FISEVIER

Contents lists available at ScienceDirect

C. R. Acad. Sci. Paris. Ser. I

www.sciencedirect.com

Mathematical analysis/Differential topology

A refined estimate for the topological degree

Une estimée raffinée du degré topologique

Hoai-Minh Nguyen

École polytechnique fédérale de Lausanne, EPFL, SB MATHAA CAMA, Station 8, CH-1015 Lausanne, Switzerland

ARTICLE INFO

Article history: Received 8 October 2017 Accepted 12 October 2017 Available online 16 October 2017

Presented by Haïm Brézis

ABSTRACT

We sharpen an estimate of [4] for the topological degree of continuous maps from a sphere \mathbb{S}^d into itself in the case $d \geq 2$. This provides the answer for $d \geq 2$ to a question raised by Brezis. The problem is still open for d = 1.

© 2017 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

RÉSUMÉ

Nous affinons une estimée du degré topologique pour des applications continues d'une sphère \mathbb{S}^d dans elle-même dans le cas $d \geq 2$. Cela fournit la réponse pour $d \geq 2$ à une question posée par Brezis. Le problème est encore ouvert pour d = 1.

© 2017 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Motivated by the theory of Ginzburg-Landau equations (see, e.g., [1]), Bourgain, Brezis and the author established in [4] the following theorem.

Theorem 1. Let $d \ge 1$. For every $0 < \delta < \sqrt{2}$, there exists a positive constant $C(\delta)$ such that, for all $g \in C(\mathbb{S}^d, \mathbb{S}^d)$,

$$|\deg g| \le C(\delta) \int_{\mathbb{S}^d \setminus \mathbb{S}^d \atop |g(x)| = \beta(y)| > \delta} \frac{1}{|x - y|^{2d}} \, \mathrm{d}x \, \mathrm{d}y. \tag{1}$$

Here and in what follows, for $x \in \mathbb{R}^{d+1}$, |x| denotes its Euclidean norm in \mathbb{R}^{d+1} .

The constant $C(\delta)$ depends also on d, but for simplicity of notation, we omit d. Estimate (1) was initially suggested by Bourgain, Brezis, and Mironescu in [2]. It was proved in [3] in the case where d = 1 and δ is sufficiently small. In [9], the

E-mail address: hoai-minh.nguyen@epfl.ch.

author improved (1) by establishing that (1) holds for $0 < \delta < \ell_d = \sqrt{2 + \frac{2}{d+1}}$ with a constant $C(\delta)$ independent of δ . It was also shown there that (1) does not hold for $\delta \ge \ell_d$.

This note is concerned with the behavior of $C(\delta)$ as $\delta \to 0$. Brezis [7] (see also [6, Open problem 3]) conjectured that (1) holds with

$$C(\delta) = C\delta^d, \tag{2}$$

for some positive constant C depending only on d. This conjecture is somehow motivated by the fact that (1)–(2) holds "in the limit" as $\delta \to 0$. More precisely, it is known that (see [8, Theorem 2])

$$\lim_{\delta \to 0} \int_{\substack{\mathbb{S}^d \\ |g(x) - g(y)| > \delta}} \frac{\delta^d}{|x - y|^{2d}} \, \mathrm{d}x \, \mathrm{d}y = K_d \int_{\mathbb{S}^d} |\nabla g(x)|^d \, \mathrm{d}x \text{ for } g \in C^1(\mathbb{S}^d)$$

for some positive constant K_d depending only on d, and that

$$\deg g = \frac{1}{|\mathbb{S}^d|} \int_{\mathbb{S}^d} \operatorname{Jac}(g) \text{ for } g \in C^1(\mathbb{S}^d, \mathbb{S}^d),$$

by Kronecker's formula.

In this note, we confirm Brezis' conjecture for $d \ge 2$. The conjecture is still open for d = 1. Here is the result of the note.

Theorem 2. Let $d \ge 2$. There exists a positive constant C = C(d), depending only on d, such that, for all $g \in C(\mathbb{S}^d, \mathbb{S}^d)$,

$$|\deg g| \le C \int_{\substack{\mathbb{S}^d \\ |g(x) - g(y)| > \delta}} \frac{\delta^d}{|x - y|^{2d}} \, \mathrm{d}x \, \mathrm{d}y \quad \text{for } 0 < \delta < 1.$$

$$(3)$$

2. Proof of Theorem 2

The proof of Theorem 2 is in the spirit of the approach in [4,9]. One of the new ingredients of the proof is the following result [10, Theorem 1], which has its roots in [5]:

Lemma 1. Let $d \ge 1$, $p \ge 1$, let B be an open ball in \mathbb{R}^d , and let f be a real bounded measurable function defined in B. We have, for all $\delta > 0$,

$$\frac{1}{|B|^2} \int_{B} \int_{B} |f(x) - f(y)|^p \, \mathrm{d}x \, \mathrm{d}y \le C_{p,d} \left(|B|^{\frac{p}{d} - 1} \int_{B} \int_{B} \frac{\delta^p}{|x - y|^{d+p}} \, \mathrm{d}x \, \mathrm{d}y + \delta^p \right), \tag{4}$$

for some positive constant $C_{p,d}$ depending only on p and d.

In Lemma 1, |B| denotes the Lebesgue measure of B.

We are ready to present

Proof of Theorem 2. We follow the strategy in [4,9]. We first assume in addition that $g \in C^1(\mathbb{S}^d, \mathbb{S}^d)$. Let B be the open unit ball in \mathbb{R}^{d+1} and let $u : B \to B$ be the average extension of g, i.e.

$$u(X) = \int_{B(x,r)} g(s) \, ds \text{ for } X \in B,$$
(5)

where x = X/|X|, r = 2(1 - |X|), and $B(x,r) := \{y \in \mathbb{S}^d; |y - x| \le r\}$. In this proof, $\int_D g(s) \, ds$ denotes the quantity $\frac{1}{|D|} \int_D g(s) \, ds$ for a measurable subset D of \mathbb{S}^d with positive (d-dimensional Hausdorff) measure. Fix $\alpha = 1/2$ and for every $x \in \mathbb{S}^d$, let $\rho(x)$ be the length of the largest radial interval coming from x on which $|u| > \alpha$ (possibly $\rho(x) = 1$). In particular, if $\rho(x) < 1$, then

$$\left| \int_{B(x,2\rho(x))} g(s) \, \mathrm{d}s \right| = 1/2. \tag{6}$$

By [4, (7)], we have

$$|\deg g| \le C \int_{\mathbb{S}^d} \frac{1}{\rho(x)^d} \, \mathrm{d}x. \tag{7}$$

Here and in what follows, C denotes a positive constant, which is independent of x, ξ , η , g, and δ , and can change from one place to another.

We now implement ideas involving Lemma 1 applied with p = 1. We have, by (6),

$$\int\limits_{B(x,2\rho(x))}\int\limits_{B(x,2\rho(x))}|g(\xi)-g(\eta)|\,\mathrm{d}\xi\,\mathrm{d}\eta\geq\int\limits_{B(x,2\rho(x))}\left|g(\xi)-\int\limits_{B(x,2\rho(x))}g(\eta)\,\mathrm{d}\eta\right|\,\mathrm{d}\xi\geq C.$$

This yields, for some $1 \le i_0 \le d + 1$,

$$\oint_{B(x,2\rho(x))} \oint_{B(x,2\rho(x))} |g_{j_0}(\xi) - g_{j_0}(\eta)| \, \mathrm{d}\xi \, \mathrm{d}\eta \ge C,$$

where g_j denotes the j-th component of g. It follows from (4) that, for some $\delta_0 > 0$ (δ_0 depends only on d) and for $0 < \delta < \delta_0$,

$$\rho(x)^{1-d} \int\limits_{\substack{B(x,2\rho(x)) \ B(x,2\rho(x)) \\ |g_{1\rho}(\xi)-g_{1\rho}(\eta)|>\delta}} \frac{\delta}{|\xi-\eta|^{d+1}} \,\mathrm{d}\xi \,\mathrm{d}\eta \ge C,$$

which implies

$$\sum_{j=1}^{d+1} \rho(x)^{1-d} \int_{\substack{B(x,2\rho(x)) \ B(x,2\rho(x)) \\ |g_{j}(\xi)-g_{j}(\eta)| > \delta}} \frac{\delta}{|\xi-\eta|^{d+1}} \, \mathrm{d}\xi \, \mathrm{d}\eta \ge C. \tag{8}$$

Since

$$\rho(x)^{1-d} \int\limits_{\substack{B(x,2\rho(x)) \ B(x,2\rho(x)) \\ |\xi-\eta| > C_{1}\rho(x)\delta}} \frac{\delta}{|\xi-\eta|^{d+1}} \, \mathrm{d}\xi \, \mathrm{d}\eta < \frac{C}{2(d+1)},$$

if $C_1 > 0$ is large enough (the largeness of C_1 depends only on C and d), it follows from (8) that

$$\sum_{j=1}^{d+1} \rho(x)^{1-d} \int\limits_{\substack{B(x,2\rho(x)) \ |g_j(\xi)-g_j(\eta)|>\delta\\ |\xi-\eta|\leq C\rho(x)\delta}} \frac{\delta}{|\xi-\eta|^{d+1}} \,\mathrm{d}\xi \,\mathrm{d}\eta \geq C. \tag{9}$$

We derive from (7) and (9) that, for $0 < \delta < \delta_0$,

$$|\deg g| \le C \int_{\mathbb{S}^d} \frac{1}{\rho(x)^{2d-1}} dx \sum_{j=1}^{d+1} \int_{B(x,2\rho(x))} \int_{\substack{B(x,2\rho(x)) \\ |g_j(\xi)-g_j(\eta)| > \delta \\ |\xi-\eta| \le C\rho(x)\delta}} \frac{\delta}{|\xi-\eta|^{d+1}} d\xi d\eta.$$

This implies, by Fubini's theorem, that, for $0 < \delta < \delta_0$,

$$|\deg g| \le C \sum_{j=1}^{d+1} \int_{\substack{\mathbb{S}^d \\ |g_j(\xi) - g_j(\eta)| > \delta}} \frac{\delta}{|\xi - \eta|^{d+1}} \, \mathrm{d}\xi \, \mathrm{d}\eta \int_{\substack{\rho(x) \ge C|\xi - \eta|/\delta \\ 2\rho(x) > |x - \xi|}} \frac{1}{\rho(x)^{2d-1}} \, \mathrm{d}x. \tag{10}$$

We have

$$\begin{split} \int\limits_{\substack{2\rho(x)>|x-\xi|\\ \rho(x)\geq C|\xi-\eta|/\delta}} \frac{1}{\rho(x)^{2d-1}} \, \mathrm{d}x &\leq \int\limits_{\substack{2\rho(x)>|x-\xi|\\ |x-\xi|>C|\xi-\eta|/\delta}} \frac{1}{\rho(x)^{2d-1}} \, \mathrm{d}x + \int\limits_{\substack{\rho(x)\geq C|\xi-\eta|/\delta\\ |x-\xi|\leq C|\xi-\eta|/\delta}} \frac{1}{\rho(x)^{2d-1}} \, \mathrm{d}x \\ &\leq \int\limits_{|x-\xi|>C|\xi-\eta|/\delta} \frac{C}{|x-\xi|^{2d-1}} \, \mathrm{d}x + \int\limits_{|x-\xi|\leq C|\xi-\eta|/\delta} \frac{C\delta^{2d-1}}{|\xi-\eta|^{2d-1}} \, \mathrm{d}x. \end{split}$$

Finally, we use the assumption that $d \ge 2$. Since d > 1, it follows that

$$\int_{\rho(x)>|x-\xi|} \frac{1}{\rho(x)^{2d-1}} \, \mathrm{d}x \le \frac{C\delta^{d-1}}{|\xi-\eta|^{d-1}}. \tag{11}$$

Combining (10) and (11) yields, for $0 < \delta < \delta_0$,

$$|\deg g| \le C \sum_{j=1}^{d+1} \int_{\substack{\mathbb{S}^d \\ |g_j(\xi)-g_j(\eta)| > \delta}} \frac{\delta^d}{|\xi-\eta|^{2d}} \, \mathrm{d}\xi \, \mathrm{d}\eta. \tag{12}$$

Assertion (3) is now a direct consequence of (12) for $\delta < \delta_0$ and (1) for $\delta_0 \le \delta < 1$.

The proof in the case $g \in C(\mathbb{S}^d, \hat{\mathbb{S}}^d)$ can be derived from the case $g \in C^1(\mathbb{S}^d, \mathbb{S}^d)$ via a standard approximation argument. The details are omitted. \square

Acknowledgements

The author warmly thanks Haïm Brezis for communicating [7], and Haïm Brezis and Itai Shafrir for interesting discussions.

References

- [1] F. Bethuel, H. Brezis, F. Helein, Ginzburg-Landau Vortices, Prog. Nonlinear Differ. Equ. Appl., vol. 13, Birkhäuser, Boston, 1994.
- [2] J. Bourgain, H. Brezis, P. Mironescu, Lifting, degree, and distributional Jacobian revisited, Commun. Pure Appl. Math. 58 (2005) 529-551.
- [3] J. Bourgain, H. Brezis, P. Mironescu, Complements to the paper "Lifting, Degree, and Distributional Jacobian Revisited", https://hal.archives-ouvertes.fr/hal-00747668/document.
- [4] J. Bourgain, H. Brezis, H-M. Nguyen, A new estimate for the topological degree, C. R. Acad. Sci. Paris, Ser. I 340 (2005) 787-791.
- [5] J. Bourgain, H-M. Nguyen, A new characterization of Sobolev spaces, C. R. Acad. Sci. Paris, Ser. I 343 (2006) 75-80.
- [6] H. Brezis, New Questions Related to the Topological Degree. The Unity of Mathematics, Prog. Math., vol. 244, Birkhäuser, 2006, pp. 137–154.
- [7] H. Brezis, Private communication, 2006.
- [8] H-M. Nguyen, Some new characterizations of Sobolev spaces, J. Funct. Anal. 237 (2006) 689–720.
- [9] H-M. Nguyen, Optimal constant in a new estimate for the degree, J. Anal. Math. 101 (2007) 367–395.
- [10] H-M. Nguyen, Some inequalities related to Sobolev norms, Calc. Var. Partial Differ. Equ. 41 (2011) 483–509.