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We introduce Sleep, a new Python open-source graphical user interface (GUI) dedicated

to visualization, scoring and analyses of sleep data. Among its most prominent features

are: (1) Dynamic display of polysomnographic data, spectrogram, hypnogram and

topographic maps with several customizable parameters, (2) Implementation of several

automatic detection of sleep features such as spindles, K-complexes, slow waves, and

rapid eye movements (REM), (3) Implementation of practical signal processing tools

such as re-referencing or filtering, and (4) Display of main descriptive statistics including

publication-ready tables and figures. The software package supports loading and reading

raw EEG data from standard file formats such as European Data Format, in addition

to a range of commercial data formats. Most importantly, Sleep is built on top of the

VisPy library, which provides GPU-based fast and high-level visualization. As a result,

it is capable of efficiently handling and displaying large sleep datasets. Sleep is freely

available (http://visbrain.org/sleep) and comes with sample datasets and an extensive

documentation. Novel functionalities will continue to be added and open-science

community efforts are expected to enhance the capacities of this module.

Keywords: polysomnography, electroencephalography, automatic detection, graphoelements, hypnogram,

scoring, graphical user interface, opengl

INTRODUCTION

Polysomnography provides a comprehensive recording of the major physiological changes
associated with sleep and is hence the gold standard for modern sleep analysis, both in research
and clinical settings. At its simplest, it consists of monitoring at least 2 electroencephalogram
(EEG), an electro-oculogram (EOG), and a submental electromyogram (EMG), providing sufficient
information to identify sleep stages (sleep scoring) according to standard international established
guidelines. A first set of rules were published by Rechtschaffen and Kales (1968) and proposed
to divide sleep into 5 stages with distinct electrophysiological properties, named rapid-eye
movement (REM) and non-REM (NREM) stages 1, 2, 3, 4. This nomenclature was updated in
2007 by the American Academy of Sleep Medicine (Iber et al., 2007) and sleep stage 3 and 4
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have been merged into stage N3. In humans, a normal night
of sleep consists of a repetition of four or five cycles in which
sleep stages tend to follow each other in a particular order.
Sleep staging is generally done visually by inspecting consecutive
polysomnographic segments of 30 s. It results in a hypnogram
which represents the succession of sleep stages across time. Apart
from being time-consuming, visual sleep scoring is subject to
both inter and intra-rater variability and is thus far from being
optimal. By contrast, automatic sleep scoring has the advantage
of being fast, reproducible and with generally good agreement
with visual scoring (Berthomier et al., 2007; Lajnef et al., 2015a),
yet its usage is far from being widespread and most sleep
laboratories still rely on visual scoring, using either commercial
softwares or in-house packages. In many cases, these software
tools come with their own data and hypnogram file formats, and
this heterogeneity can represent a substantial obstacle for sharing
of sleep data across laboratories or clinics. Some of the very few
existing open sources graphical user interface (GUI) for reading
and scoring sleep include Phypno1, written in Python, and the
MATLAB-based toolboxes sleepSMG2 or SpiSOP3.

With this in mind, we developed Sleep, an intuitive and
efficient open-source GUI dedicated to the visualization of
polysomnographic recordings and scoring of sleep stages. Sleep
supports a range of data file formats and provides several scoring
aid including the detection of essential features of NREM and
REM sleep such as spindles, K-complexes, slow waves, and
REM. Sleep was written in Python, an easy-to-learn high-level
programming language widely used in the scientific community.
We developed Sleep on top of VisPy4 (Campagnola et al., 2015),
a Python scientific library based on OpenGL which offloads
graphics rendering to the graphics processing unit (GPU) in
order to provide fast and high-quality visualization, even under
heavy loads as is the case with large dataset. Sleep therefore
benefits from the high performances provided by VisPy alongside
Python’s inherent qualities such as its portability and ease
of use.

METHODS

Scientific visualization often consists of finding the best possible
way to explore the data and to illustrate results in an intuitive
and straightforward manner. The huge variety of neuroscientific
data types and acquisition modalities naturally requires a wide
range of specific visualization tools. Ideally, software packages
needed for the various applications should be free and capable
of handling several types of brain data recordings. In this context,
we are currently developing a Python package we called Visbrain5

distributed under a BSD license, which provides and centralizes
a number of useful brain data visualization utilities. Given the
lack of software solutions that wrap together a portable and user-
friendly interface for polysomnographic data visualization and

1https://github.com/gpiantoni/phypno
2http://sleepsmg.sourceforge.net/
3http://spisop.org/
4http://vispy.org/
5https://github.com/EtienneCmb/visbrain

edition, we set out to develop an open-source module (included
within the Visbrain package) and named Sleep.

The Choice of Python and the Project
Vision
The choice of the programming language naturally turned to
Python as this high-level and open-source language benefits
from many libraries, an extensive documentation and a dynamic
community. From data analysis to the production of high-
definition paper figures, Python offers all the tools needed by
scientists, with the comfort of a clean and easy to read syntax.
Sleep is a pure Python software built on top of NumPy, VisPy,
PyQt46 and uses a limited number of functions from SciPy and
Matplotlib. Thanks to the Python portability, the software can be
installed and used on any platform. One of the initial objectives of
the project was to provide a user-friendly and intuitive interface
capable of loading and displaying large sleep dataset. To this end,
we paid a particular attention to avoid deep data copy and display
only what is necessary. Therefore, even very large recordings with
a consequent number of channels can be handled by Sleep on any
modern laptop with snappy GUI response. From a programming
perspective, we did our best to provide a clean, commented
and high-quality code, with a NumPy style documentation and
using static analysis tool, as recommended by PEP 8. Sleep
is hosted on GitHub and we encourage Python programmers
and sleep scientists to collaborate in order to collectively
improve this software by extending its functionalities and data
compatibilities.

Hardware Accelerated Graphics
In addition to ergonomic considerations and providing a portable
interface, a further important goal was to use a plotting library
which would allow our Sleep module to support and process
large sleep data. Using Matplotlib was an option we considered,
but although it is particularly convenient to produce publication
quality figures, it is not the best option when it comes to plotting
and interacting in real-time. In contrast, VisPy is a scientific
visualization library based on NumPy and OpenGL and was
primarily designed to provide both high performances with real-
time interactions and publication quality figures. VisPy provides
a bridge between the intuitive Python syntax andmodern shader-
based OpenGL pipeline allowing the graphical rendering cost to
be offloaded to the GPU. This package has been well-designed
and is built on four levels, from a Matplotlib oriented one to
the lowest-level (closer to OpenGL) which makes it more flexible
and efficient at the cost of a potentially slower learning curve.
Because all Sleep graphical elements are primitive 2D objects
(line, points, and images) it was not a necessity to go down
to the lowest level of VisPy (vispy.gloo). Indeed, all required
objects were already implemented into the Visual library. Hence,
any modern computer equipped with a GPU should see the
benefits of the hardware accelerated graphics implemented in
Sleep.

6https://riverbankcomputing.com/software/pyqt/intro
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Portable GUI through Python
Currently, among the major cross-platform GUI toolkits
that interface with Python, wxWidgets7 (wxPython), Tcl/Tk8

(TkInter), and Qt9 (PyQt/PySide) are probably the most known
and used. We chose PyQt which is a python binding for the C++

Qt toolkit, and we used Qt Designer to design the GUI.
Taken together, VisPy provides high-performance rendering

graphics that are well-integrated in a portable, modular and
responsive Qt GUI using Python PyQt package. The use of this
library is therefore one of the major strengths of this open-source
module, and is particularly important when it comes to handling
large multi-dimensional brain data, such as full-night sleep EEG
recordings.

Automatic Events Detection
One of the main objectives of Sleep was to provide a complete
and easy-to-use interface for analyzing and staging sleep data.
To this purpose, we implemented several algorithms for the
automatic detection of sleep features, and embedded them
within the software (“Detection” panels). This includes detection
of spindles, K-complexes, slow waves, rapid-eye movements,
muscle twitches, and signal peaks. With the exception of the
latter, all these features are often used as landmarks of specific
sleep stages and can be very helpful to guide experts in their
identification of specific sleep stages within a period of sleep,
i.e., sleep scoring or sleep staging (see Figure 1). The main
characteristics of each of these features are summarized below.

• Sleep spindles refer to burst of 12–14Hz waves predominant
over central scalp electrodes and lasting between 0.5 and 2 s
(Rechtschaffen and Kales, 1968). These bursts of oscillatory
activity have been known as a defining characteristics of
N2 sleep (although there is an increasing number of studies
that analyze spindles in N3 stages). Several automatic
spindle detection algorithms have been developed in recent
years (reviews in Devuyst et al., 2011; Warby et al.,
2014). The algorithm implemented in Sleep is based on
a wavelet transform followed by amplitude threshold and
duration criteria. The default algorithm parameters (duration,
frequency, and power threshold) were chosen according to
previously published detection methods (Devuyst et al., 2011).
The consecutive steps of the spindles automatic detection
algorithm implemented in Sleep are detailed in Figure 2.

• K-complexes are defined as sharp negative waves followed by
a positive component, prominent over frontal scalp electrodes
and lasting more than 0.5 s. Along with spindles, they
constitute one landmark of N2 sleep. Briefly, the algorithm
implemented in Sleep comprises the following steps: (1)
bandpass filtering of the signal in the delta frequency band (2)
amplitude thresholding of the Teager-Keaser Energy Operator
(Erdamar et al., 2012; Parekh et al., 2015) of the filtered
signal (3) computation of the probability of detecting true
K-complexes based on morphological criteria (duration and
amplitude) and the presence of spindles in the vicinity.

7https://www.wxwidgets.org/
8http://www.tcl.tk/
9https://www.qt.io/

• Slow-waves (or delta waves) are high-amplitude (>75µV) and
low-frequency (<3Hz) oscillations that are present during the
deepest NREM sleep stage, i.e., N3 sleep. According to the
standard international guidelines, N3 sleep is defined by the
presence of 20% or more slow waves in a given epoch. As
period of N3 sleep are marked by a high delta power and low
power in the other frequency bands (theta, alpha, beta), the
algorithm implemented in Sleep is based on a thresholding of
the delta relative band power.

• As its name suggests, REM sleep is characterized by rapid
eye movements easily observable on the EOG channels.
They consist of conjugate, irregular and sharply peaked eye
movements, similar to some extent to those exhibited during
wakefulness. The algorithm implemented for the detection of
REMs is detailed elsewhere (Vallat et al., 2017).

• Another fundamental aspect of REM sleep is its muscle
atonia, as revealed by a low EMG activity. However, some
transient muscle activity or muscle twitchings (MTs) can also
be observed. These short irregular bursts of EMG activity are
superimposed on the background of low EMG activity. The
automatic detection of MTs is based on a thresholding of the
Morlet’s complex decomposition of the EMG signal followed
by morphological criteria (duration and amplitude).

• Finally, Sleep implements a signal peak detection algorithm
that is useful for example to calculate the heart rate, provided
that an ECG channel is present. The algorithm implemented
in Sleep searches for the highest point around which there are
points lower by a certain duration on both sides10.

Altogether, the set of detectors implemented in our software
offers a valuable help for scoring sleep stages through the
identification of the main features of each sleep stages. Detections
can also be used for a more in-depth analysis of the sleep
microstructure (e.g., Vallat et al., 2017). Comparisons of
performances between our detections and visual scoring are
reported for K-complexes and spindles in the Results section.

Signal Processing Tools
In addition to the automatic detections presented above, Sleep
also provides a wide range of basic and advanced signal
processing tools such as signal demeaning, detrending, and a
filtering. The latter can be done either with Butterworth or
Bessel filters and four filter designs are currently available:
lowpass, highpass, bandpass, or bandstop. Importantly, further
information can be extracted from the Morlet’s wavelet complex
decomposition (Tallon-Baudry et al., 1996) such as time-resolved
and band-specific amplitude, power or phase. Critically, each
one of these signal processing tools are reversible and can
therefore be activated and deactivated without altering the
original data and without any memory-intensive data copy.
Finally, loaded data can be re-referenced directly from the
interface by either re-referencing to a selected single channel or
common-average (frequently used for scalp EEG datasets) or by
using bipolarization, which consists of subtracting neural activity

10https://github.com/DiamondLightSource/auto_tomo_calibration-

experimental/blob/master/old_code_scripts/peak_detect.py
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FIGURE 1 | Illustration of the different sleep features observed in a polysomnographic recording of one individual. To see examples of automatic detection actually

performed by our software, see Figure 4. Spindles and K-complexes are landmarks of N2 sleep. Slow waves are present during N3 sleep (sometimes referred to as

slow wave sleep). Rapid eye movements, observed in the EOG channel, and muscle twitches, observed on the EMG channel, are two essential features of rapid eye

movement (REM) sleep.

from consecutives sites (classically used in intracranial EEG, see
Jerbi et al., 2009).

Documentation and Examples
Sleep comes with a detailed step-by-step documentation, built
with Sphinx11 and hosted on GitHub12. This documentation
include a description of the graphical components and the
main functionalities of the software. A PDF version of the
documentation can also be downloaded from the “Help”
contextual menu of the software. We also provide anonymized
and free-to-use sample datasets, including the corresponding
loading scripts. This will help users test the Sleep module and
get familiar with its functionalities before trying it on their own
data. Finally, we also implemented an interactive documentation
using the tooltips provided by PyQt to describe each element of
the interface.

RESULTS

In the following we overview the current GUI and software
functionalities of Sleep and provide details on hypnogram editing
and event detection validation results.

Graphical User Interface
The Sleep GUI is currently subdivided into six distinct
components (Figure 3): (1) settings panel, (2) navigation bar, (3)
hypnogram, (4) electrophysiological time series, (5) spectrogram
canvas, (6) topographic map. As the user interface is built up
in a modular way, each of these components can be hidden or
displayed, depending on whether the user prefers a light or fully-
featured interface. Using the contextual menu, users can save and

11http://www.sphinx-doc.org/en/stable/
12http://visbrain.org/sleep.html

subsequently load the current display properties in order to easily
retrieve and continue working on a previous session.

Settings Panel and Navigation Bar
All controls and properties are grouped in a settings panel. This
panel is subdivided into five thematic tabs:

• Panels: manage the visibility and properties of each plotted
canvas.

• Tools: bundle of signal processing tools.
• Infos: basic informations of the current recording (name,

sampling rate) and sleep statistics computed using the
hypnogram (sleep stage duration, latency, etc.). Note
that the statistics can be exported in ∗.csv or ∗.txt file
and are automatically updated when the hypnogram is
edited.

• Scoring: scoring table that can be used to inspect and edit
where each stage starts and end. This panel represents one
of the three methods available within the software to edit
the hypnogram (see hypnogram edition section) and may be
useful for example to score long periods of continuous and
homogenous sleep by just providing the starting and ending
times.

• Detection: perform and manage the automatic detection of
several sleep features.

• Annotations: add notes or comments to specific time points
within the recordings. Annotations can be saved and loaded
using the File contextual menu or can be passed as an
input parameter. Each annotation is then referenced in a
table comprising the start and end time (in seconds) and
the corresponding text. Selecting a row in the table centers
the main window around it. This latter feature enables a
quick access to annotated events for a faster navigation.
Annotated events are also identified in the time axis as a green
triangle.
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FIGURE 2 | Method description for the automatic sleep spindles detection.

First, the original signal is convoluted with a Morlet wavelet centered in the

spindles frequency band [12–14Hz]. From the resulting complex

decomposition, we only keep the amplitude and find time indices where the

amplitude exceeds the threshold (purple in 1). Then, we compute the

normalized power in the sigma band and detect again time indices where the

power exceeds a threshold (green in 2). The normalized sigma power is

obtained by first computing absolute power in four frequency bands (delta =

[0.5–4Hz], theta = [4–8Hz], alpha = [8–12Hz], sigma = [12–16Hz]) and then

dividing each of them by the sum of these powers. As a result, for each time

point the sum of powers in the four frequency bands equals 1. The time

location of the initial detected spindles (gray line in 3) is the result of the

intersection of exceeding both the amplitude index (purple line) and the power

index (green line). Finally, time gaps are filled only for neighboring detected

events (<500 ms) and a final duration criteria is applied in order to suppress

events with a duration inferior to 500 ms or superior to 2,000 ms (these

thresholds can be set within Sleep interface, 4).

In addition to this setting panel, Sleep provides a navigation
bar that can be used to set several temporal properties, such as
the length of the current time window, time step between each
window, time units and the use, if provided, of the absolute time
of the current recording. This navigation bar also includes a grid
toggle button that can either hide or display the grid, as well as a
magnify option to enlarge short events (see Figure 4).

Electrophysiological Time Series
Sleep offers a dynamic control of the displayed polysomnographic
time series and most of the settings are in the “Panels” tab.
Indeed, each channel can be added or removed from the list
of the currently displayed canvas. By default, Sleep displays the
time series by frames of 30 s, which is a standard duration
for stage scoring (Iber et al., 2007), but this value can be

changed directly from the navigation bar. Furthermore, the
amplitude of each channel can either be set independently,
using a same range across all channels, or automatically adjusted
according to the minimum/maximum of the currently displayed
signals.

Time-Frequency Representation
The visibility and amplitude of each channel can be controlled
from the GUI (see Figure 3). The same applies for the
spectrogram, which corresponds to a time-frequency
representation of the entire recording performed on one
channel. Among the definable parameters of the spectrogram
are the channel on which it is computed, lower and upper
limit frequencies, length and overlap of the fast Fourier
transform and colormap properties. Finally, a topographic
map based on the Source Connectivity Toolbox (SCoT) and
the Magnetoencephalography and Electroencephalography
(MNE) toolbox implementations (Gramfort et al., 2013; Billinger
et al., 2014) can also be embedded inside the GUI for full
data inspection. The topological plot depicts the mean values
computed from the time window currently displayed. This
channel-space 2D topographical functionality provides a
convenient and versatile tool to visualize various data types,
including the raw data, the amplitude or power in specific
frequency bands.

Shortcuts
Navigation and operations inside a software can be sometimes
repetitive. For that reason, Sleep comes with numerous native
shortcuts to facilitate the visualization and stage scoring. For a
complete list we refer the reader to the “Shortcuts” paragraph of
the documentation13.

Supported Electrophysiological and
Hypnogram Data Formats
Sleep natively supports several standard electrophysiological
file formats, including European Data Format (EDF ∗.edf),
Micromed (∗.trc), Brain Vision (∗.eeg), and Elan (∗.eeg). In
addition, it is possible to load directly NumPy array or Matlab
file using the command-line parameters.

The hypnogram of the corresponding dataset can also be
loaded and then edited directly from the GUI. Accepted
hypnogram file formats are ∗.txt, ∗.csv, or ∗.hyp. There is a
great heterogeneity among sleep laboratories with respect to
hypnogram format. This represents an obvious barrier for data
sharing. To overcome this problem, Sleep allows the user to
specify the hypnogram format in a separate text file. This file
should contain the names and integer values assigned to each
sleep stage in the hypnogram file, as well as the number of
values per second. During loading, the hypnogram file will be
converted to Sleep native hypnogram format described in the
documentation14. An example description file can be found in
the documentation14.

13http://visbrain.org/sleep.html#shortcuts
14http://visbrain.org/sleep.html#hypnogram
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FIGURE 3 | Sleep main interface. Each element of the graphical user interface can either be displayed or hidden, (A) Settings panel containing all Sleep controls and

parameters. The current displayed tab can be used to toggle channel visibility and to adjust individual amplitudes, (B) 30 s time window of electrophysiological data.

Here, only 5 channels are currently displayed (Cz, Fz, Pz, EOG1, EMG1), (C) The spectrogram displays the time-frequency representation of a specific channel for the

entire recording, and can be useful to identify global changes in the spectral properties of the signal often associated with changes in sleep stages. Any channel can

be picked and further time-frequency controls are available in the settings panel, (D) Hypnogram with one specific color per stage. The stage order can be changed

from the default Artefact, Wake, REM, N1, N2, N3, (E) Time axis with visual indicator, (F) Navigation bar with time settings: window length and step size, unit

(seconds/minutes/hours), (G) Topographic data representation.

FIGURE 4 | Example of bandpass filtering. Using the Tools panel (left), the EEG signals have been bandpass-filtered in the spindles frequency band (12–14Hz,

Butterworth filter). Using the “Enable” checkbox of the panel, this filtering operation can be disabled at any moment to retrieve the original EEG signals. Finally, by

left-clicking on a specific time point in a channel or selecting the Magnify tools (bottom), users can enlarge events. This was used in this example to enlarge a sleep

spindle observed on channel Pz.
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FIGURE 5 | Example of publication-ready hypnogram figure exported using Sleep GUI.

Editing the Hypnogram
The hypnogram can be edited either from scratch or from an
existing hypnogram file. There are three methods to edit the
hypnogram using Sleep GUI:

• Using intuitive keyboard shortcuts. When a new stage is
entered, the next window is shown.

• Using a table where each stage can be specified by it starting
and ending time point.

• Using a drag and drop operation directly on the hypnogram
canvas.

At any moment, the user can export the hypnogram or save it as
a black and white (or color) publication-ready figure using the
contextual menu (Figure 5).

GUI Integration and Validation of
Automatic Events Detection
The automatic events detection can be performed on any selected
or visible channel. When the detection is completed, detected
events are depicted directly on the selected channel using a
specific color-code for each feature. In addition, the starting
point, duration and stage of occurrence of each one of the
detected events are reported in the “Location table.” Users can
then easily navigate between the detected events by clicking on
a row, which automatically sets the time so that the event is
centered on the screen. Furthermore, this table can be exported
to a ∗.csv or ∗.txt file. Users can perform an unlimited number
of detections in a row on a single channel and then switch from
one to another using the “Location” panel. Last but not least, the
location of each detected event is reported on the hypnogram
using specific visual cues for each detection types. Integration of
the detection inside the GUI is shown in Figure 6.

To test how these detections performed on real datasets, we
measured performances of the spindle and K-complex detection
methods using visually-annotated EEG segments of N2 sleep
collected from full-night polysomnographic recordings of 14
participants (Eichenlaub et al., 2012, 2014; Ruby P. et al., 2013;

Ruby P. M. et al., 2013). Spindles and K-complexes were visually
scored by an expert (JBE) as part of a previous work that
focused specifically on the detection of these sleep features using
machine-learning (Lajnef et al., 2015a).

To perform the detection methods using Sleep algorithm,
all N2-sleep EEG segments were concatenated into a single
file of 210 min with a single channel (C3) and with a
sampling rate of 100Hz (native downsampling frequency of
Sleep). Then, to evaluate the performances of our detection, we
used two standards metrics: the sensitivity (1), which measures
the proportion of correctly identified detected events and the
False Detection Rate (FDR) (2) which assess the proportion of
incorrectly detected events.

Sensitivity =
True Positive

True Positive + False Negative
(1)

False Detection Rate =
False Positive

False Positive + True Positive
(2)

where True Positive refers to the events scored by the expert and
correctly detected by our methods, False Negative refers to the
events scored by the expert but not detected by our method and
False Positive refers to the events detected by our methods but
not scored by the expert.

Performances of the detection algorithm implemented in Sleep
are reported in Figure 7. For both spindles and K-complexes, we
used 25 different thresholds ranging from 0 to 5 with 0.2 steps.
The optimal threshold was defined as the one that maximizes
the difference between sensitivity and FDR (Lajnef et al., 2015a).
Regarding spindles, the best performance of our algorithm was
obtained at a threshold of 2.4 standard deviations, yielding a
sensitivity of 77.2% and a FDR of 40.1%. Regarding K-complexes,
a threshold of 1.0 resulted in the best performances with a
sensitivity of 70.7% and a FDR of 27.2%. These results are similar
to those of previous detection methods (Devuyst et al., 2011;
Lajnef et al., 2015a). Moreover, the time of execution of these two
algorithms are very fast.
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FIGURE 6 | GUI integration of the automatic event detection. The top row illustrate examples of typical graphoelements detected with Sleep including spindles,

K-complexes, rapid eye movements, slow-waves, muscle twitches, and peaks. The window below illustrate how detections of such events are visually integrated into

the interface. First, each detected event are highlighted into the channel time-series. Then, all the detected events are displayed on top of the hypnogram (identified

using different symbols and colors per detection type) and reported into a table embedded into the settings panel. A mouse click on a line centers the corresponding

event on the screen. This table can be exported into a *.csv or a *.txt file.

FIGURE 7 | Performance metrics of the Sleep spindle and K-complex detection methods evaluated at 25 different thresholds (range = 0–5, step = 0.2). Dark orange

and blue lines depict the sensitivity and false detection rate (FDR), respectively. Light orange lines show the difference between sensitivity and FDR. Red dotted lines

depict the threshold values that maximized this difference.

Sleep Class Inputs and Code Example
From a programming point of view, the high-level interface with
our software is provided by the Sleep class. This class can take
into account a few input arguments. Hence, loading sleep data

can be assessed in three ways adapted to a range of users, from
non-programmers to advanced users. As shown in the Code

Snippet 1, running Sleep without further input arguments will
ask the user to specify the path to a supported sleep dataset (∗.eeg,
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∗.edf, or ∗.trc). In addition, the user can either use an existing
hypnogram or start a new one from scratch. Alternatively, instead
of using the interface to select the files, they can be directly passed
as input arguments (Code Snippet 2). In this example, we also
demonstrate how to change the default order of the sleep stages
in the hypnogram using a simple command-line option. If this
option is not specified, the default display of Sleep is as follows:
Art, REM, Wake, N1, N2, N3. Finally, several others file formats
such as EEGLab, Neuroscan, EGI, GDF, and BDF can be loaded
using MNE Python package15. We report in Code Snippet 3

a method to pass data to Sleep after loading them using MNE
python.

Code Snippet 1 | Simplest way to launch Sleep from a Python interpreter. This

will open a window asking the user to select the EEG data and corresponding

hypnogram.

# Load the Sleep module from visbrain:

from visbrain import Sleep

# Open the default Sleep window:

Sleep().show()

Code Snippet 2 | In this example, the paths to the EEG data and hypnogram

are entered as inputs arguments of the main Sleep function, resulting in

the software opening directly with the dataset and hypnogram loaded. We

also show how to change the default display order of the hypnogram by

changing the href argument of Sleep main function. The sleep stages will be

displayed in the order defined in norder variable, with N3 on top and Art on

bottom.

# Import the Sleep module from visbrain:

from visbrain import Sleep

# Define where the data are located:

dfile = ’/home/perso/myfile.eeg’

# Define where the hypogram is located:

hfile = ’/home/perso/hypno.hyp’

# hfile = None # Eventually, start from a fresh one

# Inverse the default sleep stage order:

norder = [’n3’, ’n2’, ’n1’, ’rem’, ’wake’, ’art’]

# Finally, pass both file to the class:

Sleep(file=dfile, hypno_file=hfile, href=norder).show()

Code Snippet 3 | This example shows a method to pass data

to Sleep after loading them using MNE-Python package (see

http://martinos.org/mne/dev/manual/io.html for a full list of the data formats

supported by MNE)

# Import the Sleep module and MNE:

import numpy as np

from visbrain import Sleep

from mne import io, Annotations

# - Biosemi Data Format (BDF)

raw = io.read_raw_edf(’mybdffile.bdf’, preload=True)

# - EGI format

# raw = io.read_raw_egi(’myegifile.egi’, preload=True)

# - EEGLab

# raw = io.read_raw_eeglab(’myeeglabfile.set’,

preload=True)

# Extract data, sampling frequency and channels names

data, sf, chan = raw._data, raw.info[’sfreq’],

raw.info[’ch_names’]

# Define annotations for this file:

onset = np.array([145., 235., 1045.]) # Onset of each

event (sec)

15https://martinos.org/mne/stable/manual/io.html#importing-eeg-data

dur = np.array([1., 5., 2.5]) # Duration (sec)

description = np.array([’First event’, # Description

’Second event’,

’Third event’

])

annot = Annotations(onset, dur, description)

# Now, pass all the arguments to the Sleep module:

Sleep(data=data, sf=sf, channels=chan, annotation_file=

annot).show()

DISCUSSION

This paper introduces an open-source software module called
Sleep which provides a user-friendly and efficient GUI dedicated
to visualization, scoring and analysis of sleep data. This proposed
module is part of a larger ongoing open-source Python project
by our group called Visbrain dedicated to the visualization of
neuroscientific data. The design and functionalities of Sleep are
specifically geared toward scientists and students involved in
sleep research.

Sleep comes with a GUI in which we embedded high-quality
plots with graphical rendering offloaded to the GPU. As a result,
plotting and user interactions can be processed in real-time. The
software is capable of loading several widely-used sleep data files
format, such as European Data Format and BrainVision, and to
stream efficiently all of the polysomnographic channels, even on
an average modern laptop. On top of that, Sleep also provides
the possibility to display time-frequency (spectrogram) and
topographic representations of the data, with several adjustable
parameters for each. Regarding sleep staging and hypnogram
editing, Sleep offers intuitive manual scoring functionalities,
signal processing tools and automatic detection of sleep features
in order to facilitate this fastidious process. Once completed,
users can export sleep statistics, or publication-ready high-quality
figure of the hypnogram in one click.

Comparison with Other Solutions
First, it is noteworthy that the scope and functionalities of
the present module differs from a previous MATLAB tool
we have released, called Spinky (Lajnef et al., 2017) and
which aims specifically to provide a joint spindle and K-
complex detection framework using the tunable Q-factor wavelet
transform (TQWT) (Selesnick, 2011). In addition with being
written entirely in Python, Sleep allows for a wide range of
functionalities, such as sleep scoring, fast raw and spectral
data visualization, edition and creation of hypnogram and
annotation files, and automatic detection of several sleep features.
Spinky and Sleep subserve distinct purposes and are thus highly
complementary. Second, there are currently only a few freewares
for human sleep scoring and analysis. The Python package
Phypno and MATLAB-based toolbox SpiSOP both provide a
GUI for scoring sleep stages, and include several other command
line features to perform automatic detections and compute
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sleep statistics. However, one of the advantages of Sleep in
comparison with these two solutions is the dynamic integration
of these features into the GUI, which we believe will allow
our software to be understood and accessible by users with no
or little programming knowledge. Finally, Sleep offers several
advantages compared to the numerous existing commercial
solutions, the most obvious one being that it is free and therefore
more easily accessible to students or small sleep laboratories.
Also, the fact that it is open-source allows more easily the
community to contribute to its extension and development.
Furthermore, special emphasis was given to ensure compatibility
with several electrophysiological and hypnogram file formats
and thus liberate the data from proprietary formats that are
dependent upon specific software. We firmly believe that this, in
addition with the possibility to save and load automatic detection
or configuration files, will promote and facilitate data sharing
across sleep laboratories.

Performance of the Automatic Detections
Regarding the automatic detections, Sleep includes 6 robust
algorithms for detecting some of the most prominent features
of each sleep stage, including spindles, K-complexes, slow waves,
REM, and muscle twitches. Spindle and K-complex detection
algorithms were validated on a visually scored dataset including
210 min of N2 sleep from 14 participants and resulted in
performances similar to those reported in recent publications.
Last but not least, these detections are implemented inside the
GUI in an ergonomic and intuitive manner. We think that
these detections may represent a valuable help not only in
the process of staging sleep, but also for researchers that are
interested in themicrostructure of sleep. The automatic detection
algorithms proposed in Sleep can be used as a starting point for a
semi-automatic procedure where users can correct or adjust the
output of the detector. Beyond saving a lot of time, this approach
has generally been shown to yield reliable and robust detection
(O’Reilly and Nielsen, 2015).

FUTURE DIRECTIONS AND CONCLUSION

We are considering to extend the list of the default supported
files and we encourage programmers or sleep scientists interested

by this project to collaborate on it. Regarding sleep analysis
we are working on an automatic scoring function based
on machine-learning algorithms, inline with our previous
work (Combrisson and Jerbi, 2015; Lajnef et al., 2015b;
Combrisson et al., 2017). Finally, as different users have
different needs, we are constantly improving the interface
and functionalities of the software thanks to the feedback
we receive.

With the release of Sleep, we offer a portable and
cross-platform software, installable and usable on most
configuration. While there is still room for improvement,
Sleep already provides a complete and intuitive interface
designed by and for scientists involved in sleep research. We
hope this software will be used and further developed by
many like-minded students and researchers with a strong

commitment to open science and to high quality open-source
software.
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