
PHYSICAL REVIEW A 96, 033826 (2017)

Spontaneous symmetry breaking in a quadratically driven nonlinear photonic lattice
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We investigate the occurrence of a phase transition, characterized by the spontaneous breaking of a discrete
symmetry, in a driven-dissipative Bose-Hubbard lattice in the presence of two-photon coherent driving. The
driving term does not lift the original U(1) symmetry completely and a discrete Z2 symmetry is left. When
driving the bottom of the Bose-Hubbard band, a mean-field analysis of the steady state reveals a second-order
transition from a symmetric phase to a quasicoherent state with a finite expectation value of the Bose field. For
larger driving frequency, the phase diagram shows a third region, where both phases are stable and the transition
becomes of first order.
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I. INTRODUCTION

Critical phenomena in driven-dissipative many-body quan-
tum systems are emerging as a major field of study. Intense
efforts are being devoted to investigate new classes of phase
transitions, and in view of the realization of dissipative
quantum simulators using optical or superconducting circuit
platforms [1–4]. These studies led very recently to the first
experimental evidence of dissipative phase transitions in
systems of ultracold atoms [5–8], superconducting circuits
[9–11], and semiconductors [12,13].

The photonic nature of most of these platforms has
stimulated in particular the study of the driven-dissipative
Bose-Hubbard model, which is naturally realized by an array
of optical resonators in the presence of a Kerr nonlinearity.
Several theoretical studies have investigated the occurrence of
phase transitions under various settings [14–24]. The optical
bistability inherited by the single Kerr resonator, in particular,
has been shown to give rise to a critical behavior when the
resonators are linearly driven by a coherent resonant field
[15,19–21,24].

One outstanding question in this domain is whether a
driven-dissipative system can reproduce the critical behavior
of the closed Bose-Hubbard model, where the spontaneous
breaking of the U(1) symmetry of the Bose field results
in a transition from the Mott to a long-range coherent
phase. In a driven-dissipative system, the resonant driv-
ing field results in the pinning of the local phase of the
resonators, thus lifting from the start the U(1) symme-
try of the underlying Bose-Hubbard system and hindering
the phase transition. Very recently, it was shown that the
Mott-like physics can be recovered via an incoherent non-
Markovian driving term with narrow-band noise spectrum
[14,23].

In a different context, the system of a single Kerr
resonator in the presence of a two-photon coherent driv-
ing term has been extensively studied, both theoretically
[25–32] and experimentally [33]. This quadratically driven
Kerr resonator naturally realizes a steady state which is
a statistical mixture of two Schrödinger’s cat states, each
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being a linear superposition of coherent states with opposite
displacements. This system is an ideal framework for funda-
mental studies on decoherence mechanisms in macroscopic
nonclassical states, and is experimentally viable in particular
with circuit-QED systems [33]. In addition, a network of
coupled quadratically driven Kerr resonators, leveraging on
the occurrence of photonic Schrödinger’s cat states, has
been proposed as a physical realization of a quantum an-
nealer [27,28,30–32], with potentially disruptive impact on
quantum information technologies [33–39].

The occurrence of a photonic Schrödinger’s cat state can
be traced back to the symmetry of the system in the presence
of the two-photon driving term. This term sets the complex
phase of the square of the cavity field. Then, the initial U(1)
symmetry of the system is only partially lifted, and a discrete
Z2 symmetry is left, corresponding to solutions with opposite
values of the complex field amplitude. This feature represents
a major difference with respect to the linearly driven case,
where the driving field lifts the U(1) symmetry completely.
The question then naturally arises whether in the quadratically
driven lattice a spontaneous symmetry breaking can occur,
giving rise to a phase transition between aZ2-symmetric phase
and a coherent phase with nonzero expectation value of the
Bose field.

In this paper, we study the occurrence of this spontaneous
symmetry breaking within a mean-field description of the
quadratically driven dissipative Bose-Hubbard lattice. The
occurrence of a phase transition between a symmetric and a
broken-symmetry phase is evidenced by three independent ap-
proaches: a stability analysis of the excitations characterizing
the symmetric phase, the analytical calculation of the steady
state, and the simulation of the mean-field dynamics described
by the master equation. In addition to these two phases,
depending on the frequency detuning of the two-photon driving
field, the phase diagram may display a third region where
both solutions are stable and their occurrence depends on the
specific system dynamics.

The paper is organized as follows. In Sec. II we derive the
mean-field theory of the quadratically driven array of coupled
Kerr resonators. Section III presents the results of the numer-
ical analysis. In Sec. IV we discuss the implications of the
results and the possible physical implementations. Section V
contains the conclusions and the outlook of this paper.
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II. THEORY

The full Hamiltonian of the quadratically driven Bose-
Hubbard model is

Ĥ =
∑

j

ĥj + J

z

∑

〈j,k〉
(â†

j âk + â
†
kâj ), (1)

where â
†
j and âj are the bosonic creation and annihilation

operators for the j th site, J is the hopping strength, z is the
coordination number of each site, and the second sum runs
over pairs of neighboring sites in the lattice. Here, ĥj is the
single-site Hamiltonian which, in the rotating frame of the
resonator, is expressed as

ĥj = −�â
†
j âj + U

2
â
†
j â

†
j âj âj + G

2
â
†
j â

†
j + G∗

2
âj âj . (2)

In this expression, U is the strength of the Kerr nonlinearity,
and G is the amplitude of the two-photon driving. In the
rotating frame, � = ω2/2 − ωc, where ω2 is the frequency
of the two-photon driving and ωc is the resonator frequency
(we set h̄ = 1).

The mean-field approximation consists in assuming a fully
factorized form for the density operator of the system ρ̂sys =⊗

j ρ̂j . Dropping the index j from the notation, the single-site
density operator ρ̂ then obeys the master equation

dρ̂

dt
= Lρ̂ = −i[ĤMF,ρ̂] + κ

2
D(â)ρ̂ + η

2
D(â2)ρ̂, (3)

where the dissipation superoperators defined as D(K̂)ρ̂ =
−{K̂†K̂,ρ̂} + 2K̂ρ̂K̂† model losses into the environment
within the Born-Markov approximation. In our model, we
assume for each resonator both one- and two-photon loss
processes [25,26,29], with rates κ and η, respectively. Two-
photon losses are not determinant to the physics described
below [25]. Their inclusion is, however, natural as, in an open
system, a two-photon input channel will in general operate also
as an output channel to the environment. The corresponding
mean-field Hamiltonian is

ĤMF = −�â†â + U

2
â†â†ââ + G

2
â†â† + G∗

2
ââ

+ J (〈â〉â† + 〈â〉∗â), (4)

where the mean-field amplitude is defined self-consistently
as 〈â〉 = Tr[âρ̂]. In what follows, all energies and time are
expressed in units of κ and κ−1, respectively, and we will
assume U = η = 1.

The symmetric steady-state solution ρ̂s with 〈â〉 = 0 is
always admitted by the mean-field model. It coincides with
the solution of the corresponding model of the single Kerr
resonator with two-photon driving, which has been extensively
discussed in the literature [25–32]. The steady state of such
a system is a statistical mixture which, in the limit of large
driving G, is dominated by two Schrödinger’s cat states of
opposite parity |C±

α 〉 = (|α〉 ± | − α〉)/
√

2(1 ± e−2|α|2 ), where
|α〉 is a coherent state. For this steady state, 〈â〉 = 0 rigorously
holds as a consequence of the Z2 symmetry. The mixture of
two cat states is equivalent to a mixture of the two coherent
states |±α〉 with opposite field displacements. In this sense,
the spontaneous breaking of the Z2 symmetry should be
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FIG. 1. White line: Contour separating the regions where
max[Im(ωk)]|k < 0 (left) and max[Im(ωk)]|k > 0 (right) on the
(J,G) plane. Color plot: The order parameter |〈â〉| computed self-
consistently, at steady state, from the analytical solution of Ref. [25].
Parameters: � = −J, U = η = 1.

understood as the occurrence of a state closer to one of the
two pure states |±α〉.

To investigate the existence of a phase with a spontaneously
broken symmetry, we first study the stability of the symmetric
steady-state solution obtained by setting J = 0 and solving
Eq. (3) for dρ̂s/dt = 0. An equation for the excitations δρ̂j can
be derived starting from the factorized ansatz ρ̂ = ⊗

j (ρ̂s +
δρ̂j ) and carrying out a linear expansion of the master equation
around the symmetric steady-state solution ρ̂s [20,40]. The
resulting equation reads

−iωkδρ̂k = Lδρ̂k − tk[iTr(âδρ̂k)[â†,ρ̂s] + H.c.], (5)

where the Liouvillian superoperator L is the one defined in
Eq. (3) for 〈â〉 = 0, and we have introduced the momentum
representation through δρ̂j = ∑

k δρ̂ke
i(kj−ωkt). The quantity

tk = −J cos(k) is the dispersion of the corresponding lattice
of harmonic oscillators (i.e., U = 0), and we assumed a one-
dimensional lattice model with z = 2 for simplicity. If the
symmetric solution is stable, the eigenvalues ωk obtained from
Eq. (5) will all have a negative imaginary part, corresponding
to damped excitations. A positive value of Im(ωk), on the
other hand, is a signature of the possible existence of different
stable solutions. We therefore consider the sign of the quantity
max[Im(ωk)]|k as an indicator of the stability of the symmetric
solution.

III. THE MEAN-FIELD PHASE DIAGRAM

In the first part of this analysis, we set � = −J . This
choice corresponds to tuning the quadratic driving field in
resonance with the bottom of the band of the Bose lattice
at frequency tk=0, and is adopted so to avoid the bistable
behavior that may occur at higher detuning [41]. The main
result of the present paper is summarized in Fig. 1, where the
white contour line on the (J,G) plane separates the regions
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where the symmetric solution is stable (left) and unstable
(right). The stability analysis of excitations therefore provides
a candidate phase diagram. In order to gain deeper insight, we
compute the steady-state solution by solving self-consistently
the mean-field master equation (3) for dρ̂/dt = 0. To this
purpose, we adopt the analytical solution, in terms of Gauss
hypergeometric functions, that has been recently derived for
the Kerr oscillator in the presence of both linear and quadratic
driving terms [25,29]. This ensures that the true steady state
is found, as this system can display a very slow dynamics
characterized by long-lived metastable states [29]. The order
parameter |〈â〉| resulting from the mean-field calculation is
displayed as a color plot in Fig. 1. The plot clearly shows a
region where the Z2 symmetry is spontaneously broken and
the order parameter takes a finite value. This region coincides,
up to numerical accuracy, with the instability region previously
found.

Figure 2(a) shows the quantities |〈â〉|2 and n = 〈â†â〉
plotted as a function of J for G = 3. Below the critical value
Jc, the symmetric phase is incompressible, with the average
occupation ns coinciding with that of the single-site Kerr
model. Above Jc the occupation increases as a result of the
added coherent contribution |〈â〉|2 from the order parameter.
For large J the state approaches a pure coherent state and the
two quantities coincide in this limit. To assess the nature of
this phase transition, we carry out a power-law fit according
to |〈â〉| ∝ |J − Jc|β , for data in the vicinity of J = Jc, the
results of which are reported in Fig. 2(b) for G = 3,5,7.
For these—and for all the values of G considered in this
analysis—the fit results in β ≈ 0.5, indicating a second-order
phase transition with a critical exponent β = 1/2 as expected
in a mean-field analysis. Figures 2(c) and 2(d) show the Wigner
function W (z) [25] of the steady state, as computed for G = 3
and, respectively, for J = 0.25 and 0.5, corresponding to the
two different phases. The first case coincides with the solution
of the single-site Kerr model [25,26,29]. The second plot
depicts one of the two possible quasicoherent states resulting
from the spontaneous symmetry breaking. As an additional
witness of the nature of the two phases, we have evaluated
the purity of the steady state P = Tr(ρ̂2) systematically. The
purity is close to P = 1/2 in the symmetric region, as one
would expect for a mixture of two pure states, while it
increases when moving away from the phase boundary in
the broken-symmetry region of the phase diagram, eventually
approaching the value P = 1 for very large values of the
two-photon pump G.

A clear picture of the two phases is obtained by simulating
the mean-field dynamics towards the steady state. To this
purpose, we solve Eq. (3) numerically, taking as the initial
condition a coherent state |α0〉. Figures 2(e) and 2(f) show
the trajectories on the (Re(〈â〉),Im(〈â〉)) plane, respectively,
for a symmetric and a broken-symmetry point on the phase
diagram. In each case four different initial states, denoted by
circles on the plots, are assumed. For the symmetric phase, all
trajectories converge to a unique fixed point corresponding to
the symmetric steady state. For the broken-symmetry case,
depending on the initial state, the trajectories converge to
two fixed points at opposite positions on the plane, again
in agreement with the picture of a spontaneously broken Z2

symmetry.
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FIG. 2. (a) The quantities |〈â〉|2 and n = 〈â†â〉 plotted as a
function of J for G = 3. The horizontal dashed line denotes the
symmetric solution ns corresponding to |〈â〉| = 0, and the vertical
dashed line marks the fitted critical value Jc = 0.3305. (b) Double-
logarithmic plot of |〈â〉| as a function of J − Jc for three values of
G. The dashed lines denote the critical behavior |〈â〉| ∝ |J − Jc|1/2

obtained by fitting the data close to the critical point J = Jc. (c)
and (d) Color plot of the Wigner function W (z) computed for G = 3
and for values of J corresponding, respectively, to the symmetric
(J = 0.25) and broken-symmetry (J = 0.5) phases. (e) and (f)
Trajectories on the (Re(〈â〉),Im(〈â〉)) plane as computed for G = 3
and, respectively, J = 0.25 (a) and J = 0.5 (b). Different trajectories
correspond to an initial coherent state |α0〉 for different values of α0,
and the arrows indicate the direction of time. Circles denote the initial
coherent states, while the squares mark the fixed points reached at
steady state. Parameters: � = −J, U = η = 1.

We extend now the present paper to the case with � = 0,
which corresponds to driving the system in resonance with
the bare oscillators. Figure 3(a) displays the contour of the
instability region and the value of the order parameter |〈â〉|
computed at steady state, as a function of J and G. Differently
from the � = −J case, here the region with the nonzero order
parameter does not completely coincide with the one where
the symmetric solution is unstable. A narrow area for J > 0.67
shows that spontaneous symmetry breaking is possible even
if the symmetric solution is stable. There is in particular a
“triple point”, denoted by a circle on the plot, marking the
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FIG. 3. (a) White line: Contour separating the regions where
max[Im(ωk)]|k < 0 and max[Im(ωk)]|k > 0. Color plot: The order
parameter |〈â〉| computed self-consistently at steady state. The white
circle marks the onset of the bistable region of the phase diagram.
(b) Double-logarithmic plot of |〈â〉| as a function of J − Jc for
two values of G. The dashed line denotes the critical behavior
|〈â〉| ∝ |J − Jc|1/2 for G = 8, obtained by fitting the data close
to the critical point J = Jc. (c) and (d) Plots of |〈â〉(t)| and
P (t) = Tr[ρ̂2(t)], respectively, as a function of time, for J = 1 and
G = 3.7. Different curves correspond to different initial coherent
states |α0〉, with α0 = 2.0, 1.0, 0.5, 0.25, 0.1, 0.05. (e) Dispersion of
Im(ωk) for the least stable excitation of the symmetric steady state,
as computed for three different values of J , and G = 4. Parameters:
� = 0, U = η = 1.

onset of this bistable region. For values of G � 4.2, i.e.,
above the bistable region of the phase diagram, the phase
boundaries defined by the two calculations coincide up to
numerical accuracy, and again the phase transition displays
a second-order character with critical exponent β = 1/2, as
shown in Fig. 3(b) for G = 8. For G < 4.2 instead, the fit
in the vicinity of J = Jc indicates a first-order transition, as
one would expect in the presence of bistability. Figures 3(c)
and 3(d) show the time dependence of |〈â〉| and of the purity
P , as computed for one point lying in the bistable region of
the phase diagram. Different curves correspond to different
initial values of α0. Depending on the displacement of the
initial coherent state, the dynamics converges either to the
symmetric or to the broken-symmetry phase. In the first case,

the purity reaches a value close to 0.5 as expected, while in
the second case it approaches a higher value, as discussed
above. For the initial state with α0 = 0.25, which is closest to
the transition between the two types of dynamics, we notice
a long-time metastable transient which lasts up to 103 inverse
lifetimes and is reminiscent of the metastable states discussed
in the literature for the single-site Kerr model [29]. We find a
similar behavior, with a long-lived metastable transient, when
approaching the second-order phase boundary (not shown).
This feature can be interpreted as a manifestation of the critical
slowing down typically present in the vicinity of a phase
boundary.

The bistability observed here for � = 0, i.e., when driving
above the bottom of the band, is reminiscent of the bistable
behavior of a Kerr oscillator when driven with a positively
detuned laser frequency [41]. While in the linearly driven case
the bistability is at the origin of the critical behavior [15,19–
21,24], here it competes with the genuine second-order phase
transition enabled by the two-photon driving. In a description
of the system beyond the mean-field approximation, we expect
this k = 0 bistability to compete with the instability associated
to the optical parametric oscillator, where two k = 0 pump
photons injected above the band bottom scatter resonantly
to a ±k pair of states [1]. Evidence is again obtained from
the stability analysis of the symmetric state. In Fig. 3(e), the
dispersion of the excitation with the largest values of Im(ωk) is
shown for G = 4 and J = 0.5, 1.0, 2.0, as computed for � =
0. The instability can emerge at opposite values of k �= 0, as for
the case with J = 2.0, indicating the onset of the parametric
oscillation. In this case, we expect a broken-symmetry phase
characterized by more exotic correlation patterns, similarly
to what was recently predicted for the driven-dissipative
Rabi-Hubbard model [40]. It should be noted that in the
� = −J case the instability always emerges at k = 0, further
highlighting the genuine second-order character of this phase
transition.

IV. DISCUSSION

The present mean-field analysis provides a first hint that
the phase transition associated to the Z2 symmetry should
actually occur in an array of coupled quadratically driven
Kerr resonators, and would represent the quantum analog
of a classical Ising simulator, that is realized in the limit of
large two-photon driving field G [42,43]. It is important to
highlight here that the Z2 manifold that characterizes the
phase transition is generated by the very specific driven-
dissipative protocol [33], which in a single resonator results in
a degenerate pair of cat states protected from the environment.
In an array of resonators governed by the Hamiltonian (1),
such a Z2 manifold is still present and lies in the excited
region of the spectrum, far from the ground state, as suggested
already by a study of two coupled resonators [30]. Hence,
the phase transition described here is a purely nonequilibrium
phenomenon enforced by the driven-dissipative nature of
the system—similarly to the case of the incoherently driven
Bose-Hubbard model [14]—and represents an experimentally
viable example of a genuinely dissipative phase transition [44].
This marks a substantial difference with respect to other
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driven-dissipative systems where a phase transition associated
to a Z2 symmetry breaking has been investigated—such as the
Rabi-Hubbard lattice [40,45] and the Dicke model [5–8]—in
that the transition in those cases is a ground-state property in-
herited from the quantum phase transition of the corresponding
Hamiltonian system, while the driven-dissipative nature of the
system results in peculiar features such as modified critical
exponents [7] or exotic attractors [40].

An experimental platform that would naturally behave
according to the model studied here is that of supercon-
ducting circuits, where two-photon driving was achieved
in a scheme where two microwave resonators are coupled
through a Josephson junction [33]. For this system, photonic
Schrödinger’s cat states were experimentally characterized
in full agreement with the quadratically driven Kerr model.
The extension to an array of coupled resonators is also
possible, as linear coupling between superconducting mi-
crowave resonators has recently been demonstrated in several
experiments [11,46]. In the optical domain, polaritons in
semiconductor microcavities are an alternative promising
system for a physical implementation of the present model.
Polaritons are naturally endowed with a Kerr nonlinearity [1],
arrays of coupled polariton micropillars are now routinely
fabricated in several geometries [47,48], and two-photon
driving of polaritons was recently demonstrated [49–51].

In view of a clear experimental characterization of the phase
transition, superconducting circuits represent the election
system, thanks to the possibility to carry out Wigner function
tomography [33]. For systems in the optical spectral range,
on the other hand, a signature of the phase transition should
emerge from the measurement of the second-order correlation
function of the emitted light, as was recently demonstrated
on a polariton system in the presence of a first-order phase
transition [13].

V. CONCLUSIONS

We have investigated the model of a driven-dissipative array
of coupled Kerr resonators in the presence of two-photon
driving. The mean-field analysis shows a clear signature of
an Ising-like phase transition associated to the spontaneous
breaking of a Z2 symmetry. Our finding provides a simple
answer to the question of whether a coherently driven Bose-
Hubbard system may still display a critical behavior associated
to a spontaneous symmetry breaking. Here, contrarily to the
case with one-photon driving, the original U(1) symmetry
of the Bose-Hubbard model is not completely lifted by the
coherent driving field, and a Z2 symmetry is left in the system.
The next step would consist in an analysis beyond mean field.
To this purpose, methods may include cluster mean field [52],
truncated correlation hierarchy schemes [53], Langevin Monte
Carlo approaches deriving from quasiprobability distribu-
tions [54,55], and ultimately large scale numerical schemes
for small lattices [18]. The present paper could be extended
to the transverse Ising model in the presence of an additional
linear driving term or—more interestingly—to interacting spin
models when in the presence of cross-Kerr nonlinearity, and
to more exotic models with the introduction of N -photon
driving terms [34]. Finally, given the great promise held by
the quadratically driven Kerr system as a building block of
a photonic quantum information platform [27,28,30–32], it is
also important to further investigate the role of the critical
behavior studied here, in the context of these applications.
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