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Abstract. Detection of surgical instruments plays a key role in ensur-
ing patient safety in minimally invasive surgery. In this paper, we present
a novel method for 2D vision-based recognition and pose estimation of
surgical instruments that generalizes to different surgical applications.
At its core, we propose a novel scene model in order to simultaneously
recognize multiple instruments as well as their parts. We use a Convolu-
tional Neural Network architecture to embody our model and show that
the cross-entropy loss is well suited to optimize its parameters which can
be trained in an end-to-end fashion. An additional advantage of our app-
roach is that instrument detection at test time is achieved while avoiding
the need for scale-dependent sliding window evaluation. This allows our
approach to be relatively parameter free at test time and shows good
performance for both instrument detection and tracking. We show that
our approach surpasses state-of-the-art results on in-vivo retinal micro-
surgery image data, as well as ex-vivo laparoscopic sequences.

1 Introduction

Vision-based detection of surgical instruments in both minimally invasive surgery
and microsurgery has gained increasing popularity in the last decade. This is
largely due to the potential it holds for more accurate guidance of surgical robots
such as the da Vinci R©(Intuitive Surgical, USA) and Preceyes (Netherlands), as
well as for directing imaging technology such as endoscopes [1] or OCT imag-
ing [2] at manipulated regions of the workspace.

In recent years, a large number of methods have been proposed to either track
instruments over time or detect them without any prior temporal information, in
both 2D and 3D. In this work, we focus on 2D detection of surgical instruments
as it is often required for tracking in both 2D [3] and 3D [4]. In this context, [5,6]
proposed to build ensemble-based classifiers using hand-crafted features to detect
instruments parts (e.g. shaft, tips or center). Similarly, [7] detected multiple
instruments in neurosurgery by repeatedly evaluating a boosted classifier based
on semantic segmentation.
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Yet for most methods described above two important limitations arise. The
first is that instrument detection and pose estimation (i.e. instrument position,
orientation and location of parts) have been tackled in two phases, leading to
complicated pipelines that are sensitive to parameter tuning. The second is that
at evaluation time, detection of instruments has been achieved by repeated win-
dow sliding at limited scales which is both inefficient and error prone (e.g. small
or very large instruments are missed). Both points heavily reduce the usability
of proposed methods.

In order to overcome these limitations, we propose a novel framework that
avoids these and can be applied to a variety of surgical settings. Assuming a
known maximum number of instruments and parts that could appear in the field
of view, our approach, which relies on recent deep learning strategies [8], avoids
the need for window sliding at test time and estimates multiple instruments and
their pose simultaneously. This is achieved by designing a novel Convolutional
Neural Network (CNN) architecture that explicitly models object parts and the
different objects that may be present. We show that when combined with a
cross-entropy loss function, our model can be trained in an end-to-end fashion,
thus bypassing the need for traditional two-stage detection and pose estimation.
We validate our approach on both ex-vivo laparoscopy images and on in-vivo
retinal microsurgery, where we show improved results over existing detection
and tracking methods.

2 Multi-instrument Detector

In order to detect multiple instruments and their parts in a coherent and simple
manner, we propose a scene model which assumes that we know what would
be the maximum number of instruments in the field of view. We use a CNN to
embody this model and use the cross-entropy to learn effective parameters using
a training set. Our CNN architecture takes as input an image and provides binary
outputs as to whether or not a given instrument is present as well as 2D location
estimates for its parts. A visualization of our proposed detection framework can
be seen in Fig. 1. Conveniently then, detecting instruments and estimating the
joint positions on a test frame is simply achieved by a feed forward pass of the
network. We now describe our scene model and our CNN in more detail.

2.1 Scene Model

Let I ∈ R
w×h be an image that may contain up to M instruments. In particular,

we denote T = {T1, . . . , TM}, Tm ∈ {0, 1} to be the set of instruments that could
appear in the field of view such that Tm = 0 if the tool is not present and Tm = 1
if it is. In addition, each instrument present in the image is defined as a set of N
parts, or joints, {Jn

m ∈ R
2}Nn=0 consisting of 2D image locations. Furthermore,

let GTn
m ∈ R

2 be the ground truth 2D position for joint n of instrument Tm

and tm ∈ {0, 1} be the ground truth variable indicating if the mth instrument is
visible in the image. Assuming that the instrument presence is unknown and is
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Fig. 1. Proposed multi-instrument detector network architecture. The network pro-
duces probabilistic outputs for both the presence of different instruments and position
of their joints. The number of channels C is denoted on top of the box.

probabilistic in nature, our goal is to train a network to estimate the following
scene model

P (T1, . . . , TM , J1
1 , . . . , JN

1 , . . . , J1
M , . . . , JN

M ) =
m∏

P (Tm)
m∏ n∏

P (Jn
m|Tm) (1)

where P (Tm) are Bernoulli random variables and the likelihood models
P (Jn

m|Tm) are parametric probability distributions. Note that Eq. (1) assumes
independence between the different instruments as well as a conditional inde-
pendence between the various joints for a given instrument. Even though both
assumptions are quite strong, they provide a convenient decomposition and a
model simplification of what would otherwise be a complicated distribution.
Letting P be the predicted distribution by our CNN and P̂ be a probabilistic
interpretation of the ground truth, then the cross-entropy loss function can be
defined as

H(P̂ , P ) = −
∑

s∈S
P̂ (s) log P (s) (2)

where S is the probability space over all random variables (T1, . . . , TM , J1
1 , . . .,

JN
1 , . . . , J1

M , . . . , JN
M ). Replacing P and P̂ in Eq. (2) with the model Eq. (1) and

simplifying the term gives rise to

H(P̂ , P ) =
∑

m

H
(
P̂ (Tm), P (Tm)

)
+

∑

m

∑

n

H
(
P̂ (Jn

m|Tm = tm), P (Jn
m|Tm = tm)

) (3)

To model the ground truth distribution P̂ , we let P̂ (Tm) = 0 if tm = 0 and
P̂ (Tm) = 1 if tm = 1, and specify the following likelihood models from the
ground truth annotations,
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∀n∀m, P̂ (Jn
m = j|Tm = tm) =

{
U(j; 0, wh), if tm = 0
G(j;GTn

m, σ2
I), if tm = 1

where U is a Uniform distribution in the interval 0 to wh and G denotes a
Gaussian distribution with mean GTn

m and covariance σ2
I (i.e. assuming a

symmetric and diagonal covariance matrix). We use this Gaussian distribu-
tion to account for the inaccuracies in the ground truth annotations such that
P̂ (Jn

m|Tm = tm) is a 2D probability map generated from the ground truth and
which the network will try to estimate by optimizing Eq. (3). In this work, we fix
σ2 = 10 for all experiments. That is, our network will optimize both the binary
cross-entropy loss of each of the instruments as well as the sum of the pixel-wise
probability map cross-entropy losses.

2.2 Multi-instrument Detector Network

In order to provide a suitable network with the loss function of Eq. (3), we modify
and extend the U-Net [8] architecture originally used for semantic segmentation.
Illustrated in Fig. 1, the architecture uses down and up sampling stages, where
each stage has a convolutional, a ReLU activation and a sampling layer. Here
we use a total of 5 down and 5 up sampling stages and a single convolutional
layer is used per stage to reduce the computational requirements. The number
of features is doubled (down) or halved (up) per stage, starting with 64 features
in the first convolutional layer. All convolutional kernels have a size of 3× 3,
except for the last layer where a 1× 1 kernel is used. Batch normalization [9]
is applied before every activation layer. In order to provide output estimates
∀(m,n), P (Tm), P (Jn

m|Tm), we extend this architecture to do two things:

1. We create classification layers stemming from the lowest layer of the network
by expanding it with a fully connected classification stage. The expansion is
connected to the lowest layer in the network such that this layer learns to
spatially encode the instruments. In particular this layer has one output per
instrument which is activated with a sigmoid activation function to force a
probabilistic output range. By doing so, we are effectively making the network
provide estimates P (Tm).

2. Our network produces M × N maps of size w × h which correspond to each
of the P (Jn

m|Tm = 1) likelihood distributions. Note that explicitly outputting
P (Jn

m|Tm = 0) is unnecessary. Each output probability map P (Jn
m|Tm = 1)

is normalized using a softmax function such that the joint position estimate
of GTn

m is equal to the arg maxzP (Jn
m = z|Tm = 1).

When combined with the loss function Eq. (3), this network will train to both
detect multiple instruments as well as estimate their joint parts. We implemented
this network using the open source TensorFlow library [10] in Python1.

1 Code and models available at: https://github.com/otl-artorg/instrument-pose.

https://github.com/otl-artorg/instrument-pose
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3 Experiments

Retinal Microsurgery. We first evaluate our approach on the publicly available
in-vivo retinal microsurgery instrument dataset [11]. The set contains 3 video
sequences with 1171 images, each with a resolution of 640× 480 pixels. Each
image contains a single instrument with 4 annotated joints (start shaft, end
shaft, left tip and right tip). As in [11], we trained our network on the first
50% of all three sequences and evaluated the rest. Optimization of the network
was performed with the Adam optimizer [12] using a batch size of 2 and an
initial learning rate of 10−4. The network was trained for 10 epochs. Training
and testing was performed on a Nvidia GTX 1080 GPU running at an inference
rate of approximately 9 FPS.
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Fig. 2. Detection accuracy. (left) percentage of correctly detected end of shaft joints
as a function of the accuracy threshold. (right) percentage of correctly detected joints.

The network was trained on three joints (left tip, right tip and end shaft)
while only the end shaft joint was evaluated. Similar to [3,11,13], we show the
proportion of frames where the end shaft is correctly identified as a function
of detection sensitivity. We show the performance of our approach as well as
state-of-the-art detection and tracking methods in Fig. 2. Our method achieves
an accuracy of 96.7% at a threshold radius of 15 pixels which outperforms the
state-of-the-art of 94.3%. The other two joints (left tip, right tip) achieve an
accuracy of 98.3% and 95.3%, showing that the method is capable of learning all
joint positions together with a high accuracy. The mean joint position errors are
5.1, 4.6 and 5.5 pixels. As the dataset includes 4 annotated joints, we propose
to also evaluate the performance for all joints and report in Fig. 2 (right) the
accuracy of the joints after the network was trained with all joints using the
same train-test data split. Overall, the performance is slightly lower than when
training and evaluating with 3 joints because the 4th joint is the most difficult
to detect due to blur and image noise. Figure 3 depicts qualitative results of our
approach and a video of all results can be found at https://www.youtube.com/
watch?v=ZigYQbGHQus.

https://www.youtube.com/watch?v=ZigYQbGHQus
https://www.youtube.com/watch?v=ZigYQbGHQus
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Fig. 3. Visual results on retinal microsurgery image sequences 1–3 (top) and
laparoscopy sequences (bottom). The first two laparoscopy sequences contain claspers,
whereas the right most contains a scissor and a clasper. The ground truths are denoted
with green points.

Robotic Laparoscopy. We also evaluated our approach on the MICCAI 2015
endoscopic vision challenge for laparoscopy instrument dataset tracking2. The
dataset includes 4 training and 6 testing video sequences. In total 3 different
tools are visible in the sequences: left clasper, right clasper and left scissor which
is only visible in the test set. The challenge data only includes a single annotated
joint (extracted from the operating da Vinci R©robot) which is inaccurate in a
large number of cases. For this reason, 5 joints (left tip, right tip, shaft point, end
point, head point) per instrument in each image were manually labeled and then
used instead3. Images were resized to 640 × 512 pixels due to memory constraints
when training the network. The training set consists of 940 images and the test
set of 910 images. Presence of tools Tm is given if a single joint is annotated.
We define the instruments T1...4 as left clasper, right clasper, left scissor and
right scissor. To evaluate our approach, we propose two experiments: (1) Uses
the same training and test data as in the original challenge, with an unknown
tool in the test set. (2) We modified the training and test sets, such that the
left scissor is also available during training by moving sequence 6 of the test
set to the training set. By flipping the images in this sequence left-to-right, we

2 https://endovissub-instrument.grand-challenge.org/.
3 https://github.com/surgical-vision/EndoVisPoseAnnotation.

https://endovissub-instrument.grand-challenge.org/
https://github.com/surgical-vision/EndoVisPoseAnnotation
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augment our training data so to have the right scissor as well. Not only does
this increase the complexity of the detection problem, but it also allows flipping
data augmentation to be used.

Experiment 1. Using the original dataset, we first verified that the network can
detect specific tools. As the left scissor has not been trained on, we expect this
tool to be missed. The training set was augmented using left-right and up-down
flips. On the test set, only two images were wrongly classified, with an average
detection rate of 99.9% (right clasper 100%, left clasper 99.89%). Evaluation of
the joint prediction accuracy was performed as with the microsurgery dataset
and the results are illustrated in Fig. 4 (left). The accuracy is over 90% at 15
pixels sensitivity on all joints except for the two tips on the left clasper. The lower
performance is explained by the left clasper only being visible in 40 frames, and
to that the method fails on 7 images where the tool tips of both the left and
right clasper are in the vicinity of each other or overlapping.
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Fig. 4. Accuracy threshold curves: left Experiment 1 and right Experiment 2

Experiment 2. Here the dataset was modified so that the right scissor is also
visible in the training set by placing sequence 6 from the test set into the training
set. The classification results of the instruments are: right clasper 100%, left
clasper 100%, right scissor 99.78% and left scissor 99.67%. Figure 4 (right) shows
the results of all joint accuracies for this experiment. The accuracy of the left
clasper tool is slightly improved compared to the previous experiment due to
the increased augmented training size. However, the method still fails on the
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same images as in Experiment 1. The scissors show similar results for both left
and right, which is to be expected due to them being from the same flipped
images. Further, for the scissor results it is visible that one joint performs poorer
than the rest. Upon visual inspection, we associate this performance drop to the
inconsistency in our annotations and the joint not being visible in certain images.
Given that our method assumes all joints are visible if a tool is present, detection
failures occur when joints are occluded. Due to the increased input image size
compared to the retinal microsurgery experiments, the inference rate is lower at
around 6 FPS using the same hardware.

4 Conclusion

We presented a deep learning based surgical instrument detector. The network
collectively estimates joint positions and instrument presence using a combined
loss function. Furthermore, the network obtains all predictions using a single
feed-forward pass. We validated the method on two datasets, an in-vivo retinal
microsurgery dataset and an ex-vivo laparoscopy set. Evaluations on the retinal
microsurgery dataset showed state-of-the-art performance, outperforming even
the current tracking methods. Our detector method is uninfluenced by previous
estimations which is a key advantage over tracking solutions. The laparoscopy
dataset showed that the method is capable of classifying instrument presence
with a very high accuracy while jointly estimating the position of 20 joints. This
points to our method being able to simultaneously count, estimate joint locations
and classify whether instruments are visible in a single feed-forward pass.
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