Control-Quality Driven Design of Embedded Control Systems
with Stability Guarantees

Amir Aminifar!, Petru Eles2, Zebo PengQ, Anton Cervin®, Karl-Erik Arzén3
'Embedded Systems Laboratory, Swiss Federal Institute of Technology in Lausanne (EPFL), Switzerland
2Embedded Systems Laboratory, Linkoping University, Sweden
3Department of Automatic Control, Lund University, Sweden
amir.aminifar@epfl.ch, {petru.eles,zebo.peng}@Iliu.se, {anton,karlerik}@control.lth.se

Abstract—Today, the majority of control applications in em-
bedded systems, e.g., in the automotive domain, are implemented
as software tasks on shared platforms. Ignoring implementation
impacts during the design of embedded control systems results
in complex timing behaviors that may lead to poor performance
and, in the worst case, instability of control applications. This
article presents a methodology for implementation-aware design
of high-quality and stable embedded control systems on shared
platforms with complex timing behaviors.

Keywords: Control-Scheduling, Co-Design, Control Perfor-
mance, Stability, Robustness, Embedded Control Systems, Real-
Time Control, Cyber-Physical Systems

I. INTRODUCTION

Today, many embedded systems, e.g., in the automotive
domain, comprise several control applications. These appli-
cations are in charge of controlling the physical plants in
the systems. Such systems with tight interaction between the
physical and the cyber (processing) elements, which together
achieve capabilities that cannot be obtained otherwise, are also
known as cyber-physical systems. An early example of such
systems is computer-controlled automotive engines, which
are essential to fuel-efficient and low-emission vehicles. The
tight interaction between the physical and cyber (processing)
elements renders physical time a fundamental parameter when
reasoning about this class of embedded systems.

In the past few years, we have been witnessing a shift
from federated architectures to integrated architectures, in
which several applications share the same platform, due to
the increasing functional complexity and substantial economic
savings. This trend is particularly visible in the automotive
domain [If]. Today, the majority of control applications in
the automotive domain are implemented as software tasks on
shared platforms.

Ignoring the implementation impacts during the design of
embedded control systems on shared platforms results in
design outcomes with underutilized resources, poor control
performance, or instability of control applications. In partic-
ular, it is well known that such resource sharing leads to
complex temporal behaviors that degrade the quality of control
and, more importantly, may jeopardize the stability of control
applications, if not properly taken into account during design.

Having the platform shared among several tasks, the delay
between sampling and actuation not only will be longer than
on a dedicated platform, but also varying. This is due to the
fact that several tasks compete for execution on the shared
platform. The situation only gets more complex if we take

into consideration the fact that the computation times of the
tasks usually vary due to different input data and different
states of the platform, e.g., cache and pipeline. Therefore, as a
result of sharing the platform, the control task may experience
considerable amount of latency (the constant part of the delay)
and jitter (the varying part of the delay), which affect the
control performance and stability of the control application [2-
4]

Traditionally, the problem of designing embedded con-
trol systems has been dealt with in two independent steps,
where first the controllers are synthesized and, second, these
controllers are mapped and scheduled on a given platform.
However, this approach often leads to either resource under-
utilization or poor control performance and, in the worst-
case, may even lead to instability of control applications,
because of the timing problems which can arise due to certain
implementation decisions [5], [|6]. Thus, in order to achieve
high control performance while guaranteeing stability even in
the worst-case, it is essential to consider the timing behaviors
extracted from the system schedule during control synthesis
and to keep in view control performance and stability during
system scheduling. The issue of control-scheduling co-design
[6]] has become an important research direction in recent years.

In order to capture control performance, two kinds of
metrics are often used: (1) stochastic control performance and
(2) robustness (stability-related metrics). The former identifies
the expected (mathematical expectation) control performance
of a control application, whereas the latter is considered to
be a measure of the worst-case control performance. On the
one hand, considering solely the expected control performance
may result in solutions exhibiting high expected performance
that, however, do not necessarily satisfy the stability re-
quirements in the worst-case scenario. On the other hand,
considering merely the worst-case stability, often results in a
system with poor expected control performance. This is due to
the fact that the design is solely tuned to a scenario that occurs
very rarely. Thus, even though the overall design optimization
goal should be the expected control performance, taking the
worst-case control stability into consideration during design
space exploration is indispensable for a large class of safety
critical applications.

Previous work has mainly focused on one of the two
metrics, e.g., in [[7, [8]], the authors consider only the expected
control performance, while, in [9, [10]], the authors consider
merely the worst-case control performance. Exceptions are the

proposed approaches in [11} [12] that are, however, restricted
only to static-cyclic and time-triggered scheduling.

This article discusses the design and optimization of high-
quality and stable embedded control systems running on
shared platforms, while taking the timing impacts of the
implementation into consideration during the design process.

The remainder of this article is organized as follows. In
Section [, we illustrate the different metrics considered in
design of embedded control systems. Section discusses
the different timing interfaces and their relation with the
different control performance metrics. In Section [[V] we illus-
trate the interdependency between the control and scheduling
processes and the importance of control-scheduling co-design.
In Section |V| we formulate the control-scheduling problem to
optimize control performance, while guaranteeing stability. In
Section[V]} we propose a methodology to address this problem
and evaluate the efficiency of this methodology in Section [VII]
Finally, in Section [VIII] we conclude that it is essential to con-
sider the interplay between real-time scheduling and control
synthesis during the design of embedded control systems on
shared platforms, taking into account both expected control
performance and worst-case stability.

II. CONTROL-QUALITY VERSUS STABILITY

A correct design methodology for embedded control sys-
tems should target the optimization of the overall control
performance of the system as its main objective, while also
guaranteeing the stability of the system, in the worst-case.

Figure|[T]illustrates the relation between the expected control
performance and worst-case control performance. The red
region shows the unstable (unrobust) area, where the worst-
case control cost is not finite. The yellow region is robust (low
worst-case control cost), but low-quality area (high expected
control cost). The green region is the high quality (low
expected control cost) and robust and stable (finite worst-case
control cost) area. Observe that there is an inherent trade-off
between the expected control cost and worst-case control cost,
hence the white region. That is, it is possible to minimize
the worst-case control cost at the expense of increasing the
expected control cost, and vice versa [13].

The overall performance (i.e., control quality) of the system
is captured by the expected control performance, which should
be the main optimization objective in designing embedded
control systems. However, a design methodology targeting
only the expected control cost may end up in the red region and
with a high-quality but unstable design solution. Therefore,
considering only the expected control cost is not sufficient to
guarantee the stability of the embedded control system, in the
worst case.

It is also essential to guarantee the stability of the system at
all times and even for the worst-case scenario and considering
only the expected control performance does not necessarily
guarantee the stability of the system. The stability of the
system is captured by the worst-case control performance
metric, which should be considered as a constraint during
the design process. However, a design methodology targeting

low-quality
but robust

expected control cost

high-quality

e and robust

solution

worst-case control cost

Fig. 1. The expected and worst-case control performance and the corre-
sponding regions

only the worst-case control cost as its main optimization
objective may end up in the yellow region and with a low-
quality, but robust, design solution. Therefore, while it is
important to guarantee that the system remains stable even
in the worst-case scenario, such metrics should not be used as
optimization objective. This is essentially because the worst-
case scenario does not capture the overall behavior of the
system and often involves significant amount of pessimism. A
design methodology driven merely by the worst-case scenarios
is over-provisioning, since the design solutions are tuned to the
worst-case scenario, which does not capture the most probable
scenarios.

A correct design methodology is devised towards the ma-
jority of cases, while also taking into consideration the worst-
case scenario. In the case of embedded control systems,
such a design methodology optimizes the expected control
performance, while also ensuring the worst-case stability, and
finds solutions in the green region.

Let us assume each plant is modeled by a continuous-time
system of equations [2]

T; = Az + Biu; + v, 0
y; = Cix; + e,

where x; and u; are the plant state and control signal, respec-
tively. The additive plant disturbance v; is a continuous-time
white-noise process with zero mean and a given covariance
matrix. The plant output is denoted by y,; and is sampled
periodically with some delays at discrete time instants—the
measurement noise e; is a discrete-time Gaussian white-noise
process with zero mean and a given covariance. The control
signal u; will be updated periodically, according to the control
law, with some delays at discrete time instants and is held
constant between two updates by a hold-circuit in the actuator.
The control law determines the control input u; for the plant
state ;.

We shall now elaborate on the metrics to quantify the
expected and worst-case control performance.

A. Expected Control Performance

We quantify the expected control performance of a system
using a standard quadratic cost function [2]

1 (77 2 17 .
Ji:TlgI;oT/o [ul} Qi[ui

Here, the positive semi-definite weight matrix (); is given by
the designer and captures the relative importance of plants
states and control signals. Having the sensor—actuator delay
distribution, we use the Jitterbug toolbox [4} |14]] to compute
the expected control cost.

While appropriate as a metric for the average quality of con-
trol, the above cost function cannot provide a hard guarantee
of stability in the worst case. Using Jitterbug, the stability
of a plant can be analyzed in the mean-square sense if all
time-varying delays are assumed to be independent stochastic
variables. However, by their nature, task and message delays
do not behave as independent stochastic variables. Therefore,
the stability results based on the above quadratic cost are not
valid as worst-case guarantees.

} dt 2)

B. Worst-Case Stability

We quantify the worst-case control performance of a system
by computing an upper bound on the worst-case gain from the
plant disturbance d to the plant output y. The plant output is
then guaranteed to be bounded by

lyll < Tl

If J}¥ = oo, then stability of the system cannot be guaranteed.
A smaller value of J;" implies a higher degree of robustness.
The worst-case control cost J;¥ is computed by the Jitter
Margin toolbox [3]] and depends on the plant model P;, the
control application A; with associated control law, sampling
period h;, the nominal sensor—actuator (input—output) latency
L;, the worst-case sensor (input) jitter A;s, and the worst-
case actuator (output) jitter A;,. The nominal sensor—actuator
latency and worst-case sensor and actuator jitters are computed
using response-time analysis.

While appropriate as a metric for the worst-case stability, the
above metric cannot capture the overall control performance
of the system. This is because the worst-case stability is cal-
culated based on the extreme values of the delay experienced
by a control application. Therefore, the above metric does not
capture the expected control performance.

III. TIMING INTERFACES
A. Delay Distribution

Delay distribution is the timing interface between real-
time scheduling and control performance. Essentially, delay
distribution captures the frequency of the delays experienced
by a control task. That is, the expected control performance
is calculated based on the the entire delay distribution, and
not only the extreme values. This indicates that the expected
control performance captures the overall performance of the
systems and the quality of control.

Delay distribution, however, does not capture the order
and dependencies among the delays experienced by control
applications. Therefore, delay distribution cannot be used for
guaranteeing safety in the worst-case scenario. Nevertheless,
due to its richness and simplicity, delay distribution is one
of the most extensively-used timing interfaces for (expected)
quality assessment. To obtain the delay distribution experi-
enced by each controller, we perform an event-driven system
simulation (see Section [VI).

B. Latency-Jitter

The latency—jitter interface is a considerably less expres-
sive timing interface compared to the delay distribution. The
latency—jitter interface abstracts the exact delay patterns by
considering only the extreme values. Note that the latency—
jitter interface captures very little about the distribution of the
delay. Therefore, it is not an appropriate metric for measuring
the expected control quality. In other words, similar values
of latency and jitter might lead to completely different control
qualities, depending on the actual delay distribution. However,
to provide hard stability guarantees, we have to consider the
worst-case scenario and this interface is simple enough to
capture sufficient conditions for stability.

In order to compute the worst-case control performance, we
shall compute the nominal sensor—actuator latency L;, worst-
case sensor jitter A;,, and worst-case actuator jitter A;, for
each control application A; as follows,

Ais = R:vs - R}z?s’
Aia =R}, — Rb 3
ia ia (3)

b b
I R, + R\ (R, + R
(2 2 2 b

where RY, and RP denote the worst-case and best-case
response times for the sensor task 7, of the control application
A, respectively. Analogously, RY, and R, are the worst-case
and best-case response times for the actuator task 7;, of the
same control application A;. We perform worst-case and best-

case response-time analysis [15] to obtain RY,, R, RY , and

182 18° 1a’
R?
1a°

IV. CONTROL-SCHEDULING CO-DESIGN

The design of embedded control systems running on shared
platforms comprises two main processes: control synthesis
and real-time scheduling. Traditionally, the controllers were
first designed by the control engineers and, only then, could
the computer engineers schedule these controllers on shared
platforms. This design technique, however, leads to subopti-
mal design solutions, essentially because the interdependency
between control synthesis and real-time scheduling has been
ignored. In other words, the decisions made in one of these
processes, to a great extent, determines and limits the possible
choices in the other process.

To address the shortcomings of the traditional techniques,
there is a need for a co-design methodology to consider the

control synthesis and real-time scheduling processes in an inte-
grated fashion. We shall now elaborate on the interdependency
between control synthesis and real-time scheduling.

Given a control plant and the performance and stability
requirements, let us identify the space of all stable solutions
(or solutions with certain performance requirements) for the
control synthesis problem. This design solution space, where
the stability (and performance) requirements are satisfied for
the given plant, has four abstract dimensionsﬂ

o control law: determines the control signals that can be
applied to the plant.

o execution pattern: determines when and how often a
controller executes.

« execution-time profile: determines how long one execu-
tion of a controller takes.

o delay profile: determines the characteristics of the delay
experienced by a controller.

Let us imagine the space of all possible design solutions that
satisfy the stability (and performance) requirements for the
given plant, in this four dimensional space. Each stable design
solution is identified by a control law, an execution pattern,
an execution-time profile, and a delay profile in this abstract
space.

Similarly, given the number of tasks, let us identify the
space of all schedulable solutions for the real-time scheduling
problem. In abstract terms, this design solution space, where
the schedulability requirements are satisfied for the given
number of tasks, has three abstract dimensions:

« execution pattern: determines when and how often a task
executes.

o execution-time profile: determines how long one execu-
tion of a task takes.

« delay profile: determines the characteristics of the delay
that is experienced by each task.

Let us imagine the space of all possible design solutions that
satisfy the schedulability requirements for the given task set,
in this three dimensional space. Each schedulableﬁ design
solution is identified by an execution pattern, an execution-
time profile, and a delay profile in this abstract space.

A valid control-scheduling solution should be both in the
space of stable solutions and in the space of schedulable
solutions. Note that the space of stable solutions and the space
of schedulable solutions have three dimensions in common.
Therefore, a valid design solution should be in the intersection
of these two spaces.

Let us now focus on a simplified case with only the execu-
tion patterns and delay profiles, for the sake of presentation.
Figure [2] shows the space of stable solutions (in yellow),
determined by the control synthesis constraints, and also the

!Indeed, the actual dimensionality of the search space is much larger than
what is explained here. For the simplicity of presentation, here, we assume
control laws, execution patterns, execution-time profiles, and delay profiles
can each be captured in one dimension.

2A schedulable design solution is a design solution in which all instances
of all tasks have finite response times. This schedulability definition is tailored
to the case of control applications, which do not enforce hard deadlines [16].

delay patterns

stable

L
C

execution patterns

Fig. 2. The intersection of the design space for stable solutions (determined
by the control synthesis process) and the design space for schedulable
solutions (determined by real-time scheduling process)

space of the schedulable solutions (in red), determined by
the real-time scheduling constraints. The intersection, shown
in orange, identifies the space of all stable and schedulable
solutions.

Inevitably, fixing one of the dimensions, e.g., the execu-
tion pattern, reduces the space of all valid design solutions
drastically. This scenario is also shown in Figure [2 where
the execution pattern is considered to be fixed. The solid
black line (the intersection of stable and schedulable space
with the fixed execution patten) depicts the space of stable
and schedulable delay profiles that can be explored in the
search space. This search space (solid black line) is, therefore,
substantially smaller than the original space of stable and
schedulable solutions (shown in orange). Clearly, limiting the
design space exploration to the space covered by the solid
black line may lead to suboptimal design solutions. This
is essentially the drawback with the traditional techniques
based on the principle of separation of concerns. In traditional
approaches, the control law and execution-time profile are
fixed by the control engineers, leaving only the space of
execution patterns and delay profiles for design exploration
by the computer engineers.

In summary, the interdependency between control synthe-
sis and task scheduling motivates the need for a co-design
methodology. The traditional approaches treat these two pro-
cesses separately and often obtain suboptimal solutions.

V. PROBLEM FORMULATION

Given a set of plants P, the goal is to determine the
scheduling and control parameters, having the expected control
performance as the optimization objective, while guaranteeing
stability and robustness requirements. Hence, the optimization
problem is formulated as:

min Z w;Jy
p;eP “4)
s.t. JY < J¥, VP €P,

where the weights w; are determined by the designer. To
guarantee stability, the worst-case control cost J;" must have

a finite value. However, in addition to worst-case stability,
the designer may require an application to satisfy a certain
degree of robustness in the worst case (J¥). If the worst-case
requirement for an application A; is only to be stable, the
constraint on the worst-case control cost J;" is to be finite. The
optimization parameters are the controllers, and scheduling
parameters (e.g., the sampling period and the priority) for each
control application.

VI. DESIGN OF EMBEDDED CONTROL SYSTEMS

The overall flow of our design methodology [17, |18]
is shown in Figure 3] Given the plant model and system
specification, in each iteration, each control application is
assigned new real-time parameters, e.g., sampling periods. We
consider the coordinate and direct search methods [[19] from
the class of derivative-free optimization technique, where the
derivative of the objective function is not available or it is
time consuming to obtain. These methods are desirable for
our optimization since the objective function is the result of
an inside optimization loop (i.e., the objective function is not
available explicitly) and it is time consuming to approximate
the gradient of the objective function using finite differences.
This search method, iteratively, assigns shorter periods to con-
trollers which violate their worst-case robustness requirements
or provide poor expected control performance since shorter
period often leads to better control performance.

For a certain real-time parameter assignment, we shall now
proceed with control synthesis. For a given sampling period
and a given, constant sensor—actuator delay (i.e., the time
between sampling the plant output and updating the controlled
input), it is possible to find the control-law that minimizes
the expected cost J; [2]. Thus, the optimal controller can be
designed if the delay is considered constant at each execution
(for each instance) of the control application. Since the overall
performance of the system is determined by the expected
control performance, the controllers should be designed for
the expected average behavior of the system. Therefore, we
design the Linear-Quadratic-Gaussian (LQG) controllers to
compensate for the expected sensor—actuator delay, using
MATLAB and the Jitterbug toolbox [14].

In order to compute the worst-case control performance,
we shall first compute the nominal sensor—actuator latency
L;, worst-case sensor jitter A;s, and worst-case actuator jitter
A;, for each control application A;. Towards this, we shall
first perform response-time analysis to obtain the best-case
and worst-case response times for sensor and actuator tasks.
Then, we proceed with computing the latency and jitter values,
based on Equation (3) in Section [[TI-B

Having computed the latency and jitter values, we shall
now check if all control applications are guaranteed to be
stable, even in the worst-case scenarios, using the Jitter Margin
toolbox [3]. If any of the control applications is unstable with
the given real-time parameters and synthesized controllers (see
the “Stable?” block), then we shall explore (inner loop in Fig-
ure E]) new real-time parameters; otherwise, we proceed with

plant model &
system specification

real-time scheduling
v

real-time parameters

[event-driven simulation |

delay distribution

control synthesis

controllers

i

| latency & jitter analysis |

latency & jitter

stability analysis

i

staple? —10—
yes
performance analysis
L stop?
yyes

controllers &
schedule parameters

Fig. 3. Overall flow of our embedded control systems design methodology

computing the expected control performance which captures
the overall performance of the system.

As explained above, each controller is designed for a con-
stant (expected) sensor—actuator delay. However, the sensor—
actuator delay is, in reality, not constant at runtime due to
interference from other applications competing for the shared
resources. The quality of the constructed controller is degraded
if the sensor—actuator delay distribution is different from the
constant one assumed during the control-law synthesis. For
the given real-time parameter assignment, we proceed with
an event-driven system simulation to obtain the distribution
of the delay experienced by each controller. Having found the
sensor—actuator delay distribution for each control application,
it is now possible to use the Jitterbug toolbox [4, |[14] to
compute the expected control cost. The optimization (outer
loop in Figure [3) terminates (see the “Stop?” block) once the
search method cannot find a higher quality design solution in
several consecutive iterations.

VII. EXPERIMENTAL EVALUATION

To support the previous discussions, we compare our pro-
posed methodology, which optimizes the expected control
performance while providing stability guarantees, against three
other techniques (see Table [I| for the results). We consider
125 benchmarks with varying number of plants, from 2
to 15. The plants are taken from a database with inverted
pendulums, ball and beam processes, DC servos, and harmonic

oscillators [2]. Such benchmarks are representative of realistic
control problems and are used extensively for experimental
evaluations.

As for the first comparison, we run the same algorithm as
our proposed approach, however, it terminates as soon as it
finds a stable design solution. Therefore, this approach, called
NO_OPT, does not involve any performance optimization
but guarantees worst-case stability. We calculate the relative
expected control cost improvements M, where
JExp_wst and Jyg opr are the expected control Costs produced
by our approach and the NO_OPT approach, respectively. Our
proposed approach produces solutions with guaranteed stabil-
ity and an overall control quality improvement of 53 &+ 11%
on average, compared to an approach which only guarantees
worst-case stability and does not involve any expected control
performance optimization.

The second comparison is made with an optimization ap-
proach driven by the worst-case control performance. The
approach, called WST, is exactly the same as our approach
but the objective function to be optimized is the worst-
case control cost. Similar to the previous experiment, we are
interested in the relative expected control cost improvements
M where Jy,¢r is the expected control cost of the
final sojiutlon obtained by the WST approach. Our proposed
approach, while still guarantees worst-case stability, has an
average improvement of 26 + 9% in terms of the expected
control cost, compared to an approach driven by the worst-
case control performance.

The third comparison is performed against an optimization
approach, called EXP, which only takes into consideration the
expected control performance. Since the worst-case control
performance constraints are ignored, the search space is larger,
and the algorithm should be able to find a superior design
solution in terms of the expected control performance. The
comparison has been made considering the relative expected
control cost difference w where Jgyp is the ex-
pected control cost of the final Solution found by the EXP ap-
proach. Since the worst-case control performance constraints
are relaxed, the final solution of this approach can turn out to
be unstable. Therefore, in addition to the relative expected
control cost comparison, we also report the percentage of
designs produced by the EXP approach for which the worst-
case stability cannot be guaranteed. The first observation is
that, on average, for 44+13% of the benchmarks this algorithm
ended up with a design solution for which the stability could
not be guaranteed. The second observation is that our approach
is on average —2.3+3.7% away from the relaxed optimization
approach exclusively guided by expected control performance.
This states that we are able to guarantee worst-case stability
with a very small loss on expected control quality.

Finally, we measure the runtime of our proposed approach
on a PC with a quad-core CPU running at 2.83 GHz with 8 GB
of RAM and Linux operating system. The expected runtime
of our approach is 182 + 138 seconds. For large systems (15
control applications), our approach could find a high-quality

TABLE I
EXPERIMENTAL RESULTS: COMPARISON AGAINST NO_OPT, WST, EXP.

NO_OPT WST EXP
Improvement (%) Improvement (%) Difference (%) | Invalid (%)
Mean (1 + o) 53 £ 11% 26 £ 9% —2.3£37% | 44E13%

stable design solution in less than 7 minutes, while it takes
178 minutes for the EXP approach, which is based on a
genetic algorithm similar to [20], to terminate. This includes
real-time parameters optimization, control synthesis and delay
compensation, latency and jitter analysis based on real-time
response-time analysis, worst-case stability analysis using the
Jitter Margin toolbox, event-driven system simulation, and
expected control performance analysis using the Jitterbug
toolbox.

VIII. CONCLUSIONS

In this paper, we highlight the importance of taking im-
plementation aspects into consideration during the design of
embedded control systems. Ignoring these implementation
details leads to over-provisioned, low-quality, or unstable
design solutions. We further illustrate that a correct design
methodology targets the expected control performance as its
main objective, while also guaranteeing worst-case stability.
Finally, based on these principles, we propose a methodology
for implementation-aware design of high-quality and stable
embedded control systems on shared platforms.

ACKNOWLEDGMENTS

This research has been partially supported by the Swedish
national strategic research area (project eLLIIT), the Swedish
Research Council, the Hasler Foundation (project no. 15048),
the ONR-G through the Award Grant No. N62909-17-1-2006,
and the BodyPoweredSenSE (grant no. 20NA21-143069) RTD
project evaluated by the Swiss NSF and funded by Nano-
Tera.ch with Swiss Confederation financing.

REFERENCES

[1] M. Di Natale and A. L. Sangiovanni-Vincentelli. “Moving From
Federated to Integrated Architectures in Automotive: The Role of
Standards, Methods and Tools”. In: Proceedings of the IEEE 98.4
(2010), pp. 603-620.

[2] Karl-Johan Astrom and Bjérn Wittenmark. Computer-Controlled Sys-
tems. 3rd ed. Prentice Hall, 1997.

[3] Anton Cervin. “Stability and Worst-Case Performance Analysis of
Sampled-Data Control Systems with Input and Output Jitter”. In:
Proceedings of the 2012 American Control Conference (ACC). 2012.

[4] Anton Cervin, Dan Henriksson, Bo Lincoln, Johan Eker, and Karl Erik
Arzén. “How Does Control Timing Affect Performance? Analysis and
Simulation of Timing Using Jitterbug and TrueTime”. In: IEEE Control
Systems Magazine 23.3 (2003), pp. 16-30.

[5] Bjorn Wittenmark, Johan Nilsson, and Martin Torngren. “Timing
Problems in Real-Time Control Systems”. In: Proceedings of the
American Control Conference. 1995, pp. 2000-2004.

[6] K. E. Arzén, A. Cervin, J. Eker, and L. Sha. “An Introduction to
Control and Scheduling Co-Design”. In: Proceedings of the 39" IEEE
Conference on Decision and Control. 2000, pp. 4865-4870.

[71 D. Seto, J. P. Lehoczky, L. Sha, and K. G. Shin. “On Task Schedu-
lability in Real-Time Control Systems”. In: Proceedings of the 17™
IEEE Real-Time Systems Symposium. 1996, pp. 13-21.

[8] E. Bini and A. Cervin. “Delay-Aware Period Assignment in Control
Systems”. In: Proceedings of the 29" IEEE Real-Time Systems Sym-
posium. 2008, pp. 291-300.

[9] Fumin Zhang, Klementyna Szwaykowska, Wayne Wolf, and Vincent

Mooney. “Task Scheduling for Control Oriented Requirements for

Cyber-Physical Systems”. In: Proceedings of the 29" IEEE Real-Time

Systems Symposium. 2008, pp. 47-56.

Pratyush Kumar et al. “A Hybrid Approach to Cyber-Physical Systems

Verification”. In: Proceedings of the 49" Design Automation Confer-

ence. 2012.

H. Rehbinder and M. Sanfridson. “Integration of Off-Line Scheduling

and Optimal Control”. In: Proceedings of the 12" Euromicro Confer-

ence on Real-Time Systems. 2000, pp. 137-143.

Dip Goswami, Martin Lukasiewycz, Reinhard Schneider, and Samarjit

Chakraborty. “Time-Triggered Implementations of Mixed-Criticality

Automotive Software”. In: Proceedings of the 15" Conference for

Design, Automation and Test in Europe (DATE). 2012.

Michael Eisenring, Lothar Thiele, and Eckart Zitzler. “Conflicting

criteria in embedded system design”. In: IEEE Design & Test of

Computers 17.2 (2000), pp. 51-59.

B. Lincoln and A. Cervin. “Jitterbug: A Tool for Analysis of Real-Time

Control Performance”. In: Proceedings of the 415" IEEE Conference

on Decision and Control. 2002, pp. 1319-1324.

Samarjit Chakraborty, Simon Kiinzli, and Lothar Thiele. “A General

Framework for Analysing System Properties in Platform-Based Em-

bedded System Designs.” In: DATE. Vol. 3. 2003.

Amir Aminifar. “Analysis, Design, and Optimization of Embedded

Control Systems”. PhD thesis. Linkoping Studies in Science and

Technology, 2016.

Amir Aminifar, Soheil Samii, Petru Eles, Zebo Peng, and Anton

Cervin. “Designing High-Quality Embedded Control Systems with

Guaranteed Stability”. In: Proceedings of the 33" IEEE Real-Time

Systems Symposium (RTSS). 2012.

Amir Aminifar, Petru Eles, Zebo Peng, and Anton Cervin. “Control-

quality driven design of cyber-physical systems with robustness guar-

antees”. In: Proceedings of the 16" Conference for Design, Automation

and Test in Europe (DATE). 2013.

J. Nocedal and S.J. Wright. Numerical Optimization. 2nd ed. Springer,

1999.

S. Samii, A. Cervin, P. Eles, and Z. Peng. “Integrated Scheduling and

Synthesis of Control Applications on Distributed Embedded Systems”.

In: Proceedings of the Design, Automation and Test in Europe Con-

ference. 2009, pp. 57-62.

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

Amir Aminifar received his PhD from the Swedish National Computer
Science Graduate School (CUGS), Linkoping University, Sweden, in 2016.
He is currently a research scientist at the Embedded Systems Laboratory of
Swiss Federal Institute of Technology Lausanne (EPFL). His current research
interests are centered around embedded and cyber-physical systems.

Petru Eles is Professor of Embedded Computer Systems with the Department
of Computer and Information Science (IDA), Linkoping University. He
received his PhD in Computer Science, Politehnica University Bucharest.
Petru Eles’ current research interests include embedded systems, real-time
systems, electronic design automation.

Zebo Peng is a Professor of Computer Systems, Director of the Embedded
Systems Laboratory, and Vice-Chairman of the Department of Computer and
Information Science at Linkping University. He has published more than 350
technical papers and five books in various topics related to embedded and
cyber-physical systems.

Anton Cervin received his PhD in Automatic Control in 2003. He is currently
an associate professor at Lund University, Sweden, where he does research on
event-based control, autonomous systems, real-time systems, and controller-
scheduling co-design.

Karl-Erik Arzén received his PhD in Automatic Control from Lund Uni-
versity in 1987. Since 2000 he is Professor in Automatic Control at Lund
University. He is co-director for the Wallenberg Autonomous Systems and
Software Program (WASP), a member of IEEE and of the Swedish Academy
of Engineering Sciences. His research interests are control of computer
systems, cloud computing, and embedded real-time control.

	Introduction
	Control-Quality versus Stability
	Expected Control Performance
	Worst-Case Stability

	Timing Interfaces
	Delay Distribution
	Latency–Jitter

	Control–Scheduling Co-Design
	Problem Formulation
	Design of Embedded Control Systems
	Experimental Evaluation
	Conclusions
	Biographies
	Amir Aminifar
	Petru Eles
	Zebo Peng
	Anton Cervin
	Karl-Erik Årzén

