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Shape Projectors for Landmark-Based Spline Curves
Daniel Schmitter and Michael Unser

Abstract—We present a generic method to construct orthogo-
nal projectors for 2D landmark-based parametric spline curves.
We construct vector spaces that define a geometric transforma-
tion (e.g., affine, similarity, scaling) that is applied to a reference
curve. These vector spaces contain all parametric curves up to
the chosen transformation. We define the vector spaces implicitly
through an orthogonal projection operator and present a theorem
that characterizes the projector for landmark-based spline curves
which are popular for the user-interactive analysis of biomedical
images. Finally, we show how shape priors are constructed with
the spline projector and provide an example of application for
the segmentation of microscopy images in biology.

Index Terms—projector, landmarks, splines, shape prior

I. INTRODUCTION

WE consider the problem of aligning a query curve r de-
fined in the continuous domain as r(t) = (rx(t), ry(t))

with t ∈ R, onto a reference shape rref . Thereby, we allow
rref to deform as rref 7→ Tθ{rref} according to a subclass of
geometric transformations Tθ that belong to the affine family
(see Table I) parameterized by θ. To that end, we consider the
generic parametric alignment problem

min
θ
‖Tθ{rref(t)} − r(t)‖2L2

. (1)

Problem (1) arises in image segmentation settings [1], [2],
[3], [4] when prior knowledge is integrated [5], [6], [7] such
that the solution should be close to a given shape [8], [9].
For specific transformations where a particular structure is
enforced on Tθ several algorithms have been proposed [10],
[11], [12], [13]. In [14], we have presented a solution for the
specific case r 7→ Θr + ρ with Θ ∈ R2×2 and ρ ∈ R2,
which is not generalizable for the arbitrary case. Here, we
derive a closed-form solution of (1) that is applicable to any
particular type of transformation of the affine family. Our
solution includes the classical case described in procrustean
analysis [15], [16] but we are able to retrieve the sought-after
similarity transformation in one step. Moreover, we propose an
exact spline-based implementation of our continuous-domain
framework. We provide a generic solution by defining a finite-
dimensional vector space that contains all possible shapes
obtained by a given transformation of rref defined by Tθ.
We characterize a vector space as a subspace that contains
all shapes that are related to a reference shape by a specific
transformation. The subspace itself is implicitly characterized
by its orthogonal projector. This allows us to compute the “best
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match” among curves defined by a subspace w.r.t. an arbitrary
shape. Intuitively speaking, projecting a query shape onto the
subspace defined by the reference amounts to “choosing” the
reference up to a specific transformation that is closest to the
input shape. We propose solutions for continuously defined
parametric spline curves. They are popular for interactive
applications, where a user manually enforces landmark cor-
respondance to increase robustness. Other applications, where
invariance to parameterization is required have been studied
in [17], [18], [19].

II. VECTOR SPACES DEFINING AFFINE SHAPE SPACES

A. Hilbert Space H Containing All Parametric Curves
We denote byH : L2([0, 1],R2) the Hilbert space that contains
all parametric curves and is associated with the standard L2-
inner product 〈ri, rj〉L2 :=

´ 1
0
rTi (t)rj(t)dt. The correspond-

ing norm is defined as ‖r‖L2
:=
√
〈r, r〉L2 . Without loss of

generality, we restrict the parameter domain to t ∈ [0, 1].

B. Vector Spaces as Subspaces of H
We define a subspace that contains all specific affine transfor-
mations of the reference curve rref . It can be defined as the
finite-dimensional vector space Sref of dimension I , whose
basis consists of elements {erefi }i=1,...,I , which themselves
are curves that depend on rref . Every element (i.e., curve)
living in Sref can be expressed as a linear combination of the
basis elements. Thus, Sref =

{∑I
i=1 uie

ref
i (·) : ui ∈ R

}
is a

subspace of the Hilbert space H.
1) Example: A linear mapping of a 2D curve can be

expressed as Θr, where Θ =

(
θ1 θ2
θ3 θ4

)
is a (2 × 2) matrix

with elements θi ∈ R. By explicitly evaluating the matrix-
vector product, we obtain

Θr(t) = θ1

(
rx(t)

0

)
+θ2

(
ry(t)

0

)
+θ3

(
0

rx(t)

)
+θ4

(
0

ry(t)

)
.

Therefore, the subspace associated to the 2D reference curve
rref is a four-dimensional vector space (i.e., I = 4) whose
basis is given by

{erefi }i∈[1,...,4] =

{(
rref
x

0

)
,

(
rref
y

0

)
,

(
0
rref
x

)
,

(
0
rref
y

)}
,

where we have omitted the continuous parameter t to simplify
the notation. Note that the choice of the basis is not unique.
However, different bases w.r.t. to a given transformation de-
scribe the same space.

C. Construction of Vector Spaces
In Table I we present examples of bases {ei}i=1,...,I that
can be used to construct a subspace Sref for specific 2D
transformations. Taking a reference curve rref = (rref

x , r
ref
y ) and

choosing a transformation given in Table I, the corresponding
vector space is given by the indicated basis.
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TABLE I
EXAMPLE BASES FOR 2D VECTOR SPACES.

Transformation Degrees of Freedom Basis {erefi } w.r.t. rref

uniform scaling 1

{(
rref
x

rref
y

)}
non-uniform scaling 2

{(
rref
x
0

)
,

(
0
rref
y

)}
translation 2

{(
1
0

)
,

(
0
1

)}
uniform scaling + rotation 2

{(
rref
x

rref
y

)
,

(
−rref

y

rref
x

)}
similarity (uniform scaling + rotation + translation) 4

{(
rref
x

rref
y

)
,

(
−rref

y

rref
x

)
,

(
1
0

)
,

(
0
1

)}
linear mapping 4

{(
rref
x
0

)
,

(
rref
y
0

)
,

(
0
rref
x

)
,

(
0
rref
y

)}
affine 6

{(
rref
x
0

)
,

(
rref
y
0

)
,

(
0
rref
x

)
,

(
0
rref
y

)
,

(
1
0

)
,

(
0
1

)}
shear + unifrom scaling 2

{(
rref
x

rref
y

)
,

(
rref
y
0

)}
shear + uniform scaling + translation 4

{(
rref
x

rref
y

)
,

(
rref
y
0

)
,

(
1
0

)
,

(
0
1

)}
shear + uniform scaling 2

{(
rref
x

rref
y

)
,

(
0
rref
x

)}
shear + uniform scaling + translation 4

{(
rref
x

rref
y

)
,

(
0
rref
x

)
,

(
1
0

)
,

(
0
1

)}
reflection + uniform scaling + rotation 2

{(
rref
x

−rref
y

)
,

(
rref
y

rref
x

)}
reflection + similarity 4

{(
rref
x

−rref
y

)
,

(
rref
y

rref
x

)
,

(
1
0

)
,

(
0
1

)}

III. LANDMARK-BASED PARAMETRIC SPLINE CURVES

We consider curves of the form

r(t) =

(
rx(t)
ry(t)

)
=

N−1∑
n=0

c[n]ϕn(t), (2)

where ϕ is a compactly supported spline-based generator
function and N ∈ N+ represents the number of control
points of the curve. The spline coefficients are given by
{c[k] = (cx[k], cy[k])}k=0,...,N−1. The following algorithm
can be easily generalized for the case where the summation
limits are different than in (2). The sum in (2) is finite
which implies that the number of non-zero coefficients c[k]
is finite too. From (2), we see that the curve is constructed
through integer shifts (represented by n) of the generator ϕ.
Furthermore, for the model (2) to be affine invariant, the
generator ϕ needs to be capable of reproducing constants as
specified by Proposition 1.

Proposition 1. For Θ ∈ R2×2,ρ ∈ R2 and a curve r as
defined in (2),

1 ∈ span{ϕn} ⇒ Θ r(t) + ρ ∈ span{ϕn}

holds.

The proof follows immediately by noticing that, for any
constant ρ ∈ R, the relation 1 ∈ span{ϕn} ⇒ ρ ∈ span{ϕn}
holds. Hence, any translation vector ρ ∈ R2 can be represented
by (2) while the linearity of the model ensures that Θr(t) ∈
span{ϕn}.

A. Construction of Vector Spaces Using Spline Curves

To guarantee a unique representation of a spline curve (2) by
its control points as well as a stable implementation, ϕ needs
to generate a Riesz basis [20] as, for instance, polynomial
B-splines do. In that case, we can express the vector spaces
defined in Section II-C as a function of the control points of
the reference curves. For a curve r(t) = (rx(t), ry(t)) we
define c = (cx, cy), which is a vector of length 2N , where

cx = (cx[0], . . . , cx[N − 1]) (3)

contains the N coefficients that describe x(t) and the vector cy
that defines y(t) is constructed in a similar way. Observe that
we use regular bold font to describe the c in (5) as opposed
to italic bold font to describe the different object c in (2).

1) Example - Affine Transformation Combined with Trans-
lation: If we include a translation ρ ∈ R2 in the transfor-
mation described in Section II-B1, then we obtain Θr + ρ,
where Θ is defined as in Section II-B1 and ρ = (θ5, θ6). The
transformation has six degrees of freedom and it is easy to see
that a basis for the vector space of the reference curve rref is
given by

{eref
i }i∈[1,...,6] =

{(
rref
x

0

)
,

(
rref
y

0

)
,

(
0
rref
x

)
,

(
0
rref
y

)
,

(
1
0

)
,

(
0
1

)}
,

which corresponds to

{ceref
i
}i∈[1,...,6] =

{(
cx
0

)
,

(
cy
0

)
,

(
0
cx

)
,

(
0
cy

)
,

(
1
0

)
,

(
0
1

)}
,

where 0 and 1 correspond to the vectors of size N (which
is the size of cx or cy) and whose elements are all 0 or
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1, respectively. The spline projector is then computed by the
application of Theorem 1.

IV. L2-INNER PRODUCT OF SPLINE-BASED CURVES

Next, we derive a simple and efficient expression to compute
the L2-inner product 〈r1, r2〉L2 between spline-based curves.
We first compute it for the 1D case and then generalize it to
higher dimensions.

A. Inner Product

First, we consider spline-based 1D functions of the form

x(t) =
N−1∑
n=0

cx[n]ϕn(t). The L2-inner product is then ex-

pressed as

〈x1, x2〉L2
=

ˆ 1

0

x1(t)x2(t)dt =
N−1∑
m=0

N−1∑
n=0

c1x[m]c2x[n]〈ϕm, ϕn〉L2
.

(4)
We collect all the coefficients of the function x in the vector
of length N as specified by (3). We then define [Φ]m,n =
〈ϕm, ϕn〉L2

. Now, (4) is expressed as 〈x1, x2〉L2
= cT1xΦc2x,

where Φ is the (N ×N) autocorrelation matrix of ϕ. For an
implementation (4) can be crucial. The entries of the matrix
Φ can be precomputed and stored in a look-up table for fast
online evaluation. The acceleration is considerable; It is due to
the fact that the computation of the integral associated with the
inner product (4) boils down to a matrix-vector multiplication.

Similarly, we simplify the 2D inner product. By using the
notations introduced in III-A the corresponding inner product
is now expressed as

〈r1, r2〉L2 = cT1 Ψc2 = 〈c1, c2〉Ψ, (5)

where

Ψ =

[
Φ 0
0 Φ

]
(6)

and 0 is a zero matrix with the same dimensions as Φ.

V. MAIN RESULT: GENERALIZED SPLINE PROJECTORS

Using the simplified expression (5) to compute inner products
of spline curves, we can now specify the projection operator.
A fundamental aspect of our construction is not only that the
curve r that is being projected is a spline curve, but also that
the basis {erefi } of the subspace Sref consists of spline curves
of the form given by (2). Hence, each of these curves r ∈ H
is uniquely determined by its corresponding vector of control
points c ∈ R2N .

In this article, we provide the expression for 2D curves,
noting that the extension to 3D is straightforward. We first
define the matrix Cref = [ceref1

· · · cerefI
]. It has the dimension

(2N × I) and contains the control points of the curves
{erefi }i=1,...,I that define a basis of Sref . To simplify the
notation, we collect all basis functions in the vector ϕ(t) :=
(ϕ0(t), . . . , ϕN−1(t)). The corresponding (orthogonal) spline
projector Pref : H → Sref that minimizes the distance
between the curve r ∈ H and the I-dimensional vector space
Sref is specified by Theorem 1.

Theorem 1. Let r(t) = ϕ(t)Tc. Then,

P refr(t) =

(
ϕ(t) 0

0 ϕ(t)

)T

Prefc,

where Pref ∈ (R2N ×R2N ) : R2N → R2N is the (2N × 2N)
projection matrix defined as

Pref = Cref(CrefTΨCref)−1CrefTΨ.

Proof. If P is an orthogonal projector w.r.t. span{ei}i=1,...,I ,
then a curve r can always be decomposed as

r(t) = Pr(t) + (I − P)r(t)︸ ︷︷ ︸
error

, (7)

where I is the identity operator and the error between the
curve and the projective plane is orthogonal to the projective
plane, so that error ⊥ span{ei}. By expressing Pr =∑

i〈ẽi, r〉L2
ei(t) =

∑
i uiei(t) in (7) and taking the inner

product on both sides w.r.t. ek, we obtain the normal equation

〈r, ek〉L2 =
∑
i

ui〈ei, ek〉L2 + 〈I − P)r(t), ek〉L2︸ ︷︷ ︸
0

. (8)

Evaluating (8) for all elements of the basis {ek} and writing
all the equations in matrix form, we obtain〈r, e1〉L2

...
〈r, eI〉L2

 = Gu⇔ u = G−1

〈r, e1〉L2

...
〈r, eI〉L2

 .

Using the notation E = [e1 · · · eI ], G = CTΨC being
the Gram matrix with respect to the basis {ei} and g =
(〈e1, r〉L2 , . . . , 〈eI , r〉L2), the orthogonal projection of r is
expressed as

Pr(t) = EG−1g =
I∑

i=1

ei(t) 〈G−1i,1e1 + · · ·+ G−1i,I eI , r︸ ︷︷ ︸
〈ẽi,r〉L2

〉L2
,

(9)
where {ẽi} forms the dual basis of {ei} and is defined as
Ẽ = E(G−1)T = [ẽ1 · · · ẽI ]. Because ϕ generates a Riesz
basis, each coordinate function of a spline curve r given
by (2) is uniquely specified by its control points {c[k]}k∈Z.
This implies that there is a one-to-one relation between the
coordinate functions of the curve and its spline coefficients.
Hence, the matrix E in (9) that defines the basis {ei} for the
subspace S (not to be confused with the Riesz basis generated
by ϕ) is fully specified by C = [c1 · · · cI ] which is the matrix
that contains all the control points of the basis {ei}. Using (5),
we rewrite (9) as

Pr(t) = EG−1g = EG−1(〈e1, r〉L2
, . . . , 〈eI , r〉L2

)

which is equivalent to

CG−1(cT1 Ψ, . . . , cTI Ψ)c = CG−1CTΨc = Pc.

Hence, P = C(CTΨC)−1CTΨ. It is easily verified that P
is a projector, characterized by the idempotent relation P2 =
P.

Theorem 1 provides a direct method to compute the control
points of the projected curve. Note that the projection of the
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vector c of control points is itself not orthogonal. However, it
corresponds to the orthogonal projection of r in the L2-sense.
Therefore, we have (Pref)2 = Pref and PrefT 6= Pref . Hence,
Theorem 1 shows that Pref is an oblique projector from R2N

onto the I-dimensional invariant subspace of R2N defined by
the basis {ceref1

}i=1,...,I . This means that P ref : H → Sref ,
which is the orthogonal projector in the L2-sense, is efficiently
implemented via the oblique projector Pref ∈ (R2N ×R2N ) :
R2N → R2N .
A. Example

We show how the projectors that correspond to the vector
spaces listed in Table I are implemented using splines, in
accordance with Theorem 1. The simplest case is the scaling
projector which can be expressed by solving min

a
‖arref−r‖2L2

such that Prefr(t) = arref, where rref is the reference curve
that defines the vector space. Its well known solution is
a =

〈rref,r〉L2

〈rref,rref〉L2
. Using (5), the corresponding spline projector

is specified by Pref = cref crefTΨ
〈cref,cref〉Ψ , which corresponds to the

solution obtained by the direct application of Theorem 1.

VI. APPLICATION: SEGMENTATION IN BIOIMAGING

In segmentation algorithms, it is advantageous if prior knowl-
edge about shapes can be integrated [5], [6], [21], for instance
in active contour models [1], [11], [22], [23], [24]. Our
proposed formulation of a projector allows us to compute the
distance between a shape and the vector space given by a
reference shape. Hence, we can penalize the cases where a
shape is distant from the given vector space defined by the
reference shape rref . To illustrate this concept, we consider
the example of spline-based snakes [25]. We denote by E(Ω)
the standard energy term that usually needs to be minimized
w.r.t. the snake-defining parameters described by Ω. The
minimization of E(Ω) attracts the contour of the snake towards
the boundary of the object of interest. We propose to add a
prior term to E that we define as Eprior = γ‖r − Prefr‖2L2

,
where γ ∈ R controls the contribution of the prior energy
term. We re-express Eprior as

‖r − Prefr‖2L2
= 〈r, (I − Pref)r〉L2

, (10)

where I denotes the identity operator and where we have used
the fact that, since Pref is orthogonal and hence, self-adjoint,
then (I−Pref) is also an orthogonal projector. We use (5) and
Theorem 1 to compute the projector. Then, (10) is developed
as

‖r − Prefr‖2L2
= cTΨ(I−Pref)c

= cT Ψ(I−C(CTΨC)−1CTΨ)︸ ︷︷ ︸
S

c = cTSc.

(11)

A. Similarity Transformation

Our solution is generic in the sense that it is applicable to
any subclass of the affine family. The case that shows the
most potential for biomedical segmentation problems is the
new formulation and closed-form solution that we provide for

the similarity transformation. In Figure 1 (top), we illustrate
how prior knowledge improves robustness in a segmentation
setting, where we compare the affine and similarity trans-
formation. We see that similarity-based shape-priors allow
for a substantial improvement over the affine transformation
of [14]. We also tested the robustness of the similarity prior
on simulated data where the gold standard is known (Figure 1,
bottom) including an image corrupted by Gaussian white noise
with SNR=0.44dB. The 19 rod-shaped cells are arranged in
clumps, which makes the segmentation more challenging. The
computed Jaccard indices (J) are reported in Table II. While
our experiments involved quadratic B-splines, we like to point
out that our framework is applicable to splines of any order.

initialization no prior affine prior similarity prior

initialization no prior similarity prior + noisesimilarity prior

Fig. 1. Segmentation of rod-shaped yeast cells [26] (real data, top; simulated
data, bottom). Several snakes are initialized (left) and an image-energy term
is optimized with and without prior (affine and similarity). The shape prior
corresponds to an approximate rod-shape. For the simulated data the gold
standard is known and the segmentation results are measured with the Jaccard
index (see Table II).

initialization no prior similarity similarity + noise
J 0.61± 0.17 0.69± 0.25 0.98± 0.4 0.93± 0.14

TABLE II
MEAN JACCARD INDICES ON SIMULATED DATA

VII. CONCLUSION AND SUMMARY

We provide an explicit closed-form formulation to compute
the minimal distance between an arbitrary query curve and a
vector space defined by a reference. Our solution is generically
characterized for landmark-based spline curves as a projection
operator once the basis of the vector space is defined. This
allows us to compute the continuous-domain distance as a fast
matrix-vector operation. It can be used to efficiently character-
ize shape priors for landmark-based segmentation models. As
application and additional contribution we provide a new direct
formulation and implementation of the similarity transform,
and we show how it robustifies segmentation algorithms by
the integration of prior knowledge. The spline-based solution
has the additional advantage that the proposed construction
can also be applied to curves that are defined by a set of
discrete points or landmarks, by simply interpolating them
with a linear B-spline. Our framework can be extended to 3D
tensor-product spline surfaces [27] by noting that the inner
product between spline surfaces can also be expressed as a
matrix-vector multiplication.
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