BREAKING THE FF3 FORMAT
PRESERVING ENCRYPTION*

F. Betül Durak1 and Serge Vaudenay2

1 Rutgers University
Department of Computer Science
fbdurak@cs.rutgers.edu
2 Ecole Polytechnique Fédérale de Lausanne (EPFL)
LASEC - Security and Cryptography Laboratory
Lausanne, Switzerland
serge.vaudenay@epfl.ch

Abstract. The NIST standard FF3 scheme (also known as BPS scheme) is a tweakable block cipher based on a 8-round Feistel Network. We break it with a practical attack. Our attack exploits the bad domain separation in FF3 design. The attack works with chosen plaintexts and tweaks when the message domain is small. Our FF3 attack requires $O(N^\frac{11}{6})$ chosen plaintexts with time complexity N^5, where N^2 is domain size to the Feistel Network.

Due to the bad domain separation in 8-round FF3, we reduced the FF3 attack to an attack on 4-round Feistel Networks. In our generic attack, we reconstruct the entire codebook of 4-round Feistel Network with $N^2 (\frac{N^2}{2})^\ell$ known plaintexts and time complexity N^4.

1 Introduction

Encryption schemes provide a handy tool to data owners to protect their data privacy when stored on untrusted servers or transmitted over insecure channels. The design of encryption schemes often shaped by the desired properties of data that keeps it functional, secure, or computable on. The standard block cipher designs such as AES aim to build schemes from 128-bit strings to 128-bit strings. For an arbitrary length ℓ, modes of operation is a way to encrypt ℓ-bit strings into ℓ-bit string for arbitrary values of ℓ. When the goal of encryption scheme is to preserve the format of the data in ciphertexts (i.e. the data not necessarily binary and large but instead decimal and small), we need a cipher design that encrypts the data into the same format as itself. This is called Format Preserving Encryption [7, 10] and evolved as a most useful tool in applied cryptography.

Format Preserving Encryption (FPE) schemes encrypt a message into a ciphertext by providing its format such as a valid credit card number (CCN) into a valid CCN or a valid social security number (SSN) into a valid SSN. Thus,

* Short Version
FPE provides a way to store the data without changing the database scheme or application software that runs on a specific data format.

Ideally, FPE constructions should not be format specific for different types of formats. In particular, the task of FPE scheme can be reduced to design an FPE for an integral domain as it allows to apply the exact encryption to all other formats. Therefore, the cheap way to build an FPE scheme is to construct an easy to compute 1-to-1 mapping from message domain to itself which is a power of a basis (such as 2^L or N^2). More precisely, we desire to encrypt on $\mathbb{Z}_{N_l} \times \mathbb{Z}_{N_r}$ with $N_l \approx N_r$.\(^3\)

The National Institute of Standards and Technology (NIST) published an FPE standard [1] (finalized in March 2016) that includes two-approved Feistel-based FPE: FF1 [4] and FF3 [6]. Both FF1 and FF3 standards are tweakable Feistel schemes with modular addition. FF1 is standardized with round numbers 10 whereas FF3 is standardized with 8 rounds.

In this work, we are particularly interested in the attacks for breaking the FN-based standard FF3 [1] and attacks against Feistel Network. The former attack utilizes the latter that is designed as a generic round function recovery attack. In FF3, a tweak XORed with a round counter is used as an input to the block cipher. A tweak is a public information and can be controlled by the adversary. The XOR operation guarantees that round functions are pairwise different. This is usually called “domain separation”. The security of FF3 asserts that it achieves several cryptographic goals including chosen-plaintext security or even PRP-security against an adaptive chosen-ciphertext attack under the assumption that the underlying round function is a good pseudorandom function (PRF). Our work shows that its security goal has not met even when the round functions are replaced by secure PRFs and gives a round function recovery attack on FF3.

Overview Of Previous Work: A security for message recovery in FPE constructions along with many other notions for FPE was first defined by Bellare et. al. [3]. A recent work by Bellare et. al. [2] gives a practical message recovery attack on NIST standard Feistel-based FPE (both FF1 and FF3) on small domain sizes. In this work, however, the security definition they consider is under the new message recovery security that they define in the same work. The attack by Bellare et. al. in [2] works using $O(N^5 \log N)$ data and time complexity with many tweaks on 8 rounds. This is quite interesting when the amount of data is limited for each tweak. It is a decryption attack. Our attack herein is more traditional. It uses only two tweaks, but $O(N^{11/6})$ chosen plaintexts with $O(N^5)$ time complexity. We recover the entire codebook (for both tweaks).

Since its invention, Feistel Networks have created active research areas for cryptographers (both in theory and in practice). The security of Feistel schemes aims to either distinguish a Feistel scheme from a random permutation or to recover the round functions. In their famous work [8], Luby and Rackoff proved

\(^3\) When the ranking is to a domain the size of which is not exactly a product $N_l \times N_r$, we can use additional techniques such as shuffling (random walk in a graph) in a slightly larger domain.
the indistinguishability of Feistel Networks for 3-rounds against chosen plaintext attack and 4-rounds against chosen plaintext and ciphertext attacks for the number of queries \(q < \sqrt{2^n} \), where \(2n \) is the input length. The directions derived from this result tried to improve the security bounds until \(q < 2^n \) (that is called the “birthday bound”). A work by Patarin [9], using the mirror theory, showed improved proofs and stronger security bounds for 4, 5, and 6 rounds Feistel Networks. Namely, for \(q < 2^n \), 4 rounds are secure against known plaintext attacks, 5 rounds are secure against chosen plaintext attacks, and 6 rounds are secure against chosen plaintext and ciphertext attacks.

From an information theory viewpoint, we could recover all functions in time \(2^{O(n2n)} \) by exhaustive search. Our attack uses \(q \sim 2^{3n} \) and is polynomial in \(2^n \) with known plaintexts up to 4 rounds.

2 Known Plaintext Round Function Recovery Attack on Feistel Scheme

In a recent work by Biryukov et. al. [5], the new cryptanalysis results against Feistel Networks with modular addition for 4 and 5 rounds are presented. For 4 rounds, they achieve the full recovery of round functions with data complexity \(O(2^{3n}) \) with a guess and determine technique, where \(2n \) is defined as message length. They use chosen plaintexts and ciphertexts. We summarize their results and ours on Table 1.

<table>
<thead>
<tr>
<th># rounds</th>
<th>mode</th>
<th>time</th>
<th>data</th>
<th>ref</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>known plaintext</td>
<td>(2^n)</td>
<td>(2^n)</td>
<td>Section 2.1</td>
</tr>
<tr>
<td>4</td>
<td>chosen plaintext and ciphertext</td>
<td>(2^{3n/2})</td>
<td>(2^{3n/2})</td>
<td>[5]</td>
</tr>
<tr>
<td>4</td>
<td>known plaintext</td>
<td>(2^{3n})</td>
<td>(2^{3n})</td>
<td>Section 2.2</td>
</tr>
<tr>
<td>5</td>
<td>chosen plaintext and ciphertext</td>
<td>(2^{2n^{n/4}})</td>
<td>(2^{2n})</td>
<td>[5]</td>
</tr>
<tr>
<td>5</td>
<td>chosen plaintext</td>
<td>(2^{O(n2^{2n/2})})</td>
<td>(2^{3n/2})</td>
<td>Section 2.2</td>
</tr>
<tr>
<td>(r \geq 6)</td>
<td>chosen plaintext</td>
<td>(2^{(r-5)n2^n})</td>
<td>(2^{3n/2})</td>
<td>Section 2.2</td>
</tr>
</tbody>
</table>

Table 1. Round function recovery attacks against balanced Feistel schemes with two \(n \)-bit branches and any addition rule (we omitted polynomial terms in \(n \)).

2.1 Round Function Recovery on 3-Round Feistel Scheme

Consider a 3-round Feistel Scheme with three round functions \(F_0, F_1, F_2 \) and modular addition. Given \(x \) and \(y \) in \(\mathcal{X} \), we define:

\[
\begin{align*}
 c &= x + F_0(y) \\
 t &= y + F_1(c) \\
 z &= c + F_2(t)
\end{align*}
\]
A 3-round Feistel scheme with \((F_0, F_1, F_2)\) for an input \((xy)\) will output the same pair \((zt)\) to a 3-round Feistel scheme with round functions \((F_0−\delta, F'_1, F_2+\delta)\) for the input \((xy)\) with \(F'_1(c) = F_1(c + \delta)\). This allows us to fix \(F_0\) on one point arbitrarily (i.e. we can reconstruct \(F_0\) up to a constant \(\delta\)). The idea of our attack is to concentrate on data for which we know how to evaluate \(F_0\) so that we can deduce the output for the round function \(F_2\). Then, we concentrate on data for which we know how to evaluate \(F_2\) and we deduce more points in \(F_0\). We continue by alternating the deduction between \(F_0\) and \(F_2\) until we recover them all. When we continue iterating as described, we can fully recover the tables for all three round functions \((F_0, F_1, F_2)\). Our attack presented in Algorithm 1 in more detail.

Algorithm 1: \((F_0, F_1, F_2)\) Recovery Attack

- **Input**: a set \(S\) of tuples \((xyzt)\) of size \(\theta N\).
- 1. Take a subset \(S_1 \subseteq S\) of size \(\theta\) such that \(y\) is constant in \(S_1\).
- 2. Fix \(F_0(y) = 0\) arbitrarily and make a 2-round attack to deduce \(\theta\) tuples \((c, y, z, t)\). Notice that when \(F_0(y) = 0\), \(c = x\). Since \(c = x\), we collect \(\theta\) equations of the form \(F_2(t) = z − c\).
- 3. Take the subset \(S_2 \subseteq S\) of all \((xyzt)\) \(\in S\) such that \(\exists (x'y'z't') \in S_1\) with \(t = t'\). The expected size of \(S_2\) is \(\theta^2\).
- 4. Using the \(\theta\) equations \(F_2(t) = z − c\), we deduce \(\theta^2\) tuples \((xyzt)\). From these tuples, we obtain \(\theta^2\) equations of the form \(F_0(y) = c − x\).
- 5. Take the subset \(S_3 \subseteq S\) of all \((xyzt)\) \(\in S\) such that \(\exists (x'y'z't') \in S_2\) with \(y = y'\). The expected size of \(S_3\) is \(\theta^3\).
- 6. Using the \(\theta^2\) equations \(F_0(y) = c − x\) we obtained from \(S_2\), we collect \(\theta^3\) equations \(F_2(t)\) in \(S_3\).
- 7. Play yo-yo until nothing new is recovered.

Output: (partial) tables for \(F_0F_1F_2\)

We model our set \(S\) as a bipartite graph with two parties of \(N\) vertices (one for the \(y\)'s and the other for the \(t\)'s) and edges for each \((y, t)\) pair in tuples from \(S\). What our algorithm does is just looking for a connected component of a random starting point \(y\) with complexity \(O(\theta N)\). Following the theory of random graphs, we have \(\theta N\) random edges so that the graph is likely to be fully connected when \(\theta \approx \ln(N)\). For a constant \(\theta \geq 1\), it is likely to have a giant connected component. This component corresponds to a constant fraction of the tables of \(F_0\) and \(F_2\). Therefore, after \(\log_\theta N\) iterations, we can reconstruct \(F_0\) and \(F_2\) which allow us to reconstruct \(F_1\). For any \(y\), we can see that it does not appear in \(S\) with probability \((1 − 1/N)^\theta N \approx 1 − e^{-\theta}\). Thus, we can only hope to recover a fraction \(1 − e^{-\theta}\) of the table of \(F_0\). The same holds for \(F_1\) and \(F_2\). When we set \(\theta = 2\), we need \(2N\) tuples to apply this attack on 3-round Feistel Scheme.

2.2 Round Function Recovery on 4-Round Feistel Scheme

Consider a 4-round Feistel scheme with round functions \(F_0, F_1, F_2, F_3\). Given \(x\) and \(y\) in \(X\), we define the following equations (See Fig. 1 (a)):
\[c = x + F_0(y) \]
\[d = y + F_1(c) \]
\[z = c + F_2(d) \]
\[t = d + F_3(z) \]

Assume that we collected \(M \) random pairwise different plaintext messages \((x, y)\).

We collect the pairs:

\[V = \{(xyzt, x'y'z't') \mid z' = z, t' - y' = t - y, xy \neq x'y'\} \]

\[V_{\text{good}} = \{(xyzt, x'y'z't') \mid z' = z, c' = c, xy \neq x'y'\} \]

where \(c, d \) (respectively \(c', d' \)) are defined from \((x, y, z, t)\) (respectively form \((x', y', z', t')\)) as above. We define \(\text{Label}(xyzt, x'y'z't') = x - x' \).

![Fig. 1. 4-round Feistel Scheme Attack](image)

We define a directed graph \(G = (V, E) \) with the vertex set \(V \) as defined above. We take \((x_1y_1z_1t_1, x_2y_2z_2t_2) \in E \) if \(y_1' = y_2 \) (i.e. a vertex \(v_1 \) is connected to a vertex \(v_2 \) if the \(y_1' \) in the second message of \(v_1 \) is same as the first message in \(v_2 \)). Furthermore, we let \(E_{\text{good}} = V_{\text{good}}^2 \cap E \) and define the sub-graph \(G_{\text{good}} = (V_{\text{good}}, E_{\text{good}}) \).

We state an important observations in the following Lemma with four properties:

Lemma 1. Given a graph \(G \) with a vertex set \(V \) defined as above:

1. \(V_{\text{good}} \subseteq V \).
2. If \((xy, x'y') \in V_{\text{good}}, \) then \(F_0(y') - F_0(y) = \text{Label}(xy, x'y') \).
3. For all cycles \(v_1v_2...v_Lv_1 \) of \(G_{\text{good}}, \) \(\sum_{i=1}^{L} \text{Label}(v_i) = 0 \).
The principle of our attack is as follows: if we get vertices in V_{good}, the property 2 from Lemma 1 gives equations to characterize F_0. One problem is that we can identify vertices in V, but we cannot tell apart good and bad ones. One way to recognize good vertices is to use property 3 in Lemma 1: to find cycles with zero sum of labels. For this, we will prove in Lemma 3 that this is a characteristic property of good cycles, meaning that all the vertices in these cycles are good vertices.

Lemma 2. For F_0, F_1, F_2, F_3 random, $\mathbb{E}\left(\frac{\#V_{\text{good}}}{\#V}\right) = \frac{1 - \frac{1}{2^L}}{1 - \frac{1}{2^{2L}}} \approx \frac{1}{2}$.

We have the property that for each cycle $v_1v_2...v_Lv_1 \in G$, if $v_1, ..., v_L$ are all in V_{good}, then the sum of Label(v_i) is zero due to Lemma 1, property 3. If one vertex is not good, the sum may be random. This suggests a way to find good vertices in V that is to look for long cycles in G with a zero sum of labels.

Lemma 3. ($L = 2$ case) If $v_1 = (x_1y_1z_1t_1, x_1'y_1'z_1't_1')$ we say that v_1 and v_2 are permuting if $v_2 = (x_1'y_1'z_1't_1', x_1y_1z_1t_1)$. If $v_1v_2v_1$ is a cycle in G with zero sum of labels, and v_1, v_2 are not permuting, then v_1 and v_2 are likely to be good. More precisely, for v_1 and v_2 random, we have

$$\Pr[v_1, v_2 \in V_{\text{good}} | v_1v_2v_1 \text{ is a cycle}, v_1, v_2 \text{ not permuting}, \sum_{i=1}^{L} \text{Label}(v_i) = 0] \geq \frac{1}{1 + \frac{1}{N^{2L}}}.$$

We believe that Lemma 3 remains true for valid cycles of small length except in trivial cases. We extend to $L > 2$ for cycles satisfying some special non-repeating condition $[\neg\text{repeat}]$ on the c and d values to rule out many trivial cases. However, this condition $[\neg\text{repeat}]$ cannot be checked by the adversary. Instead, we could just avoid repetitions of any message throughout the cycle (as repeating messages induce repeating c’s or d’s). We use the following conjecture (which is supported by experiment for $L = 3$).

Conjecture 1. If $v_1v_2...v_Lv_1$ is a random cycle of length L in G with zero sum of labels and the vertices use no messages in common, then $v_1...v_L$ are all good with probability close to 1.

Now, we give the full algorithm of our attack to 4-round Feistel scheme.

Algorithm 2: (F₀,F₁,F₂,F₃) Recovery Attack (Strategy S₂)

1. Input : M known plaintexts and ciphertext pairs ($xyzt$)
2. Create $G = (V, E)$.
3. Collect non-trivial cycles of length L with zero label sum.
4. Deduce $\frac{M^{2L}}{N^2}$ relations $\text{Label}(v_i) = F_0(y') - F_0(y)$
5. Create G' from (y, y') from the collected vertices.
6. Find the largest connected component C in G' (works for $M \geq N^{2L} + \frac{1}{2E}$).
7. Assign one $F_0(y)$ value arbitrarily and deduce F_0 on C.
8. We have $\frac{M}{N} \times \#C$ tuples with known $F_0(y)$
9. Apply 3-round attack on all known $F_0(y)$ (works since $\frac{M}{N} \times \#C > N$)
10. Play a yo-yo game on 4-round FN with the results from 3-round attack.

Output: (partial) tables for $F_0F_1F_2F_3$
Our attack algorithm has two phase transitions. The first phase transition occurs with enough data to be able to make the graph G and find cycles in it. The second phase transition occurs with the bad edges in the collected cycles. If this happens, we must enrich to be able to collect desired vertices. Since there is a sufficient window in between these two phase transitions, our attack breaks the scheme with good probability of success without overcoming the difficulty with the bad edges in the second phase.

In Table 2, we show the experimental results of success probability of the entire attack for a strategy called S_2. Let S_2 be an event. In S_2, we look at the largest connected component and fail unless it has no bad edges in G'. What we report in Table 2 includes the success probability \Pr_{succ} of S_2 and we recover the entire tables for each round function.

<table>
<thead>
<tr>
<th>N</th>
<th>M</th>
<th>#trials</th>
<th>$\Pr[\text{succ}, S_2]$</th>
<th>$\Pr[S_2]$</th>
</tr>
</thead>
<tbody>
<tr>
<td>2^4</td>
<td>9</td>
<td>3864</td>
<td>3.60%</td>
<td>(88.69%)</td>
</tr>
<tr>
<td>2^4</td>
<td>29</td>
<td>5791</td>
<td>29.11%</td>
<td>(78.62%)</td>
</tr>
<tr>
<td>2^4</td>
<td>91</td>
<td>6585</td>
<td>49.83%</td>
<td>(73.27%)</td>
</tr>
<tr>
<td>2^4</td>
<td>288</td>
<td>6814</td>
<td>62.91%</td>
<td>(71.79%)</td>
</tr>
<tr>
<td>2^4</td>
<td>913</td>
<td>6981</td>
<td>73.81%</td>
<td>(77.14%)</td>
</tr>
<tr>
<td>2^5</td>
<td>2897</td>
<td>6609</td>
<td>83.10%</td>
<td>(83.83%)</td>
</tr>
<tr>
<td>2^5</td>
<td>9196</td>
<td>3154</td>
<td>89.22%</td>
<td>(89.38%)</td>
</tr>
<tr>
<td>2^5</td>
<td>29193</td>
<td>212</td>
<td>92.45%</td>
<td>(92.45%)</td>
</tr>
</tbody>
</table>

Table 2. Experiments with $\Pr[S_2]$ and success probability over many trials for $L = 3$ and $M \sim N \frac{2}{3} \left(\frac{N}{2} \right)^{\frac{3}{2}}$

The data complexity of our attack in Algorithm 2 is $M = O(N^{\frac{3}{2}} + \frac{1}{N})$. We compute the time complexity for the algorithm based on the step 1, 2, 3, and 4 since the other steps are much shorter than these steps. The complexity is weighted by Step 2, we have the time complexity of our attack as the complexity of finding cycles in G. The cycles of length L in our graph can be found with multiplication on adjacency matrix (which is sparse). Matrix multiplication can be done in $O(|V|^2 d)$ where $d = 2 \frac{|E|}{|V|}$ is the average degree of a vertex. Therefore the complexity is $O(|V||E|)$. With the Floyd-Warshall algorithm, we need $(L - 1)$ multiplications by the adjacency matrix in the max-plus algebra that leads us to a complexity $O(L|V||E|)$. With $E \sim \frac{|V|^2}{N}$, where $|V| = 2 \frac{M^2}{N^2} = 2^{3 - \frac{1}{2}} N^{1 + \frac{1}{2}}$ and L constant, we have $O\left(\frac{|V|^2}{N^2}\right)$ which is equal to $O(N^{2 + \frac{1}{2}})$.

The 4-round attacks extend to more rounds by doing exhaustive search on the additional round functions. Interestingly, by changing our attack to a chosen plaintext attack, we do not need to run a full exhaustive search on the first round function.
3 Slide Attack on FF3

3.1 The FF3 Scheme

A Tweakable Format Preserving Encryption (TFPE) is a block cipher that preserves the format of domain in the output. A TFPE function \(E : \mathcal{X} \times \mathcal{T} \times \mathcal{X} \rightarrow \mathcal{X} \) is defined from a key space \(\mathcal{K} \), a tweak space \(\mathcal{T} \), and a domain \(\mathcal{X} \) to the same domain \(\mathcal{X} \). We are particularly interested in a TFPE scheme by Brier, Peyrin, and Stern [6] whose design is based on Feistel Network depicted in Fig. 2 (b). It is named as FF3 in the NIST standards.

Fig. 2. 4-round Feistel Network and FF3 Encryption

The FF3 encryption algorithm splits the input \(X \) into two substrings \(L_0 \) and \(R_0 \). For the right half (respectively left half), the algorithm first takes the tweak \(T_R \) (respectively \(T_L \)) XORed with the encoded round index \(i \) and \(R_i \) (respectively \(L_i \)) to input tweakable PRF \(F_K \). Second, it applies modular addition of the output of \(F_K \) to \(L_i \) (respectively \(R_i \)). The mod operation is necessary to make sure the ciphertext stays in the domain to preserve the format. In concrete proposal round functions are AES encryption with 128 bits. [1].

For simplicity and by abuse of notations, we say that FF3 encrypts the plaintext \((L_0, R_0)\) into the ciphertext \((L_w, R_w)\) with tweak \((T_L, T_R)\). We illustrate the 4-round FF3 scheme in Fig. 2 (b).

3.2 FF3 Attack

We develop an attack on FF3 that aims to reconstruct the entire codebook for a challenge tweak for a number of queries which is lower than the size of the brute force codebook attack. The main idea of the designed FF3 attack takes advantage of the flexibility to change the tweak to permute the round functions.

Consider two functions \(G \) and \(H \), where \(G \) is a 4-round Feistel scheme using tweakable block cipher \(F \) with tweaks \((T_R \oplus 0, T_L \oplus 1, T_R \oplus 2, T_L \oplus 3)\) and \(H \) is a 4-round Feistel scheme using tweakable block cipher \(F \) with tweaks \((T_R \oplus 4, T_L \oplus 2)\). [1].
5, \(T_R \oplus 6, T_L \oplus 7 \). In Fig. 3, we show two runs of FF3 encryption with tweak \(T = T_l \| T_r \) in (a) and tweak \(T' = T_l \oplus 4 \| T_r \oplus 4 \) on two distinct plaintext. We observe that \(FF3.\text{Enc}(K, T, \cdot) = H \circ G \) and \(FF3.\text{Enc}(K, T', \cdot) = G \circ H \). With this observation, we desire to form a “cyclic” behavior of plaintext/ciphertext pairs under two FF3 encryption with sliding G and H.

![Diagram](image_url)

(a) FF3 Encryption
(b) Slided Encryption

Fig. 3. FF3 Encryption with Sliding Round Functions

More precisely, we take two parameters \(\alpha \) and \(\beta \) to be optimized and consider two sets of messages of size \(N^\alpha \) picked at random \(X = \{ x_{10}, \ldots, x_{i0}, \ldots, x_{N^\alpha 0} \} \) and \(X' = \{ x_{10}', \ldots, x_{i0}', \ldots, x_{N^\alpha 0}' \} \). For each message \(x_{i0} \) in \(X \), set \(x_{i(i+1)} = \text{Enc}(K, T, x_{ij}) \) with a fixed tweak \(T \in \mathcal{T} \) and a fixed key \(K \in \mathcal{K} \). We repeat the chain encryption of outputs \(N^\beta \) times for each message in \(X \). Let \(X_C \) be the set of chain encryption of elements of \(X \). It is a segment of length \(N^\beta \) of a cycle of \(H \circ G \).

Similarly, for each message \(x_{i0}' \) in \(X' \), set \(x_{i(j+1)'} = \text{Enc}(K, T', x_{ij}') \) with the fixed tweak \(T' \in \mathcal{T} \) under the same key \(K \). Let \(X'_C \) be the set of chain encryption of elements of \(X' \). Apparently, we have \(|X_C| = N^\alpha N^\beta \) and \(|X'_C| = N^\alpha N^\beta \). Given these 2 sets \(X_C \) and \(X'_C \), we attempt to find a collision between \(X_C \) and \(X'_C \) such that \(G(x_{ij}) = x_{i0}' \) or \(G(x_{i0}) = x_{ij}' \) for \(1 \leq i, i' \leq N^\alpha \) and \(1 \leq j, j' \leq N^\beta \). Upon having a table with inputs to \(G \) and \(H \), we can apply the known plaintext recovery attack on 4-round Feistel Networks. The concrete algorithm to collect plaintext/ciphertext pairs is given in Algorithm 3.
Algorithm 3: FF3 Attack

Input : a tweak bit string T such that $|T| = 64$, a key K

1. $T' \leftarrow T_L \oplus 4|T_R \oplus 4$
2. \textbf{foreach} $i = 1 \cdots N^\alpha$ \textbf{do}
3. \hspace{0.5cm} pick x_{i0} and set $x_{ij} = \text{FPE.Enc}^T(x_{i(j-1)})$ for $j = 1, \ldots N^\beta$
4. \hspace{0.5cm} pick x'_{i0} and set $x'_{ij} = \text{FPE.Enc}^{T'}(x_{i(j-1)})$ for $j = 1, \ldots N^\beta$
5. \textbf{end}
6. \textbf{foreach} $i, i' = 1 \cdots N^\alpha$ \textbf{do}
7. \hspace{0.5cm} \textbf{foreach} $j = 0 \cdots N^\beta - M - 1$ \textbf{do}
8. \hspace{1cm} assume that $G(x_{ij}) = x'_{i0}$
9. \hspace{1cm} run 4-round attack on G with $G(x_{i(j+k)}) = x'_{i,k}$ for $k = 0 \cdots N^\beta - j$
10. \hspace{1cm} if succeeded, run attack on H with samples $H(G(x_{ik})) = x_{i(k+1)}$
11. \hspace{0.5cm} for $k = 0 \cdots N^\beta - 1$
12. \textbf{end}
13. \hspace{0.5cm} \textbf{foreach} $j = 0 \cdots N^\beta - M - 1$ \textbf{do}
14. \hspace{1cm} assume that $G(x_{i0}) = x'_{i'j}$
15. \hspace{1cm} run 4-round attack on G with samples $G(x_{ik}) = x'_{i'(j+k)}$ for $k = 0 \cdots N^\beta - j$
16. \hspace{1cm} if succeeded, run attack on H with samples $H(G(x_{ik})) = x_{i(k+1)}$
17. \hspace{0.5cm} for $k = 0 \cdots N^\beta - 1$
18. \textbf{end}
19. \textbf{end}

Our attack has $2N^\alpha + \beta$ data complexity. The time complexity is $N^{2\alpha + \beta}$ times the complexity of 4-round recovery attack on Feistel Network. To minimize the data complexity $2N^\alpha + \beta$, we want $\alpha + \beta$ to be minimal such that $2\alpha + \beta = 2$ and $N^\beta \geq M$. Now, α can be parameterized by β and we minimize $\frac{\beta + 2}{2}$. When we set $N^\beta = 2M$, then $N^\alpha = \frac{N}{\sqrt{2M}}$. Therefore, we have data complexity of FF3 attack as $2N\sqrt{M}$ and time complexity as N^2 times the complexity of 4-round recovery attack on Feistel Network and $p_{\text{success}} \approx 1 - e^{-p_{\text{Feistel}}}$.

We fully implemented the attack but to test its success probability we could skip some parts of the running time we knew the attack would fail. We show on Table 3 the experimental probability of success of the whole attack following the strategies S_2. The probability was computed for 10,000 executions.

We conclude that the full attack succeeds with high probability using our parameters.

4 Conclusion

We took the NIST standard FF3 and investigated its security on small domain sizes. We exploit that the round functions can be permuted due to a bad domain separation in the tweak scheme which uses a XOR with the round index. This bad design choice lead us to develop a slide attack on FF3 based on our own design for 4-round FN attack.
Table 3. Experimental success probability in the FF3 attack for various parameters for $L = 3$ and $M \sim N^2 \left(\frac{N^2}{T} \right)^{\frac{1}{2}}$

<table>
<thead>
<tr>
<th>N</th>
<th>M</th>
<th>N^x</th>
<th>N^y</th>
<th>#trials</th>
<th>$Pr[\text{succ}]$</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>3</td>
<td>1</td>
<td>6</td>
<td>10000</td>
<td>$0.00%$</td>
</tr>
<tr>
<td>2^2</td>
<td>9</td>
<td>1</td>
<td>18</td>
<td>10000</td>
<td>$1.40%$</td>
</tr>
<tr>
<td>2^3</td>
<td>29</td>
<td>2</td>
<td>58</td>
<td>10000</td>
<td>$17.99%$</td>
</tr>
<tr>
<td>2^4</td>
<td>91</td>
<td>2</td>
<td>182</td>
<td>10000</td>
<td>$35.35%$</td>
</tr>
<tr>
<td>2^5</td>
<td>288</td>
<td>2</td>
<td>576</td>
<td>10000</td>
<td>$45.89%$</td>
</tr>
<tr>
<td>2^6</td>
<td>913</td>
<td>2</td>
<td>1826</td>
<td>10000</td>
<td>$54.14%$</td>
</tr>
<tr>
<td>2^7</td>
<td>2897</td>
<td>2</td>
<td>5794</td>
<td>10000</td>
<td>$56.85%$</td>
</tr>
<tr>
<td>2^8</td>
<td>9196</td>
<td>2</td>
<td>18392</td>
<td>5098</td>
<td>$56.34%$</td>
</tr>
<tr>
<td>2^9</td>
<td>29193</td>
<td>3</td>
<td>58386</td>
<td>256</td>
<td>$77.73%$</td>
</tr>
</tbody>
</table>

This work shows that Feistel schemes with small domains has not well understood yet. We showed a known plaintext attack on 4-round Feistel structure to recover entire round functions. More attacks for bigger rounds are possible in small domains.

Acknowledgments. The work was done while the first author was visiting EPFL. The first author was supported in part by NSF grant CNS-1453132. We thank Adi Shamir for the useful comments and Stefano Tessaro for the discussions.

References

