Journal article

An Inexact Ultra-low Power Bio-signal Processing Architecture With Lightweight Error Recovery

The energy efficiency of digital architectures is tightly linked to the voltage level (Vdd) at which they operate. Aggressive voltage scaling is therefore mandatory when ultra-low power processing is required. Nonetheless, the lowest admissible Vdd is often bounded by reliability concerns, especially since static and dynamic non-idealities are exacerbated in the near-threshold region, imposing costly guard-bands to guarantee correctness under worst-case conditions. A striking alternative, explored in this paper, waives the requirement for unconditional correctness, undergoing more relaxed constraints. First, after a run-time failure, processing correctly resumes at a later point in time. Second, failures induce a limited Quality-of-Service (QoS) degradation. We focus our investigation on the practical scenario of embedded bio-signal analysis, a domain in which energy efficiency is key, while applications are inherently error-tolerant to a certain degree. Targeting a domain-specific multi-core platform, we present a study of the impact of inexactness on application-visible errors. Then, we introduce a novel methodology to manage them, which requires minimal hardware resources and a negligible energy overhead. Experimental evidence show that, by tolerating 900 errors/hour, the resulting inexact platform can achieve an efficiency increase of up to 24%, with a QoS degradation of less than 3%.

Related material