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Abstract. In this paper, we introduce a design principle to develop novel soft 

modular robots based on tensegrity structures and inspired by the cytoskeleton of 

living cells. We describe a novel strategy to realize tensegrity structures using 

planar manufacturing techniques, such as 3D printing. We use this strategy to 

develop icosahedron tensegrity structures with programmable variable stiffness 

that can deform in a three-dimensional space. We also describe a tendon-driven 

contraction mechanism to actively control the deformation of the tensegrity mod-

ules. Finally, we validate the approach in a modular locomotory worm as a proof 

of concept. 
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1 Introduction 

The quest for reconfigurable modular robots dates back to von Neumann’s early spec-

ulations that one would need a dozen types of simple modules fabricated in millions 

and floating in an agitated medium [1] to Fukuda’s cellular robots composed of self-

contained mobile units that could assemble to carry out diverse tasks [2]. Over the past 

30 years, this challenge has been tackled by the growing fields of modular robotics [3] 

and swarm robotics. While there is not enough space here to review those two fields, it 

is important to point out that modular and swarm systems fall in two categories: systems 

made of complex units that can individually move or perform some tasks and systems 

made of simple units that can move or perform tasks only when they are assembled 

with other units. In this paper we are concerned with the latter type of systems where 

morphofunctional properties emerge from the assembly of multiple units, as in biolog-

ical multi-cellular organisms. Since most modular artificial systems are made of rigid 

components, they display some scalability challenges [4]: they may require precise mo-

tion for docking of terminal units, the morphological space may be limited to simple 

geometries, and the resulting structure may be relatively rigid for robust and safe inter-

action with the environment.  

On the other hand, biological multi-cellular systems are made of cells that display 

different degrees of stiffness: very soft, such as fat cells, very stiff, such as bone cells, 

to directional stiffness, such as hair cells, and variable stiffness, such as muscle cells, 

 
 



for example. A soft modular robot made of programmable-stiffness modules could dis-

play physical compliance providing safer and better interaction with the environment 

and span a larger morpho-functional space, including curved bodies, soft bodies, such 

as worms, and complex bodies, such as vertebrates.  

Recently, some authors have described examples of soft modular robots and most of 

them make use of pneumatic actuation and inflatable modules [5-7]. J. Y. Lee et al. [8] 

proposed a Soft Robotic Blocks kit (SoBL) composed of three basic types of pneumat-

ically actuated soft modules. Each type of module implements a single type of motion 

(i.e. translation, bending or twisting) and can be assembled in branch-like structures to 

achieve more complex motion patterns. However, pneumatic actuation requires several 

pumps and complex network of pipes that make the system complex and bulky for a 

high number of independent controlled modules. Non-pneumatic approaches have also 

been used. Yim et al [9] described a chain of soft cubes that could return to a previously 

designed 3-D shape after being stretched. Wang et al. [10] describe a variable stiffness 

actuated hinge that can be used to form modules capable of being assembled in various 

different deployable structures. B. Jenett at al. [11] describe the use of two-dimensional 

compliant modules assembled in three-dimensional structures. The stiffness and den-

sity of the assembly can be programmed locally based on the number and the orientation 

of the modules. Some of us have recently described a soft multi-cellular robot [12] 

where each cell is a ring made of PDMS at desired stiffness value with embedded mag-

nets. The cells could connect in chains and, by automatically selecting the appropriate 

cell stiffness and the position of the magnetic contact points, they could approximate a 

large variety of desired curved morphologies by magnetic repulsion or attraction of the 

magnets in adjacent cells. The cells have also been functionalized by adding an internal 

network of nitinol fibers connecting opposite points of the ring that could contract the 

cell in desired directions, akin to muscle cells [13]. However, the system was con-

strained to two dimensions. 

Here we propose a design principle for three-dimensional soft modules based on 

tensegrity structures inspired by the cytoskeleton of biological cells. Tensegrity struc-

tures are lightweight, can undergo large deformations generated by internal or external 

forces, and can resist large compressive forces. We describe a method for designing 

and assembling three-dimensional modules with planar manufacturing technologies. 

Moreover, the stiffness of the cells can be programmed by changing some parameters 

of the manufacturing process. We also describe a method to add contraction movement 

by means of tendon-driven actuation and validate the approach in a proof-of-concept 

crawling, multi-modular worm. 

The paper is organized as follows: in section II, the tensegrity approach is intro-

duced. In section III the main tensegrity structure module is selected, and materials, 

manufacturing tools and processes are described. The tendon-driven contractive actua-

tion that can be added to the module is also presented. In section IV a proof of concept 

soft modular crawling robot is presented. Finally, in section V we discuss future work.  



 

 

 

Fig. 1. (a) Image of a cell obtained with fluorescence microscopy. In blue is the nucleus of the 

cell and at the bottom a sketch of the two main constituents of the cytoskeleton: microtubules 

and actin filaments [14]. (b) Example of a tensegrity structures: the icosahedron tensegrity struc-

ture composed of six struts and 24 cables. 

2 Tensegrity in biological and robotic systems 

In order to develop soft modules with programmable stiffness for our modular robot, 

we took inspiration by the mechanical structure of multicellular organisms cells. These 

organisms are heterogeneous systems made of cells with very diverse functions and 

mechanical properties. However, every cell has a cytoskeleton, which is an extremely 

complex network made of two types of interconnected fibers [14]: rigid microtubules 

and bendable actin filaments (Fig. 1a). This architecture, which is responsible for the 

shape, stiffness, and strength of the cell can be formally described as a tensegrity struc-

ture [15].  

The term “tensegrity” has been coined by architect R. Buckminster Fuller to describe 

a structure that maintains its mechanical integrity throughout the pre-stretching of some 

elements constantly in tension (called “cables” in red in Fig. 1b) connected in a network 

with other elements constantly under compression (called “struts” in green in Fig. 1b) 

[15]. In the cytoskeleton, the microtubules and the actin filaments function as struts 

cables, respectively. The cytoskeleton has different values of stiffness (e.g. resistance 

to external loads) according to the level of pre-stretch of its actin filaments (i.e. the 

higher the pre-stretch, the higher the stiffness of the cytoskeleton) [15]. Similarly, the 

stiffness of a tensegrity structure with a given network configuration depends on the 

pre-stretch of its cables. If the pre-stretch is properly tuned, the tensegrity structure has 

low stiffness in all directions (e.g., as in elastomers and living matter), and display a 

behavior akin to soft matter [15].   

In addition to describing the cytoskeleton of the cells, the tensegrity model has been 

used to describe several structures at many scales of the life [16]. An example at the 

macroscopic level is the skeletal system of the human body, where bones, tendons and 



muscles are elements continuously under tension or compression to keep the body in 

its mechanical integrity [16] [17]; an example at the nanoscale is some proteins and 

basic molecules that maintain integrity with tensegrity structure [17]. The scalability of 

the tensegrity model is therefore an important asset for modular robot design because 

it could be employed at different levels, although manufacturing methods may vary 

according to the chosen scale.  

The use of tensegrity structures to develop biologically inspired robots has already 

been suggested by Haller et al. [18], while Rieffel et al. suggested the use of tensegrities 

to achieve “mechanical intelligence” [19]. Yet another example of a tensegrity robot is 

SUPERball developed at NASA [20], which is able to roll, even on rough terrains, with 

an optimized control of the six embedded actuators. However, to the best of the author’s 

knowledge, there have not yet been proposals of using tensegrity structures as a design 

principle for simple modules of a modular, functional robot. 

3 Module Design and Manufacturing 

In this paper we aim at studying robotic modules in the scale of few centimeters because 

they can be manufactured using affordable and simple manufacturing methods, incor-

porate off-the-shelf electronic components, and eventually be assembled into functional 

modular robots of a size comparable to typical household or inspection robots.  In this 

section we describe the selection of the main tensegrity structure module, the choice of 

materials, and the manufacturing method. 

3.1 Tensegrity Structure Selection 

Different tensegrity structures can be obtained according to the number of struts and 

cables, the network configuration (e.g. struts and cables positions in the three-dimen-

sional space), the cables’ stiffness and how much they are pre-stretched [21]. In this 

study, for sake of simplicity, we assume that all the cables of the tensegrity structure 

have the same pre-stretch value. 

Three main criteria have been applied to select the main tensegrity structure for a 

modular tensegrity robot. The first criterion is that the main soft module should be able 

to deform (e.g. stretch or contract) in all directions to augment the morphological di-

versity of the assembly and comply with objects and surfaces in a three-dimensional 

space.  The second criterion is that the tensegrity structure should involve the smallest 

possible number of struts and cables to ease the manufacturing and assembling. The 

third criterion is to favor network configurations whose inner volume is not crossed by 

any cable or strut in order to place and protect a useful payload (e.g. actuator, micro-

controller, energy storage, sensor, depending on the cell type). 

To assess the first criterion, we had to consider that tensegrity structures can display 

different values of stiffness along different directions. However, the more the structure 

is symmetric, the more it will exhibit similar mechanical properties along different di-

rections [21]. The tensegrity structures that use the most symmetric networks are those 

with an almost spherical shape [22]. Among these, to assess the second criterion, we 



 

 

 

selected the tensegrity structure that has the smaller number of struts and cables: the 

icosahedron tensegrity (Fig. 2) [20] [22]. It is composed of 6 identical struts and 24 

cables of equal length. The cables are organized in 8 equilateral triangles interconnected 

by 12 vertices and distributed in 4 parallel opposite pairs (in Figure 2b the pairs of 

triangles are marked with four different colors). Furthermore, the icosahedron 

tensegrity structure has an inner cubic volume that is not crossed by any cable or strut 

(Fig. 2a), satisfying the third criterion.  

When the icosahedron structure is compressed along a direction orthogonal to any 

of the four triangle pairs (Fig 2c), it displays maximum deformability and can be col-

lapsed to a flat configuration (Fig. 2d). These four directions, which we name “collaps-

ibility directions”, allow the structure to deform in three-dimensional space.  

 

Fig. 2. (a) Icosahedron tensegrity structure with a grey cube at the geometrical center to better 

display the inner cubic volume not crossed by any cable or strut. (b) Icosahedron tensegrity pro-

totype with the 4 couples of parallel equilateral triangular faces marked with 4 different colors. 

(c) An external load is applied along the orthogonal direction to the two parallel triangular faces 

(a “collapsibility direction”). (d) The collapsed structure. 

3.2 Design and Manufacturing  

 Instead of manufacturing every single component separately, here we propose to 
manufacture all cables as a single flat network that can be folded into a three-dimensional 
structure and subsequently filled with struts. The cable network can be rapidly manufac-
tured using inexpensive 3D printers. 

Two different materials are used for cables and struts. The cables require an elastic 
printable material that can withstand a wide range of pre-stretch and deformations of the 
module without losing its elastic properties; the struts instead require a stiffer material 
that can withstand compressive forces without buckling [21]. For cables, we use Nin-
jaFlex, an elastic material compatible with commercially available fused deposition 
modeling 3D printers that can withstand 65% of elongation at yield. For struts, we use 
pultruded carbon rods (that are commercially available in different diameters and length) 
with a longitudinal Young’s modulus of approximately 90 GPa, which is sufficient to 
withstand compression and buckling. 

To design the flat cable’s network, a 3D CAD model of the tensegrity module is 
realized (Fig. 3a). The model is composed of the 8 equilateral triangles of the icosahe-
dron tensegrity assembled with joints at the 12 vertices.  The unfolded flat network is 
obtained by eliminating the 6 struts and disconnecting the cables at two vertices (see Fig 



3b), and then rotating the triangles around the joints until obtaining a flat network’s con-
figuration (see Fig. 3c-d). The nodes of the network are marked according to the corre-
sponding vertex of the 3D tensegrity model. The two vertices that were disconnected in 
software to unfold the network will be overlapped to close it back during the physical 
assembly.   

To assemble the rigid struts in the elastic network, cylindrical housings are designed 
at all the nodes (see Fig. 3d-e). The housings are 4 mm high and have an inner diameter 
equal to the one of the carbon rods in order to ease the insertion. Thanks to this type of 
design, no additional connection elements or adhesives are required to connect the struts, 
which will be kept in place and secured by the pre-stretch of the cables after the physical 
assembly.  

Fig. 3. (a) 3D CAD model of a tensegrity icosahedron. In yellow are marked the two vertices 

disconnected to unfold the cable’s network. (b-c) The unfolding sequence obtained rotating the 

triangles around the joints in the vertices, in yellow are marked the 4 nodes that will be over-

lapped to generate vertices F1 and F2. (d) Flat cable’s network with housings in the vertices to 

insert the carbon rods. (e) Detailed view of one of the housings.  

The cable network is 3D printed with a Desktop 3D printer LulzBot TAZ 5. After 
3D printing, the carbon rods are assembled following the illustration in Fig. 3d: the two 
vertices of a rod are inserted in the two housings with the same letter starting from the 
housing “A” (e.g., the ends of the first strut will be inserted in A1 and A2 housings) and 
following the alphabetical order until the sixth and final strut “F” which has to be inserted 
in four housings (one side of the carbon rod is inserted in the two F1a-b housings and 
the other in the two F2a-b).  

The icosahedron tensegrity prototype in Fig. 2c is made of an elastic network of 
thickness and width of 1 mm and with cables long 4.75 cm each, has a height of 7.8 cm 
and can be approximated to a sphere of the same diameter, therefore occupying a volume 
of about 248 cm3. The printing process requires approximately 30 minutes for the icosa-
hedron elastic network with an infill of 100 % and 0.25 mm of vertical resolution. When 
collapsed along any of the four different directions, the structure reduces its volume by 
84 % to about 40 cm3 (Fig. 2d).  



 

 

 

The stiffness of the tensegrity modules mainly depends on the stiffness of the cable 
networks that deforms when the module is compressed. Hence, by modifying the cable’s 
stiffness, it is possible to tune the elastic behavior of the entire module. This can be 
achieved by changing some design parameters, such as the thickness, width, material of 
the cables or their pre-stretch, which is defined by the ratio between struts and cables 
lengths. All cables have the same length and, if shortened, they become more stretched 
during the assembly (when the struts length is kept constant) and result into a stiffer 
module. Different prototypes with different pre-stretches and thicknesses of the cables 
have been manufactured and tested. The pre-stretch ranges from less than 1 % up to 30 
% (after which the manual assembly becomes difficult) and the thickness from 1mm to 
3mm. Every module has been compressed 50% of its height and for every module a load 
versus compression curve has been obtained. The figure 4a shows increasing stiffness 
of the modules with increasing values of pre-stretch at a constant thickness of 1 mm, 
although there is no sensitive variation over 15%. Figure 4b shows higher stiffness with 
increasing thickness.  

Fig. 4. (a) Compressive load versus module compression of manufactured modules with different 

pre-stretch and fixed 1mm thickness. The compression tests have been conducted with an Instron 

universal testing machine. (b) Modules with 15% pre-stretch and different thicknesses. 

3.3 Connectivity 

A connection mechanism is required to physically connect modules into a modular 
robot that can display some functionality. Connection points may also serve as a medium 
to transmit information and energy throughout the robot. Furthermore, the number and 
type of connection points in a module may affect the morphology and functionality of 
the robot. However, at this stage we use only a simple mechanical latching that allows 
us to assemble cells into a proof-of-concept functional robot. 



The mechanical latching system connects vertices and faces of different modules. 
The system is integrated into the flat cable’s network configuration and therefore man-
ufactured with all the other cables during the 3D printing process (see Fig. 5a). The sys-
tem consists of a pin and a hole at every vertex. The pin has a slightly larger diameter 
than the hole and when forced into it, it remains thanks to the friction between the lateral 
walls of pin and hole. An opposite pressure is required to detach them. The pin and hole 
can be inserted inside one another when the vertex is not connected to another vertex 
(see Fig 5b-c) or can be latched to another vertex with each pin inserted in the hole of 
the other vertex (see Fig. 5d). Two triangular faces of two modules can be connected 
latching their 6 vertices in 3 pairs (see Fig. 5e).  

Fig. 5. (a) Integration of the latching system in the cable’s network. (b) Pin and hole of a vertex 

disconnected. (c) Pin and hole of a vertex connected. (d) Pin and hole of a vertex connected to 

another vertex. (e) Two triangular faces connected through their 6 vertices. 

3.4 Tendon-Driven Actuation 

An actuation mechanism can be added to the main module in order to control its con-

traction along one of the four collapsibility directions. Although this type of 1DOF 

actuation does not allow a single module to locomote, just like single biological cells 

in multicellular systems, several actuated modules connected in series, in parallel or 

transversally could perform more complex movements and tasks, such as locomotion 

or manipulation.  

In this paper, we propose to use a tendon-driven contractive system operated by a 

servo-motor. Although the servo-motor is a rigid component that can reduce the overall 

softness of the system [23] and the volume reduction in fully collapsed state, the chosen 

motor has a small volume (5 cm3) compared to that of the module (248 cm3). The servo 

is strategically placed in a modified strut with rectangular housing. This design avoids 

rigid connections between two struts and the rigid servomotor and preserve the 

tensegrity nature of the structure and its deformability [21]. 

The tendon-driven actuation contracts the icosahedron tensegrity by simultaneously 

pulling two opposite triangular faces towards the geometrical center of the structure 

along the collapsibility direction (see Fig 6a). The contractive mechanism comprises 

six tendons that connect each vertex of the selected triangular faces to a pulley that is 

activated by a servo-motor (see Fig 6b). The pulley is placed at the geometrical center 

of the icosahedron structure (see Fig 6b). When the servo is activated, the pulley starts 

to rotate wrapping the tendons, which in turn produce a contraction of the icosahedron 

(see Fig 6c). 



 

 

 

The six-tendon design can be directly included in the design process of the module’s 

elastic network. The six tendons have one end attached to the vertices of the triangular 

faces and the other end free (see Fig 6d-e).  

The kinematic tests of the actuated module show that a compression of about 25 % 

(the negative pick at about 3.5 seconds in Fig. 6g) and a lateral diameter expansion of 

9 % of the module height can be achieved. Improved design or different actuation tech-

nologies could further increase the contraction of the module, if required.  

 

Fig. 6. (a) The arrows represent the contractive directions of the two triangular faces marked in 

yellow. While the red dot represents the geometrical center of the tensegrity structure toward 

which the two faces are contracted. (b) The six dashed lines represent the six tendons connecting 

the two triangular faces to the pulley placed at the geometrical center of the structure. (c) When 

the pulley is rotated, the six tendons are all pulled at the same time contracting the two triangular 

faces. (d) The assembled module with marked in dashed yellow lines the six tendons connecting 

the 6 vertices of the two opposite triangular faces (marked in blue) to the pulley in the geometrical 

center of the structure. (e) The unfolded network with the tendons. (f) Graph of the servo position 

driving signal generated by an Arduino Uno. (g) Corresponding graph of the module compression 

and lateral expansion recorder through motion capture system (i.e. Optitrack system recording at 

240 Hz). 

4 A Crawling Modular Robot 

We exploited the specific kinematic of the actuated module (i.e. lateral expansion 

when compressed) to develop a simple crawling modular robot using peristaltic loco-

motion as a proof-of-concept. The robot is composed of 3 actuated modules connected 

along the actuated axes with mechanical latching. The three modules are controlled 

with an external Arduino Uno board using three different signals (Figure 7a). A driving 

signal controls the contraction and expansion of a module along the actuated axis. At 

each step cycle, the three modules contract in sequence from left to right (see Fig. 7a) 



and then expand very rapidly with the same order, thus producing contraction waves 

used in peristaltic locomotion [24]. This actuation pattern with different speed in con-

traction and expansion generates a directional friction on the ground which allows the 

assembly to move forward. The worm’s head position has been tracked through motion 

capture system and the result (Fig. 7b) shows a travel distance of about 15 mm per cycle 

and a speed of 90cm/min. This speed could be further improved by adding directional 

patterning to the ventral surface of the robot.  

 

Fig. 7. (a) Contraction snapshots sequence of a peristaltic movement cycle compared with the 

servo position driving signal given by the Arduino board. (b) Graph of the worm’s head move-

ment in the longitudinal direction. Every cycle the worm moves forward of about 6.5 mm. 

5 Conclusions and Future Work 

In this paper, we presented a design principle for novel, bio-inspired tensegrity soft 

modular robots. Although the proposed design displays many desirable features that 

could lead to the assembly of a variety of more complex robots with a diverse set of 

behaviors, other tensegrity structure modules could be considered for specialized func-

tions within a heterogeneous modular robot. However, several challenges remain to be 

addressed. In addition to a connection system that provides more functionalities than 

simple mechanical latching, as shown in this paper, the system could benefit from a 

better integrated actuation system to replace the conventional servo-motor used here as 

proof of concept: a possible solution could be a contraction system made of shape 

memory alloys that fit the reticular structure of the modules.  

Furthermore, autonomous modular robots require at least a sensing system, an internal 

signaling system, a programmable control unit, and an energy system. 



 

 

 

For sensing, we are currently considering replacing the elastic material of the cable 

network with conductive elastic materials that change conductivity when stretched, 

thus, enabling a simple form of proprioception. More conventional sensors, such as 

infrared and vision could be hosted within the cell body to perceive the environment 

with relatively little interference from the cable and struts. 

For internal communication, the tensegrity approach could exploit a phenomenon 

known as mechanotransduction in biology, which is used by cells to activate biochem-

ical processes or gene expression. This form of communication could enhance or re-

place digital electrical communication by propagating mechanical disturbances that al-

ter the function and behavior of the cells. Finally, a microcontroller and energy storage 

could be placed as payloads in the empty volume of the cells (as shown in Figure 2a).  

Tensegrity simulation tools, such as the NASA Tensegrity Robotics toolkit [25], 

could be adapted to design and even evolve [20] modular tensegrity robots. 

The scalability of tensegrity structures, from stadium domes to biological cells, 

opens the possibility of conceiving multi-cellular robots at a smaller scale by means of 

inkjet printing [26], MEMS fabrication [27], or 3D pop-up micro-structures [28].  

We believe that, despite the many challenges that remain to address, the biological 

inspiration from multi-cellular organisms and the recruitment of novel soft robotic tech-

nologies and materials could lead to the generation of diverse, resilient, and scalable 

modular robots based on tensegrity structures. 
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