruce saplings subjected to experimental warming forcing and to 

explain these responses at different organizational levels (tree, leaf and tissue). Besides, 

some soil factors were also investigated. By using transplantation along an elevational 

gradient in the Jura Mountains, I created realistic climate conditions to simulate three 

potential future climatic scenarios from the IPCC (Gavazov et al., 2014). The site at 

1010 m was equivalent to the conditions predicted for the A1B scenario with a 

moderate increase of greenhouse gas emissions. The site at 570 m was the equivalent to 

the scenario A2 related to the case of a notable increase of greenhouse gas emissions. 

Finally, at 395 m the extreme scenario from A2 was simulated. This experimental set up 

made it possible to distinguish short-term responses (2012-2015) in the Framework of 

the Forest and Climate Change Program carried out by WSL and OFEV (Pluess et al., 

2016).  

By exposing saplings to an average increase of 6.3ᵒC and a reduction in 30% of 

precipitation at the lowest site throughout the study period, I observed a significant 

increase of tree growth for beech that was not observed for spruce (Chapter 2). 

Accelerated beech growth was in part explained by a lengthening of the growing season 

(Chapter 2). Despite spruce presenting also an advanced budburst compared to the 

control site, and thus a longer vegetative period, it did not show an increase in growth at 

the tree level. The investigation into the phenotypic plasticity of foliage traits and 

physiological processes, such as photosynthesis, revealed a higher degree of plasticity in 

beech compared to spruce (Chapter 3 and 4). In summary, beech presents the potential 

for acclimating to rapid climate change and has therefore a competitive advantage over 

spruce (Chapter 4), at least when considered on a short-term basis.  

In this chapter, I discuss the results of the thesis in the context of the questions posed in 

chapter 1 and present them in the wider context of these species’ responses to climate 

change. Finally, I propose avenues for future research that emerge from the findings of 

this work.  
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6.1 Main findings 

The main results resulted from this thesis are summarized in the conceptual Figure 6-1. 

 

Figure 6-1 Conceptual Figure of CLIMARBRE findings in the three main topics approached in 
the thesis. Phenology (Chapter 2, 4 and 5), tree growth (Chapter 2 and 4) and leaf traits (Chapter 
3 and 4). 

6.1.1 Tree growth under simulated climate change 

The productivity of a forest stand is directly linked to the growth and vitality of 

individual trees that composes it. In Chapter 2, key climatic factors limiting saplings’ 

growth were presented. The observed growth performances of beech saplings confirm 

the results of National forest inventories, which already show a decrease in the 

contribution of spruce at low and mid elevations (Brändli, 2010) in favor to beech. In 

general, beech seems to take advantage of warmer conditions at lower altitudes to 

increase its growth. Additionally, models including extreme climatic variables improved 

and refined the assessment of the tree growth responses to simulated climate change, 

which is also corroborated by Zimmerman et al. (2009).  

Results on phenology (Chapter 5) showed that increasing temperatures triggered 

budburst at lower elevations, leading to a lengthening of the growing season. This is 
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corroborated by many studies (Menzel and Fabian, 1999; Piao et al., 2007; Keenan, 

2015; Signarbieux et al., 2017). One would expect that with warming, growing seasons 

will become increasingly longer in temperate forests, and thus trees would be able to 

grow as much as the season lengthening. However, in chapter 2, I showed that a longer 

growing season could not fully account for species-specific growth responses to 

warming, which confirms Körner’s hypothesis that a longer growing season enhances 

tree growth up to a certain limit (Körner, 2017).  

Contrasting tree growth responses to warming between angiosperms and gymnosperms 

has been widely hypothesized (Carnicer et al., 2013), and I demonstrate empirically in 

Chapter 2 that this is related to hydraulic safety margins. Thus, the contrasting growth 

response of beech and spruce has been shown in this thesis to be linked to different 

sensitivities to elevated vapor pressure deficits. Furthermore, I determined for the first 

time a threshold above which tree growth starts to decline for each species under no soil 

moisture limitation. This will have repercussions for the parametrization of predictions 

of species distributions in future climate change conditions. 

6.1.2 Responses of foliage to simulated climate change 

In chapter 3, I show that leaf traits are able to track the impact of environmental changes. 

Many authors have previously recognized leaf phenotypic plasticity as a key process by 

which plants cope with rapid climate changes (Nicotra et al., 2010; Vitasse et al., 2010; 

Stojnić et al., 2015). By means of a plasticity index defined by Valladares et al. (2000), 

I compared the overall plasticity of both species and revealed a higher response of beech 

leaves than spruce needles to warmer and drier conditions. Beech leaves presented an 

increase in leaf xeromorphism through the increase of cuticle thickness, vein network 

and smaller stomata, which was associated with a higher leaf area. This antinomic 

response suggests that beech can grow in warmer conditions while coping with an 

increase of evaporative demand of the air during summer. This may eventually provide 

beech with a competitive advantage over spruce, which itself did not present as much 

plasticity as compared to beech. Moreover, an interannual variability in foliage 

responses revealed a fast acclimation of foliage to acclimate to yearly conditions.  
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It is not possible to predict long-term leaf morphological changes from the data 

presented here; however, I demonstrate the clear potential plasticity of these species by 

confirming the fast adjustment of foliage, which is the first step towards potential 

adaptation. Therefore, as suggested by Bradshaw (1965), plants are able to manage and 

respond to environmental changes through phenotypic plasticity in morpho-anatomical 

traits.  

The coordination of the different phenophases with annual climate variations will be 

key factor leading to species adaptations to climatic constraints. In this study leaf 

phenological phases were found to be strongly related between each other and that 

cooling has a major impact in the timing of budburst than warming.  An induced delay 

or advance of budburst was observed to have strong impacts on the timing of budset, 

and therefore the primary growth cessation. Overall, our experimental study provides 

direct evidence that, besides the abiotic factors, the internal biotic effects should be 

considered in phenological models to improve predictions of trees response to climate 

change and models’ performance.  

6.2 Research questions 

In the context of the study, four different research questions were chosen to investigate 

the impact of simulated climate change in the performance (i.e. tree growth) of beech 

and spruce saplings. To which extent these questions were answered is presented in the 

following section. 

Q1. Will the saplings of spruce and beech saplings acclimate to simulated climate 

change? 

Very few studies exist that compare the acclimation abilities of species at different 

structural levels, from foliage tissue to tree biomass (chapter 4). I found evidence of 

acclimation in saplings subjected to moderate A1B climate change scenario (1010 m) 

up to moderate-extreme A2 scenario (570 and 395 m). I confirm the ability of both 

species to acclimate to the simulated climate change and that the degree of acclimation 

is highly species-specific.    
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Q2. Which is the main climatic driver influencing the performance of these species 

within our latitudes? 

I reveal in chapter (2) that vapor pressure deficit is the main climatic factor influencing 

tree growth of these two species from different functional groups (evergreen conifer vs 

broadleaved deciduous). Moreover, I provide empirical evidence supporting the 

importance of including this variable in climate change assessments, which until now 

was largely ignored in modelling. 

Soil moisture 

Soil moisture is a key factor influencing tree growth limitation, so one could expect that 

trees adapted to a wet environment would suffer from water stress when transplanted to 

drier sites. However, tree saplings were not water limited in our study, at least for years 

2013 and 2014 (supplementary information Chapter 2). In this section, evidence and a 

description of results are presented to support this statement. The influence of soil 

moisture on tree growth, and the different responses of tree growth related to site 

conditions, is crucial for comparing results among other studies. 

Throughout the study a decrease of approximately 30% of precipitation was observed at 

the lowest site (395 m) compared to the donor site (1350 m) and was accompanied by 

an increase in temperature of approximately 6.3ᵒC. Weekly measurements of soil 

volumetric water content (Figure 6-3 Supplementary) showed that saplings were not water 

limited at low elevations during the growing seasons 2013 and 2014. Assuming that at 

1350 m of elevation trees are temperature limited rather than water limited, in Figure 6-3 

a threshold of 20% of VWC was fixed as the minimum soil moisture observed in the 

control site. Values below this threshold cannot confirm a limitation in soil water 

content, but allow the comparison of soil moisture along the gradient, with 1350 m as 

the reference site with no water limitation. Overall, a soil moisture gradient between the 

higher sites (1350 m and 1010 m) and the lowest sties (395 m and 570 m) was revealed. 

This gradient was exaggerated during the growing season 2014, as the total precipitation 

during this period was generally lower than in 2013. Specifically, at the lowest site the 

amount of precipitation during the growing season 2014 was of 480 mm compared to 

708 mm in 2013. Similar trends were observed at the control site, with 882 mm of 
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rainfall in 2013 and 650 mm in 2014.  Overall, I observed lower values of VWC along 

the gradient in 2014. This means that beech saplings growing at the two lower altitudes 

experienced values of VWC under this threshold, irrespective of the treatment 

considered (either irrigated or non-irrigated), while for spruce, the irrigated saplings at 

the lowest elevation experienced the lowest values of VWC. Linking soil moisture 

conditions to the corresponding growth performance of saplings observed in each year 

showed no relationship between soil moisture conditions and tree growth (Figures 6-2 

and 6-3).  

The growth patterns of beech showed that in 2013 and 2014 tree growth was higher at 

the lowest elevation compared to the control site. In the growing season 2015, beech 

saplings grew at the same rate along the gradient except at 1010 m. In contrast, spruce 

showed a decrease in growth rate at lower altitudes compared to the control site for 

years 2013 and 2015. Despite the lower soil moisture and lower amount of precipitation 

recorded during 2014, higher growth rates were observed at lower altitudes (Figure 6-2 

blue rectangle). The growth patterns observed in 2013 and 2014 were mostly explained 

by elevated VPD under no water stress, demonstrated by GAMM modelling in Chapter 

2.  

Figure 6-2 Supplementary: Temporal and spatial trends of biomass increase standardized by the 
growing season  
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Therefore, within the region of study and during the study period, soil moisture was not 

the main limiting factor of tree growth, though it may have exacerbated the negative 

effects of other limiting factors.  

Microbial activity in the soil 

The composition and stability of ecosystems depend on the relationship between above 

and belowground compartments. For instance, the response of microbial activity to 

climate change has an effect in the turnover of nutrients (Wagg et al., 2011). The 

symbiosis with mycorrhizal communities facilitates the access to limiting nutrients 

having a positive feedback in plant productivity (Whitfield, 2007). Therefore, any 

change in the composition of the microbial community can largely affect the biomass 

and nutritional status of plants, thus influencing their growth performance (Wardle et al., 

2004).  

Microbial activity in the soil of the pots, where saplings were growing, was performed 

throughout the growing season 2014. These measurements allowed us to estimate the 

microbial activity through the CO₂ released during the decomposition of organic matter.  

After two years of experimental warming forcing, no contrasted responses were 

observed between species (Figure 6-4). While spruce showed no response in soil 

respiration fluxes along the elevational gradient (c.a. 4 μmol CO2 m¯² s¯¹), beech 

showed slightly lower respiration rates at the lowest elevation (c.a. 3 μmol CO2 m¯² s¯¹) 

compared to the other sites (5-6 μmol CO2 m¯² s¯¹). Moreover, within each site, inter-

specific differences were not remarkable. Therefore, it seems that the microbial 

community has only been affected by simulated climate change in beech soil at the 

lowest elevation.  

The microbial carbon in beech soil presented an increasing trend towards lower altitudes 

during the growing season (Figure 6-5). Microbial carbon in spruce soil, did not respond 

to the elevational gradient. However, the rate of microbial carbon was higher for both 

species during the growing season length compared to the state prior budburst and to the 

state after senescence. If we consider the ratio C/N (Figure 6-6), we observe an increase 
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value towards lower altitudes for beech, which is not observed in spruce. These results 

suggest that the soil of both species, subjected to the same environmental changes, 

differ in response. Unfortunately, this study has a limit in soil analysis so we cannot go 

further in the withdraw of conclusions in this aspect.  

 

Figure 6-4 Soil respiration in pots of beech and spruce in the middle of the growing season 2014 
All measurements were performed at the intermediate site at 1010 m when saplings were 
brought to the same environmental conditions during the ecophysiological campaigns (see 
chapter 4). 

 

Figure 6-5 Temporal evolution of the microbial carbon during the growing season 2014. Soil 
cores were sampled three times, one before budburst, a second in the middle of the growing 
season and last during beech leaf senescence. 
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Figure 6-6 Microbial C:N ratio in soil in pots of both species along the elevation gradient 

Other factors related to elevation gradient 

In this study we mainly focused on the impact of changes in air temperature and 

precipitation in the tree growth of saplings. However, we acknowledge that there is a 

decrease in total atmospheric pressure and partial pressure of gases with altitude, as well 

as an increase in radiation under cloudless sky due to a decrease in atmospheric 

turbidity (Körner, 2007).  

Atmospheric pressure 

The observed decrease of partial pressure of CO2 with altitude does not occur in 

isolation but together with that of other gases, and its direct influence on plants may be 

diminished or enhanced by three factors as cited by Körner (2003): “(1) the oxygen 

partial pressure decreases as well, hence photorespiration, (2) “thinner” air allows CO2 

molecules to diffuse faster through stomata and the intercellular spaces in the leaf and 

(3) the air temperature drops and so does leaf temperature, which counteracts (2) and 

enhances (1)”. So, whenever molecular gas diffusion comes into play, reduced 

temperature (slowing diffusion) is counteracting the effect of reduced pressure alone 

(increasing the rate of diffusion) (Körner, 2007).  Therefore, we estimate that other 

factors, such as temperature regimes, have a superior effect on the leaf morphology than 

changes in partial pressure of gases. Moreover, studies about the leaf morphology using 
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elevation gradient approaches generally do not take into account this parameter (Körner 

et al., 1986; Joel et al., 1994; Castro-Díez et al., 1997; Li et al., 2006; Kong et al., 

2014). 

Solar radiation 

Regarding solar radiation, the actual dose received by a plant will also depend on 

scattering elements such as clouds, which generally increase with altitude in mountain 

regions (Körner, 2007). Therefore, we assume that the increase in solar radiation at high 

elevations during the growing season is, to some extent, compensated with the 

associated increase in cloudiness. To support this assumption, we visually inspected the 

data solar radiation recorded by meteo-stations placed at our study sites (Figure 6-7) and 

observed similar July solar radiation averages and same trends along the spatial-

temporal gradient. 

Figure 6-7 Solar radiation (W/m2) recorded at the highest (blue curve) and lowest elevation (red 
curve) for the month of July for years 2014 (a) and 2015 (b), and temporal and spatial trend of 
solar radiation throughout the study (c) 
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Q3. Will phenotypic plasticity (at different structural levels) lead to species-specific 

responses and, therefore, to different degrees of acclimation to the simulated 

climate change? 

Findings from chapters 2, 3 and 4 revealed the species-specific responses of saplings 

subjected to simulated climate change. The higher degree of plasticity found in beech 

traits can only infer the better capacity of this species, relative to spruce, to modify its 

physiology under environmental changes in order to maintain a certain level of growth 

performance. However, it is important to consider that such higher plasticity also 

conveys a higher cost in resource-use for the species. Moreover, plasticity can be either 

adaptive or maladaptive or even neutral (Hendry, 2016). As such, my findings reveal a 

higher degree of plasticity of beech than spruce, which may provide this species with a 

short-term competitive advantage but cannot conclude about the future adaptability of 

these species to future climate changes. This topic remains beyond of the scope of this 

thesis. Nevertheless, given that phenotypic plasticity is the first step to adaptation 

(Vitasse, 2009), it can be inferred that acclimation abilities of beech have the potential 

to increase the fitness of future beech generations to warmer and drier conditions.  

Q.4 Do extreme climatic variables improve the interpretation of species responses 

to climate change? 

I demonstrate throughout this thesis (Chapters 2 and 3) that mean climatic values, such 

as mean annual temperature, are not sufficient to fully explain the tree responses to 

climate change. However, including consideration of climatic extremes improved the 

ecological interpretation of species responses to climate change (GAMM models, 

chapter 2).  More generally, given that climate extremes are expected to become more 

regular under future climate change (IPCC, 2013), the use of extreme climatic variables, 

such as elevated vapor pressure deficit, will likely improve the assessment of the 

mechanistic response of any plant species to climate change.  
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6.3 Research limitations 

6.3.1 Study duration 

The problematic regarding the short-term investigation period in this study can be 

raised. Therefore, I must clarify that the main objective of this thesis was to characterize 

the short-term responses of overall tree growth and foliage features of beech and spruce 

saplings through phenotypic plasticity with regard of actual scenarios of climate change. 

Therefore, we transplanted saplings from one population per species growing in a cold 

environment at 1350 m a.s.l. in the southern Swiss Jura mountains to three recipient 

sites at lower elevations along an elevational gradient. I thus exposed sapling to warmer 

and drier climate conditions for 4 years (2012-2015), with contrasted weather during the 

vegetation season, using a space-for-time substitution approach (Körner, 2003). I 

confirm that the use of three contrasted years (2013, 2014 and 2015) to study the 

phenotypic plasticity is sufficient to assess the acclimation abilities of these species to 

these specific changing environmental conditions. I cannot predict the changes on the 

long-term, nor infer about the potential adaptability of this plasticity.However, I 

demonstrate the potential plasticity of these species as a response to warmer and drier 

conditions, which is the first step towards adaptation. Finally, findings from this short-

term experiment and findings from long term studies are not exclusive, but give 

together an insight on the mechanistic strategies of plants to cope with rapid 

environmental changes. This further understanding of the mechanisms underlying short-

term plasticity can serve as basis to design long-term experiments. 

6.3.2 Pot experiment 

I acknowledge that pot experiments are rather limited as they do not represent the “real” 

growth conditions of trees. In particular, the spatial and temporal variability of the 

environment is highly restricted in pots (Lanta and Lepš, 2006). However, this pot 

experiment allowed the transplantation of saplings together with their original soil in 

recipient sites without the influence of in situ soil conditions. Additionally, it allowed a 

higher number of replicates than an in situ transplantation directly in the site soil. I must 

clarify that the main objective of the study was to subject trees to changing temperature 

and precipitation regimes and not to changing soil characteristics. Moreover, pots 
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allowed the removal of inter and intra species competition for nutrients and water. The 

main drawback, however, is the limitation of tree growth in fixe pot sizes. This 

confounding factor was reduced as possible my transplanting the pots to double size 

pots during autumn 2014.  

6.4 Outlook 

To which extent current tree saplings are able to cope with climate change was the main 

research question answered in this thesis. However, only a limited number of specific 

conditions, such as sufficient water supply and no inter-intra specific competition, were 

considered by this experimental design. Competition is known to modify species 

responses to climate change in mountain ecosystems (Alexander et al., 2015). How 

beech and spruce saplings would respond in the context of such competition is thus a 

major research question needing future research. Moreover, extending the 

CLIMARBRE experimental design in both competitive and non-competitive 

environments would give real insights to infer what could happen to these species co-

habiting under wooded-pastures.  

The outcome of this thesis provides two new directions for future research. First, based 

on the carry-over experiment presented in chapter 5 and the findings of chapters 2-4, I 

propose a study whereby we replant the saplings growing along the elevational gradient 

at their original site of Amburnex (1350 m) (Figure 6-8). This new direction could 

answer questions such as “how long does the acclimation of traits last after five years of 

experimental forcing warming?” and “how reversible are the phenotypic plasticity 

changes?”. Second, I suggest a continuation of the study on the legacy effect of 

advanced or delayed budburst on the budset timing. This would provide evidence 

regarding the carry over effects in the phenology of beech and spruce, while expanding 

and reaffirming the conclusions found for beech saplings in chapter 5.  

6.5 Final conclusion 

In order to define current and future vegetation distributions it is crucial to understand 

the climate-vegetation relationships. However, the main challenge plant ecologists need 

to face is the complexity of the interactions between plants and the environment. 
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Moreover, forest managers need decision-support tools in order to adapt forest 

managements within the uncertainty of climate change. Therefore there is a necessity to 

predict accurately species responses to environmental changes. 

Throughout this thesis we showed that climatic extremes and the relationship between 

different phenological leaf stages (e.g. budset) must be taken into account in species 

distribution models to improve predictions of trees response to climate change.   

Moreover, these models need to be based in a good understanding of the mechanistic 

responses of species to changing environmental conditions. Therefore, experimental 

studies at multi-organizational levels (tree, leaf and tissue) provided with a better 

understanding of species-specific responses.  

Finally, the results from this dissertation suggest that in the sylvopastoral ecosystems of 

the Jura, where spruce is today the dominant species, beech performance under global 

warming will provide these species with a competitive advantage over spruce. In the 

long run, this could change the dominance of species in Mountain landscapes and 

deeply transform the landscape, as shown by some landscape simulations (Buttler et al., 

2012, Peringer et al., 2013). This landscape modeling has predicted the beginning of a 

replacement of spruce by beech in three sylvopasotral mountain ecosystems from 2100 

for the IPCC B2 scenario, and a change of dominance from 2300, in particular due to 

the effect of strong droughts. However, this process will most likely be slow and could 

span several centuries, depending on the intensity of warming and the patterns of land 

use.  

 

Figure 6-8 Back to home experimental design based on the previous warming forcing 

experiment of CLIMARBRE 
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Chapter 3 Supplementary information 

 

Supplementary Figure S3-1: Cross section of Fagus sylvatica L. broadleaf. The different tissues 
are labelled in Figure A) with the following numeration; upper cuticle (1), upper epidermis (2), 
palisade parenchyma I (3), palisade parenchyma II (4), intercellular space (5), spongy 
parenchyma (6), lower epidermis (7), lower cuticle (8), stomata (9). In Figure B the protocol of 
vein network estimation is presented with B.1 the original 5x image, B.2. selected colour class, 
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B.3 colour group image with analyzed cells and B.4 binary image which is used to calculate the 
proportion of lumen and wall area. Figure C represents the process followed to measure the 
stomata area and stomata density after taking imprints of beech leaves. 

 

 

Supplementary Figure S3-2: Cross-section of Picea abies (L.) Karst needle. The different 
tissues are labelled with the following numeration; cuticle thickness (1), epidermis (2), 
mesophyll (3), vascular bundle (4), endodermis (4.1), transfer  (4.2), xylem (4.3), phloem (4.4), 
fibers (4.5), resin duct (5) and stomata (6). A) is the representation of the cross-section of the 
needle taken at x10 magnification (the image is composed by 4-5 photographs merged with GUI 
software), B) shot of the vascular bundle taken under fluorescent light at x20 magnification, C) 
close up of cuticle thickness stained with Sudan-black and measured at x63 magnification. 
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Supplementary Figure S3-3:  Pearson correlation matrix with twenty-two measured morpho-
anatomical variables on beech leaves. Positive correlations are displayed in blue and negative 
correlations in red. Colour intensity and the size of the circle are proportional to the 
correlation coefficients. Correlation coefficients with p-value >0.05 are indicated with crosses.  
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Supplementary Figure S3-4:  Pearson correlation matrix with forty measured morpho-anatomical 
variables on spruce needles. Positive correlations are displayed in blue and negative correlations 
in red. Colour intensity and the size of the circle are proportional to the correlation coefficients. 
Correlation coefficients with p-value >0.05 are indicated with a cross. 
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Supplementary Figure S3-5: Phenotypic plasticity index for each group of traits for both species 
per year; overall plasticity calculated as the mean of all the traits included in both categories, 
Macro plasticity includes only the traits related to macromorphology and Micro includes those 
related to micromorphology. The composition of each group for each species is presented in the 
Table 1. Index is calculated according to Valladares et al. (2000).   



 

18
9 

 

Su
pp

le
m

en
ta

ry
 T

ab
le

 S
3-

1 
:  

F-
va

lu
es

 fr
om

 A
N

O
V

A
 re

pe
at

ed
 m

ea
su

re
s o

f m
or

ph
o-

an
at

om
ic

al
 v

ar
ia

bl
es

 o
f b

ee
ch

 le
av

es
 m

ea
su

re
d 

al
on

g 
th

e 
al

tit
ud

in
al

 g
ra

di
en

t i
n 

tw
o 

co
ns

ec
ut

iv
e 

gr
ow

in
g 

se
as

on
s (

20
13

 a
nd

 2
01

4)
. D

eg
re

es
 o

f f
re

ed
om

 fo
r t

he
 e

rr
or

 is
 D

f=
16

. 
S

ou
rc

e 
of

 v
ar

ia
tio

n 
 

V
ar

ia
bl

e 
 Ac

ro
ny

m
 

 U
ni

ts
 

Si
te

 
(S

)  d
f=

3 
W

at
er

in
g 

tre
at

m
en

t 
(T

) 
df

=1
 

Ye
ar

 
(Y

)  d
f=

1 
S

  x
 T

 
df

=3
 

S
  x

 Y
 

df
=3

 
T 

x 
Y

 
df

=1
 

R
2  

Le
af

 m
as

s 
pe

r a
re

a 
LM

A 
m

g 
cm

-- ² 
7.

27
**

 
0.

11
 

32
.2

**
* 

0.
05

 
9.

74
**

* 
0.

02
 

0.
58

 
Le

af
 a

re
a 

La
 

cm
² 

7.
22

**
 

0.
00

 
9.

4*
* 

0.
07

 
2.

80
 

0.
02

 
0.

58
 

In
te

rc
el

lu
la

r s
pa

ce
 

V
ai

r 
%

 
2.

14
 

0.
42

 
64

.1
**

* 
0.

05
 

1.
11

 
0.

03
 

0.
30

 
V

ei
n 

ne
tw

or
k 

W
al

l 
%

 
6.

87
**

 
1.

43
 

78
.2

**
* 

2.
87

0 
0.

85
 

0.
06

 
0.

66
 

St
om

at
a 

de
ns

ity
 

S
td

 
m

m
- ² 

1.
4 

3.
36

 
3.

30
 

0.
46

 
1.

17
 

0.
00

 
0.

36
 

S
to

m
at

a 
ar

ea
 

S
ta

 
μm

² 
2.

99
 

0.
43

 
1.

17
 

1.
80

 
0.

92
 

0.
56

 
0.

48
 

U
pp

er
 c

ut
ic

le
 

S
.C

. 
μm

 
4.

03
* 

0.
56

 
21

0.
7*

**
 

0.
48

 
1.

21
 

0.
87

 
0.

47
 

U
pp

er
 e

pi
de

rm
is

 
S

.E
. 

μm
 

1.
87

 
2.

59
 

29
8.

3*
**

 
0.

36
 

3.
17

 
0.

02
 

0.
37

 
P

al
is

ad
e 

pa
re

nc
hy

m
a 

(I 
+ 

II)
 

P
.P

. 
μm

 
4.

25
* 

0.
04

 
27

.8
**

* 
2.

96
 

16
.3

**
* 

0.
03

8 
0.

58
 

S
po

ng
y 

pa
re

nc
hy

m
a 

S
.P

. 
μm

 
1.

10
 

1.
27

 
72

.7
**

* 
0.

31
 

5.
94

**
 

0.
20

 
0.

26
 

Lo
w

er
 e

pi
de

rm
is

 
I.E

. 
μm

 
0.

93
 

0.
19

 
66

8.
5 

**
* 

0.
92

 
4.

73
 * 

3.
48

 
0.

65
 

Lo
w

er
 c

ut
ic

le
 

I.C
. 

μm
 

8.
03

**
 

2.
65

 
39

6.
8*

**
 

0.
77

 
6.

04
**

 
2.

59
 

0.
17

 
 S

ig
ni

f. 
C

od
es

: 0
 “
**
*”

  0
.0

01
 “*
*”

  0
.0

1 
“*
”  

0.
05

 “ 
“ 

       



 

190 

 

Chapter 5 Supplementary information 

 

Table S5-1. Non-structural carbohydrates (NSC), sugar and starch content (%) in twigs of beech 
saplings in autumn 2014. C refers to the cooling treatment and represent the trees moved to high 
elevation during winter/spring 2013-2014 and then moved back to their original site at low 
elevation, and CC refers to the control treatment in which remained during the whole 
experiment at the low site. W refers to the warming treatment and represent the trees moved to 
low elevation during winter/spring 2013-2014 and then moved back to their original site at high 
elevation, and CW refers to the control warming in which remained during the whole 
experiment at the high site. Data represent means  1 SE with n = 10). 

        

Site Treatment  Sugar (%)  Starch (%)  NSC (%) 

Low 

C  3.2 ± 0.1  11.3 ± 0.4  14.6 ± 0.5 

CC  3.9 ± 0.3  9.3 ± 0.7  13.3 ± 0.6 

High 

W  5.5 ± 0.2  5.4 ± 0.7  10.9 ± 0.6 

CW  3.8 ± 0.2  7.3 ± 0.7  11.1 ± 0.8 
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