A refined estimate for the topological degree

Hoai-Minh Nguyen*

October 8, 2017

Abstract

We sharpen an estimate of [4] for the topological degree of continuous maps from a sphere \mathbb{S}^{d} into itself in the case $d \geq 2$. This provides the answer for $d \geq 2$ to a question raised by Brezis. The problem is still open for $d=1$.

AMS classification: 47H11, 55C25, 58C35.
Keywords: topological degree, fractional Sobolev spaces.

1 Introduction

Motivated by the theory of Ginzburg Landau equations (see, e.g., [1), Bourgain, Brezis, and the author established in [4]:

Theorem 1. Let $d \geq 1$. For every $0<\delta<\sqrt{2}$, there exists a positive constant $C(\delta)$ such that, for all $g \in C\left(\mathbb{S}^{d}, \mathbb{S}^{d}\right)$,

$$
\begin{equation*}
\left.|\operatorname{deg} g| \leq C(\delta) \int_{\mathbb{S}^{d}} \int_{\mathbb{S}^{d}} \frac{1}{|g(x)-g(y)|>\delta} \right\rvert\, \frac{1}{|x-y|^{2 d}} d x d y . \tag{1.1}
\end{equation*}
$$

Here and in what follows, for $x \in \mathbb{R}^{d+1},|x|$ denotes its Euclidean norm in \mathbb{R}^{d+1}.
The constant $C(\delta)$ depends also on d but for simplicity of notation we omit d. Estimate (1.1) was initially suggested by Bourgain, Brezis, and Mironescu in [2]. It was proved in [3] in the case where $d=1$ and δ is sufficiently small. In [9], the author improved (1.1) by establishing that (1.1) holds for $0<\delta<\ell_{d}=\sqrt{2+\frac{2}{d+1}}$ with a constant $C(\delta)$ independent of δ. It was also shown there that (1.1) does not hold for $\delta \geq \ell_{d}$.

This note is concerned with the behavior of $C(\delta)$ as $\delta \rightarrow 0$. Brezis 7] (see also [6, Open problem 3]) conjectured that (1.1) holds with

$$
\begin{equation*}
C(\delta)=C \delta^{d} \tag{1.2}
\end{equation*}
$$

[^0]for some positive constant C depending only on d. This conjecture is somehow motivated by the fact that (1.1)-(1.2) holds "in the limit" as $\delta \rightarrow 0$. More precisely, it is known that (see [8, Theorem 2])
$$
\left.\lim _{\delta \rightarrow 0} \int_{\mathbb{S}^{d}} \int_{\mathbb{S}^{d}} \frac{\delta^{d}}{|g(x)-g(y)|>\delta}\left|\frac{x^{2 d}}{|x-y|^{2 d}} d x d y=K_{d} \int_{\mathbb{S}^{d}}\right| \nabla g(x)\right|^{d} d x \text { for } g \in C^{1}\left(\mathbb{S}^{d}\right)
$$
for some positive constant K_{d} depending only on d and that
$$
\operatorname{deg} g=\frac{1}{\left|\mathbb{S}^{d}\right|} \int_{\mathbb{S}^{d}} \operatorname{Jac}(g) \text { for } g \in C^{1}\left(\mathbb{S}^{d}, \mathbb{S}^{d}\right)
$$
by Kronecker's formula.
In this note, we confirm Brezis' conjecture for $d \geq 2$. The conjecture is still open for $d=1$. Here is the result of the note.

Theorem 2. Let $d \geq 2$. There exists a positive constant $C=C(d)$, depending only on d, such that, for all $g \in C\left(\mathbb{S}^{d}, \mathbb{S}^{d}\right)$,

$$
\begin{equation*}
\left.|\operatorname{deg} g| \leq C \quad \int_{\mathbb{S}^{d}} \int_{\mathbb{S}^{d}} \frac{\delta^{d}}{|x(x)-g(y)|>\delta} \right\rvert\, \frac{\text { for } 0<\left.\delta\right|^{2 d}}{} d x d y \tag{1.3}
\end{equation*}
$$

2 Proof of Theorem 2

The proof of Theorem 2 is in the spirit of the approach in [4, 9]. One of the new ingredients of the proof is the following result [10, Theorem 1], which has its roots in [5:

Lemma 1. Let $d \geq 1, p \geq 1$, let B be an open ball in \mathbb{R}^{d}, and let f be a real bounded measurable function defined in B. We have, for all $\delta>0$,

$$
\begin{equation*}
\frac{1}{|B|^{2}} \int_{B} \int_{B}|f(x)-f(y)|^{p} d x d y \leq C_{p, d}\left(|B|^{\frac{p}{d}-1} \underset{|f(x)-f(y)|>\delta}{\int_{B}} \int_{B} \frac{\delta^{p}}{|x-y|^{d+p}} d x d y+\delta^{p}\right) \tag{2.1}
\end{equation*}
$$

for some positive constant $C_{p, d}$ depending only on p and d.
In Lemma 1, $|B|$ denotes the Lebesgue measure of B.
We are ready to present
Proof of Theorem 2. We follow the strategy in [4, 9]. We first assume in addition that $g \in C^{1}\left(\mathbb{S}^{d}, \mathbb{S}^{d}\right)$. Let B be the open unit ball in \mathbb{R}^{d+1} and let $u: B \rightarrow B$ be the average extension of g, i.e.,

$$
\begin{equation*}
u(X)=f_{B(x, r)} g(s) d s \text { for } X \in B \tag{2.2}
\end{equation*}
$$

where $x=X /|X|, r=2(1-|X|)$, and $B(x, r):=\left\{y \in \mathbb{S}^{d} ;|y-x| \leq r\right\}$. In this proof, $f_{D} g(s) d s$ denotes the equantity $\frac{1}{|D|} \int_{D} g(s) d s$ for a measurable subset D of \mathbb{S}^{d} with positive (d-dimensional

Hausdorff) measure. Fix $\alpha=1 / 2$ and for every $x \in \mathbb{S}^{d}$, let $\rho(x)$ be the length of the largest radial interval coming from x on which $|u|>\alpha$ (possibly $\rho(x)=1$). In particular, if $\rho(x)<1$, then

$$
\begin{equation*}
\left|f_{B(x, 2 \rho(x))} g(s) d s\right|=1 / 2 \tag{2.3}
\end{equation*}
$$

By [4, (7)], we have

$$
\begin{equation*}
|\operatorname{deg} g| \leq C \int_{\rho(x)<1} \frac{1}{\rho(x)^{d}} d x . \tag{2.4}
\end{equation*}
$$

Here and in what follows, C denotes a positive constant which is independent of x, ξ, η, g, and δ, and can change from one place to another.

We now implement ideas involving Lemma 1 applied with $p=1$. We have, by (2.3),

$$
f_{B(x, 2 \rho(x))} f_{B(x, 2 \rho(x))}|g(\xi)-g(\eta)| d \xi d \eta \geq f_{B(x, 2 \rho(x))}\left|g(\xi)-f_{B(x, 2 \rho(x))} g(\eta) d \eta\right| d \xi \geq C
$$

This yields, for some $1 \leq j_{0} \leq d+1$,

$$
f_{B(x, 2 \rho(x))} f_{B(x, 2 \rho(x))}\left|g_{j_{0}}(\xi)-g_{j_{0}}(\eta)\right| d \xi d \eta \geq C,
$$

where g_{j} denotes the j-th component of g. It follows from (2.1) that, for some $\delta_{0}>0\left(\delta_{0}\right.$ depends only on d) and for $0<\delta<\delta_{0}$,

$$
\rho(x)^{1-d} \int_{\substack{B(x, 2 \rho(x)) \\\left|g_{j_{0}}(\xi)-g_{j_{0}}(\eta)\right|>\delta}} \int_{B(x, 2 \rho(x))} \frac{\delta}{|\xi-\eta|^{d+1}} d \xi d \eta \geq C,
$$

which implies

$$
\begin{equation*}
\sum_{j=1}^{d+1} \rho(x)^{1-d} \int_{\substack{B(x, 2 \rho(x)) \\\left|g_{j}(\xi)-g_{j}(\eta)\right|>\delta}} \int_{B(x, 2 \rho(x))} \frac{\delta}{|\xi-\eta|^{d+1}} d \xi d \eta \geq C \tag{2.5}
\end{equation*}
$$

Since

$$
\rho(x)^{1-d} \int_{\substack{B(x, 2 \rho(x)) \\|\xi-\eta|>C_{1} \rho(x) \delta}} \int_{B(x, 2 \rho(x))} \frac{\delta}{|\xi-\eta|^{d+1}} d \xi d \eta<\frac{C}{2(d+1)},
$$

if $C_{1}>0$ is large enough (the largeness of C_{1} depends only on C and d), it follows from (2.5) that

$$
\begin{equation*}
\sum_{j=1}^{d+1} \rho(x)^{1-d} \int_{\substack{B(x, 2 \rho(x)) \\\left|g_{j}(\xi)-g_{j}(\eta)\right|>\delta \\|\xi-\eta| \leq C \rho(x) \delta}} \int \frac{\delta}{|\xi-\eta|^{d+1}} d \xi d \eta \geq C \tag{2.6}
\end{equation*}
$$

We derive from (2.4) and (2.6) that, for $0<\delta<\delta_{0}$,

This implies, by Fubini's theorem, that, for $0<\delta<\delta_{0}$,

$$
\begin{equation*}
|\operatorname{deg} g| \leq C \sum_{j=1}^{d+1} \int_{\mid g_{j}(\xi)-g_{j}} \int_{\mathbb{S}^{d}(\eta) \mid>\delta} \frac{\delta}{|\xi-\eta|^{d+1}} d \xi d \eta \int_{\substack{\rho(x) \geq C|\xi-\eta| / \delta \\ 2 \rho(x)>|x-\xi|}} \frac{1}{\rho(x)^{2 d-1}} d x . \tag{2.7}
\end{equation*}
$$

We have

$$
\begin{aligned}
\int_{\substack{2 \rho(x)>|x-\xi| \\
\rho(x) \geq C|\xi-\eta| / \delta}} \frac{1}{\rho(x)^{2 d-1}} d x & \leq \int_{\substack{2 \rho(x)>|x-\xi| \\
|x-\xi|>C|\xi-\eta| / \delta}} \frac{1}{\rho(x)^{2 d-1}} d x+\int_{\substack{\rho(x) \geq C|\xi-\eta| / \delta \\
|x-\xi| \leq C|\xi-\eta| / \delta}} \frac{1}{\rho(x)^{2 d-1}} d x \\
& \leq \int_{|x-\xi|>C|\xi-\eta| / \delta} \frac{C}{|x-\xi|^{2 d-1}} d x+\int_{|x-\xi| \leq C|\xi-\eta| / \delta} \frac{C \delta^{2 d-1}}{|\xi-\eta|^{2 d-1}} d x .
\end{aligned}
$$

Finally, we use the assumption that $d \geq 2$. Since $d>1$, it follows that

$$
\begin{equation*}
\int_{\substack{\rho(x)>|x-\xi| \\ \rho(x) \geq C|\xi-\eta| / \delta}} \frac{1}{\rho(x)^{2 d-1}} d x \leq \frac{C \delta^{d-1}}{|\xi-\eta|^{d-1}} . \tag{2.8}
\end{equation*}
$$

Combining (2.7) and (2.8) yields, for $0<\delta<\delta_{0}$,

$$
\begin{equation*}
|\operatorname{deg} g| \leq C \sum_{j=1}^{d+1} \int_{\mid g_{j}(\xi)-g_{j}} \int_{\left.\mathbb{S}^{d} \eta\right) \mid>\delta} \frac{\delta^{d}}{|\xi-\eta|^{2 d}} d \xi d \eta \tag{2.9}
\end{equation*}
$$

Assertion (1.3) is now a direct consequence of (2.9) for $\delta<\delta_{0}$ and (1.1) for $\delta_{0} \leq \delta<1$.
The proof in the case $g \in C\left(\mathbb{S}^{d}, \mathbb{S}^{d}\right)$ can be derived from the case $g \in C^{1}\left(\mathbb{S}^{d}, \mathbb{S}^{d}\right)$ via a standard approximation argument. The details are omitted.

Acknowledgement: The author warmly thanks Haim Brezis for communicating [7] and Haim Brezis and Itai Shafrir for interesting discussions.

References

[1] F. Bethuel, H. Brezis, F. Helein, Ginzburg-Landau vortices. Progress in Nonlinear Differential Equations and their Applications, 13, Birkhäuser Boston, 1994.
[2] J. Bourgain, H. Brezis, P. Mironescu, Lifting, Degree, and Distributional Jacobian Revisited, Comm. Pure Appl. Math., 58 (2005), 529-551.
[3] J. Bourgain, H. Brezis, P. Mironescu, Complements to the paper "Lifting, Degree, and Distributional Jacobian Revisited", https://hal.archives-ouvertes.fr/hal00747668/document.
[4] J. Bourgain, H. Brezis, H-M. Nguyen, A new estimate for the topological degree, C. R. Math. Acad. Sci. Paris 340 (2005), 787-791.
[5] J. Bourgain and H-M. Nguyen, A new characterization of Sobolev spaces, C. R. Acad. Sci. Paris 343 (2006), 75-80.
[6] H. Brezis, New questions related to the topological degree. The unity of mathematics, 137-154, Progr. Math. 244, Birkhauser, 2006.
[7] H. Brezis, Private communication, 2006.
[8] H-M. Nguyen, Some new characterizations of Sobolev spaces, J. Funct. Anal. 237 (2006), 689-720.
[9] H-M. Nguyen, Optimal constant in a new estimate for the degree, J. Anal. Math. 101 (2007), 367-395.
[10] H-M. Nguyen, Some inequalities related to Sobolev norms, Calc. Var. Partial Differential Equations 41 (2011), 483-509.

[^0]: *EPFL SB MATHAA CAMA, Station 8, CH-1015 Lausanne, Switzerland, hoai-minh.nguyen@epfl.ch

