Multidimensional Anodized Titanium Foam Photoelectrode for Efficient Utilization of Photons in Mesoscopic Solar Cells

Mesoscopic solar cells based on nanostructured oxide semiconductors are considered as a promising candidates to replace conventional photovoltaics employing costly materials. However, their overall performances are below the sufficient level required for practical usages. Herein, this study proposes an anodized Ti foam (ATF) with multidimensional and hierarchical architecture as a highly efficient photoelectrode for the generation of a large photocurrent. ATF photoelectrodes prepared by electrochemical anodization of freeze-cast Ti foams have three favorable characteristics: (i) large surface area for enhanced light harvesting, (ii) 1D semiconductor structure for facilitated charge collection, and (iii) 3D highly conductive metallic current collector that enables exclusion of transparent conducting oxide substrate. Based on these advantages, when ATF is utilized in dye-sensitized solar cells, short-circuit photocurrent density up to 22.0 mA cm(-2) is achieved in the conventional N719 dye-I-3(-)/I- redox electrolyte system even with an intrinsically inferior quasi-solid electrolyte.


Published in:
Small, 13, 34, UNSP 1701458
Year:
2017
Publisher:
Weinheim, Wiley-V C H Verlag Gmbh
ISSN:
1613-6810
Keywords:
Laboratories:




 Record created 2017-10-09, last modified 2018-09-13


Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)