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Abstract

Systems biology is a multidisciplinary field that weaves together all the basic sciences
through the use of computational and bioinformatics tools, to provide a more
integrative view of the complex molecular interactions taking place within and among
cells. The successes in the development and improvement of techniques for high
throughput —omics has rapidly increased the amount of available data. The complexity
of the underlying biological system it describes requires the development of tools to

properly process it and analyze it.

Computational models mathematically describe the systems interactions,
allowing intrinsic properties of the data to emerge that would otherwise be overlooked.
These models provide context to the data and are used to make predictions about the
behavior of the system and to simulate a broader landscape of hypothesis, saving the
time and cost of performing numerous experiments. However, the number of required
parameters to mathematically formulate the system increases with the model
complexity to integrate the available data. Thus, the development of estimation
procedures and workflows to retrieve these values from literature and databases

become crucial.

In this work, we developed a set of computational models, analysis tools, and
pipelines to support the study of two biological systems crucial to the cell survival:
metabolism and protein synthesis. Metabolism is responsible for the production of most
cell biomass, including proteins. Together, these two systems balance the renewal of
protein in the cell, where metabolism provides the amino acids obtained from protein
breakdown to the mRNA translation machinery. Deregulation of these systems is known

to cause multiple disorders, such as neurodegenerative diseases and cancer.

In the study of protein synthesis, we employ a combination of deterministic and
stochastic modeling approaches to understand its intrinsic mechanistic properties and

its rate-limiting steps. A better understanding of the system properties can have a

il
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profound impact on the development of drug targets and, in particular, in the
optimization of heterologous protein production. Our studies revealed that more than
one factor plays a role in the speed of translation: competition for tRNA resources and
the type of cognate binding interaction between tRNA and the mRNA-ribosome
complex. We also derived an equation that, given the knowledge about certain
intracellular parameters pertaining to the host organism of interest, can assist in the

design of transcripts for optimizing heterologous protein production.

For the study of human metabolism, we established a pipeline to generate tissue-
specific reduced metabolic models that can be used to study the metabolic
reprogramming of different cancers and compare it with the metabolic phenotype of a
healthy cell type. Despite being presented herein for human models, this pipeline is
general and can be applied to the models of any organism. Starting from a human
genome scale metabolic model, the pipeline improves compound annotation,
identification, thermodynamics parameter retrieval, and facilitates data integration
through the connection of several compound databases in a semi-automatized fashion.
This work sets a standard for metabolic model assessment and curation and improves
on existing tools to generate the first thermodynamically feasible reduced model of
human metabolism, which is specifically tailored to the physiology and conditions

under study.

Keywords: systems biology, mathematical modeling, mRNA translation, protein
synthesis, stochastic simulations, ribosomes, metabolism, reduced human metabolic

model, cancer metabolic reprogramming
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Résumé

La biologie des systémes est un domaine multidisciplinaire qui regroupe toutes les
sciences de base grace a l'utilisation d'outils informatiques et de bioinformatique, afin
de donner une vision plus intégrée des interactions moléculaires complexes qui se
déroulent a l'intérieur et entre les cellules. Les succes dans le développement et
I'amélioration des techniques de haut débit des sciences “omiques” ont rapidement
augmenté la quantité de données disponibles. La complexité du systeme biologique
sous-jacent qu'il décrit nécessite le développement d'outils pour le traiter correctement
et I'analyser.

Les modeles informatiques sont un outil utile qui décrivent mathématiquement
les interactions des systemes, permettant de faire émerger les propriétés intrinseques
des données qui seraient autrement ignorées. Ces modeles sont utiles pour fournir un
contexte aux données, faire des prédictions sur le comportement des systemes et
simuler un paysage plus large d'hypotheéses, ce qui permet d'économiser le temps et le
colit d'effectuer d'innombrables expériences. Toutefois, le nombre de paramétres requis
pour formuler mathématiquement le systeme augmente avec la complexité du modéle
pour intégrer les données disponibles. Ainsi, le développement de procédures
d'estimation et de flux de travail pour récupérer ces valeurs de la littérature et des
bases de données devient crucial.

Dans ce travail, nous avons développé un ensemble de modeles informatiques,
d'outils d'analyse et de procédures pour soutenir I'étude de deux systémes biologiques
essentiels a la survie cellulaire: le métabolisme et la synthese des protéines. Le
métabolisme est responsable de la production de la plupart de la biomasses cellulaires,
y compris les protéines. Ensemble, ces deux systémes équilibrent le renouvellement des
protéines dans la cellule, o le métabolisme fournit les acides aminés obtenus a partir
de la composition des protéines dans le mécanisme de traduction de I'ARNm. La
dérégulation de ces systemes est connue pour provoquer de multiples troubles, tels que

les maladies neurodégénératives et le cancer.




Résumé

Dans 1'étude de la synthése des protéines, nous utilisons une combinaison
d'approches de modélisation déterministes et stochastiques pour comprendre ses
propriétés mécaniques intrinseques et ses étapes de limitation de débit. Une meilleure
compréhension des propriétés du systeme peut avoir un impact profond sur le
développement des cibles de médicaments et, en particulier, dans I'optimisation de la
production de protéines hétérologues. Nos études ont révélé que plus d'un facteur joue
un réle dans la rapidité de la traduction: la concurrence pour les ressources de 'ARNt et
le type d'interaction de liaison apparentée entre 'ARNt et le complexe ARNm-ribosome.
Nous avons également obtenu une équation qui, compte tenu de la connaissance de
certains parametres intracellulaires appartenant a I'organisme hote d'intérét, peut aider
a concevoir des transcriptions pour optimiser la production de protéines hétérologues.

Pour l'étude du métabolisme humain, nous avons établi une procedure qui
génére des modeles métaboliques réduits spécifiques aux tissus qui peuvent étre
utilisés pour étudier la reprogrammation métabolique de différents cancers et la
comparer avec le phénotype métabolique d'un type de cellules saines. En dépit d'étre
présenté ici pour les modéles humains, cette procedure est générale et peut étre
appliquée aux modeéles de n'importe quel organisme. A partir d'un modéle métabolique
de l'échelle du génome humain, la procédure améliore l'annotation composée,
I'identification, la récupération des parametres thermodynamiques et facilite
'intégration des données par la connexion de plusieurs bases de données composées et
de maniére semi-automatisée. Ce travail définit une norme pour l'évaluation et la
conservation de modéles métaboliques et améliore les outils existants pour générer le
premier modeéle réduit de métabolisme humain thermodynamiquement réalisable, qui

est spécifiquement adapté a la physiologie et aux conditions étudiées.

Mots-clés: biologie des systémes, modélisation mathématique, traduction
d'ARNm, synthese de protéines, simulations stochastiques, ribosomes, métabolisme,

modeéle métabolique humain réduit, reprogrammation métabolique du cancer
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Introduction

Modeling of complex biological systems

Systems Biology is an interdisciplinary field of study that attempts to model complex
biological systems by applying physics and chemistry concepts. Since these systems are
a representation of many complex biological interactions taking place in a cell or tissue,
it is common to take bioinformatics approaches to simulate and analyze them. The aim
of such complex system-wide representations is to understand the functionality and
behavior of the biological systems under study, thus promoting the discovery of targets

for drug development and molecular biomarkers for the presence of disease states.

The innovation and improvement in high-throughput -omics techniques in the
recent past has increased the size, scope, and complexity of the data that needs to be
analyzed. The development of computational modeling concepts, frameworks, and
standard-operation procedures, as well as bioinformatics tools, are becoming
increasingly crucial for the processing of large amounts of data and its integration into
even more complex computational models. These models allow the analysis of the
physiological system under a multiplicity of conditions, the test of hypothesis, as well as
the ability to make reliable predictions. Good computational tools can assist the design
of experiments and, more importantly, provide an efficient screening of different
hypothetical scenarios, by rapidly evaluating and testing different conditions in in-silico

experiments, saving the time and cost of many laborious experimental procedures.

Computational models can be used to explore biological systems at different
scales, spanning from local chemical interactions inside and across organelles of the

most basic living block, the cell, to interactions between cells of the same or even
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different tissues. Independent of the scale, it is the level of detail one wishes to examine
these systems, as well as the assumptions one is willing to make, that will dictate their

complexity and number of intervening biological compounds.

Aim & Scope
This work focuses on the modeling of protein synthesis and cellular metabolism, both

key systems for cell survival and maintenance.

Protein synthesis is the cellular process responsible for the production of all
proteins and, subsequently, many enzymes necessary for the regulation of crucial
cellular functions. Perturbations to the delicate balance of this machinery are the basis
of many diseases, such as neurodegenerative diseases and cancer, among others (1).
Problems can occur at different stages of protein synthesis (2-4). Mutations of the
mRNA strands can lead to differences in the final sequence of the protein, which can
affect both co- and post-translation folding processes, impairing it from achieving its
final functional structure. Transcription and translation factors assist in different steps
of the protein synthesis process. Mutations in any of the genes encoding these molecules
will interfere with the mechanism and alter patterns of mRNA expression and protein
levels. A deeper knowledge of the mechanisms of protein synthesis will contribute to

better understand and target the system modifications leading to disease.

The understanding of the system mechanism allows for the use of its properties
to fine tune protein synthesis for industrial applications. For instance, optimization of
the production of recombinant protein therapeutics in cultures of mammalian cells is a
topic of continuous research (5). Identification of the rate limiting steps of translation in
the context of the protein synthesis machinery and resources in the host organism can
guide the design of more efficient expression vectors. Other ways to improve protein
titer levels have focused on optimization of the culture media of the host cells and/or
genetically modifying the host cells to promote growth. We focus on the translation

elongation mechanism of protein synthesis and, through the development and extension
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of deterministic and stochastic algorithms, we aim to explore the overall system
dynamics and its rate limiting steps, i.e., the kinetic rates that exert the most control

over the rate of protein production.

Metabolism in a cell comprises a set of biochemical reactions operated by
metabolic enzymes that are regulated according to the cell requirements and function.
Catabolic pathways are a set of metabolic reactions responsible for the breakdown of
molecules into their constitutive building blocks units, which are then reassembled
through anabolic pathways into new molecules (proteins, nucleotides, lipids, ...) that
constitute the cell biomass. Production of these molecules is regulated and depends on

cellular function and growth stage.

Cellular metabolism can be mathematically represented with Genome Scale
Models (GEMs) that contain all the metabolic network reactions known for an organism
based on a listing of annotated genes that encode for metabolic enzymes. GEMs have
become increasingly popular in biotech industry and systems medicine with
applications in host cell engineering for optimized protein production and in the study

of many metabolic diseases.

The application of GEMs in systems medicine has become quite successful, in
particular for cancer studies (6-9), after the appearance of the first human genome scale
metabolic reconstructions (6, 10-12) and assisted by the devolvement of algorithms to
integrate high throughput -omics data, such as transcriptomics, proteomics, fluxomics

and metabolomics, (13-18).

In this work, we establish a pipeline to assist in the annotation of GEMs for
reaction thermodynamics curation and data integration and improve on existing tools
and workflows to generate reduced data-driven phenotypic models that can be used in
the study of cancer metabolic reprogramming. Throughout this work, we aim to provide
a workflow description that is fully reproducible and can be used by non-experts in the

field.
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Thesis overview

This thesis is divided in two main parts:

- Part I focuses on the modeling of protein synthesis, in particular, the process of
translation elongation. In these studies, we perform a global analysis of translation in
the context of an Escherichia coli cell and determine its rate-limiting steps with the

purpose of assisting on optimization of transcript design.

- Part II focuses on the description of an implemented pipeline for GEM
processing and [re]curation in terms of metabolite annotation and compound structure,
with the purpose of facilitating data and thermodynamics parameter integration. This
pipeline establishes the complete procedure from GEM to the first thermodynamically

consistent derived reduced human metabolic network.

Articles included in this thesis

The following list of articles and their publication status is included in this thesis:

]. Vieira, ]. Racle, and V. Hatzimanikatis (2016) Analysis of Translation Elongation

Dynamics in the Context of an Escherichia coli Cell. Biophysical Journal
Status: Published

See Part I, Chapter 2: Analysis of translation elongation dynamics in the context

of an Escherichia coli cell

J. Vieira, M. Masid, A. Chiappino-Pepe, V. Pandey, M. Ataman, and V.
Hatzimanikatis (2017) RedHuman: a reduced human metabolic network for

thermodynamics-based flux balance analysis of cancer physiology
Status: In preparation (provisory title)

See Part I for pipeline description.
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Chapter 1: Understanding the mechanisms of mRNA
translation

1.1 Introduction

1.1.1 The role of proteins

Protein synthesis plays an important role in biological systems since its products
constitute most of the molecular machinery required for cell regulation, growth, and
functionality. Proteins are sequences built by combining amino acids in a specific order
from a selection of a total of 20 amino acids species. These amino acid species are
conserved across organisms and are said to be essential if the organism cannot produce
them, having thus to include it in its diet. The electrochemical interactions between the
amino acids forming the protein sequence determine its final 3D structure, which has to
acquire a precise shape to fulfill its biological function in the cell. A slight deviation from
its correct structure may impair the protein in its interaction with cell receptors for
signaling purposes, in its role as a catalyzer of a chemical transformation, or even in

forming a complex with other proteins.

The process of protein synthesis is very complex and encompasses many stages
with many intervening enzymes and molecules. When not functioning properly it can
lead to cell death or disease. Protein folding errors are commonly associated with
neurodegenerative diseases, such as Alzheimer's, and cancer. Besides errors in
sequence, deregulation at different stages of the protein synthesis machinery can lead to
overproduction of mutated proteins that promote cancer progression and survival (see

(1) for areview).

1.1.2 From DNA to protein: Transcription & Translation

The process of protein synthesis starts with the Transcription step where a gene
sequence in a DNA strand is copied into a template called a messenger RNA (mRNA), as

depicted in Figure 1.1. The mRNA sequence contains the same information of the DNA
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coding region but it is stored in a base-pair complementarity to the DNA strand. The
RNA polymerase is the enzyme that catalyzes the transcription process with the
assistance of transcription factors that facilitate its binding to, progress along and
release from the DNA strand yielding a complete mRNA template. The mRNA template is
exported from the cell nucleus, in the case of a Eukaryote organism, and may undergo an
intermediate step of splicing where the introns (non-protein coding regions) are

removed from the sequence and only the exons (protein coding regions) remain.

DNA
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Figure 1.1 Main steps in protein synthesis. The process depicted here is for a Eukaryote
organism with transcription occurring in the nucleus and post-transcript splicing.
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The second main step in the process of protein synthesis, which is the main focus
of the work that will follow in Chapters 1 and 2, is Translation. During translation, the
mRNA strand is decoded and its corresponding polypeptide chain is synthesized by an
enzyme called the ribosome. Many ribosomes can simultaneously translate an mRNA
strand forming a polyribosome. The amino acids are transported to the ribosome by

another type of RNA molecule, the transfer RNA (tRNA). When tRNAs are charged with
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an amino acid they are called amino-acyl tRNAs (aa-tRNAs). In the last stage of protein
synthesis, other processes and enzymes are activated to ensure the correct folding of the

protein to acquire its functional 3D structure.

There are three main steps in translation (Figure 1.2). In the initiation step, it is
formed a pre-initiation complex consisting of the methionyl-initiator tRNA (Met-
tRNA;Met) bound to a specific location on the small ribosome subunit. This pre-initiation
complex then binds to the 5' end of the mRNA strand and proceeds to the scanning of
the 5' untranslated region (UTR) until it recognizes the start codon (AUG), which signals
the beginning of the open reading frame coding the protein. At this stage, the large
ribosomal subunit assemblies with the preinitiation complex bound to the mRNA and
forms the complete initiation complex. Several initiation factors, which are heavily

regulated in eukaryotes, are required for the formation of the initiation complex (I1C).

§ RNA Qz pept-tRNA @ ribo:mRNA:pept-tRNA complex

,-‘:5;3”/ \Y)

L J \ J
Y

Y
Initiation step Elongation step Termination step and
ribosome recycling

Figure 1.2 The three main steps of the translation process: initiation, elongation and
termination.

During the elongation step, the ribosome decodes the mRNA open reading frame
and builds the polypeptide chain by catalyzing the reactions involved in the selection
and recognition of aa-tRNAs transporting the correct amino acid. Several ribosomes can
be simultaneously active translating one mRNA chain (polyribosome or polysome). The
length of these polyribosomes contributes to the protein synthesis rate in an organism
and are dictated by the translation initiation rate of the mRNA, the existence of space
allowing for a new pre-initiation complex to bind, and the speed of elongation that
moves forward the ribosome traffic jam. The synthesis of the polypeptide chain is

complete at the termination step when the ribosome reaches one of the possible stop
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codons (UAG, UAA, or UGA). At this stage, the polypeptide chain is hydrolyzed from the
ribosome-decoding center and the ribosome enters the stage of ribosome recycling
where the large and small ribosome subunits dissociate and unbind from the mRNA,

thus becoming available for another translation round.

1.1.2.1 Degeneracy of genetic code

An amino acid is coded by every three nucleotides (codon) in the mRNA sequence. Each
aa-tRNA has an anticodon region in its sequence that recognizes the codon in the mRNA
strand (Figure 1.3a). However, there is a degeneracy that allows for different codons
with mismatches on the third nucleotide position (the wobble position) with respect to
the tRNA anticodon to be recognized by the same aa-tRNA (Figure 1.3b). Although the
codons are recognized during translation of the mRNA, these Wobble binding
interactions between the codon in the mRNA and the anticodon of the aa-tRNA are
weaker than the ones resulting from a perfect match. The ribosome catalyzes these
reactions at a slower rate, influencing the speed of translation elongation. Evidence for
these differences in elongation speed can be found in the literature. For instance,
Sorensen and Pedersen (19) found that the two codons GAA and GAG that are decoded

by the same aa-tRNA present a 3.4-fold difference in elongation rate.

Based on the mismatches between the codon and aa-tRNA anticodon four levels

of interactions can be defined:

e  Watson-Crick cognate: all three nucleotides match between codon and

anticodon;

e  Wobble cognate: there is a mismatch of wobble type in the third position

between codon and anticodon;

e  Near-cognate: there is one mismatch between codon and anticodon that does not

involve the wobble position;

e Non-cognate: there is more than one mismatch between codon and anticodon

that do not involve the wobble position.

10
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Figure 1.3 a) Escherichia coli transfer tRNA carrying the amino acid Valine (tRNAV%L).

Degeneracy allows this tRNA to also decode the codons GUA, GUG and GUU. b) Table
representing the degeneracy of the genetic code: the amino acids and the respective
degenerated codons that encode them.

1.1.2.2 Synonymous codons

The codons that are recognized by the same aa-tRNA (in the wobble position) are
known as synonymous codons because, if replaced in the mRNA sequence, the
polypeptide sequence resulting from its translation would be the same. Despite these
wobble interactions being weaker and affecting the speed of elongation of these
synonymous codons, there are studies that indicate the existence of other levels of

modulation in elongation speed.

On one hand, Varenne and colleagues (20) and Curran and Yarus (21) found that
the speed of translation elongation of different codons depends on their correspondent
aa-tRNA availabilities. The premise behind this is that the slower translating codons,
also known as rare codons, stall the ribosome while they wait for the low abundant
cognate aa-tRNAs to bind. Individual aa-tRNA abundances are different among
organisms and, within the same organism, they depend on physiological conditions and
on tissue functionality. Studies involving synonymous codon substitution of rare codons
have shown that these codons are associated with ribosome pausing and their
replacement by more frequent ones was observed to decrease protein specific activity
(22, 23), which can be associated with protein misfolding, as different structural

domains require different speeds to be formed (24).

11
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In the other hand, Bonekamp and colleagues (25) measured the elongation rates
of 12 codons in Escherichia coli (E. coli) and showed that they do not always correlate
with their cognate aa-tRNA abundances or codon usage. These differences were
postulated to arise either from a slower recognition of the codon-anticodon formation
due to differences in base pairing, such as the wobble position, or as an effect of ternary

complex competition.

1.1.2.3 Translation and protein folding

The protein is required to be folded in a certain configuration (native state), which is
absolutely necessary in order for it to be functional. It is currently accepted that the
protein starts to fold already during translation ((22) and references cited therein).
Studies on S. cerevisiae and E. coli genes have shown that replacing rare codons by
frequent ones reduced pauses in translation and increased the rate of protein synthesis,
but the resulting protein presented lower specific activity that could be associated with

misfolding (26, 27).

Thus, it seems that the different codons along the mRNA strand encode more
than the simple amino acid sequence of the protein. The different elongation rates
resulting from ribosome pausing and tRNA abundance allow the necessary time in order
for certain structural properties of the protein start emerging, assisting it towards its
final conformation. Furthermore, it appears that different elongation speeds in rare
codons encode for different structural domains. For instance, faster-forming

subdomains would require less time to fold than bigger domains (28).

1.1.2.4 Pauses and frameshifting

Regulatory mechanisms can be in the origin of pauses in translation that slow down
protein synthesis. One such example, that involves the formation of mRNA secondary
structure, is the case of translation of E. coli trp operon. This mRNA has secondary
structures that are formed in different sequence locations that are regulated by the
levels of tryptophan present in the cell. These secondary structures affect the movement

of the ribosome and result in the attenuation of translation elongation (29).

12
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Ribosome pauses during translation can lead to frameshifting events where the
ribosome adjusts its position in the mRNA strand leading to an alternative reading of the
coded sequence and hence to a different protein sequence. Different mechanisms can
originate frameshifting events. For instance, a -1 frameshift event results from a
ribosome slippage over one nucleotide in the 5' direction of the mRNA sequence. Jacks
and colleagues (30) have observed in the replication of the Rous sarcoma virus that the
formation of mRNA secondary structure in front of the ribosome drives ribosomal

translocation from one codon to the next, but in the opposite direction.

A +1 frameshift event has been observed as a result of a pause in translation
elongation during the decoding of a rare codon with low available cognate aa-tRNA
abundance. This is likely to occur if the aa-tRNA bound to the previous codon has also an
affinity to the codon formed by shifting one nucleotide in the 3' direction of the mRNA
(31). Sundararajan and colleagues (32) also showed that a +1 frameshift event can be
induced by a different mechanism involving the binding of a near-cognate aa-tRNA in
the absence of cognate aa-tRNA that stimulates the binding of the next aa-tRNA with an

alternate frame through interactions with its wobble position.

1.1.2.5 Evolutionary preserved decoding center

The protein synthesis machinery differs between prokaryote and eukaryote organisms.
One such difference is the coupling of transcription and translation in prokaryotic cells,
i.e.,, the mRNAs start to be translated before their transcription is completed, whereas
the mRNAs in eukaryotic cells are transcribed in the nucleus from where they are
exported into the cytosol for the translation machinery to take over (Figure 1.1). The
existence of this coupling in bacteria allows for another level of regulation where the
rate of translation elongation controls the elongation rate of transcription through a

cooperative mechanism between ribosome and RNA polymerases, as observed in (33).

However, since the work presented in this thesis focus specifically on the study of
translation elongation, we are more interested in the differences between organisms at
that level, which will influence the assumptions we make for generalizations.
Translation is a complex process that involves a chain of reactions in all its three main

steps (initiation, elongation and termination/ribosome recycling) and an informative

13
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comparison of the different translation steps between prokaryotes and eukaryotes is
presented in (34). These reactions depend on several translation factors (proteins) that
differ in their coding sequence and in their function across organisms (prokaryotes,
eukaryotes, and archaea). The advances in the understanding of translation from the use
of tools such as cryo-electron microscopy and X-ray crystal structures (35, 36) led to the

identification of many such translation factors and helped to elucidate their function.

Interestingly, it has been observed that the elongation step across organisms is
the only translation step for which homologous factors have been identified across
different organisms (37). In fact, several studies in E. coli and S. Cerevisiae indicate that
the ribosome decoding center, which is responsible for the accuracy of translation, share
identical ribosomal domains in both organisms (38). Indeed, the homologous elongation
factors play an important role in the recognition of codon and aa-tRNA anticodon
complementarity, in the peptide bond formation and in the translocation of the
ribosome from one codon of the mRNA to the next, which are reactions that occur at the

conserved ribosome-decoding center.

These findings constitute a solid basis for the assumption that the mechanisms of
translation elongation are the same, or very similar, in prokaryotes, eukaryotes, and
archaea. However, the same assumption does not hold for the initiation, termination and

ribosome recycling steps.

1.1.3 Deterministic modeling of mRNA translation

There have been some efforts in the past to investigate the mechanism of translation
with deterministic models that take into account the kinetics of the ribosome and its
movement along an mRNA, transitioning from one codon to the next. These models are
described by a system of ordinary differential equations and they compute the average
response from a population of cells, which indeed reflects the majority of the
experiments available, where data is collected from a population of cells thus ignoring
the stochasticity present at the individual level. However, there has been recently an
emergence of single-cell experiments which will further assist in the development of

stochastic models.

14
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Gibbs and colleagues (39, 40) presented a mathematical model of protein
translation where the mRNA molecule is represented by a 1-D lattice, with each lattice
site corresponding to one codon (3 nucleotide residues). The ribosome moves one
codon at a time, while occupying several codons at the same time. Later, Heinrich and
Rapoport (41) refined this model and they performed a computational study from
which they concluded that the initiation and elongation phases of translation determine
the rate of protein synthesis under normal cell conditions. They also observed in this
study that when the ribosomes are distributed uniformly along the mRNA the
termination rate is fastest under physiological conditions. Having Heinrich's and
Rapoport's model as a base, Mehra and Hatzimanikatis (42) performed a genome-wide
study of translation networks where they investigated the influence of adding extra

mRNA transcripts on the synthesis rate of individual mRNAs.

The underlying assumption of these models is that all the different codons have
the same rate of elongation. However, different studies (mentioned before) found the
rate of translation elongation of individual codons to be dependent on factors such as
the abundance of aa-tRNAs and their anticodon binding affinity to the codons in the
mRNA. Gilchrist and colleagues (43) proposed a model for the translation of one mRNA
strand that accounted for differences in the elongation rate of individual codons
assuming that these were proportional to the corresponding aa-tRNA abundance in the
cell. Furthermore, the model also included steps for ribosome recycling and for the
occurrence of nonsense errors due to frameshifting, false termination or premature
ribosome release. Despite this improvement, this model did not take into account the
polysome formation and their effect on elongation rate. Later models (44-46) account
for both the polysome formation and the differences in the elongation rate of individual
codons by either assuming proportionality with the cognate aa-tRNA abundance (44,
46) or by estimating elongation speed based on the proportionality between cognate

and competitor near-cognate tRNAs (45).

Taking advantage of the recent understanding of ribosome kinetics (35-37) and
the bulk rapid-mixing kinetic experiments for the E. coli translation system in vitro (47-
49), Zouridis and Hatzimanikatis (50, 51) formulated a codon-specific mathematical
model for translation elongation (ZH model) that accounts for i) polysome formation, ii)

cognate tRNA abundance and non-cognate competition, and iii) the known intermediate

15
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kinetic steps of the ribosome for peptide bond formation reported in (49) combined
with the kinetic mechanism of ribosome translocation, i.e., ribosome movement from

one codon to the next, based on the work of Savelsbergh and colleagues (52).

1.1.4 Biotech applications from protein synthesis modulation

All efforts that contribute to building upon the knowledge of the mechanisms of
translation, bring us closer to formulate strategies for the modulation of those processes
in the cell. This is relevant for many Biotech companies, and in particular
pharmaceutical companies, that have an interest in maximizing the yield of recombinant

proteins and/or designing drugs to target translation deficiencies.

In recombinant protein production, host cell systems are engineered to
efficiently express a gene of interest such that the respective protein is secreted from the
system in high amounts for potential use in clinics, research, or other applications.
Briefly, the system is designed so that the expression of the gene of interest is dependent
on the expression of a gene essential for the host cell organism. The host cells are
cultured with a drug that blocks the expression of the essential gene inducing an
amplification on its expression to balance the effect of the blocking drug, and, as a
consequence, amplifying the expression of the gene of interest. A more complete
understanding of the determinants of translation elongation can assist in the design of
expression vectors for the protein of interest such that its translation occurs more

rapidly. This is indeed the focus of the work presented in Chapter 2.
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1.2 Materials and Methods

1.2.1 Modified ZH model

Several studies (53, 54) report the existence of an induced fit mechanism where the
ribosome assesses the binding affinity between the aa-tRNA and the mRNA codon at
ribosome A site through a series of substrate-induced conformational changes. Selection
and recognition of the cognate aa-tRNA is processed in two consecutive steps: initial
selection and proofreading. These two selection steps are necessary for efficient aa-
tRNA discrimination and they contribute individually with similar efficiencies for the

overall selectivity (49).

We started from the ZH model (50) and further extended it to include the two
aforementioned selection steps (Figure 1.4). For binding with the ribosome, the aa-tRNA
binds to EF-Tu:GTP in a reaction catalyzed by the elongation factor EF-Ts forming the
ternary complex (TC). For simplicity, throughout the text, TC and aa-tRNA are used
interchangeably, unless otherwise stated. The ZH model accounted for TC competition
solely by assuming that all near- and non-cognate aa-tRNA species bind to the ribosome
at the codon-independent binding site (k;, k_;) without further progression. However,
the error frequency measured in vivo for E. coli, i.e., a measure of the incorporation of
wrong aa-tRNAs, of 6x10-4 (55) and 5x10-3 on internal mRNA codons (56), indicates
that the near-cognate aa-tRNAs can proceed to, and, in rare occasions, beyond the

proofreading step.

In our modified ZH model (Figure 1.4), we discriminate the binding of the near-
and non-cognate TCs to the ribosomal A site: the affinity of the near-cognate aa-tRNA is
assessed in both steps of selection, whereas the non-cognate aa-tRNAs are assumed not
to pass beyond the initial selection step since codon recognition that triggers GTP

hydrolysis does not occur in the relevant physiological time (47).

After the codon-independent binding to the ribosome (k;) it follows the
recognition step (k,) where, if the codon is recognized, GTPase activation of EF-Tu
elongation factor is triggered (k;), otherwise it can be rejected through the reverse
reactions of initial selection. Conformational rearrangements of EF-Tu:GTP to EF-Tu:GDP

are accompanied by the release of inorganic phosphate (k,). The elongation factor EF-Tu

17



PartI  Protein Synthesis Optimization

loses its affinity for the aa-tRNA and dissociates from the ribosome with rate constant

(krelease)-

From this stage of the kinetic pathway, our model allows for proofreading step. If
the aa-tRNA is recognized as the correct anticodon it accommodates to the 50S
ribosomal A site (ks) triggering peptide bond formation, whereas an incorrect aa-tRNA
will be rejected from the ribosome (k,;). Peptide bond formation is followed by the
ribosome translocation, i.e, an EF-G-dependent displacement of the tRNA-mRNA
complex that was previously on the A site onto the P site with respect to the ribosome,
leaving the A site available for aa-tRNA binding and decoding of the next mRNA codon.
Since the translocation intermediate steps seem to be codon independent we assume
that the kinetic pathway is the same for both cognate and near-cognate aa-tRNA
binding. The ribosome translocation takes place at state 9, where a new codon is

positioned in the A-site.

- Cognate kinetic pathway

Near cognate kinetic
O EF-Tu /\ EF-G To aatRNA - pathwayg
( & £ Non cognate kinetic
tRNA (. PepHRNA 70s-rib:mRNA:pept-tRNA pathway

—— Common kinetic pathway

Figure 1.4 Schematic representation of our modified ZH model, which includes initial selection
and proofreading kinetics for near-cognate TCs.
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The model equations representing the ribosome kinetics in Figure 1.4 are
detailed in section A.1.1. Table C.1.1 contains the kinetic rate values and their definitions
for the E. coli ribosome. These were estimated from experiments where bulk rapid-
mixing techniques were used at conditions that reproduce the overall aa-tRNA
selectivity observed in vivo for E. coli. We note that, since less intermediate steps were
used in the original ZH model, we introduced a discontinuity in the index of the
ribosome states in our modified ZH model to establish a connection with subsequent
model extensions of the ribosome kinetics in Chapter 2.

As described in (50), the model can be formulated with a system of equations

% =N V(x,p) (1.1)

where N is the stoichiometric matrix, x is a vector containing the fractional occupancies
of each codon j representing the probability of having a codon occupied by the A site of
a ribosome, p refers to the parameters of the model (translation kinetic rates and
cellular concentrations of ribosomes, aa-tRNAs and translation factors), and V is the
vector of the reaction fluxes representing translation initiation, elongation and

termination and given by

Vi=k R W,
Vi=klrx, j=[L..,n-1], (1.2)
Vp = kg xq

The term W, represents the probability that another ribosome can bind to the first

codon on an mRNA strand given that a bound ribosome occupies L; codons
L
W, =1- Zjﬁl X;j. (1.3)
This model determines the protein synthesis rate in function of an effective

elongation rate (kgff) for each codon j along the mRNA transcript (see Eq. A.1.4 and

section A.1.1 for steady state derivation), which is a function of the ribosome Kkinetic
rate constants for elongation and the concentrations of elongation factors, cognate and

competitor aa-tRNAs.
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1.3 Results and Discussion

1.3.1 Performance of modified ZH model

We compared the simulation results from the modified ZH model (Figure 1.4) to the
experimentally measured levels of GTP hydrolysis in (49). To reproduce the
experimental conditions, we simulate the translation of a mRNA segment of the form
auguuuuuu(...Juaa (26 UUU codons in between the start and stop codons) with 0.2 pM of
either cognate or near cognate TC so that no competition takes place, and 2.8 uM of
initiation complexes at 20°C in high fidelity conditions. For the near cognate simulation,
the codon UUU is replaced by CUC. The dynamic simulations (see section A.1.2) were
performed using the ribosome kinetic rates in Table C.1.1. The simulated curves fit well
with the experimental data points (Figure 1.5) indicating that the model formulation up

to GTP hydrolysis (k3) is representative of the system behavior.

-
[=2]
L

-
[V
L

—— Cognate TC simulation

—— Near cognate TC simulation
@ Cognate TC data
@ Near cognate TC data

GTP hydrolysis state
o o o
IS

10 102 107 10° 10’ 102
Time [s]

Figure 1.5 The blue and red curves represent the cumulative amount of cognate and near
cognate TCs hydrolyzed over time, respectively. Experimental points were extracted from (49)
using a Matlab script.

We further investigated how the experimentally measured levels of dipeptide
bond formation compare to our modified ZH model (Figure 1.6). Experiment and

simulation were performed as described above for GTP hydrolysis case (see section
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A.1.2), except for the modified amount of IC used (1 pM). The simulated amount of
dipeptide bond formation in time for the recognition of cognate TC is delayed with
respect to the data. Modifying the model to exclude the release of EF-Tu:GDP from the
ribosome (K, qpeqse) before accommodation / peptide bond formation (k5) produces a
better fit. This extra reaction step, which is present in the original ZH model, introduces
a delay in the dipeptide formation. However, its removal is in agreement with the
literature (53), which represents this step as a parallel event to the accommodation. We
note here that the GTP hydrolysis rate, which is comparable to the accommodation rate,
limits the near cognate dipeptide reaction and hence, the removal of EF-Tu:GDP release

step does not influence the fit for the near cognate case.
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Figure 1.6 Comparison of dipeptide formation for cognate (blue) and near cognate (red) with
and without the GDP release sep (K,qjeqse) in the model reaction chain. Experimental points
were taken from (49) using a Matlab script.

1.3.2 Steady state protein synthesis rate

The protein synthesis rate per mRNA (also referred to as elongation rate) was computed
by applying an optimization framework developed by Racle and colleagues (57) to the
modified ZH model. This optimization allows for the determination of the optimal
protein synthesis rate and polysome configuration given a fixed concentration of
initiation, elongation, and termination factors, and a fixed pool of ribosomes and aa-

tRNAs. As an example, Figure 1.7 displays the elongation rate determined by the
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optimization framework for four different E. coli mRNA transcripts with different
lengths in function of the ribosomal density (p). The ribosomal density is a measure of

the ribosome crowding along the mRNA transcript and is defined as

:M.p:ﬂ' (1.4)

n n

p

where P is the polysome size, i.e., the number of ribosomes bound to mRNA transcript, n
is the number of codons in the mRNA transcript and Ly is the length of the ribosome in

terms of number of codons it occupies on the mRNA.

The simulations were performed using ribosome and aa-tRNA concentrations
determined for E. coli growing at 0.4h"l. The free ribosome concentration (R) was
computed by assuming that 80% of the total ribosome concentration is active in
translation (58). The total ribosome concentration at 0.4h"1 was obtained from (58) and
the individual aa-tRNA concentrations at 0.4h-! used for the calculation of cognate,
near- and non-cognate aa-tRNA concentrations for each codon (Table C.1.2) were

obtained from (59).

Optimal protein synthesis computed using numerical
continuation method on Ecoli genes
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Figure 1.7 Optimal protein synthesis rate at different stages of ribosomal density for four E. coli
mRNA transcripts with increasing length.
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1.3.3 Sensitivity analysis of modified ZH model

We use the Sobol's method (see section A.1.3), a global sensitivity analysis (GSA)
procedure, to evaluate the influence of the ribosome Kinetic rates in the response of the
modified ZH model. We selected the E. coli gene yahD (mRNA transcript with 302
codons length) and computed main effects (Eq. A.1.12) and total effect (Eq. A.1.13) of

each kinetic rate constants on different model responses.

To assess the parameter sensitivity during one codon elongation, we simulated
the time course of peptide bond formation for the binding of a cognate aa-tRNA to the
codon following the start codon in this transcript. The individual Kkinetic rates
contribute differently to the time course of peptide bond formation, as shown by the
sensitivities computed at each time point (Figure 1.8). As expected, the initial phase is
mostly controlled by both the initial selection step, where the aa-tRNA binds to the
ribosome, and the codon:anticodon recognition steps. However, the rates of phosphate
release (k,) and accommodation (ks) present an overall high contribution that becomes
more important in the vicinity of the dipeptide bond formation stage. The
understanding of the influence of different kinetic rates at different time points in a
chain of reactions can be useful for assigning weights in parameter estimation
procedures. In this particular case, this analysis informed us about the relevance of k, in
the kinetics of dipeptide bind formation, which, interestingly, is a parameter with high

associated uncertainty due to its difficult determination from experiments.

To assess the parameter sensitivity on the translation of a complete mRNA
sequence, we simulated the translation of the E. coli gene yahD for a sample of
elongation kinetic rates (Figure B1.1) and for a translation initiation rate fixed to a low
value (to avoid ribosome crowding interferences). The main and total effects for the
modified ZH model with respect to the protein synthesis rate (Figure 1.9) show (in
agreement with the results from Zouridis and Hatzimanikatis (51)) that aa-tRNA
competition, determined by the binding and codon recognition rates (k_, k,, and k™),
does play a major role in the modulation of the speed of translation elongation, followed
by a minor influence of the rate of cognate peptide band formation. The rate constants
related to the translocation and the rejection by proofreading play a minor role in the

total codon occupancies. However, we note that these results were generated for a
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translation state limited by initiation, which means that ribosome crowding is not

expected to play a role.
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Figure 1.8 a) Main effect and b) total effect indices computed using Sobol's method for the
evaluation of the critical kinetic rates during the time course of peptide bond formation for a
cognate aa-tRNA.
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Figure 1.9 Main (S;) and total (S7,) effects of modified ZH model computed with respect to the
protein synthesis rate.
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To further study the codon-dependent sensitivity along the mRNA sequence we looked
into the changes in the total codon occupancies along the mRNA transcript. The total
codon occupancies (x) are the defined in section 1.2.1 (Eq. 1.1 and 1.2) and represent
the probability of having a codon occupied by the A site of a ribosome, serving as a
measure of the polysome size. In agreement with the previous results, the main and
total effects with respect to the changes in the total codon occupancies (Figure 1.10)
show (k_;) as a dominant influential parameter. Interestingly, k™5 and k, present
"bursts" of opposing sensitivity: when one increases the other decreases (see selected
zoom in Figure 1.11). These results are consistent with a model that is heavily
influenced by competition between TCs binding to a ribosome, which is highlighted by
the dominance of the reverse reaction in codon-independent binding step (k_;). In
particular, the end region of the "bursts" of sensitivity for parameter k™ correlate with
codons that present a higher concentration of near-cognate aa-tRNA, decreasing the

speed of elongation in the upstream codons.
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Figure 1.10 a) Main effect and b) total effect indices computed with Sobol's procedure with
respect to the total codon occupancies.
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Figure 1.11 Correlation between the aa-tRNA concentrations of cognate, near-cognate and non-

cognate species of a codon and the codon sensitivity indices with respect to the total codon
occupancy.

1.4 Conclusion

Understanding the mechanisms of translation and its rate limiting steps is crucial for
both the development of drug targets and improvement of heterologous protein
production with many biotechnological applications, such as in pharmaceutical and

biofuel industries.

Despite many advances in the knowledge of the ribosome structure and function,
there is still much discussion around the determinants of translation elongation with
experiments and computational studies disagreeing, in particular, between the influence
of the cognate aa-tRNA abundance and aa-tRNA competition. However, Spencer and
colleagues (60) have recently observed that the discrimination between cognate aa-
tRNAs with Watson-Crick (WC) and wobble (WB) binding interactions plays a major role

in the modulation of codon the elongation rate.

We have started from the ZH model and extended it to include the initial
selection and proofreading stages for the near-cognate TC binding. Our studies have

shown that the modified ZH model is able to reproduce the experimental measurements
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of the levels of dipeptide formation and corrected for a ribosome kinetic step that was
overlooked in the original ZH model (k,¢;0qs¢)- AlsO, in agreement with the analysis from
the ZH model, our sensitivity analysis results indicate that aa-tRNA competition is the

major factor influencing elongation rate.

The developed models do not have a detailed kinetic description that
discriminates between cognate WC or WB types such that the influence of the interplay
between the binding of those aa-tRNAs on the modulation of the elongation rate can be
studied. Furthermore, if aa-tRNA levels (cognate or competitor) do play a role in
translation, it is more relevant to perform studies where the actual amount of free aa-
tRNA is taken into account for the binding with the ribosome and not its total amount in
the cell. This amount of aa-tRNA available for binding is dependent on the number of

active ribosomes and mRNA sequences being translated.

Our studies of translation continue in Chapter 2, where we have extended a
stochastic model of translation elongation based on previous work. This model is able to
dynamically track of the levels of free ribosomes and aa-tRNAs, the position of bound
ribosomes in the mRNA sequences, and the aa-tRNA species bound to the different
ribosomal sites (A, P and E). The translation elongation kinetics of this model was also

extended to discriminate between cognate WC and WB binding interactions.
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Chapter 2: Analysis of translation elongation dynamics in the
context of an Escherichia coli cell

2.1 Introduction

Despite the advances in the knowledge of ribosome kinetics, such as the unveiling of the
structure and function of several ribosomal domains with cryo-electron microscopy and
X-ray crystallography (35, 36), or with the development of bulk rapid-mixing kinetics
and single-molecule experiments for the study of ribosome reaction kinetics and the
dynamics of translation events (61-63), the dynamics of the translation process and its
rate-limiting steps are still not completely understood. The availability of cognate tRNA
for a codon is generally accepted as the determinant of translation elongation rate.
However, studies of computational or experimental character that attempt to identify
the rate-limiting steps of translation have not been able to provide a consensus on this
matter. A computational study of translation using a mechanistic model has found that
the competition between cognate tRNAs and nonspecific binding tRNAs (near-cognate
(nc) and non-cognate (non) tRNAs) is the rate-limiting step in translation (51). Another
computational study has identified specifically the competition between cognate and
near-cognate tRNAs as the determinant in translation rates (64). More recently, in a
computational model that does not take competition into account, the concentration of
ternary complex aa-tRNA:GTP:EF-Tu was found to limit elongation rate (65). In two
recent experimental studies involving synonymous codon replacements, the key factor
in translation elongation rate was attributed to the tRNA availability in somewhat
different ways. Spencer and colleagues (60) showed that the determinant of codon
translation modulation is the availability of cognate tRNA with Watson-Crick vs. wobble
interactions, whereas Rosenblum and colleagues (66) suggested that cognate tRNA

abundance is the key factor.

Recent stochastic models (67, 68) enable the study of the translation dynamics
for an organism's representative set of mRNA sequences allowing for the study of more
complex dynamics, such as ribosome crowding effects and the dynamics of tRNA

availability in a whole-cell context, which is more difficult to address with deterministic
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models. These stochastic models take into account the fluctuations on the availability of
tRNA and ribosomal resources, however, despite their complexity, they still do not
provide a complete kinetics for competition. Using a stochastic framework, we simulate
the translation process based on the available ribosome kinetics as determined in (53,
69-71), which describes fully the tRNA competition and differentiates between a
cognate Watson-Crick (WC) and a cognate wobble (WB) tRNA binding interaction. We
simulate the simultaneous translation of a representative pool of Escherichia coli mRNA
sequences under a range of different growth rates for which the number of ribosomes
and the concentrations of each tRNA species are known. We show that two distinct
mechanisms modulate the speed at which each codon is translated: (i) the amount of
competitor tRNA and (ii) the type of cognate binding interaction (WC vs. WB), which
combined optimize elongation rate of a heterologous transcript added to the cell.
Formulating the translation process deterministically by extending on previous work
(51), we derive an equation that estimates the codon elongation rates based on the
amount of free competitor and cognate (WC, WB) tRNAs. We compare the predictions of
this equation with the ones from our stochastic model, and we show its potential to
assist on the design of optimized heterologous transcripts by synonymous codon

substitution.

2.2 Materials and Methods

2.2.1 Stochastic model of E. coli translation machinery

2.2.1.1 Translation elongation Kinetics

The ribosome kinetics for translation elongation cycle of each codon of an mRNA
sequence was obtained from in vitro experiments detailed in Table C.2.1 and is
represented schematically in Figure 2.1. The four different kinetic pathways (cognate
Watson-Crick (WC), cognate wobble (WB), near-cognate (nc), and non-cognate (non))
represent the different types of tRNA binding to the mRNA-ribosome complex.
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The binding interaction is defined as cognate Watson-Crick (WC) if the three
nucleotides of the codon match the three nucleotides of the tRNA anticodon, whereas it
is defined as cognate wobble (WB) when the first two nucleotides of the codon match
the last two nucleotides of the tRNA anticodon and the third nucleotide of the codon
forms a wobble base pair with the first nucleotide of the tRNA anticodon. A near-
cognate binding interaction is defined by a nucleotide mismatch in one of the three base
pairs, whereas a non-cognate binding interaction is defined by either a nucleotide
mismatch in two of the three base pairs or in all three base pairs. Note that in our
definition of near- and non-cognate binding interactions we take into account the
possible wobble interactions, i.e., if a wobble interaction is present on the third base
pair, the binding is defined as near-cognate (nc) when there is a mismatch on the first or
second base pair, and it is non-cognate (non) when there are mismatches of both the
first and second base pairs. This definition is in agreement with the work of Rodnina
and colleagues (53) from where we assembled the kinetic rate constants for the

ribosome elongation steps.

The ribosome kinetics for WC, nc and non interactions are obtained from (53) at
20°C. The ribosome kinetics for WB was obtained from (70) at 20°C, where cells not
expressing tRNA-Ala2 had its matching codon GCC decoded by the isoacceptor tRNA-
AlalB via a wobble binding interaction. Based on these biochemical assays the
translation elongation cycle is divided in two stages where the codon-anticodon match
is evaluated resulting in the possibility of rejecting the tRNA: the initial selection stage
(states 1-3) and the proofreading stage (states 5-1). After the tRNA accommodation and
peptide bond formation from states 5 to 6, the ribosome kinetics for the mRNA-tRNA
translocation between states 6 and 11 is a combination of rate limiting steps from (71)
at 25°C and the remaining steps are from (69) at 37°C (fast rate constants that do not
limit the system). During the step at which the translated codon and tRNA are shifted to
the P-site (state 9 to 10), the next codon of the mRNA sequence is placed at the A-site for
decoding and at the same time the deacylated-tRNA that was previously at the P-site is

translocated to the E-site.
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Figure 2.1 Schematic representation of the ribosome kinetics of the translation elongation cycle
during which a polypeptide is synthesized following the decoding of its corresponding mRNA
sequence. The four pathways represent the different types of codon-anticodon interaction (WC,
WB, nc, non). After the tRNA accommodation and peptide bond formation from state 5 to state 6
the subsequent kinetic pathway is assumed to be common for the different types of binding
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TWC ’

Tv(l,f;, T(f) and T,g,?l are the concentration of free cognate WC, cognate WB, near-cognate and non-
cognate tRNAs, respectively, for the codon being translated. A-site OFF, A-site PROOF and E-site
OFF correspond to the positions where tRNA is released from the mRNA-ribosome complex and
P-site ON corresponds to the position where ribosome translocation to the next codon occurs
and hence the tRNA in the A-site is placed in the P-site and the one in P-site is placed in the E-

site.

interactions, as the kinetic steps no longer depend on the codon-anticodon recognition.

In our model, we assume that: (i) the ribosome kinetics for WB binding
interaction is the same independently of the type of wobble mismatch and codon
involved; and (ii) the translocation kinetics is common to the WC, WB and nc binding

interactions, as the kinetic steps no longer depend on the codon-anticodon interaction.

Furthermore, the kinetics of the tRNA charging with an amino acid and binding
with EF-Tu, mediated by EF-Ts, is not taken into account in the model. We instead

assume that the tRNA is instantaneously recharged after leaving the ribosome E-site and
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that the finalized ternary complex aa-tRNA:GTP:EF-Tu is readily available for binding
with the ribosome, and hence not limiting translation. This assumption is consistent
with the observation that 90% of EF-Tu is estimated to be present in the form of the
ternary complex (72). We also note that at steady state the rates of uncharged tRNA
degradation (>120 min in (73)) and aa-tRNA degradation (100-1000h in (74)) occur in
a much longer time scale than the time scale for the cycle of elongation until the tRNA is
released from the E-site (see Table 2.1 in section 2.3.3). This leads to the rate of tRNA
charging being equal to the rate of tRNA release from the E-site and to the rate of aa-
tRNA binding to the A-site. For simplicity, tRNA throughout the text denotes the finalized

ternary complex aa-tRNA:GTP:EF-Tu ready to bind to the mRNA-ribosome complex.

2.2.1.2 Stochastic algorithm

Stochastic models can follow the evolution of large complex systems, tracking each of its
components and providing a distribution of solutions for the model. Recent single-cell
experiments indicate there is a high heterogeneous cellular behavior, which justify the

use of stochastic modeling approaches.

We simulated the dynamics of translation with an exact continuous time

stochastic algorithm (75) based on previous work (76). Briefly:

e  The simulations of the system describing the E. coli cell translation machinery
are initialized by setting all the ribosomes to a free state and unbound from the

mRNA sequences;

e At each iteration, the next elongation reaction step is randomly selected and the

time step for that reaction to occur is evaluated;

e  The identity of the ribosome and the mRNA undergoing the reaction is randomly

selected from a subset that is ready to take that reaction step;

e The propensities of the reactions, i.e. the probability of their occurrence as the
next step, is updated based on the reaction that just took place and the cellular

resources involved.

This algorithm allows studying the dynamics of the simultaneous translation of

different mRNA species assuming a fixed total amount of tRNA and ribosomal resources
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(tRNAT and RT). The algorithm accounts for (i) the need of ribosome binding space on
the beginning of the decoding region for translation initiation to take place, for (ii) the
traffic jam effect due to ribosome queuing when slower codons are being translated, and

for (iii) the fluctuations between active and free ribosomes (R* and R).

2.2.1.3 Extension of stochastic framework to include tRNA abundance
fluctuations

We improved the stochastic algorithm from (76) to account for fluctuations between
active and free tRNA molecule abundances (tRNA® and tRNA') by allowing the dynamic
tracking of the position of the tRNA molecules inside the ribosome during translation.
We tracked the tRNA molecules bound to each ribosome translating a particular mRNA

sequence between the following kinetic states (see Figure 2.1 in the section 2.2.1.1):
¢ From state 2 until A-site tRNA release at state 1 after initial binding (A-site OFF);

¢ From state 2 until A-site tRNA release at state 1 during proofreading following

state 5 (A-site PROOF);

e From state 2 until P-site tRNA accommodation at state 10 (P-site ON), which
corresponds to the time that it takes for a tRNA to complete a translation cycle of

a codon, leaving the A-site free for the next codon to be translated;

¢ From state 2 until E-site tRNA release at state 1 following state 11 (E-site OFF),
which corresponds to the passage of a tRNA from initial A-site binding, to the P-
site after translocation, A-site binding of another tRNA species, translocation of
the following codon and the newly bound tRNA species to P-site and consequent
transfer of the previous tRNA and decoded codon to the E-site from where it is
finally released. Note that during E-site OFF two P-site ON events have occurred

for two consecutive codons.

A list with the tRNA-codon binding interactions is presented in Tables C.2.2 and
C.2.3. From the possible tRNA choices, we selected the species that will participate in the
binding reaction based on a distribution that takes into account the number of available
molecules for each species at the time of the binding. Once a tRNA species is selected for

binding with the mRNA-ribosome complex its amount decreases by one unit. Rejection
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of the tRNA molecule during initial selection stage (states 1-3 or A-site OFF) and
proofreading stage (states 5-1 or A-site PROOF), or simple deacylated-tRNA release
from the ribosomal E-site (states 11-1 or E-site OFF) will result in the increase of the

respective tRNA species amount by one unit.

2.2.2 Translational resources and mRNA cell composition

The concentrations of each tRNA species in E. coli at growth rates 0.4, 0.7, 1.07, and 1.6
h'1 were obtained from the experiments reported in (59). The tRNA concentration per
codon and binding interaction is summarized in Table C.2.4 for the growth rate of 1.07

h-1. We estimated the total number of tRNA molecules (tRNAT) and ribosomes (RT) per

cell at each growth rate from the values reported in (58). The tRNA" was used with the
total tRNA concentration ([tRNAT]) to compute the respective cell volumes at the given
growth rates (Eq. A.2.1). The values obtained for the cell volumes were inside the range
determined for E. coli in (77) (see section A.2.1 and Figure B.2.1 for further details on

this estimation and Table C.2.5 for values).

Finally, the number of tRNA molecules for each of the tRNA species at each
growth rate was computed from their respective concentrations and the cell volume. We
computed the average number of mRNA copies per E. coli cell at each growth rate from
the mRNA synthesis rate per cell in function of growth rate reported in (58) (see section

A.2.2 and Figure B.2.2 for further details on this estimation and Table C.2.5 for values).

Since we lack data on the mRNA sequences and respective copy numbers
expressed at each of the growth rates under study (for which we have available tRNA
concentration data), we constructed the mRNA pools of the cell at each condition by
formulating a homogeneity criterion based on the fact that E. coli expresses mRNA in
low copy number (78). This criterion assumes that the mRNA pools are qualitatively
similar across the four growth rates and enforces them to approximate both the average
mRNA length and the codon usage frequency (CU) of E. coli. The CU; is a measure of the
fraction of each codon j present in the genome of an organism, and thus independent of
growth rate. The validity of this assumption was shown by comparing the mRNA
expression in E. coli at low (79) and high (80) growth rates (Table C.2.6). The complete

formulation of the homogeneity criterion is explained in section A.2.2. Briefly, from the
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list of E. coli mRNA species encoding proteins only and excluding pseudogenes obtained
from the E. coli K12 strain in EcoGene 3.0 (81), we selected, based on the criterion, a
subset of the listed mRNA species with 52% of the sequences in this subset classified as
essential genes. Although, the identity of the mRNA species was preserved in the cell at
the different four growth rates, the individual copy numbers were varied to match the
estimated average number of mRNA sequences per cell. The E. coli K12 CU was obtained
from the Genomic tRNA database (82). In order to differentiate between the CU based
on the genome and the codon usage frequency based purely on the set of mRNA copies
present in a cell, we defined the mRNA codon usage frequency (mCU) as a measure of the
fraction of each codon j (mCU;) present in the mRNA pools at each growth rate, and
whose values we enforced to approximate the ones of E. coli CU (see Figure B.2.3 for a

comparison between CU and mCU at each growth rate).

The concept of interaction-based mRNA codon usage frequency (IBmCUgp,;) is
introduced here to quantify the frequency of codons in the system that interact with
tRNA species i and that classify under a certain base-pair binding interaction. The

IBmCUé’R’;NAi is computed with the following expression

IBmCUg]RiNAi = Zcodonj with bi for tena; MCUj, (2.1)

where mCU; is summed over all codon species j that bind to the tRNA species i with the
binding interaction bi. As mentioned above, there are four possible binding interactions
(WC, WB, nc, non) and we further defined a fifth one to account for all cognate binding

interactions: IBmCU/gyy = IBMCUkf 4, + IBMCURR 4.

2.2.3 Codon elongation rate

We derived an expression for the codon elongation rate (k.s¢) in function of the free
cognate (WC and WB), near-cognate (nc) and non-cognate (non) tRNA concentrations
and the ribosome Kkinetic parameters. This derivation was based on a deterministic
model of translation (51), which was extended to account for the differentiation
between two types of cognate binding interactions, for the possibility of nc mis-

incorporation and for tRNA rejection at the proofreading stage (see section A.2.3).
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Inserting the values of the kinetic rate constants from TableS1 we obtained an
expression to compute kéff for each codon j

f f —4.f
; T; :+0.5884"T; +2.6233:10" T, _ .
- wc, WB, )
koppls™1 = ! = st , (2.2)

0.0104-[uM-s]+0.4-556[s]-TV’;CJ+0.0613[s]-TT{CJ.+O.0171[s]-T1{0n’j

where the variables are the free WC, WB, near-cognate, and non-cognate tRNA

concentrations to codon j.

2.2.4 Simulation of translation in E. coli cell

We simulated the translation dynamics for an E. coli cell using the cell composition at
37°C for the following growth rates 0.4, 0.7, 1.07, and 1.6 h'! and the ribosome kinetics
described in section 2.2.1.1. The termination rate constants (k;) values were kept high
for all mRNA species so that it did not constitute a rate-limiting step in translation, as
observed in (83, 84). The translation initiation rate constants (k;) for each mRNA
species where calibrated such that the system reached a 80% ribosome activity in each

simulated pool as estimated in (58) (see section 2.2.4.1).

In parallel, we simulated the heterologous protein expression of seven
synonymous Firefly Luciferase transcripts introduced in an E. coli cell growing at 1.07 h
1, Simulations were performed individually for each transcript and only one copy of the
transcript was added to the pool of mRNA copies in a cell at 1.07h-l. The sequence
design of the transcripts was based on synonymous codon substitution that yields the
same Luciferase amino acid sequence (see section 2.2.4.2 for further details on the

mRNA sequences).

The data was extracted from the simulations during a time interval for which the
system was at steady state (see example for 1.07 h-lin Figure B.2.4 and Figure B.2.5). All
simulation results were averaged over a large number of repetitions of the same

simulation.

2.2.4.1 Calibration of the translation system to match literature parameters

Although genome-wide ribosome profiling data for E. coli has recently started to appear

in the literature (80, 85, 86) that could be used to derive initiation rate constants (k;) for
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each mRNA sequence being expressed, these datasets do not exist for all the growth
rates in this study along with its respective mRNA sequencing data. We have thus
randomly attributed a k; to the different mRNA species and subsequently multiplied
them by a calibrating constant that differed across the different growth rates in order to
reach 80% of ribosome activity (ribosomes that are being used for translation events) in
each simulated pool as estimated in (58). Note that the use of this calibration constant
leads to a difference in the initiation rate constants of the mRNA species across the four
growth rates, which can, for instance, be taken as the result of changes in the amount of
initiation factors. However, if the translation initiation efficiency of an mRNA species is
higher than another, it will remain as such for all the growth rates as the initiation rate
constants of each mRNA species were not changed individually. We remark that the
calibration of the initiation rates to match the 80% level of ribosomes active in
translation will always lead to a steady state with the same number of free ribosomes
for each condition (if total ribosome amounts are fixed), which is independent of the
individual ribosome profiles of each sequence and thus independent of the species of
mRNA sequences present in the pool and their relative levels. High values for the
termination rate constants (k) for all mRNA species were chosen in order not to limit
the synthesis rate, as computational and experimental studies have shown for different
organisms that translation of most mRNAs are initiation or elongation limited given
experimental measurements of their polysome sizes (i.e. the number of ribosomes

simultaneously translating an mRNA) (83, 84).

2.2.4.2 Heterologous expression of different Luciferase transcripts

We simulated the heterologous translation of seven synonymous Firefly Luciferase
transcripts (one of them a wild type sequence) in an E. coli cell with growth rate 1.07 h
1, Simulations were performed individually for each transcript and only one copy of the
transcript was added to the pool of mRNA copies in a cell at 1.07h-L. For each transcript,
we fixed the termination rate constant (k;) to a high value and the initiation rate
constant (k;) to the average k; from all mRNA species used. We used six criteria for the
design of the mRNA sequences based on synonymous codon substitution that yield the

same Luciferase amino acid sequence:
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- WC & tRNA genes: we replaced the codons in the Wild Type sequence with

existing synonymous ones that are decoded by WC interactions and at the same
time have the highest number of cognate WC tRNA genes. In case of tie in the
number of genes for multiple synonymous codons, the codon with the highest

number of WB interactions was chosen.

- CU based: we replaced the codons in the Wild Type sequence with existing

synonymous ones presenting the highest E. coli codon usage frequency (CU).

-  WB based: we replaced the codons in the Wild Type sequence with existing
synonymous ones that are translated only by WB decoding tRNAs and that have
no WC decoding isoacceptor tRNAs. If more than one possibility existed we

choose the one with less WB decoding tRNA isocacceptors.

- WC based: we replaced the codons in the Wild Type sequence that have only WB
interactions with existing synonymous ones that are also decoded through WC
interactions. When more than one possibility exists, we chose the one with

lowest cognate WC tRNA concentration.

- TC based: we replaced the codons in the Wild Type sequence with existing
synonymous ones that have the highest total cognate tRNA concentration. The
total cognate concentration is the sum of the concentrations of all tRNAs cognate

to the codon and independent of binding interaction (WC, WB).

- kggf based: we replaced the codons in the Wild Type sequence with existing

synonymous ones that had the highest codon elongation rate as computed using
Eq. 2.2 A variation of this transcript was constructed where the first 20 codons

were maintained equal to the WT (kglg}maxbased).

The first three criteria are the same as proposed in (60) and we used the
synonymous mRNA sequences and Wild Type Luciferase reported therein (see Table
C.2.7 for the list of transcripts and complete sequences used). We simulated 4000 times

the heterologous translation of each transcript in an E. coli cell at 1.07h"1.
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2.2.5 Analysis methods for the stochastic system and parameter definitions

We simulated the simultaneous translation of different mRNA species from E. coli at
different growth rate conditions (0.4, 0.7, 1.07, and 1.6 h'l) using the stochastic
framework and parameters described above. The data to characterize the translation
system was extracted from the simulations during a time interval for which the system
was at steady state (see example for 1.07 h'l in Figure B.2.4 and Figure B.2.5). The
system was assumed to be at steady state when convergence over the simulation time
was reached for: the protein synthesis rate (V},(7s;,)) from all mRNA species, the
number of free ribosomes (R/(7,)) and the number of free tRNA molecules
(tRNA{ (t5im)) of each species i. All simulation results were averaged over 100

repetitions of the same condition.

The protein synthesis rate at steady state (Vp") was obtained by performing a
time-average of the number of proteins produced from the total amount of an mRNA
species k over the steady state time interval defined above. Dividing I/;," by CNX pna (ice.,
number of copies of an mRNA species k in the cell) we obtained the specific protein
synthesis rate at steady state (V) for each mRNA species k, which corresponds to the

protein synthesis rate per mRNA copies of mRNA species k.

The elongation rate at steady state (v¥), which is the average codon elongation
rate of an mRNA species k per ribosome translating it, was computed with the following
expression

k Vzgc'Lk RNA
— m
v = s, 23)
MRNA

where P¥ is the polysome size of mRNA species k and L¥ .y, is the length of the mRNA

species k given by the number of codons between its start and stop codons.

The ribosomal density (p) is a measure of the fractional ribosome occupancy
along an mRNA strand, expressed between 0 and 1. We defined it as in Eq. 1.4 with the

following expression
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k _ PFLg

p (2.4)

 orna
where Ly is the length of the 70S ribosome complex in terms of number of mRNA
codons it occupies, which is assumed to be about 12 codons (87-89). We compute p* for

each mRNA species k as the time-average of its ribosomal density over the steady state

time interval defined above.

The mean distance between ribosomes (Dy) is the average number of nucleotides
that lay in-between the back and the head of consecutive ribosomes, assuming that the
ribosomes are equally spaced along each mRNA sequence at steady state. We computed

it with the following expression

all species/ k k all species;  k k
D. =3 Xk=1 (LmrnaCNmrNA)=Zi=q (P*CNmrna'LR) 25
R — all species k ’ ( ' )
Z:'k=1 (P 'CNmRNA)

where the multiplying factor 3 converts number of codons into number of nucleotides.

The steady state R/ and tRNA/ for each species i were obtained by performing a
time-average over the steady state time interval. We defined the tRNA activity as the
steady state percentage of the total number of molecules of each tRNA species i that is
active in translation events and consequently not available for translation, which is

given by the following expression

tRNA; activity =

tRNAY
cRNAT X100, (2.6)

where the number of active tRNA molecules at steady state is given by tRNA{ =

tRNAT — tRNA/.

Translation time profiles inform about the time a ribosome spends translating
each codon along an mRNA sequence. The time at which a ribosome starts translating
each codon was recorded during the steady state interval defined above for each
ribosome that translated an mRNA copy in our simulated cell. These were subsequently

averaged to generate a translation time profile for each mRNA species separately. The
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translation time profiles of each mRNA species in the system were broken down and the
time intervals for the translation of each codon were grouped by codon species. The

J

codon elongation rate obtained from our stochastic simulations (kg

) of each codon
species j was then computed by averaging all the times spent by a ribosome to translate

codon j and finding its reciprocal.

2.2.6 In-silico pulse-chase

We performed in-silico pulse-chase during translation of each of the seven transcripts by
post-processing the translation time profiles (see section 2.2.5 for the definition of
translation time profiles) of each of the seven Luciferase synonymous transcripts. The
principle of in-silico pulse-chase is very similar to the experimental pulse-chase analysis.
Using the translation time profiles, we counted, at each time point that a ribosome
finished translating the complete mRNA sequence, the number of methionine amino
acids that were incorporated in each complete Luciferase protein and whose methionine
codons were translated during a fixed "labeling time", which in the experiments
corresponds to the time for which the system has labeled methionine. The ribosome
kinetics used in our system was measured in vitro at 20-25°C, whereas in vivo
experiments take place at 37°C. Since the elongation rate depends on the temperature
(58), it is necessary to calibrate our "labeling time" with respect to the typical
experimental labeling time of 10s (90). During this 10s, approximately 100 codons are
translated by a ribosome on a transcript presenting an elongation rate of 10 aa/s (value
estimated in (60) for the translation of Wild Type Luciferase in an E. coli cell). In order
for a ribosome in our system to translate 100 codons it was required a "labeling time" of
232s. The methionine level was normalized by the ratio between the number of
methionines present in the protein sequence (14 in total) and the maximum level of
methionine observed in the experiment. For comparison between the in-silico pulse-
chase and the experiments, the time axis was multiplied by a factor of 23s representing
the ratio between the time that takes for the translation of 100 codons of WT Luciferase

in our simulation and in the experiments.
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2.2.7 Time lags of ribosome occupancy by the tRNAs

ds,bi

The ribosome occupancy time lag (At; ;") represents the time duration for a tRNA

species i to reach one of the four decoding stages (ds) when bound to a ribosome on
codon species j, with which it forms a specific base-pair binding interaction (bi) from
the four possible ones (WC, WB, nc, non). The decoding stages are A-site OFF, A-site
PROOF, P-site ON and E-site OFF as indicated in Figure 2.1 of the section 2.2.1.1. The

ds,bi

ribosome occupancy time lags and their respective number of events (n;;"") were

recorded during the successive translations along an mRNA sequence. We computed the

mean ribosome occupancy time lag per decoding stage and binding interaction with

ds,bi__ds,bi
% Siaefy a0

ds
Npi

Atds = : (2.7)

where N =3, Zing}?’bi is the total number of events per decoding stage and binding

interaction.

We estimated the average time of codon translation per incorporated amino acid
and binding interaction (t2,,,) by dividing the total decoding time per binding
interaction by the number of amino acids that were successfully incorporated in the
protein sequence during multiple translations, which is represented by the total number

of E-site OFF (or equivalently P-site ON) events

— stﬂgf (2 8)

bi

t =

codon E—-OFF , yyE-OFF , ;yE-OFF"*
Nywc™ +Nwp™ " +Nnc

2.3 Results and Discussion

2.3.1 General translation properties of the cell in function of growth rate

We studied the distribution of the protein synthesis rate (V,) for each growth rate (Figure
2.2a). The mean 1, among the mRNA species is observed to increase with the growth
rate, along with the increase in translation resources (see Table C.2.5). Interestingly, the

mean elongation rate (v,.) (Eq. 2.3 in section 2.2.5) is observed first to increase and then
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decrease with growth rate, which is accompanied by a respective decrease and increase
in the mean ribosomal density (p) (Eq. 2.4 in section 2.2.5), contrary to the estimations
in (58) where it increases with growth rate (Figure 2b). Despite this difference, we
found good agreement between the mean distance between ribosomes estimated in (58)
and our computed values (Eq. 2.5 in section 2.2.5) for each growth rate using the p
values of each mRNA species from our simulations and assuming the ribosome has the
size of one nucleotide L, = 0 (Figure B.2.6a). However, the real length of the ribosome
covers about 12 codons, which is accounted for in our simulations, and performing the
computation with the correct ribosome length shows that the values from the literature
overestimate the true mean distance between ribosomes. The effect observed above
results directly from the inverse changes in mean p given that the mean tRNA activity,
i.e., the fraction of tRNA species bound to ribosomes (Eqg. 2.6 in section 2.2.5), of all tRNA
species is similar for the different growth rates (Figure B.2.6c) and the average of the
fold changes on abundance from all tRNA species at each growth rate relative to 0.4h1 is
fairly constant (Figure B.2.6d) and suggests no major changes in the ratio between

cognate and competitor tRNA concentrations that could affect v,..

Interestingly, with the increase in growth rate, the I}, distribution shifts from having one
peak to a bimodal distribution and back again to having just one peak, suggesting a
systemic change in the control of the synthesis rate. Previous computational and
experimental studies have shown for different organisms that translation of most mRNA
species is initiation or elongation limited (83, 84). In particular, computational studies
have shown that the specific protein synthesis rate (V;), i.e., the rate of proteins produced
per number of copies of an mRNA species (see section 2.2.5), is limited by translation
initiation for low values of p, by translation termination for high values of p, and reaches
a maximum for moderate values of p for which translation elongation becomes limiting
(42,51, 57). We observe that the cells simulated at growth rates 0.4h'! and 1.6 h'1 have a
higher number of mRNA species that cluster in a more stable region of the V; curve with
higher p and higher initiation rate (k; - R') indicating that these are mostly elongation
limited, whereas the cells at growth rates 0.7h-! and 1.07h'! have their mRNA species
clustered into two groups that correlate with the V,, bimodal distributions: one group
with lower p for which translation is mostly initiation limited and a second group with

higher p values for which translation is mostly elongation limited (Figure 2.2c-d). A
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decrease bigger than 20% in the ratio between R/ and the total number of mRNA copies
at 0.7h'1 and 1.07h'! with respect to the one at 0.4h'! suggests a limitation in free
ribosome resources (Figure B.2.6b). Thus, it appears that under low and high growth
rates the system optimizes protein translation with higher V; for the mRNA species,
whereas for intermediate growth rates, translation initiation regulates protein
synthesis. Consequently, at growth rates 0.4h"1 and 1.6h-! there is a higher proportion of
mRNA species limited by translation elongation, limitation that corresponds to more
ribosome blocking (higher p) due to queuing of ribosomes downstream the sequences
and lower v,, so that the overall mean v, of the entire mRNA pool decreases (Figure

2.2b).

Although these results were obtained from simulations considering a
homogeneous mRNA pool across mRNA conditions (see section A.2.2), they are valid for
any choice on pool composition as long as the total number of ribosomes and mRNAs in
the system remains as parameterized here. This is consequence of the calibration
performed on the initiation rates to force the cell at each growth rate to have 80% of its
ribosomes active in translation. This leads to a steady state where for each growth
condition the level of free ribosomes will always consist of the remaining 20%, which is
independent of the individual ribosome profiles of each sequence. If the ratio between
free ribosomes and total number of mRNAs is maintained independently of the mRNA
pools used, the shifts on average ribosomal densities will be observed since they
constitute a direct effect of the competition among translating mRNAs for free
ribosomes, which directly influences the level of ribosome crowding along the mRNA

sequences.

2.3.2 Determinants of elongation rate

We investigate further the determinants of translation elongation rate by focusing on
the analysis of the cell at growth rate 1.07 h-1 (highest mean v, and moderate mean p)
and the production of a heterologous protein. The results discussed below are similar
for the four growth rates and thus independent of the changes in p, unless otherwise

stated.
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Figure 2.2 (a) Distribution of protein synthesis rate (V,,) for the different growth rates. Red bar
and number represent the mean V,, among all mRNA species. (b) Elongation rate (v,) for each
mRNA species in function of the ribosomal density (p) for the different growth rates. The red
star and text represent the mean (p,v,) from all the mRNA species in the cell. Vertical and
horizontal error bars represent standard deviation from 100 repeated simulations. (c-d)
Specific protein synthesis rate (V) for each mRNA species in function of the ribosomal density
(p) (c) and in function of the initiation rate (k; - Rf) (d) for the different growth rates. Green and
blue color code separates the data points that have a V,, below or above the mean V,, among all

mRNA species, respectively. Vertical and horizontal error bars represent standard deviation
from 100 repeated simulations.

In order to qualitatively validate the model and its parameters, we separately
simulate the translation of four Luciferase transcripts in an E. coli cell growing at 1.07 h
1, we post-process the translation time profiles of the transcripts (see sections 2.2.5 and
2.2.6) and we compare our results with the ones from pulse-chase experiments
performed by Spencer and colleagues (60). For the simulations we use the same
Luciferase transcripts as in (60), which consist of a wild type (WT) Luciferase transcript
and three other sequences whose designs follow different criteria based on synonymous

codon substitution: codons with existing WC decoding tRNA isoacceptors combined
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with high tRNA gene copy number (WC & tRNA genes), codons with the highest genome
codon usage frequency (CU based), and codons without WC decoding tRNA isoacceptors
(WB based) (criteria detail in section 2.2.4.2 and mRNA sequences in Table C.2.7). The
mean time-evolution curves of methionine level from our in-silico pulse-chase performed
on the WT, WC & tRNA genes and CU based transcripts (no experimental curve available
for WB based) show good agreement with the experimental curves from (60) (Figure
2.3a). The experimental curves obtained at 37°C and hence with faster elongation rate
were calibrated for comparison with our system at 20-25°C by multiplying the time axis
by a factor of 23s (see section 2.2.6). The deviations between the simulated (sim) and
experimental curves are accounted by the distribution of the simulated curves that

generated our mean time-evolution curves of methionine level.
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Figure 2.3 (a) Comparison between simulated (sim) and experimental time-evolution curves of
methionine level obtained from experiments in (60) for WT Luciferase and for two of its
synonymous transcripts (WC & tRNA genes and CU based). Bounds represent the 25t and 75t
quartile of the distribution from the in-silico pulse-chase curves. Time axis from the
experimental data points was adjusted with the same calibration factor used for the methionine
"labeling time" (see section 2.2.6). (b) In-silico pulse-chase performed during the translation of
seven heterologous transcripts yielding the same amino acid sequence based on different
synonymous codon substitution criteria in E. coli cells at 1.07 h'L. The time-evolution curves of
methionine level result from the average of 4000 repeated simulations. The curves are plotted
with the bounds representing the 25t and 75t quartile of their sample distribution in Figure
B.2.7.

Three other Luciferase transcripts were designed where codons were replaced

by their synonyms based on existing WC decoding tRNA isoacceptors (WC based), based
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on the highest cognate tRNA concentration (TC based), and based on the highest codon

elongation rate (kg¢f" based). For the design of the k" based transcript we computed
the codon elongation rate (kgff) of each codon species j with Eq. 2.2, using the steady

state tRNA concentrations obtained after simulating an E. coli cell at 1.07 h'1. The WC &
tRNA genes and kg ;¥ based transcripts present the fastest elongation rates (Figure 2.3b;
for translation time profiles see Figure B.2.8) and highest protein synthesis rates when
compared to the WT transcript (28% and 28.6%, respectively, see Figure B.2.9a), with

keyf* based being more optimal. These two transcripts differ only in the use of two

codon species (one encoding for Glutamine and the other for Serine) that, combined,
appear in 43 positions along the 585-codon sequence. The similarity between these two
transcripts is explained by the previously observed correlation between tRNA
abundance and its gene copy number (59, 91, 92), and the fact that k¢ of a codon is
maximized by high concentration of cognate WC tRNA and low competition. Only the
WB based transcript leads to a decrease in protein synthesis (about 20% less translated
protein, see Figure B.2.9a) relative to the WT transcript. We tested a transcript where
the 20 first codons were not changed and confirmed that the different pulse-chase

curves between WT and k5" based are a result of changes on elongation rate rather

than initiation (Figure B.2.9b). Nevertheless, we note here that even though a transcript
is optimized for elongation by synonymous codon substitution with the purpose of
increasing protein production levels, the translation initiation rate, which is dictated by
the beginning of the transcript's sequence and the steady state R/ of the host cell, has a
major impact on the gain in protein production with respect to the WT in its rate
limiting regime (as seen above with the specific protein synthesis rate (1;)) and is

further discussed in Figure B.2.9b-d.

These findings are supported by sensitivity analysis of the ribosome kinetic
parameters with respect to v,. After performing an initial screening on the 25 kinetic
rate constants to identify the insignificant ones (Figure B.2.10), we use a Monte-Carlo
based numerical procedure for variance-based global sensitivity analysis (93) and
determine the ribosome kinetic rate constants that influence the most the value of v,
observed for an mRNA transcript (Figure 2.4a) (results are valid for any mRNA species

as ribosomal kinetic pathway is the same for all codons). The analysis shows no
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dominant rate constants (all sensitivity indices < 0.4), but their order of influence
ranked by their main effects (Sy,) indicates that k_;, k3 and k¥5 are the most
influential rate constants, which indicates that there are two decoding stages of the
ribosome that determine v,: (i) rejection of competitor tRNA (k_; and k™5) during
initial selection, and (ii) accommodation of cognate WB tRNAs (k¥?). Interestingly,

although the influence of k, on v, is mostly due to interaction effects (STki)’ we observe

that the nominal value (obtained from experiments) of k, seems to be optimized to
yield the highest v, (inset in Figure 2.4a). Analysis of the system for the parameters at
37°C and for the in vivo parameters deduced from in vitro ones (94), showed a
redistribution of the rate limiting steps (Figure B.2.11a-b), where cognate binding
interaction (k¥?) becomes more important than the overall tRNA competition (k_; and

™). This finding supports the discussions on tRNA competition as observed at in vitro
conditions presenting an inhibitory effect on translation elongation that would decrease
translation efficiency if maintained at in vivo conditions (94, 95). The fact that the ratio
between each ribosome Kkinetic rate constant at 37°C and at 20°C is approximately the
same (except for the initial tRNA binding rate constant and at least until the tRNA
accommodation for which we have values to compare) explains why our results at 20-
25°C match so well the experiments performed at 37°C (60). We note here that when we
combine the ribosome Kkinetics at 20-25°C with the parameters of the system at 37°C
(such as total number of ribosomes, total number of tRNAs and total number of mRNAs)
we also perform a scaling of the initiation rate to bring the translation process to the
conditions at 37°C by enforcing 80% ribosomes to be active in translation. If in this
system, the ribosome kinetics were to be replaced by a faster kinetics, such as the one at
37°C, the resulting effect would be a faster elongation rate due to the ribosomes faster
movement along the sequence and a faster update of the number of free ribosomes. This
is so because elongation rate at 37°C is expected to increase, and such increase would
happen uniformly for all sequences as the ribosome kinetics is assumed to be equal for
all codons. However, if the system was to be submitted to the same scaling condition on
initiation that enforces an 80% ribosome activity, the steady state reached for this

system would be the same as the one obtained with a ribosome kinetics at 20°C.
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These results support the optimality of kgi¥* based transcript design as less
competition and higher rate of accommodation for cognate WB improves k.r; values.
Furthermore, the high correlation between the codon elongation rates obtained from our
stochastic simulations (kg;,.,) (see translation time profiles definition in section 2.2.5)
and from the deterministic model (k.sf) (Figure 2.4b) indicates that the latter is a high
accuracy predictor of codon elongation rate of slow codons (i.e., codons limiting
translation). Stochastic queuing effects that are dependent on the mRNA sequence
downstream introduce variability on the measured k., for fast codons and bias the
codon elongation rate towards values that are lower than the ones expected in a

theoretical system without ribosome queuing interference.
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Figure 2.4 (a) Main and total effects (Ski, STki) on the value of v, due to a change in ribosome
rate constant k;. Inset: Changes in v, in function of the changes on k, for a range of two orders
of magnitude below and above its nominal value (star). (b) Codon elongation rate obtained from
stochastic simulations (kg¢cr) vs. the codon elongation rate constant (k.rs) (open circles). Each
data point corresponds to one of the 61 codons taking part in the translation elongation. The
linear regression line is represented by continuous line. The Pearson correlation coefficient (r)
and p-value are indicated. The dashed line is the one-to-one function for comparison. The signal
to noise ratio from kg, corresponding to each codon is represented by the dots and remains
higher than 1 for all codons, starting to stabilize for the codons with higher elongation rates.

2.3.3 Key factors on tRNA activity

The amount of tRNA available for translation used to estimate k. dictates both the

cognate and competitor tRNA concentrations for each codon, and directly depends on
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the amount of tRNA that is active in translation, i.e., occupying the ribosomes. We

estimate the mean ribosome occupancy time lag (At

) and the total number of events
(NZ5) per decoding stage (ds) and binding interaction (bi) using Eq. 2.7 for the WT
Luciferase transcript in an E. coli cell growing at 1.07 h'L. The decoding stages are A-site
OFF, A-site PROOF, P-site ON, and E-site OFF (see Figure 2.1 and section 2.2.7), and the
possible binding interactions are WC, WB, nc, and non. The statistics obtained here are
valid for any mRNA sequence and growth rate. Higher ribosomal densities increase both
Ath7ON and Atf7°FF because of slower translocation of the ribosome, but the
proportions among the events remain the same (results not shown). Note that At
values result directly from the intrinsic ribosome kinetics and, as such, they are very
similar for all the different tRNA-codon interactions, except for P-site ON and E-site OFF
decoding stages where the ribosome translocation time depends on the ribosome
queuing downstream the mRNA sequence (Figure B.2.12), whereas the number of
events depends on the codon species and the free tRNA abundances (Figure B.2.13).
Most of the tRNAs involved in cognate binding interactions (68.74% and 40.35% for WC
and WB, respectively) are accepted for the peptidyl bond formation and occupy the
ribosome until its release at the E-site after a long Atf,:°FF or AtE;°FF has occurred
(Table 2.1). Thus, tRNA species with higher cognate-based mRNA codon usage frequency

IBmCUtcgﬂzi (see Eq. 2.1) have also higher frequency of events that result in E-site
release, and subsequently are active in translation in higher amounts as shown by the
correlation found in Figure 2.5. However, there is a difference of about 28% between WB
and WC binding interactions that will not reach decoding stage E-site OFF and will
instead end up with the tRNA being rejected at proofreading stage (A-site PROOF),
which is a much faster event than for E-site OFF. Deviation from the regression line
corresponds to cases for which the proportion of IBmCUg/,'Qf,AL. is very low, and
IBmCUt"'}Q,‘?,Ai is not high enough to compensate for the number of tRNA molecules that
could be active if there was high IBmCU/yg,, instead of IBmCUjgy 4, Such are the cases
of the outliers Leu3, Pro3, Val2A and Val2B in Figure 2.5 (see proportion of IBmCUXKf,Ai
and IBmCUg’Kf,Ai in Figure B.2.14). Thrl deviates from the regression line because it is
the species with the lowest concentration in the cell and with an abundant isoacceptor

(Thr3) (Figure B.2.15). Therefore, the probability of Thrl to bind with the ribosome is
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reduced and hence its activity is not representative of the IBmCU;Zf’f. Because a small

number of near-cognate binding interactions can reach A-site PROOF and E-site OFF
decoding stages (1.08% and 0.02%, respectively), IBmCU gy, can be high enough such
that the number of A-site PROOF or E-site OFF events can compensate for a low
IBmCUZyy,. or a high proportion of IBmCU{zy 4, with respect to IBmCU{gf,,, and hence

contribute to a higher tRNA activity (which is the case of Vall in Figure B.2.14).

Table 2.1 Statistics on mean ribosome occupancy time lags and total number of events per
decoding stage and binding type.

wcC WB nc non

At)OFF %107 5) 0.36 (0.006) 0.48 (0.009) 3.9 (0.009) 1.2 (0.0008)
N4 OFF 70961 86665 4651313 15757894
% * 30.92 318 98.9 100
Aty PROOF 5] 0.16 (0.003) 0.51 (0.01) 0.31 (0.001) -
Ny; PROOF 790 75871 50877 ;
% * 0.34 27.85 1.08 -
Atp; N [s] 0.70 (0.01) 1.00 (0.02) 0.83 (0.002) .
Aty %FF [s] 3.09 (0.05) 3.41 (0.07) 3.29 (0.008) -
Ny OV/EZOFF 157731 109924 843 )
% * 68.74 40.35 0.02 -

thi  on [s/aa] 1.82 1.54 0.74 0.69

* Fraction of bi events (WC, WB, nc, non) per decoding stage (A-site OFF, A-site PROOF and
P-site ON/E-site OFF).
(values) are standard deviations.

From N/ presented in Table 2.1 we compute a total of 2.4% of cognate binding events
among all possible binding events, and only 1.3% of these 2.4% resulted in a complete
codon translation (reaching P-site ON, thus leaving the A-site free for the binding of a
new tRNA). The larger bulk of translation binding events consists of interactions with
competitor tRNAs (97.6%), which supports tRNA competition as a determinant of
elongation rate. We compute the average time of codon translation per incorporated
amino acid and per binding interaction (t2,,,,) using Eq. 2.8. The fact that t7°%  is of the
same order of magnitude as t]%;,, (Table 2.1) implies that non-cognate binding

interactions cannot be dismissed on the basis of these being fast events, contrary to the

assumption made by Fluitt and colleagues (64), which is used in recent translation
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modeling attempts (67, 68), where these are ignored based on their fast interactions
and all competition in the system is resumed to near-cognate binding interactions. In
fact, although the total time spent per non-cognate binding interaction is small
(At 0FF ~ 1.2x1072s), one needs to take into account that these binding events have a
very high frequency of occurrence. If we compute the ratio between the total time spent

per near-cognate interaction and non-cognate interaction

A_tA—OFF,NA—OFF+A_tA—PROOF_NA—PROOF+A_tE—OFF_NE—OFF i i
( e 1o AT 1o e ) we observed that this value is very
Atiion " *Nuon

close to 1, implying that non-cognate events are as important as near-cognate ones.
Nevertheless, despite the high number of near-cognate binding events, we estimate that
near-cognate mis-incorporation occurs only once for each 318 cognate WC and WB
complete codon translations, resulting in an error frequency of about 3x10-3, which is in
the range of the E. coli in vivo measurements (55, 56, 96-99). These results underline the
significance of competition in the dynamics of translation elongation and they remain
valid for in vivo conditions (Figure B.2.11) despite the observed decrease of the effect of
tRNA competition in translation and subsequent decrease in error frequency of a factor

of 3.
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Figure 2.5 Number of tRNA molecules of species i active in translation (tRNA{) in function of its

respective cognate interaction-based mRNA codon usage frequency (IBmCUfgl‘gZi). The Pearson

correlation coefficient () and the p-value are indicated. Correlation outliers are underlined in
the legend.
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2.3.4 Global effects of amino acid starvation and surplus in the cell

Given the role that tRNA availability plays in elongation rate, an interesting question is
how the surplus or starvation of certain amino acids will globally affect elongation rate
in the cell. To answer this question, we simulate 20 times the cell at growth rate 1.07 h-!
and in each simulation, we increase or decrease the concentration of each tRNA
isoacceptors for the same amino acid by 50% of their literature values at the given
growth rate. Analysis of the relative deviation of the average elongation rate from all
mRNA species with respect to the standard case at 1.07 h'l shows three regimes
according to the effect of the increase/decrease of the amino acid concentrations on the
average elongation rate in the cell (Figure 2.6). Similar results were obtained when the
concentrations where changed by 20% and 50% for each tRNA species separately
(Figure B.2.16) and analysis of this results revealed the mechanisms behind the
observed effects (details in Figure B.2.17). The amino acids Phe, His, Met, Asn, Pro, and
Gln in regime (i) generally limit translation in the cell under starvation conditions and
improve elongation rates under surplus. These amino acids have isoacceptor tRNAs that
are among the ones whose cognate (specially WB type) codons have very slow codon
elongation rates and present a low ratio between codon elongation rate and cognate
codon mCU on the mRNA sequences in the cell (Figures B.2.18 and B.2.19). On the other
hand, the amino acids Gly, Glu, and Arg in regime (ii) generally limit translation in the
cell under surplus by increasing the competition on their near- and non-cognate codons,
while improving translation under starvation conditions due to diminished competition
pressure. These amino acids have tRNA isoacceptors that are among the species in the
cell that are present in highest abundances (Figure B.2.15) and, as a consequence, their
cognate codons have the highest codon elongation rates (Figure B.2.19). In the case of
Leu, the negative effect on elongation rate due to the surplus of its tRNA isoacceptor
Leul still prevails, however, the combined effect from all its isoacceptors under
starvation is characteristic of group (iii). The amino acids in regime (iii) are the ones
that have an effect similar to (ii) but with smaller extent under surplus due to the
increase in competition resulting from their combined isoacceptor high abundances or
high IBmCUjgya, + IBmCUgN,, however, under starvation their cognate codon

cogn

elongation rates are negatively affected by the high IBmCU gy, demanding free tRNA.
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Figure 2.6 Each marker represents the relative change of mean elongation rate of the cell’s
transcriptome upon starvation (y-axis) or surplus (x-axis) of the respective amino acid with
respect to the reference state (1.07h-1 growth rate). A simulation was performed for each amino
acid surplus and starvation change to be compared to the reference state. Along the x-axis, the
values represent the relative deviation of the average elongation rate from all mRNA species in
the cell upon combined 50% increase of the abundance of all tRNA isoacceptors per amino acid
type. Along the y-axis, the values represent the relative deviation of the average elongation rate
from all mRNA species in the cell upon one-at-a-time 50% decrease of the abundance of all
tRNA isoacceptors per amino acid type. One-to-one line (dashed) plotted for comparison.

Overall, starvation of a tRNA or an amino acid has a more pronounced effect on
the cell's translation behavior because it acts upon the rate limiting codons.
Nevertheless, the global effects of competition on translation elongation due to transient
changes in nutrient supply introduce in the cell another level of regulation of the
patterns of protein synthesis as a response to stress. Our stochastic framework has the
potential to study the surplus/starvation effect of changes in the amount of tRNA
competition on the elongation of the different mRNA species in detail. For instance, the
most recent stochastic approach for modeling translation (68), is not able to observe the
effect on mean elongation rate due to diminished competition pressure for group (ii)
(amino acids Gly, Glu, and Arg), concluding instead that all types of amino acid

starvation only lead to a decrease of the mean elongation rate in the cell.
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2.4 Conclusion

In this work, we used a stochastic framework to model the translation process based on
the available ribosome kinetics that describes tRNA competition while discriminating
between cognate Watson-Crick and wobble interactions, and we simulated the
simultaneous translation of a representative pool of Escherichia coli mRNA sequences
under a range of different growth rates (0.4, 0.7, 1.07, and 1.6 h'1) with parameters
obtained from literature. The variation of the mean elongation rate from all mRNA
species observed with the change in cell growth rate resulted from a systems response
to an alteration of the ratio between free ribosomal resources and the number of mRNA
copies that required those resources. Control of translation is observed to shift between
initiation and elongation, which is characterized by a change in the ribosomal densities,
and thus fine-tunes the protein synthesis of the mRNA species in the cell. We do not
observe an increase in the mean elongation rate with growth rate as estimated in (58),
from where the data was collected. The way mean elongation rate is usually estimated
(58, 100) takes only into account the protein synthesis and the number of free
ribosomes, which both increase with growth rate (not necessarily in a proportional
way), and not the changes that can occur in ribosomal density and that affect elongation
rate. Our results are consistent with what is expected from a system where codon
elongation rate is determined by the ribosome kinetics and the free tRNA
concentrations, and where elongation rate is determined by the combined effect of the
multiple codon elongation rates and the ribosomal density along a sequence, which is
also influenced by the initiation rate. For a system where tRNA competition effects are
not observed to change radically with growth rate and the mRNA pool is qualitatively
constant (such as here, despite the change in tRNA levels), the mRNA species being
translated will present maximum elongation rate under initiation limiting conditions
and lower elongation rate under elongation limiting conditions (if the ribosomal density
is such that high ribosome queuing interaction impacts negatively elongation). These
results suggest that the actual mean elongation rate is thus no longer well represented
by just the amount of protein synthesis in the system, as for some mRNA species the
highest protein synthesis is achieved by crowding the sequence with ribosomes, which
may result in lower elongation rate. This implies that the actual elongation rate of some

mRNA species may remain constant under different growth rates, whereas for others it
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may decrease as a result of the level of ribosome crowding. This is consistent with the
observation of an approximately constant elongation rate for lacZ for increasing growth

rates (101).

Our sensitivity analysis results showed that the level of tRNA competition and
the type of cognate binding interaction (WC vs. WB) determine elongation rate. The
design of heterologous transcripts based on optimizing the sequence with synonymous
codons that minimize tRNA competition and maximize the WC binding interactions with
their cognate tRNAs was shown to lead to higher protein production. However, there is a
trade-off between protein production level and elongation rate due to ribosome
crowding effects. We proposed an equation to assist the design of optimized mRNA
sequences that computes the codon elongation rate (k.sf) of a codon given that the
amount of free tRNA species in the host organism is known. Nevertheless, since this
equation will only help to design a sequence with codons that have high codon
elongation rates, final protein specific activity will need to be tested, as it has been
demonstrated that co-translational folding of proteins during the translation of slow
codons is essential for correctly creating specific domains that determine the protein

activity (26-28).

The analysis of our system showed that non-cognate binding interactions do in
fact contribute to the competition level as much as the near-cognate ones do, contrary to
the assumption made by Fluitt and colleagues (64) that these can be ignored based on
their fast interactions and thus assuming that all competition in the system is resumed
to near-cognate binding interactions. Furthermore, the existing stochastic models (67,
68) of translation use the latter results in order to estimate a factor for the tRNA
competition, which is fixed per codon and is integrated in the codon elongation. This
competition factor is estimated using the total amount for each tRNA species in the cell
instead of the free transient tRNA amount that can be obtained at each step of the
simulation, and as a consequence the effect of competition from changes in tRNA
availability is no longer representative of the actual state of the cell. Because we
accounted for these, we observed in our surplus/starvation studies the effect of changes

in the amount of tRNA competition on the elongation of the different mRNA species.
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Similar studies performed in (68) failed to observe this effect, concluding that all types

of amino acid starvation only lead to a decrease of the mean elongation rate in the cell.

Furthermore, the results presented here, which were obtained from a ribosome
kinetics at 20-25°C, were validated for higher temperature of 37°C, which is more
consistent with in vivo conditions, and for the deduced in vivo kinetic rates obtained in
(94). Analysis of the system for the parameters at 37°C and for the in vivo parameters
deduced from in vitro ones (94), were found to support a translation model for which
tRNA competition, although still an important factor, has a lower impact in translation

elongation rate then the type of cognate decoding (94, 95).

In conclusion, our stochastic framework has proven to be effective in the analysis
of a complex system such as translation. Literature describing the parameters for
translation resources and specifically the ribosome kinetics is widely available for E. coli.
The use of parameters and data pertaining to a specific organism establishes the
framework for the study and modeling of systems with a number of components that
correspond to the size of a biologically meaningful translation system, not needing to
rely in the use of simplified parameter regimes. Furthermore, since the ribosome
decoding center has been shown to be highly conserved among species during evolution
(37) and similarities have been reported in the function of the different elongation
factors in both bacteria and eukaryotes (102), the results observed in this work remain
therefore valid for other organisms. This framework is a valuable tool for the systematic
study of translation. Adding information on ribosome or polysome profiling
experiments, as well as mRNA sequencing data for the specific conditions under study
when available, can be valuable to the systems-level analysis of translation in the cell.
This framework could thus be used for future work focused on: (i) exploring particular
patterns of translation in certain mRNA sequences that could then be clustered by
functionality and by codon frequency; (ii) studying the impact of changing the sequence
of certain endogenous genes on the translation of the other mRNA sequences in the cell;
(iii) studying the impact of expressing heterologous genes on the translation of other

mRNA sequences.
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Chapter 3: Pipeline for GEM processing and integration of
data and thermodynamic parameters

3.1 Introduction

3.1.1 Genome Scale Metabolic Networks

GEnome-scale metabolic models (GEMs) have been extensively used in the field of
Systems Biology for understanding the metabolic capabilities of organisms under
different conditions (103-105). GEMs consist of a list of biochemical reactions
representing the cellular metabolism of a given organism. These reactions form
networks where the nodes are chemical compounds that can be either substrates,
products or cofactors of said reactions. The rate at which these chemical

transformations take place is represented by the flux of each reaction in the network.

The GEM of an organism is initially reconstructed by collecting all the available
information on the metabolic genes of the organism and their respective gene-protein-
reaction relationships (GPRs), which are annotated into the model structure and can be
used for the association with transcriptomics/proteomics data. Gaps in the knowledge
of the network are "solved" with further literature and/or gap-filling algorithms, whose
purpose is to infer missing reactions by testing the ability of the network to perform
cell/tissue specific metabolic tasks, i.e., ensuring that pathways for the production of
certain compounds are active given the uptake of their precursors or main carbon
sources. For the analysis, a GEM can be represented using a mathematical formulation
where the reactions and respective participating metabolites are allocated into a matrix
(the stoichiometric matrix) (Figure 3.1). This matrix has a column for each reaction in
the network and a row for each metabolite. Each element in the matrix (the
stoichiometric coefficient) represents the number of molecules of a given metabolite
that are consumed (negative sign) or produced (positive sign) in each reaction. The zero
elements in the matrix represent metabolites and reactions that are not connected. The
metabolic reactions represented in the stoichiometric matrix are mass and energy

balanced.
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Figure 3.1 Constraint based modeling (CBM) formulation. A metabolic network is converted into
a mathematical formulation that allows for the integration of constraints that limit the space of
feasible flux solutions, thus constraining the metabolic phenotypes that are relevant for the
physiological conditions under study.

When GEMs are reformulated into the aforementioned mathematical formalism
they can become useful for the prediction of relevant metabolic pathways for certain
physiological conditions. Their GPR annotation can be used for the study of gene to
reaction essentiality studies, where the knockout of a single reaction is evaluated in the
context of cell survival. Synthetic lethality studies can also be performed through the
double knockout of reactions in the network (106, 107). GEMs can also be used for in-
silico metabolic engineering purposes. The design of strains to perform some desired
metabolic task, such as the production of a byproduct in high quantities, is often useful
for industrial applications. Useful information and predictions for strain design can be
obtained through studies on reaction knockout, knock in of reactions or pathways
integrated from foreign organisms, and perturbations on enzyme expression (108-113).
However, predictability from GEMs on strain design based uniquely on these approaches
can be misleading and not fully representative of the behavior of the strain in vivo. Here,
approaches that use kinetic modeling based on GEMs, where metabolic enzyme

regulation can be studied, are more valuable as they provide a quantification of the
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organism behavior to perturbations on kinetic parameters and enzyme concentrations

(114).

3.1.2 Constraint-based Modeling (CBM)

Constraint-base modeling (CBM) can be applied to a GEM mathematical formulation
with the purpose of constraining the feasible space of solutions of the fluxes in the
network instead of focusing on a unique solution. This allows the account of multiple
cellular processes that may happen under different physiological conditions pertaining
to the feasible solution space as constrained by the topology of the network and by the
assumption of steady state for all the mass balances in the network. Lower and upper
bounds for the fluxes are applied as constraints to set the initial allowable space of
solutions, which can then be further constrained to represent the physiological
conditions of the cellular process under study (Figure 3.1) by integrating available flux
measurements (uptake/secretion rates and/or intracellular fluxes). The feasible
solution space can be further constrained by integrating reaction thermodynamic
constraints and intracellular concentration measurements for the metabolites in the

network.

The COnstraint-Based Reconstruction and Analysis (COBRA) toolbox is a
MATLAB based package that has been developed with the purpose of disseminating
methods for the reconstruction of GEMs and for their analysis, such as flux balance
analysis, gene essentiality analysis, minimization of metabolic adjustment, Monte Carlo
sampling, and gap filling, among others (115, 116). Flux balance analysis (FBA) is a
method capable of simulating the metabolism in GEMs upon constraining the space with
physiological data that uses linear programming to compute a solution for the fluxes
that fulfills the steady state condition S+ ¥ = 0, where § is the stoichiometric matrix and
v is the vector of fluxes for each reaction in the network. FBA can produce multiple
feasible solutions for the steady state condition. In order to select a solution (or set of
solutions) that is relevant for the physiology being studied, it is common practice to add
an objective function to the mathematical problem being solved that represents the
proportion of which a set of metabolites are expected to be produced. Since the first

GEMs, and hence, the first metabolic engineering analysis performed, were constructed
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around organisms such as bacteria, parasites and some eukaryotes, the most used
metabolic objective is the optimization of cellular growth. Growth requires the
production of lipids, proteins, nucleotides and other essential compounds in specific
amounts that fulfill the individual growth of an organism given the conditions
determining their cellular uptake and secretion rates. This metabolic objective is
formulated as a reaction, the biomass reaction, where the stoichiometric coefficients of
each metabolite present in the reaction represent their proportions necessary to attain
the growth requirement. Other metabolic objectives can also be formulated depending
on the problem and the physiology under study, such as energy yield (ATP) and
reductive power (NADPH/NADP+).

3.1.3 GEMs unification and annotation standardization

GEMs have been used for studying variability across different strains of an organism
(117), host-pathogen interactions (118-120), gut microbiome interactions (121, 122),
and in the study of mammalian/human metabolic diseases, such as non-alcoholic fatty
liver disease (6, 123), diabetes (124) and cancer (7-9, 18, 125, 126).

The number of available genome scale metabolic reconstructions has seen a fast
growth in the recent years for both prokaryotic and eukaryotic organisms, such as
Saccharomyces cerevisiae, Pseudomonas stutzeri, Salmonella typhimurium,
Staphylococcus aureus, Escherichia coli , Mycobacterium tuberculosis, Bacillus subtilis,
Toxoplasma gondii, Plasmodium falciparum (118, 127-134), among many others.
Following the same trend, genome scale models of human metabolism have been

reconstructed and continuously updated on their reaction complexity:

- Recon 1(10) had its initial network derived from combining genome and enzyme
data from different database sources, such as the Kyoto Encyclopedia of Genes

and Genomes (KEGG) (135, 136) and EntrezGene (136, 137);

- The Edinburgh human metabolic network (EHMN) (138) was reconstructed from

human enzyme gene information from different databases;
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- HepatoNetl (139) was reconstructed from aggregating the enzymatic reactions
in KEGG and Recon 1, and manually curated to keep only a subnetwork for which

there is biochemical evidence off its presence in hepatocytes;

- The Human Metabolic Reaction database (HMR) (12) was initially reconstructed
for Adipocyte cell type by merging HepatoNetl and pathway information from
Reactome (140), which was then combined with Recon 1 and EHMN. Later it was

expanded to HMR2 by incorporating further complex lipid metabolism (6);

- Recon 2 version 4 is currently the most updated version of Recon 1 (11),
assembled by combining information from HepatoNetl and EHMN and a

literature based search on transport reactions.

Despite the improvements in the generation of high-quality reconstructions with
the design of protocols to guide the procedure (141), the development of resources for
building reconstructions, such as the ModelSEED (142) and The RAVEN toolbox (143),
as well as the introduction of the Systems Biology Markup Language (SBML) format,
which has contributed to make these models transferable (144), it remains difficult to
compare reactions and compounds in GEMs (sometimes even of the same organism)
when these are produced by different labs and through the use of different database
resources during their reconstruction. Although recommended in the proposed
workflow for reconstructions, not all reconstructed GEMs have their genes, reactions

and compounds annotated and linked to external databases.

Poorly annotated GEMs bring limitations to their use, which require extensive
work from the user of these different metabolic networks to match compounds and
reactions. Firstly, failure to properly match metabolites and reactions across GEMs
renders their comparison difficult, especially when the user is interested in
understanding the subtlety of the network differences between GEMs of the same
organism. Secondly, poorly annotated GEMs also limit the automatization of the process
of integrating fluxomics and metabolomics data, and reaction thermodynamics
parameters into the models, which are needed for constraint-based analysis.
Inconsistencies or common errors found in GEMs, which are worsened by their lack of

proper annotation, are:
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- Erroneous naming of metabolites and reactions;

- Reaction and compound name format tailored for the particular use of the GEM
at the time it was created. Examples are the use of in-house identifiers or the

appending of chemical formulas and other identifiers to the names;

- Use of abbreviations that do not match accepted or listed compound and/or

reaction names or identifiers

The problems mentioned above render automatized database searches difficult
in order to remap the GEMs to database identifiers that assist with data and parameter
integration. There has been an effort in creating model repositories that hold collections
of GEMs with similar format and annotated through links with known databases. Such is
the case of ModelSEED and BiGG Models (145), which at the time of the latest
publication contained more than 75 annotated GEMs. However, these repository offers
only a limited selection of consistently annotated GEMs and not a solution for
remapping new problematic GEMs. Recently, BIGG has made an effort to re-annotate

older models and provide them in SBML format.

There have been some attempts of unifying metabolite and reaction
nomenclature with the purpose of facilitating GEM unification and providing assistance
in reconstruction procedures. All these attempts use a similar approach for resolving
metabolites and reactions. Briefly, they merge all compound and reaction information
from selected databases through an iterative procedure where metabolites are matched
primarily based on structural information (SMILES, InChl, etc...) and secondly by name
and formula when structural information is not available. Reactions are resolved by
matching participating substrates and products. Metabolites that have not been resolved
are later on tested for matching in the context of reactions. BKM-react (146) resolved
20416 metabolites and 27367 reactions by merging three major databases (KEGG,
BRENDA (147), MetaCyc (148) and now recently SABIO-RK (149)). MetRxn (150)
currently accommodates 44783 and 35473 resolved metabolites and reactions,
respectively, as a result from merging BiGG, BKM-react, BRENDA, ChEBI (151), HMDB
(152), KEGG, MetaCyc and 90 GEMs. MetaNetX (153) was the latest attempt with the

highest obtained number of resolved metabolites (82890) and 23210 resolved reactions
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by merging the databases mentioned before and also LipidMaps (154), SEED, BioPath
(155), Rhea (156) and UniPathway (157).

One limitation of these resources is that they can become outdated if not updated
frequently by tracking the updates of the databases used in their construction. Currently
BKM-react remains up-to-date with the last version dated from January 2017. However,
at the time of this writing, MetaNetX namespace latest update was September 2015 and

MetRxn last update was in 2014. Among other limitations are:

. model (and hence metabolite) mapping is biased to a search that is primarily
focused in finding similar reactions in other models and databases and not in
finding the most informative entries with respect to a compound identity, such as

its structural information;

e since they are GEM unifying tools, typically a GEM format in SBML, COBRA for
MATLAB, formatted excel, etc., is required to use these tools and not a list of

names for instance;

e the user interfaces allow uniquely for the search of one compound or reaction at
a time and not a list of names and do not provide web services for iterative

search;

e the format of the output of the GEMs to be mapped can be inconvenient: in the
case of MetaNetX it is returned a model structure that is uniquely mapped to
their namespace identifiers losing all initial model information, and compounds

and reactions for which a match has not been found are removed.

3.1.4 Implementation of dynamic pipeline

In this chapter, we focus on establishing a pipeline with the purpose of assisting with the
mapping and identification of compounds in GEMs, for reconstruction and analysis, by
using the web services directly provided by the compound and reaction databases. For
this purpose, we developed the Data Repository for Automated Metabolomics

Administration (DRAMA).

! At the time of the presentation of this thesis MetaNetX latest update occurred on July 2017, however, all
results have been produced using the version of September 2015.
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DRAMA framework was primarily developed with the purpose of facilitating data
and parameter integration into GEMs. For instance, the analysis of metabolic models
require that a lot of manual work is performed in order to match the metabolomics data
to the corresponding metabolites. This work can become easily cumbersome when one
is manipulating many different datasets from different sources, where metabolite
nomenclatures seldom match between data sources and the GEM, which is worsened
when identifiers from different databases or compound synonyms are also not
provided. In addition, this pipeline complements the search for compound structure
information that is essential for Thermodynamics-based Flux Analysis (TFA) and for our

metabolic network reduction procedures, as will be seen in Chapter 4.

DRAMA aims to provide means for a flexible GEM annotation along with a data
and parameter integration pipeline, which is independent of model curation. To ensure
that we always recover the most updated information we use as much as possible the
direct and online access to the selected databases through the web services provided by
them when available. One further advantage of this pipeline is that all resources can be
obtained without needing licensing or registration and they are independent of having a
GEM structured as a model. The developed methods can also be integrated in a way that
allows for a continuous and automatic update of internal lab databases. Furthermore,
this pipeline is flexible enough that it can be exploited without needing a centralizing
unique identifier. Parsing of search results and compound name preprocessing prior to
search are the only things that can differ between implementations of the same

approach and can be tailored to the specific needs of the user of these services.

The pipeline described in the chapter is applied to the human metabolic network
Recon 2 v4 and sets the protocol for the standard operating procedure to assess and
[re]-curate any GEM with the purpose of performing analysis that included reaction
thermodynamics and for consistently generating condition-specific reduced metabolic

networks that are tailored to the physiology under study.

3.2 Materials and Methods
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3.2.1 DRAMA framework

The overall DRAMA pipeline (Figure 3.2) is developed in MATLAB programming
language and consists of three main working stations: i) the GEM and dataset
preprocessing, which uses GEMap pipeline that will be detailed in the next section, ii)
the DRAMAcore repository, and iii) the AGADOR mediator. Both datasets and GEMs are
preprocessed by calling adjacent pipelines that parse the metabolite names and collect
any available accompanying external database identifiers for compound identification
and matching. After the preprocessing the GEMs are stored for later use and the

datasets are added to the repository of data in the DRAMAcore.

Contains all
data and Data
vital info EpERIEIE DRAMAcore

DRAMAcore
\ELET{g

integration of preprocessing
metabolomics data

Preprocessing

AGADOR P
Mediator
‘ '
=

DRAMA Model .
preprocessing

Thermodynamically
feasible metabolic
model with data!

Database

Figure 3.2 Schema of DRAMA main working pipelines for GEM annotation, data integration and
analysis.

The DRAMAcore is a dynamic data repository that gathers fluxomics and
metabolomics data from different organisms in a compact and organized way (Figure
3.3). Data is organized by cell types, tissue, conditions, disease state, and others. Its
detailed annotation also allows for tracking data sources and experimental conditions
improving citation retrieval. Datasets are curated by the users into a mandatory
predefined format in excel that can then be uploaded to the repository. Each fluxomics
and metabolomics dataset contains metabolite names and external database identifiers

(if provided by the experimental sources) that are used for compound matching during
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or prior to upload. Internal (optional) and external identifiers are associated with each

compound, which will be used for matching the data to the GEMs.

Since analysis with GEMs using COBRA toolbox is typically performed in flux
units of mmol/h/gDW, each fluxomics dataset is stored in this repository in that unit or
mmol/h/cell. The user responsible for uploading the dataset should provide a field for
conversion into mmol/h/gDW containing the cell weight and the respective reference.
The same is valid for the metabolomics datasets where the concentrations are provided
in mol/L or mol/cell with respective cell volume for conversion. The conversion factors
provided are used as default values. Approximations for similar cell lines can be used if
real measurements are unknown and this should be indicated as such in the
appropriated information field. The pipeline in AGADORmediator (see below) allows the

user to choose to use the default conversion factors or provide new ones.

The purpose of this structure is to facilitate data selection and sharing across
collaborators, minimizing manipulation by users, which could introduce errors.
Although it is presented here (Figure 3.3) as a MATLAB structure, because it is the main
software used in our analysis, it can easily be converted into a database format for use
across platforms, which is ultimately the goal. Users can also choose to create
independent data repositories, using the pipeline to build DRAMAcores specific for the

project they are working on for data that cannot be shared.

The AGADORmediator station contains functions that guide the user through the data
available in the data repository (selected DRAMAcore) and preparation of the GEM for
analysis. It is the final stage of the DRAMA main pipeline. Upon selection of a GEM and
the datasets corresponding to the phenotype/condition to be studied, the metabolomics
and fluxomics data are converted into the final units and into lower and upper bounds
that can applied to the GEM. The overall procedure is summarized in Figure 3.4. The
user can select the datasets to be used making use of the system of tags in the repository
(organism, tissue, phenotypes, condition, etc, ..) or can select individual datasets by
their positioning in the repository or by article reference. Specific datasets can be

excluded by selecting properties not to be applied; for instance, the user can select all
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Figure 3.3 Visualization of format and content of DRAMAcore repository, here presented as a
MATLAB structure.

After this step, the user can further decide about conversion factors to be used

for cell volumes or cell weights for metabolomics and fluxomics data, respectively, as
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well as providing instructions for the computation of the lower and upper bounds to be
applied. Lower and upper bounds are computed through user specifications regarding
how much to be subtracted and added, respectively, to the measurements in the dataset.
These instructions could be to use the standard deviation (SD) of the measurements in
the original datasets, use SD multiplied by a factor for further relaxation, relaxation by a

percentage of the flux or intracellular concentration value (10%, 20%, ...), etc.

The metabolites in the repository are matched through their identifiers to the
identifiers of the metabolites in the GEM (assuming it has been properly preprocessed
with GEMap as seen below). Intracellular concentration constraints are applied directly
to the bounds of the respective intracellular metabolite at each cellular compartment
and data constraints for cell uptakes and secretions are applied to the GEM if it contains
extracellular reactions involving the metabolites present in the extracellular fluxomics

dataset.
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Figure 3.4 Summarized procedure for data integration into the model. Datasets are selected
through identifier tags and ranges for flux and intracellular concentration bounds for
constraint-based problem are applied to the model. Extracellular reactions are identified by
matching the identifier of the participating metabolite in the GEM to the one in the dataset.
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3.2.2 GEM & data preprocessing
The preprocessing station harbors GEMap, a pipeline that works within MATLAB

connecting with multiple databases simultaneously. Through this pipeline, we favor
connections to the databases via their provided web services whenever available. Web
services enable access to a variety of data through HTTP requests that are embedded in
third-party applications (such as MATLAB or R) or other scripts, which enable
programmatic access that can be carried out in an iterative way. Table 3.1 contains a
listing of the databases accessed within GEMap and the protocols used for
programmatic access (see section A.3.1 for more description of the web services
protocols and systems requirements for implementation). Currently the pipeline
connects seven databases, two of which (SEED and HMDB) are not accessed online as
they do not provide web services (see section A.3.2. for their set up as local databases
instead). Programmatic access through the use of these web services allows us to have
the most updated information in real time and avoids the exhausting process of

constantly updating our local generated SQL databases with the newest releases.

With GEMap we can: (i) obtain external database identifiers given a list of
“sensible” compound names if no other identifiers available, (ii) retrieve the most
updated compound structural information by searching external databases through the
identifiers associated with the compounds based on compound name search or
database identifier search, (iii) propagate the list of external identifiers by accumulating
cross-reference identifiers among databases. The input consists on a list of compound
names and/or external database identifiers, which could both be obtained from a GEM
or a metabolomics dataset. The fact that the input can be a list allows for flexibility in
the uses of this pipeline, where a complete GEM structure is not necessary (we do not
evaluate reaction information). GEMap can operate in two modes, which have different
purposes: 1) all databases are simultaneously queried based on the provided list of
compound names and/or database identifiers (Figure 3.5) or 2) search is oriented to
matching compound names and external database identifiers to the identifiers of a

particular database (Figure 3.6).

Mode 1 is used to match the compound names and external identifiers queried to
as many cross references as possible. The queries for each compound in the list run in

parallel, but within the same compound search, the databases are accessed in series.
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The process can exectute faster by giving priority to the cross referencing. For instance,
if a match is found in ChEBI database for the compound being searched, one can
immediately reuse all the existing cross references to the other databases included in
our search and skip the search in those. This avoids sending numerous requests and

speeds up the process.

Mode 2 is used to match compounds to a particular database and further
decreases the number of unnecessary requests sent. The search is conducted first using
the connection to the database of interest (for instance, KEGG as shown in Figure 3.6).
In a second step, the compounds that have not been matched in the primary search are
collected and sent as requests to the remaining databases. If a match is found in one of
these databases that bears a cross reference to the database of interest a "reverse
mapping" is applied where the KEGG id is selected for the mapping. As shown in the
example, C00031 is selected for the mapping based on the search CHEBI:4167. Once a
reverse mapping is found the search is finished for that compound. If after "reverse
mapping” there are still compounds the have not been matched to the primary database
(KEGG in this example), they will have all the other database ids found during the
search collected in order to ensure some identification for that compound ("assisted

mapping" results). See LMFA01050442 case for example.

Table 3.1 List of databases accessed within GEMap.

Databases Access
DB at
REST>  S04P* local
APl API server URL
Kyoto Encyclopedia of Genes ) .
and Genomes (KEGG) X hitp://www.kegg jp
PubChem X https://pubchem.ncbi.nlm.nih.gov
Lipidomics Gateway . .
(LipidMaps) X http://www .lipidmaps.org
BiGG® X http://bigg.ucsd.edu
Chemical Entities of Biological . . .
Interest (CHEBI) X https://www.ebi.ac.uk/chebi/
MetaCyc X https://metacyc.org
ModelSEED )
(SEED) X http://modelseed.org
The Human Metabolome
database X http://www.hmdb.ca
(HMDB)

TAPI (Application Programming Interface) consists of a set of procedures that allow the access to data.
’REST: Representational State Transfer

3504P: Simple Object Access Protocol

'BiGG database server is accessed through a localhost for speed
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Metabolite names Name Preprocessing
(1->3)-beta-D-glucan [cell envelope] 1|3|beta D glucan
(R)-3-hydroxydecanoyl-CoA [peroxisome] R|3|hydroxydecanoyl|CoA // (...) coenzyme|A
(S)-3-methyl-2-oxopentanoate [cytoplasm] S|3|methyl|2|oxopentanoate // (...) oxopentanoic|acid
3-(4-hydroxyphenyl)pyruvate [cytoplasm] 3]4|hydroxyphenyl|pyruvate
3-hydroxy-3-methylglutaryl-CoA [cytoplasm] 3|hydroxy|3|methylglutaryl CoA // (...) methylglutaryl|coenzyme|A
3-methyl-2-oxobutanoate [mitochondrion] 3|methyl|2|oxobutanoate // 3|methyl|2|oxobutanoic|acid
GEM 5"-S-methyl-5"~thioadenosine [cytoplasm] 5|S|methyl|5|thioadenosine
or
list of names JIMY—I
and/or name search
list of external | | ————
identifiers Metabolite IDs|
CHEBI:4167 r
HMDB00227
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cid: 1060
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Figure 3.5 GEMap pipeline is shown here with the search in mode 1 where the purpose is to
match the compounds to as much external database identifiers as possible. As input a GEM or
list of names is provided alongside a facultative list of existing external database identifiers.
Databases highlighted in grey have no web services and are installed in local servers. Note:
Metacyc is not included in the diagram because its web services do not allow search by
compound name, just internal and external compound identifiers (see Table C.3.1 for a
summary of web services provided per database).

Compound names are queried by removing only the prime symbols (5',3’, etc...).
In its most restrictive, a match is retrieved if a full string match is found between the
search name and the synonym names provided in the database. For string matching,
further processing of the compound names is used as shown in the GEMap diagrams
where all non-alphanumeric characters are removed (except for + and -sign associated
with charges) and subsequently replaced with vertical separators '|'. This name
processing is performed post search in both the searched compound name and the

names from the search results, which include compound generic name and their
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associated synonyms. Since chemical nomenclature is known for its diversity, as shown
by the focus of several studies on strategies to improving string matching algorithms
(158-160), this quite simplistic processing step ensured a fairer string matching
comparison of all groups in the compound name independent of their order of
appearance. During mapping in mode 1, if synonym names are not provided in one
particular database, such as in the case of BiGG, or they are limiting, InChl (removing
protonation state) and external database identifiers can be cross-checked with the

results from the previous database requests for that compound, which run in series.

Metabolite names

(1->3)-beta-D-glucan [cell envelope]
(R)-3-hydroxydecanoyl-CoA [peroxisome]
(S)-3-methyl-2-oxopentanoate [cytoplasm]
3-(4-hydroxyphenyl)pyruvate [cytoplasm]
3-hydroxy-3-methylglutaryl-CoA [cytoplasm]
3-methyl-2-oxobutanoate [mitochondrion]

GEM

Name Preprocessing

1|3|beta D glucan

R|3|hydroxydecanoyl|CoA // (...) coenzyme|A
S|3Imethyl|2| ate // (...)
3|4|hydroxyphenyl|pyruvate
3|hydroxy|3|methylglutaryl CoA // (...) methylglutaryl|coenzyme|A
3|methyl|2|oxobutanoate // 3|methyl|2|oxobutanoic|acid
5|SImethyl|5|thioadenosine

oicl|acid

5"-S-methyl-5"-thioadenosine [cytoplasm]
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CHEBI:4167
HMDB00227
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cpd00029 Reverse KEGG mapping
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CHEBI:14314
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Figure 3.6 GEMap pipeline is shown here with the search in mode 2 oriented to KEGG
compound identifiers (database selected in yellow). As input a GEM or list of names is provided
alongside a facultative list of existing external database identifiers (other than KEGG). Search is
done accessing KEGG web services first. In a second stage assisted mapping starts by looking up
the compounds not matched within the other databases for reverse mapping to KEGG
identifiers using cross referencing. Databases highlighted in grey have no web services and are
installed in local servers. Note: Metacyc is not included in the diagram because its web services
do not allow search by compound name, just internal and external compound identifiers (see
Table C.3.1 for a summary of web services provided per database).
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3.2.3 Compound thermodynamics curation

A molfile contains the information regarding the structure of a molecule describing its
atoms, their bonds, connectivity and positional coordinates, which can be downloaded
from the compound databases. For GEMs containing networks linking unique
metabolites in the order of thousands it can rapidly become a cumbersome task to
manually search for these compounds in the different databases, download the
respective molfiles and save the files with formatted names that facilitate iterative
import into MATLAB (or other programming tools) for further computations.
Furthermore, since not all databases will have the desired compound and some may
even contain unreadable molfiles, it is imperative to search different databases in

parallel.

At this stage, the compound mapping results, obtained either from GEMap
operating at mode 1 (Figure 3.5) or from other resources, which link metabolites in the
GEM to identifiers of multiple databases, can be readily used as input back to the
databases listed in Table 3.1. This is done through requests that specifically retrieve the
associated molfiles in a .txt format that can be easily stored (Figure 3.7).
Simultaneously, the molfiles readability is tested by converting them into InChl
structures using the molconvert functionality in, Marvin 16.7.4, 2016, ChemAxon

(http://www.chemaxon.com) (161). It is at this stage that the collection of multiple

external database identifiers performed earlier plays a role. Since not all databases
contain structural information for a compound, this propagation of identifiers ensures a
higher number of molecular structure retrievals. Results from the search can be stored
as individual molfiles in a folder with appropriated formatted name for import at later
stages, or can be preserved into the GEM model structure (in MATLAB readable format,
for instance). Note that BiGG database does not provide content for compound

structural information (see Table C.3.1 for a list of web services provided per database).

This pipeline is integrated with the existing pipeline in the lab where molfiles are
used for estimating the standard Gibbs free energy change of formation [AfG°) for a
metabolite, which is the change in energy required to form 1 mole of the substance
under standard conditions of pressure and temperature. This quantity is used to
estimate the standard Gibbs free energy change of reaction (A,.G"), which can be used to

assess the reversibility of reactions in a network and further constraint the space of
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feasible flux solutions in CBM. A,:GO is estimated using the Group Contribution Method
(GCM) published previously (162). Briefly, GCM estimates AfG° by decomposing the
molecular structure of the compound in the molfiles into smaller substructures
(groups) and adding the energy contributions of the different groups forming the
compound. For the computation of AfG’° in aqueous solution, the compound
predominant ionic form used is the one at pH 7. The charge of the compound at pH 7 is
obtained using the pKa values estimated with MarvinBeans 16.7.4, 2016, pKa calculator
in cxcalc, ChemAxon (http://www.chemaxon.com). The A,.G" can then be estimated by
subtracting the sum of the AfG’° of the substrates/reactants to one of the products in

the reaction
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Figure 3.7 Schema of DRAMA pipeline integrating GEMap results (or any other available
compound mapping) and the service to request and automatically download molfiles by
searching through the compound external identifier in the respective databases. The pipeline
follows with the subsequent estimation of the A, G'.

The Gibbs free energy change of reaction (A,G') depends on the concentration of
the metabolites involved in the reaction. However, each metabolite has a solution-

dependent activity, which is affected by the ionic strength of the reaction medium, that
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reflects the real amount of active compound available for the reaction, and also by the
pH inside the cellular compartments that affects its charge. We take all these cellular
conditions into account (see section 3.2.6 for the values used) when we estimate the
corrected ArGJ-’O of each reaction j in a GEM. We compute the metabolite activity in
function of the ionic strength using the extended Debye-Huckel equation (163), which is
then absorbed into the estimation of A,.G". The A, G of a reaction j is then estimated by
using the equilibrium constant, which is a function of the concentrations of substrates
and products in the reaction, as follows

A.G] = MG/ +RT - ¥ ny j In(cy), (3.2)

where R is the ideal gas constant (8.31446 ] mol-1 K-1), T is the temperature at
standard conditions (298 K), n;; is the coefficient of the stoichiometric matrix for
metabolite i participating at reaction j, and c; is the concentration of metabolite i in the

cell.

3.2.4 Thermodynamics-based Flux Balance Analysis (TFA)
In section 3.1.2, we introduced the concept of Constraint-Based Modeling (CBM) and

Flux Balance Analysis (FBA). The space of feasible solutions in the analysis of a GEM
with fluxomics data integrated pertaining to a specific condition can be further
constrained by adding reaction thermodynamics and metabolomics data, such as

intracellular metabolite concentrations, as shown in Figure 3.1.

Reaction thermodynamics helps to determine the directionality of the reactions
in the GEM. A A,.G'<0, according to the second law of thermodynamics, indicates that the
reaction is carried in the forward direction. Thermodynamics-based flux balance
analysis (TFA) is a re-formulation of the FBA problem presented in section 3.1.2, and
was initially presented in (164). In the initial FBA formulation, the reactions in the
network are mathematically represented by the stoichiometric matrix S and are mass
and energy balanced. The physiological condition under study is simulated by
computing a solution that fulfills the steady state condition S+ 7 =0, where ¥ is the
vector of fluxes for each reaction in the network and is constrained by imposing upper
bounds in v,,,,. TFA adds a set of mixed integer linear constraints to this problem along

with eq. 3.2 for the reaction thermodynamics, allowing for the problem to be dependent
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on the concentration level of metabolites reported/measured for the physiology and

conditions being studied.

TFA formulation allows for a flux-balance analysis of the system in a way that
removes infeasible reactions or pathways from flux profile solutions, and at the same
time provides an insight to the ranges of metabolite concentrations that determine the
directionality and feasibility of a reaction. We can then define objective functions and
use optimization algorithms to determine the flux profile distributions that lead to the
maximum growth yield, the highest net production of a desired byproduct, or the
cellular responses to gene deletions (reaction knock outs), as well as responses to

incorporation or pathways/reactions foreign to the organism.

3.2.5 GEMs used in this chapter

The GEMs used are iMM1415 (165), the Mus Musculus mouse model and Recon 2 v4
(11), the generic human metabolic model. The version of iMM1415 used was the one
obtained at a time closer to the model publication where the compound KEGG

annotations were obtained upon request to the authors.

3.2.6 Physiological mammalian/human cell parameters

For the estimation of A,.G" we use the cell physiological parameters for pH and ionic
strength in Table 3.2. These parameters where obtained from literature search on
mammalian cell physiology. The value of cytosolic ionic strength used in our
estimations was 0.15 Mm, which was reported for mammalian cells (166), and within
the range of values to apply the extended Debye-Huckel equation (167) (up to 0.35 M).
The pH values for each mammalian cellular compartment where compiled from
multiple works reviewed in (168). We have also compared the A,.G” values estimated
with ionic strength 0.15 M to the ones estimated with 0.25 M ionic strength, which was
the value used for the estimation of reaction thermodynamics for about 2/3 of reactions
in Recon 1 (169). Our results show that mostly very small deviations in the estimated
A,.G” occur between these two ionic strength values (Figure B.3.1) and only five
reactions with thermodynamic constraints, which are not transports, had a switch on

the sign of A,.G” (Table C.3.2). However, taking into account the associated A,G”
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uncertainty and the range of physiological concentrations, these five reactions are

maintained as reversible in both cases.

Table 3.2 Mammalian cell physiological parameters. The pH values were obtained from (168).
The ionic strength for mammalian cell cytosol was obtained from (166), cross checked with
computation using the cytosol ion concentrations in (170, 171) and assumed equal for all
compartments.

Cell compartment pH ionic strength (M)
Cytosol 7.2
Mitochondria 8
Vacuole 7
Perixome 7
Extra-organism 7 0.15
Golgi Apparatus | 6.35§
Endoplasmic Reticulum 7.2
Nucleus 7.2
Lysosome 4.7

§ Average of pH across Golgi

3.3 Results and Discussion

3.3.1 Mapping compounds of GEMs

We mapped Recon 2 v4 with GEMap using the unique compound names provided in the
model. Table 3.3 summarizes the statistics on the total number of compounds for which
a match is retrieved during search by compound name in the databases. As explained in
section 3.2.2, a match is accepted if all the substrings of the processed compound name
used in the search fully matches the substrings of the processed synonyms from the
database request output. The maximum number of matches retrieved per compound
across the databases was 48.2%, which was obtained for HMDB. HMDB does not have
web services for online search and it is stored locally. Right below with 46.2% is
PubChem, which is queried through the use of available web services. PubChem
contains an extensive list of synonyms per compound, which improves our matching.
The database with the lowest performance in matching compound names was Lipid
Maps, with 8.5% of compounds matched. Lipid Maps is a database that focuses on lipids,

which characteristically possesses much more complex nomenclature that is thus
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harder to match with block full string matches, as the one applied here. The second
lowest database matching performance occurred for BiGG, with approximately 21%
unique compounds matched. This low match performance occurs because BiGG
provides no synonyms for compound names and their format is often non-standard.
However, included in this number of matches are also the records that even though
didn’t match in compound name, had external identifiers that intersected with previous

records retrieved for those compounds in the other databases searches prior to BiGG.

We compared the compound name mapping with GEMap to two other sources to
assess information complementarity: MetaNetX? (MNX) (153, 172) and the compound
identifiers existing in the GEM structure (KEGG, ChEBI, PubChem, HMDB). Figure 3.8a
presents the statistics on compound mapping coverage compared to GEMap results. The
compounds in the GEM are classified by having been attributed a database identifier by
both GEMap and the other source (Both GEMap and the other source have result), by
having been mapped by GEMap but not by the other source (GEMap result but not other
source), by having been mapped by the other source but not by GEMap (Other source has
result but not GEMap), and by having not been mapped (Neither has result). In the
overall, GEMap search by compound name was able to identify 70% of the unique
compounds in Recon 2 v4 network, whereas MNX identified about 80% and Recon 2 v4
IDs covered about 63% (Figure 3.8b). Both GEMap and MNX were able to provide more
coverage than the one pre-existing in the GEM, with MNX achieving the highest level.
However, GEMap shows an advantage on complementing compound mapping and
identification, which can be useful to provide more structure information for the
estimation of reaction thermodynamics in the models. In addition, GEMap has been
observed to complement compound identification with database links that contain
molecular structures when MNX mapping provided only BiGG identifiers that have no

compound structure information (a subset with an example can be found in Table C.3.3

? The model was uploaded in SBML format into MNX web interface (http://www.metanetx.org/cgi-
bin/mnxweb/mnet upload) and the results file in excel format was parsed for analysis. MNX namespace
combines information from multiple compound and reaction databases and maps the GEM by identifying
the metabolites in the context of the reactions present in the network. Since its main purpose is to unify
GEMs, the resulting network output in SBML is formatted with their MNXidentifiers and contain only
metabolites and reactions that have been properly matched and identified to their namespace. Exporting
the results in the excel file format, which contains information about the original model, the non-matches
and the identifiers of external databases is more useful than the SBML one, however, it requires more
parsing steps.
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green and blue section). This can be a consequence of MNX algorithms whose purpose is
model unification by reaction identification, thus settling for the information on the

database for which the reaction matched, in this case, BiGG.

We analyzed how many mapped compounds did not have common external
database identifiers between GEMap-MNX (160 compounds) and GEMap-Recon 2 v4
IDs (140 compounds). This was done by intersecting the external identifiers from the
individual database searches obtained for each compound in GEMap with the external
identifiers resulting from the mapping in MNX or the pre-existing Recon 2 v4 IDs. Note
that this number does not directly indicate inconsistency or error. The fact that no
intersection is found can be primarily linked to: lack of cross-referencing, selection of

stereoisomers or tautomers as a consequence of the search based on compound names.

The 160 compounds that did not have common external database identifiers
between GEMap-MNX are listed in Table C.3.3. A deeper inspection revealed that the
lack of common identifiers is mostly due to MNX linking unique compound identifiers to
BiGG identifiers that have poor compound name identification and no external database
cross-referencing. Indeed, for 85 of the 160 compounds GEMap was able to map these
compounds to BiGG identifiers with the same name in MNX mapping, however, in our
case they are CHO model associated (ex: pa_cho), whereas for MNX they are associated
to the homo sapiens counterpart (pa_hs). In this case, even though the compound was
the same, the result was scored as a mismatch because 33 of the 85 compounds had no
other associated external identifiers for both GEMap and MNX. For the remaining
compounds of the 85 set, GEMap provided external database identifiers other than
BiGG. Since in its base MNX merges reaction and compound information of several
GEMs, we speculate that those BiGG identifiers remain separate as they may have been
observed to occur with those names only for a specific reaction pertaining to a BiGG

model.

Another set of 44 compounds were also uniquely mapped to BiGG identifiers in
MNX, whereas GEMap retrieved cross-referencing for other databases, except BiGG. For
this set, the compound name in the model seems to be the cause of the mismatch and
stereochemistry or protonation differences seem to be playing a role. Often, in

databases, compounds are identified separately based on differences in stereochemistry
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and protonation, whereas in other databases they can be found merged through
synonyms. Since the purpose of our pipeline is mainly to propagate the available
number of cross-references in order to ensure retrieval of compound structural
information, these differences in protonation and stereochemistry won’t influence our
results as they have little effect on the estimation of AfG° and hence are decomposed in
the same way during computations with CGM. Protonation is dealt with as the molecule

structure is converted to pH 7 prior to estimations.

Finally, 23 compounds with inconsistent cross-references between the two
mappings also presented the differences in stereochemistry or protonation referred
above. Within these, 13 were uniquely mapped to BiGG with GEMap, which does not
provide compound structural information. In the overall, only 6 compounds seem to
present a more severe reason for mismatch of their cross-references and nomenclature
inconsistencies may play a role. In fact, one of the 6 compounds, “20-
hydroxycholesterol”, appears twice in the list of unique compounds in Recon 2 v4
associated with different unique metabolites and different reactions. Other such case is
dolichyl phosphate(2-), which is also associated with two separate BiGG model
compounds (dolp_L and dolp_U) In such cases, contextualization of compound

identification based on reactions becomes more useful.

Table 3.3 Statistics on the mapping of Recon 2 v4 compounds using GEMap at mode 1 by
searching uniquely with compound names.

After individual DB search % matches per compound

(without cross referencing) name search
chebi 34.3
hmdb 48.2
kegg 29.4
lipidmaps 8.5
seed 36.7
pubchem 46.2
bigg 20.8
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Figure 3.8 a) Comparison of metabolite mapping coverage in Recon 2 v4 between GEMap using
compound name search and MNX results and between GEMap results and the existing
compound identifiers in Recon 2 v4 structure. Statistics computed with respect to the number
of metabolites that are or are not attributed an identifier with any of the three sources. b) Total
metabolite mapping coverage using GEMap with compound name search, MNX and Recon 2 v4
identifiers.
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Figure 3.9 Statistics on number of reactions in Recon 2 v4 that were balanced, that required
proton adjustment and that had missing structures and hence balance was not assessed.

3.3.2 Reaction balance and assessment of pre-assigned directionalities

After compound identification in Recon 2 v4 and extraction of the molfiles with the

compound structure, the correct chemical formulas and protonation states for the
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mammalian cellular compartment conditions (pH and ionic strength) can be derived.
These are used to assess the balance of all chemical reactions in the model, except for
extracellular reactions. This is a necessary step that needs to be taken prior to

estimation of reaction thermodynamics.

Our model assessment showed that about 60% of the reactions in Recon 2 v4
were balanced. With the available compound structures, we were able to perform
proton adjustment in 10% of non-balanced reactions. Most of the remaining reactions
had structures with a unknown number of group repeats or R groups which could not
be used to assess reaction balance and a small percentage had no chemical formula

associated.

Recon 2 v4 as presented in (11) was curated starting from the previous human
network reconstruction, Recon 1 (10), with 2/3 of reaction directionalities assigned
resulting from a reaction thermodynamics study (169) and assembling network
information from HepatoNetl and EHMN as well as a literature based search on
transport reaction. In order to prioritize our reaction thermodynamics curation and
avoid blocking of reactions whose pre-assigned directionalities in the model are
inconsistent with reaction thermodynamics, we investigate which pre-assigned reaction
directionalities in the model differed from our thermodynamics curation (Figure 3.10).
Reaction directionalities were estimated as described in section 3.2.3. Most
directionalities that differed were pre-assigned in Recon2 v4 as forward (F) reactions,
whereas our thermodynamics curation supported reversibility. We note, however, that
this high proportion of thermodynamically reversible reactions results from the wide
range of intracellular metabolite concentrations used in the calculations (set default as
le-11 to 0.08M since human metabolomics typically contain measurements at 1le-11 M
order of magnitude). Integration of metabolomics data in the model for a particular
phenotype will help determine the directionality of these reactions. A much smaller
proportion of the directionalities changed corresponded to reactions that were pre-
assigned as bidirectional (BI) in Recon 2 v4 while being thermodynamically feasible
only on the F or reverse (R) direction. Reactions blocked in Recon2 v4 where unblocked

and set to their thermodynamically consistent directionalities. The five reactions that
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were set as F but were R as per thermodynamics curation were searched in the
literature for directionality information: three of the 5 were reversible in Brenda and
the other two were only found in BiGG database with no other external database link to

infer directionality.

F->BI

BO->F -

BO->BI

I

BI->R

1 1 1 1 1 1 1
0 200 400 600 800 1000 1200 1400 1600
Number or reactions

Figure 3.10 Number of reactions in Recon 2 v4 whose original flux constraint bounds were
modified based on the directionality of the reaction within thermodynamically feasible ranges.
BI: Bidirectional reaction (or reversible in case thermodynamics constraints are applied); F:
Forward reaction; R: Reverse reaction; BO: Blocked reactions (carry zero flux).

After the thermodynamics curation of the pre-assigned reaction directionalities
(Table 3.4) the proportion of bidirectional reactions was (65%) (column 1), which was
higher than prior to the curation of the directionalities (Table C.3.4). Flux variability
analysis (FVA) of the feasible flux space imposing only the mass-balance constraints of
the network shows a reduction of about 24% bidirectional reactions (column 2), which
is the same drop observed before our curation (Table C.3.4). Additional constraining by
imposing reaction thermodynamics on this network without condition specific
metabolomics data didn't decrease significantly the flexibility of the network, as shown
by the thermodynamics-based flux variability analysis performed (TFVA) (column 3).
Further constraining of the network relies thus strongly on the integration of condition

specific metabolomics data for the analysis of the metabolic phenotype of interest.
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Table 3.4 Statistics on reaction directionality at different stages of flux constraining for Recon 2 v4
after imposing directionality's based on reaction thermodynamics assessment for a wide range of
physiological metabolite concentrations. Column 4 is just a statistic on the reactions from the
model that have thermodynamics constraints.

Directionalities of

Directionalities after reactions with
Directionalities after evaluating the feasible thermodynamics
Directionalities evaluating the feasible solution space after constraints for default

Reaction imposed as flux solution space using only  applying thermodynamics metabolite
directionality constraints network mass-balances constraints concentration ranges
BI 4854 (65%) 3077 (41.3%) 2938 (39%) 3337 (91.1%)
F 2062 (27.7%) 2081 (27.9%) 2054 (27.6%) 313 (8.5%)
R 58 (0.78%) 256 (3.44%) 255 (3.4%) 14 (0.4%)
BO 458 (6.1%) 2028 (27.2%) 2195 (29.5%) =

3.3.3 Thermodynamics curation gain by automatizing

Here we illustrate the thermodynamics constraints coverage for Recon 2 v4 and
compare it to the one from the iMM1415 Mus musculus model. Both GEMs were mapped
using MetaNetX (MNX) and further GEMap on the compounds without structure
information. The number of thermodynamic constraints added to the GEMs in terms of
the number of metabolites and reactions with estimated AfG° and A,G’, respectively,
can be found in Table C.3.5. Recon 2 v4 has 53.3% of the unique metabolites with
estimated AfG°, resulting in approximately 44.3% the metabolic reactions with
thermodynamic constraints (transport reactions have been excluded from these
statistics in both networks but their numbers are summarized in Table C.3.5). For
iMM1415, about 57% of unique metabolites have estimated AfG°, resulting in
approximately 47% of the metabolic reactions in the network (excluding transport
reactions) with thermodynamic constraints. These results are summarized in Figure

3.11.

For the case of the mouse model, we further compare the thermodynamics
constraints coverage of iMM1415 using the described pipeline (iMM1415) with the one
obtained from using the initially released version of the model by relying only on the
KEGG compound annotations that have been requested to the authors of this GEM at a
time close to publication (*iMM1415). Figure 3.11 shows that a gain of only 57

metabolites with estimated AfG° translated into a gain of about 2-fold the number of

reactions with thermodynamic constraints. This result indicates the importance of
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evaluating the highly-connected metabolites (nodes) in the GEM network in order to
recover the most reaction thermodynamics constraints. These are metabolites that
participate in multiple reactions and in pair with other metabolites and cofactors.
Evaluating these highly active network nodes (metabolites) and prioritizing them in the

search for chemical structures will improve the reaction thermodynamics coverage.

Network thermodynamics coverage
60 ~2-fold
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40
%
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20
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*iMM1415 (KEGG ann.) iMM1415 Recon 2v4

B % unique mets with AfG° M % overall ArG° reaction coverage

Figure 3.11 Assessment of network thermodynamics constraints coverage for Recon 2 v4 and
iMM1415 GEMs mapped with a combination of MetNetX (MNX) and GEMap. *iIMM1415 model is
shown for comparison with iMM1415 using only the KEGG annotations provided by the authors
at the time of publication.

3.4 Conclusion

We have successfully established a pipeline (DRAMA) that facilitates thermodynamic
parameter curation and data integration into GEMs. The flexibility of the system doesn't
require the use of a unique identifier, although one could be implemented. There are
several advantages to the use of such automatized pipeline for searching databases.
With these web services, users can implement automated searches at different stages of
model analysis or GEM reconstructions. The whole procedure is quite stable, requiring
practically no maintenance of the request functions; contrary to database dump files

provided in SDF, html, sql, txt, and others formats that require update and more or less
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parsing. Modifications and reassessment would only be required if there is a major
restructuring of the database web page or if the web service protocol and accesses are
modified. Finally, these services provide the most up to date database contents that can

be accessed in real time, free of cost and without licensing requirements.

We have demonstrated GEMap to be an apt tool for mapping compound names to
external identifiers of several databases (with a mix of local databases and web services
requests). Its usefulness, as in any workflow that tries to match nomenclature, is limited
by how representative the search name is with respect to the real compound name.
When searching external identifiers by compound names, the accuracy of the search
result depends on the name of the compound following the rules of chemical
nomenclature as used in most databases. For querying databases there are some
algorithms for fuzzy string matching that can be applied, such as, the edit distance,
Levenshtein distance, and its variants (173). The search through the use of web services
provides more flexibility. The search name does not need to be a perfect match to the
compound synonyms within the online database. Even though online requests through
the web services allow for more flexibility in the compound name structure, all relevant
chemical substrings in the name should be present to guaranty a match. Results will be
harder to retrieve when abbreviations are used and other string tags (such as formulas
or cell compartment) are added to the name. In particular, for chemical names, any
number near a charge sign or {R, S, L, D} letters, among others, may lead to different
isomers of the same compound. For applications where it is important to differentiate
protonation or stereochemistry for the identification of compounds, more advanced
string matching tools would need to be applied. This pipeline also heavily depends on
the accuracy of the cross-referencing among databases. Despite some discrepancies
found regarding structural representation of the compounds, a study performed on
compound database cross-referencing has shown that a cross-referencing accuracy of
93% from ChEBI to HMDB and 82% from HMDB to ChEBI (174), two of the seven
databases in use. Since the study was performed in 2012 and there is continuous
updated of these and other databases, this number may be currently higher.
Nevertheless, the flexible structure of the pipeline allows for the user to choose to do
processing of compounds primarily with other resources for acquiring external

database identifiers as exemplified in section 3.3.3.
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The name search feature of GEMap was primarily developed to quickly draft a
mapping of compound names in fluxomics and metabolomics datasets without any
other available identifier, as well as to annotate GEMs without external identifiers. Until
recently, many models were being transferred without this information. Currently, there
has been a great deal of effort in annotating some of the older models for public use. In
particular, BiGG database has recently made available several older models, including

Recon 1 and the iMM1415, with annotated SBML formats.

We also showed the use of GEMap for compound thermodynamics curation in
both iMM1415 and Recon 2 v4. These pipelines are independent of the search by
compound name and automatically retrieve all compound information by looking up the
external identifiers in each respective database. However, currently, the number of
compounds that will have an estimation for AfG° is limited by the presence of R groups
in the structure. Since the composition of these groups is unknown, GCM cannot
estimate free energy contributions for them. In order to improve the results, we are
currently looking into Chemaxon Standardize (161) function to remove these R groups
from the molfiles for the computations. Removing these R groups from the compounds
should not constitute a problem since our pipeline ensured that reactions with
thermodynamics constraints are properly balanced and, as such, these groups should

appear unchanged on both sides of products and reactants.

The DRAMA pipeline described in this chapter and applied to the human metabolic
model Recon 2 v4 allows for semi-automatization of standard procedures. It improves
data management, model annotation, data integration into the GEM and, most
importantly, supports reproducibility. This pipeline integrating all stages of model
assessment for proper thermodynamics curation and data management sets the
standard operating procedure to apply to any GEM with the purpose of performing TFA
analysis and for consistently generating condition-specific metabolic network

reductions of any GEM, which will be the topic of the next chapter.
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Chapter 4: From Human GEMs to consistently derived
reduced human metabolic networks

4.1 Introduction

4.1.1 Cancer studies with genome scale models
Recently there has been an increasing interest in the study of cancer by focusing on

tumor metabolism with the purpose of identifying both biomarkers and potential drug
targets that will specifically impair cancer cell survival or even induce apoptosis of
tumor cells. This interest has arisen from the many important discoveries on tumor
related metabolic reprogramming, which has become a Hallmark of cancer (175-178).
With human GEMs becoming increasingly available (6, 10, 11, 138, 139) for -omics
integration, several studies have been systematically performed to identify key features
in the metabolic reprogramming of different cancers. Metabolic models are able to
contextualize the different types of data (fluxomics, metabolomics, transcriptomics, and
proteomics) such that cancer-specific metabolic pathways emerge from the topology of
the network.

One of the Hallmarks of cancer is the Warburg effect, which was first observed
by Otto Warburg in 1924 (179). The Warburg effect in cancer cells is characterized by
aerobic glycolysis in the presence of abundant oxygen, high glycolytic rates, and
accumulation of byproduct formation (lactate). Glycolytic enzymes and glucose
transporters are found to be over-expressed or deregulated in tumors in support of the
observed high glycolytic rate, while in parallel there is evidence of decreased pyruvate
transport into the mitochondria, supporting the idea that cancer cells survive without
respiration. It is this high glycolytic effect that is the basis of 18-FDG-PET imaging
techniques for cancer diagnostic and tumor visualization.

This overflow metabolism correlates with the requirement for upregulation of
bioenergetics and biosynthetic pathways to sustain the rapid cell proliferation observed
in tumors. Glycolysis provides the metabolic intermediates to support these pathways

and, in parallel, the production of NAD+ from the conversion of pyruvate to lactate
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continuously supports glycolysis and citric acid cycle reactions. Higher production of
glycolytic and citric acid cycle intermediates maintains the pool of NADHP for reducing
power that supports biosynthetic pathways. All the metabolic characteristics of the
Warburg effect are well summarized and described in these two reviews (176, 177).

The Warburg effect based on the existence of a lactate overflow metabolism
under high oxygenated conditions is not a metabolic phenotype uniquely characteristic
of disease states, such as in cancer metabolic reprogramming. This metabolic phenotype
is also characteristic of normal proliferating cells, as it has been observed for
proliferating mouse fibroblasts (180), mitogen-stimulated normal human lymphocytes
(181), mouse lymphocytes (182), and rat thymocytes (183). Indeed, a picture seems to
emerge where all proliferating cells have high glycolytic rates to sustain their demands,
which rather sets the overflow metabolism as a common feature of all growing tissues
(184).

However, cancer cells present very diverse metabolic phenotypes that the
Warburg effect cannot fully explain. In fact, the extent and presence of the Warburg
effect has been observed to vary in different cancers (185). There is a multiplicity of
perturbations in the basis of cancer cell metabolic reprogramming heterogeneity.
Mutations in oncogenes and on the encoding of tumor suppressor genes, as well as
perturbations in cell signaling, can deregulate metabolic enzymes and their pathways
and drive metabolic reprogramming in cancer. Differentially expressed enzymes in
cancer cells affect nutrient utilization and these overall metabolic modifications can
drive tumor proliferation by presenting metabolic phenotypes that diverge from the
typical glycolytic fermentation of the Warburg effect and towards a more active citric
acid cycle and oxidative phosphorylation (186). Studies in glioma, hepatoma and cancer
cell lines have shown that different cancer types actively use oxidative phosphorylation
to fulfill energy requirements (187-190). A higher rate of amino acid uptake has been
observed in cancer cells under different conditions (191, 192), indicating that carbon
sources other than glucose are able to fuel biosynthetic pathways. These effects of
differential nutrient uptake in cancer have been observed in culture by performing
nutrient replacement or starvation studies (192-196). Amino acids that are not
essential in humans, i.e., the cell has metabolic pathways to support their de novo

synthesis, can thus become condition-specific essential in cancer cells. To add further
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complexity to this picture of metabolic plasticity and diversity observed in different
cancers to maintain their proliferation and survival, there are studies that show that
cancer cells can revert from a Warburg phenotype to an oxidative respiration based on
nutrient availability and surrounding conditions (197).

It is this diversity and metabolic plasticity that provides cancer cells with the
ability to adapt and proliferate in different and aggressive tissue conditions. Amidst the
metabolic heterogeneity observed, the fundamental characteristic of different cancers is
that they all evolved from their original tissues to enhance metabolic biosynthetic
pathways that support rapid growth and cell proliferation. This observation is in the
basis of different studies where a flux solution for the network is determined using FBA
with growth maximization as a cellular objective (125, 126, 198). Other objective
functions, such as optimization of energy (ATP) production (199) and maximization of
redox (NADPH) potential (8) have also been used. These works rely on the computation
of one optimal solution of the flux vector in a multiplicity of solutions constrained to the

same feasible space that fulfill the same objective.

Recent studies used different levels of data integration into GEMs to analyze
cancer metabolic reprogramming. One study integrates transcriptomics data to remove
pathways associated with low metabolic enzyme expression levels and used FBA to
predict drug targets that inhibit cancer cell proliferation (9). In other works, algorithms
for building normal and cancer tissue-specific models based on transcriptomics and
proteomics data were developed (INIT (18) and mCADRE (200)) and the resulting
networks were used to identify frequent metabolites and pathways occurring in
different cancer tissues (18, 200). Other algorithms have been developed to predict
metabolic fluxes based on tissue specific expression data (GIMME (13) and iMAT (15)).
iIMAT was used to investigate metabolic differences in HepGZ2 cancer cell lines
expressing different levels of oncogene p53 (201). All the works inferring network
properties from transcriptomics are based on the assumption that metabolic enzyme
levels correlate with gene expression levels, independently of any downstream
regulatory effects that may be taking place. Despite the considerable amount of cancer
studies using human GEMs with -omics integration that contributed to the elucidation

of pathways essential for cancer cell proliferation, their intrinsic mechanisms and how
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the flux through the reactions in these pathways is regulated is still not fully
understood, as it relies on a combination of oncogene expression, pressure from the
microenvironment, and local nutrient availability (178, 202). Much effort is still needed
to bring this understanding to a level where efficacious therapies that target metabolism

can be developed and put into the clinic.
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Figure 4.1 Complete pipeline for processing and reducing a human GEM for the study of cancer
metabolic rewiring and heterogeneity.

We propose a pipeline (Figure 4.1) for generating cancer tissue-specific models
that are focused on the subnetworks of interest for the study of the different cancer
types. Starting from a human GEM we apply the pipeline described in Chapter 3 as a
standard operating procedure to assess and [re]-curate the GEM with missing
annotations and parameters. This process involves identifying metabolites and mapping
them to external database identifiers with the purpose of balancing the network,
integrating thermodynamics constraints for the reactions and matching the compounds
to the available data. Extracellular fluxomics and intracellular metabolomics data
pertaining to the cancer types and conditions that will be studied are also processed
within the described pipeline. The next step in this pipeline is to reduce the network in
a consistent and semi-automatized way to generate tissue-specific models that
represent the cancer physiology of interest. which is the focus of this chapter. The last
part of the pipeline consists in the analysis of the generated physiologies through

systematic analysis of flux distributions given the applied condition-specific data and
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thermodynamics constraints, with the purpose of determining drug targets and
biomarkers in cancer, as well as to determine the differences between normal and
cancer physiology. The analysis as proposed by this pipeline differs from the typical
FBA computation of one solution for imposed metabolic objectives in the sense that it
focus on the analysis of the complete feasible space of solutions, which can then be
classified by a score in terms of maximal growth, ATP production, redox potential, and
so on (see discussion in Appendix A.4.1 for an example with a reduced model obtained
from Recon 1). Nevertheless, the focus of this chapter is the establishment of the steps
for the generation of a reduced human metabolic model from a GEM, and not the

subsequent analysis.

4.1.2 Consistent decrease of GEM complexity tailored to system under study

Analyzing GEMs with networks of the size of human GEMs (such as Recon 2 v4 and
HMR) can become a cumbersome task, especially when the intracellular metabolomics
and extracellular fluxomics data available to integrate into the model is scarce. Typically,
measured metabolites are the ones participating in reactions of the central carbon
pathways and important lipids, leaving most of a GEM network uncovered. Furthermore,
these networks have a lot of flexibility due to the high number of unknown reaction
directionalities, and sampling methodologies for the extraction of useful information
within the feasible space of solutions become very time-consuming. The most practical
analysis with GEMs is thus the use of FBA with optimization towards a cellular
metabolic objective, such as maximization of growth yield, or ATP maintenance, among
others. As mentioned above, despite its usefulness, this approach provides one solution
for the directionalities and magnitude of the fluxes in the network that is not unique and
certain key aspects may be overlooked, such as the account of all physiological

possibilities.

Reducing the GEM for the study of the organism and condition of interest is
common practice in this field to overcome complexity and yield more insightful analysis.
In fact, in the case of Recon2 v4, FVA and TFVA have shown that about ~30% of the
reactions will be blocked in the network, as shown before in Table 3.4. Commonly used

approaches to reduce the GEM complexity make use of proteomics and mRNA
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expression data to further constrain or reduce the size of the network (13-15, 18, 200).
Other approaches focus on selecting subnetworks from the GEM pertaining only to the
parts of the metabolism of interest, as well as pathways that fulfill metabolic
requirements relevant for the organism being studied (8, 203, 204). In this work, we use
redGEM (205, 206), a workflow developed in our lab (details in section 4.2.3), to
systematically reduce GEMs into phenotypically-driven core networks in a semi-
automatized and consistent way that ensures reproducibility. Thought this systematic
reduction procedure that allows the subsequent shrinking and expansion of the
network, the model is tailored to the physiology of interest and it becomes a tool for the

comparative analysis of different phenotypes.

4.2 Materials and Methods

4.2.1 Recon 2 preprocessing
Recon 2 v4 network (dated 11.05.2015) was downloaded from the Virtual Metabolic

Human website (http://vmh.unilu/#downloadview). The model was processed with

the pipeline described in Chapter 3 for metabolite identification and retrieving
compound structural information. Metabolite structural information was used for
balancing reactions and for reaction thermodynamic curation to determine reaction

directionality as described in Chapter 3.

4.2.2 Data & parameter integration into Recon 2

We collected datasets with extracellular fluxomics and intracellular metabolomics data
from multiple sources spanning a range of human normal and cancer cell types or
tissues. Extracellular fluxomics datasets contain measured uptake and secretion rates,
whereas intracellular metabolomics datasets contain measured intracellular
concentrations. Metabolites quantified are mostly amino acids, glucose, lactate and

other compounds pertaining to pathways of the central carbon metabolism.
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A summary of the types of data collected per tissue type for normal (NH) and
cancer (CH) is displayed in Table 4.1 and Table 4.2, respectively. In total, there are 11
datasets for the normal phenotype (NH5 was used uniquely for data on cell growth
rate), and 69 datasets for the cancer phenotype (CH5, CH6, CH72 and CH73 were used
uniquely for data on cell growth rate). Detailed information for each normal and cancer
dataset can be found in Appendix C: see Table C.4.1 for a complete dataset description
and experimental sources; see Table C.4.2 for cell growth rate measurements associated
with each dataset; and see Table C.4.3 for the conversion factors used to get fluxes in
standard units of mol/h/gDW and concentrations in mol/L. In general, when the cell dry
weight is not known for the cancer cell lines for which we have flux measurements, we
assume the cell dry weight of the HeLa cell (~400pg). This cell weight is close to the

average value estimated for different mammalian cells at different conditions in (207).

We use the DRAMA pipeline described in section 3.2 of Chapter 3 and
summarized in Figure 4.2 for preprocessing Recon 2 v4 and the datasets, and for
systematically integrating the data into the model. Metabolomics and fluxomics data can
be aggregated per tissue type or cell type or phenotype as shown in Table 4.3 in order to
simulate the metabolic physiology of interest. To generate the first reduced human
metabolic network with redGEM that comprises both the normal and cancer
physiologies (RedHuman), we integrated the All Human dataset in Recon 2 v4 model
(Table 4.3) that merges the 84 fluxomics and metabolomics sets for cancer and normal

conditions.

The basal value of ATP maintenance for mammalian cells was assumed to be the
same as the one measured for the mouse fibroblasts LS cell line 1.77 mmol/h/gDW

(converted from 1.7e-11 molATP/cell/day) (208).

Since cancer specific cellular biomass quantification is unavailable, we chose to

keep at this stage the biomass reaction included in Recon 2 v4 GEM.
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Figure 4.2 Overview of DRAMA full pipeline applied to Recon 2 v4 GEM. The GEM is mapped
with GEMap and MetanetX (see section 3.2.2 for more details), followed by automatic curation
of metabolite structural information (see section 3.2.3 for more details), which is used for
estimation of A,.G”. In parallel, the fluxomics and metabolomics datasets for healthy human and
cancer cells are preprocessed with GEMap and matched to the metabolites in the Recon 2 v4.

Table 4.1 Summary of human normal (NH) datasets types collected per tissue. The * indicates
datasets used just for growth rate estimation.

Normal Tissue Type Extracellular Intracellular
Human Fluxes concentrations
NH1 kidney X |

NH2 kidney X

NH3 liver | X
NH4 lung X X
NHS5* liver \

NH6 colon X

NH7 lung \ X
NHS8 prostate X

NHY9 stomach \ X
NH10 prostate X
NHI1 lung \ X
NHI2 lung ‘ X

* Used just for growth rates

100



Chapter 4: From Human GEMs to consistently derived reduced human metabolic networks

Table 4.2 Summary of human cancer (CH) datasets types collected per tissue. The * indicates

datasets used just for growth rate estimation.

Cancer Tissue Extracellular Intracellular Cancer Tissue Extracellular Intracellular
Human Type Fluxes concentrations Human Type Fluxes concentrations

CH2 ‘-M_‘
CH4 _-M‘
——-m_‘
_‘
‘
‘-MI‘
‘
‘

|

|
|
_lwg X X CH6L | s X
|

- colon

CH65
|

CH67
|

CH69

_breast X X CH71 | prostate
|

|
_oskin X X CH73*  oprostate
| |
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Table 4.3 List of aggregated datasets to build different metabolic tissue phenotypes for model
reduction and analysis.

Tissue Type # of sets Data Sets ID

Lung 10 CHI12,CHI19,CH24,CH25,CH33,CH40,CH41,CH42,CH43,CH44
Skin 8 CH31,CH32,CH36,CH55,CH56,CH57,CH67,CH68
Kidney 8 CHI10,CHI1,CHI3,CHI15,CH51,CH59,CH65,CH69
Ovary 7 CH28,CH39,CH45,CH46,CH47,CH48,CH58
Colon 7 CH17,CH20,CH21,CH22,CH27,CH30,CH63
Breast 6 CHI14,CH26,CH34,CH35,CH37,CH64
CNS 6 CH52,CH53,CH54,CH60,CH61,CH66
Leukemia 6 CH16,CH23,CH29,CH38,CH50,CH62
Prostate 2 CHI18,CH49
All Lung Cancer 13 CHI,CH2,CHY9,CHI12,CH19,CH24,CH25,CH33,CHA40,
CH41,CH42,CH43,CH44
All Lung Normal 4 NH4,NH7,NH11,NHI12
All Cancer 73 All CH# sets
All Normal 12 All NH# sets
All Human 84 All NH# and CH# sets

4.2.3 Reduction of GEMs to data-driven networks

We generated RedHuman, a metabolic network reduced from Recon 2 v4 containing the
combined extracellular fluxomics and intracellular metabolomics for all cancer and
normal conditions (AllHuman). For the reduction procedure, we used redGEM (205), a
workflow developed in our lab, to reduce GEMs into phenotypically data-driven
networks. Contrary to many early attempts at producing reduced models, this workflow
has the ability to expand and shrink the network in a systematic and consistent way that
allows for tailoring the model to answer the relevant physiological questions, while
being performed in a semi-automatic and systematic way that is consistent with
predefined criteria and hence reproducible. The redGEM workflow is summarized in

Figure 4.3 and has four main stages.

Briefly, in stage 1 we preprocess the GEM by selecting the core subsystems and
reactions (core network) of interest, which will be the main focus with respect to the
phenotype/condition being studied, and phenotypic data integration, such as
extracellular fluxomics and intracellular metabolomics. Integrating data during the
reduction procedure ensures that the key network properties of the physiology of

interest will emerge and be kept.
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On stage 2 we expand the network via graph search by recovering from the GEM
the pathways/reactions, which are selected based on the number of reaction steps
connecting the core metabolites being below a user defined threshold. Although the
reactions in the selected core subsystems are initially preserved, some reactions will

not carry flux and will thus be removed from the network.

On stage 3 we use lumpGEM (206), a MILP (mixed-integer linear programming)
procedure developed to produce lumped reactions by finding the shortest pathways
connecting metabolites in the core network to their final biomass building blocks. The
process takes into account the original cell composition of the organism integrated into
the GEM (biomass reaction) and the existence of alternative biosynthetic pathways for
the production of the same biomass building block and generates alternative lumped
reactions. This procedure ensures that mass balance is preserved and that the reactions

are thermodynamically feasible and carry flux.

- 7442 reactions

( Recon 2 v4 GEM ) - 2626 unique i e e

metabolites T as
Core ( Stage 1: Preprocessing ) =
reactions — -
and .
metabolites ( Stage 2: Network Expansion )

[ 4

( Stage 3: Biosynthetic reactions )

Stage 4: Validation

- 1582 reactions

C RedHuman )‘344 unique

metabolites

Figure 4.3 Summary of redGEM workflow for the systematic, semi-automatized reduction of
GEMs into data centric networks.

In the last stage, we validate the reduction by checking that the GEM metabolic
capabilities are maintained, such as maximum growth yield and the performance of
metabolic tasks pertinent to the physiology of the organism represented by the GEM,

and now by the reduced model.
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4.3 Results

4.3.1 Generating data-driven reduced models

As illustrated in Figure 4.4, redGEM can be used to systematically reduce models for
different physiologies given the data presented in Table 4.3. In this section, we present
the reduction procedure of Recon 2 v4 with all normal and cancer data (All Human)
integrated for illustration. The resulting network is referred to as RedHuman and is able
to represent both cancer and normal physiologies once the All Human data is removed
and the All Cancer and All Normal datasets (Table 4.3) are individually integrated into
the RedHuman model. This network can be used to study the differences between

normal metabolism and metabolic reprogramming associated with cancer.

a)

)| :

F&18 5

Figure 4.4 Illustration of the pipeline for generation of reduced models with redGEM. Different
reduced models can be generated with data pertaining to different physiologies. After
reduction, each cancer tissue specific model (such as breast and leukemia) can be repopulated
with the fluxomics and metabolomics of each individual cell line of the same tissue to study the
underlying variability of cancer metabolic reprogramming within the tissue.

4.3.1.1 Assessment of dataset variability

Before integrating the data, we assessed the variability across the datasets to ensure
they can reflect physiological differences. The datasets showed evidence of

metabolomics and fluxomics variability that can be explored in the analysis of the
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different phenotypes. Survey of metabolomics from all NCI60 cancer cell lines included
in the cancer datasets showed an overall variability in the level of intracellular
metabolites across the 60 cell lines (Figure B.4.1), which is also observed, in smaller
extent, when the levels of metabolites for different cell lines from the same tissue are
compared (Figure B.4.2 for NCI60 prostate and Figure B.4.3 for NCI60 leukemia, for
instance). Interestingly, prostate tissue with only two cell lines (Figure B.4.2) presents
more variability in the measured intracellular levels than leukemia with 6 cell lines

(Figure B.4.3). See Figure B.4.4 for All Normal vs. All Cancer comparison.

4.3.1.2 Minimal media and assessment of extracellular reactions (uptakes/secretions)
The procedure of data integration involved several steps to ensure the models are

functional using minimal assumptions. To further constrain the physiology, we started
by blocking the uptakes of metabolites that are not typically transported across the cell
membrane. These metabolites are molecules that contain moieties, such as coenzyme A
(CoA), acyl-carrier protein (ACP) or phosphate groups, that are not transportable
through the membrane by simple diffusion (see the list in Table C.4.4). These moieties
require specific transport mechanisms, which if not identified in the model, should not
be allowed. On the other hand, even if the transport existed it would allow only for a
very low maximum uptake rate and the cell would still be required to produce these
moieties. For instance, the de novo synthesis of CoA is a conserved pathway across
organisms (209).

Apart from the network size, the complexity of human metabolism lies on its
redundancy, i.e.,, the possibility of cell growth on alternative carbon sources. These
alternatives translate into tissue- and condition-specific changes in metabolism, and
thus we should ensure these extracellular reactions take part in the landscape of
possible physiologies in our analysis even when no extracellular fluxomics data is
available. These alternatives are found through in-silico minimal media analysis, where
growth in the GEM is explored by selecting minimal sets of nutrient uptakes. The
extracellular reactions for these nutrients that are essential for cellular growth and for
which there were no extracellular flux measurements, are then forced to be opened
with a general high upper bound flux constraint. Extracellular reactions for other

metabolites that are commonly found in the minimal media used in mammalian cell
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culture and in serum (210, 211) are also ensured to be unblocked in the model. Table
C.4.5 has the complete list of selected metabolites for which extracellular fluxes are
checked independently of data, but their flux constraints are overwritten in case

measured uptakes are available in the dataset.

4.3.1.3 GEM assessment with data for specific physiology
Before starting the reduction procedure and after taking care of the steps above, Recon

2 v4 was tested by integrating the datasets presented in Table 4.3. This is done to
ensure the GEM is functional with the data prior to reduction. The data for the different
physiologies was added by stages and the models were evaluated for maximal growth:
models with data should be able to produce biomass, but also to sustain growth yields
similar to the maximum growth measured for the cell lines included in the different
physiologies. We note that when testing the GEM, the growth yield is often much higher
than the one obtained from the measurements when other uptakes for which there is no
extracellular flux data remain unconstrained.

The fluxomics data containing uptake and secretion rates for each physiology in
Table 4.3 was initially added without the intracellular metabolomics data and FBA was
used to compute maximal growth yield under the specified conditions. Uptake and
secretion rates smaller than le-7 were excluded from the dataset. Colon, lung, ovary
and All Lung Cancer models failed to grow at this stage. Since in FBA no thermodynamic
constraints are imposed, failure to grow is solely an effect of both the imposed
extracellular flux constraints and the mass-balances of the network. Further analysis for
uncovering minimal sets of data that are problematic for colon, lung, ovary and All Lung
Cancer models revealed that the extracellular fluxes of D-sorbitol and the vitamin
Thiamine were the problematic data points. For these four models in particular, both
Thiamine and D-sorbitol were measured secretions. Thiamine is a required nutrient in
cell culture and essential to humans. It is present in the minimal media used for the
NCI60 cell lines and it is a known unstable molecule in culture as indicated in

(http://www.sigmaaldrich.com/life-science/cell-culture/learning-center/media-

expert/thiamine.html). This indicates that the experimental measurement of Thiamine

as secretion could be an error. The problem with D-Sorbitol was related with an

unsustainable forced lower bound of its secretion. With these extracellular uptakes
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corrected all four models resumed the desired growth yield with FBA analysis and it
was maintained after adding thermodynamic constraints for the reactions and
concentration measurements.

After applying thermodynamics constraints and adding intracellular
concentrations to the models, we found that all models required at some extent
relaxation of the lower bound of D-sorbitol secretion. Breast, cns, kidney, leukemia,
prostate, skin and All Cancer models also required relaxation of either one or a pair of
uptake/secretions of creatinine, adenosine, inosine or intracellular concentration of
glycine. The need for relaxing data constraints is a typical occurrence when integrating
data into GEMSs, and it is a direct consequence of measurement uncertainties and/or

underlying model assumptions.

4.3.1.4 Selection of core subsystems for reduction

The next step is to select the core subsystems of interest to be kept in the RedHuman
core  network. The list of core subsystems selected comprises:
Glycolysis/gluconeogenesis; Citric acid cycle; Glutamate metabolism; Oxidative
phosphorylation; Pentose phosphate pathway; Pyruvate metabolism; Glutathione
metabolism; Glycine, serine, alanine and threonine metabolism; Arginine and proline
metabolism; Cysteine metabolism; CoA synthesis; ROS detoxification; Cholesterol

metabolism; Fatty acid synthesis.

This list contains all the main subsystems present in central carbon metabolism.
These are the subsystems of interest to study the overflow metabolism characteristic of
the Warburg effect, a Hallmark of cancer metabolic reprogramming, where the key
features are a high glycolytic activity leading to lactate byproduct formation with
(sometimes) deregulation of citric acid cycle. There are also other subsystems included
that have been observed to play an active role in cancer proliferation and heterogeneity.

Glutamate metabolism and Citric acid cycle subsystems connect the
glutaminolysis pathway, which with increased glutamine uptake rate plays an
important role in cancer metabolism, fueling parts of the citric acid cycle to sustain
biosynthetic pathways (212, 213). Glutamine is also involved in the production of

glutathione to counteract and detox the high levels of reactive oxygen species (ROS)
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formed as a result of increased metabolic activity within the cell (214). There is
however heterogeneity in cancer metabolism with respect to glutamine being uptaken
or synthesized, which has been observed in breast cancer occurring in different tumor
regions (215, 216) and as well in different regions of the same NSCLC tumor that differ
in their microenvironment (202).

Non-essential amino acids glycine and serine are precursors for the synthesis of
proteins, lipids, nucleotides and glutathione metabolism, and their biosynthesis
pathways and are often found to be upregulated in cancer (217, 218). Serine is also a
precursor for the biosynthesis of other non-essential amino acids and participates in the
reactions leading to the production of sphingolipids, phospholipids and nucleotide
synthesis, which have been implicated in the support of cancer cell proliferation (219).
In a screening of 60 different cancer cell lines (NCI60 cell lines in (217), which are part
of our datasets), glycine consumption was found to correlate with rapidly proliferating
cells, which suggests that its endogenous biosynthesis is not sufficient to support the
growth of fast replicating cells (217). Breast cancer studies have observed a coupling
between serine secretion and glutamine uptake, which has also been identified as the
nitrogen donor for serine biosynthesis (220, 221).

Arginine is considered a semi-essential amino acid in humans despite the
existence of a pathway for its endogenous biosynthesis in cells, and it has been widely
reported as an essential amino acid for cancer cell proliferation and tumorigenesis
(222). Most of the arginine de novo synthesis occurs in the kidney, in the proximal renal
tubule via urea cycle. The cells primary source of arginine is from diet and protein
turnover (223). Endogenous arginine biosynthesis is not sufficient to sustain grow of
proliferating cells (224). Arginine is involved in the synthesis of proline and glutamate
and is also a precursor for the synthesis of polyamines, creatine, nucleotides and nitric
oxide (223, 225). Upregulation of these biosynthetic pathways has been shown to
promote cancer proliferation, invasion, and metastasis (225, 226). Studies in tumor cells
have shown that arginine plays a role in cancer cell proliferation (227-229), which has
been further complemented by evidence that arginine starvation can negatively impact
tumor growth (228).

The arginosuccinate synthetase reaction (ASS), where citrulline and aspartate

are converted into argininosuccinate, is the rate limiting step in arginine synthesis
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(223) and the gene coding this enzyme has been observed to be differentially expressed
over a wide range of cancer tissue samples (222, 230, 231). Several studies have shown
that hepatocellular, renal and prostate carcinomas, as well as some malignant
melanomas and pleural mesotheliomas do not express (ASS). For these cancers
consumption of extracellular arginine becomes essential, as shown by the effect of
arginine degrading enzyme on tumors (232-234).

Lipid metabolism is also observed to be upregulated in cancer. Lipids play a role
in the production of cell membranes, which are highly demanded in cancer cells due to
their rapid proliferation. They are also involved in signaling pathways necessary for
cancer cell survival and progression and in post-translation modification of proteins.
The high levels of lipogenesis in cancer cells have been shown to promote cancer cell
proliferation and survival (235) and has led to the development of inhibitors targeting
enzymes of the fatty acid biosynthesis pathways to suppress cancer cell growth (236-
239).

Cholesterol metabolism also plays a role in cancer proliferation. Cholesterol is a
precursor of sterols and isoprenoids through the mevalonate pathway, which has been
observed to be unregulated in cancer and linked to tumor growth (240, 241). This
observation has led to different studies where the effect of statins (a drug used to
decrease cholesterol synthesis) on the decrease of cancer cell proliferation was
investigated (242-246).

ROS detoxification and glutathione metabolism are key subsystems in cancer due
to the balance that cancer cells must achieve to counteract the oxidative stress by
producing antioxidants (247). The high levels of reactive oxygen species produced
(ROS), although toxic when in high amounts in cells, are known to promote cancer cell

survival by causing DNA damage and inducing mutations that promote tumor growth.

The subsystems for fatty acid synthesis and cholesterol metabolism were also
included in the core network since metabolic alterations in fatty acid metabolism have
been amply reported in recent studies. Lipids are an essential component of cell
membranes and cancer cells have been observed to actively synthesize fatty acids to
support their proliferation (235). Cholesterol also takes part in the synthesis of cell

membranes but is also the precursor for the synthesis of sterols and isoprenoids
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through the mevalonate pathway, whose highly-expressed genes have been linked to

poor prognosis for breast cancer patients (248) and to cancer progression (249).

4.3.1.5 Reaction thermodynamics coverage per subsystem in the GEM

We have assessed the thermodynamic constraints curation per metabolic reaction
(excluding transports) pertaining to different cellular subsystems in Recon 2 v4, which
is shown in Figure 4.5 (see Figure B.4.5 for this quantification in terms of number of
reactions).  Subsystems  belonging to the central carbon pathways
(glycolysis/gluconeogenesis, citric acid cycle, pyruvate metabolism, oxidative
phosphorylation and pentose phosphate pathway) and nucleotide synthesis (purine and
pyramidine synthesis, nucleotide sugar metabolism and nucleotide salvage pathway)
have 100% of metabolic reactions with thermodynamic constraints. Subsystems
consisting on amino acid metabolism have more than 85% metabolic reactions with
applied thermodynamic constraints. Other subsystems of interest for cancer cell
metabolic reprogramming such as glutathione metabolism, ROS detoxification,
cholesterol metabolism, glutamate metabolism, and other non-essential amino acid
metabolism have more than 80% of metabolic reactions with thermodynamic

constraints.

4.3.2 RedHuman assessment & validation

The RedHuman network was generated with redGEM with the starting core subsystems
presented in section 4.3.1.4 and the All Human data for normal and cancer physiology.
The core network expansion in stage 2 of redGEM was performed by connecting the
core metabolites among the selected starting subsystems up to three step reactions. The
initial human metabolic network Recon 2 v4 had 7442 reactions, of which 2520 were
transport reactions (34% of the network), and 2626 unique metabolites. The RedHuman
network generated (Figure 4.6) contained 2239 reactions, of which 15 are lumped
reactions to biomass building blocks and 1415 are transport reactions (63% of the
network), and 453 unique metabolites. In the overall, the network reduction resulted in
a 5.8-fold and 3.3-fold decrease in the number of unique metabolites and reactions,

respectively. Due to the complexity of the transport reactions in human GEMs and their
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Figure 4.5 Fraction of metabolic reactions per subsystem (excluding transport reactions) in
Recon 2 v4 that have reaction thermodynamics constraints.
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many forms of carbon sources exchanges, these are chosen to be kept in RedHuman and
hence the final network is comprised of a large proportion of these (63%). However, we
note that RedHuman only contains reactions that carry flux given the data and

thermodynamics constraints.

Network size comparison

# unique metabolites T

. i R (901 transp.)
# reactions with ArG’™® e — (1491 transp.)

# transport reactions I Egi:ﬁ:g
1 reaCtioNS
0 2000 4000 6000 8000

RedHuman M Recon 2 v4

Figure 4.6 Comparison of metabolic network size between Recon 2 v4 and RedHuman.

The RedHuman has to retain metabolic capabilities that are relevant for the
physiology under study. The starting subsystems have been selected as to include parts
of the metabolism that may differ depending on cancer types and conditions, such this
metabolic reprogramming variability will be captured by the RedHuman network. In
addition to this it is also important to identify common metabolic tasks, e.g. amino acid
biosynthesis pathways for non-essential amino acids and their auxotrophy, which are
relevant for the conditions that will be studied, as well as to retain other human
metabolic capabilities of the departing GEM. In the overall, all these steps ensure that
the resulting RedHuman network will have decreased the GEM complexity and its
redundancy, while keeping the network flexibility to synthesize the required biomass

building blocks.

The network landscape of RedHuman is summarized in Figure 4.7 by quantifying
the number of reactions per subsystem that remain in RedHuman with respect to the

initial number in Recon 2 v4. The RedHuman network does not include all the

112



Chapter 4: From Human GEMs to consistently derived reduced human metabolic networks

subsystems initially present in Recon 2 v4 (see Table C.4.6 for the list of subsystems not
included in RedHuman). The Core Subsystems are the starting subystems selected at
stage 1 of the reduction procedure and the subystems identified by the Network
Expansion label are the ones that have reactions that connect the initial network defined
by the starting subsystems during stage 2 of the reduction procedure. As expected, the
starting subsystems have the most coverage on number of reactions kept in the
RedHuman. We also observe that parts of the metabolism that are closely related to the
metabolic functions of the starting subystems emmerge during the network expansion
procedure to complement the network funcitonality. This is for instance the case of
subsystems that separate anabolic and catabolic counterparts, such as CoA
synthesis/CoA catabolism and Fatty Acid Synthesis/Fatty Acid Oxidation. In addition,
other subsystems for lipid and nucleotide metabolism emerge during network
expansion to complement the central carbon pathways and the routes for production of
biomass building blocks. This demonstrates the power of the reduction procedure used
as it differs from an ‘ad hoc’ reduction of the GEM where parts of the metabolism are

selected and removed independently of connectivity.

Since amino acid metabolism plays a huge role in cancer associated metabolic
rewiring it is important to keep in the RedHuman the amino acid biosynthetic
capabilities of the GEM. Validation analysis of first attempted reductions of Recon 2 v4
(Figure B.4.6) showed that the amino acid de novo biosynthesis pathways were not
completely active in the resulting network. The extracellular reactions allow for
auxotrophy of the non-essential amino acids and during reaction lumping to the non-
essential amino acids present in the biomass composition the shortest route is then for
the cell to immediately uptake those amino acids to go directly into the biomass, hence
rendering the amino acid biosynthesis pathways useless. In order to ensure that the
amino acid biosynthetic pathways are included in the network as core reactions or
through lumped reactions, we block the uptake of the non-essential amino acids during
stage 3 of the reduction where the production of biomass building blocks is tested. At
the last stage of the reduction procedure, we validate the presence of the non-essential

amino acid biosynthetic pathways by testing their synthesis from glucose.
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Figure 4.7 Quantification of reactions in the RedHuman network with respect to the original
Recon 2 v4 network. Quantification is performed by the number of reactions per subystem
included in RedHuman network with respect to the original number of reactions per subsystems
in Recon 2 v4. Core subsystems are the subsysystems selected as relevant for the physiology to
be studied and they constitute the starting subsystems (along with the subystems containing
the extracellular reactions) to initialize the reduction procedure. The subystems identified by
the Network Expansion label are the ones that have reactions that connect the initial network
defined by the core subsystems.

The generated RedHuman network has passed on the validation of all metabolic
tasks for amino acid biosynthesis, except for L-arginine biosynthesis. We note here that
this is not a characteristic of the RedHuman construction since it is also observed in the
GEM with the different datasets integrated. In fact, this observation is a direct result of
the application of reaction thermodynamics to the model (Figure B.4.7). Arginine

biosynthesis consists in two reactions Argininosuccinate synthetase (ASS) and
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Argininosuccinate lysase (ASL) that convert aspartate and citrulline into L-arginine and
fumarate by means of an intermediary product called argininosuccninate. These two
reactions are thermodynamically feasible in both directions given a wide range of the
intracellular concentrations for their participating substrates and products. However,
for the intracellular levels of L-arginine (>1e-7 M) as the ones measured for cancer and
normal cells found in our collected dataset (and also widely reported in the literature),
the ASL reaction becomes unfeasible in the forward direction, i.e., in the direction of L-
arginine production. The observed incapability of synthesizing L-arginine, rather than
being a systemic problem, is actually an interesting observation. The observed L-
arginine auxotrophy and the downregulation of ASS enzymes in many cancers have
propelled the interest on L-arginine starvation as a therapeutic target. However,
recently, it has been observed that the resistance of cancer cells treated with long term
L-arginine starvation is induced by the upregulation of ASS enzymes (250). This current
observation is in agreement with early reported findings on the repression of ASS and
ASL reactions due to the presence of high levels of L-arginine in the culture media of

cancer and mouse fibroblast cell lines (251).

Other metabolic tasks relevant for the physiology to be studied with the reduced
model can be tested. However, it is important to correctly interpret the results of testing
metabolic tasks in the context of the physiology represented by the reduced network
(Figure B.4.6). Some tasks that should pass will fail simply because these parts of the
network have not been kept within our core network during subsequent expansion as
they were not required to ensure cell growth or because the pathways are lumped in a
way that the route from the input compound to the compound produced becomes

imperceptible.

After processing, the AllHuman data included in RedHuman consisted of 88
extracellular fluxes and 167 intracellular concentrations. From these, 36% of
extracellular reactions were removed from RedHuman. In total, 20% of these
extracellular fluxes and 16% of the metabolites with measured intracellular
concentrations corresponded to metabolites that are not explicitly present in the
RedHuman core network (see Table C.4.7). Metabolites that are not explicitly present

but necessary for the cellular physiology under study are implicitly kept in the lumped
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reactions that connect the core RedHuman network to each of the biomass building
blocks (Table C.4.8). The remaining biomass building blocks without lumped reactions

have their synthesis pathways explicitly present in the core network.

The AllHuman data used in the reduction of RedHuman and remained integrated
into that model was replaced by the AllNormal and AllCancer data integrated separately
to represent the normal and cancer physiologies, respectively. The maximum growth
yield of each RedHuman representing normal and cancer physiologies is shown by the
bar heights in Figure 4.8, where it is compared to the maximum growth rate measured
for the cell lines included in the respective datasets (green horizontal line). The
RedHuman for each physiology is able to reproduce the growth rate from the
measurements. We note that since mammalian cells can uptake a multiplicity of
substitute metabolites for which there may not be available measurements, the
respective carbon pathways may not be included in the reduced model. This
interchangeable use of substitutable carbon sources can lead to lower maximum growth
yield. However, the flexibility of the reduction procedure combining redGEM and lumpGEM
(205, 206) can be iteratively used to re-generate lumps by adding the required metabolites to
the extracellular compartment and forcing their auxotrophy to generate the respective lumped

pathways (Pipeline 2 in Figure B.4.8).

Testing growth yield in RedHuman

0.05
0.04

0.029 0.029

h-1 0.018

AllNormal AllCancer

B Max datagrowth Yield B RedHuman

Figure 4.8 Maximum growth yield for each (blue bars) RedHuman with AllNormal and AllCancer
data integrated representing normal and cancer physiologies, respectively, compared to the
maximum growth rate measured for the cell lines included in the datasets (green horizontal
line).
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Both normal and cancer RedHuman models were analyzed with TFVA for a
preliminary assessment of the differences in the feasible solution space of the model
reactions given the two different physiologies. In Figure 4.9 we show the comparison of
the flux variability bounds for some reactions between the two models to assess their
potential for the analysis of two separate physiologies. Most of the observed variability
is in the patterns of amino acid consumption (shown extracellular reactions). It is
interesting to observe the blocking of certain reactions that take part in the urea cycle in
the mitochondria for the cancer model, which could be related to an attempt in cancer
to preserve L-arginine to be used in other biosynthetic reactions that support
proliferation. We also observed that reactions involving the production of Nitric Oxide
(NO) and its secretion are more flexible in the cancer physiology. This observation is
also relevant in the context of cancer since NO levels have been associated with

carcinogenesis and tumor growth progression (252).
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Figure 4.9 Comparison of feasible solution space of some reactions by performing
Thermodynamics-based Flux Variability Analysis (TFVA) on RedHuman with AllCancer and
AllNormal data.
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4.4 Conclusion and path forward
In this chapter, we established the protocol for the reduction of a human metabolic

model and the generation of tissue-specific models. We started with the human GEM
Recon 2 v4 that has been processed and [re]-curated by the pipeline presented in
Chapter 3 and demonstrated here its step-by-step reduction. Model reduction was
performed using a semi-automatized workflow (redGEM and lumpGEM (205, 206)) that
generates data-driven consistent models for normal and tissue-specific metabolic
phenotypes, such that the models are specifically tailored to the physiology and
conditions under study. RedHuman, the first thermodynamically feasible reduced model
of human metabolism, was obtained by integrating into the network the fluxomics and
metabolomics pertaining to normal human physiology and different tissue-specific
cancers, as well as reaction thermodynamics constraints. The RedHuman generated had
similar biosynthetic capabilities to the initial GEM, despite the size of the network being
decreased by 3-fold in terms of reaction number which decreased the GEM associated
complexity and network redundancies. Besides checking for the production of the
biomass building blocks, the metabolic capabilities common to human metabolism, such
as amino acid de novo synthesis, were also evaluated during validation stage. When the
model was analyzed separately for the normal and cancer data, it showed the ability to

differentiate between the two physiologies.

These reduced networks are the perfect scaffold to perform thermodynamics-
based flux analysis with application in the study of key metabolic features associated
with cancer metabolic reprogramming. They can be used to compare within and across
tissue-specific cancers, as well as to perform comparative studies between the
metabolic phenotype of a healthy cell type and cancer. In particular, since fluxomics for
normal physiology is typically obtained for exponentially growing cells, such is the case
of the datasets used in this work, this model can be applied to the comparative study
between the metabolic reprogramming of growing normal cells with the one pertaining
to highly-proliferating cancer cells. Transcriptomics data can also be added to the
models to further differentiate the physiologies.

Furthermore, as discussed, the reduction pipeline implemented here is itself an

analysis tool due to its intrinsic flexibility. It can be adapted to be performed in stages
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where reaction lumping to the biomass building blocks are generated according to the
tissue specific data that is integrated after generating the core network, thus allowing
for direct comparison of intrinsic network heterogeneity among different tissues and
conditions (Figure B.4.8). This allows for a systematic comparison between the
metabolic states observed in normal growing cells and different cancers to identify the
key metabolic features of the overflow metabolism (Warburg phenotype), which may be
used as targets to induce reverse Warburg (as this ability has been observed in some
cancers), as well as to identify cancer tissue specific targets.

As a final remark, we note that the pipeline described within Chapters 3 and 4,
despite being presented for the human model, remains general and can be applied to

the GEMs of any organism and for the study of other conditions/diseases.
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Conclusion

In part I, we focused on the modeling and study of mRNA translation. The stochastic
simulations of translation elongation in the context of an E. coli used a more detailed
mathematical description of the ribosome kinetics during codon elongation, which was
paramount to identify the relative importance of the determinants of elongation rate
and unify the results from different computational and experimental studies on the

subject.

We showed that the two factors that determine the speed of the ribosome along
the mRNA strand are, by order of importance for in vitro conditions, the competition
between the cognate and the non- and near-cognate tRNAs and the overall abundance of
cognate tRNA interaction type (WC vs. WB). Interestingly, for in vivo conditions, tRNA

competition becomes less important with respect to the cognate interaction type.

The simulations of heterologous translation of synonymous transcripts
representing the same protein sequence, where codons were replaced by synonymous
codons presenting the same amino acid and selected based on different criteria, showed
that the transcript has a maximum elongation rate when its sequence is designed based
on a derived equation that takes into account both determining factors and depends on
the amount of free tRNA in the host cell. This work constitutes an important
contribution to the field of synthetic biology as its results can be used to improve the
design of sequences for heterologous protein production in pharmaceutical and biotech
industries. It also strongly indicates that variability in tRNA abundance of different host
organisms for protein production, such as CHO cell lines, can be a factor that influences
the general productivities of these cell lines. The results from this study can thus be a
motivator for the measurement of such quantities to screen ahead host cell lines to

classify higher producers.
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Conclusion

Part Il focused on establishing a pipeline for generating consistent and
thermodynamically feasible organism- and condition-specific reduced models from the
GEMs of the respective organisms. Focusing on the human GEM Recon 2 v4, we
developed tools and set up semi-automatized workflows (DRAMA) that allowed for a
consistent, and more importantly, a reproducible processing of the model for -omics
and compound thermodynamics parameters integration. This pipeline sets the standard
for the curation of GEMs with total or partial missing annotation, a common problem of
existing GEMs that inconveniences their ready use, with the purpose of providing the
highest coverage on reaction thermodynamics for thermodynamics-based flux analysis,
while it doubles as a guide for the processing of GEMs by non-experts in the field who

wish to use them.

As demonstrated, this pipeline can be applied to the generation of tissue-specific
cancer models for the study of cancer metabolic reprogramming, which can be used to
study variability across different tissue-specific cancers, but also to explore differences
pertaining to the Warburg effect by comparing cancer metabolism and healthy

physiology under growth conditions.

This systematic pipeline that ranges from curation and processing of GEMs to
building of reduced metabolic models opens the path to future studies where these
reduced human metabolic networks are the perfect platform for more complex studies
involving different cell types, similarly to what has been done for the gut microbioma
(121, 122), where analysis with GEMs becomes cumbersome due to their size and data
knowledge gaps. An interesting case study would be the analysis of the metabolic
rewiring in the tumor microenvironment due to the presence of lactate shuttles
between the cells in the tumor or in the surrounding tissue. Recent studies have shown
that the exploration of these metabolic interactions within the tumor microenvironment
could lead to the discovery of potential drug targets that would kill the more aggressive

and resistant hypoxic tumor cells (253).
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Appendix A Supplementary Texts and
Methods

A.1  Supplementary Texts and Methods for Chapter 1

A.1.1 Modified ZH model equations
We extend the deterministic formulation of the ZH model of translation (50) into a

modified ZH model that accounts for:
¢ Discrimination between near-cognate and non-cognate,
¢ Possibility for near-cognate (nc) misincorporation at proofreading stage,
¢ Proofreading kinetic step for cognate and near-cognate.

The schematic representation of the ribosome kinetic pathway is in Figure 1.4 of

section 1.2.1 and the mass balance equations are the following:
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cognate (nc)), s represents the state number [1,..,6,9,11], and j is the codon number that
is being decoded at the ribosome A-site. Since less intermediate steps were used in ZH
model, we introduced a discontinuity in the index of the ribosome states in our modified

ZH model to establish a connection with further model extensions (Table C.1.1).

The system of mass balance equations above can be simplified by writing only
one equation in terms of a state that is a combination of all the intermediate states. We
choose state 9 (the ribosome translocation state) as our new lumped state. The new
system will be given by

dsl_umped

Ji _ _ 9 9 j . clumped
_Vi _Vout_Vj,c+Vj,nc_k S

dt eff o ’ (AL1)

where

simPet = 3, S5 (A.1.2)

For a system at steady state, the effective codon elongation rate constant can be written

as

9 9
j _ Vj,c+Vj,nc

Kerr = "sess

(A.1.3)

Solving the mass balance equations at steady state all states can be re-written in

function of state 9 and k’ .. can thus be expressed in the final form
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where Tl{ij are the tRNA concentrations for different binding interaction types at codon

j.

The terms in the expression are defined below:

Cognate WC term:
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Initial selection term:
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The term W;,; present in equations as), and ag represents the conditional
probability that codon j + 1 is free given that the ribosome with A site in codon j is
ready for translocation. This term was defined initially in (39) and later on used in the

ZH model, and is given by

LSl Yk ifl<j<n-L
Wigy =198 Ty T 1T S R (A.1.10)

1, otherwise

where Ly is the length of the ribosome in terms of number of codons it occupies on the

mRNA, n is the total number of codons in the mRNA transcript, and x;, is the fractional

codon occupancy of codon j + k by a ribosome A site.
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A.1.2 Reproduction of experiments with modified ZH model

The modified ZH model is used for reproducing the experimental results in (49). The
dynamic simulations were performed using the ribosome kinetic rates summarized in
(53) for the translation of a mRNA segment of the form auguuuuuu(...Juaa, with 26 UUU
codons in between the start and stop codons. Experiments were performed with 0.2 uM
of isolated cognate or near cognate TC so that no competition takes place and 2.8 uM of
initiation complexes (ICs). Since the model is built for a constant supply of TC and the
experiments use instead an excess of IC/mRNA with respect to the TCs, we replaced bei
in equation V,!,; = kP - St - T/ by M = [IC] = 2.8 uM and, instead of referring to the
ribosomal states S', we refer to the TC states in the ribosome (V;1,; = k' - S; ,; - M). We
simulated the dynamic model during 20 and 50 seconds for cognate and near cognate,
respectively. The simulation was initialized at the translocation step of the start codon,
which is state one of the next codon, in order to reproduce the experimental conditions
in which the start codon has been recognized and it is sitting on the ribosome P-site.
Proofread aa-tRNAs do not add to the bulk of available TCs because in the experiments
there is no elongation factor EF-Ts in the medium to promote the assembly of the tRNAs
with the EF-Tu and GTP to form a TC. The curves in Figure 1.5 and Figure 1.6 were
obtained by integrating the flux resulting from the Kinetic step corresponding to the GTP

dSi=s

as3_ .
n=2 = k353=2) or the accommodation ( "

dt

hydrolysis ( = kSS,E:z) during translation

of the second codon, respectively.

A.1.3 Sobol's Method for GSA

Global sensitivity analysis (GSA) methods quantify the influence of the uncertainty of
the model parameters on the variance of the model output. GSA methods have the
advantage of dealing with models regardless of any assumption in linearity.
Furthermore, they allow for an exploration of the entire parameter space and take into

account interactions among the parameters.

The Sobol's method is a variance-based approach that uses a Monte-Carlo based

numerical procedure to sample the parameter space with a quasi-random number
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generator, which estimates the individual parameter effects on the model output

variance (a detailed description can be found in (254)).

Briefly, for a model output described as a function of its parameters (X;), Y =
f(Xy, ..., X;), the total variance of the model output
V) =XVi+ XX Vij + -+ Vip ks (A.1.11)

can be decomposed into the sum of the first order conditional variance of each
parameter i (V;) and the second order conditional variance of each parameter
combination (V;;,i # j). Parameter sensitivity is quantified by two derived measures:
the main effect and the total effect.

The first order global sensitivity index (or main effect) is defined as

Vi
S; = oy (A1.12)

This index gives a measure of how much the change in one parameter influences the

model output.

The total effect index
STi = Si + Zj:/:iSij + -+ 512'_.;{, (A113)

where §;;; represents the joint effect contribution of parameters X; ;, to the output
variance and hence accounts for the total contribution of each parameter to the model

output.

A.2 Supplementary Texts and Methods for Chapter 2

A.2.1 Cell composition in ribosome and tRNA molecules

We estimated the total number of tRNA molecules per cell (tRNAT) for the growth rates
0.7, 1.07, and 1.6 h! from the fit of the total number of tRNA molecules per cell in
function of other growth rates (0.6, 1.0, 1.5, 2, 2.5 h'1) that were reported in (58) for an
exponentially growing E. coli cell. For the growth rate 0.4 h'! this fitting step was not

necessary since the number of molecules for all the tRNA species was directly reported
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in (59) at this growth rate, along with their concentrations. The same fitting procedure
and source of data mentioned above was used to estimate the total number of
ribosomes per cell (RT) for all the four growth rates of interest (0.4, 0.7, 1.07, and 1.6 h-
1), Fittings can be found in Figure B.2.1. The concentrations for all tRNA species in E. coli
at these growth rates were obtained from the experiments reported in (59). The tRNA
isoacceptors Gly1-Gly2 and Ile1-Ile2 were treated collectively in (59) and we proceeded
to split their values according to the ratio of their gene copy number, which are
Gly1:Gly2=1:1 and Ilel:lle2=3:1 (82). The cell volume (V,.;) was then computed for

each growth rate using

tRNAT
N4 [tRNATT

Vcell = (A21)

where [tRNAT] is the total concentration of tRNA molecules at the given growth rate
and N, is the Avogadro constant. With the estimated cell volumes and the
concentrations of each tRNA species, we calculated the number of molecules for each
tRNA species at each growth rate. The tRNAT and R” values obtained from the fittings

and the computed V,,;; at each growth rate are summarized in Table C.2.5.

A.2.2 mRNA sequences present in the simulated cell

Similarly to what was done for tRNAT and R”, we estimated the mRNA synthesis rate
per cell for the growth rates (0.7, 1.07, and 1.6 h1) from the fitting of the mRNA
synthesis rate in function of growth rate reported in (58) for an exponentially growing
E. coli cell (see Figure B.2.2 for fitting and Table C.2.5 for the values). The average
number of mRNA copies per E. coli (M;) was computed for each growth rate of interest

(0.4,0.7,1.07, and 1.6 h-1) with the following expression

MT — UmRNA'T‘mRNA’ (A.Z.Z)

NtmRNA

where v,z IS the rate of mRNA synthesis per cell, 7,,,zy4 is the average functional life
of mRNA, and nt,,zy4 is the average number of nucleotides for the mRNA sequences in
E. coli. The average functional life of mRNA is assumed both in (58) and here to be 1 min
and independent of growth rate, as estimated from pulse-labeling experiments in (255).

A value of 317 codons was obtained for the average mRNA length for E. coli (Lgatapase)
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with a standard deviation of 213 codons. This computation was based on averaging the
length of the protein coding regions from all the mRNA species in EcoGene 3.0 database

for the strain E. coli K12 (81).

Since we lack data on the mRNA sequences and respective copy numbers
expressed at each of the growth rates under study, we constructed the mRNA pools of
the cell at each condition by formulating a homogeneity criterion based on the fact that
E. coli expresses mRNA in low copy number (78). This criterion assumes that the mRNA
pools are qualitatively similar across the four growth rates and enforces them to
approximate both the average mRNA length and the codon usage frequency (CU) of E.
coli. In Table S5 there is a comparison between the mRNA expression in E. coli at low
(79) and high (80) growth rates. The statistics over the mRNA copy number
distributions at both conditions show that most mRNAs are expressed in very small
amounts with not so frequent occurrences of bursts in mRNA expression levels.
Furthermore, the average codon length of the mRNA sequences expressed at each
condition is similar to the average mRNA length representing the whole E. coli genome
and the average of the relative deviations between mCU and CU for each codon species
is 15% and 23%, respectively, for low and high growth conditions. We obtained nt,,zy4
by multiplying Lygeqpase Py 3 (number of nucleotides in each codon), which was then

assumed to be constant across growth rates (see Table C.2.5 for values).

In order to obtain a homogenous mRNA pool for each growth rate, we started by
selecting a subset of mRNA species from EcoGene 3.0 database. In this subset, 52% of
the sequences were classified as essential genes. The total number of mRNA species
present in this subset (289 species) was chosen to match the My at growth rate 0.4h-1
such that it contains exactly 1 copy for each mRNA species at this growth rate. The

selection criteria for the choice of this subset of mRNA species was based on

1. Reaching a relative deviation smaller than 0.5% between the average mRNA

length of the subset and L 4¢qpqses

2. And at the same time enforcing the relative deviation between CU and mCU for
each codon to present an average and standard deviation across all codons both

smaller than 10%.
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We chose to control both the average and the standard deviation for the second
criterion so that we obtained a more homogeneous set of deviations between CU and

mCU for each codon in the attempt to keep the mCU values close to E. coli CU.

In order to set the mRNA pool for the remaining three growth rates, we
performed an iterative process for each growth rate focusing on the two selection
criteria presented above. The number and type of mRNA species chosen for the growth
rate 0.4h'1 was maintained for the remaining three growth rates, but their copy
numbers were increased to match the target number of mRNA molecules for each of
these growth rates as presented in Table C.2.5. The pools were at first increased
homogeneously, i.e.,, each mRNA species was increased by the same amount of copies
until the total number became as close as possible to the target M;. Subsequently, a
group of different mRNA species that matched the number of mRNA copies missing to
reach the target M; was randomly selected to have its copy number increased. This
random selection was repeated for each growth rate until criteria 1 and 2 from above
were fulfilled, allowing us to construct mRNA pools that are qualitatively similar across

the four growth rates and with a mCU that approximates the E. coli CU (Figure B.2.3).

A.2.3 Derivation of full deterministic equation for computation of
codon elongation rate

We further extend the deterministic formulation of the modified ZH model of translation

(section A.1.1):
e Discrimination between cognate Watson-Crick (WC) and cognate wobble (WB),
¢ Possibility for near-cognate (nc) misincorporation at proofreading stage,
¢ Proofreading kinetic step for cognates (WC and WB) and near-cognate.

These deterministic equations are developed for a low ribosomal density, where
the effects of the ribosome queuing can be ignored. The schematic representation of the
ribosome kinetic pathway is the one in Figure 2.1 of section 2.2.1.1 and the mass

balance equations are the following:
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1
i _ /11 11 11, y/r r
= Vj,WC V] ws T V; +V] we Vj,WB +

dt ] ne
+er,nc + ‘/I_"IVC + VJ WB + V + VJ_an
_‘/jl,WC - ‘/jl,WB V] nc ‘/Jlmm
ds? ~ _
I =V e+ Ve~ Vi~ Vine
ds? ~ i
=V Vin = Vie = Vi
dS : c -2 -1
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ds?
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ds?
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d—]t - V Vmc VJ ne
Sine _ys _ye (A.2.3)
dt jwc jwc
as?
é tWB ‘/j3WB VﬁWB
ds?
L) -V,
ds?
?WC = j‘,twc - Vjs,wc - Vj,wc
as? ,
é;WB = j‘TWB - ‘/ﬁWB - V,WB
5
de ne _ 4 Vr
d t J ne Jon Jjane
ds® )
é tW - ‘/]5WC V] v6vc VJ6WC
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? V] we T VJ V] WB
das;,.
dJ f - V ‘/],:c Jjne
ds’
#WC = ‘/jG,WC j. wc V,7wc
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8
de,WC _ V7 _ V8
dt =Viwc jwce
as?
GO;wB 1,7 8
dt Vj,WB - Vj,WB
as?
jne _ ys7 8
dt - ‘/j,nc - ‘/],nc
das’
JWC _ y,8 9
o=V
as’
192 = V'SWB V9WB
dt 4 g
as’
thJw = VJ ne ng,nc
(A.2.3 cont.)
das?
HWC _ 9 10
dt j.wcC jHLwC
dsy®
JHWB _ 1,9 10
dt - Vj,WB - Vj+1,WB
dsy
j+l,nc 10
‘/j nc ‘/]+1 nc
dt
11
dS]+1 we _ylo _yu
d 4 JjHLwe JjHLwe
dSll
el V1+01 WB V1+11 WB
dt J d;
11
d ]+1 ne 10 _ 11
dt Jj+lnc Jj+lnc

where S° are the ribosome states (s) along the pathway, IS are the reaction fluxes

f
=kbls}, ., . T ,
’S’” L brb , bi is the binding interaction (cognate WC (WC), cognate WB
Vipi=kELSSp s=2,3,.,11

(WB), near-cognate (nc), or non-cognate (non)), s represents the state number from 1 to
11, and j is the codon number that is being decoded at the ribosome A-site. In state 9,

ribosome translocation takes place and a new codon is placed in the A-site.

This system of mass balance equations can be simplified by writing only one
equation in terms of a state that is a combination of all the intermediate states. We
choose state 9 (the ribosome translocation state) as our new lumped state. The new

system will be given by
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dsl‘umped

j _ _ 79 9 9 J ., clumped
- Vl - Vout - Vj,WC + Vj,WB + Vj,nc —k S

dt eff j ) (A24)

where

S{mPet = ¥ S5 (A.2.5)

For a system at steady state, the effective codon elongation rate constant can be written

as

9 9 9
i _ ViwctViwetVinc
keff = —ZSSJS- (A.2.6)

Solving the mass balance equations at steady state all states can be re-written in

function of state 9 and kgff can thus be expressed in the final form

.

WB_,WB
WC,]+k5 ag °T,

f kre f rej
rej nc,nc rej

. WB,jainit—selec<1+kW(;>+k5 a5 Tnc‘jainit—selec<1+kwc>

Koo= 5 5

eff

‘ (A.2.7)

. wc . . ’
J . _rej J J
Acomp +awc+amlt—selec<1+kX5/VC>(aWB—inc+amis—inc)

where beij are the tRNA concentrations for different binding interaction types at codon
j.

The terms in the expression are defined below.

Cognate WC term:

wc

1 rej

al,. = (1 + _kWC) (Cinit—setec + a%"’CTv’;CJ. + ag"CTM’;C_j + aXVCTv{,CJ.) +
5

(a2 + a?ffc +adf +a¥C +aC +allC +alt + al'/‘{C)TV’;C’j (A.2.8)

Initial selection term:

a. i =
init—selec kgvc kgvckgvc kgvc

(A.2.9)

1 [(RE 4 ) (3 C+RE) kﬂ’f]
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Competition term:

. kwe
J _ rej \ .
acomp = Qjnit-selec (1 + kgvc)

non,j

(a¥B + al/® + alV® + a?®)T),

nc,j

B,j

WB-incorporation term (cognate WB proofreading):

WB |  WB | WB
o — wowe( %er tagy +ta; "+ ¥
WB—inc 5 5

WB,j
ay? + a8 + alfP + a}iB ]

Mis-incorporation term (near-cognate proofreading):

nc nc nc
o’ = |nCgne Ao + Ay + a7 + f
mis—inc 5 %5

ap® + ayc + af§ +ajf) "o

Other terms:

Non-cognate

gnon
anon —_ 1
2 - kngn

agorT) 4 (a4 aff + a4+ alT)  +

] (A.2.10)
(A2.11)

(A.2.12)

(A2.13)
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Inserting the values of the kinetic rate constants from Table C.2.1 we obtained an

expression to compute kéff for each codon j

f f —4.5f
W = Tyyc,j+0-5884 Ty p j+2.6233-1074T, . [s1] (A2.14)
eff 0.0104[uM-s]+0.4-556[5]-TV{/C].+0.0613[s]-T7{C].+0.0171[s]-Tf ’ -

non,j

where the variables are the free WC, WB, near-cognate and non-cognate tRNA

concentrations to codon j.
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A.3 Supplementary Texts and Methods for Chapter 3

A.3.1 Database web services protocols & system requirements
Operating system used was MacOSX, but Windows and Unix would have similar

requirements and implementation.

Localhost simulation of BiGG database in MacOSX requires installation of Docker

(https://docs.docker.com/engine/getstarted/step_one/#step-1-get-docker) and

bigg docker (https://github.com/psalvy/bigg-docker) (see links for installation).

For access to local server databases in SQL system requires from within MATLAB
the installation of mysql-connector-java-5.1.39. For functions running parallel queries
on SQL databases, system requires installation of mysql

(https://dev.mysqgl.com/doc/refman/5.6/en/osx-installation-pkg.html) and Python 2.7

(https://www.python.org/download/releases/2.7 /).

Web services running on SOAP APl require installation of SOAP:Lite

(http://search.cpan.org/dist/SOAP-Lite/). Instructions for installation on MacOSX can
be found here (http://www.soaplite.com/2003/06/installation in.html). Perl (perl-

5.22.0) was used for writing the scripts for access and queries in ChEBI, which can be

called from within MATLAB.

Web services running on REST API do not require any specific installations.

Easily programed in MATLAB with either urlread.m or webread.m functions.

A.3.2 Databases in local server

ModelSEED database information was downloaded from

https://github.com/ModelSEED /. ModelSEEDDatabase on March 17th 2017. Txt files

containing the aliases between ModelSEED compounds and other databases were

parsed in MATLAB to a seeming database structure and uploaded to our local server in
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SQL. Metabolite structure was reused from previous ModelSEED database in our server
and the new entries updated by converting InChl into molfiles and SMILE. Molconvert
was used for InChl conversion into MOL and SMILE, Marvin 16.7.4, 2016, ChemAxon
(http://www.chemaxon.com) (161).

HMDB database information was download December, 28th 2016 (last release
on website at the time of writing dates of 2017-05-14). SDF file for metabolite
structures (MOL,InChl, SMILES) and XML file for all metabolite information with
compound synonym names and cross references were both parsed in MATLAB to a

seeming database structure and uploaded to our local server in SQL.

A.4 Supplementary Texts and Methods for Chapter 4

A.4.1 Studies with GEMs
We derived a reduced mammalian metabolic network from Recon 1 using redGEM
(205). The network focused on central carbon metabolic (10). In total the reduced

model comprised 278 reactions and 204 metabolites.

We applied TFA (164) on a model of central carbon metabolism of mammalian
cells in order to characterize thermodynamically feasible intracellular flux states

associated with Warburg phenotype based on a pre-selected set of metabolic objectives.

Experimental data from CHO cells during the non-growth phase was used to
simulate a healthy/normal phenotype (256) and data collected during the growth phase
was used to simulate a cell proliferation phenotype (257, 258). In total 20 (for the
normal phenotype) and 21 (for the growth phenotype) exchange fluxes
(uptake/secretion) were constrained by experimental data and defined our media. This
particular data was chosen due to its similarities in cell culture and the fact that it

covered the growth and non-growth phases of the cells.

The reaction thermodynamics constraints added to the FBA problem, even

without specific metabolomics measurements, constrained further the solution space.
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FVA was used to identify the 102 and 107 bidirectional reactions in the simulated
Healthy and Warburg phenotypes, respectively. The addition of thermodynamic
constraints further reduced the feasible space of flux solutions and decreased the

number of bidirectional reactions by ~25% in both normal and growth types.

T
- Normal
- Growth

0 20 40 60 80 100 120
Number of bi-directional reactions

The notion that cellular metabolism, after years of evolution, works towards
optimizing a particular objective is widely accepted. However, we have silently
defaulted to using maximization of Biomass (or product secretion) as the primary
objective. Trying to describe the metabolic flux states based on a single objective can be

misleading as it has been shown in (259).

We have used a combination of 3 different metabolic objectives in order to
identify changes in central carbon metabolism associated with a switch to an overflow
metabolism and higher proliferation state. TFVA was used to identify the
thermodynamically permissible range for all the fluxes of the network. The figures
below display the correlation between the flux of select reactions in glycolysis and citric
acid cycle and the metabolic objectives considered herein, based on 500,000 flux

samples. Green and red represent normal and growth phenotypes, respectively.

This type of analysis can help to pinpoint switches in the space of solutions and
allow us to navigate a map for metabolic reprogramming possibilities on each side of
the switch that are not uniquely dependent on the assumption of an obligatory cellular

metabolic objective being attained.
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B.1 Supplementary Figures for Chapter 1
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Figure B.1.1 Range of total codon occupancies computed with modified HZ model for E. coli gene
yahD using 212 - (n + 2) samples of ribosomal kinetic parameters (n is the number of model
parameters in Table C.1.1). The blue curve is the total codon occupancies computed using the
reference kinetic parameters. Since the translation initiation rate parameter chosen was low,
translation of this gene is initiation limited, which justifies the position of the nominal state
close to the lower bound of the simulated range.
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B.2 Supplementary Figures for Chapter 2
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Figure B.2.1 The total number of ribosomes per cell (RT) (squares) and the total number of
tRNA molecules per cell (tRNAT) (circles) were obtained from (58) for the growth rates 0.6, 1.0,

1.5, 2.0, and 2.5 h'l. The respective values for the growth rates 0.4, 0.7, 1.07, and 1.6 h'l for
which we know the concentrations of each tRNA species (59) were estimated from a 2" order

polynomial fitting of the data (stars and dashed lines). The tRNA” for 0.4 h'! was not estimated
as the number of molecules per tRNA species was determined in (59).
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Figure B.2.2 The rate of mRNA synthesis per cell (circles) was obtained from (58) for the growth
rates 0.6, 1.0, 1.5, 2.0, and 2.5 h'l. The respective values for the growth rates of interest 0.4, 0.7,
1.07, and 1.6 h'! were estimated from a linear fitting of the data (stars).
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Figure B.2.3 Visual comparison between the E. coli codon usage frequency (CU) and the mRNA
codon usage frequency (mCU) in the mRNA pools generated for the different growth rates. Since
CU is dictated by the organism's genome, it is independent of growth rate.
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Figure B.2.4 (a) Time evolution of free ribosome amount. At simulation time Os the number of
free ribosomes is equivalent to the total number of ribosomes in the cell. The 'x' in red
represents the number of total ribosomes, which remains constant throughout the simulation.
(b-h) Time evolution of protein synthesis (13,) for an E. coli cell simulation at a growth rate of
1.07 h'L. Each curve represents the V, of each of the 289 mRNA species, which are spread over
multiple subplots for better visibility, and is averaged over 50 repeated simulations. The red
vertical bars indicate the time interval from where data is recorded for the subsequent analysis
at steady state. Error bars not included for clarity.
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Figure B.2.5 Time evolution of the number of free tRNA molecules of each species for an E. coli
cell simulation at a growth rate of 1.07 h'! after averaging over 50 repetitions. At simulation
time Os the number of free tRNA molecules of each species is equivalent to the total number of
tRNA molecules of each species in the cell. The 'X' represents the number of total tRNA
molecules of each species, which remains constant throughout the simulation. Vertical bars
indicate the time interval from where data is recorded for the subsequent analysis at steady
state. Error bars not included for clarity due to their small size, which can be seen for the same
growth rate in Figure B.2.15.
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Figure B.2.6 (a) Mean distance between ribosomes in function of growth rate. Results from
computations with different assumptions on ribosome length (circles and diamonds) are
compared with estimated values from (58) (squares). (b) Fold change of the ratio of R/ /number
mRNA copies and tRNA' /number mRNA copies relative to the ratio at 0.4h"! in function of
growth rate. (c) Distribution of the activity of each tRNA species for each growth rate. The bar
represents the median of the distribution, the * represents the mean of the distribution, the
edges of the box are the 25th and 75th percentiles, and the whiskers represent about 99.3%
coverage of the data points for data assumed normally distributed. The edges of the whiskers
contain the most extreme data point that is not an outlier. (d) Average across all tRNA species of
the fold change of the number of total and free tRNA molecules at growth rates [0.7, 1.07, and
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Figure B.2.9 (a) Fold change in protein translation from all transcripts relative to WT. (b)
Elongation rate in function of translation initiation rate constant for WT, kJ3%* based and k29 max

eff eff
based. k;’}‘}x based has the same codon sequence except for the 20 first codons that match the

ones in the WT (kg?}lnax based). Since the value of (k) is set equal between the transcripts the

change in initiation rate based on synonymous codon substitution of the first codons results
from the variation on ribosome binding space at the beginning of the sequence. For k; fold
change 1 the elongation rate remains practically unchanged for these two transcripts,

confirming that the different pulse-chase curves between WT and sz}x based are indeed a

result of changes on elongation rate rather than initiation. (c) Increase in the number of proteins

translated from k;’}‘}x based and kﬁ?}max based transcripts relative to WT. (d) Ribosomal density

in function of translation initiation rate constant for WT, k;’}‘}’cx based and k2%™%* pased. There is

eff
20,max

no increase in protein synthesis of kefjr based with respect to the WT when compared to

kmax 20,max

eff err  based (see c-d at k; fold change 1). The increase of
the transcript translation initiation rate constant (k;) has the potential to increase protein
synthesis until the sequence is fully saturated with ribosomes, whereas elongation rate
decreases to a minimum value as a result of the high number of interactions between queuing
ribosomes. Even though a transcript is optimized for elongation, we note that the translation
initiation rate, which is dictated by the beginning of the transcript's coding region and the
steady state R/ of the host cell, has a major impact on the gain in protein production with
respect to the WT in its rate limiting regime.

based as less ribosome bind to k
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Figure B.2.10 Elongation rate (v,) of an mRNA species in function of the change of each of the
ribosome kinetic rate constants in the range of two orders of magnitude with respect to their
nominal (experimental) values.
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Figure B.2.11 Sensitivity of ribosome kinetic parameters (a) measured at in vitro conditions at
372C and (b) deduced in (94) for in vivo conditions. Each rate constant of the WB kinetics (only
available at 20°C) was scaled by the kinetics of the nc pathway for these two conditions by
maintaining the ratios between WB and nc kinetics at 202C. The values for translocation kinetics
were maintained at 252C, as we have no information for their changes, which increased their
sensitivity compared to 20°2C. However, as these values are expected to increase with
temperature (94) to match the observed elongation rates, this limitative effect on elongation
rate will also decrease. Parameters * become more influential at 372C than at 20-252C and in
vivo because the net rate constants of the near-cognate pathway until GTP hydrolysis are higher
at 372C. In the overall tRNA competition becomes less important that the cognate binding type
for conditions closer to in vivo. (c) Statistics on mean ribosome occupancy time lags and total
number of events per decoding stage and binding type for the simulations with ribosome kinetic
parameters deduced in (94) for in vivo conditions.
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Figure B.2.12 Mean ribosome occupancy time lags (Egislj) per decoding stage ds = (A-site OFF,

A-site PROOF, P-site ON, E-site OFF), binding interaction bi = (WC, WB, nc, non) and per codon
species j. The mRNA species used for the estimations was the WT Luciferase. For each plot the
order of the codon identities is the one indicated below. Codons highlighted in orange are stop
codons and statistics are not computed for these. The codon highlighted in red is not present in
the WT Luciferase sequence. Time lags are very homogeneous among codons as they depend
only on the intrinsic ribosome kinetics, which is the same for all codons. Only for the decoding
stages that include ribosome translocation (P-site ON and E-site OFF) the time lags become
more heterogeneous as they become dependent on the blocking from downstream ribosomes.
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Figure B.2.13 Total number of events (Nl‘,iis|j) per decoding stage ds = (A-site OFF, A-site PROOF,

P-site ON, E-site OFF), binding interaction bi = (WC, WB, nc, non) and per codon species j. The
mRNA species used for the estimations was the WT Luciferase. For each plot the order of the
codon identities is the one indicated below. Codons highlighted in orange are stop codons and
statistics are not computed for these. The codon highlighted in red is not present in the WT
Luciferase sequence. The number of events varies among codons because they are dependent on
both mCU and the free tRNA abundances.

155



Appendix B Supplementary Figures

tRNA tRNAI tRNAI tRNA

| I | 11,1

.lecu""° .lecuWB IBmcu"® IBmcu""
i
| P PR I P P AP P A A P T | | I . | I I N I N I NP I AP A e e |

0.8 1 L

Figure B.2.14 Interaction-based mRNA codon usage frequency (IBmCU) displayed for each tRNA
species. The x-axis is arranged in increasing order of the tRNA activity observed in Fig. 5 of main
text. mCU is grouped into five interaction-based mRNA codon usage frequency groups for each
tRNA species i (IBmCU gy, IBMCU{R 4, IBMCU{RR ., IBMCU{iy 4, IBMCURN,) (Eq. 2.1 main
text).
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Figure B.2.15 Comparison of total number of tRNA molecules (tRNAT) and the number of free
tRNA molecule at steady state (tRNA{) for each species i at 1.07 h'l,
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Figure B.2.16 Relative deviation of average elongation rate from all mRNA species in the cell at
1.07h"1 upon (a) 50% and (b) 20% increase or decrease of each tRNA abundance. Worthy to
mention, with respect to the results obtained for changes of 50%, is the reassignment of AlalB
and Vall to group (ii) and Asp1 and LeuZ2 to group (i), whereas for the 50% change case they all
belonged to group (iii). Although the effect on AlalB and Vall surplus remains the same,
starvation of only 20% of these tRNAs is still not sufficient to cause a negative impact on their
cognate codons. For Aspl and Leu?2 surplus of 20% is still not sufficient to negatively affect the
elongation rates by means of increasing competition on their near- and non-cognate codons.
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Figure B.2.17 Relative deviation of average codon elongation rate (computed with k,¢) from all
codons that are cognate WC, cognate WB, near-cognate and non-cognate to the tRNA species
whose concentration is changed by *50%. Red, orange and green text colors differentiate
between tRNA species that belong to regimes (i), (ii), and (iii), respectively. (i) tRNA species
whose surplus or starvation contribute to the biggest increase or decrease, respectively, of the
average codon elongation rate of their cognate codons. These tRNAs are among the ones whose
cognate (specially WB type) codons have very slow codon elongation rates and appear
frequently in the mRNA sequences (Figues B.2.18 and B.2.19). (ii) tRNAs whose starvation or
surplus contribute to an increase or decrease, respectively, of the average codon elongation rate
of their near- and non-cognate codons. These tRNAs are among the species in the cell that are
present in higher abundances (Figure B.2.15) and, as a consequence, have the highest cognate
codon elongation rates. The surplus of these tRNAs acts on the system by decreasing the mean
elongation rate due to the prominent tRNA competition they provide to their near- and non-
cognate codons. Under starvation the effect is the inverse since the level of competition is
decreased on the near- and non-cognate codons. These tRNAs are so abundant that even when
their number is decreased their cognate codons do not limit translation. Leu4 is an exception in
this group and its qualification results from the fact that it belongs to the top 10 tRNAs species
with highest combined IBmCU%,, + IBmCU[Y%Y, and from these 10 it is the one with the
highest free tRNA abundance, such that its surplus or starvation is able to moderately affect the
system. (iii) tRNA that have an effect similar to (ii) under surplus due to the increase in
competition resulting from their high abundances (but less than (ii)) or high IBmCU¢gy,, +
IBmCU&",Z}Ai, as in the case of Leu2, however, under starvation their cognate codon elongation
cogn

rates are negatively affected by the high IBmCU gy 4, demanding free tRNA.
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Figure B.2.18 For each tRNA species in the cell, the k.ss values of all its cognate codons (WC
and/or WB) are divided by their correspondent mCU quantities and averaged together. The
reported quantity is obtained for each tRNA species and plotted against its corresponding free
amount in the cell. Red-labeled tRNA species belong to regime (i) and the green-labeled ones
belong to regime (ii).
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Figure B.2.19 mRNA codon elongation rate (mCU) presented per codon species and tRNA
isoacceptor. Color code represents the values of the codon elongation rate for each codon
species (kefs).
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B.3 Supplementary Figures for Chapter 3
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Figure B.3.1 Distribution of the deviation scores computed as The
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B.4 Supplementary Figures for Chapter 4

NCI60 metabolomics survey
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Figure B.4.1. Distribution of intracellular metabolite levels measured for the 60 cancer cell lines
in NCI60 panel (217). Values are plotted as log transformed.
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Prostate tissue from NCI60
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Figure B.4.2 Distribution of intracellular metabolite levels measured for the 2 prostate cancer
cell lines in NCI60 panel (217). Values are plotted as log transformed.
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Leukemia tissue from NCI60
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Figure B.4.3 Distribution of intracellular metabolite levels measured for the 6 leukemia cancer
cell lines in NCI60 panel (217). Values are plotted as log transformed.
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Figure B.4.4 Comparison metabolomics and fluxomics datasets merged to produced normal vs
cancer phenotypes. a) Glucose intracellular concentration is higher in cancer cells, whereas
glutamine and glutamate present lower range values indicating less accumulation of these
metabolites. B) Lactate secretion presents more variability in cancer phenotype than in normal.
c) Phosphoelnolpyruvate and (S)-malate(2-), which are key metabolites in pyruvate are lower
in cancer metabolism and TCA cycle show differences in cancer vs normal cells. d) The amino
acid uptake and secretion rates are much more constrained than the ones measured in cancer,
which as expected have much higher variability. We note that we are using for the numeral
phenotype measurements of lung fibroblasts during growth, which may present characteristics

of an overflow metabolism to support biosynthesis.
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Figure B.4.5 Number of metabolic reactions per subsystem (excluding transport reactions) in
Recon 2 v4 that have reaction thermodynamics constraints.
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Figure B.4.6 Survey of first human reduction attempt departing from Recon 2 v4 and using
fluxomics data merged from CH and NH datasets. The purpose was to test the reduction
workflow for the derivation of a reduced model (RedHuman) that encompassed normal and
cancer phenotypes. a) Percent of reactions preserved from Recon 2 in RedHuman within the
core network selected at stage 1 and after expansion at stage 2. b) Quantification of
human/mammalian related metabolic tasks passed or failed by RedHuman with respect to
Recon 2 tested metabolic capabilities. ¢) Classification of failed metabolic tasks that should pass
ranked per network subsystem. The bulk of these failed metabolic tasks correspond to parts of
the network that we have not selected as core subsystems and hence were not preserved in the
resulting RedHuman, either because they were beyond the selected threshold for network
expansion and out of the network region of interest for our studies, or for carrying no flux in
their reactions as they were not connected to the production of biomass building blocks, or
because these pathways are non-explicitly preserved in the lumped reactions. We note that this
analysis can be helpful to identify problems that may occur due to overlooking certain steps
during lumpGEM. For instance, failure in passing metabolic tasks can be related with an
overlook on the medium allowed for the cells when producing the lump reactions for each
biomass building block. Here the uptake of the non-essential amino acids was not blocked and
the shortest route was for the cell to immediately uptake those amino acids to go directly into
the biomass, hence rendering the amino acid biosynthesis pathways useless.
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Figure B.4.7 a) Combination of intracellular concentration values for argininosuccinate,
fumarate and L-arginine and the respective directionality of ASL reaction. b) Visualization of the
plane for which the argininosuccinate concentration is the highest. Yellow box: the two
reactions in arginine biosynthesis and their reaction directionality for the intracellular
concentrations in both our cancer and normal physiology datasets.
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Figure B.4.8 The reduction procedure in redGEM and lumpGEM (205, 206) can be adapted be
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Appendix C Supplementary Tables

C.1 Supplementary Tables for Chapter 1

Table C.1.1 Rate constants for the ribosomal kinetic pathway during translation elongation
obtained from experimental sources.

Cognate (¢)  Near-cognate = Non-cognate

Rate constants Definition

Reverse initial
binding

Reve.:rse codon 02" 80" .
reading

Pi release and
EF-Tu
rearrangement

aa-tRNA
release

Reverse EF-G
binding

EF-G and E-site
tRNA
dissociation

* Kinetic rate constants from the initial binding until the peptide bound formation obtained from (53) at
20°C.

T Initial binding rate constants are independent of the tRNA-mRNA interaction as it occurs externally to the
decoding center (47).

§ Kinetic rate constants for the tRNA-mRNA translocation obtained from (69) at 37°C.

** We use the value of 30 M for the concentration of EF-G as used in previous works (50).

Note: kyeease IS Not present in the table since it is later removed from the model. When used the value is
15s-1 asin (50).
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Table C.1.2 aa-tRNA concentrations per binding interaction for the growth rate 0.4h1,
Individual aa-tRNA concentrations were collected from (59). This table is computed using Table
C.2.3 as a guide.

codon Amino acid Cognate (c) aa- Near-cognate (nc) Non-cognate (non)
tRNA concentration aa-tRNA aa-tRNA
[um] concentration [uM] concentration [uM]
aaa K 6.08 32.17 158.05
aac N 3.77 35.77 156.76
aag K 6.08 29.49 160.73
aau N 3.77 38.66 153.87
aca T 2.89 35.96 157.45
acc T 3.78 24.92 167.6
acg T 4.6 33.42 158.28
acu T 6.67 36.25 153.38
aga R 2.74 38.495 155.06
agc S 4.44 50.77 141.09
agg R 1.23 31.83 163.24
agu S 4.44 53.66 138.2
aua | 5.48 37.21 153.61
auc | 5.48 29.93 160.89
aug M 2.23 60.81 133.26
auu | 5.48 44.94 145.88
caa Q 2.41 44.69 149.2
cac H 2.02 43.17 151.11
cag Q 2.78 48.28 145.24
cau H 2.02 45 149.28
cca P 1.83 41.85 152.62
ccc P 2.27 32.8 161.23
ccg P 4.67 43.3 148.33
ccu P 4.1 46.25 145.95
cga R 15 14.465 166.84
cgc R 15 32.48 148.82
cgg R 2.01 49.62 144.67
cgu R 15 34.31 146.99
cua L 2.1 57.49 136.71
cuc L 2.97 48.24 145.09
cug L 16.21 36.39 143.7
cuu L 2.97 62.19 131.14
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Table C.1.2 continued

codon Amino acid Cognate WC aa- Near-cognate (nc) Non-cognate (non)
tRNA concentration aa-tRNA aa-tRNA
[uM] concentration [uM] concentration [uM]

gaa
gac
gag
gau
gca
gcc
8cg
gcu
gga
8sc
888
gsgu
gua
guc
sug
guu
uac
uau
uca
ucc
ucg
ucu
ugc
ugg
ugu
uua
uuc
uug
uuu
uaa
uag
uga stop codon - - -
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C.2  Supplementary Tables for Chapter 2

Table C.2.1 Rate constants for the ribosomal kinetic pathway during translation elongation
obtained from experimental sources that discriminate between WC and WB cognate.

Rate constants Definition wWC WB nc non

k_l(S_l) Reverse initial binding 851 85 -t 85"F 85,1

k_2(5—1) Reverse codon reading 0.2° 1t 80" —

-1 Pi release and EF-Tu
k,(s™)

10° 10° 107 —
rearrangement

krej (s aa-tRNA release 0.1" 1.1¢ 6" —

k (s7) Reverse EF-G binding 140° 140° 140+ —

k 8(S_l) Ribosome unlocking 30! 30! 30! —

k 10(5_1) Ribosome re-locking 5l 51 50 —

* Kinetic rate constants from the initial binding until the peptide bound formation obtained from (53) at
20°C.

t Initial binding rate constants are independent of the tRNA-mRNA interaction as it occurs externally to the
decoding center (47).

% Kinetic rate constants for the cognate WB interaction obtained from (70) at 20°C.

il Assumed to be the same as for the cognate WC counterpart due to lack of measurements.

§ Kinetic rate constants for the tRNA-mRNA translocation obtained from (69) at 37°C.

|| Kinetic rate constants for the tRNA-mRNA translocation obtained from (71) at 25°C

** We use the value of 30M for the concentration of EF-G as used in previous works (50).
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Table C.2.2 List of wobble pairing nucleotides for each tRNA species derived from the list of
codons they recognize as cognates.

tRNA name tRNA ID ‘Wobble pairings
AlalB
Ala2
Arg2
Arg3
Arg4
Arg5
Asn
Aspl
Cys
Ginl
GIn2
Glu2
Glyl
Gly2
Gly3
His
Ilel
Ile2
Leul
Leu2
Leu3
Leu4
Leu5
Lys
Metm
Phe
Prol
Pro2
Pro3
Serl
Ser2
Ser3
Ser5
Thrl
Thr2
Thr3
Thr4
Trp
Tyrl
Tyr2
Vall
Val2A
Val2B

[ele] [\
c '

—_ —_ —_
£ [\S} (=)
Q
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Q

N

[\S]

=

W LW WIN NN
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c
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Table C.2.3 List of tRNA species that are cognate WC, cognate WB and near-cognate to each
codon. The remaining tRNA species not listed for each codon are non-cognate. This list is used to
compute tRNA concentrations for each codon per type of binding interaction. We do not use
information on tRNA concentrations for the three stop codons uaa, uag and uga because the
termination rates are fixed for each gene in the simulations and do not depend on the
availability of translational resources.

codon (id) Cognate WC Cognate WB Near-cognate (nc)

aaa (1)

aac (2) 8,16, 17, 24, 32, 34, 36, 39, 40

aag (3)

aau (4) 8,16, 17, 24, 32, 34, 36, 37, 39, 40

aca (5)

acc (6) 2,7,17,28, 32,33, 35,37

acg (7)

acu (8) 34, 36, 37 1,7,17,28, 29, 30, 32, 33, 35

aga (9)

w10
agg (11)

agu (12) 3,5,6,7,9,15,17, 34,36, 37

aua (13)

auc (14) 7, 18 20, 25, 26, 32, 34, 36, 42, 43

aug (15)

auu (16) 17 7, 18, 20, 25, 26, 32, 34, 36, 37 41, 42, 43

caa (17)

s
cag (19)

0
cca (21)

cce (22) 28 2,3, 16, 20, 27, 29, 33, 34, 36

ccg (23)

ccu (24) 1,3, 16, 20, 27, 30, 33, 34, 36, 37

cga (25)

cge (26) 4,9, 15, 16, 20, 28, 32

cgg (27)

cou @
cua (29)

cuc (30) 3,16, 17,19, 21, 26, 28, 42, 43

cug (31)

cuu (32) 3,16, 17,19, 21, 26, 28, 29, 41, 42, 43

gaa (33)

gac (34) 2,7,12, 15, 16, 39, 40, 42, 43

gag (35)
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Table C.2.3 continued

codon (id) Cognate WC Cognate WB Near-cognate (nc)

gau (36)

gca (37) 2,12, 14, 29, 30, 37, 41

gee (38)

ez (39)
geu (40)

gga (41) 1,3,5,12,13,15,32,41

ggc (42)

ggg (43) 1,4,6,12,15,38, 41

ggu (44)

gua (45) 1,12, 14, 18, 21, 23,42, 43

guc (46)

gug (47) 1, 12,13, 14, 19, 21, 22, 23, 25,42, 43

guu (48)

e 50
uau (50)

uca (51) 1,23, 29, 32, 31, 33,37

ucc (52)

ucg (53) 1,22, 23,27, 29,33, 35,37, 38

ucu (54)

uge (55) 3,15, 26, 32, 32, 33, 38, 39, 40

ugg (56)

e 57
uua (58)

uuc (59) 9,17, 20, 22, 23, 33, 39, 40, 42, 43

uug (60)

uuu (61) - 26 9,17, 20, 22, 23, 30, 33, 39, 40, 41, 42,43
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Table C.2.4 aa-tRNA concentrations per binding interaction estimated for the growth rate 1.07h"

1, Individual aa-tRNA concentrations were collected from (59) and estimated as explained in
methods.

Cognate WC Cognate WB Near-cognate Non-cognate

. . . aa-tRNA aa-tRNA (nc) aa-tRNA (non) aa-tRNA
codon (id) Amino acid . . . .
concentration concentration concentration concentration
[eM] [nM] [eM] [nM]
aaa K 5.71 0.00 29.52 151.82
aac N 3.09 0.00 33.19 150.77
aag K 0.00 5.71 28.00 153.34
aau N 0.00 3.09 35.79 148.17
aca T 2.59 0.00 34.88 149.57
ace T 3.39 0.00 23.86 159.80
acg T 1.83 2.59 34.15 148.48
acu T 0.00 5.98 36.98 144.09
aga R 2.48 0.00 34.28 150.28
age S 3.70 0.00 49.29 134.07
agg R 1.51 0.00 29.56 155.98
agu S 0.00 3.70 51.88 131.47
aua I 0.00 4.08 34.12 148.85
auc 1 6.67 0.00 26.79 153.59
aug M 2.19 0.00 57.75 127.12
auu 1 0.00 6.67 38.20 142.18
caa Q 3.09 0.00 41.57 142.40
cac H 1.92 0.00 38.96 146.17
cag Q 2.60 0.00 47.49 136.96
cau H 0.00 1.92 40.59 144.54
cca P 1.63 0.00 41.75 143.67
cce P 1.89 0.00 30.41 154.75
ccg P 2.90 1.63 43.79 138.73
ccu P 0.00 3.52 45.45 138.07
cga R 0.00 13.29 14.12 159.64
cge R 13.29 0.00 30.84 142.92
cgg R 1.28 0.00 48.48 137.29
cgu R 13.29 0.00 32.47 141.29
cua L 2.23 0.00 52.07 132.75
cuc L 3.20 0.00 47.69 136.16
cug L 14.54 2.23 32.38 137.90
cuu L 0.00 3.20 58.14 125.70
gaa E 14.19 0.00 38.61 134.25
gac D 6.47 0.00 44.52 136.06
gag E 0.00 14.19 41.65 131.21
gau D 0.00 6.47 62.78 117.80
gea A 11.12 0.00 36.95 138.97
gee A 1.68 0.00 43.58 141.79
geg A 0.00 11.12 46.27 129.66
gcu A 0.00 11.12 51.82 124.11
gga G 3.40 0.00 67.61 116.03
ggc G 14.19 0.00 40.85 132.01
ggg G 3.53 3.40 53.94 126.17
ggu G 0.00 14.19 59.11 113.75
gua \ 8.82 0.00 42.56 135.67
guc \ 4.12 0.00 44.06 138.87
gug \ 0.00 8.82 65.08 113.15
guu \ 0.00 12.94 44.68 129.43
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Table C.2.4 continued

Cognate WC Cognate WB Near-cognate Non-cognate

. . . aa-tRNA aa-tRNA (nc) aa-tRNA (non) aa-tRNA
codon (id) Amino acid . . . .
concentration concentration concentration concentration
[1M] [uM] [uM] [1M]

uac Y 5.34 0.00 21.57 160.14
uau Y 0.00 5.34 26.21 155.51
uca S 4.64 0.00 22.23 160.18
uce S 2.40 0.00 25.68 158.97
ucg S 1.06 4.64 35.08 146.28
ucu S 0.00 7.04 34.71 145.30
uge C 4.67 0.00 44.77 137.61
ugg w 2.84 0.00 29.84 154.37
ugu C 0.00 4.67 49.41 132.98
uua L 3.42 0.00 29.12 154.51
uuc F 3.02 0.00 36.15 147.87
uug L 6.33 3.42 39.34 137.96
uuu F 0.00 3.02 49.61 134.42
uaa stop codon - - - -

uag stop codon - - - -

uga stop codon - - - -

Table C.2.5 Parameter values used for computing cell volume and average number of mRNA
copies per E. coli cell at four different growth rates.

Growth Rate [h] 0.4 0.7 1.07 1.6
Total ribosomes per cell (RT) + 5705 8197 14456 29551
Total tRNA per cell (LRNAT) ¥ 62130% 75868 133925 274138
mRNA synthesis rate per cell f 274960 572530 939533 1465240
[Nucleotides/min/cell]

TmrNa [min] 1 1 1 1
Ntrna 951 951 951 951

Cell volume (V) [1071° L] § 5.26 6.04 9.82 15.1
MT[mRNA molecules/cell] } 289 602 988 1541

* Total tRNA per cell exceptionally obtained from the sum of the number of molecules of each tRNA species measured
and reported directly in (59).

+ Values estimated for the growth rates of interest from the fitting of the data obtained in (58).

1 Values computed from Eq. A.2.1 and Eq. A.2.2.

Tmrna: Average functional life of mRNA.

nteya: Average number of nucleotides for the mRNA sequences in E. coli.

177



Appendix C Supplementary Tables

Table C.2.6 Comparison between mRNA sequencing data from E. coli at low and high growth
rates obtained from (79, 80). The mRNA species expressed at each growth rate were separated
into two groups: (i) commonly expressed mRNA species and (ii) uniquely expressed mRNA
species. Statistics from the mRNA copy number distributions at each growth rate condition and
per group are shown. We also compare the mRNA codon usage frequency (mCU) at each growth
rate with the CU from E. coli K12, as well as the respective average mRNA lengths. The copy
number levels at high growth rate were normalized by the estimated amount of total mRNA
copies for the respective growth rate, computed from data in (58). The copy number levels from
the data at low growth rate had been calibrated by the single cell measurements performed in
the same paper and normalization with respect to the total number of mRNA copies in the cell
was not necessary. In order to compute mCU for each growth rate we have rounded up the
mRNA copy levels to the nearest integer such that values smaller than 0.5 would be represented
by one copy. For the analysis, we excluded the mRNAs that had zero expression levels.

Distribution features for the  Distribution features for the

same mRNAs (i) uniquely expressed mRNAs (ii)
Growth Rate [h™] 0.4% >2.5+ 0.4% >2 5+
Number of mRNA species 603 603 294 1784
expressed
Maximal copy number value 6.5789 28.6732 6.0843 96.9363
Minimal copy number value 0.0011 0.0072 3.8880e-04 0.0048
Mean of mRNA copy number 0.2205 0.7411 0.0986 1.1284
distribution
Median of copy number 0.0727 0.2260 0.0175 0.1430
distribution
Standard deviation of copy 0.5575 2.0105 0.4352 4.7472
number distribution

Comparison with E. coli K12

Mean gene length [codons] Mean value of individual
relative deviations between
mCU and CU from E. coli K12

E. coli K12 317 -
0.4 h'* 338 15% (£9.73)
>2.5h'y 319 23% (£13.37)

* mRNA sequencing data from (79).
T mRNA sequencing data from (80).
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Table C.2.7 Detailed mRNA Luciferase transcripts used for recording ribosome occupancy time
lags and in the study of synonymous sequence optimization. All Luciferase sequences code for
the same amino acid sequence and apart from the changes in synonymous codons they all have
the same C-terminal c-myc-His6 epitope tag as in (60).

Type of study

Protein

mRNA sequence

Wild Type
(Sequence
from (60)) also
used to
compute
ribosome
occupancy
time
lags

WC & tRNA
genes
(Sequence
from (60))

CU based
(Sequence
from (60))

Firefly
Luciferase

auggaagacgccaaaaacauaaagaaaggeccggegecauucuauccucuagaggauggaaccgeugg
agagcaacugcauaaggcuaugaagagauacgeccugguuccuggaacaauugeuuuuacagaugeac
auaucgaggugaacaucacguacgcggaauacuucgaaauguccguucgguuggeagaageuaugaaa
cgauaugggceugaauacaaaucacagaaucgucguaugeagugaaaacucucuucaauucuuuaugee
gguguugggcgeguuauuuaucggaguugeaguugegeccgegaacgacauuuauaaugaacgugaa
uugcucaacaguaugaacauuucgeagecuaccguaguguuuguuuccaaaaagggguugeaaaaaau
uuugaacgugceaaaaaaaauuaccaauaauccagaaaauuauuaucauggauucuaaaacggauuacce
agggauuucagucgauguacacguucgucacaucucaucuaccucccgguuuuaaugaauacgauuu
uguaccagaguccuuugaucgugacaaaacaauugcacugauaaugaauuccucuggaucuacuggg
uuaccuaaggguguggeccuuccgeauagaacugecugegucagauucucgeaugecagagauccuau
uuuuggceaaucaaaucauuccggauacugegauuuuaaguguuguuccauuccaucacgguuuugga
auguuuacuacacucggauauuugauauguggauuucgagucgucuuaauguauagauuugaagaag
agcuguuuuuacgaucccuucaggauuacaaaauucaaagugeguugeuaguaccaacccuauuuuca
uucuucgccaaaageacucugauugacaaauacgauuuaucuaauuuacacgaaauugcuucuggees
cgeaccucuuucgaaagaagucggggaagegguugeaaaacgeuuccaucuuccagggauacgacaag
gauaugggeucacugagacuacaucagcuauucugauuacacccgagggggaugauaaaccgggcecg
gucgguaaaguuguuccauuuuuugaagegaagguuguggaucuggauaccgggaaaacgeuggacg
uuaaucagagaggcgaauuaugugucagaggaccuaugauuauguccgguuauguaaacaauccgga
agcgaccaacgecuugauugacaaggauggauggeuacauucuggagacauageuuacugggacgaag
acgaacacuucuucauaguugaccgcuugaagucuuuaauuaaauacaaaggauaucagguggcceee
gcugaauuggaaucgauauuguuacaacaccccaacaucuucgacgegggeguggeaggucuucceega
cgaugacgecggugaacuuccegecgecguuguuguuuuggageacggaaagacgaugacggaaaaa
gagaucguggauuacgucgecagucaaguaacaaccgegaaaaaguugegeggaggaguuguguuug
uggacgaaguaccgaaaggucuuaccggaaaacucgacgeaagaaaaaucagagagauccucauaaag
gccaagaagggeggaaaguccaaauugaucgaaggeegeggaucugguacuaguggegggucaggug
geucggggegauccgaacaaaaacuuauuucugaagaagacuugeaccaucaccaucaccauuaa
auggaagacgcaaaaaacaucaaaaaaggeccggeaccguucuaccegeuggaagacggcaccgcagge
gaacagcugcacaaagcaaugaaacguuacgeacugguaccgggeaccaucgeauucaccgacgeacac
aucgaaguaaacaucaccuacgcagaauacuucgaaauguccguacgucuggeagaagcaaugaaacg
uuacggecugaacaccaaccaccguaucguaguaugeuccgaaaacucccugcaguucuucaugeegg
uacugggegeacuguucaucggeguageaguageaccggeaaacgacaucuacaacgaacgugaacug
cugaacuccaugaacaucucccagecgaccguaguauucguauccaaaaaaggecugeagaaaauccug
aacguacagaaaaaacugccgaucauccagaaaaucaucaucauggacuccaaaaccgacuaccaggge
uuccaguccauguacaccuucguaaccucccaccugecgecgggeuucaacgaauacgacuucguace
ggaauccuucgaccgugacaaaaccaucgeacugaucaugaacuccuccggeuccaccggecugecgaa
aggcguagcacugecgeaccguaccgeaugeguacguuucucccacgeacgugacccgaucuucggea
accagaucaucccggacaccgeaauccuguccguaguaccguuccaccacggeuucggeauguucace
acccugggeuaccugaucugeggeuuccguguaguacugauguaccguuucgaagaagaacuguuce
ugcguucccugeaggacuacaaaauccaguccgeacugeugguaccgacccuguucuccuucuucgea
aaauccacccugaucgacaaauacgaccuguccaaccugeacgaaaucgeauccggeggegeaccgeug
uccaaagaaguaggcgaagcaguagcaaaacguuuccaccugecgggeauccgucagggeuacggecu
gaccgaaaccaccuccgeaauccugaucaceccggaaggegacgacaaaccgggegeaguaggeaaagu
aguaccguucuucgaagcaaaaguaguagaccuggacaccggeaaaacccugggeguaaaccagegug
gcgaacugugeguacguggeccgaugaucauguccggeuacguaaacaacccggaageaaccaacgea
cugaucgacaaagacggeuggeugeacuccggegacaucgeauacugggacgaagacgaacacuucuu
caucguagaccgucugaaaucccugaucaaauacaaaggeuaccagguageaccggeagaacuggaau
ccauccugeugeageacccgaacaucuucgacgeaggeguageaggecugeeggacgacgacgeagge
gaacugccggeageaguaguaguacuggaacacggeaaaaccaugaccgaaaaagaaaucguagacuac
guagcaucccagguaaccaccgcaaaaaaacugeguggeggeguaguauucguagacgaaguacegaa
aggccugaccggeaaacuggacgeacguaaaauccgugaaauccugaucaaageaaaaaaaggeggeaa
auccaaacugaucgaaggecgeggaucugguacuaguggeggguceagguggeucggggegaucegaa
caaaaacuuauuucugaagaagacuugeaccaucaccaucaccauuaa
auggaagaugcgaaaaacauuaaaaaaggeceggegecguuuuauccgeuggaagauggcaccgeggs
cgaacagcugcauaaagegaugaaacgeuaugegeuggugecgggeaccauugeguuuaccgaugege
auauugaagugaacauuaccuaugcggaauauuuugaaaugagegugegecuggeggaagegaugaa
acgcuauggecugaacaccaaccaucgeauuguggugugeagegaaaacagecugeaguuuuuuauge
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k

WB based
(Sequence
from (60))

max

eff

based

cggugeugggegegeuguuuauuggeguggegguggegeeggegaacgauauuuauaacgaacgega
acugcugaacagcaugaacauuagecagecgaccgugguguuugugageaaaaaaggecugeagaaaa
uucugaacgugcagaaaaaacugccgauuauucagaaaauuauuauuauggauageaaaaccgauuau
cagggcuuucagagcauguauaccuuugugaccagecaucugecgecgggeuuuaacgaauaugauu
uugugccggaaagcuuugaucgcgauaaaaccauugegeugauuaugaacageageggeageaccgge
cugccgaaaggeguggegeugecgeaucgeaccgegugegugegeuuuagecaugegegegauccga
uuuuuggcaaccagauuauuccggauaccgegauucugageguggugeeguuucaucauggcuuugg
cauguuuaccacccugggeuaucugauuugeggeuuucgeguggugeugauguaucgeuuugaagaa
gaacuguuucugcgeagecugeaggauuauaaaauucagagegegeugeuggugecgacccuguuua
gcuuuuuugegaaaageacccugauugauaaauaugaucugageaaccugeaugaaauugegageggc
ggcgegecgeugageaaagaagugggecgaagegguggcgaaacgcuuucaucugeegggeauucgee
agggcuauggecugaccgaaaccaccagegegauucugauuaccceggaaggegaugauaaaccggge
gcggugggeaaaguggugecguuuuuugaagegaaagugguggaucuggauaccggeaaaacccugg
gcgugaaccagegeggegaacugugegugegeggeccgaugauuaugageggeuaugugaacaacee
ggaagcgaccaacgegeugauugauaaagauggeuggeugeauageggegauauugeguauugggau
gaagaugaacauuuuuuuauuguggaucgecugaaaagecugauuaaauauaaaggeuaucaggugg
cgceggeggaacuggaaageauucugeugeageauccgaacauuuuugaugegggeguggegggecu
gceggaugaugaugegggegaacugeeggeggeggugguggugeuggaacauggeaaaaccaugace
gaaaaagaaauuguggauuauguggcgagecaggugaccaccgegaaaaaacugegeggcggegugg
uguuuguggaugaagugecgaaaggecugaccggeaaacuggaugegegeaaaauucgegaaauucu
gauuaaagcgaaaaaaggeggeaaaageaaacugaucgaaggecgeggaucugguacuaguggegggu
cagguggeucggggegauccgaacaaaaacuuauuucugaagaagacuugeaccaucaccaucaccau
uaa
auggaggaugcuaagaauauaaagaaggguccugeuccuuuuuauccucuugaggaugguacugeug
gugagcaacuucauaaggcuaugaagegauaugeucuuguuccugguacuauagecuuuuacugauge
ucauauagagguuaauauaacuuaugcugaguauuuugagaugucuguucgacuugeugaggeuaug
aagcgauauggucuuaauacuaaucaucgaauaguuguuuguucugagaauucucuucaauuuuuua
ugccuguucuuggugcucuuuuuauagguguugcuguugeuccugcuaaugauauauauaaugage
gagagcuucuuaauucuaugaauauaucucaaccuacuguuguuuuuguuucuaagaagggucuuca
aaagauacuuaauguucaaaagaagcuuccuauaauacaaaagauaauaauaauggauucuaagacug
auuaucaagguuuucaaucuauguauacuuuuguuacuucucaucuuccuccugguuuuaaugagua
ugauuuuguuccugagucuuuugaucgagauaagacuauageucuuauaaugaauucuucugguucu
acuggucuuccuaagggugUUECUCUUCCUCcaucgaacugeuuguguucgauuuucucaugeucgag
auccuauauuugguaaucaaauaauaccugauacugcuauacuuucuguuguuccuuuucaucaugg
uuuugguauguuuacuacucuugguuaucuuauaugugguuuucgaguuguucuuauguaucgauu
ugaggaggagcuuuuucuucgaucucuucaagauuauaagauacaaucugeucuucuuguuccuacu
cuuuuuucuuuuuuugcuaagucuacucuuauagauaaguaugaucuuucuaaucuucaugagauag
cuucugguggugcuccucuuucuaaggagguuggugaggcuguugeuaagcgauuucaucuuccug
guauacgacaagguuauggucuuacugagacuacuucugcuauacuuauaacuccugagggugauga
uaagccuggugcuguugguaagguuguuccuuuuuuugaggeuaagguuguugaucuugauacugg
uaagacucuugguguuaaucaacgaggugageuuuguguucgagguccuaugauaaugucugguua
uguuaauaauccugaggeuacuaaugeucuuauagauaaggaugguuggeuucauucuggugauaua
gcuuauugggaugaggaugagcauuuuuuuauaguugaucgacuuaagucucuuauaaaguauaagg
guuaucaaguugcuccugcugageuugagucuauacuucuucaacauccuaauauauuugaugeugg
uguugcuggucuuccugaugaugaugecuggugageuuccugecugcuguuguuguucuugageaugg
uaagacuaugacugagaaggagauaguugauuauguugcuucucaaguuacuacugcuaagaageuu
cgaggugguguuguuuuuguugaugagguuccuaagggucuuacugguaageuugaugeucgaaag
auacgagagauacuuauaaaggcuaagaagggugguaagucuaageuuaucgaaggecgeggaucug
guacuaguggegggucagguggeucggggegauccgaacaaaaacuuauuucugaagaagacuugea
ccaucaccaucaccauuaa
auggaagacgcaaaaaacaucaaaaaaggeccggeaccguucuacccgeuggaagacggeaccgeagge
gaacaacugcacaaagcaaugaaacgcuacgcacugguaccgggeaccaucgeauucaccgacgeacac
aucgaaguaaacaucaccuacgcagaauacuucgaaaugucaguacgecuggeagaageaaugaaacge
uacggccugaacaccaaccaccgeaucguaguaugeucagaaaacucacugeaauucuucaugecggu
acugggcegeacuguucaucggeguageaguageaccggeaaacgacaucuacaacgaacgegaacuge
ugaacucaaugaacaucucacaaccgaccguaguauucguaucaaaaaaaggecugeaaaaaauccuga
acguacaaaaaaaacugccgaucauccaaaaaaucaucaucauggacucaaaaaccgacuaccaaggeu
uccaaucaauguacaccuucguaaccucacaccugecgecgggeuucaacgaauacgacuucguaccg
gaaucauucgaccgcgacaaaaccaucgeacugaucaugaacucaucaggeucaaccggecugeegaaa
ggcguageacugecgeacegeaccgeaugeguacgeuucucacacgeacgegacccgaucuucggeaa
ccaaaucaucccggacaccgeaauccugucaguaguaccguuccaccacggeuucggeauguucaccac
ccugggceuaccugaucugeggeuuccgeguaguacugauguaccgeuucgaagaagaacuguuccug
cgcucacugcaagacuacaaaauccaaucageacugeugguaccgacccuguucucauucuucgeaaaa
ucaacccugaucgacaaauacgaccugucaaaccugcacgaaaucgeaucaggeggegeaccgeuguca
aaagaaguaggcgaageaguageaaaacgeuuccaccugecgggeauccgecaaggeuacggecugac
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C.3 Supplementary Tables for Chapter 3

Table C.3.1 Summary of Web services provided per database and possible query results of
interest. HMDB and SEED do not have web services but are included here to show what
information we can retrieve from them.

Search inputs Outputs from web service request
Searchby Searchby Searchby Compound structure Cross-reference

Web compound DB external information (InChl,  Compound Compound to external

Database services name identifier  identifiers  SMILE, molfile, etc) synonyms formula identifiers
KEGG X X X = X X X X
ChEBI X X X - X X X X
LipidMaps X X X - X X X X
Pubchem X X X X X X X X
BiGG X X X - - X X X
MetaCyc X - X X X X X X
HMDB - X X X X X X X
SEED - X X X X X X X

Table C.3.2 Reactions that present A,.G"* sign switched due to a change in ionic strength value
from 0.15 M to 0.25 M. From the 3671 reactions in Recon 2 v4 with thermodynamic constrains
successfully added. Despite the change in sign and value of A,.G”, the uncertainty associated
with the A,.G” estimation is sufficiently high such that the bounds for A, G'estimated for a range
of physiological metabolite concentrations are approximately the same and the reactions are
reversible. These reactions are not transports and take place in the mitochondria (4) and 1 in
the endoplasmic reticulum.

RXN  ArG'e ArG'e  Reaction name Reaction formula
identifier (1=0.15)  (1=0.25)
MMCDm -0.0489  0.2208 C-3 sterol dehydrogenase proton + (S)-methylmalonyl-CoA(5-)

(4-methylzymosterol) <=> carbon dioxide + Propanoyl-CoA
r1137 0.0068 -0.0470 Methylmalonyl-CoA Nicotinamide adenine dinucleotide +

decarboxylase, 4alpha-Methylzymosterol-4-

mitochondrial carboxylate <=> carbon dioxide +

Nicotinamide adenine dinucleotide -
reduced + 3-Keto-4-methylzymosterol
C3STDH1r 0.0068 -0.0470 nucleoside-diphosphate 4-Methylzymosterol intermediate 1 +
kinase (ATP:dIDP), Nicotinamide adenine dinucleotide <=>
mitochondrial 4-Methylzymosterol intermediate 2 +
carbon dioxide + Nicotinamide adenine
dinucleotide - reduced
NDPK10m 0.0298  -0.0363 nucleoside-diphosphate ATP + dIDP <=> ADP + dITP(4-)
kinase (ATP:IDP),
mitochondrial

NDPK9m  0.0298  -0.0363 NAD(P) dependent ATP + IDP(3-) <=> ADP + ITP(3-)
steroid dehydrogenase-
like EC:1.1.1.170
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Table C.4.6 List of subsystems from Recon 2 v4 that are not explicitly kept in the RedHuman

core network.

Alkaloid synthesis

N-glycan degradation

Androgen and estrogen synthesis and metabolism

N-glycan synthesis

Arachidonic acid metabolism
Biotin metabolism

| Nucleotide salvage pathway

Nucleotide sugar metabolism

Blood group synthesis

O-glycan synthesis

C5-branched dibasic acid metabolism
Chondroitin sulfate degradation

Phenylalanine metabolism
Phosphatidylinositol phosphate metabolism

Chondroitin synthesis
CoA catabolism

Selenoamino acid metabolism
Starch and sucrose metabolism

CoA synthesis Steroid metabolism
Cytochrome metabolism Stilbene, coumarine and lignin synthesis
Dietary fiber binding Taurine and hypotaurine metabolism

Galactose metabolism

Tetrahydrobiopterin metabolism

Glycosphingolipid metabolism
Glyoxylate and dicarboxylate metabolism

Thiamine metabolism
Transport, golgi apparatus

Heme degradation
Heme synthesis
Heparan sulfate degradation

. Ubiquinone synthesis

Vitamin A metabolism
Vitamin B12 metabolism

Inositol phosphate metabolism

Vitamin B2 metabolism

Keratan sulfate degradation
Keratan sulfate synthesis

Vitamin B6 metabolism
Vitamin C metabolism

Limonene and pinene degradation
Linoleate metabolism

Vitamin D metabolism
Vitamin E metabolism

Lipoate metabolism

Xenobiotics metabolism

beta-Alanine metabolism
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Table C.4.7 List of metabolites that have lost extracellular reactions in RedHuman (green), that
have been completely eliminated in all compartments of RedHuman (yellow), and that have
been removed in some compartments of RedHuman (typically 1, n, g, X, r), while still existing in
others (e, ¢, m) (orange). Compounds that have extracellular reactions removed but are still
present in the network in the extracellular media (e) are generated by extracellular reactions
using other compounds. Notation for compartments (compart.): ¢ (cytosol) , e (extracellular), n
(nucleus), m (mitochondria), r (endoplasmic reticulum), g (Golgi), x (peroxisome), | (lysosome).

Removed Removed
in Exist in Metabolite in Exist in
Observation Metabolite name Compart. Compart. Observation name Compart.  Compart.
Dihydroxyacetone phosphate e c,X,m D-glucose gl e,c,r
Orotate - ce L-glutamine | c,e,m
Extracellular | serotonin(1+) - ce Glycine | m,X,c,e
reaction taurocholate - c,X,e L-alanine | m,X,e,c
removed L-thyroxine - ce L-aspartate(1-) | c,me
despite no other
data, but no compart.
removal of Sucrose e in GEM L-serine glr c,e,m,x
intracellular no other
compound compart.
Taurodeoxycholic acid e In GEM L-asparagine | c,.e,m
glycochenodeoxycholate - e,c,X L-proline I,r e,m,c
L-histidine | e,c,m
creatine e,c,m - L-threonine |,m ce
Hypoxanthine el,cx - L-argininium(1+) | m,e,c
carnosine e,c,l - L-tyrosine I,m e,c
IMP e,c,m - L-valine | e,c,m
GMP egcmn,l | - L-methionine |,m c.e
Cytidine e,l,m,n,| - L-tryptophan | e,c
Glycerol e,c,m - L-phenylalanine |,m e,c
Extrace'llular 3-(4-hydroxyphenyl)pyruvate e,c,m - L-isoleucine | e,c,m
react;on (S)-3-aminoisobutyric acid e,c,m - L-leucine | e,c,m
intraacnellular 4-pyridox_at_e e,c - L-Iysinium(1+) 1,n,x c,m,e
s Deoxycytidine e,c,m,n,| - Succinate rXx c,e,m
removed Lactose elec - (S)-malate(2-) X c,m,e
despite data Nicotinate e,c - rareliniar 2-Oxoglutarate r m,c,e,X
D-glucitol e,c - etanalites ATP g l,n c,m,r,e,x
Thiamin e,c,m - removedin L-cysteine |,m c,e
some 3-Phospho-D-
Thymine e,c,m - compartments glycerate m c
despite data alpha-D-Ribose
Thymidine e,c,l,m - 5-phosphate m c,r
Urate e,c,x,n - ADP egl,n c,m,X,r
AMP gl c,m,Xx,r,e
Extracellular | Inosine m,| ce GTP en cm
reaction CMP gmn,lre | c GDP e,gn c,m
and bilirubin(2-) r ce UTP m,n ce
intracellular | p-glucuronate le or Putrescine X m,c,e
c?mpound oxalate(2-) X c,m,e beta-alanine m ce
in some 4-
compart. 3,3',5-triiodo-L-thyronine r ce Aminobutanoate | | c,m,e,n
removed
despite data | UMP gl,mn,e c,r Taurine X e,c
trans-4-hydroxy-
L-proline r c,m,e
tyraminium c - Adenine | Ejc
L-cystathionine c,m - Spermidine X c,e
Guanosine e,m,c,l - spermine(4+) X ce
D-gluconate c - Uridine I,m,n ce
Intracellt.JIar dTMP cl,men - Adenosine |,m ce
metabolites
Reduced
completely UDPglucose crge - glutathione r,X cem
removed s - s
despite data . S-AdenosyI:L—
3-hydroxyanthranilate C - homocysteine n c,r,m,e
S-Adenosyl-L-
4-hydroxybenzoate m - methionine n c,r,m
5-Hydroxyindoleacetate c,m - Nicotinamide I,n m,c,r,X
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adenine
dinucleotide
phosphate -
reduced
N-carbamoyl-beta-alaninate 4 - Coenzyme A gl,n m,c,X,r,e
choline phosphate(1-) cgl - CDP e,m,n ©
0O-
phosphonatoethanaminium(1-
) c,r - Acetyl-CoA g,n,r m,c,X
3-hydroxy-L-kynurenine c,m - Malonyl-CoA elmnrx | c
kynurenate c,m - CTP e,m,n C
Nicotinamide
adenine
L-kynurenine c,m - dinucleotide e,n X,c,m,r
Nicotinamide
adenine
dinucleotide
Xanthine C,X - phosphate el,n m,c,r,x

Flavin adenine
dinucleotide

Xanthosine 5'-phosphate C - oxidized e,x m,r,c
UDP-N-acetyl-
alpha-D-

xanthosine c - glucosamine(2-) gr

etha c - uDP e,g,l,mn,r
(R)-3-

sn-Glycero-3-phosphocholine c - hydroxybutyrate | m e,c

D-Glyceraldehyde c,m - Choline g.n,r e,c,m
2-

guanidinoacetic acid c - deoxyadenosine | ce

Nicotinate D-ribonucleotide c,n,m - dCMP |,m,n C

Orotidine 5'-phosphate C - Deoxyuridine m,n ce

D-Glucose 1-phosphate c.e - Folate m e,c
(R)-

(S)-2-Aminobutanoate c - Pantothenate m e,c

creatinine C - propionate m,X ce
UDP-D-

quinolinate(2-) c - glucuronate g c,r
myo-inositol g,r c.e
UMP egl,mn cr
L-thyroxine r B0
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Table C.4.8 The 15 lumped reactions added to the core network of RedHuman to generate a
network that is capable of producing all biomass building blocks. The components of the
biomass reaction originally in Recon 2 v4 are present in the Biomass components columns and
if a lumped reaction was generated it is indicated with ¢, followed by the respective lumped

reaction.

Biomass components

Lumped reaction

Substrates
Water

ATP
L-glutamate(1-)
L-aspartate(1-)
GTP
L-asparagine
L-alanine
L-cysteine
L-glutamine
Glycine

L-serine
L-threonine
L-lysinium(1+)
L-argininium(1+)
L-methionine

1-phosphatidyl-1D-myo-inositol(1-)

CcTP

Phosphatidylcholine

phosphatidylethanolamine

cholesterol

phosphatidylglycerol(1-)

cardiolipin

utp
dGTP

dcTpP

dATP

dTTP

D-Glucose 6-phosphate
L-histidine

L-tyrosine

L-isoleucine
L-leucine
L-tryptophan
L-phenylalanine
L-proline
phosphatidylserine

sphingomyelin betaine

L-valine

Products

ADP

proton
hydrogenphosphate

proton + hydrogenphosphate + 2-deoxyadenosine <=> 2-Deoxy-D-ribose 1-
phosphate + Adenine

ATP + 5-Phospho-alpha-D-ribose 1-diphosphate + Guanine <=> ADP + Diphosphate
+GDP

ATP + myo-inositol + diglyceride <=> Water + ADP + 1-phosphatidyl-1D-myo-
inositol(1-)

2 proton + 5-Phospho-alpha-D-ribose 1-diphosphate + N-Carbamoyl-L-aspartate +
Orotate <=> Water + carbon dioxide + Diphosphate + (S)-dihydroorotate + UMP
Ammonium + hydrogenphosphate + acetaldehyde + 3 S-Adenosyl-L-methionine +
CTP + diglyceride + phosphatidylethanolamine <=> Water + Diphosphate + CMP +
3 S-Adenosyl-L-homocysteine + 3 proton + phosphatidylethanolamine +
Phosphatidylcholine

proton + ATP + L-serine + diglyceride + phosphatidylserine <=> Water + ADP +
carbon dioxide + phosphatidylethanolamine + phosphatidylserine

Water + R total 2 coenzyme A + lysophosphatidic acid + CTP + Glycerol 3-
phosphate <=> hydrogenphosphate + Coenzyme A + Diphosphate + CMP +
phosphatidylglycerol(1-)

Water + 2 ATP + 2 CTP + 2 diglyceride + Glycerol 3-phosphate <=>2 ADP + 2 proton
+ hydrogenphosphate + 2 Diphosphate + 2 CMP + cardiolipin

ATP + proton + hydrogenphosphate + Deoxyguanosine <=> Water + ADP + dGDP
4.8583 2-Deoxy-D-ribose 1-phosphate + 3.8583 uracil + Uridine + 11.25 dCDP <=>
3.8583 proton + 3.8583 hydrogenphosphate + 5.625 dCMP + 5.625 dCTP + 4.8583
Deoxyuridine + alpha-D-Ribose 1-phosphate

ATP + 2-deoxyadenosine <=> ADP + dAMP(2-)

Water + 2.451 ATP + 2.2105 2-Deoxy-D-ribose 1-phosphate + 2.451 Nicotinamide
adenine dinucleotide + cytosine + 1.2105 uracil + 2.451 dUMP + 2.451 5,10-
Methylenetetrahydrofolate <=> Ammonium + 2.451 ADP + 3.6614 proton + 2.2105
hydrogenphosphate + 2.451 Nicotinamide adenine dinucleotide - reduced +
2.2105 Deoxyuridine + 2.451 dTDP + 2.451 Folate

02 + proton + Nicotinamide adenine dinucleotide - reduced + L-phenylalanine <=>
Water + Nicotinamide adenine dinucleotide + L-tyrosine

ATP + L-serine + diglyceride <=> Water + ADP + phosphatidylserine

02 + proton + hydrogenphosphate + Nicotinamide adenine dinucleotide - reduced
+ CTP + Choline + dihydroceramide <=> 3 Water + Nicotinamide adenine
dinucleotide + Diphosphate + CMP + sphingomyelin betaine
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