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Abstract
To reduce the computational cost of the uncertainty propagation analysis, which is used to

study the impact of input parameter variations on the results of a simulation, a general and simple

to apply methodology based on decomposing the solution to the model equations in terms of

Chebyshev polynomials is discussed. This methodology, based on the work by Scheffel [American

Journal of Computational Mathematics 02, 173–193 (2012)], approximates the model equation

solution with a semi-analytic expression that depends explicitly on time, spatial coordinates, and

input parameters. By employing a weighted residual method, a set of nonlinear algebraic equations

for the coefficients appearing in the Chebyshev decomposition is then obtained. The methodology is

applied to a two-dimensional Braginskii model used to simulate plasma turbulence in basic plasma

physics experiments and in the scrape-off layer of tokamaks, in order to study the impact on the

simulation results of the input parameter that describes the parallel losses. The uncertainty that

characterizes the time-averaged density gradient lengths, time-averaged densities, and fluctuation

density level are evaluated. A reasonable estimate of the uncertainty of these distributions can be

obtained with a single reduced-cost simulation.

∗Electronic address: fabio.riva@epfl.ch

1

mailto:fabio.riva@epfl.ch


I. INTRODUCTION

In order to assess the reliability of a simulation and validate it against experimental mea-

surements, it is essential to estimate the uncertainties affecting its numerical results [1–3].

These uncertainties stem from numerically solving the model equations with finite precision,

and from the use of input parameters that are not precisely known or accurately measured.

While a rigorous methodology for estimating the numerical errors affecting plasma turbu-

lence simulations has been recently proposed (see, e.g., Refs. [4, 5]), the absence of a rigorous

procedure to investigate uncertainty propagation through a plasma turbulence model per-

sists and motivates the work illustrated in the present paper.

An analytical study of uncertainty propagation is unfeasible for complex physical models

such as the ones describing plasma turbulence. In these cases uncertainty propagation is

approached numerically. The most straightforward strategy to study uncertainty propaga-

tion is based on the assumption that the uncertainty on an input parameter is described

by a probability distribution [6]. A sample of input parameters is then randomly generated

according to such a distribution and a simulation is performed for each input of the sample.

A distribution of simulation results it thus obtained. From this distribution it is possible to

evaluate the uncertainty affecting the point-by-point solution values or solution functionals.

While conceptually simple, this approach is usually not applicable to plasma turbulence

simulations because of the high computational cost and of the large number of input param-

eters typically involved. Despite the fact that sophisticated procedures have been developed

to predict the response of the model to variation of input parameters using the smallest

possible number of simulations, such as Bayesian analysis [6], multifidelity Monte-Carlo es-

timations [7], and the stochastic response surface methodology [8, 9], to our knowledge they

have never been employed by the plasma physics community. Rather, uncertainty propa-

gation is typically investigated in plasma physics by performing sensitivity scans (see, e.g.,

Ref. [10]). More precisely, the input parameters xi, which the model is more sensitive to, are

identified. Then, one simulation is performed by using all input parameters at their reference

values xi = x̄i, for all i. In addition, two more simulations are run for each identified input

parameter, using xi = x̄i for all i 6= j and xj = x̄j ± εxj
, with εxj

the uncertainty on the

reference value x̄j. Finally, the uncertainty is identified by assuming a linear dependence

of the simulation results on the input parameters. While computationally less demanding
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than a simple statistical analysis, this approach is still considerably expensive, particularly

for plasma turbulence simulations involving a large number of input parameters. Moreover,

the solution of differential equations practically never depends linearly on the input param-

eters [6]. As a consequence, the numerical results of the simulation with xi = x̄i generally

differ from averaging the simulation results obtained by performing a number of simulations

for randomly distributed xi. A more rigorous approach for analyzing uncertainty propaga-

tion is therefore necessary. In particular, developing a methodology allowing for low-cost,

low-resolution simulations can be very helpful.

To estimate the dependence of the code results on the input parameters, in the present pa-

per we consider a methodology, based on the work presented by Scheffel in Ref. [11], which

consists in a decomposition of the solution to the model equations in terms of Chebyshev

polynomials along the time, spatial, and input parameter coordinates. More precisely, a se-

ries of Chebyshev polynomials is used to represent the solution of a differential equation and

to express its dependence on the temporal, spatial, and input variables. A weighted residual

method (WRM) is then employed to deduce a set of algebraic equations, thus making it

possible to numerically evaluate the coefficients appearing in the Chebyshev decomposition

and obtaining a semi-analytical expression for the solution with explicit dependence on the

input parameters. This allows us to determine the parametric dependence of the solution,

while avoiding to perform a set of simulations for different input values, and to investigate

the impact of the input parameters on the model solution by performing a single simulation.

We apply the proposed methodology to a two-dimensional fluid model used to investigate

the plasma dynamics in basic plasma physics experiments, such as linear devices [12] and

simple magnetized torus (SMT) [13–15], and in the tokamak scrape-off layer (SOL) [16, 17].

The model is based on the drift-reduced Braginskii equations and evolves in time the plasma

density, the plasma potential, and the electron temperature. The algebraic system of equa-

tions resulting from projecting the model equations on Chebyshev’s space is implemented in

a simulation code. We then use the simulation results to assess the influence of uncertainties

affecting the input parameter that describes the parallel losses on the density profile.

We note that the use of fully spectral methods to solve differential equations is far from

new, as they have been widely employed by the computational fluid dynamics community

(see, e.g., Ref. [18]). However, fully spectral codes were rarely used to investigate plasma

physics problems and, to our knowledge, their use remained limited to the study of plasma
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flows and linear stability analysis (see, e.g., Refs. [11, 19]), not being applied to the analysis

of uncertainty propagation in nonlinear plasma turbulence simulations. This motivates the

study illustrated in the present paper.

This paper is structured as follows. After the Introduction, in Sec. II we present the spectral

method we employ to solve a set of partial differential equations. More precisely, we dis-

cuss the approximation of the model equation solution with Chebyshev polynomials and the

application of the WRM. Then, in Sec. III we illustrate the two-dimensional drift-reduced

Braginskii model we consider in the present paper. In Sec. IV we apply the Chebyshev spec-

tral method to study uncertainty propagation through the drift-reduced Braginskii model.

The Conclusions follow. The approximation of differential and nonlinear operators, the

treatment of the initial condition, and the application of the boundary conditions in the

Chebyshev spectral domain are the subject of Appendixes A, B, and C, respectively.

II. CHEBYSHEV SPECTRAL METHOD

In this section we discuss the application of the WRM to obtain an approximated solution

of a differential equation in the Chebyshev spectral space. We note that the methodology

illustrated in the rest of the present section is based on the work presented in Ref. [11]. We

consider an initial value parabolic or hyperbolic partial differential equation

∂u
∂t

= Dp{u}+ S, (1)

with the exact solution u = u(t,x; p) that depends on time t ∈ [t0, t1], space coordinates

x ∈ [x0,x1], and a set of parameters p ∈ [p0,p1] (the indexes 0 and 1 referring to the

lower and upper boundaries of the considered domains). Here Dp is a linear or nonlinear

differential operator depending on p and acting on u, and S = S(t,x; p) a given source

term. Equation (1) is completed by an initial condition u(t0,x; p) = u0(x; p), with u0 a

given function, and a set of boundary conditions for the spatial domain. For simplicity, in

the following of this section we consider a one dimensional function u = u(t, x; p) depending

on one spatial dimension x and one input parameter p. The generalization to equations with

more dimensions and parameters does not present conceptual difficulties.

The WRM is used to solve differential equations by approximating u with a linear combi-

nation of independent basis functions. We choose the Chebyshev polynomials of the first

4



kind Tn(x) = cos(n cos−1 x), defined for x ∈ [−1, 1], as basis functions. Hereafter Tn are

simply named Chebyshev polynomials. We note that n ∈ N constitutes the degree of the

Chebyshev polynomial, that Chebyshev polynomials are orthogonal over the weight function

w(x) = (1− x2)−1 in the interval x ∈ [−1, 1], i.e.∫ 1

−1

Tm(x)Tn(x)√
1− x2

dx = π

2 (δmn + δm0δn0) , (2)

where δmn is the Kronecker delta (δmn = 1 if m = n and δmn = 0 otherwise), and that

they are characterized by the minimax property, i.e. the expansion of a continuous function

f(x) ' ∑L
l=0
′alTl(χ), with

al = 2
πBx

∫ x1

x0
f(x) Tl(χ)√

1− χ2dx, (3)

provides the most accurate approximation of f under the maximum norm, ‖ − ‖∞, for a

polynomial of degree L [20]. The minimax property motivates the choice of using the Tn
polynomials as basis functions, since it implies that the best approximation of f at order L

in Chebyshev space is simply the series truncated at l = L. Consequently, we approximate

u(t, x; p) ' û(t, x; p) =
K∑
k=0

′
L∑
l=0

′
M∑
m=0

′aklmTk(τ)Tl(χ)Tm(σ), (4)

where alkm are constant coefficients, K + 1, L + 1, M + 1 the numbers of Chebyshev poly-

nomials used for the expansion in time, real space, and input parameter space, respectively,

and

τ = t− At
Bt

, χ = x− Ax
Bx

, σ = p− Ap
Bp

, (5)

with At = (t1 + t0)/2 and Bt = (t1− t0)/2 (similar definitions apply to the other quantities),

such that τ, χ, σ ∈ [−1, 1]. Primes on summation signs indicate that the 0-th term of each

sum is multiplied by a factor 1/2, i.e.
N∑
n=0

′anTn(χ) = a0

2 T0(χ) + a1T1(χ) + a2T2(χ) + ...+ aNTN(χ). (6)

Integrating Eq. (1) in time, i.e. writing

u(t, x; p) = u0(x; p) +
∫ t

t0
(Dp{u}+ S) dt′, (7)

we define the residual R as

R(t, x; p) = û(t, x; p)−
[
u0(x; p) +

∫ t

t0
dt′Dp{û(t′, x; p)}+ S(t′, x; p)

]
. (8)
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In order to estimate the coefficients alkm, the equation∫ t1

t0

∫ x1

x0

∫ p1

p0
R(t, x; p)Wklm(t, x; p)dtdxdp = 0 (9)

is solved for all 0 ≤ k ≤ K, 0 ≤ l ≤ L, 0 ≤ m ≤ M , with Wklm(t, x; p) a set of (K +

1)(L+ 1)(M + 1) properly chosen weight functions. To take advantage of the orthogonality

property of Chebyshev polynomials, we choose

Wklm(t, x; p) = Tk(τ)√
1− τ 2

Tl(χ)√
1− χ2

Tm(σ)√
1− σ2

. (10)

We now express Eq. (8) in a form useful for further progress. Using the orthogonality

property, Eq. (2), we have∫ t1

t0

∫ x1

x0

∫ p1

p0
û(t, x; p)Wklm(t, x; p)dtdxdp = BtBxBp

(
π

2

)3
aklm. (11)

Moreover, we approximate∫ t

t0
S(t′, x; p)dt′ '

K∑
k=0

′
L∑
l=0

′
M∑
m=0

′SklmTk(τ)Tl(χ)Tm(σ) (12)

and

u0(x; p) '
L∑
l=0

′
M∑
m=0

′blmTl(χ)Tm(σ). (13)

Finally, we write∫ t

t0
Dp{û(t′, x; p)}dt′ '

K∑
k=0

′
L∑
l=0

′
M∑
m=0

′AklmTk(τ)Tl(χ)Tm(σ), (14)

where Aklm are assumed to be known functions of the aklm coefficients. Using again the

orthogonality property of Chebyshev polynomials, Eq. (9) yields

aklm = 2δk0blm + Aklm + Sklm, (15)

which is a set of (K + 1)(L + 1)(M + 1) coupled algebraic equations. Equation (15) ap-

proximates Eq. (7) in Chebyshev space. The term 2δk0blm represents the initial condition,

and Aklm and Sklm represent the projection along the Chebyshev basis of the operator Dp

applied to u and of the source term, respectively.

In order to solve Eq. (15) for aklm, one has to deduce first an explicit relation between Aklm
and the Chebyshev expansion of Dp{û}. Approximating

Dp{û} '
K∑
k=0

′
L∑
l=0

′
M∑
m=0

′cklmTk(τ)Tl(χ)Tm(σ), (16)
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we have
Aklm = Bt

2k (ck−1,l,m − ck+1,l,m) 0 < k ≤ K − 1

Aklm = Bt

2kck−1,l,m k = K.

(17)

Since ∫ t0

t0
Dp{û(t′, x; p)}dt′ = 0, (18)

the coefficients A0lm are found by imposing

A0lm = −2
K∑
k=1

Aklm(−1)k. (19)

Finally, in order to solve Eqs. (15) for the coefficients aklm, it is necessary to express the

operator Dp in the Chebyshev spectral domain and determine the coefficients cklm as a func-

tion of aklm, as detailed in Appendix A, and to apply the initial and boundary conditions in

Chebyshev space, as discussed in Appendixes B and C, respectively.

To conclude our discussion on the use of the WRM with Chebyshev polynomials, we would

like to make two remarks. First, while Eq. (7) constitutes a single partial differential equa-

tion, Eq. (15) represents a set of coupled algebraic equations that can be solved, either

analytically or numerically, to compute the coefficients aklm and obtain an approximated

semi-analytical solution of Eq. (7) with explicit dependence on p. Second, in general,

Eq. (15) cannot be solved analytically if Dp is a nonlinear operator. In such a case, Eq. (15)

must be solved numerically, usually employing an iterative solver. Since the latter might

need a good initial guess to converge, it is suitable to decompose the time interval into

sub-domains [21]. More precisely, the time coordinate t ∈ [t0, t1] is decomposed in N sub-

domains of length ∆ti > 0, with i = 1, ..., N and t1 − t0 = ∑N
i=1 ∆ti. Equation (15) is

then solved for t ∈ [t0, t0 + ∆t1] using the initial guess a1
klm = 2δ0kb

1
lm (aiklm and bilm denote

respectively the coefficients aklm and blm in the sub-domain [t0 +∑i−1
j=1 ∆tj, t0 +∑i

j=1 ∆tj]).

Finally, for the subsequent sub-domains we impose bi+1
lm = ∑K

k=0
′aiklm and we use the initial

guess ai+1
klm = aiklm for the solution of Eq. (15) in the sub-domain i+ 1.

III. TWO-DIMENSIONAL DRIFT-REDUCED BRAGINKSII EQUATIONS

To illustrate an application of the Chebyshev spectral method to the study of uncertainty

propagation, we consider here a two-dimensional drift-reduced Braginskii model, used in the
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past to simulate plasma turbulence in linear and SMT devices (see Ref. [10] for a detailed

discussion of this model). We focus here on the SMT configuration, where the magnetic field

is obtained by superimposing a toroidal magnetic field on a vertical magnetic field. This

results in helical field lines that wind around the toroidal vacuum vessel from the bottom

to the top of the device. The SMT configuration, implemented in a number of basic plasma

physics experiments such as TORPEX [22, 23] and Texas Helimak [24], is of interest to

the plasma physics community because it offers a simple and well diagnosed scenario to

study the turbulent transport resulting from instabilities such as interchange modes and

drift waves, which are present also in the tokamak SOL. In fact, models similar the the one

used to investigate the SMT plasma dynamics have been used also for the tokamak SOL

(see, e.g., Refs. [16, 17]).

To describe the SMT configuration, we indicate with x the radial coordinate, with z the

coordinate along the magnetic field (approximately the toroidal direction), and with y the

coordinate perpendicular to x and z (approximately the vertical direction). Because of the

high collisionality typical of SMT experiments, it is justified to model the plasma dynamics

with a set of drift-reduced Braginskii equations. Focusing on the interchange-like turbulent

regime observed for a sufficiently high magnetic field [15], for which kz ' 0, and under the

assumption of cold ions, that allows neglecting the ion temperature dynamics, it is possible

to integrate the drift-reduced Braginskii equations discussed in Ref. [25] in the parallel di-

rection, in order to evolve the line-averaged density n(y, x) =
∫
n(y, x, z)dz/L‖, electrostatic

potential φ(y, x) =
∫
φ(y, x, z)dz/L‖, and electron temperature Te(y, x) =

∫
Te(y, x, z)dz/L‖,

with L‖ ' 2πNturnsR0 the magnetic field line length, R0 the SMT major radius, and Nturns

the number of turns of the magnetic field line in the device. Neglecting the parallel electron

thermal conductivity term (according to kz ' 0), using the Boussinesq approximation [26–

28] to simplify the vorticity equation, assuming an infinite aspect ratio, and applying Bohm’s

boundary conditions at the sheath edge, v‖i = ±
√
Te and v‖e = ±

√
Te exp(Λ − φ/Te), the
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resulting system of equations is

∂n

∂t
=−R0{φ, n}+ 2

(
∂n

∂y
− n∂φ

∂y

)
− σn

√
Te exp

(
Λ− φ

Te

)
+Dn(n) + Sn, (20)

∂ω

∂t
=−R0{φ, ω}+ 2

n

∂pe
∂y

+ σ
√
Te

[
1− exp

(
Λ− φ

Te

)]
+Dω(ω), (21)

∂Te
∂t

=−R0{φ, Te}+ 4Te
3

(
1
n

∂pe
∂y

+ 5
2
∂Te
∂y
− ∂φ

∂y

)

− 2σTe
√
Te

3

[
1.71 exp

(
Λ− φ

Te

)
− 0.71

]
+DTe(Te) + STe , (22)

where Λ ' 3 for hydrogen plasmas, ω = ∇2
⊥φ, ∇2

⊥A = ∂2
xA + ∂2

yA and {φ,A} =

∂yφ∂xA − ∂xφ∂yA, being A = n, φ, ω, Te. Here the source terms Sn and STe are used to

mimic the density and temperatures sources, e.g., due to a resonance at the electron cy-

clotron frequency, and they are assumed vertically constant, with a Gaussian shape in the

radial direction. Small perpendicular diffusion terms of the form DA(A) = DA∇2
⊥A, with

DA a constant coefficient, are added for the numerical solution of the equations, with a

negligible impact on the results. The quantities appearing in Eqs. (20)-(22) and in the rest

of the present paper are normalized according to (tilde denotes a physical quantity in SI

units): t = t̃/
(
R̃/c̃s0

)
, n = ñ/ñ0, Te = T̃e/T̃e0, φ = eφ̃/T̃e0, R0 = R̃/ρ̃s0, where ñ0 and T̃e0

are reference density and electron temperature, R̃ is the SMT major radius, and c̃s0 and ρ̃s0
are given by c̃s0 =

√
T̃e0/mi and ρ̃s0 = c̃s0mi/

(
eB̃0

)
, being B̃0 the magnetic field amplitude

on axis. Distances are normalized to ρ̃s0.

The parameter σ in Eqs. (20)-(22) is used to model the parallel losses at the magnetic

pre-sheath (MP) entrance. Approaching the vessel wall, a decrease of φ is expected [29],

which results in the ion acceleration to the ion sound speed. This mechanism leads to a

decrease of n at the MP entrance, nMP , with respect to the density observed far away

from the sheath. The simplest model, which assumes being in a sheath-limited regime with

isothermal electrons and collisionless ions, predicts approximately a density drop at the MP

entrance nMP (y, x) = n(y, x)/2 [29]. In that case, one obtains σ = 1/(2πNturns). However,

in general, experimental measurements show strong deviation from the theoretical estimate

(see, e.g., Refs. [29, 30]). Therefore, the value of nMP is usually not well known, leading to

large uncertainties on σ.

To further simplify the problem, we use the isothermal plasma approximation, i.e. Te = 1,

and we expand exp(Λ − φ) ' 1 + Λ − φ and n ln(n) ' n − 1 assuming φ close to Λ and n
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close to 1, respectively. Equations (20)-(22) are thus rewritten as

∂tθ =−R0{φ′, θ}+ 2 (∂yθ − ∂yφ′)− σ (1− φ′) +Dn(θ)

+Dn

[
(∂xθ)2 + (∂yθ)2

]
+ Sn (1− θ) , (23)

∂tω = −R0{φ′, ω}+ 2∂yθ + σφ′ +Dω(ω), (24)

where ω = ∇2
⊥φ
′, φ′ = φ − Λ, and θ = log(n). The model in Eqs. (23)-(24) is an ideal test

bed for the application of the WRM discussed in Sec. II, since it contains both first and

second order derivatives and nonlinear convective terms.

We note that the scalar fields θ, ω, and φ′ depend on time, t ∈ [t0, t1], on the spatial

coordinates x ∈ [x0, x1] and y ∈ [y0, y1], and on the parameter σ, which is estimated with a

large uncertainty. Our goal is to estimate the impact of variations of σ in an interval [σ0, σ1]

on the solution of Eqs. (23)-(24).

IV. NONLINEAR SIMULATIONS

To illustrate an application of the Chebyshev spectral method illustrated in Sec. II to the

study of uncertainty propagation, we present here the simulation of plasma turbulence in

an SMT configuration, carried out considering the model discussed in Sec. III. First, we

implement the model in a numerical code using the WRM approach and the decomposition

in Chebyshev polynomials described in Sec. II. We then perform simulations of plasma

turbulence in an SMT configuration by using the developed code. Finally, we investigate

the impact of σ, the input parameter that characterizes the plasma losses at the vessel, on

the time-averaged plasma profiles and on its fluctuations.

A. Numerical implementation

In order to investigate the dependence of n, φ′ and ω on σ, we developed a simulation code

that solves Eqs. (23)-(24), together with ω = ∇2
⊥φ
′, implementing the WRM with Chebyshev
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decomposition described in Sec. II. More precisely, we write

θ(t, x, y;σ) '
K∑
k=0

′
L∑
l=0

′
M∑
m=0

′
N∑
n=0

′aθklmnTk(τ)Tl(χ)Tm(υ)Tn(µ), (25)

ω(t, x, y;σ) '
K∑
k=0

′
L∑
l=0

′
M∑
m=0

′
N∑
n=0

′aωklmnTk(τ)Tl(χ)Tm(υ)Tn(µ), (26)

φ′(t, x, y;σ) '
K∑
k=0

′
L∑
l=0

′
M∑
m=0

′
N∑
n=0

′aφklmnTk(τ)Tl(χ)Tm(υ)Tn(µ), (27)

where K, L, M , and N are the highest-order Chebyshev polynomials used for the decom-

position along the temporal, radial, vertical, and parameter coordinates, respectively, and

τ = t− At
Bt

, χ = x− Ax
Bx

, υ = y − Ay
By

, µ = σ − Aσ
Bσ

, (28)

with At = (t1 + t0)/2 and Bt = (t1− t0)/2 (similar definitions apply to the other quantities).

Following the procedure described in Appendix A, we write the operators {φ,A}, ∇2
⊥A, ∂xA,

∂yA, as well as the terms σ (1− φ′), σφ′, and Sn(1− θ), in the Chebyshev spectral domain

obtaining, according to Eq. (15), a set of 3K(L − 1)(M − 1)(N + 1) algebraic nonlinear

equations for the coefficients aθklmn, aωklmn, and aφklmn, with 0 < k ≤ K, 0 ≤ l ≤ L − 2,

0 ≤ m ≤ M − 2, 0 ≤ n ≤ N . The k = 0 coefficients are evaluated by applying the initial

condition as described in Appendix B, while the l = L− 1, l = L, m = M − 1, and m = M

coefficients are computed by applying the boundary conditions as discussed in Appendix C.

To solve numerically the resulting system of equations, we write the equation ω = ∇2
⊥φ
′ in

the Chebyshev spectral domain as a linear system Aaφ = aω, with A a square matrix with

inverse A−1, whereas aω and aφ are vectors containing respectively the coefficients aωklmn and

aφklmn. This allows us to express aφ = A−1aω. Using the expression of aφ as a function of

aω in Eqs. (23)-(24), we obtain a set of 2(K + 1)(L+ 1)(M + 1)(N + 1) algebraic nonlinear

equations for the coefficients aθklmn and aωklmn in the form aθ

aω

 = f


 aθ

aω


 , (29)

with aθ a vector containing the coefficients aθklmn and f a vector function reflecting Eqs. (23)-

(24) in Chebyshev spectral domain.

The nonlinear system in Eq. (29) is implemented in a numerical code written in Fortran90

and interfaced with the MATLAB environment [31] and it is solved with the MATLAB fsolve

nonlinear system solver using a trust-region algorithm. To facilitate the solver convergence,
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we separate the time coordinate in sub-domains as described in Sec. II (the results we show

consider ∆t = ∆ti = 0.2 and we verified numerically that they are converged with respect

to ∆t).

B. Simulation results

For our simulations we consider a spatial domain extending radially from x0 = 0 to x1 = 80

and vertically from y0 = 0 to y1 = 80. Moreover, we consider a parameter σ varying between

σ0 = 0.05 and σ1 = 0.1. At x0 and x1 we impose Dirichlet boundary conditions for φ′ and

ω, while we use Neumann boundary conditions for θ. Because of the assumption kz = 0,

we impose periodic boundary conditions at y0 and y1. Moreover, we use a source term

of the form Sn(x) ∝ exp [−(x− xS)2/16], with xS = 20, and we set Dn = Dω = 5 and

R0 = 200. We note that similar parameters were used for TORPEX simulations in Ref. [10].

Simulations are initialized from random noise and, after a transient phase, a quasi-stationary

state is reached, in which the plasma, injected in the system by the plasma source, is lost

because of parallel losses, modeled by σ, and losses at the inner and outer boundaries. We

note that all the results presented in the following of the present paper are obtained during

a time interval of approximately 40 time units during the quasi-stationary state.

Figure 1 shows typical snapshots of the plasma density for σ = 0.05, 0.075, 0.1, resulting

from a simulation performed with (K,L,M,N) = (1, 22, 22, 3). The turbulent character of

the plasma dynamics observed in previous finite difference simulations (see, e.g., Ref. [32])

is retrieved also by our WRM simulation, with eddies extending radially outward from the

source location and that detach from it, creating blobs that propagate towards the low-field

side part of the domain. We remark that the WRM approach makes it possible to simulate

the TORPEX plasma dynamics for any value of σ between 0.05 and 0.1 solving once Eq. (29).

C. Uncertainty propagation

Numerical simulations of plasma turbulence in basic plasma physics experiments, as well

as in the tokamak SOL, are often employed to evaluate time-averaged quantities (e.g., the

time-averaged pressure gradient length Lp = −〈pe〉t /∇〈pe〉t, with 〈pe〉t the time-averaged

plasma pressure [33]) or the fluctuation level (see, e.g., Ref. [34]). Therefore, as an example
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FIG. 1: Typical snapshots of plasma density for σ = 0.05, 0.075, 0.1 (left, middle, and right panels,

respectively), obtained by evaluating θ according to Eq. (25) with (K,L,M,N) = (1, 22, 22, 3).

of uncertainty propagation study, in the following we focus on η(x;σ) = 〈n(t, x, y;σ)〉y,t
and δη(x;σ) = 〈δn(x, y;σ)〉y / 〈n(t, x, y;σ)〉y,t, where 〈−〉y denotes vertical-averaging, 〈−〉y,t
denotes vertical- and time-averaging, and δn is the root-mean-square (RMS) value of

density fluctuations. The density time-averages and the density fluctuation RMS val-

ues presented in the rest of the present section are computed numerically, evaluating

n(t, x, y;σ) = exp[θ(t, x, y;σ)] on a numerical grid characterized by Nx = 256, Ny = 128,

and ∆t = 0.05, where θ(t, x, y;σ) is the expansion in Eq. (25) that satisfies Eq. (29), and

Nx and Ny are the number of points in the radial and vertical directions (we verified that

the numerical results are converged in Nx, Ny, and ∆t).

In Fig. 2 we present the profiles of η(x;σ) for σ = 0.5, 0.075, 0.1 (left, middle, and right pan-

els, respectively) obtained from three WRM simulations with (K,L,M,N) = (1, 12, 9, 1),

(2, 14, 11, 2), (3, 16, 13, 3) (blue, red, and yellow lines, respectively). The profiles are com-

pared to the results of converged simulations performed with a finite difference code [10] that

solves Eqs. (23)-(24) (black lines). We observe that the results obtained with the WRM are

consistent with simulations carried out with the finite difference approach. The differences

are probably due to the relatively small number of spectral terms used in the decomposition

of θ, φ′, and ω.

To investigate quantitatively the impact of σ on the simulation results, we consider (i) the

time-averaged density gradient length Ln(σ) = −η/∂xη, (ii) the averaged density value,

η(x;σ), evaluated at x = 40 and x = 60, and (iii) the density fluctuation level, δη(x;σ),

evaluated at x = 40 and x = 60. Note that we assume that the averaged density profile

decreases exponentially for x > xS to compute Ln, i.e. η(x;σ) ∝ exp[−(x−xS)/Ln(σ)], and
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FIG. 2: Radial profiles of η(x;σ) for σ = 0.5, 0.075, 0.1 (left, middle, and right panels, respectively).

The simulation results are obtained by using a Chebyshev decomposition with (K,L,M,N) =

(1, 12, 9, 1), (2, 14, 11, 2), (3, 16, 13, 3) (blue, red, and yellow lines, respectively), and by using the

finite difference code [10] that solves Eqs. (23)-(24) (black lines).

we evaluate Ln(σ) as

Ln(σ) = [x1/2(σ)− xS]/ ln(2), (30)

with x1/2(σ) satisfying η(x1/2;σ) = η(xS;σ)/2.

To study the impact of σ on Ln, η, and δη, we assume that σ is characterized by a probability

density function

fσ(σ) ∝ exp[−(σ − Aσ)2/SD(σ)2], (31)

with Aσ = (σ1 + σ0)/2 = 0.75 and SD(σ) = 0.005 the standard deviation, and we randomly

generate R ' 1000 samples σi, i = 1, 2, ..., R, distributed according to fσ. Then, for each

element σi we compute the corresponding Ln(σi). The results thus obtained are presented

in Fig. 3 for (K,L,M,N) = (1, 12, 9, 1), (2, 14, 11, 2), (3, 16, 13, 3) (left, middle, and right

panels, respectively). We observe that Ln does not depend linearly on σ, since the three

Ln distributions do not exhibit the same Gaussian distribution as σ. We remark that

the distributions of Ln display a dependence on the number of spectral terms used in the

simulation, pointing out that the numerical results are not fully converged at the relatively

low (K,L,M,N) used.

In the first row of Table I we present the values of Ln averaged over the three distributions

shown in Fig. 3. The uncertainties on the averaged Ln values are evaluated as the standard

deviation of each distribution, i.e. εLn = SD(Ln). We observe that the averaged Ln values

display a non negligible dependence on (K,L,M,N). On the other hand, the uncertainties
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FIG. 3: Distributions of Ln(σi), evaluated for approximately one thousand σis randomly gener-

ated according to Eq. (31), computed according to Eq. (30) and displayed for (K,L,M,N) =

(1, 12, 9, 1), (2, 14, 11, 2), (3, 16, 13, 3) (left, middle, and right panels, respectively).

TABLE I: Averaged values of the distributions shown in Figs. 3, 4, and 5 for (K,L,M,N) =

(1, 12, 9, 1), (2, 14, 11, 2), (3, 16, 13, 3) (first, second, and third columns, respectively), with the un-

certainties evaluated as the standard deviation of each distribution, and simulation results obtained

with a finite difference code for σ = σ̄ and σ = σ̄ ± εσ (last three columns).

Spectral code Finite difference code

(1, 12, 9, 1) (2, 14, 11, 2) (3, 16, 13, 3) σ̄ − εσ σ̄ σ̄ + εσ

Ln 56± 2 49± 2 51± 3 52.7 53.2 53.2

η at x = 40 0.96± 0.05 0.94± 0.05 0.94± 0.05 1.01 0.97 0.90

η at x = 60 0.70± 0.04 0.66± 0.04 0.68± 0.05 0.74 0.70 0.67

δη at x = 40 0.15± 0.01 0.24± 0.01 0.20± 0.02 0.18 0.18 0.19

δη at x = 60 0.11± 0.01 0.19± 0.01 0.15± 0.01 0.14 0.14 0.15

on Ln are similar for different numbers of spectral terms. Since the difference between

these uncertainties is small, we conclude that it is possible to obtain a rough estimate of the

spread of Ln, due to variations of σ, by considering a small number of spectral terms, which is

exactly the target of our methodology. This is particularly remarkable, since the simulation

performed with (K,L,M,N) = (1, 12, 9, 1) is less demanding, in terms of computational

resources, by approximately a factor 350 with respect to the simulation carried out with

(K,L,M,N) = (3, 16, 13, 3).
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FIG. 4: Distributions of η(x;σi), evaluated at x = 40 (first row) and x = 60 (second row) for

approximately one thousand σis randomly generated according to Eq. (31) and displayed for

(K,L,M,N) = (1, 12, 9, 1), (2, 14, 11, 2), (3, 16, 13, 3) (left, middle, and right columns, respectively).

It is interesting to compare the results obtained with the spectral method with a standard

sensitivity study performed with a finite difference approach. This is performed according

to the standard practice. We assume that the uncertainty affecting σ corresponds to the half

width half maximum (HFHM) of the distribution fσ, i.e. we assume εσ =
√

2 ln 2SD(σ) '

0.006. Then, we perform three finite difference simulations, one for σ = σ̄ = 0.075, one

for σ = σ̄ − εσ = 0.069, and one for σ = σ̄ + εσ = 0.081. The values of Ln obtained from

these three simulations are shown in the fourth, fifth, and sixth columns of the first row

of Table I. We observe that the averaged values of Ln obtained with the spectral code are

similar to the ones obtained from a finite difference simulation for σ = σ̄ (the difference is

within the numerical uncertainty due to the number of spectral terms used in the WRM

simulations). On the other hand, the uncertainty on Ln estimated as the difference between

the three finite difference simulations is below 0.5, while the uncertainties evaluated with

the spectral code are at least a factor of four larger. This shows that, in this particular
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FIG. 5: Distributions of δη(x;σi), evaluated at x = 40 (first row) and x = 60 (second row)

for approximately one thousand σis randomly generated according to Eq. (31) and displayed for

(K,L,M,N) = (1, 12, 9, 1), (2, 14, 11, 2), (3, 16, 13, 3) (left, middle, and right columns, respectively).

situation, a standard sensitivity scan significantly underestimates the uncertainty on Ln due

to uncertainties on σ.

A similar study to the one performed for Ln is also carried out for local values of η. In Fig. 4

we present the distributions of η obtained at x = 40 (first row) and x = 60 (second row)

with the spectral code for (K,L,M,N) = (1, 12, 9, 1), (2, 14, 11, 2), (3, 16, 13, 3) (left, middle,

and right columns, respectively). We observe that the distributions slightly depend on the

number of spectral terms used in the simulations and that η does not depend linearly on

σ. The averaged values of the six distributions shown in Fig. 4 are illustrated in the second

and third rows of Table I together with the corresponding standard deviations, the latter

denoted as uncertainties on the averaged values. We observe that the averaged values of η

slightly depend on the number of spectral terms used for the simulations and that the values

of the standard deviation of the six distributions are close to each other. For comparison,

in the last three columns of Table I, second and third rows, we display η obtained with the
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finite difference code for σ = σ̄ and σ = σ̄± εσ. In this case, the difference in η between the

three finite difference simulations used to estimate the uncertainty in the simulation results

is comparable to the uncertainties estimated with the spectral code.

Finally, in Fig. 5 we display the distributions of δη obtained at x = 40 (first row) and

x = 60 (second row) for (K,L,M,N) = (1, 12, 9, 1), (2, 14, 11, 2), (3, 16, 13, 3) (left, middle,

and right columns, respectively) with the spectral code. We note that the δη distributions are

extremely different from a Gaussian distribution and they depend on the number of spectral

terms used in the simulations. However, their averaged values (shown in the last two rows

of Table I, first three columns), as well as their standard deviations (shown in Table I as

uncertainty on δη), are similar. Comparing the spectral results with the numerical results

obtained with the finite difference approach (last two rows, last three columns of Table I),

we notice that the two methodologies provide similar results, both for the averages and for

the estimated uncertainties.

In summary, the averaged values of Ln, η, and δη obtained with the spectral code are

comparable to the results obtained with the finite difference code for σ = σ̄ = 0.075. On

the other hand, the spectral code provides, with a single reduced-cost simulation, a more

reliable estimate of the uncertainty affecting these quantities due to the σ uncertainty.

V. CONCLUSIONS

In the present paper we discuss a rigorous methodology to assess the uncertainty affecting a

simulation result due to the propagation of input parameter uncertainties. More precisely,

in order to study the impact of input parameter variations on the results of a plasma turbu-

lence model, we propose to use a WRM with decomposition in Chebyshev polynomials. This

choice is motivated by the minimax property, which ensures that the best approximation of

the model solution at the chosen order and under the L∞ norm is given by the Chebyshev

decomposition. By applying the WRM, a system of nonlinear algebraic equations is derived

for the coefficients of the Chebyshev expansion. The solution of these equations directly pro-

vides information on the dependence of the simulation results on the input parameters [11].

We apply the proposed methodology to a two-dimensional drift-reduced Braginksii model

used to investigate the plasma dynamics in basic plasma physics experiments and in the

tokamak SOL. These equations are decomposed in the Chebyshev spectral domain and the
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resulting system of equations is implemented in a numerical code. The plasma turbulent

dynamics is retrieved by our simulations and an explicit dependence of the profiles on the

parameter describing the parallel losses is obtained.

Assuming that the input parameter under consideration is distributed according to a Gaus-

sian probability distribution function, we compute the standard deviation that characterizes

the corresponding (in principle, non-Gaussian) distribution of time-averaged density gradi-

ent lengths, and time-averaged and fluctuation density values. We find that a reasonable

value of the spread of Ln, η, and δη, due to the uncertainty affecting the input parame-

ter that describes the parallel losses, can be obtained using a small number of Chebyshev

polynomials, i.e. by carrying out reduced-cost simulations. Our results are compared to the

outcome of a standard sensitivity study, pointing out that the spectral method employed is

more reliable in estimating the uncertainties on the simulation results due to uncertainties

on input parameters than a finite difference approach. To our knowledge, this is the first

time that a fully spectral approach is used to successfully simulate plasma turbulence and

study uncertainty propagation.
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APPENDIX A: OPERATORS IN THE CHEBYSHEV SPECTRAL DOMAIN

In order to relate the coefficients aklm in Eq. (4), used to represent u in the Chebyshev

spectral domain, with the coefficients cklm in Eq. (16), one has to express differential and

nonlinear operators in Chebyshev space. This is performed by exploiting some useful prop-

erties of Chebyshev polynomials, as summarized in the rest of this appendix (see Ref. [20]
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for a more detailed discussion). For simplicity, we consider functions of one variable x. The

generalization to multiple variables does not present any conceptual difficulty.

1. Differential operators

First-order spatial derivatives of a function can be easily obtained by exploiting the property

dTn
dx

(χ) = 2n
Bx

n−1∑
l≥0

n−l odd

′Tl(χ). (A1)

Therefore, as detailed in Ref. [11], the first-order derivative of a function f(x) = ∑L
l=0
′alTl(χ)

is computed as
df

dx
(x) = d

dx

L∑
l=0

′alTl(χ) = 2
Bx

L−1∑
l=0

′
L∑

λ=l+1
λ−l odd

λaλTl(χ). (A2)

Similarly, second order derivatives of f(x) are expressed as [11]

d2f

dx2 (x) = d2

dx2

L∑
l=0

′alTl(χ) = 1
B2
x

L−2∑
l=0

′
L∑

λ=l+2
λ−l even

λ
(
λ2 − l2

)
aλTl(χ). (A3)

Higher order derivatives are obtained iterating Eq. (A1). We remark that, when differenti-

ating with respect to x a function f(x) represented in terms of Chebyshev polynomials of

order L, the function df/dx only includes polynomials up to order L− 1.

2. Nonlinear terms

Linear operators involving the addition or subtraction of two functions are easily handled

in the Chebyshev spectral domain. On the other hand, care must be taken in computing

nonlinear operators related, for example, to the multiplication of two functions.

Focusing on the product operator, that is the basis of all nonlinear operators, and exploiting

the fact that Chebyshev polynomials satisfy

Tm(x)Tn(x) = 1
2
[
Tm+n(x) + T|m−n|(x)

]
, (A4)
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it is possible to write the product h(x) = f(x)g(x) between the two functions f(x) =∑L
l=0
′alTl(χ) and g(x) = ∑L

l=0
′blTl(χ) as

h(x) =
L∑
l=0

′
L∑
i=0

′albi
2
[
Tl+i(χ) + T|l−i|(χ)

]

=
L∑
l=0

′
[
L+l∑
i=l

albi−l
2 Ti(χ) +

l−1∑
i=0

albl−1

2 Ti(χ) +
L−l∑
i=1

albi+l
2 Ti(χ)

]
.

(A5)

We now approximate

h(x) '
L∑
l=0

′clTl(χ), (A6)

i.e. we truncate the expansion of h(x) at order L (because of the minimax property, this

truncated series is the most accurate polynomial representation of h(x) to order L). To

express the coefficients cl in terms of al and bl, we impose
∞∑
l=0

′clTl(χ) =
L∑
l=0

′
[
L+l∑
i=l

albi−l
2 Ti(χ) +

l−1∑
i=0

albl−1

2 Ti(χ) +
L−l∑
i=1

albi+l
2 Ti(χ)

]
(A7)

and we multiply both sides of Eq. (A7) by Tp(χ)/
√

1− χ2, with 0 ≤ p ≤ L. Then, by

applying Eq. (2), we obtain

cl =
l∑

i=0

aibl−i
2 +

L−l∑
i=1

aibi+l + ai+lbi
2 , (A8)

with 0 ≤ l ≤ L.

APPENDIX B: INITIAL CONDITION

The coefficients blm in Eq. (13), used to express the initial condition in Chebyshev space,

are given by

blm = 1
BxBp

( 2
π

)2 ∫ x1

x0

∫ p1

p0
u0(x; p) Tl(χ)√

1− χ2
Tm(σ)√
1− σ2

dxdp. (B1)

Since, in general, the integrals in Eq. (B1) cannot be computed analytically, we introduce

an approximation of blm that can be easily evaluated. In fact [11],

blm '
2

L+ 1
2

M + 1

L+1∑
r=1

M+1∑
s=1

u(t0, xr; ps)Tl(χr)Tm(σs), (B2)

where

χr = cos
[

π

L+ 1

(
r − 1

2

)]
, σs = cos

[
π

M + 1

(
s− 1

2

)]
, (B3)

xr = Bxχr + Ax, and ps = Bpσs + Ap. The expression in Eq. (B2) approximates blm in the

limit L,M →∞ and it is easily generalized to continuous functions with more variables.
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APPENDIX C: BOUNDARY CONDITIONS

In this appendix we consider how to set the boundary conditions in the Chebyshev spectral

domain. To simplify the discussion, we focus on differential equations where the operator

Dp involves second order derivatives of u with respect to x. The generalization to higher

order derivatives does not present any conceptual difficulty. Moreover, we consider that the

same kind of boundary conditions (Dirichlet, Neumann, and periodic boundary) is applied

at the two boundaries of the spatial domain. Combinations of different kinds of boundary

conditions are easily obtained following the procedure described hereafter.

1. Dirichlet boundary conditions

To apply Dirichlet boundary conditions we follow the procedure described in Ref. [11] and

summarized here for completeness. Since the expansion of d2u/dx2 leads to polynomials up

to order L− 2, the boundary conditions are set by imposing the L− 1 and L coefficients of

the Chebyshev expansion. Considering the two boundary conditions

u(t, x0; p) = α(t; p), u(t, x1; p) = β(t; p) (C1)

and approximating

α(t; p) '
K∑
k=0

′
M∑
m=0

′αkmTk(τ)Tm(σ),

β(t; p) '
K∑
k=0

′
M∑
m=0

′βkmTk(τ)Tm(σ),
(C2)

the orthogonality property of Chebyshev polynomials implies that, to satisfy Eq. (C1),

αkm =
L∑
l=0

′aklmTl(−1) =
L∑
l=0

′aklm(−1)l,

βkm =
L∑
l=0

′aklmTl(1) =
L∑
l=0

′aklm,

(C3)

where we use Tl(−1) = (−1)l and Tl(1) = 1. Taking the sum and the difference of these two

expressions and rearranging we obtain

ak,L−1,m = βkm − αkm
2 −

L−3∑
l=1
l odd

ak,l,m,

akLm = αkm + βkm
2 −

L−2∑
l=0
l even

′ak,l,m

(C4)
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if L is even, whereas we have

ak,L−1,m = αkm + βkm
2 −

L−3∑
l=0
l even

′ak,l,m,

akLm = βkm − αkm
2 −

L−2∑
l=1
l odd

ak,l,m

(C5)

if L is odd.

2. Neumann boundary conditions

Neumann boundary conditions can be imposed in a similar way. Let us consider two bound-

ary conditions of the form

du

dx
(t, x0; p) = α(t; p), du

dx
(t, x1; p) = β(t; p), (C6)

with
α(t; p) '

K∑
k=0

′
M∑
m=0

′αkmTk(τ)Tm(σ),

β(t; p) '
K∑
k=0

′
M∑
m=0

′βkmTk(τ)Tm(σ).
(C7)

Using again the orthogonality property of Chebyshev polynomials, we obtain

αkm = 2
Bx

L−1∑
l=0

′
L∑

λ=l+1
λ−l odd

λakλm(−1)l,

βkm = 2
Bx

L−1∑
l=0

′
L∑

λ=l+1
λ−l odd

λakλm.

(C8)

An explicit expression for the coefficients ak,L−1,m and akLm is easily computed by rearranging

Eq. (C8), that is

ak,L−1,m = Bx
αkm + βkm
2(L− 1)2 −

L−3∑
l=1
l odd

l2

(L− 1)2aklm,

akLm = Bx
βkm − αkm

2L2 −
L−2∑
l=2
l even

l2

L2aklm

(C9)
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if L is even, whereas we have

ak,L−1,m = Bx
βkm − αkm
2(L− 1)2 −

L−3∑
l=2
l even

l2

(L− 1)2aklm,

akLm = Bx
αkm + βkm

2L2 −
L−2∑
l=1
l odd

l2

L2aklm

(C10)

if L is odd.

3. Periodic boundary conditions

In order to apply the periodic boundary conditions

u(t, x0; p) = u(t, x1; p), du

dx
(t, x0; p) = du

dx
(t, x1; p), (C11)

we impose in the Chebyshev spectral domain
L∑
l=0

′aklm(−1)l =
L∑
l=0

′aklm,

L−1∑
l=0

′(−1)l
L∑

λ=l+1
λ−l odd

λakλm =
L−1∑
l=0

′
L∑

λ=l+1
λ−l odd

λakλm.
(C12)

These expressions are rewritten as
L∑
l=1
l odd

aklm = 0,
L∑
l=2
l even

l2aklm = 0. (C13)

The coefficients ak,L−1,m and akLm are thus given as

ak,L−1,m = −
L−3∑
l=1
l odd

aklm, akLm = −
L−2∑
l=2
l even

l2

L2aklm (C14)

if L is even, whereas we have

ak,L−1,m = −
L−3∑
l=2
l even

l2

(L− 1)2aklm, akLm = −
L−2∑
l=1
l odd

aklm (C15)

if L is odd.
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