Squid: Type-Safe, Hygienic, and Reusable Quasiquotes

Lionel Parreaux, Amir Shaikhha, Christoph E. Koch
EPFL, Switzerland — {firstname.lastname}@epfl.ch

Abstract

Quasiquotes have been shown to greatly simplify the task
of metaprogramming. This is in part because they hide the
data structures of the intermediate representation (IR), in-
stead allowing metaprogrammers to use the concrete syntax
of the language they manipulate. Scala has had “syntactic”
quasiquotes for a long time, but still misses a statically-typed
version like in MetaOCaml, Haskell and F#. This safer fla-
vor of quasiquotes has been particularly useful for staging
and domain-specific languages. In this paper we present
Squid, a metaprogramming system for Scala that fills this
gap. Squid quasiquotes are novel in three ways: they are the
first statically-typed quasiquotes we know that allow code in-
spection (via pattern matching); they are implemented purely
as a macro library, without modifications to the compiler;
and they are reusable in the sense that they can manipulate
different IRs. Adapting (or binding) a new IR to Squid is done
simply by implementing a well-defined interface in the style
of object algebras (i.e., tagless-final). We detail how Squid
is implemented, leveraging the metaprogramming tools al-
ready offered by Scala, and show three application examples:
the definition of a binding for a DSL in the style of LMS; a safe
ANF conversion; and the introduction of type-safe, hygienic
macros as an alternative to the current macro system.

CCS Concepts « Software and its engineering — Lan-
guage features; Domain specific languages; Macro languages;

Keywords Quasiquotes, Type-Safety, Embedded Domain-
Specific Languages

ACM Reference Format:

Lionel Parreaux, Amir Shaikhha, Christoph E. Koch. 2017. Squid:
Type-Safe, Hygienic, and Reusable Quasiquotes. In Proceedings
of 8th ACM SIGPLAN International Scala Symposium (SCALA’17).
ACM, New York, NY, USA, 11 pages. https://doi.org/10.1145/3136000.
3136005

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.

SCALA’17, October 22-23, 2017, Vancouver, Canada

© 2017 Association for Computing Machinery.

ACM ISBN 978-1-4503-5529-2/17/10...$15.00
https://doi.org/10.1145/3136000.3136005

56

1 Introduction

Scala allows different forms of quotation to coexist. For ex-
ample, "2+2" denotes a string made of characters '2', '+
and '2', but when prefixed with q as in q"2+2" it represents
an abstract syntax tree (AST) equivalent to:

q"2+2" ==

Apply(Select(Literal(Constant(2)),
List(Literal(Constant(2))))

TermName ("$plus")),

As one can see, expressing code using the quoted form
q"2+2" is much more concise than using the “explicit” (non-
quoted) form above. Moreover, the explicit form exposes
details of the internal encoding of Scala ASTs that are not
usually relevant to metaprogrammers, such as the names of
abstract syntax constructs (Apply, Select, etc.). For these
reasons, quasiquotes have been widely adopted by metapro-
grammers in languages like Scala [Shabalin et al. 2013],
Haskell [Sheard and Jones 2002] and F# [Syme 2006].

Despite having achieved widespread adoption, Scala
quasiquotes have important limitations that restrict their
potential applications, namely their lack of reusability and
their lack of static safety. First, they can only be used to
manipulate Scala ASTs, precluding usages in the growing
field of domain-specific languages (DSL). This is because
“deeply-embedded” DSL programs are typically encoded in
specialized intermediate representations (IR) that are more
advanced than Scala’s general-purpose AST representation.’
Second, Scala quasiquotes lack static safety, since: 1. they
are not statically type-checked, which means that they do
not prevent the construction of ill-typed code; and 2. they
are not “hygienic,” as variable bindings in manipulated pro-
grams may interfere with each other (unintended capture),
and are therefore not guaranteed to retain the meaning they
are intended to have when introduced.

In this paper, we propose an approach to quasiquotation
for Scala that resolves these limitations. Our approach is type-
safe and hygienic, preventing the construction of ill-typed
code and the occurrence of unintended variable capture.
Furthermore, it is reusable in the sense that it can be used to
manipulate programs encoded with different intermediate
representations. The approach is realized as Squid,” a pure
Scala macro library that requires no changes to the Scala
compiler. We detail how Squid is implemented leveraging

I DSL development typically relies on fast normalizing IR data structures
[Rompf and Odersky 2010], which precludes the use of Scala ASTs.

2 “Squid” stands for the approximate contraction of Scala quoted DSLs.
(Much like the framework, squids are smart and flexible animals!)

Squid is open source, available online at https://github.com/epfldata/Squid.

https://doi.org/10.1145/3136000.3136005
https://doi.org/10.1145/3136000.3136005
https://doi.org/10.1145/3136000.3136005
https://github.com/epfldata/Squid

SCALA’17, October 22-23, 2017, Vancouver, Canada

Scala’s extensive metaprogramming capabilities, and hope
that it provide a good use case for future work on the redesign
of Scala macros. Squid was successfully used to implement
the Quoted Staged Rewriting (QSR) pattern [Parreaux et al.
2017], an approach to library-defined optimizations.

Note that Squid quasiquotes focus on the expression side of
Scala; they cannot manipulate class, method, object or type
definitions. Thus Squid quasiquotes allow applying polymor-
phic constructs but not defining them. In contrast, existing
Scala quasiquotes allow manipulating all Scala constructs,
but with much weaker guarantees.

Our contributions are organized as follows:

e We show the limitations of existing metaprogramming
approaches, both explicit and quoted (Section 2).

e We show how Squid solves these problems and still
enables powerful code manipulations (Section 3).

o We detail a type-safe, quoted ANF conversion to demon-
strate the flexibility of our approach (Section 4).

e We develop our solution to reusable quasiquotes, and
explain how to bind new IRs to Squid (Section 5).

e We show how Squid can be used as a type-safe and hy-
gienic alternative to current Scala macros (Section 6).

2 Expressing IR Manipulation

In this section, we describe common problems encountered
by embedded DSL (EDSL) developers and quasiquote users
while writing program transformations.

2.1 Explicit Approach

EDSL IRs represent DSL expressions using algebraic data
types (sum and product types). For example, Figure 1a shows
one possible definition of an IR for lambda calculus aug-
mented with integers and addition, where all expression
nodes have the same base type Exp. In this representation,
B-reduction (for example) may be written as follows:*
def beta: Exp => Exp = {

case App(Fun(f), a) => beta(f(a))

case App(f,a) => App(beta(f), beta(a))
Add(a,b) => Add(beta(a), beta(b))
Fun(f) => Fun(x => beta(f(x)))
Const(v) => Const(v) }

case
case
case

Manipulating such an IR is error-prone, as it is easy to con-
struct nonsensical terms such as App (Const (1), Const (2)).
To avoid such problems, the practice has been to reflect the
type of an object term (a term in the language being manip-
ulated) in the type of its corresponding IR node. This can be
done by using Generalized Algebraic Data Types (GADTs)
[Kennedy and Russo 2005], as shown in Figure 1b. Notice
that Exp is now equipped with a type parameter that docu-
ments the type of the term it represents. While this generally
improves the safety of IR manipulations, it also makes them
more cumbersome to write. In Scala, where GADT pattern

3 Syntax {case ...} isshorthand for x => x match {case ...}.

57

Lionel Parreaux, Amir Shaikhha, Christoph E. Koch

matching support is less than ideal [Giarrusso 2013], this
means we have to use extra type annotations and sometimes
unsafe casts, partially defeating the purpose. The beginning
of the beta function above becomes:

def betal[T]: Exp[T] => Exp[T] = {
case App(Fun(f), a) => f(beta(a))

The GADT pattern-matching above may give a false sense
of safety to the programmer — in fact, the latest version
of the Scala compiler will happily compile the same code
but where f(beta(a)) has been replaced by f(Const (1)).
This is unsound, because we have no indications that f has
type Exp[Int] => Exp[T]. In reality, f should have type
Exp[te] => Exp[T] where to is some existentially-quantified
type, but Scala currently fails to handle that case properly.’
On the other hand, the need often arises for more advanced
IRs than plain AST [Stanier and Watson 2013], such as ANF
(Administrative Normal Form) [Flanagan et al. 1993], SSA
(Static Single Assignment) or CFG (Control Flow Graph).
This is particularly important when DSLs start incorporating
effects and mutability, where evaluation order and aliasing
become significant. In addition, it is usually desirable to keep
the IR internally typed (i.e., nodes should store a runtime
representation of their type). Figure 1c presents an ANF IR
for our simple language, storing type and effect information.
Note that in ANF, all non-trivial expressions are let-bound,
so it makes sense to have a representation of code blocks (the
Block class). Type representations are “captured” as implicit
parameters, reminiscent of LMS [Rompf and Odersky 2010].
This is closer to a realistic IR than the previous toy examples.
The cases for e.g., App and Add are now quite complex and
hard to read:
case LetBind(App(LetBind(f: Fun[t@,T],effFun),a),effApp) =>
f.lam(beta(a.asInstanceOf[Exp[t@]1]))

case s @ LetBind(App(f: Exp[Functioni[to,
val a@ = a.asInstanceOf[Exp[t0]]

T11,a),effApp) =>

LetBind (App(beta(f), beta(a0))(a0.typ, s.typ), effApp)
case LetBind(Add(a,b), effAdd) =>
LetBind (Add(beta(a), beta(b)), effAdd)

Notice how we need to propagate types manually in the case
for App, and how secondary meta-information like effects
have to be dealt with explicitly. IR transformation becomes
very error-prone, especially since one has to be careful to
account for effects and avoid performing transformations
that would change the evaluation order.

The design of a DSL and of associated program trans-
formations (such as domain-specific optimizations) quickly
becomes entangled with these low level IR implementation
concerns, which get in the way of DSL designers.

4 Scala 2.12.2. Dotty, the next-generation compiler for Scala, also still has
problems with GADTs (e.g., https://github.com/lampepfl/dotty/issues/2985).
5 Using explicit type variables in patterns (such as ‘f:Fun[t@,T]’) can help,
but it is still demonstrably unsound, because the corresponding type t0 is
viewed by Scala as a transparent wrapper over its underlying type Any.

https://github.com/lampepfl/dotty/issues/2985

Squid: Type-Safe, Hygienic, and Reusable Quasiquotes

sealed abstract class Exp

case class Const(value: Int) extends Exp

case class Add(lhs: Exp, rhs: Exp) extends Exp
case class Fun(lambda: Exp => Exp) extends Exp
case class App(fun: Exp, arg: Exp) extends Exp

(a) Simple uni-typed AST

sealed abstract class Exp[+T]

Const(value: Int) extends Exp[Int]

Add (lhs:Exp[Int], rhs:Exp[Int]) extends Exp[Int]
Fun[A,R](lam: Exp[A] => Exp[R]) extends Exp[A=>R]
App[A,RI(fun:Exp[A=>R],arg:Exp[A]) extends Exp[R]

(b) GADT AST

class
class
class
class

case
case
case
case

sealed abstract class Exp[+T](implicit val typ:
{ val eff: Effects }

case class Const(value: Int) extends Exp[Int]{ val eff=Pure }

case class Block[+T:Typl(defs:Buffer[LetBind[_]],ret:Exp[T])

Typ[_ <: TD)

extends Exp[T] { val eff = /% compute effects .ox/ 3}
case class LetBind[+T](defn: Def[T], eff: Effects)
extends Exp[T]1()(defn.typ)
abstract class Def[+T](implicit val typ: Typ[_ <: T1)

case class Add(lhs:Exp[Int], rhs:Exp[Int]) extends Def[Int]

case class Fun[A:Typ,R:Typl(lam: Exp[A] => Exp[R])
extends Def[A => RI()(funTypel[A,R])
case class App[A,R]1(fun: Exp[A => RI,
(implicit typ: Typ[_ <:

arg: Exp[Al)

R]) extends Def[R]

(c) ANF IR storing type representations and effects

Figure 1. Outline of different possible Intermediate Representa-
tions (IR) to represent a DSL.

2.2 Existing Scala Quasiquotes

In Scala, quasiquotes can be used as both expressions and
patterns. Syntax ${. ..} is used to unquote terms from inside
a quasiquote.” (When the unquoted term is a simple variable,
the curly braces can be omitted.) In quasiquote expressions,
unquoted terms are inserted into the surrounding code. In
quasiquote patterns, unquotes extract the terms found in
their positions, matching them with the unquoted pattern.
For example, q"2+1" match { case q"$n+1" => q"$n-1" }
evaluates to q"2-1".
It is straightforward to write a version of the f-conversion
function presented above using Scala quasiquotes:
def beta:
case q"(($ident:
beta(body transform { case
case q"$a + $b" =>
q"{beta(a)} + {beta(b)}"
case q"$f($a)" =>
q"{beta(f)}({beta(a)})"
case q"($ident: $t@) => $body" =>
q"($ident: $t@) => {beta(body)}"
case Literal(Constant(n:Int)) => Literal(Constant(n))
case Ident(name) => Ident(name) }

Tree => Tree = {
$t0) => $body)($a)"
‘ident®

=>

=>a })

Tree is the type of a Scala AST. Syntax t.transform(f)
traverses some tree t trying to apply partial function f on

© Unquote [Abelson et al. 1991] is also referred to as anti-quote [Mainland
2007] or escape [Taha and Sheard 2000].

58

SCALA’17, October 22-23, 2017, Vancouver, Canada

each of its subterms. Pattern “ident matches any value
equal to ident (the extracted variable identifier).

Beyond the fact that this version of the beta function
works only with Scala ASTs and is untyped — i.e., it makes
it easy to generate nonsensical terms such as q"1(2)" — it
suffers from additional limitations:

Hygiene. The transformation is unsound in the presence of
shadowing. For example, it will transform q" ((x:Int) =>
(x:Int) => x)(1)"into q"(x:Int) => 1" instead of trans-
forming it into q" (x: Int) => x". This is because variable
references are simple named identifiers. This example is only
one part of the hygiene problem, which is also prominent
when quasiquotes are used within macro definitions — two
other manifestations of the lack of hygiene are: 1. newly-
introduced variable bindings may clash with bindings al-
ready present in the original program, so one has to man-
ually generate “fresh names” (the gensym approach); and
2. references to global symbols (such as println) need to
be fully-qualified (i.e., _root_.scala.Predef.println) to
avoid unintended capture of user-defined symbols.

Propagation of internal typing. Even if the original pro-
gram passed to beta was associated with typing information,
this information is lost and is not propagated into the trans-
formed program. Essentially, given two ASTs a and b both
assigned with type Int, the term q"sa+sb" will not be as-
signed type Int, unless it is type checked again or manually
annotated (e.g., as q"$a+$b".withType(IntType)).

Normalization. Given some function f of type Int => Int,
the following code fragments are all equivalent:
f(Int.MaxValue)

f(scala.Int.MaxValue)
f(Int.MaxValue):Int

f.apply(Int.MaxValue)
import Int.{MaxValue => MV};
f(Int.MaxValue:Int)

f(MV)

Yet, a quasiquote pattern such as q"$fun(Int.MaxValue)"
will only match the first one (yielding fun = q"f"). This is
problematic, as it means that when macro writers or DSL
designers want to match certain usage patterns, they have to
handle all equivalent representations and their possible com-
binations. Note that when the Scala compiler type checks a
program, it rewrites all expressions into their “fully-explicit”
form — in the example above, all forms except the last two are
rewritten into f. apply(scala.Int.MaxValue). However, re-
lying on the assumption that terms are in type-checked form
is also problematic, as any subsequent transformations may
violate that assumption. Moreover, there is no way of check-
ing that expression and pattern quasiquotes are always writ-
ten in that form, so it is easy to introduce subtle code trans-
formation problems by not fully adhering to it.

SCALA’17, October 22-23, 2017, Vancouver, Canada

3 Squid Quasiquotes
In this section, we present Squid’s approach to quasiquota-

tion, and detail how it achieves both type safety and hygiene
while remaining flexible enough for code manipulations.

3.1 Basics

Squid quasiquotes are prefixed with code, and manipulate IR
nodes of type Code [T], where T reflects the type of the repre-
sented object term (like in the GADT approach of Figure 1).
For example, code"42. toDouble" has type Code[Double].
The main difference with Scala quasiquotes is that Squid
type checks the quoted code fragments, and uses the re-
sulting typing information to create appropriate IR nodes.
As a result, IR nodes are always internally represented in a
fully-typed form: all type parameters are specified, the code
is desugared (e.g., f(123) is represented as f.apply (123))
and implicit arguments are inferred. This is the case even
when the quasiquote itself does not mention type parame-
ters, uses syntax sugar, and/or omits implicits arguments.
For example,” code"List (1,2).map(_+1)" is equivalent to:

code"List.apply[Int](1,2).map[Int,List[Int]]
((x: Int) => x+1)(List.canBuildFrom[Int])"

Under the hood, Squid quasiquotes are macros that produce
the boilerplate necessary for constructing or deconstructing
IR nodes corresponding to the code being quoted.

3.2 Pattern Matching and Rewriting

Just like Scala quasiquotes, Squid quasiquotes support pattern-
matching. However, type annotations are often required to
help with Scala’s local type inference. For example, pattern
code"$x+1" does not type check, as the Scala type checker
does not know which ‘+” method is implied when the type
of x is unknown. The example in Section 2.2 is now written:

code"2+1" match { case code"($n:Int)+1" => code"$n-1" }

To help define sound rewritings, Squid provides a rewrite
macro that traverses a program and applies a transformation
to each of its sub-terms, while checking at compile-time that
the transformation is type-preserving.

3.3 Type Evidence Implicits

In order to satisfy the requirement that IR nodes be inter-
nally typed (i.e., they should contain runtime information
about the types of the terms that they encode), we require
functions manipulating code in a generic way to pass along
the associated type representations. Like in Section 2.1, the
best way to do so is via implicits. Squid defines the codeType
type class for this purpose. As an example, the following
function returns an empty option term for any type T:

def foo[T:CodeTypel] = code"Option.empty[T]"

7 In Scala, map takes an implicit CanBuildFrom evidence [Odersky and
Moors 2009], which semantics is irrelevant to this presentation.

59

Lionel Parreaux, Amir Shaikhha, Christoph E. Koch

(Note that syntax T:CodeType is shorthand for including
an implicit parameter of type CodeType[T] in the function.)
When foo is called as e.g., foo[Int], an implicit type rep-
resentation, of type CodeTypel[Int], is resolved and passed
along with the function call, so that the resulting term is the
expected code"Option.empty[Int]".

3.4 Type-Parametric Matching

To define type-parametric rewrite rules, Squid allows the
extraction of types, not just terms. In the example below,
given some pgrm fragment we transform calls to foldLeft
on List objects into imperative foreach loops:

Code[T]) = pgrm rewrite {
List[$t]).foldLeft[$rl($init)($f)"

def lower[T](pgrm:

case code"($1ls: =>

code""" var cur = $init
$1ls.foreach(x => cur = $f(cur,x))
cur ey

lower (code"List(1,2,3).foldLeft (@) ((acc,x) => acc+x) + 4")

The call above returns the equivalent of:

code"var cur=0; List(1,2,3).foreach(x => cur=cur+x); cur+4"

Note that multi-line quotations are introduced with """, and
that operator syntax p rewrite f means p.rewrite(f).

Any type extracted as, e.g., $t0 results in a value of type
CodeType[t0.Typl, where to.Typ is a path-dependent type
defined on local value to so that it cannot be confused with
any other extracted type. For example, one can write:

def bar(x: Codel[Anyl):
case code"Some($_ :

Code[Any] = x match {
$t0)" => fool[t0.Typ]l case _ => x }

The type evidence passed to foo[te.Typ] is automatically
picked up from extracted type representation te.

3.5 Automatic Function Lifting

An important feature of a flexible quasiquotation system is
the ability to manipulate open terms. Since Squid quasiquotes
are type-checked and hygienic, a quasiquote like code"x+1"
is not valid, as x is undefined (contrast this with current Scala
quasiquotes, where q"x+1" is entirely valid).

Some approaches such as MetaML [Taha and Sheard 2000]
allow expressions like code" (x:Int) => ${baz(code"x")}",
where a function literal binds variable x, then function baz is
called on a code fragment that refers to that variable x across
quotation boundaries. Unfortunately, this approach is not pos-
sible without modifying the compiler of the host language
(and Squid implements quasiquotes using Scala macros only).
Thankfully, we can achieve the same effect with automatic
function lifting: upon insertion, Squid automatically lifts any
host-language function, of type Code[A] => Code[B], into
an object language function, of type Code[A => BI, and im-
mediately inlines it. This way, we can write the pseudo-code
above: code" (x:Int) => ${(y:Code[Int]) => baz(y)I(x)".

Squid: Type-Safe, Hygienic, and Reusable Quasiquotes

3.6 Higher-Order Patterns Variables

Squid provides a very simple form of higher-order match-
ing [de Moor and Sittampalam 2001; Pfenning and Elliott
1988], that directly mirrors automatic function lifting. In
Squid, pattern code" (x:Int) => $body: Int" will not match
a lambda where body makes use of x, while the following
pattern will: code” (x:Int) => $f(x): Int", giving to f type
Code[Int] => Codel[Int]. Applying f to some Code[Int]
will replace all usages that f made of x with the provided
code value. Higher-order pattern variables in quasiquote-
based pattern matching were suggested before us by Sheard
et al. [Sheard et al. 1999], but we do not know of any actual
implementation of the idea, beside ours.

3.7 Beta Redux

Using Squid, we can now rewrite the f-reduction example
seen in Section 2.2, but in a type-safe and hygienic way:

1 def betal[T:CodeTypel(x: Code[T]): Code[T] = x match {
2 case code" ((p: $t@) => $body(p):T)($a)" =>

3 beta(body(a))

4 case code"($a:Int) + ($b:Int)" =>

5 code"${beta(a)} + ${beta(b)}
($to => T))($a)"

™

6 case code" ($f: =>

7 val (fo, a0) = (beta(f), beta(a))

8 code"$fo(%a0)"

9 case code"(p: $t@) => $body(p): $t1" =>
10 code" ((p: $t0) => ${

1 (r:Code[t@.Typl) => beta(body(r)) }(p)) : T"

case Const(n) => Const(n)
13 case LeafCode() => x 3

Const is the constructor for constant values, and LeafCode ()
is a custom extractor defined by Squid to match any sim-
ple IR node that has no sub-terms, such as bound variable
references and constants.®

As a closing remark, notice the : T type ascriptions’ on
lines 5 and 11. They are necessary to make the program type
check. Indeed, term code"${beta(a)} + ${beta(b)}" has
type Code[Int] instead of the expected Code[T1. The Scala
compiler has no specific knowledge of Squid quasiquotes,
and so has no way to know that in that particular pattern
branch, T is equivalent to 1nt. This problem is essentially the
same as encountered with GADTs in Section 2.1. Fortunately,
Squid keeps track of such uncovered type relations, and is
able to perform the appropriate type coercions as long as
they happen inside a quasiquote. As a result, we are able to
soundly handle type relation refinements in pattern match-
ing branches, and we avoid the persistent issues with the
handling of GADTs in Scala that we described earlier.

4 Quoted ANF Conversion

Correctly handling bindings is one of the most common
pitfalls in program manipulation. The higher-order pattern
variable (HOPV) technique presented in Section 3.6, which is

8 In fact, we could do without the Const(n) pattern matching branch, as it is
already handled by LeafCode(). It is only there for presentation purposes.
9 T refers to a type, not a type representation, so it may not be unquoted.

1
2
3

60

SCALA’17, October 22-23, 2017, Vancouver, Canada

def toANF[T:CodeTypel(trm: Code[T]) = rec(trm)(identity)
def rec[T:CodeType,R:CodeTypel(trm: Code[T])
(k: Code[T] => Code[R]): Code[R] = trm match {
case Const(_) => code"val c = $trm; $k(c)"
case code"val x: $tx = $x; $body(x)" =>
rec(x)(x => rec(body(x))(k))
case code"($a:Int) + ($b:Int)" => rec(a)(a => rec(b)(b =>
code"val add: T = $a + $b; $k(add)"))
case code" ($f: $t0 => T)($a)" => rec(f)(f => rec(a)(a =>

code"val app: T = $f($a); $k(app)"))
case code"(p: $t0) => ($body(p):$t1)" =>
code"val f: T = (p: $tQ) => ${

(p:Code[t@.Typl) => toANF (body(p))}(p); $k(f)"
case code"if ($cnd) $thn else $els" => rec(cnd)(cnd =>
code"""val join = $k
if ($cnd) ${ rec(thn)(_
else ${ rec(els)(_
_ => k(trm) }

Code[T =>R1) }(join)
Code[T =>R1) }(join)""")
case

Figure 2. Type-safe, hygienic ANF conversion.

used to match binding constructs, can seem limiting because
it extracts functions instead of directly-inspectable terms. In
this section, we demonstrate that HOPVs are in fact fairly
flexible, by presenting a more advanced usage example.

Intermediate representations may automatically normal-
ize terms into forms such as SSA, CPS or ANF. When this nor-
malization step is implemented internally, it is transparent
to users of the quasiquote-based Squid interface. For exam-
ple, in the context of an ANF IR, code"List(readInt)" and
code"val x = readInt; val 1s = List(x); 1ls" are expres-
sions that refer to equivalent internal term representations.
When the IR is not internally normalized, it is also possible
to perform ANF conversion as a type-safe, hygienic transfor-
mation expressed with quasiquotes. Figure 2 presents such a
transformation for our toy lambda calculus with integers and
addition, now extended with if-then-else. Squid provides im-
plicit conversions to go back and forth between lifted (Code [A
=> 8]) and unlifted (Code[A] => Code[B]) function types. No-
tice that in rec(thn)(_ : Code[T => R1) (line 16), which
is syntactic sugar for (j:Code[T => R1)) => rec(thn)(j),
value j is “unlifted” to type Code[T1 => Code[R] when it is
passed to rec (thn). Conversely, variable k on line 15 is lifted
in order to be inserted. As an example, the program:

val foobar = {

val foo = 123; val bar = 42; (if(true) foo else foo+2)+bar
}; foobar+1
is transformed into:
val c_@ = 123; val c_1 = 42; val c_2 = true;
val join_7 = ((lifted_3: scala.Int) => {
val add_4 = lifted_3.+(c_1); val c_5 = 1;
val add_6 = add_4.+(c_5); add_6 });

if (c_2) join_7(c_0)

else { val c_8 = 2; val add_9 = c_0.+(c_8); join_7(add_9) 3}

We can generalize our approach to handling other con-
structs by replacing the cases for integer addition and func-
tion application with case MethodApplication(ma), which

SCALA’17, October 22-23, 2017, Vancouver, Canada

is a helper extractor defined by Squid. This extracts an object
ma capable of representing any method application, which
can then be rebuilt by applying a type-preserving transfor-
mation on each of its arguments, as follows:

case MethodApplication(ma) => ma.rebuild(new Code2CodeCPS {

def apply[T:CodeType,R:CodeType] = rec
})(r => code"val tmp = $r; $k(tmp)")

The rebuild method takes an instance of Code2CodeCPS (an
interface to express polymorphic code transformations in
continuation-passing style) and a continuation argument
that we use to bind the result to a tmp variable.

It is interesting to compare our implementation of A-
Normalization to the original Scheme algorithm by [Flana-
gan et al. 1993]. The continuation-based structure is essen-
tially the same, and the size of the program (19 lines of code
in their case) is similar — even though, of course, our version
is type-safe and propagates internal typing, which they do
not. Another difference is that they need to use the error-
prone “gensynm discipline” to avoid introducing name clashes
by manually generating fresh names. In our case, Squid takes
care of these low-level details automatically — notice that in
the example above, non-conflicting names are generated for
each introduced binding (e.g., add_4 and add_s6).

5 Reusability via Object Algebras

In this section, we describe how Squid abstracts over the
intermediate representation and provides general facilities
to implement closed-world and open-world quasiquote back-
ends. In this sense, we say that Squid quasiquotes are reusable,
or “generic” in the IR. We are not aware of any previous
quasiquotation system with similar capabilities.

5.1 The Intermediate Representation Base

Figure 3 shows the Base trait required to be implemented
by all Squid backends, taking the form of an object alge-
bra interface [Oliveira and Cook 2012] — also known as the
tagless-final style [Carette et al. 2009] — where abstract type
Rep represents the type of IR nodes, while types val and
TypeRep represent the types of bound variables and type
representations, respectively.!’ Method readval converts
a variable symbol into a variable reference. ascribe corre-
sponds to type ascription (of syntax x:T in Scala). Classes
Code and CodeType have protected constructors in order to
prevent external users from instantiating them arbitrarily.
Notice that Squid does not use a typed view of the IR
(we have Rep instead of Rep[T1). This choice was motivated
by simplicity of the Squid implementation and of the code
generated by each quasiquote, ensuring faster compilation.
Moreover, we noticed that when dealing with low-level IR
manipulation, types often get in the way rather than help.
Critically, this does not impact the soundness of high-level

10 We do not show the methods for building type representations (TypeRep),
but they follow the same pattern as for term representations (Rep).

61

Lionel Parreaux, Amir Shaikhha, Christoph E. Koch

trait Base {

type Val ; type Rep ; type TypeRep

def const(value: Any): Rep

def freshVal(name: String, typ: TypeRep): Val

def readval(v: Val): Rep

def lambda(param: Val, body: => Rep): Rep

// override if needed:

def ascribe(self: Rep, typ: TypeRep): Rep = self
class Code[+T] protected(val rep: Rep)

class CodeType[T] protected(val trep:TypeRep){ type Typ=T }

} // ...more helper methods and definitions elided

Figure 3. Abstract types and methods required for a Squid IR.

IR manipulation using quasiquotes, as high-level quasiquote
terms are wrapped inside the typed code[T] wrapper.

5.2 Closed Worlds

Perhaps surprisingly, the Base trait does not feature a func-
tion application method. This is because in Scala and Squid,
applying a function corresponds to calling the apply method
defined on the scala.Function type, and Squid has a spe-
cial mechanism for encoding methods in a user-extensible
way: when generating IR code for a method call inside a
quasiquote, Squid looks for a method with a corresponding
name in the Base. If no such method is found, a compile-time
error reports the missing feature. To avoid name clashes,
these methods should live in objects whose names reflect
the full names of the types where the original methods are
defined. For example, to bind the IR in Figure 1a to a Squid
base, we include the following definitions:

object MyIR extends Base {

type Rep = Exp ; type TypeRep = Unit
object ‘class scala.Int" {

def typeRep = ()

def + (self: Rep)(arg: Rep) = Add(self, arg) }
object ‘class scala.Function® {

def typeRep(lhs: TypeRep, rhs: TypeRep) = ()

def apply(self: Rep)(arg: Rep) = Apply(self, arg) }
/* ... more definitions ... %/ }

Remark that in Scala, identifiers delimited with back-ticks
may contain any valid characters, so we literally named the
objects above “class scala.Int” and “class scala.Function”.

As an example, the code generated for code" (x: Int) =>
x+1" after having imported the ‘code’ quasiquote builder
from MyIR will be of the form:

val x = MyIR.freshval("x",
val rep = MyIR.lambda(x,
MyIR.‘class scala.Int‘.+(MyIR.readVal(x),

new MyIR.Code[Int](rep)

MyIR.‘class scala.Int‘.typeRep)

MyIR.const(1)))

We do not give the full IR binding here for lack of space.
The online Squid repository contains several examples of
custom Squid IRs, as well as a binding to an existing IR for
the LMS-style DSL that was used in [Shaikhha et al. 2016].

Squid: Type-Safe, Hygienic, and Reusable Quasiquotes

5.3 Language Virtualization

For the economy of concepts, many Scala language features
are internally encoded using the set of Base features that
we have seen above. For this purpose, Squid defines a small
library of virtualized constructs [Jovanovic et al. 2014; Moors
et al. 2012]. For example: variables are represented using a
var data type supporting operations . ! and : = for variable ac-
cess and modification respectively; if-then-else and loops are
implemented using functions such as i fThenElse and While
taking by-name arguments; by-name arguments themselves
are represented as calls to a byName function takinga () => 7T
function parameter; finally, functions with more than one pa-
rameter are implemented with curried functions passed into
uncurryN methods — for example, (x:Int, y:Int) => x+y
is represented as uncurry2((x:Int) => (y:Int) => x+y);
pattern matching is represented using isInstanceof and
unapply calls.!! Finally, by default let-bindings are repre-
sented as lambda abstractions immediately applied (redex).
Naturally, these virtualized encodings are invisible to the
quasiquote user, and DSL designers may convert them into
their own IR-specific representations. For example, in:

object MyIR extends Base {

object ‘object squid.lib®
{ def ifThenElse(cond: Rep, thn: Rep, els: Rep) =
buildInternalIfThenElseNode (cond, thn, els) }

Y // ... more definitions elided

5.4 Open Worlds

In the context of metaprogramming “at large,” like when
writing general-purpose Scala macros (as opposed to DSL
program transformations), it is useful to have a way to gener-
ate method applications on the fly, without having to define
IR bindings manually for all possible methods.

This is possible thanks to the openWorld trait shown in
Figure 4. If a base extends this trait, Squid will default to
generating calls to methodApp to encode method applications
that do not have a direct binding defined. methodApp takes a
tp parameter so that the IR is informed of the type returned
by the method call. 1oadMtdSymbol takes an overloading
index to identify which method overload is being selected (o
if the method is not overloaded).

As an example, assuming we do not have in MyIR a direct
binding for type Double and method tobouble, the quasiquote
code"2. tobDouble" will expand into the equivalent of:

val _Int = MyIR.loadTypSymbol("scala.Int")

val _Double = MyIR.loadTypSymbol("scala.Double")

val _toDouble = MyIR.loadMtdSymbol(_Int, "toDouble", @)
val rep = MyIR.methodApp(MyIR.const(2),

_toDouble ,Nil,Nil, typeApp(_Double , Nil))

new MyIR.Code[Double](rep)

The simplest way to implement methods loadTypSymbol and
loadMtdSymbol is to make use of Scala Reflection’s runtime

11 A more handy representation of pattern matching is left as future work.

62

SCALA’17, October 22-23, 2017, Vancouver, Canada

trait OpenWorld extends Base {
type MtdSymbol ; type TypSymbol

def loadTypSymbol (fullName:String): TypSymbol
def loadMtdSymbol

(typ: TypSymbol, symName: String, index: Int): MtdSymbol
def methodApp(self: Rep, mtd: MtdSymbol,

targs:List[TypeRepl,argss:List[ArglList], tp:TypeRep): Rep
def typeApp(typ: TypSymbol, targs: List[TypeRepl): TypeRep

} // ...more helper methods and definitions elided

Figure 4. The “open world” trait, which allows using any methods.

metaprogramming capabilities, reusing its TypeSymbol and
MethodSymbol data types. This way, it is possible for an IR to
dynamically explore things such as the annotations attached
to a Scala method and its parameters, which is especially use-
ful for implementing such mechanisms as annotation-based
effect systems. Squid provides a ready-made ScalaSymbols
trait that defines loadTypSymbol and loadMtdSymbol using
Scala runtime reflection, so it is effortless for an IR to leverage
these capabilities.

Finally, notice that using an open world IR generally al-
lows for more flexibility. For example, it is possible to define
programs that completely abstract over the base that is be-
ing used. Moreover, an open-world IR can be used as target
to reinterpretation, as we will see in Section 5.6.

5.5 Support for IR Manipulation

In order to support pattern matching and term rewriting, a
Squid IR has to extend yet another trait — InspectableBase,
shown in Figure 5. The Extract type represents the result of
pattern matching, and contains a mapping from term vari-
able names to extracted terms and from type variable names
to extracted type representations. InspectableBase defines
the semantics of term and type pattern matching (extract
and extractTyp), rewriting12 (rewriteRep), code traversal/-
transformation (transform), term equivalence (repEq) and
subtyping (typLeq). Term equivalence is needed because
Squid allows an extracted variable to be used in the same
pattern, as in case code" ($a,a)" which matches only pairs
with twice the same component. Similar to ScalaSymbols for
symbol loading, Squid provides a ready-made ScalaTyping
trait that defines TypeRep, typLeq, typeHole and extractTyp
relying on Scala’s runtime type representation facilities.
Pattern matching is implemented by building an IR node
representing the pattern, where unquotes are replaced with
special “hole” nodes. The IR then provides the semantics
of matching a given expression node against that pattern
node. Thus methods hole and typeHole represent unquotes
in patterns. In addition with name and expected type, hole

12 rewriteRep can be implemented in terms of transform and extract,

but we found that for advanced IRs such as ANF, it is often useful to have
more control on the way rewritings apply, enabling more powerful patterns.

SCALA’17, October 22-23, 2017, Vancouver, Canada

trait InspectableBase extends Base {

type Extract = (Map[String, Repl, Map[String, TypeRepl)
def extract (xtor: Rep, xtee: Rep): Option[Extract]
def rewriteRep(xtor: Rep, xtee: Rep,

mkCode: Extract => Option[Repl): Option[Rep]

def extractTyp(xtor: TypeRep, xtee: TypeRep,
va: Variance): Option[Extract]

def transform(r: Rep)(pre: Rep=>Rep,post: Rep=>Rep): Rep
def hole(name: String, typ: TypeRep,

yes: List[Vall, no: List[Vall): Rep
def typeHole(name: String): TypeRep
def reinterpret(r: Rep, newBase: OpenWorld): newBase.Rep
def repEq(a: Rep, b: Rep): Boolean
def typlLeq(a: TypeRep, b: TypeRep): Boolean

}

Figure 5. Base for allowing code inspection (e.g., pattern matching).

takes two lists of bound values yes and no, that specify re-
spectively which bound references the hole is supposed to
contain, and which it is forbidden to contain. For example, in
pattern case code" (x:Int,y:Int,z:Int) => $f(x,z)", the
argument to yes will be List(x,z) and that to no will be
List(y). The hole method is supposed to extract a function
term with arity equal to the length of yes. In the case above, it
would extract an (Int,Int) => Int function term. On extrac-
tion, Squid lifts that term into a host-language function of
type (Code[Intl,Code[Int]) => Codel[Int] automatically.
Importantly, the term extracted by a hole may contain any
references that appear in neither yes nor no. This is because
code pattern-matching can be used in rewrite rules, which
traverse every sub-term of a program and may open an arbi-
trary number of bindings on the way — as long as the terms
extracted by a rule’s pattern end up as part of the rule’s
result,”” these bindings should not be affected.

In contrast with Base and Openworld, providing an im-
plementation for InspectableBase is usually a non-trivial
undertaking, the most difficult task being to implement com-
plete pattern matching semantics. On the other hand, once
this is in place, one can fully benefit from Squid’s powerful
and safe IR manipulation capabilities.

5.6 IR Reinterpretation

An important capability shown in Figure 5 is that offered
by the reinterpret method: an InspectableBase may pro-
vide the capability to have its programs reinterpreted into a
different Squid Base, which is an important tool that in turn
enables many interesting applications (cf. Section 5.7). This
is especially useful for optimizing high-level programs by
progressively lowering their level of abstraction: at a cer-
tain point, we may want to switch to an IR which is more
appropriate to deal with low-level programs.

Notice that reinterpret takes an OpenWorld parameter
as the target Base, because it has to be able to reinterpret

13 And are not extruded by imperative effects like variable update.

63

Lionel Parreaux, Amir Shaikhha, Christoph E. Koch

arbitrary features that may or may not be specially handled
in the target IR. In practice, it is possible to adapt a non-
openWorld IR to make it OpenWorld, using Java reflection to
find the correct node creation methods at runtime.

5.7 One Interface to Rule Them All
...and in Abstraction Bind Them

In this subsection, we describe how Squid’s object algebra
interfaces turned out to be a powerful tool that facilitated
the implementation of several Squid features.

Code generation backend. It can be useful to convert a
program expressed in some custom IR into a standard Scala
AST. This is simply done by reinterpreting that code into
the scalaAsT base, in which type Rep = Tree (where Tree
is the type of Scala ASTs). For example, in that base we
have def const(value: Any) = Literal(Constant(value)),
which constructs a Scala AST for a constant literal.

Note that IRs that rely on virtualized constructs [Jovanovic
et al. 2014; Moors et al. 2012] will typically refine the be-
havior of the reinterpret method in case the target is a
subclass of ScalaAsT, so that these constructs are correctly
de-virtualized. For example, without de-virtualization we
might observe the following behavior:

scala> code"if (true) 1 else 0"
result: universe.Tree = q"squid.lib.ifThenElse(true, 1,

reinterpretIn (new ScalaAST)
0"

To avoid this, the IR can special-case each virtualized con-
struct in reinterpret, so that the expression above results
in the expected Scala AST: q"if (true) 1 else 0".

Pretty-printing. Pretty-printing is a standard application of
object algebras [Oliveira and Cook 2012], and requires defin-
ing an algebra where type Rep = String. However, when we
already have an InspectableBase, we can avoid writing a
pretty-printer entirely: it suffices to reinterpret the code into
ScalaAST and then reuse the standard Scala pretty-printer.

Evaluation by runtime reflection. Squid provides the base
ReflectInterpreter that leverages Java runtime reflection
to execute code at runtime. In that base, we have type

Runner[Any] (where Runner is a data type that is
used to build a runnable representation of the code), and
methodApp uses Java reflection to load the correct method
from its method symbol and create the appropriate runner.
Thanks to this interpreter, running code from an arbitrary
InspectableBase is as simple as calling reinterpret with
a ReflectInterpreter instance — in fact, Squid provides a
run:T helper method on code[T] types that does just that.

Rep =

Evaluation by runtime compilation A much more effi-
cient but heavyweight way to implement code evaluation is
to rely on Scala’s runtime compilation capabilities. We can
use the Scala compiler to generate extremely efficient JVM
byte-code at runtime, a useful capability for performance-
sensitive systems that rely on staging.

Squid: Type-Safe, Hygienic, and Reusable Quasiquotes

Modular embedding Remember that Squid leverages the
Scala compiler to type check snippets of code, and then uses
the result to build the corresponding IR nodes. We call our
approach “modular embedding, because the IR construction
process itself is abstracted, and is expressed in terms of the
OpenWorld interface. For example, the case that lifts con-
stants from the type-checked Scala AST is of the form:

case Literal(Constant(x)) => base.const(x)

Where base is the openworld Base object used to build the
result of the embedding. The call to const refers to the func-
tion declared in Figure 3. This approach has the advantage
that we can use modular embedding in different contexts:

e In the optimize{...} block construct shown in [Par-
reaux et al. 2017]: the optimize macro embeds a piece
of code at compile time into a given Squid IR where
optimizations are performed, then reinterprets the
code into the ScalaAST base to produce the result of
the macro expansion. A similar mechanism is used
in the code generated by the esquidMacro construct
presented in Section 6.

e In quasiquotes, which embed code snippets into a spe-
cific MirrorBase backend, whose role is to generates
the Scala AST necessary to reconstruct the same code
at runtime. In this base, const (42) results in the Scala
AST q"$base.const (42)", where base identifies the
target runtime base. Indeed, the role of quasiquotes is
to create run-time code representations, as opposed
to optimize whose goal is to handle code representa-
tions at compile time. Interestingly, the code invoked
by optimize itself makes use of quasiquote-based “run-
time” code manipulation — indeed, the runtime of the
optimizer is the compile-time of the user program.

6 Type-Safe & Hygienic Macros for Scala

In this section, we briefly describe another feature of Squid,
which acts like an alternative to the current Scala macros. As
a motivating example, consider the typical power (x,n) func-
tion that raises number x to the n'" power. We want to write
a power macro that expands into a series of multiplications
when the n parameter passed is a known constant.

A first version is shown in Figure 6, where Embedding,
which extends InspectableBase, is the name of the IR cho-
sen to manipulate code values within the macro. Annotation
macroDef transforms a method definition into a macro. Like
in Scalameta [Burmako 2017], the effect is that within the
body of the annotated function, the parameters have type
Code [T] instead of T, and we can inspect them as code values.

The macro in Figure 6 is “naive” in that it will duplicate
the base code, resulting in potentially unnecessary compu-
tations and even in changes in program semantics — in-
deed, program naivePower (readInt,2) will expand into
1.0 * readInt x readInt. To correct this flaw, we have

64

SCALA’17, October 22-23, 2017, Vancouver, Canada

@macroDef (Embedding)
def naivePower (base:
// in this scope,

exp match {
case Const(exp) =>

Double, exp: Int): Double = {
base:Code[Double] and exp:Code[Int]

var cur = code"1.0"
for (i <- 1 to exp) cur = code"$cur * $bhase"
cur
case _ => code"Math.pow($base, $exp.toDouble)" 3}}
Figure 6. Naive version of the power macro.
@macroDef (Embedding)
def power (base: Double, exp: Int): Double = {
exp match {
case Const(exp) =>
code"val b = $base; ${(x:Code[Double]) =>
var cur = code"1.0"
for (i <- 1 to exp) cur = code"$cur * $x"
cur
()"
case _ => code"Math.pow($base, $exp.toDouble)" 3}}

Figure 7. Correct definition of the power macro.

to first assign the value of base to a temporary variable,
and duplicate a references to that variable instead. The cor-
rected macro, which binds base to an intermediate variable,
is presented in Figure 7.

7 Related Work
7.1 General Quasiquotation Systems

Quasiquotes were pioneered in Lisp [Bawden et al. 1999] as
a shorthand for manipulating code in macros. Code as data
in its simplest expression meant that no restrictions were
in place whatsoever to prevent errors associated with code
manipulation, such as unintended variable capture (lack of
hygiene) and type mismatches (lack of static typing). Scheme
introduced facilities to write hygienic macros [Abelson et al.
1991; Kohlbecker et al. 1986], but this was done by restricting
their expressive power: hygienic macros have to consist of
a list of pattern—template pairs, and so can only perform
basic syntax expansion. Therefore, Scheme and its successor
Racket still provide support for (unhygienic) quasiquotes,
which are viewed as a lower-level building tool. Hygienic
Scheme quasiquotes have been proposed [Rhiger 2012], but
in a version that does not support pattern matching. The
idea of quasiquotation was picked up in a statically-typed
context by MetaML [Taha and Sheard 2000] (and subse-
quently MetaOCaml [Taha 2004]) to enable Multi-Stage Pro-
gramming (MSP). The approach was ported to compile-time
macros with MacroML [Ganz et al. 2001]. In these systems,
quasiquotes can only generate and not inspect code — though
MacroML has some limited form of pattern-template expan-
sion similar to Scheme’s hygienic macro system.

SCALA’17, October 22-23, 2017, Vancouver, Canada

Template Haskell (TH) [Sheard and Jones 2002] intro-
duced compile-time metaprogramming to Haskell and of-
fered quasiquotes which had some notion of type aware-
ness and hygiene, but could easily generate ill-typed and
ill-scoped code, therefore providing weaker guarantees than
MetaOCaml. Typed Template Haskell (TTH) later added type-
safe quasiquotes similar to MetaOCaml. Neither MetaOCaml
nor TH/TTH support term deconstruction via quasiquote
pattern matching. However, a general quasiquotation syn-
tax (not restricted to code quasiquotes) was introduced in
Haskell by Mainland [Mainland 2007] and could in principle
be used to enable quasiquote-based code pattern matching. A
similar general quasiquote system exists in Scala and is used
by the Scala Reflection API to provide Lisp-like untyped code
quasiquotes with pattern matching [Shabalin et al. 2013], of
which an example is given in Section 2.2. Squid uses the
same system, but adds static type checking and hygiene.
The Scala reflection API has an alternative type-safe and
hygienic reify/splice system that can be used for program
generation (reify acts like quotation and splice like an-
tiquotation), but it does not allow the expression of open
code and does not support pattern matching, limiting its
usefulness. For example, for both of these reasons it cannot
be used to implement the macro in Figure 7. Other languages
like F# [Syme 2006] support various flavors of quasiquotes,
but they all fall within the categories described above.

7.2 Quasiquotes for Domain-Specific Languages

Quasiquotes in MetaML [Sheard et al. 1999], Haskell [Najd
et al. 2016], F# [Syme 2006] and others were used to facilitate
the implementation of embedded DSLs such as language-
integrated queries [Cheney et al. 2013]. Earlier approaches
such as LINQ [Meijer et al. 2006] also provided some level
of language-integrated domain-specific program reification.
[Najd et al. 2016] use TTH to build DSL programs for their
alternative embedding of Feldspar [Axelsson et al. 2010], an
approach they call Quoted DSLs (QDSL). In this approach,
a particular DSL is implemented using the quasiquotation
abilities of a host language, which requires significant heavy
lifting behind the scenes (for example, retrieving type infor-
mation [Najd et al. 2016]). Najd et al. propose that “Rather
than building a special-purpose tool for each QDSL, it should
be possible to design a single tool for each host language.”
In this paper, we realize this vision for Scala: we present a
quasiquote-based metaprogramming framework that simpli-
fies the deep embedding of DSLs and the design of associated
program transformations.

The practice of deeply embedding DSLs in host languages,
exemplified by the polymorphic embedding approach [Hofer
et al. 2008], requires to encode each DSL feature in the host
language as a special data type. This translates into a lot of
boilerplate, especially when associated with the burden of
defining a suitable interface for DSL users, and it reduces the
flexibility of the DSL design and implementation process. In

65

Lionel Parreaux, Amir Shaikhha, Christoph E. Koch

contrast, we propose a system where quasiquotes are used
both as the front-end for DSL users and the tool used by DSL
developers to describe their domain-specific optimizations.
This means DSL designers can immediately use the shallow
interface of their DSL (i.e., defined as a simple library in the
host language), and apply custom analyses and rewritings
on it without the need for a dedicated deep representation.

7.3 Cross-Stage Persistence

Cross-Stage Persistence (CSP) has been an important de-
sign consideration in MetaML. CSP allows a value defined
in some stage to be persisted to a further stage. In practice,
CSP does not work well in real-world language implemen-
tations [Kiselyov 2017], where there is no clear semantics
for persisting non-serializable local values (such as muta-
ble references). Squid simply makes a distinction between
statically-accessible symbols, such as classes, modules and
methods, and local values. References to the latter cannot be
directly persisted, and they must be serialized manually.

7.4 Type-Safe Code Manipulation

Approaches focusing on staging usually do not permit the
inspection of existing code (the purely generative approach),
or lose well-typed and well-scoped guarantees while doing
so, like in LMS [Rompf and Odersky 2010]. While purely
generative staging is more powerful than one may think,
especially when coupled with effects [Kameyama et al. 2014],
our experience in using these and related systems is that
code analysis and transformation using inspection is easier
to write and understand, especially for complex analyses.
Guarantees about manipulated programs have been en-
coded via the host language’s type system using techniques
such as Generalized Algebraic Data Types (GADTs) [Hofer
et al. 2008; Rompf and Odersky 2010], Higher-Order Abstract
Syntax (HOAS), applicative functors and monads [Kameyama
et al. 2014] or static De Bruijn indices [Carette et al. 2009;
Sheard et al. 2005]. However, these are often heavyweight
and impose a considerable cost on domain experts, who
have to deal with advanced type system features, when they
would just like to express code transformations as simple
rewrite rules. We found that GADTs are particularly hard
to manipulate in systems like Haskell and Scala [Giarrusso
2013]. Type-based embedding systems like LMS [Rompf and
Odersky 2010] use implicit conversions to compose code frag-
ments, but this is not applicable to code pattern-matching.

Acknowledgments

We thank the people who helped develop Squid one way or
the other, in particular Vojin Jovanovic and Eugene Burmako.
This work was supported by NCCR MARVEL of the Swiss
National Science Foundation.

Squid: Type-Safe, Hygienic, and Reusable Quasiquotes

References

H. Abelson, R. K. Dybvig, C. T. Haynes, G. J. Rozas, N. I. Adams, IV, D. P.
Friedman, E. Kohlbecker, G. L. Steele, Jr., D. H. Bartley, R. Halstead, D.
Oxley, G. J. Sussman, G. Brooks, C. Hanson, K. M. Pitman, and M. Wand.
1991. Revised4 Report on the Algorithmic Language Scheme. SIGPLAN
Lisp Pointers IV, 3 (July 1991), 1-55.

Emil Axelsson, Koen Claessen, Gergely Dévai, Zoltan Horvath, Karin Keijzer,
Bo Lyckegard, Anders Persson, Mary Sheeran, Josef Svenningsson, and
Andras Vajda. 2010. Feldspar: A domain specific language for digital
signal processing algorithms. In Formal Methods and Models for Codesign
(MEMOCODE), 2010 8th IEEE/ACM International Conference on. IEEE,
169-178.

Alan Bawden et al. 1999. Quasiquotation in Lisp. In PEPM. Citeseer, 4-12.

Eugene Burmako. 2017. Scala Meta. http://scalameta.org/. (2017). Accessed:
2017-07-20.

Jacques Carette, Oleg Kiselyov, and Chung-Chieh Shan. 2009. Finally tag-
less, partially evaluated: Tagless staged interpreters for simpler typed
languages. Journal of Functional Programming 19, 05 (2009), 509-543.

James Cheney, Sam Lindley, and Philip Wadler. 2013. A Practical Theory of
Language-integrated Query. In Proceedings of the 18th ACM SIGPLAN
International Conference on Functional Programming (ICFP °13). ACM,
New York, NY, USA, 403-416.

Oege de Moor and Ganesh Sittampalam. 2001. Higher-order matching for
program transformation. Theoretical Computer Science 269, 1-2 (2001),
135-162.

Cormac Flanagan, Amr Sabry, Bruce F Duba, and Matthias Felleisen. 1993.
The essence of compiling with continuations. In ACM Sigplan Notices,
Vol. 28. ACM, 237-247.

Steven E Ganz, Amr Sabry, and Walid Taha. 2001. Macros as multi-stage
computations: type-safe, generative, binding macros in MacroML. In
ACM SIGPLAN Notices, Vol. 36. ACM, 74-85.

Paolo G. Giarrusso. 2013. Open GADTs and Declaration-site Variance: A
Problem Statement. In Proceedings of the 4th Workshop on Scala (SCALA
’13). ACM, New York, NY, USA, Article 5, 4 pages.

Christian Hofer, Klaus Ostermann, Tillmann Rendel, and Adriaan Moors.
2008. Polymorphic embedding of DSLs. In Proceedings of the 7th interna-
tional conference on Generative programming and component engineering.
ACM, 137-148.

Vojin Jovanovic, Amir Shaikhha, Sandro Stucki, Vladimir Nikolaev,
Christoph Koch, and Martin Odersky. 2014. Yin-Yang: Concealing the
Deep Embedding of DSLs (GPCE 2014). ACM, 73-82.

Yukiyoshi Kameyama, Oleg Kiselyov, and Chung-chieh Shan. 2014. Com-
binators for Impure Yet Hygienic Code Generation. In Proceedings of
the ACM SIGPLAN 2014 Workshop on Partial Evaluation and Program
Manipulation (PEPM ’14). ACM, New York, NY, USA, 3-14.

Andrew Kennedy and Claudio V. Russo. 2005. Generalized Algebraic Data
Types and Object-oriented Programming. In Proceedings of the 20th An-
nual ACM SIGPLAN Conference on Object-oriented Programming, Systems,
Languages, and Applications (OOPSLA ’05). ACM, New York, NY, USA,
21-40.

Oleg Kiselyov. 2017. MetaOCaml — an OCaml dialect for multi-stage pro-
gramming. (2017).

Eugene Kohlbecker, Daniel P. Friedman, Matthias Felleisen, and Bruce Duba.
1986. Hygienic Macro Expansion. In Proceedings of the 1986 ACM Con-
ference on LISP and Functional Programming (LFP ’86). ACM, New York,
NY, USA, 151-161.

Geoffrey Mainland. 2007. Why It’s Nice to Be Quoted: Quasiquoting for
Haskell. In Proceedings of the ACM SIGPLAN Workshop on Haskell Work-
shop (Haskell 07). ACM, New York, NY, USA, 73-82.

66

SCALA’17, October 22-23, 2017, Vancouver, Canada

Erik Meijer, Brian Beckman, and Gavin Bierman. 2006. LINQ: Reconciling
Object, Relations and XML in the .NET Framework (SIGMOD ’06). ACM,
706-706.

Adriaan Moors, Tiark Rompf, Philipp Haller, and Martin Odersky. 2012.

Scala-virtualized. In Proceedings of the ACM SIGPLAN 2012 workshop on
Partial evaluation and program manipulation. ACM, 117-120.

Shayan Najd, Sam Lindley, Josef Svenningsson, and Philip Wadler. 2016.
Everything Old is New Again: Quoted Domain-specific Languages. In
Proceedings of the 2016 ACM SIGPLAN Workshop on Partial Evaluation and
Program Manipulation (PEPM 2016). ACM, New York, NY, USA, 25-36.

Martin Odersky and Adriaan Moors. 2009. Fighting bit Rot with Types
(Experience Report: Scala Collections). In IARCS Annual Conference on
Foundations of Software Technology and Theoretical Computer Science
(Leibniz International Proceedings in Informatics (LIPIcs)), Ravi Kannan
and K. Narayan Kumar (Eds.), Vol. 4. Schloss Dagstuhl-Leibniz-Zentrum
fuer Informatik, Dagstuhl, Germany, 427-451.

Bruno C d S Oliveira and William R Cook. 2012. Extensibility for the Masses.
In European Conference on Object-Oriented Programming. Springer, 2-27.

Lionel Parreaux, Amir Shaikhha, and Christoph E. Koch. 2017. Quoted
Staged Rewriting: a Practical Approach to Library-Defined Optimizations.
In Proceedings of the 2017 ACM SIGPLAN International Conference on
Generative Programming: Concepts and Experiences (GPCE 2017). ACM.

Frank Pfenning and Conal Elliott. 1988. Higher-order abstract syntax. In
ACM SIGPLAN Notices, Vol. 23. ACM, 199-208.

Morten Rhiger. 2012. Hygienic quasiquotation in scheme. In Proceedings of
the 2012 Annual Workshop on Scheme and Functional Programming. ACM,
58-64.

Tiark Rompf and Martin Odersky. 2010. Lightweight modular staging: a
pragmatic approach to runtime code generation and compiled DSLs. In
Generative Programming and Component Engineering. 127-136.

Denys Shabalin, Eugene Burmako, and Martin Odersky. 2013. Quasiquotes
for Scala. Technical Report.

Amir Shaikhha, Yannis Klonatos, Lionel Parreaux, Lewis Brown, Mohammad
Dashti, and Christoph Koch. 2016. How to Architect a Query Compiler.
In Proceedings of the 2016 International Conference on Management of
Data (SIGMOD ’16). ACM, New York, NY, USA, 1907-1922.

Tim Sheard, Zine-el-abidine Benaissa, and Emir Pasalic. 1999. DSL Imple-
mentation Using Staging and Monads. In Proceedings of the 2Nd Confer-
ence on Domain-specific Languages (DSL °99). ACM, New York, NY, USA,
81-94.

Tim Sheard, James Hook, and Nathan Linger. 2005. GADTs+ extensible
kinds= dependent programming. (2005).

Tim Sheard and Simon Peyton Jones. 2002. Template meta-programming for
Haskell. In Proceedings of the 2002 ACM SIGPLAN workshop on Haskell.
ACM, 1-16.

James Stanier and Des Watson. 2013. Intermediate Representations in
Imperative Compilers: A Survey. ACM Comput. Surv. 45, 3, Article 26
(July 2013), 27 pages.

Donald Syme. 2006. Leveraging NET meta-programming components
from F#: integrated queries and interoperable heterogeneous execution,
In Proceedings of the 2006 workshop on ML. Proceedings of the 2006
workshop on ML.

Walid Taha. 2004. Domain-Specific Program Generation: International Semi-
nar, Dagstuhl Castle, Germany, March 23-28, 2003. Revised Papers. Springer
Berlin Heidelberg, Berlin, Heidelberg, Chapter A Gentle Introduction to
Multi-stage Programming, 30-50.

Walid Taha and Tim Sheard. 2000. MetaML and multi-stage programming
with explicit annotations. Theor. Comput. Sci. 248, 1-2 (2000), 211-242.

http://scalameta.org/

	Abstract
	1 Introduction
	2 Expressing IR Manipulation
	2.1 Explicit Approach
	2.2 Existing Scala Quasiquotes

	3 Squid Quasiquotes
	3.1 Basics
	3.2 Pattern Matching and Rewriting
	3.3 Type Evidence Implicits
	3.4 Type-Parametric Matching
	3.5 Automatic Function Lifting
	3.6 Higher-Order Patterns Variables
	3.7 Beta Redux

	4 Quoted ANF Conversion
	5 Reusability via Object Algebras
	5.1 The Intermediate Representation Base
	5.2 Closed Worlds
	5.3 Language Virtualization
	5.4 Open Worlds
	5.5 Support for IR Manipulation
	5.6 IR Reinterpretation
	5.7 One Interface to Rule Them All

	6 Type-Safe & Hygienic Macros for Scala
	7 Related Work
	7.1 General Quasiquotation Systems
	7.2 Quasiquotes for Domain-Specific Languages
	7.3 Cross-Stage Persistence
	7.4 Type-Safe Code Manipulation

	Acknowledgments
	References

