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Abstract
Sedentary lifestyles and bad eating habits influence the onset of many serious health problems.

Healthy behavior change is an arduous task, and requires a careful planning. In this thesis, we

propose that behavior recommenders can help their users achieve healthy behavior change. Such

a system should inspire its users with small, incremental and achievable goals. For this, it must

resolve a trade-off between two opposing objectives: help the user achieve a steady improvement

in target behavior, and avoid extreme goals that may injure or discourage the user. This is an

unprecedented challenge in the recommender systems research.

If the system understands the impacts of past interventions for behavior change, it can determine

its users’ behavioral responses to its own recommendations. This implies a specific data curation,

in which we not only measure people’s behavior but also deliberately introduce an intervention

to monitor its effect on people’s patterns. In turn, the system can use these existing users’

information to derive the right procedure for effective recommendations.

In this study we capitalize on this insight and develop InspiRE - our behavior recommender

framework. Through InspiRE we propose the following contributions: 1) We design the data

curation. 2) We develop the novel approaches for behavior profiling 3) We develop an evaluation

process for this novel type of recommender system, and also compare it with traditional, similarity-

based recommendation approach.

We curate a dataset that contains information of daily step counts and social intervention for

83 people. InspiRE successfully uses the observations from this dataset, and proposes recom-

mendations that are both effective and feasible. We also show that InspiRE can generalize to

other dimensions of well being: we demonstrate this through a dataset that contains the snacking

patterns of 73 people, who receive message-based interventions. We observe that InspiRE’s

recommendation strategy is in line with theories of behavior change.

Keywords: Behavior recommenders, time series analysis, clustering, data curation
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Résumé
Le mode de vie sédentaires et les mauvaises habitudes alimentaires peuvent influencer l’apparition

de nombreux problèmes de santé importants.

Changer pour un comportement plus sain n’est pas une tâche aisée, mais les recommandations de

comportement peuvent aider les utilisateurs à y parvenir. Un tel système a pour but de proposer à

ses utilisateurs des objectifs modestes, progressifs et réalisables.

Pour cela, il doit réaliser un compromis entre deux objectifs opposés : aider l’utilisateur à

atteindre une amélioration constante du comportement cible, et éviter de recommander des

objectifs extrêmes qui pourraient être contreproductif ou décourager l’utilisateur. Ces systèmes

représentent une branche encore méconnue des systèmes de recommandation.

Si le système peut évaluer l’impact des interventions passées sur le comportement de l’utilisateur,

il peut déterminer les réponses comportementales de ses utilisateurs à ses propres recomman-

dations. Cela implique un traitement de données spécifiques, dans lequel nous mesurons non

seulement le comportement des utilisateurs mais aussi introduisons délibérément une intervention

pour surveiller son effet sur leur profil. Ainsi, à son tour, le système peut utiliser les informations

des utilisateurs existants pour établir la bonne procédure pour des recommandations efficaces.

Dans cette thèse, nous développons cette idée et proposons InspiRE - notre framework de recom-

mandation de comportement. Grâce à InspiRE, nous proposons les contributions suivantes : 1)

Nous établissons des lignes de conduites pour le traitement des données. 2) Nous développons

de nouvelles approches pour la définition de profils de comportement 3) Nous développons

un processus d’évaluation pour ce nouveau genre de système de recommandation, et aussi le

comparons avec une approche basée sur les systèmes de recommandation traditionnelles.

Nous utilisons des informations sur le nombre d’enjambées effectuées quotidiennement et les

interactions sociales de 83 personnes. InspiRE utilise avec succès les observations faites sur

ces données et propose des recommandations à la fois efficaces et réalisables. Nous montrons

également que InspiRE peut être plus généralement appliqué à d’autres dimensions du bien-être :

nous démontrons cela à travers des données sur les habitudes alimentaires de 73 personnes pour

lesquelles nous proposons une intervention basée sur un système de messages. Nous observons

que InspiRE propose une stratégie de recommandation en adéquation avec les théories du

changement de comportement.

Mots-clés : Recommandation de comportement, analyse des séries temporelles, clustering, traite-

ment de données
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1 Introduction

1.1 Motivation and Challenges

Obesity, diabetes, and heart diseases are some of the most serious health problems of the modern

societies. Many studies and reports identify daily habits as the primary factors of these health

problems [OSH+10], and some even claim that being inactive is as dangerous as smoking.1 In

order to attain a healthier lifestyle, it is necessary for us to make changes in our daily habits and

behaviors. This is, however, an arduous task. The difficulty of such a behavior change lies not

in contemplating on the change itself, but in figuring out how to adopt the necessary behavior

patterns over time. As many previous exercising-related studies show, people may lose motivation

and relapse [CP14a], or injure themselves [CH02] because of exercising too much or arbitrarily.

In other words, behavior change requires not only significant effort but also a careful planning.

Recent advances in wearable sensor technology and research on activities of daily living (ADLs)

grant the possibility to track people’s behaviors and develop data-driven systems to assist people in

managing their personal well-being [Coo10b, DVD+02]. Successful realizations of such systems

pave the way for many potential applications, e.g., early detection of health risks and sending

alerts to caretakers and medical experts when necessary. Among these possibilities, we are

most excited about developing behavior recommender systems. This novel type of recommender

system can provide its users with recommendations, eventually helping them achieve a healthy

behavior change.

Users of such systems can receive suggestions to pair up with an exercise partner, or to follow a

day-by-day plan to increase their physical activeness. From a data analytical perspective, these

suggestions are essentially temporal ADL patterns generated from other users (interpersonal
recommendations) or from the past of the target user (intra-personal recommendations). Figure

1.1 conveys a conceptual case for such a recommendation: the system observes a user’s data

(purple line with no dashes), compares it to other patterns up to now, and decides the optimal

1See, for instance, http://www.bbc.co.uk/news/uk-wales-politics-18876880 and http://www.telegraph.co.uk/news/

health/news/12044585/Obesity-has-become-a-national-threat-like-terrorism.html

1



Chapter 1. Introduction

recommendation.

Figure 1.1 – The conceptual plot for recommendations. The recommender system analyzes the

pre-recommendation patterns of existing users (dashed lines) to generate the recommendations.

How would the system compute such optimal suggestions? In order to further familiarize with

this novel sort of recommendations, let us consider the first panel in Figure 1.2. Here we depict

the experience of John, a typical user of a behavior recommender system called InspiRE:

John is inactive and overweight. He wants to become more active so that he can

avoid many health issues. He had received a wearable activity tracker as a gift from

his wife, and found out that WHO suggests walking 10,000 steps per day for a

healthy life.2. Unfortunately within three days, he injured himself by going from

500 steps per day to 6500 steps per day. He is naturally worried: he does not know

how to become more active without getting injured.

But then he discovers a system called InspiRE, which promises him safe behavior

changes. He installs the system, which informs him to follow his current activity rou-

tines as naturally as possible. On the 7th day, he receives a pattern recommendation:

2The World Health Organization (WHO) states that 10,000 steps per day is a recommended level of activeness for

adults aged 18-64 years: http://www.who.int/dietphysicalactivity/factsheet_recommendations/en/
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a plot which shows a series of daily step goals he should achieve from that point

onward. The recommendation is sophisticated, as it gives details on which days to

rest, maintain or increase his activeness. He takes this suggestion, which turns out to

be achievable for him: Two weeks later, he finally manages to walk 10,000 steps per

day. His success story will be an inspiration for others.

Parallel to this scenario, an optimal recommendation is the one that realizes the principles of

well-established theories of behavior change. These theories suggest that John can best achieve

the behavior change if he followed suggestions to pursue small, incremental and achievable goals

[Ban86, NC02, PV97].

For such suggestions, it might be tempting to consider a traditional recommender system. These

systems exploit similarities between users and recommend items based on their like-mindedness.

They can simply track their users’ activity patterns to employ this strategy. Had we adopted this

approach, we’d use the behavior patterns of like-minded users to generate our recommendations

to John. In that case, we would recommend the orange line (the half-dashed line with an average

of 3000 steps) depicted in Figure 1.1. But, this suggestion obviously will not work for behavior

change: a sedentary person like John can easily follow other sedentary people’s activity patterns,

but then he cannot achieve his goal of behavior change. The behavior recommender should deliver

effective recommendations that help John achieve a steady improvement in physical activeness.

On the other hand, such recommendations should also be feasible, as otherwise they may set

extreme goals that can injure or discourage its users. For example, in Figure 1.1 we convey John

as a user who is not used to walking 10000 steps a day. Had the system suggested John the green

line (with 10000+ steps) and he tried to follow it, he would have had to rapidly increase his

activities by 7000 steps. Such a suggestion may lead to severe injuries.

From these two conceptual examples, we can understand that the system should make a critical

trade-off between the effectiveness and feasibility of its recommendations to any given user. The

behavior recommender system thus must model its users’ innate capabilities for behavior change,

but a mere collection of behavior patterns does not lend itself to this crucial information.

If the system understands the impacts of past interventions for behavior change, it can determine

its users’ behavioral responses to its own recommendations. The system can acquire this under-

standing if it observes successful and failed attempts for behavior change. The solution to our

conflict is thus a specific data curation, in which we not only measure people’s physical activeness

but also deliberately introduce an intervention to monitor its effect on people’s patterns. We can

choose this intervention as pairing up people with an exercise partner, or sending them daily

messages to motivate for exercise. Using this curated dataset, the system can exploit the behavior

patterns that worked in the past, and avoid the ones that did not. To recommend activity patterns

to a novel user, the system will first find people who used to follow similar activity patterns as

this user. Then, among those people, it will choose those who responded to the intervention and

improved their activity patterns. This would lead the system generate the ideal recommendation
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depicted as the blue line in Figure 1.1, whose initial (dashed) values are similar to the user’s, but

nevertheless increases steadily.

Using this insight, the system will realize the flow of events in the second panel of Figure 1.2:

Unbeknownst to John, InspiRE had already been curating data from other users

and categorizing them based on their behavior patterns and their responses to its

recommendations in the past.

InspiRE considers Charlie and Mary, whose behavior patterns had been very similar

to John’s, and then both of them received recommendations. InspiRE identifies that

Charlie relapsed to a less active lifestyle, but Mary managed to increase her activeness

and switched to a more active behavior pattern without getting injured. Since Mary

was similar to John in the beginning, the system decides that Mary’s activity pattern

will be an ideal candidate to guide John to safely increase his activeness.

The characters Charlie and Mary in this scenario actually represent groups of people who have

distinct behavioral responses to recommendations or interventions. Charlie represents what we

may call non-responders and temporary responders, whereas Mary represents responders. A

useful behavior recommender analyses the differences between these profiles, particularly their

temporal dynamics. As a result, the recommendation will be the aggregate of patterns which

satisfies the trade-off between effectiveness and feasibility of the behavior change.

1.2 Research Agenda

In this thesis, we capitalize on these insights and respond with InspiRE, a novel behavior

recommender system framework. Specifically, we design and build its analytical components in

order to address the following key research challenges:

1. Data Curation. To generate the optimal recommendations, the system must use the

examples of proven behavior change. There are generally no annotations in sensor-based

data to indicate whether people are maintaining or improving their levels of activeness

towards such suggestions. Many existing methods rely on such annotations [DBPV05,

GER15, SJS05], and therefore are impractical in our case. Given these constraints, what

information should the system collect besides pure observations of activities? And what

should it use to measure the usefulness of the potential recommendations?

2. Behavior Profiling. Behavior recommenders must make sense of ADL routines of their

users. The temporal characteristics of these routines are so diverse that merely comparing

the average levels of activeness will fail to capture the distinctions between them [EP09,

FDRK12]. Furthermore, given the trends in wearable technology, the system must also
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leverage sensor-based data to extract useful behavior patterns. What is the suitable approach

to obtain common behavior patterns from raw sensor data?

3. Methods of Evaluation. The recommendations must be both safe to perform and useful

enough to improve the users’ well-being. Some proven behavior changes will be too de-

manding for a new user. Furthermore, inactive users should never receive recommendations

based on other like-minded, inactive people. What is the appropriate strategy to deliver

these recommendations, and how can we evaluate these recommendations?

1.3 Main Contributions

In this thesis, we address these unmet research challenges with InspiRE - our behavior recom-

mender framework. With InspiRE, we propose the following contributions:

• InspiRE’s design is inspired from Social Cognitive Theory [Ban86], Trans-Theoretical

Model [PV97], and Flow Concept [NC02]. We show that, with our data curation strategy, it

is possible to generate suggestions for small, incremental, and achievable behavior changes.

• We have proposed a methodology to infer broad patterns from wearable sensor data via

time series clustering [YZP14, YP16]. In this thesis, we extend this proof-of-concept

method, validate its computational complexity, and obtain behavior profiles of users. These

profiles capture the temporal dynamics of users’ patterns (Temporal Profiles), as well as

their behavioral responses to interventions (Intervention Profiles).

• Since this system is novel, it is yet another challenge to define the methods of evaluation.

We propose and report three levels of validation that correspond to the methods in profil-

ing and recommendation. We also test the system with varying granularity in data and

additional contextual information such as user demographics.

This thesis covers the data curation, analytics and evaluation for InspiRE, while the sensor setup

is out of scope. As a matter of fact, we designed the system to be able to work with activity data

from any type of sensor, as long as it is in time series format. For the sake of clarity throughout

the study, we demonstrate the capabilities of the system with an activity dataset of steps, and a

nutrition dataset. Secondly, we leave persuasion strategies, the user evaluation and acceptance of

recommendations as a future work.

1.4 Thesis Structure

We organize this thesis as follows:

• In Chapter 2, we review the definition of behaviors, theories of behavior change, persuasive
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technology, recommender systems, and behavior profiling, followed by a summary of our

contributions.

• In Chapter 3, we summarize the datasets used throughout the thesis, and a preliminary

study that explores the relation between sensor data and well-being.

• In Chapter 4, we present FactorHabiTS, our framework to process wearable sensor data for

profiling.

• In Chapter 5, we show how to curate the datasets so that InspiRE’s methods can correctly

function.

• In Chapter 6, we elaborate and demonstrate the analytical engine of InspiRE, including the

behavior profiling, recommendation, and evaluation methods.

• In Chapter 7, we review the contributions of our thesis, as well as enumerating several

directions for future studies.
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Figure 1.2 – The scenario that illustrates how InspiRE helps John become more active.
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2 Background

In this chapter, we review the background for behavior recommender systems. The background

consists of a wide range of topics, from the concept of behavior and behavior change theories, to

recommenders and activity analysis systems.

2.1 What is a Behavior?

In the introduction of this thesis, we revealed that a behavior recommender system must have

its foundations on theories about behavior and behavior change. We refer to two of the most

comprehensive definition of a behavior:

Behavior is the the response of the system or organism to various stimuli or in-

puts, whether internal or external, conscious or subconscious, overt or covert, and

voluntary or involuntary. [MK14]

A behavior is a relation that consists of behavior actor, operation, interactions, and

their properties. [Cao10]

Performing a behaviour in a repetitive, consistent manner leads to forming habits [And03,

LJPW10]. Habits help us automate our behaviors in order to free the mental resources for other

tasks. On the other hand, habit formation makes it more difficult to perform behavior change (see

Section 2.3 for the extensive review of behavior change theories).

In this thesis we are interested in behaviors that can be quantified with sensors and have influence

on well-being.
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2.2 Quantifiable Information for Behavior Recommenders

A behavior recommender system can only deliver recommendations based on the types of

behaviors it can track in a continuous manner. The tracking of health-related information can be

roughly divided into two categories: External and internal body measures [Sma12b]. Both of

these categories have their corresponding sensors.

The external measures can be grouped under the categories of Nutrition, Exercise, Sleep and

Stress (i.e., NESS). The market is now being populated by many affordable products (sensors

and software) that support the monitoring of NESS such as Fitbit, BodyMedia, EM Wave, etc

[Sma12b]. These sensors typically collect temporal information on heart rate, galvanic skin

response, number of steps, calorie expenditure, the distribution of active and sedentary periods,

and so forth. The level of details provided by these sensors also have a rich variety, allowing both

advanced users and perpetual intermediates to benefit. These kind of sensors are also generally

non-invasive, and hence can be utilized throughout the day.

While it is known that the external sources of measurement have relations with the internal

metabolism (such as stress having strong effects on biochemicals in blood and nervous systems

[Sma12b]), detecting the underlying causes of some health problems (such as diabetes and cancer)

may require a direct access to internal body measurements. The data from internal measurements

can provide up to hundreds of variables about cholesterol, sugar and acid level, and hormonal

measures. These variables are used to interpret the status in cell system, sugar system, hormone

system, liver and kidneys, cardiovascular system, and inflammation [Sma12b]. For even further

investigation, one can survey the information related with human genomics, and even a complete

systems biology profiling. The measurements of these kind of information can be achieved via

biomarkers in blood, saliva, and stool [Sma12b].

There are two main issues in internal body tracking and genomics. First, the utilization of related

sensors requires a great effort from the user, and some users can be sensitive about the kind of

information collected (at least, more than the external body measures). As such, it might be

difficult to have continuous measurements of the data. Secondly, the collected information can

require an expert in the field to interpret.

In summary, the survey on self-quantification suggests that a user-friendly behavior recommender

system should be able to provide content that is mainly related with external body measures.

Nevertheless, further studies may yield more accessible representations of internal body measures.

2.3 Theories for Behavior Change

The first and foremost task in designing a behavior recommender system is to identify the optimal

strategies for healthy behavior change. Fortunately, studies on behavior change prove to be

abundant sources of inspiration. These studies investigate many aspects of human behavior,
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including the stages of habit formation [PV97], action possibilities [Gre94, SMCUU07], factors

associated with successful change [KWM+97] and the conditions that maximize a person’s

engagement in specific tasks [WTR94]. Among them, two well-established theories are the most

relevant to our study: Trans-Theoretical Model (TTM) [PV97] and Social Cognitive Theory

(SCT) [Ban86].

Trans-Theoretical Model (TTM) [DPF+91, PV97] models the behavior change as a progression

through six distinct stages. These stages are called Precontemplation, Contemplation, Prepa-
ration, Action, Maintenance and Termination. A person’s involvement gradually increases at

each successive stage until the Termination stage, where the person is certain that he will not

relapse to the old habit. Each stage requires different strategies to support the behavior change.

For instance, a person in Preparation stage may benefit from advices on how to start the first

steps of action. An earlier user study called Fish’n Steps [LML+06] uses this theory to measure

the success of their system.

Social Cognitive Theory (SCT) [Ban86] relates a person’s learning and actions with social

interactions and other environmental influences. In the context of behavior change, SCT states

that a person can remember and apply the sequences of event that lead to the behavior change

of other people. Consequently, each person is both an agent and a responder to change. Based

on SCT, successful strategies for behavior change should involve people interacting within a

social environment. Despite its useful guidelines, to our best knowledge, this theory has not been

explicitly applied yet in computational studies.

From TTM and SCT, we derive the following guidelines towards designing recommenders for

behavior change:

• Changes occur in distinct stages such as contemplation, planning, action, and maintenance.

Every stage may require different strategies for intervention.

• Each stage of behavior change has different requirements, so a behavior recommender

should avoid one-size-fits-all approaches in generating recommendations. Instead, sys-

tem should categorize people with the available data, and aim to generate personalized

recommendations.

• To maximize the sustainability of change, the system should make sure to set small,

incremental, and achievable goals for its users.

• People are subject to reciprocal determinism in behavior change: they can be both agents

and responders for change. Thus, the system should help its users receive positive influences

from each other’s achievements in behavior change.

Behavior recommenders could very well use these ideas to model the innate capability of a user

to carry out and sustain behavior changes with physical activities. To our best knowledge, this

has never been implemented before this study.
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2.4 Engaging Users for Behavior Change

2.4.1 The Concept of Flow

Flow [JTMS01, MJ99, NC02] is a concept from positive psychology. With an insight that

describes a good life as "...one that is characterized by complete absorption in what one does"

[NC02], the concept of Flow investigates the relationship between the difficulty of tasks and the

perceived capabilities of a person. The concept of flow is well-studied in many areas. Sample

studies include the investigation on the dimensionality and correlates of flow in human-computer

interactions [WTR94] and the assesment of flow in physical activities [JE02]. The flow theory

states that a user’s engagement is maximized when the difficulty of performing a task matches

with a person’s capabilities. In the realm of recommendations, this can be translated to the

balance between a person’s capability to perform behavior changes and the difficulty to perform

the recommended activities (see figure 2.1).

Figure 2.1 – Application of the Flow theory to behavior change tasks

In terms of action opportunities and capabilities, the concept of flow may share some parallels

with the concept of affordances. The notion of affordances deals with modeling interfaces or data

representations based on perceived action opportunities mediated by action capabilities, and it is

well studied in various literature such as HCI and robotics [Gre94, KN12, SMCUU07]. On the
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other hand, the flow concept deals more with the effects of the balance (or lack thereof) between

opportunities and capabilities on the level of engagement, absorbtion, satisfaction, etc. of the

users in performing a certain action, task, etc.

2.4.2 Persuasion and Persuasive Systems

Alternative or complementary to recommendations, some studies promote physical activities

and healthy habits through persuasive technologies. Such approaches draw inspirations from

the six principles of persuasion stated by Robert Cialdini [Cia01]: reciprocity, commitment and
consistency, social proof, authority, liking, and scarcity. A particular example is the Fish’n Steps

application [LML+06], which links a user’s daily step count to the growth and activity of an

animated virtual character (a fish in a tank).

1. Reciprocity - People tend to accept the requests of people who first do them a favor.

2. Commitment and Consistency – If people commit, orally or in writing, to an idea or goal,

they are more likely to honor that commitment because of establishing that idea or goal as

being congruent with their self-image. Persuasive systems may implement this principle

by making their users pledge for certain goals (e.g., "I will walk 10,000 steps today!")

3. Social Proof - People will do things that they see other people are doing. In the case

of physical activeness, this can be implemented with messages and visualizations which

convey other people steadily increasing their level of activeness up to 10,000 steps.

4. Authority - People will tend to follow suggestions from authority figures. In the case of

physical activeness, this can be implemented with messages like: "Experts in World Health

Organization recommends to walk 10,000 steps per day for a healthy life"

5. Liking - People are easily persuaded by other people that they like. A recommendation

from a loved one or an attractive person has a higher likelihood to persuade the target user.

6. Scarcity - Perceived scarcity will encourage people to take action. For example, offering

gifts for a limited time in exchange of walking 10,000 steps.

The impact of the feedback ultimately depends on using the appropriate strategy of persuasion.

Below are some strategies employed by prior studies:

1. Power of Praise [Fog02]: Praise with different framing makes it easier to persuade people.

For instance, the message “You have done great! Walk 400 steps more to reach your goal”

works better than “You lack 400 steps towards your goal”.

2. Negativity Bias [KH87]: People pay more attention and give more weight to negative

than positive information. So when delivering feedback, we should be careful and do not
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over-emphasize the negative aspects of a person’s current situation. Persuasive systems

should put more concentration on positive sides.

3. Humor Effect [Sch02]: Humorous items are more easily remembered than non-humorous

ones. In order to draw the users’ attention to the relevant information, studies advise to

add some humor, e.g., “Wow, with your lifetime number of steps, you can walk around the

Niles river!”

4. Rhyme as Reason, or Eaton-Rosen phenomenon[MT00]: A statement is judged as more

truthful when it is rewritten to rhyme. We see that, for instance, the public transportation

system in Lausanne, Switzerland uses this technique very frequently: “Vélo à bord? Je lui

prends son titre de transport” (meaning: "Bringing bicycle on board? I buy it’s ticket for

transport")

5. ”Maybe Later” [Fog02] “Maybe Later” works better than “no”. It provides psychological

hints. “You should not eat that dessert” vs. “Maybe you should take that dessert later”

6. Using words to simplify complex relations [TBV12a]: In one of HCI studies, the re-

searchers presented to the participants the correlations between their habits and their

weights. This information made the participants more engaged in losing weight.

7. Identify the susceptibility towards persuasion [KLS10, KRMA12]: In one user study,

researchers measured the susceptibility of the participants to different types of persuasion

(reciprocity, scarcity, authority, commitment, consensus, and liking) to reduce their snack-

ing. They have found out that when message wordings are tailored based on participants’

most susceptible persuasion strategy, they are more likely to reduce snacking than using

random persuasion strategies.

2.5 Recommender Systems

Recommender systems assist the difficult task of decision making in our everyday tasks [RV97].

They are ubiquitous technologies in product or service recommendations. In these systems, the

profiling stage is essential to generate personalized product recommendations. Systems can infer

profiles from user ratings, online behaviors, and product information. We can broadly categorize

profiling methods as user-based and item-based. User-profiling approaches analyse user’s past

decisions as well as the behaviors and decisions from similar users [ABG+97]. Item-profiling

instead analyses the properties of previously rated/bought items to recommend similar items for

a given user. [LSY03]. One can also employ utility functions to represent users’ preferences

with varying levels of priority. Such preferences may originate from both items’ and users’

characteristics [AT05].

Besides user and item profiling, recommender systems can also be categorized based on the

alternatives to obtain such profiles [AT05]. In cases where data sparsity is an important limitation,

many studies prefer to treat this task as a matrix decomposition problem, i.e., collaborative
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filtering. The variants of this approach, such as Singular Value Decomposition [GR70], aim to

obtain item or user profiles as lower rank approximations of rating patterns. Extensions of such

methods can accommodate temporal relations [DL05] and contextual information [VMO+12].

Many others use probabilistic modeling to capture complex relations between users and items. For

instance, a content-based recommender system treats recommendation as a sequential decision

problem, and solves it with a Markov Decision Process design [SBH02]. Probabilistic modeling

is also popular in hybrid approaches where both collaborative filtering and content filtering are

involved [Bur02]. One notable example is the three-way aspect model [PPL01], which analyzes

co-occurrences among users, items, and item content.

Despite the differences of methods (i.e., matrix-based vs. probabilistic), the key characteristic in

traditional recommenders is nevertheless the same: mine the past data to elicit preferences, and

use these preferences to maximize the likelihood that a user prefers thus buys certain products

from the system. This typically leads to the designs that generate better recommendations based

on similarities, i.e. either from like-minded people and/or items that have similar characteristics

to the ones the given user has already bought or rated. However, the objective of a behavior

recommender is different: to maximize the likelihood that a given person becomes more active.

The recommendations should be both safe to perform and useful enough to increase the users’

activeness. A similarity-based recommendation strategy will be particularly ineffective for

inactive users, since such recommendations would be generated from like-minded, inactive

people.

Another topic of interest is the evaluation of recommender systems. One alternative is to use

indices like F-1 score (see Appendix A.4) to compare users’ actual item ratings and the rating

predictions of the system. The other alternative is to measure or estimate the level of acceptance

of the recommendations. Technology Acceptance Model (TAM) [Dav86] tells us the relation

between perceived usefulness, usability, and the adoption rate of a certain technology. This model

has been extensively studied and validated on recommender systems. For instance, Hu and Pu

proposed a personality-based recommender system, and then investigated the acceptance issues

of such a system [HP09, HP10]. TAM model has a significant implication on the evaluation of

recommender systems: Increased levels of perceived usefulness and usability not only improves

the adoption of a behavior recommender system, but also increases the chances that its users will

consider applying its recommendations to their daily routines.

2.6 State of the Art for Behavior Profiling and Recommendation

2.6.1 Behavior Profiling

The analytical building blocks of a behavior recommender system has strong parallels with many

other research topics in activity analysis. The most prominent of these topics can be categorized

as Activity Recognition. The objectives of activity recognition are to model human behavior and
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make predictions for the future activities of sensor users. Such systems have a wide range of

applications, including smart homes, emergency detection systems, and location-oriented systems

(e.g. traveling recommendations).

In activity recognition and analysis (AR/A) studies, we find behavior profiling as an analogy to

the user and item profiling of traditional recommenders. While recommenders use profiling to

represent common rating patterns and to deliver optimal recommendations, AR/A systems use

profiling to represent common behavior patterns and to improve the intelligence of the environ-

ments in which people live and work [CK14]. However, similar to the traditional recommenders,

we observe that AR/A systems typically treat profiling as either a probabilistic modeling or matrix

factorization task.

Some typical probabilistic approaches for behavior profiling use Bayes classifiers, Markov Logic

Networks [GER15], conditional Random Field Models and Hidden Markov Models [CPV14,

Coo10b, NH12]. Topic modeling, a technique adapted from document-word analysis for mining

semantic data, is another alternative for probabilistic modeling of behaviors [FGP14, CdIAK14].

Some studies even rely on more complex alternatives such as Hidden Semi-Markov Model

[DBPV05, KEK10] to extract behavior profiles with variable time granularities.

Alternative to probabilistic modeling approaches, some studies adapt collaborative filtering

methods to obtain user profiles in a model-free fashion. This straightforward adaptation showed

some promise in location and proximity data such from mobile phone [ZLN13]. One notable

example is the “Eigenbehaviors” study that employed Principal Component Analysis [EP09].

This strategy decomposes the data into eigen-vectors, and allows each user to be modeled as a

weighted combination of such eigen-vectors. Computer vision studies [WY13] inspired activity

analysis literature to apply robust matrix factorization methods [YZP14] and handle the noise in

exercise datasets from wearable sensors accelerometers.

The design of AR/A methods depend greatly on the data collection procedure. Initially using

manually logged information [SJS05], AR/A methods also exploited the advances in sensor

technology to deliver systems that use environmental sensors [CdIAK14, Coo10b, DBPV05,

RCHSE11a], and mobile sensor data such as location and bluetooth [ZLN13, FGP14]. A further

challenge is the annotation of the collected data. Earlier approaches were typically tested on

presence, location and duration information collected from indoor sensors [WA05]. Thus, it

was easy to designate a set of probabilistic states, each of which would correspond to a distinct

activity pattern. However, adapting the same approach to physical exercise or outdoor location

patterns proved to be more difficult - some studies use clustering as a pre-processing step [SJS05],

or employ voting to find the best-fit model [RCHSE11a].

One potential way to handle the diversity of sensor data is to employ a taxonomy of ADLs. One

certain taxonomy divides activities into three broad categories [CCAY13, NHdlC15]: Basic ADLs
(BADL) such as bathing, brushing teeth, dressing, using toilet, eating and drinking, sleeping;

Instrumental ADLs (IADL) such as preparing meals, preparing drinks, resting, housekeeping,
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using a telephone, taking medicine; and ambulatory activities such as walking, doing exercise,

transitional activities, and stationary activities. Some studies determine data labels using a sample

of activities from this taxonomy and other sources such as Barthel’s Index [MB65]. Such methods

then use setups with multiple sensors [FVN10] to recognize these activities. These approaches

obtained high classification rates with a limited number of BADLs and IADLs. The taxonomy

gives a coarse overview of the activities, but much more detailed work needs to be done to infer

fine-grained information (such as calorie expenditure etc.), especially in the context of physical

exercises. Lastly, taxonomy-based systems depend on the quality of annotation in the training

datasets. Considering the vast amount of data required to train the state-of-the-art methods, this

requires significant manual effort.

Some very recent studies exploit the potential of location and movement patterns for applications

such as movie recommendations [CPCP13]. However, given its analogy with user-item profiling

and the variety of existing methods, it is surprising that behavior profiling has never been

considered in recommending behavioral changes. This might be because many of the methods,

especially optimizations in probabilistic modeling approaches [Moo96] require expert knowledge

to work in some well-controlled settings. For more realistic settings, there is a need of a method

to identify frequently occurring behavior patterns without expert knowledge and ground truth.

Another reason is that the research in behavior recommenders is in its early stages. We now

proceed to discuss behavior recommenders in detail.

2.6.2 Behavior Recommendations

There is an ever-increasing demand for adaptive, preventive interventions in the medical domain

[CMB04]. To our best knowledge, there are only few studies who responded to this demand and

proposed designs for a behavior recommender [FDRK12, SJC15].

For instance, HealthAware system [SJC15] relies on manually specified rules, which were derived

from some general guidelines developed by Centers for Disease Control and Prevention 1. This

approach offers no means for personalization or adaptability to changing conditions - such

guidelines would only help the system identify what to improve.

The Intrapersonal Retrospective Recommender [FDRK12] follows a more data driven approach:

it identifies stable patterns in users’ personal histories, and selects the patterns that have the largest

impact on users’ goals as recommendations. Since this approach abandons information from other

users, it resembles to content-filtering methods in traditional recommender systems. A significant

drawback is that the recommended activities would never be novel. Thus the recommendations

will never be helpful to those who never succeeded to improve his well-being in the past. This

study mentions the high diversity of habits as a reason to discard the potentially useful patterns

from other people. Research on AR/A has viable solutions to this diversity problem by identifying

structures in behavior routines [EP09, FGP14, YZP14], but none of them were tested in behavior

1http://www.cdc.gov/
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recommender systems prior to this study. Lastly, the existing studies evaluate their systems

only with the perceived usefulness reported by the users [FDRK12, LML+06, SJC15]. It is also

necessary to know if the recommendations have any significant influence on the daily routines of

a person in a positive way.

Finally, it is noteworthy to consider the concept of Just-In-Time Adaptive Interventions (JITAI).

JITAIs intend to intervene the patients and provide support with an accurate timing by detecting

health states with potentially elevated vulnerability [NSST+14, PRA+09, ROJM08]. JITAI

designs aim to provide many types of supports: mental illness mangement, smoking cessation,

weight management, and so forth [BZKB+13]. These interventions can be specified by experts or

initiated by the patients, and delivered through mobile applications and text messages [FKR+11].

Despite these enthusiastic design attempts, the research on JITAIs are still on their early stages,

and thus need further evidences and theoretical grounding [DMCY13]. Many such designs still

rely on manual inputs from users and fixed rules specified by medical experts. Thus there is a

need to integrate sophisticated methods to JITAIs in order to generate automated interventions.

2.7 Summary

Building a behavior recommender requires a thorough analysis of existing studies from a variety

of research fields. In this survey, we investigated theories of behavior change, profiling methods in

traditional recommender systems, behavior profiling methods and some pioneer studies towards

behavior and lifestyle recommendations.

First, by analyzing psychology studies, we found two major theories of behavior change to

ground the inspirations for our analytical methods: TTM, SCT, and Flow Concept. These theories

recognize the difficulty of changing habits, and help us accurately frame the task of behavior

recommendation as delivering personalized, small but incremental, and socially influenced

suggestions. Second, we have analysed the state-of-the-art advances in traditional recommender

systems, particularly, the user and item profiling methods. We note that traditional systems for

item recommendations typically employ strategies that optimize their recommendations based on

like-minded people. But a behavior recommender should not recommend patterns of inactive

people to inactive people.

Next, we surveyed behavior profiling studies, which employ methods with high levels of sophis-

tication, but requires expert knowledge and annotations to predict future activity sequences of

people. We also note it is rather a novel challenge to process sensor-based time series data in

the context of behavior recommender systems: One of the early systems resorts to fixed rules to

determine when and what to recommend [SJC15]. Another study implements the intrapersonal-

retrospective strategy [FDRK12]: for a given person, only his own history of stable patterns are

considered to generate recommendations. Without an access to sophisticated AR/A methods,

these systems either compromise personalizability or recommendation novelty. Both alternatives

hinder the usefulness of behavior recommendations. Lastly, there are studies that design JITAIs
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[NSST+14], who aim to detect vulnerable health states of people in order to intervene at the right

time and with the right measures. A careful analysis on these studies reveals that there is much to

be done for a viable JITAI framework, especially towards their data analytical components. For

all such efforts towards behavior recommenders, there is a further need to justify the designs with

existing theories of behaviour change.

The research on behavior recommenders has the following impacts:

• Supporting Persuasive Systems and User Studies: Behavior recommendations can en-

hance the acceptance of the persuasive systems applications we reviewed in Section 2.4.2.

Specifically, users’ trust and perceived usefulness of the system will greatly improve when

the system can generate accurate and useful recommendations. Based on the technology

acceptance model we reviewed in Section 2.5, this eventually leads to an increased adoption

of the technology.

• Predictors of Successful Behavior Change: Long term deployment of behavior recom-

menders will generate large amount of data with rich information about users’ interactions

with recommendations. This in turn can help researchers find new factors that influence

the success of behavior change and overall well-being of wearable sensor users.

• Supporting Emergency Detection Systems with Proactive Measures: Recent years wit-

nessed a surge of systems that detect health-related emergency conditions (such as heart

attacks and falls [SZD+15]) and subsequently send alerts to caretakers. Such systems can

easily be complemented with behavior recommenders, which help users adopt preventive

measures against many potential diseases.
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3 Preliminaries and Common Material

3.1 Used Datasets for Experiments

Throughout the thesis, we have used various datasets to demonstrate our contributions. In this

section, we briefly mention each one of them, and refer the user to the relevant chapters. Notice

that they are curated in very different manners. We postpone the justification of these differences

in further chapters of the thesis.

• The Reality Mining Dataset [EPL09] is collected between 2004 and 2005 from a longi-

tudinal study in MIT, Boston. It includes 94 users (students, professors and staff). Each

participant was given a mobile phone with several pre-installed pieces of software to record

various information, including call logs, Bluetooth devices in proximity, cell tower IDs,

application usage, and phone status (such as charging and idle). The Reality Mining dataset

has been used in many studies. For example, Zheng et al. [ZN12a] use probabilistic

reasoning techniques to discover behavior patterns and group users. The dataset does not

include annotations of user daily activity. We use this dataset in our prelimiary study in

Section 3.2, where we show the link between sensor-based activities and actual well-being

reported by sensor users.

• YELP Academic Dataset 1: YELP dataset contains approximately 2.3 million ratings from

70,000 users for 15,000 businesses. In this study, we analyse the 2014 version of this

ever-growing dataset, which includes the ratings within the time period from 01-02-2005

to 28-01-2014. Similar to other rating datasets, the YELP dataset is very sparse: there are

402 out of 3284 days with no records of ratings or reviews. On average, each user has

33.69 ratings (minimum 1, maximum 3286). We use this dataset to validate the scalability

of our sensor data processing method as explained in Chapter 4

• YQZ Dataset: This dataset contains the daily steps counts of 1000 participants of a social

exercising campaign, who wear different sensors to measure their level of activeness. The

1https://www.yelp.com/dataset_challenge
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dataset also contains the gender, height, weight, exercise group id, company id, and age

(all anonymized). We use this dataset to validate our sensor data processing method as

explained in Chapter 4

• HealthyTogether Datasets: This dataset was curated to discover common physical activity

routines of people and analyse the effects of social interventions on the behavior patterns.

More specifically, it was curated via a longitudinal user study that involved a wearable

sensor (Fitbit) and our custom mobile application called HealthyTogether. The dataset

contains calorie expenditure and steps each participant to the longitudinal study.

In this thesis, we used two versions of this dataset:

– HT-48, the original one, curated to validate our sensor data processing method as

explained in Chapter 4;

– HT-83, where we expanded the dataset to 83 users to validate our recommender

system as explained in Chapter 6

• SNACK dataset: This dataset contains daily, self-reported number of snacks of a set of

people. During the data collection period, these people received messages to motivate

them to cut their unhealthy snacks. We use this dataset in Chapter 6 to show that we can

generalize our recommendations beyond physical activities to other dimensions in the four

pillars of well-being, i.e., NESS (See Section 2.2 for a detailed review of these pillars.)

3.2 Preliminary Study: Defining the Relation Between Sensor-based
Activity Data and Well-Being

Pervasive healthcare systems provide automated wellness monitoring [KPG03] and activity

suggestions to improve the well-being of the user. The user is equipped with various sensors,

which collect information on users’ metabolism, activity, location, and so on. The ever-increasing

number of diseases and deaths due to inactivity 2 strongly indicate that such systems should

become an indispensable component of our lives. There are already various studies which

investigate the goals that should and can be achieved through such systems, such as maintenance

of physical health [DAC+09, TBV12a, TLR+07, ZPSB04], and providing the means for self-

monitoring [LDF11, MKK+12, TBV12a, TLR+07].

We explored two issues in our preliminary studies. First is to find the activity patterns of users

using the information collected from mobile devices. Second is to investigate how daily activities

are correlated to people’s satisfaction from life, measured through survey data. We adopt the well-

known Reality Mining dataset [EPL09] in our study, through which we extract daily activities

and apply Structural Equation Modeling (SEM) to find their relations with reported levels of

satisfaction.

2see http://www.bbc.co.uk/news/uk-wales-politics-18876880
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The Reality Mining Dataset [EPL09] is collected between 2004 and 2005 from a longitudinal

study in MIT, Boston. It includes 94 users (students, professors and staff). Each participant was

given a mobile phone with several pre-installed pieces of software to record various information,

including call logs, Bluetooth devices in proximity, cell tower IDs, application usage, and phone

status (such as charging and idle). The Reality Mining dataset has been used in many studies.

For example, Zheng et al. [ZN12a] use probabilistic reasoning techniques to discover behavior

patterns and group users.

High-Social

(P (u, t ) > P̄u)

Low-Social

(P (u, t ) ≤ P̄u)

Phone On,

Location = Home
HomeSocial

HomeRest /

Sleep*

Phone On,

Location = Work
WorkSocial Working

Phone On,

Location = Elsewhere
LeisureSocial LeisureRest

Phone Off from

Mid-night to 8AM
Sleep

Phone Off from

8AM to Mid-night
PrivateActivity

Table 3.1 – The rules to estimate the activities for a given user u. (*): Being at home from 8PM

to 8AM without any SMS or voice call action is labeled as Sleep )

The dataset do not include annotations of user daily activity. We use communication information

(the number of SMS and voice calls every hour), proximity information (the number of devices

discovered in bluetooth scans every 5 minutes) and location information (hourly recorded as home,
work, elsewhere) in the dataset to estimate the activities. For this, we consider intrapersonal data,

i.e., we compare the proximity information of a person in a given hour with his own average

hourly proximity information. For a given time t , P (u, t ) denotes the number of bluetooth devices

in the proximity of the user u, and P̄u denotes the average number of bluetooth devices discovered

hourly by the same person. If P (u, t ) > P̄u , we label the user in high-social mode, otherwise he is

labeled in low-social mode. We summarize these activities (8 in total) in Table 3.1. According to

our estimation method, an average student spends 7.4 hours on sleep, 6.8 hours on work, 1 hours

on break in work (WorkSocial), 7.3 hours on leisure outside (LeisureRest and LeisureSocial),
and 1.5 hours on other activities (HomeSocial, HomeRest, PrivateActivity). These numbers are

similar to the findings in 2012 Sodexo University Lifestyle Survey report 3.

We also include four communication-related features: the number of SMS, number of phone

calls, proximity (proximity count and proximity time) information. We also notice that users’

activities are very different between weekdays and weekends, so we calculate them separately.

Thus we obtain 24 features for activities on weekdays and weekends for each user as shown in

3http://uk.sodexo.com/uken/media-centre/press-releases/university-lifestyle.asp
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Table 3.2.

Id Activity Features

1-2 HomeSocial {weekday, weekend}

3-4 HomeRest {weekday, weekend}

5-6 Sleep {weekday, weekend}

7-8 WorkSocial {weekday, weekend}

9-10 Working {weekday, weekend}

11-12 LeisureSocial {weekday, weekend}

13-14 LeisureRest {weekday, weekend}

15-16 PrivateActivity {weekday, weekend}

17-18 BluetoothDeviceCount {weekday, weekend}

19-20 BluetoothDeviceTime {weekday, weekend}

21-22 VoiceCallCount {weekday, weekend}

23-24 SMSCount {weekday, weekend}

Table 3.2 – Activity Features.

Lastly, we represent the regularity of user activities through their entropies. The entropy of a

feature x can be calculated as:

H (x) =− ∑
t∈[1,24]

∑
c∈Cx

p(c|t )log (p(c|t )), (3.1)

where t denotes the time in hours. Cx is a generic notation for the set of available items of the

given feature x. For instance, for activity entropy H (x = acti vi t y), Cx is the set of all possible

activities. Then, p(c|t ) would denote the probability of having activity c at time t . A person with

high activity entropy would have irregular amounts and distribution of activities while he/she

participated to the longitudinal study. We compute entropies for activity, social time, location and

proximity for each user for weekdays and weekends respectively, providing us with 8 regularity

features as shown in Table 3.3.

Id Regularity Features

25-26 ActivityEntropy{weekday, weekend}

27-28 LocationEntropy{weekday, weekend}

29-30 ProximityEntropy{weekday, weekend}

31-32 SocialEntropy{weekday, weekend}

Table 3.3 – Regularity Features.

There are 25 survey questions in the dataset, 10 of which are self-reported measures of happiness,

health and travel frequency of the users (See Table 3.4). In this work we use such self-reported

satisfaction information to represent users’ happiness. These fields have different ranges: question

with I d = 42 ranges between 1-5; question with I d = 41 ranges between 1-4; and the rest range

between 1-7. To obtain a unified interpretation, we scaled their values to a common range, i.e.,

1-5. We have performed a linear scaling, which retains the information of the original values.
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Id Survey Questions

33 I am satisfied with my experience at MIT thus far

34 I am satisfied with my current social circle

35 I feel I have learned a lot this semester

36 I am satisfied with the content and direction of

my classes and research this semester

37 I am satisfied with the support I received

from my circle of friends

38 I am satisfied with the level of support I have received

from the other members in my group

39 I am satisfied with the quality of our group meetings

40 I am satisfied with how my research group interacts

on a personal level

41 Have you been sick recently?

42 Have you travelled recently?

Table 3.4 – Satisfaction/wellness questions

We apply Principal Component Analysis (PCA [Pea01]) on the features to group them into

factors (expressed in terms of eigenvalues and eigenvectors). We choose the eigenvalue threshold

as 1 to determine the number of factors, and the factor loading threshold as 0.55 in order to

include the features for further analysis. We use the IBM SPSS software and apply the varimax

rotation (an orthogonal rotation) in the factor analysis. We identify 6 factors from the activity

features, and 2 factors from the survey data. We name the factors with respect to the feature with

the highest positive loading, as conveyed in Figures 3.1 and 3.2. More precisely, two factors

are satisfaction-related (Social Life Satisfaction and Research/Study Satisfaction), and another

three are regularity-related (Social Entropy, Location Entropy and Proximity Entropy) and the

remaining three are related with the activity patterns (Leisure and Sleep, Working Activities, and

Communication Activities). We discard some features (WeekdayHomeRest, WeekendHomeRest,
WeekendSocialEntropy, WeekdayLeisureSocial, WeekendLeisureSocial, WeekdayHomeSocial,
Health) since their loadings are below 0.55.

To understand how these activity features affect self-reported satisfaction, we use Structural

Equation Modeling [Pea00], which can be used both to explore and confirm hypotheses of causal

assumptions between groups of features, and model noises in the data with latent (unobserved)

variables. To our knowledge, there is only one study that uses SEM for daily activity analysis -

specifically, for predicting sequence of activities based on commute data [KP12]. The dataset

of that study includes solely self-reported activities and their durations. In contrast, the Reality

Mining dataset was collected using modern sensor technology.

We have followed commonly accepted thresholds for factor analysis4: as shown in Figures 3.1

4see http://imaging.mrc-cbu.cam.ac.uk/statswiki/FAQ/thresholds for a summary of thresholds
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1 2 3 4 5 6
weekdayProximityEntropy .920 -.034 -.031 -.094 .145 -.085
weekendsBluetoothTime .858 -.270 .110 -.010 -.091 .013
weekendProximityEntropy .858 .048 -.077 -.089 -.025 -.201
weekdaysBluetoothTime .805 -.166 .001 .060 .093 .100
weekendsBluetoothCount -.750 -.071 .020 -.056 .072 .117
weekdaysBluetoothCount -.750 -.188 -.001 -.130 -.080 .140
weekendsVoiceCount -.006 -.853 .137 .052 .010 .127
weekdaysSMSCount -.015 .841 -.093 .172 .064 -.048
weekdaysVoiceCount .050 -.819 .156 .110 .114 .018
weekendsSMS .013 .798 .006 .148 .101 -.121
weekendActivityEntropy .325 .567 -.358 -.302 .276 .120
weekendSocialEntropy -.372 -.455 .411 .217 -.017 -.265
weekdayHomeRest -.148 .291 .167 .021 -.145 .014
weekendHomeSleep -.078 .123 -.798 -.044 .089 -.192
weekdayLeisuring .064 -.029 .763 -.376 .266 .091
weekendLeisuring .050 -.018 .758 -.394 .231 .207
weekdayHomeSleep -.040 .116 .687 .449 -.287 .187
weekdayActivityEntropy -.273 -.334 .579 .322 -.186 -.079
weekendLeisureSocial -.065 .312 -.440 -.021 -.097 .271
weekdayLeisureSocial .327 .113 -.421 -.288 .082 .227
weekdayWorking .120 .072 -.113 .865 .259 .124
weekdayWorkSocial -.129 .108 .106 .789 -.015 .042
weekendWorking .272 -.017 .076 .742 .218 .078
weekendWorkSocial .099 .051 .032 -.553 -.059 .069
weekendHomeRest .070 -.140 -.125 .178 -.162 -.134
weekendPrivateActivity .016 .034 .016 -.039 -.799 .030
weekdayPrivateActivity -.126 .005 .012 -.334 -.707 -.036
weekdaySocialEntropy .461 .182 -.195 -.163 .565 .060
weekendHomeSocial -.078 .020 .159 .199 .551 -.373
weekdayLocationEntropy -.223 -.226 .186 .058 -.031 .839
weekendLocationEntropy -.309 -.189 .166 .221 -.011 .808

weekdayHomeSocial .113 .239 -.065 -.156 -.400 .441
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Figure 3.1 – Principal Component Analysis for Activity Features.

and 3.2, each factor has at least 2 features with factor loading larger than 0.7.

The structural model fit for our hypothesis is shown in Figure 3.3. The model goodness-of-fit

indices ( χ2 = 1160.5, d f = 473, p < 0.05, RMR = 0.008), and R2 values (R2 > 0.1 for all) surpass
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1 2
SAT.GroupInteractPersonal .848 -.223
SAT.SupportFromGroupMembers .786 -.151
SAT.GroupMeetings -.738 .035
SAT.SupportFromFriends .735 -.056
SAT.SocialCircle -.457 .033
SAT.Learning -.399 .707
SAT.ResearchContentAndDirection -.277 .682
SAT.Overall.MIT -.270 .634
Health -.043 -.513
TravelFrequency -.111 -.473
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Figure 3.2 – Principal Component Analysis for Survey Data.

their recommended values. In this model, we have drawn paths from the activity related factors

(Entropies, leisure, sleep, work, and communication activities) to the satisfaction-related factors.

The analysis conveys three interesting causal assumptions:

• Social Entropy - Leisure and Sleep - Social Life Satisfaction: The increase in social activity

regularities (i.e., the decrease of Social Entropy) improves both Leisure and Sleep, and

Social Life Satisfaction. Furthermore, Leisure and Sleep also has direct positive influence

on Social Life Satisfaction. Thus, we say that Social Entropy has an amplifying effect. To

illustrate this, we select top ten regular users and top ten irregular users with respect to

the feature of social entropy, and compare their satisfaction levels. We observe that in

average the regular users report 40.74% higher satisfaction score (significant, p = 0.023) in

the survey question with I d = 34 than the irregular users.

• Working Activities - Leisure and Sleep - Social Life Satisfaction: Working Activities have

an amplifying effect on Leisure and Sleep and Social Life Satisfaction, but with a different

interpretation: While both Working activities and Leisure and Sleep positively influence

Social Life Satisfaction, working activities have negative influence on leisure and sleep.

This implies that spending more time at work lowers the time for sleep and other activities.

However, this analysis does not exactly show how to compute an equilibrium between

work and leisure and sleep activities.

• Working Activities - Social Life Satisfaction - Research Satisfaction: Research Satisfaction
is positively influenced by both Working Activities and Social Life Satisfaction. Similar

with the previous observation, the Working Activities factor has an amplifying effect.
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Location 
Entropy 

Proximity 
Entropy 

Social 
Entropy 

Leisure and Sleep 
Activities 

Working 
Activities 

Communication 
Activities 

Social Life 
Satisfaction 

Research 
Satisfaction 

0.268** 

-0.732*** 

0.227** 
-0.306** 

-0.391** 

0.325** 

0.454*** 

0.129** 
0.337** 

-0.11* 

-0.374* 

Figure 3.3 – The model fitted with SEM. The values on the directed paths denote the standardized

regression weights of the model. For example, when Leisure and Sleep Activities goes up by

one standard deviation, Social Life Satisfaction also goes up by 0.227 standard deviations. The

paths with significance levels p < 0.1, p < 0.05, and p < 0.001 are marked with *, ** and ***,

respectively. For brevity, we omitted the features of the factors and the paths that do not have

statistical significance.

Other regularity-related factors (location, bluetooth proximity) are crucial to Leisure and Sleep,

Communication, and Workplace Activities. Thus they indirectly regulate satisfaction: the lower

the entropy is, the higher satisfaction with research and social life a user would have.

In summary, we have analysed Reality Mining dataset to identify the predictors of life satisfaction.

Our results reveal meaningful relations between activities and satisfaction. More specifically,

our analysis shows that work, leisure and sleep activities, and regularities in the daily activities

have both direct and indirect influences over the reported levels of satisfaction. These findings

can guide us toward better designs for behavior recommender systems. Specifically, given our

observations on the activity entropy measurements, we designed our methods so that they capture

the regularities. In the subsequent chapters we perform advanced time-series analysis to discover

various behavior profiles and propose appropriate recommendations. Furthermore, the Reality

Mining dataset provides a limited amount of information for our purpose. Thus, we also curated

our own dataset with continuous sensor measurements on users’ physical activities.
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4 FactorHabiTS: Decomposing of Ac-
tivities of Daily Living to Discover
Routine Clusters
Our data curation strategy (see Chapter 5), with the help of modern sensor technology, helps us

collect massive time series data for activities of daily living (ADLs). A behavior recommender

system can use this data to infer broad patterns, such as common daily routines. In order to do so,

the system must employ appropriate methods to process the ADL datasets. Most of the existing

approaches either rely on a model trained by a preselected and manually labeled set of activities,

or perform micro-pattern analysis with manually selected length and number of micro-patterns.

Since real life ADL datasets are massive, such approaches would be too costly to apply. Thus,

there is a need to formulate unsupervised methods that can be applied to different time scales.

We propose FactorHabiTS, a novel approach to discover clusters of daily activity routines. We

use a matrix decomposition method to isolate routines and deviations to obtain two different sets

of clusters. We obtain the final memberships via the cross product of these sets. We validate

our approach using two real-life ADL datasets and a well-known artificial dataset. Based on

average silhouette width scores, our approach can capture strong structures in the underlying data.

Furthermore, results show that our approach improves on the accuracy of the baseline algorithms

by 12% with a statistical significance (p <0.05) using the Wilcoxon signed-rank comparison test.

4.1 Introduction

The abundance of wearable sensors helps people track their Activities of Daily Living (ADLs), and

promises substantial opportunities in pervasive healthcare. For instance, existing medical studies

depend on self-reported survey data [OSW+12, ROK+12], but they could be complemented with

sensor-based measurement. Additionally, there is an ongoing effort to develop personalized

lifestyle recommendations based on people’s daily habits [FDRK12]. Using these tools, people

can quantify their physical activities and internal metabolism over time [Sma12a]. Some systems

also incorporate simple techniques to deliver correlation information for personal data [TBV12b].

However, researchers must employ even more sophisticated methods to understand what physical

activity patterns people adopt, and whether these patterns cause variations in the level of physical
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activeness within individuals (intrapersonal differences) or groups of people (interpersonal

differences). A pattern analysis on activity routines can help identify such information, and thus

enhance the usefulness of pervasive healthcare systems.

Such ambitious objectives require a reliable means to organize (e.g. clustering) massive, sensory

ADL data into categories of temporal patterns followed by people. Each of these patterns would

characterize the temporal dynamics of a general behavior trend - for instance, an increase of daily

number of steps by 5000 steps over 30 days. People’s data would be associated to these trends

with additional temporal dynamics such as possible deviations (e.g. two exceptional days of

inactiveness) and warps (achieving the same goal over 34 days instead of 30). Until recently, this

need was addressed with activity recognition methods based on data labeling and probabilistic

modeling. They would be subsequently evaluated by their recognition accuracy. The existing

methods on ADL analysis either explicitly specify models for a preselected set of activities

[WOCRM08], or analyse and extract features from repetitive micro-patterns (i.e., motifs). The

first approach requires expert knowledge, thus it is costly and delivers a restricted understanding

of the data. In the second approach, the appropriate granularity for micro-patterns must be

exhaustively searched for any given dataset. As such, despite early successes [BI04, Coo10a],

studies that adopt these approaches report on a limited amount of physical activities, likely

monitored in laboratory conditions [PPO10, ZWGT13]. However, this requires expert knowledge

and content-dependent modifications over standard modeling techniques - which are costly, and

unlikely generalizable over different, ever enlarging datasets [YZK15, YZP14]. Thus, there is a

need to formulate unsupervised methods that can be applied to different time scales.

We observe that people adopt some activity routines in their daily living, with some possible

deviations every day. Based on this observation, we propose FactorHabiTS, a novel approach to

analyse time series activity data. We pre-process the time series with a smoothing filter [HP97]

and extract routines and deviations via a sparse and low rank matrix decomposition technique

[LCM10]. We separately cluster the routines and deviations, and then perform a cross product

between routine-clusters and deviation-clusters to find the final memberships for each entry.

FactorHabiTS’s core methodology (Low Rank and Sparse Decomposition – LRSD) involves

matrix factorization, which requires minimal external supervision. However, given the myriad

of such methods [AT05], there is a need to assess their applicability to ADLs. Therefore, in

this chapter, we also make a critical assessment of matrix factorization approaches on analyzing

ADL datasets. More concretely, we perform a comparative evaluation of two state-of-the-art

approaches (LRSD and Time-SVD++). Neither of these two state-of-the-art approaches were

originally designed with ADLs in mind: LRSD [LCM10] is used to reduce the dimensionality

in a possibly corrupted image data so as to capture regular and symmetric structures. However,

this design could also permit it to characterize ADL data in terms of common trends and minor

deviations, and identify the temporal patterns that people follow. Likewise, TimeSVD++ [Kor10]

can model the changes of user product preferences over time very successfully - especially

considering the fact that such datasets are notably sparse, i.e., they have many missing points to

be fixed. This suggests that TimeSVD++ may, in a similar manner, model the changes in people’s
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ADLs over time, so that distinct temporal patterns can be easily identified by a subsequent

clustering method.

We evaluate these approaches through two criteria: scalability and clustering quality. With our

results we first confirm that these methods’ superiority over basic clustering approaches, and also

demonstrate notable differences between ADL datasets and customer ratings datasets.

Our contributions in this chapter are as follows:

• Our approach is different from prior work as it is model-free, and it uses the whole time

series data as opposed to a subset of motifs or features.

• We propose a novel combination of low rank and sparse matrix decomposition and time

warping techniques for activity analysis. To our knowledge, our approach is the first one in

the activity analysis studies to incorporate this approach.

• We show, on two real-life datasets of accelerometer data (calorie expenditure and steps)

and of different time scales, that our method can capture distinct structures in ADL time

series that are associated with different levels of activeness. Furthermore, we show on

a well-known synthetic dataset [KK03] that we can also obtain high accuracy scores on

labelled time series data.

• We further demonstrate that FactorHabiTS is scalable to large datasets, and it performs

better than other state-of-the-art approaches in processing dense behavior datasets.

4.2 Related Work

Activity analysis studies follow two general directions. The first approach constructs a model of

some preselected activities, and establishes the fitness of this model through methods such as

Bayesian Learning [ZN12b] and Hidden Markov Models [Coo10a]. The obtained models can

serve to predict people’s house activities [Coo10a], to group the users based on their activity

routines [ZN12b], or to identify common activity routines [ZN12b]. Model-based methods are

commonly applied on datasets of location and motion sensors. To obtain sound results in their

models, researchers study incorporate domain expert knowledge (and perhaps manually annotate

the dataset). This requires substantial effort, and constrains the quality of the analysis to the

extent of the expert’s knowledge ahead of the quality of the dataset.

As an alternative, studies from the second approach extract features from frequently occurring

patterns (motifs in other words), and then construct classifiers based on these features. The

bioinformatics field spearheads the research on discovering frequent patterns (we refer the

readers to the paper of Sandve and Drablos [SD06] for an extensive review). Typically each

pattern-based activity recognition study proposes a custom motif-detection algorithm [PPO10,

PHL12, RCHSE11b], while some prefer to directly incorporate state-of-the-art pattern detection
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algorithms such as random projection [VAS09] and Closet+ [AEA+08]. Subsequently, for

classification, studies either apply state-of-the-art supervised learning techniques such as Support

Vector Machines, Decision Trees [PHL12] or incorporate custom data structures (like graph-based

clustering [VAS09], and routine-tree [AEA+08]). It is also possible to construct Hidden Markov

Models based on the extracted patterns [RCHSE11b] or apply ensemble learning [ZWGT13].

Motif-based studies obtained empirical success on datasets from a large variety of sources:

environmental motion sensors, wearable accelerometers, pressure sensors, and medical analysis

data (such as blood tests and urinalysis).

Due to the computational complexity of finding motifs, some studies prefer a fixed length

and number of motifs [VAS09]. Some other studies report that the accuracy (or other quality

measures) of the classification and clustering consistently improves as the number of motifs

increases [RCHSE11b]. On the other hand, some studies show that clustering the entire set of

subsequences does not produce meaningful results [KL05]. Therefore, the scientists may have to

exhaustively search for the optimal length, and the number of motifs in their studies. This, again,

may limit the representation capabilities of the systems.

4.2.1 Probabilistic Modeling

Activity recognition approaches [CK14] typically propose probabilistic approaches like Bayes

classifiers, Conditional Random Field Models and Hidden Markov Models, driven by the moti-

vation to recognize and understand people’s ADLs using wearable and environmental sensors.

These approaches typically designate a set of probabilistic transitioning rules between some states

(either of well-being or of distinct activity patterns), and try to validate these rules on a dataset.

Topic modeling, a technique adapted from document-word analysis for mining semantic data, is

another alternative for probabilistic modeling of behaviors [CdIAK14, FGP14].

One issue in the probabilistic modeling approach for activity recognition is that there is no

standard probabilistic model that is scalable for every kind of dataset. Thus each study proposes

a special modification (especially Hidden Markov Model variants), so that the model can handle

the properties of some specific dataset. Consequently, where some methods employ simple

clustering procedures for preprocessing [SJS05], other studies resort to more complex variations

such as Hidden Semi-Markov Model [DBPV05], Markov Logic Network [GER15], or voting

Multi-HMM model constructed with frequent pattern mining [RCHSE11a]. These variations

imply the requirement of an immense amount of expert knowledge and additional computational

complexity for each separate case. As a result, their solutions often lack generalizability.

4.2.2 Matrix Factorization

Matrix factorization is a well-known approach to reduce dimensionality in large datasets. Recom-

mender systems [AT05] typically use this to obtain item and user profiles for many applications

including product, music, and movie recommendations. Further applications for matrix factor-
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ization include adaptive web searches based on user profiles [SHY04], and image and video

processing [WY13].

In addition to its extensions to accommodate temporal relations [DL05, Kor10], contextual infor-

mation [VMO+12] and probabilistic relations [PPL01, WY13], collaborative filtering requires

minimal (if any) effort from users in constructing user preference profiles, making it a suitable

approach for behavior profiling. Some studies empirically demonstrate this usefulness on sparse

mobile phone data [ZLN13].

Another prominent example is Principal Component Analysis. Eagle and Pentland [EP09]

employ Principal Component Analysis to decompose behavioral patterns from mobile phone

data into eigenvectors, which they name as “eigenbehaviors”. With this strategy, each user can

be modeled as a weighted combination of eigenbehaviors, allowing further analysis to predict

the missing patterns during a single day. On the other hand, Principal Component Analysis

is known to be very sensitive to noise, and this study does not address this problem. A more

recent study [YZP14] employs a noise-tolerant variant of PCA, called Linearized Alternating

Direction Method [LCM10] on wearable accelerometer data. However, this PCA variant has a

cubic computational complexity, rendering this proof-of-concept approach impractical to apply

on large datasets.

4.3 Timeseries Clustering Method: FactorHabiTS

People adopt some activity routines in their daily living, with some possible deviations every

day. We developed FactorHabiTS based on this insight: It isolates the regular trends from the

deviations, processes them separately, and captures the activity routines as time series clusters.

We summarize the flow of data processing in Figure 4.1. We pre-process the ADL time series

data with a smoothing filter [HP97] and apply a low rank and sparse decomposition [CLMW11]

to isolate routines (L-Matrix) from the deviations (S-Matrix). We separately cluster L-Matrix and

S-Matrix, using Dynamic Time Warping [KP99b] as the distance metric. We use the well-known

Silhouette index [KR09b] to determine the optimal number of clusters. We then perform a cross

product of the two separate cluster sets to find the final memberships for each day.

4.3.1 Smoothing Filter

The physical activity time series data may contain noise in the form of small fluctuations. Such

characteristics of the raw data can deteriorate the quality of clustering. We address this issue

by applying the Hodrick-Prescott filter [HP97]. This is a well-known trend analysis method in

economics. The filter decomposes a given time series object Y = (y1, ..., ym) into a summation
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Figure 4.1 – The data flow in our approach. LRS stands for “Low rank and sparse decomposition",

and ASW stands for “Average Silhouette Width"

yt = Tt +Ct such that the objective function

c =
m∑

t=1
Ct

2 +λ
m−1∑
t=2

((Tt+1 −Tt )− (Tt −Tt−1))2, (4.1)

is minimized over (T1, ...,Tm), where Tt represents the trend component (the desired output), and

Ct represents the cyclical component. Increasing the smoothing parameter (λ) results in smoother

trend components at a cost of more information loss. We discard the cyclical component and use
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the trend component in the further steps.

4.3.2 Matrix Decomposition

The low rank and sparse decomposition (LRS) is a recently discovered approach that aims to cap-

ture regular and symmetric structures within a possibly corrupted data matrix [LRZM12]. While

it is designed for image processing problems such as video surveillance and face recognition, it is

also used other high-dimensional data mining tasks such as finding topic models in document

analysis [MZWM10b].

Based on existing studies [CLMW11], we can formulate this decomposition problem as

Lopt ,Sopt = mi n(‖L‖∗ +γ‖S‖0)

s.t . M = L+S,

where L is the low-rank matrix, and S is the sparse matrix. ‖L‖∗ denotes the nuclear norm of L,

which is the best approximation for the rank of L. ‖S‖0 is the number of non-zero entries in S.

γ> 0 is the parameter to make a trade-off between the rank of L and the sparsity of S. Theoretical

studies show that it is optimal to set γ as 1/
�

max(n1,n2), where n1,n2 are the number of rows

and columns of M , respectively [CLMW11].

The interpretation of the L-matrix and S-matrix differs among the related studies. L is commonly

regarded as the “true matrix", which is recovered from the errors and missing values denoted in S

[ZT11]. In a related study, L contains linearly aligned images and S contains the rotational errors

from the original matrix [PGW+10]. In some other image processing studies, L is considered

to be the background and S the non-background objects in the given images [KC12b]. As such,

depending on the application, the information in both of these matrices can be useful.

We use the Linearized Alternating Direction Method [LCM10] on the matrix of ADL time series

data to identify common daily routines (in the form of low-rank matrix) and deviations (in the

form of the sparse matrix). To our knowledge, our study is the first to apply the low rank and

sparse decomposition approach to ADL analysis.

4.3.3 Distance Metric: Dynamic Time Warping

ADL routines are subject to nonlinear warps in the time dimensions (e.g. waking up 15 minutes

late, having lunch for 30 minutes instead of 45, etc.). Dynamic Time Warping (DTW) is a

dynamic programming-based distance metric to compensate these warps [BC94]. In contrast to

Euclidean distance, DTW takes local misalignments into consideration, and reports the optimal

warping path between the given two sequences. The DTW distance between the time series data
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Q and P can be calculated as

DT W (Q,P ) = mi nW (
K∑

k=1
d(wk )), (4.2)

where d(wk ) = (qi −p j )2 such that (qi , p j ) is on the warping path w [Fu11]. This optimization

problem can be solved by dynamic programming (longest common subsequence). Various studies

with artificial datasets [KP99b], image data of letters in historical documents [RM03], speech

data [SC78b], and kitchen tool usage data [PPO10] suggest that DTW improves the classification

accuracy of the time series classification algorithms in comparison to Euclidean distance. DTW

is sensitive to noise [Fu11]. This can be overcome by applying additional preprocessing [RM03].

We avoid this problem by applying Hodrick-Prescott filter before the matrix decomposition stage.

4.3.4 Clustering

We obtain pairwise distance matrices for the L-matrix and the S-matrix. Then we feed these

distance matrices to agglomerative hierarchical clustering with complete linkage. As a result,

for each row in the original data, there will be one cluster membership from L-matrix and

one cluster membership from S-matrix. L-clusters represent the common trends and S-clusters

represent the common deviations. To determine the final memberships, we perform a cross

product of L-clusters and S-clusters, i.e., we explore all possible combinations of L-clusters and

S-clusters. The maximum possible number of final clusters is (number of L-clusters) × ( number

of S-Clusters). We discard the clusters with no members. To guarantee the optimal number of

clusters, we select the number of L-clusters and S-clusters that result in the highest Average

Silhouette Width.

4.4 Experiments

4.4.1 Datasets

CBF Dataset.

This artificial dataset [KK03] contains time series objects that belong to one of three distinct

shape characteristics (i.e., Cylinder c(t ), Bell b(t ) and Funnel f (t ), see Figure 4.2). The dataset

can be generated with the following equations:

c(t ) = (6+η)χ[a,b](t )+ε(t ) (4.3)
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Figure 4.2 – Samples from the CBF dataset. The axes are unitless. Each class of objects

(C:Cylinder, B: Bell, F: Funnel) is defined uniquely by its shape characteristics.

b(t ) = (6+η)χ[a,b](t )
t −a

b −a
+ε(t ) (4.4)

f (t ) = (6+η)χ[a,b](t )
b − t

b −a
+ε(t ), (4.5)

where η and ε(t ) are drawn from a standard normal distribution, a is an integer drawn uniformly

from [16, 32], and b −a is an integer drawn uniformly from [32, 96]. We have generated 256

instances for each class (cylinder, bell, and funnel), each of which contains 256 data points.

E-Walk Dataset.

This dataset is the courtesy of the Yiqizou company, which provide a platform for people to form

social groups and walk together. This dataset contains step counts of 236 people, who wore

modern wearable accelerometers in October 2013 for a month. In its raw form, each data point

represents activities during a single day. Due to some possible reasons (losing interest in the
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program, forgetting to wear the sensors, sensor batteries running out, etc.), 3108 out of 7080 data

points (approximately 44%) have the value 0. We represent steps time series data in a matrix

where each row represents a person. There are a total of 236 time series objects, each of which

has 30 data points, one for each day. Here, we can analyse the long-term usage of pedometers,

and the patterns that differentiate the long-term physical performances.

HealthyTogether Dataset.

Previously collected for another study [CP14b], this dataset contains the calorie expenditure data

of 48 users wearing Fitbit (a wearable accelerometer) for ten days in the period between April

2013 and June 2013. In its raw form, each data point represents activity during a single minute.

This dataset do not have any missing values. We process the data in a matrix where each row

represents a day. There are a total of 480 time series objects, each of which has 1440 data points.

With this dataset, we can analyse the effects of daily routines on the daily physical performance.

4.5 Baseline Evaluations

4.5.1 Overall Comparison

We compare our method with some well-known baseline algorithms (namely, K-means, 1-nearest

neighbor, and agglomerative hierarchical clustering). We employed Euclidean distance for

K-means and DTW distance in 1-nearest neighbor and agglomerative hierarchical clustering.

Since the E-Walk and HealthyTogether datasets do not have labels, we evaluate our method via

internal cluster evaluation. We specifically employ overall Average Silhouette Width [KR09b].

This value indicates the quality of the underlying structure of the clusters: values below 0.25

indicate no structure, values between 0.25 and 0.5 indicate a possibly strong structure, and values

above 0.5 indicate a very strong structure [KR09b] (see Appendix A.3 for more details).

Cluster Id Median of Daily Steps

E1 1842

E2 4194

E3 6461

E4 10357

E5 10646

E6 13782

Table 4.1 – The median of daily step counts for each cluster in E-Walk dataset, with ids matching

with those in Figure 4.4.

Figure 4.3 conveys the average silhouette width scores for the three datasets. On average, our

method outperforms baseline methods in ASW by 0.455, and it is able to capture clusters with

high quality. We have applied Wilcoxon signed rank test with p < 0.05 to compare our method’s
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Figure 4.3 – The average silhouette width scores for clustering with (denoted by *) and without

our method. “HealthyTogether" is abbreviated as “HT". The lines drawn on 0.25 and 0.5 denote

boundary for acceptable and good values of ASW, respectively. We report the highest average

score achieved with baseline methods.
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Figure 4.4 – The medians of the clusters for the E-Walk dataset (λ= 100 and γ= 0.065). Y axis

represents the steps taken and X axis represents the days.

and baseline methods’ ASW scores in each dataset, and validated the significance of these

improvements.

4.5.2 CBF Results

Since CBF dataset contains labels, we also evaluated CBF dataset’s output clusters with external

evaluation indices (accuracy, F-1 score, normalized mutual information - NMI and Jaccard index)

with 10-fold cross validation. Table 4.2 summarizes these scores in the CBF dataset. We refer the

reader to Appendix sections A.4, A.5, and A.6 respectively on the formulas of F-1 score, NMI

and Jaccard index.

Our approach outperforms baseline methods in terms of accuracy (by 12%), F-1 score (by 0.18),

normalized mutual information (by 0.21), and cluster purity (by 0.25). For each of these indices,

we compared our method against each of the baseline methods with Wilcoxon signed rank test

with p < 0.05, and validated that these improvements are significant.

Experiment Accuracy F-1 NMI Jaccard Index

K-means 0.75 0.62 0.51 0.46

Hierarchical 0.81 0.72 0.63 0.58

1-NN 0.93 0.87 0.78 0.77

Our method 0.95 0.92 0.85 0.86

Table 4.2 – The external index scores for the CBF dataset.
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4.5.3 E-Walk Results

Figure 4.5 – The medians of the clusters for the HealthyTogether dataset (λ= 100 and γ= 0.026).

Y axis represents the calorie expenditure and X-axis represents the hours in the day.

The representatives for each cluster (member with median number of average steps), and the

selected values for the parameters λ and γ are shown in Figure 4.4. The median calorie expen-

ditures for all clusters are shown in Table 4.1. Through the 6 clusters that we obtain from this

dataset, we can observe the long-term usage patterns of pedometers. For instance, some people

convey a novelty effect, i.e., they performed well in the early days of their pedometer usage, but

then lost their engagement. Such people are generally grouped in the clusters with lowest average

number of steps. We also observe that regularity of activeness has positive contribution towards

higher average numbers of steps.

4.5.4 HealthyTogether Results

The representatives for each cluster (member with median calorie expenditure), and the selected

values for the parameters λ and γ are shown in Figure 4.5. The median calorie expenditures for

all clusters are shown in Table 4.3.

The results show that we can characterize 7 types (clusters) of daily activity routines. These

routines can be associated to some persona, such as “Commuter" (H1), who has two main peaks

in the morning and afternoon; “Afternoon Break-taker" (H2), who is more active in the afternoon

with frequent “breaks"; “Early morning person" (H3), who is more active in the early times of the

day; “The Frequent breaker" (H4), who takes frequent breaks through the day; “Night Person"

(H5), whose is more active late at night; “Hyperactive" (H6), who has moderate, and continuous

activeness through the day; and “Traveler" (H7), who has high and continuous activeness through

the day.
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Through these 7 clusters, we can observe how the intra-day patterns can contribute to the average

daily activeness. The average step count increases from the “Commuter" type of daily routine to

“Traveler" type of daily routine. Similar to the clustering results in the E-Walk dataset, we see

that regular distribution of activeness contributes most to the level of activeness.

Cluster Id Median of Daily Calories

H1 1412

H2 1519

H3 1587

H4 1640

H5 1660

H6 1862

H7 2353

Table 4.3 – The median of daily step counts for each cluster in HealthyTogether dataset, with ids

matching with those in Figure 4.5.

4.6 Scaling up and State-of-the-Art Comparisons

Many probabilistic methods suffer from one or more of the following shortcomings: dependence

on supervised labels or expert knowledge, or high computational complexity. As such, they are

not scalable and efficient enough for large and unlabeled datasets for ADLs. Matrix Factorization

approaches are however an exception, therefore they are more practical for our task. We now

proceed to describe how to make FactorHabiTS scalable, and we present how we compare it with

a state-of-the-art alternative in more detail.

4.6.1 Scalability issues in FactorHabiTS

The most common method to solve the Equation 4.3.2 has a time complexity of O(N 3) [LCM10],

which would render this variant and the methods that employ it (e.g. [YZP14]) prohibitively

costly for large datasets. For an optimized performance, we instead use Robust Grassmann

Averages [HFB14]. This approach models the dimensionality reduction problem as the averages

of subspaces spanned by the data. This modification helps the method discern the local deviations

to a great extent. Given the input data y1:N , each iteration in Robust Grassman Average proceeds

with the following two equations:

ωn ←− si g n(uT
n qi−1) ∥ yn ∥ (4.6)
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qi ←− μr ob(ω1:N ,u1:N )

∥μr ob(ω(1 : N ),u(1 : N )) ∥ (4.7)

where ω1:N would denote weights, qi is the weighted average of robust means computed at

iteration i , un = yn

∥yn∥ , and μr ob denotes a robust average. In this study, we specify μr ob as the

trimmed mean.

4.6.2 TimeSVD++

TimeSVD++ [Kor10] is a variant of collaborative filtering that models temporal changes in

customer preferences, i.e., concept drift. TimeSVD++ extends the existing factor model SVD++

[Kor08] and incorporates the temporal dynamics under three bias components (user bias bu(t ),

item bias bi (t ), and global bias μ) at a given time t . TimeSVD++ uses these components, along

with the user u’s preference pu(t ), item i ’s characteristics ci , factor vector f , and the set of

items already rated by user (R(u)) to predict the rating of user u for item i with the following

prediction rule [Kor10] :

r̂ui (t ) =μ+bi (t )+bu(t )+cT
i (pu(t )+|R(u)| −1

2
∑

jεR(u)
f j ) (4.8)

Without disregarding its original function as a recommender system routine, we can also interpret

TimeSVD++ as a procedure to reconstruct a time series dataset with missing values. The design of

TimeSVD++ intends to capture long-term trends of temporal data, while avoiding the short-term

patterns that would not have a predictive influence on future trends. Furthermore, as demonstrated

in Netflix dataset, its predictive capabilities outperform existing state-of-the-art factor models

(SVD, SVD++) while running very fast in rating datasets [Kor10].

4.6.3 Adoption of Matrix Factorization Methods

Adoption Approach: We use Low Rank and Sparse Decomposition in a flow of time series

processing that captures common trends and deviations, followed by clustering based on Dynamic

Time Warping (see Figure 4.6). We pre-process the ADL time series data with a simple moving

average filter, and apply the decomposition to obtain two separate matrices for long-term patterns

and short-term deviations. We separately cluster these two matrices, using Dynamic Time

Warping (DTW) [BC94] with Keogh’s lower bounding [KR05] as the distance metric. We then

perform a cross product of the two separate cluster sets to find the final memberships for each

time series object.
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Figure 4.6 – The flow of data processing in FactorHabiTS- and TimeSVD++-based cluster-

ing. FactorHabiTS decomposes the data into two components (trends and deviations), while

TimeSVD++ discards the deviations altogether

In its naïve implementation, the dynamic time warping costs O(D2) for comparing a single pair

of time series objects. Various alternatives reduce this complexity [SC78a, KP99a]. For an

optimized performance, we use Keogh’s lower-bounded Dynamic Time Warping as the distance

metric in the clustering phase [KR05]. Furthermore, we employ the simple moving average filter

to circumvent DTW’s sensitivity to noise.

We adopt TimeSVD++ as follows (Figure 4.6): we run the algorithm on the dataset with initializ-

ing the bias components based on the dataset’s properties. This initialization maps the global

bias μ to the global average of ADL levels (e.g. calorie expenditure) per unit of time (day, hour

or minute), the user bias bu(t ) to the average ADL level of the user up to time t, and the item

bias bi (t ) to the average ADL level of all users up to time t . pu(t ) naturally maps to the current

ADL level of u at time t , and f maps to other users’ ADL level. With this setup, the algorithm

corrects the matrix at time t based on past data and updates the bias parameters for future data.

Thus, the warps and deviations are discarded. We then cluster the corrected matrix.
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4.6.4 Complexity Evaluation

We denote U as the set of users, |U | = N , and D as the maximum possible number of observations

(total number of businesses recorded in rating datasets and the length of sensor utilization in ADL

datasets).

FactorHabiTS

The complexity of FactorHabiTS depends on the total complexity of filtering, decomposition and

clustering phases (see Figure 4.6).

Filtering Phase: The simple moving average transforms a given time series object X = (x1, x2, . . . , xD )

to a rolling average Y = (y1, y2, . . . , yD ) by the following formula:

yk = yk−1 + (xk−xk−l )
l

where l is the length of the sliding window. This takes takes O(1) operations to complete for each

observation in the time series object, amounting the complexity for a single entry to be processed

in O(D) and the entire dataset to be processed in O(N D).

Decomposition Phase: A single iteration in The Robust Grassmann Averages (TGA) has a

computational complexity of O(K N D), where the parameter K denotes the number of components

to be found in the dataset [HFB14]. It always holds that K ≤ D , so the worst-case performance of

TGA is bounded by O(DN D) =O(N D2), raising the overall complexity of LRSD to O(N D)+
O(N D2) =O(N D2).

Time-SVD++ based clustering

A single iteration to train a model based on TimeSVD++ is determined as O(
∑

uεU
|R(u)|2), where

R(u) denotes the set of items rated by the user u [Kor10]. This renders TimeSVD++ very

efficient in processing highly sparse item rating datasets where |R(u)| 	 D. In datasets such

as HealthyWalkers, however, the dataset is dense: R(u) naturally converges to D, raising the

complexity to O(N D2).

In summary, with the same number of iterations, matrix factorization steps in FactorHabiTS and

TimeSVD++ have the asymptotically equivalent runtimes. Furthermore, since Euclidean distance

and DTW with Keogh’s lower bounding is the same, i.e., O(D), both algorithms also have the

same runtime for clustering.
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4.6.5 Clustering Quality

Datasets

We evaluate the capabilities of the methods through two activity datasets:

• The YELP Dataset. YELP dataset contains approximately 2.3 million ratings from 70,000

users for 15,000 businesses. In this study, we analyse the 2014 version of this ever-growing

dataset, which includes the ratings within the time period from 01-02-2005 to 28-01-2014.

Similar to other rating datasets, the YELP dataset is very sparse: there are 402 out of

3284 days with no records of ratings or reviews. On average, each user has 33.69 ratings

(minimum 1, maximum 3286).

Processing: We process this dataset as a matrix where each row represents a business, and

each data point is the cumulative rating of the business for a single day. In this manner,

each cluster would represent a distinct rating pattern for businesses, thus help making

post-hoc analysis on the common features of businesses that generally perform well or bad.

• HealthyTogether. In a previous study [CP14a], we have conducted a user study to

investigate the effects of self-monitoring and social intervention on the overall activeness

of users. The end product of this study is the HealthyTogether dataset, which contains the

calorie expenditure data of 83 users wearing Fitbit (a wearable accelerometer) between

September 2013 and September 2014. The length of user participation varied from 12 to

235 days (μ= 48.36, σ= 54.85). Contrary to YELP dataset, this dataset do not have any

missing values.

Processing: We process the data in a matrix where each row represents a day, and each

data point represents one minute. With this representation, there are a total of 4014

rows, each of which has 1440 data points, and users’ data are processed altogether. In

this manner, the clusters can be used to identify common daily routines adopted by the

wearable sensor users. Such a segmentation of activity routines could help us develop

specialized interventions to improve each of the daily routines.

Results

We use Average Silhouette Width (ASW) in comparing the clustering quality of the three

approaches (see Appendix A.3). Kaufman and Rousseauw [KR09b] proposed this metric to

measure in-cluster consistency and inter-cluster distinctiveness. ASW scores are bounded in

the interval [−1,1]. When comparing two methods, the one with a higher ASW score is said

to be producing clusters with higher quality. Furthermore, ASW has suggested values for

validation: any score below 0.25 would indicate a bad quality of clustering (comparable to

random partitioning), scores within [0.25,0.5] would indicate an acceptable level of quality,

and scores above 0.5 would indicate a high quality of clustering. Table 4.4 summarizes the

clustering qualities of three alternative approaches: first approach is Hierarchical Agglomerative
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Table 4.4 – The ASW scores for clustering algorithms on HealthyTogether and YELP datasets.

Higher scores imply better clustering quality. (*) indicates an acceptable level, while (**)

indicates a good level. The differences in the scores are statistically significant (Wilcoxon

signed-rank test: p < 0.05).

Method HealthyTogether YELP
HAC without Matrix Factorization 0.26 0.46 (*)

TimeSVD++ 0.4 (*) 0.59 (**)

FactorHabiTS 0.69 (**) 0.79 (**)

Clustering without any of the matrix factorization steps, and the other two are LRSD-based

and Time-SVD++-based approaches. Wilcoxon signed-rank test on silhouette scores indicate

statistically significant differences between their performances. (p < 0.05). Both TimeSVD++

and LRSD improve the clustering quality as opposed to baseline method. While all methods

perform well in YELP dataset, the data density in HealthyTogether dataset takes its toll on their

performances. The clustering qualities of baseline method and TimeSVD++ suffer particularly

more (-43% and -32%, respectively) than FactorHabiTS (-12%). While both TimeSVD++ and

FactorHabiTS can produce clusters with highly reliability in YELP dataset, only FactorHabiTS

can do so in HealthyTogether dataset.

4.7 Discussion and Future Work

We proposed a novel approach to perform cluster analysis on ADL data. This approach is different

from prior studies as it can process ADL time series without expert knowledge or micro-pattern

extraction. Our approach is useful to reveal clusters with high external and internal evaluation

scores, and it outperforms baseline algorithms (for instance, by 12% of accuracy and 0.455 points

of average silhouette width) with statistical significance. The employed matrix decomposition

technique makes our method suitable for high-dimensional data, paving the way for further

possible applications such as analysing between-subject variabilities and multi-sensor data.

Our next step is to employ our understandings we obtained from this study to identify and

elaborate on predictors or crucial behavior patterns that lend to activeness in daily physical

activity routines. Such an analysis of clusters was shown to be useful in predicting illnesses based

on behaviour patterns [MCLP10].

4.8 Chapter Summary

Future applications on Activities of Daily Living require a good level of understanding of ADL

data clustering. In this chapter, we presented our efforts to improve this understanding via

our novel method and a comparative study of alternative methods. We first briefly reviewed

why methods based on matrix factorization are more suitable than other approaches for this
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task. Then, we described two particular matrix factorization techniques used in different fields

(computer vision and recommender systems, respectively). Following the discussion of their

respective design strategies, we elaborated the modifications necessary to adapt these techniques

for clustering ADL data. Then we presented their similarities and differences through theoretical

and experimental analysis, with a particular emphasis on three key aspects: handling temporal

dynamics, scalability, and sensitivity to data density. We have realized these analyses through

runtime complexity analysis and measuring the clustering qualities through experiments on a

physical activity dataset and a ratings dataset.

From a conceptual point of view, this chapter enhances our understanding of the properties

of ADL datasets: they are similar to image datasets, in the sense that they can be dense and

arbitrarily noisy. This became evident in the course of our comparisons as Time-SVD++, which

is engineered for and works great in sparse ratings datasets, produces suboptimal results in

clustering ADL datasets. We therefore validated the suggestion of Farrell et al. [FDRK12] that

behavior profiling methods should not be sensitive to the level of sparsity in the datasets, and we

add that such methods must also explicitly deal with noise and temporal dynamics (i.e., warps

and deviations).

The clustering task we study is also closely related with the well-known collaborative filtering

scheme in recommender systems. As such, from a practical point of view, this chapter solidifies

the analytical building blocks of our behavior recommender system. With FactorHabiTS, our

system can obtain temporal profiles, assign each user a temporal profile, and personalize its

recommendations to each user. In Chapter 6, we show how to use temporal profiling with

intervention data to obtain the full-fledged behavior profiles.
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5.1 Introduction

The behavior recommender has to deliver personalized suggestions to its users. In order to do

so, it would exploit users’ past patterns of Activities of Daily Living (ADLs). However, just like

traditional recommenders, the system’s capabilities are limited for new users, as it will not have

enough information for their past. This phenomena, cold start problem, is one of major challenge

in recommender systems [SPUP02].

Traditional recommender systems attempt to solve this with eliciting the preferences of users,

either by asking them to provide data or implicitly observing their behaviors. It is also possible

to use a hybrid model of item-based and user-based similarities to further alleviate this issue

[SPUP02]. While such methods do minimize user effort, it still holds that the recommenders

should receive users’ activities and behaviors (such as ratings).

As we established in the thesis introduction, the goals of behavior recommendations are more

complicated than those of classical recommendations: they should inspire their recipients with

small, incremental and achievable goals. This raises an additional challenge in collecting the

required data. The data must allow the system to find a trade-off between two conflicting criteria,

i.e., effectiveness and feasibility of recommendations: On one hand, the system must make sure

that its users achieve a steady improvement in their ADL patterns. On the other hand, it should

avoid setting extreme goals that can injure or discourage the users. The behavior recommender

system thus must model its users’ behavioral responses to potential recommendations, and make

sure whether its recommendations would have a significant influence on its users’ behavior

patterns. Because of this requirement, the behavior recommender system cannot mimic the data

collection from traditional recommender systems. A mere collection of behavior patterns does

not lend itself to the crucial insight on why some recommendations or other external interventions

may succeed or fail to help a user for behavior change.

In this chapter, we show how to perform the data curation in order to tackle these challenges. In
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our data curation, we not only measure people’s ADL patterns, but also deliberately introduce an

intervention to monitor its effects on people’s patterns. We base our solution on the following

insight: if the system understands the impacts of past interventions for behavior change, it can

predict its users’ behavioral responses to its own recommendations. To further motivate this idea,

consider the following scenario, which tells how InspiRE, a behavior recommender system, could

generate the optimal recommendation for John:

Unbeknownst to John, InspiRE had already been curating data from other users

and categorizing them based on their behavior patterns and their responses to its

recommendations in the past.

InspiRE considers Charlie and Mary, whose behavior patterns had been very similar

to John’s, and then both of them received recommendations. InspiRE identifies that

Charlie relapsed to a less active lifestyle, but Mary managed to increase her activeness

and switched to a more active behavior pattern without getting injured. Since Mary

was similar to John in the beginning, the system decides that Mary’s activity pattern

will be an ideal candidate to guide John to safely increase his activeness.

To demonstrate our data curation approach, we performed a longitudinal user study with 83

participants and investigated the influences of exercise partners on the overall activeness measured

by wearable sensors. In this study we equipped participants with wearable sensors and asked

them to form dyads, i.e., two-people exercise groups. While the wearable sensors provide us with

the activity data, the formation of dyads provides us with the intervention data to bootstrap our

recommendations. We recorded their pre-intervention and post-intervention patterns, which are

then processed with our behavior profiling methods.

We continue this chapter by proposing how to generalize from this specific data curation study.

In fact, our data curation approach can be applied to ADLs other than physical activities and

interventions other than pairing up with exercise partners. In Chapter 3, we outlined a range

of possible data sources to build the behavior recommender system [Sma12b]. In this chapter

we complement this information with other possible interventions by investigating previous

studies on behavior change. The resulting approach is a combination of single-case design and

randomized controlled trials. We implement this data curation with a longitudinal user study,

where we observe participants’ behavior patterns and introduce an intervention to measure its

potential impacts on the behavior patterns.

The contribution of this chapter is two-fold: first, we propose and implement a data curation

strategy for physical activity recommendations. Second, we elaborate and provide suggestions

for the generalized version of this data curation, linking with the widely accepted data collection

approaches in medical experiments.
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5.2 Related Work on Data Curation

Data curation implies a deliberate design to collect data. Such a design should guarantee a

significant amount of data, all the while avoiding potential biases and noises. There exists a

vast variety of data collection strategies. In behavior analysis studies, we observe four major

styles of data curation: qualitative user studies, crowdsourcing, randomized controlled trials, and

single case designs. In this section we review some examples of these strategies, and identify the

relation between them and our approach.

5.2.1 Ethnography study

Ethnography is the branch of anthropology where the goal is to provide a detailed, in-depth

description of people’s everyday life and practice 1. These studies are typically based on

interviews, focus group, observations and field studies which can last days, months or years.

These studies aim to capture the values, the attitudes, the motivation towards a particular service

as well as the social context and the living settings involved [LSH+09a].

Depending on the desired outcome, researchers have used various ethnographic technics. Some

ethnographic studies only focus on interviews [BJR10], while others may involve field trials

and observations. Field observations are especially useful where the researchers would like

to see the day-to-day interactions of the participants with a new technology. Example studies

involve interactions with a conversational robot [SKH11] or wearable devices such as google

glass [MVR+14] or physical activity trackers [MLO+16].

For the case of behavior recommenders, ethnography studies are invaluable as we can get insights

on people’s attitude on sensors and other means of data collection. These insights ultimately

guide the design of a high quality data curation study. On the other hand, these studies cannot

replace the actual data curation, as it is often not possible to attach a quantitative, statistical

significance to the study results.

5.2.2 Crowdsourcing

Crowdsourcing provides a way to outsource the immense effort of data collection and annotation

to a large group of people, usually through web. Typical designs for such a collection involve

a set of micro-tasks to be completed by participants using a web-based questionnaire (such as

Amazon Mechanical Turk [KCS08]) or mobile crowdsourcing platforms [YMH+09].

The participants are paid for each micro-task they accomplish. Alternatively, they can be

motivated with various gamification strategies. Researchers should pay particular attention to

motivate people to provide truthful and high-quality responses [KCS08].

1Brian A. Hoey. What is Ethnography ? http://brianhoey.com/research/ethnography/
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Crowdsourcing is particularly useful in obtaining labels and annotations for the data. As such,

it is becoming increasingly popular to apply crowdsourcing in fields of image analysis and text

mining from social media. We refer the reader to the exemplary studies of Sintsova for further

details [Sin16].

Our data curation design differs from crowdsourcing by two major aspects. First, the number

of participants in a crowdsourcing study is undefined in the beginning, and the interaction with

participants are terminated once they finish their micro task. In this aspect, our study is quite

the opposite of a crowdsourcing, as we aimed to get detailed information about our participants,

with the intention of delivering personalized recommendations. Second, contrary to typical

crowdsourcing studies, we did not break down our study into repetitive micro-tasks. We only

considered the data of the participants who have fully completed our data curation study. With

these two major differences, we compromised from the total number of participants in favor of

the length and the quality of the data.

5.2.3 Randomized Controlled Trials

Randomized controlled trial (RCT) is a term derived in clinical studies [CSB+81]. In this type of

studies, participants are randomly chosen to receive a certain intervention. The strategy in this

data collection procedure is to have a uniform distribution of various characteristics except the

designated interventions or condition the researchers would like to test.

We can find different types of interventions and outcomes in randomized controlled trials. For

instance, one study [ESBC+08] investigates the effects of a drug called raloxifene on fracture

risk in postmenopausal women. The study divides participants into the raloxifene and placebo

groups for a period of five years. The researchers found that there was no difference between

these two groups in risk of nonvertebral fractures, but women treated with raloxifene reduced

their risk of vertebral fractures.

Another RCT study [KBFK06] reports on the effect of multimedia education for children with

asthma. A control group of pediatric patients with asthma was given standard asthma educational

resources, while the experimental group of pediatric patients with asthma was given standard re-

sources plus multimedia resources. The study found a reduction in daily symptoms, in emergency

room visits, in school days missed, and in days of limited activity in the group given multimedia

education resources.

RCT designs reduce statistical biases and help researchers determine the effect of the designed

intervention. In this manner, randomized controlled trials make it particularly easy to evaluate

the results with well-established statistical tools. On the other hand, RCT designs require data

collection from hundreds of subjects, which makes it relatively difficult to apply RCT methods in

fields such as eHealth and behavior change.
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5.2.4 Single-Case Designs

Single-Case experimental designs (SCDs) offer an alternative approach to control groups in

RCTs. In SCDs, every participant "serves as his/her own baseline" [Smi12, DCR13]. SCDs have

two objectives:

1. To test the success of an intervention on a particular case (either a person or a community)

2. To provide evidence about its general effectiveness of the said intervention.

These approaches have been around for some decades, and are still being deployed in medical,

educational and psychological studies. Such studies are also getting prominent in our field: we

can name an earlier study with an exercise app that pairs its participants into exercise partners

[CP14a], and a study involving adaptive persuasive messages for improving snacking behavior

[KRMA12].

Providing a control group does have an advantage over the single-case designs (SCD) as it can

take more external factors into account. For instance, suppose that we conducted an intervention

study on students, which coincided with the exam periods. SCD results would be more difficult

to justify, as every student goes through this period and is affected. On the other hand, SCDs

achieve their goals with a relatively small sample size [Kaz82]. This is an advantage over fully

randomized experiments, which may require hundreds of participants. Perhaps this is why,

according to a study, SCDs are becoming more and more prominent applied research, particularly

in eHealth, mHealth and behavior change [DCR13].

5.2.5 Our contributions

In this chapter we convey our implementation of a Single-Case Design. A close investigation

confirms that we can associate our study with "Multiple Baseline Design" [DCR13], a subset of

SCDs, which has a baseline period followed by an intervention period. Our design specifically

concurs with "concurrent multiple baseline design", as our interventions happen at the same time

(5th day) for the participants. Our design involves longitudinal sensor data collection, deliberate

interventions, and interactions between participants in the course of the study. In this manner,

the behavior recommender can have access to examples of proven behavior change. Our study

also collected qualitative data, which leads us to derive suggestions for the sensor equipments for

future data curation studies.

Upon a careful inspection, we also see that our curation strategy satisfy various heuristics

proposed by prior SCD studies:

• A rule of thumb is that there must be at least five data points in the baseline period [HCH05].

Our studies satisfy this condition.
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• There are some heuristics to evaluate the validity of the results [PB92]. These are: the a

large change in the level (immediate effect), a large change in the mean (long-term effect),

replication of effects across participants. Studies consider interrupted time-series analysis

as valid means of evaluation, as it already includes these heuristics [BAW00]. We not only

obtain these heuristics, but we also attached statistical significance.

• As suggested in the SCD studies, we support statistical results with visuals [PB92]. Specif-

ically, we provide the aggregated time series plots of our participants. This further supports

the validity of our statistical results throughout the thesis.

Our data curation does not re-introduce the baseline period after the intervention period. Such

a study ("baseline-intervention-baseline") would be a Reversal study, where it is reasonable to

assume that people can go back to their baseline conditions after the intervention. For instance,

the researchers could stop administering a drug and see the changes in patients’ metabolism.

This is certainly not the case in HealthyTogether, our proposed study. Our intervention, our

mobile app, cannot be removed like a drug prescription from our participants’ lives. It induces a

permanent effect on our participants’ awareness of their partners’ and their own activities. Also,

some participants continued using the app even after the study.

5.3 Data Collection with the HealthyTogether study

5.3.1 Data Analysis Requirements

We take into consideration that analysis of sensor measurements can only work well if there is

a clear specification of all the relevant context parameters of the sensing process. Algorithms

usually need to be fed with accurate and well understood historic time series data.

We can further extend the requirements depending on what sort of analysis we wish to perform.

For supervised learning approaches, the data need to be precisely labelled with the time points

when interesting events happened. In the context of physical activity data, example to such

events are: walking, cycling, running, rest, swimming, etc. If one can provide such data to the

algorithms for training, the resulting classifiers will eventually be able to associate characteristic

patterns of sensor measurements with the activity classes. To limited degrees it is possible to

use another set of methods to make sense of unannotated data. We can categorize such settings

as unsupervised learning. In this setting, it is more about discovering new patterns rather than

validating some pre-defined categories of patterns.

From the perspective of data analysis, the data collection specifications can be broadly summa-

rized as:

1. Sensor specifications: The collected information, the collection frequency, timestamps

(down to the granularity of the sensor’s collection frequency)
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2. Scenario specifications: What is the context of usage, where are the sensors placed, any

potential discrepancies?

3. Annotations: Careful recording of interventions, interesting observations, special events,

the timestamp of such events

4. Data Formats and Standards: Keeping a consistent/integratable formats of the sensor

recordings (JSON, CSV, SQL Tables), the database (MongoDB, MySQL, TinyDB)

5.3.2 Procedure

We take the approach from a prior study [CP14a] and design our user study with elements of

social influence (see Figure 5.1). It is previously shown that following each other’s activities

serves as a social intervention, with an effect of an increase of people’s activeness up to 15% on

average [CP14a].

  Warm up       Without partner      With Partner 

Begin End 

1 week 1 week 

Figure 5.1 – We followed this timeline in our HealthyTogether study.

We organized the duration of the study as a warm-up session of 2 days, and two equally long

phases of control and experiment (one week each). In the warm-up session, we distributed a

wearable sensor to participants and let them familiarize themselves with it. We started our data

collection from the beginning of the control phase, where the participants continued using the

wearable sensor. We afterwards started the experiment phase: we gave the participants Android

phones with an installation of our custom mobile application. Using this application, we asked

the participants to form groups of two, i.e., dyads. The application’s interface allowed the dyads

to monitor each other’s step patterns, as well as exchanging messages (see Figure 5.2).

In this study the participants were assigned to two conditions, which depend on the performances

of their exercise partners:
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Figure 5.2 – The main screen of HealthyTogether, the mobile application used during the data

curation study

• Harmonious Dyad: Each participant in this condition matches with a partner whose level

of activeness is similar to him/her.

• Disparate Dyad: Each participant in this condition matches with a partner who is signifi-

cantly more or significantly less active than him/her
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We measure and validate the disparity between dyads with the disparity score, which we discuss

in Chapter 6. Furthermore, we have conducted interviews with the participants in the beginning,

middle, and the end of the study. The experiences of the participants have provided us with

valuable insights about the experiment setup, which we elaborate in Section 5.5.2

5.3.3 Collected Data: HT-83

We recruited participants by on-campus advertisements and by our collaboration with a hospital

(University Hospital of Geneva) in the region. 83 people joined this study, who are originally

from 17 different countries. 15 of them had been diagnosed as Diabetes Type-II and 68 of them

were non-patient students. We compensated participants with 50CHF gift cards.

While the original study lasted for two working weeks, we have extended the period of the study

depending on the availability of the participants. The length of participation varied from 12 to

235 days (μ = 48.36, σ = 54.85). Overall, we performed the curation between September 2013

and September 2014. Figure 5.3 summarizes the collected data. For the people who stopped

participating after day 12, we filled missing values with the mean values of the continuing

participants.

While it is possible to implement this procedure with any wearable sensor, we used Fitbit One, a

wireless activity tracker. This sensor is unobtrusive and convenient to use. Furthermore, its API

allows us to easily fetch data in time series. The sensing involves an accelerometer, and it tracks

the steps, floors and calorie expenditure of the user over time. The resulting dataset contains time

series of every user’s steps with 1-minute precision, as well as the dates when the users were

paired. In our main experiments, we aggregate the sensor data values so that each data point in a

user’s time series data corresponds to the total count of steps for a day. All of the data is stored in

CSV format.

Thanks to the Fitbit API and our custom mobile application, our data is clearly annotated

with timestamps. The labeling of physical activities (running, cycling, rest, etc.) proved to be

particularly difficult, as the participants rarely entered logs to the diary available in the mobile

app. The manual annotation of ADLs is one of the major bottlenecks in activity analysis studies.

The implications of this bottleneck eventually leads us to develop unsupervised methods on

calorie expenditure data to discover and analyse common behavior patterns, as we demonstrate in

Chapter 4.

5.4 Data Curation with the SNACK study

As we outlined in Chapter 3, physical exercise is only one of the possible types of data to be

used in behavior recommender system. In fact, thanks to the rapid advancement of wearable

technology, digital food databases and computer vision techniques, it has been becoming easier

than ever to track nutrition habits of people.
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Figure 5.3 – The aggregated time series data of HealthyTogether Users. Our intervention starts at

day 5. Original study lasts for 12 days in total, although there were participants that continued

afterwards. For the sake of clarity of the figure, we limited the number of days to 15.

Surprisingly, the data curation strategy arrived earlier than the sensor technology for nutrition. An

earlier study investigated the effects of persuasive message to the snacking habits over a period

of two weeks [KRMA12].

This study, which we call SNACK, follows the timeline in Figure 5.4. The participants first

fill in a questionnaire, which quantifies the participants’ susceptibility to the 6 distinct styles of

persuasion (see Chapter 2 for a list of these elements). Then, for 5 days, they regularly logged a

diary consisting of the following quesitons:

• The number of snacks they had today

• The number of unhealthy snacks they had today

In the second half of the study, As the participants continued logging their snacking diaries, they

started to receive daily persuasive messages to cut down their snacks. In this part, the participants
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Figure 5.4 – This is the timeline for the SNACK study

were assigned to three conditions, which depend on their scores in the susceptibility questionnaire.

These conditions determined the content of the message they received every day:

• Tailored Condition: Each participant in this condition receives messages whose contents

are tailored based on the persuasion strategy that he/she is most susceptible to.

• Contra-Tailored Condition: Each participant in this condition receives messages whose

contents are tailored based on the persuasion strategy that he/she is least susceptible to.

• Random Condition: Each participant in this condition receives randomly selected persua-

sive messages.

The resulting study consists of 73 people, all Dutch citizens, from various age groups and genders.

Figure 5.5 summarizes the collected data. We filled missing values with the mean values of the

continuing participants. We perform an analysis of this dataset in Chapter 6. This study proposes

daily messages as an alternative form of intervention.
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Figure 5.5 – The aggregated time series data of SNACK Users. The intervention starts at day 5.

Study lasts for 10 days in total.

5.5 Results

5.5.1 Generalization

Based on the HealthyTogether and SNACK studies, we can layout the following key elements for

a generalized form of our data curation:

• Technology-Mediated Interventions: As shown in the HealthyTogether and SNACK

datasets, we can specify the interventions as social influence (exercise partners), persuasion

(daily messages), and daily goal setting.

• Recording pre-intervention and post-intervention periods: This step ensures that we can

measure the impact of the intervention on a given participant.

Given enough number of participants, we can introduce a third element, i.e., splitting the

participants to experiment and control groups. In this manner, this curation study becomes an
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extention of Randomized Controlled Trials.

In summary, our generalized data curation is a longitudinal study that involves users in an experi-

ment over an extended period of time. We investigate how technology-mediated interventions

can users achieve active lifestyles. We propose a randomized controlled trial, where we monitor

two groups of patients. One group starts receiving our custom intervention 3 weeks after the start.

The diagram in Figure 5.6 below shows how Agata, a typical participant, would undergo this user

study.

5.5.2 Sensors for Future Curation Studies

We identified that since many ADLs are collected through sensors, it is critical to ensure that such

studies will involve sensors that satisfy a number of criteria. With the contribution of qualitative

feedback from the study participants, we identified these criteria as follows:

• Accuracy: The quality of the sensor dictates the usefulness of data for the recommendations.

• Safety: Proper safety measures ensure long-term usage of the wearable sensor.

• Data accessibility and seamless data transition: Sensors that support wireless data transmis-

sion and APIs for data fetching is more practical than those that require a USB connection

for data upload.

• Ease of use and usefulness: Wrist-worn or pocket sensors are perceived as easy to use.

Furthermore, it is preferable by participants to have a device that can sense multiple types

of information (calories, heart rate, sleep, etc.)

• Affordability: Cheaper sensors are easier to deploy for a data curation study.

We leveraged these findings and outlined our comparisons between a number of physical activity

sensors (see Figure 5.7) for future studies on data curation.

5.6 Chapter Summary

A functional behavior recommender requires a deliberately curated dataset. Such a curation

should not only adress the classical cold start problem, but also help the behavior recommender

find the optimal trade-off between effective and feasible recommendations.

In this chapter, we describe how to design this data curation. In our approach we measure people’s

behavior, but we also deliberately introduce an intervention to monitor its effect on people’s

patterns. We demonstrate our approach through HealthyTogether study, in which we curated

physical activities of 83 people along with a social intervention (pairing up the users with exercise
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Figure 5.6 – Our proposed outline for future data curation studies

partners). We also summarize a previously collected dataset, which contains snacking logs of 73

along with a message-based information.

Our data curation approach is a special case of Single Case Design, specifically, the concurrent

multiple baseline design. Given enough number of participants, our data curation can easily

extend into a Randomized Controlled Trial, where we can split the participants to experiment and
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Figure 5.7 – A comparison of off-the-shelf sensors based on 7 criteria. A full black circle indicates

that the given sensor fully satisfies the given criterion. A partially black circle indicates a partial

fulfilment, whereas a white circle indicates that the sensor does not fulfil the given criterion

control groups. Furthermore, we identified that since many ADLs are collected through sensors,

it is critical to ensure that such studies will involve sensors with high reliability and usability. We

leveraged these findings and outlined our user study design and sensor comparisons for future

studies on data curation.

63





6 Behavior Profiling and Evaluation for
Recommendations

6.1 Challenges

In this chapter, we enlist the technical challenges for our proposed behavior recommender in

Section 6.3, and outline our methods to adress them. Figure 6.1 depicts the flow of information

between these methods.

• Data Curation: The system must use observations on behavior change attempts in addition

to measurements of raw physical activities. We deliberately curated a dataset through a

user study so that the system could have access to such information. In this user study, we

equipped participants with wearable sensors and asked them to form two-people exercise

groups. In this manner, we managed to obtain the activity and intervention data to bootstrap

our recommendations. In order to preserve the flow of this chapter and elaborate the data

curation more in detail, we describe it in Section 5.3.3 of Chapter 5.

• Temporal Profiling: The system must process rich, yet noisy and diverse information with

temporal data to capture the common behavior patterns. We name the clusters of common

behavior patterns as temporal profiles, and obtain them with a model-free combination of

noise filtering, matrix decomposition and time series clustering. We describe this method

in Section 6.4.

• Intervention Profiling: The sensor data lacks the manual annotations for proven behavior

changes. Thus the system must itself discover the users who have responded to recom-

mendations and improved their activeness. We call the distinct groups of responses as

Intervention Profiles. The system uses a well known statistical method called Interrupted

Time Series Analysis [WSZRD02] to compute the users’ Intervention Profile, and conse-

quently determines the response type of the Temporal Profile clusters in Section 6.4. We

describe this method in Section 6.5. These profiles are closely related with our deliberate

curation of the dataset described in Section 5.1.

• Evaluation: The recommendations should be both useful and safe for the system’s users.
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Figure 6.1 – InspiRE applies the processes illustrated in this figure to generate the recommenda-

tions

In relation to the users’ existing patterns, the recommenders should either help the users

improve or maintain their trends for behavior change. Since the research in behavior

recommenders is in its early stages, it is yet another challenge to define the methods

of evaluation. We propose and report three levels of validation that correspond to the

respective methods. We also test the system with varying granularity in data and additional

contextual information such as user demographics. We describe our evaluations in Section

6.3.

6.1.1 The Guidelines of Our Solutions

In summary, we generate behavior profiles as tuples 〈T P, I P〉, where T P represents the temporal

profile, and I P represents the intervention profile. The recommendation, T SREC , is a time

series object which maximizes the likelihood that the recipient user will have a steady rate of
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improvement, rendering him/her as a Responder:

T SREC = ar g max(p(user = Responder |user pr o f i l e = 〈T P, I P〉,r ecommend ati on = T S))

(6.1)

To guide users for a successful behavior change, the system aims to recommend small and

incremental patterns based on proven behavior change. As we argue in this thesis, this means

that the recommendations should solve the critical trade-off between feasible and effective

recommendations. This trade-off will quantitatively depend on a user’s existing patterns. On the

other hand, any such recommendation should adhere the following guidelines:

1. Maintenance: If the user’s pre-recommendation pattern resembles to those of Responders,

then can the recommendation help the user maintain this pattern?

2. If the user’s pre-recommendation pattern resembles to those of Non-Responders or Tempo-

rary Responders:

• Effectiveness: If the user may fail because of not performing enough, can the recom-

mendation help the user speed up?

• Feasibility: If the user may fail because of overdoing, can the recommendation help

the user improve with a slower but safer rate of change?

We now discuss the related work and our implementations in more detail.

6.2 Related Work

6.2.1 Hidden Markov Models

In Chapter 2, we have provided an abstract overview of behavior profiling and recommender

systems. In Section 2.6.2, we noted that very few studies have been performed in behavior

recommender systems. Nevertheless we can still consider some state-of-the-art work in music

recommendations. The items (i.e., songs) in such systems are similar to ADLs, as they can

also be represented as time-series data with continuous values. Our survey shows that music

recommender systems handle the temporal properties of songs predominantly with various

probabilistic modeling approaches [AKS12, HMB12, PC09, YGK+08]. The most powerful of

them, Hidden Markov Models, offer many advantages:

• HMMs are powerful graphical tools to model temporal dynamics. It can process users’

ADLs to model micro-patterns and their occurrences as states and transitions. A careful
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tuning of these states and transitions provides a good compression of data, i.e., it greatly

simplifies the representation of broad patterns. This makes HMMs a candidate method to

construct behavior profiles.

• The HMMs can be used to generate possible future ADL trends of users as a collection of

micro-patterns, which are represented as states in HMM. One can use the Viterbi algorithm

[Vit67] to identify the best sequence of micro-patterns that eventually leads the user to

a state of improved ADLs and therefore well-being. Thus, this property of HMM also

renders it a method to generate pattern recommendations.

Various prior music recommender studies employ such models to handle the temporal character-

istics of songs [HMB12, PC09]. Nevertheless, Markov Modeling variants do have three critical

weaknesses that render them unusable in the context of behavior recommendations:

1. As we demonstrate in Chapter 4.6, ADL datasets can rapidly become massive in size. To

meet these trends, the system should incorporate scalable methods for data processing.

Unfortunately, the Viterbi algorithm [Vit67], a core function in Hidden Markov Models, is

prohibitively expensive: For a user’s timeseries ADL of length D, the dynamic program-

ming for finding the best path through a model with S states and E edges takes O(SD ) space

and O(E D ) time.

2. The HMM needs immense amount of training data. The training involves repeated iterations

of the Viterbi algorithm.

3. For a given training dataset, there are many possible HMMs. As a general rule of thumb,

smaller models are easier to understand, but larger models can fit the data better. Without

the expert knowledge on determining the states and/or prior probabilities for training, the

choice of the ideal model remains rather arbitrary.

We can therefore state the advantage of our recommendation and profiling methods over the

Markov Models in two perspectives: In the algorithmic perspective, our behavior profiling is more

scalable and data-economic than Markov-Model based approaches. In the perspective of human

efforts, our approach removes the need of expert knowledge and effort in behavior profiling,

effectively allowing the researchers to concentrate on the time and the type of intervention to be

delivered as recommendations.

6.2.2 Deep Learning

Deep learning [LBH15] is a family of approaches that have recently gained momentum in machine

learning research. The design of such methods originally drew inspirations from neuroscientific

studies, which modeled biological neural networks.
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Deep learning methods are effective in learning multiple layers of abstraction. This renders them

particularly useful in a wide range of computer vision tasks [HZRS16], from edge detection to

face detection, object tracking, and annotation generation.

To our best knowledge, deep learning approaches have not yet been applied to behavior profiling

and recommendations. This is mainly due to the following unmet prerequisites for deep learning

models:

1. Deep learning variants require immense amount of training data. In some cases, including

ours, the researchers can not meet this prerequisite.

2. The initalization and momentum is crucial to obtaining an acceptable quality in the network

[SMDH13]. Typically the related parameters are manually tuned for each dataset, and this

again requires expert knowledge. This is also in line with latest studies which compare so-

phisticated Deep Learning architectures against baseline methods in recommender systems.

To our best knowledge, baseline methods like k-NN can still outperform deep learning

architectures [JL17].

Despite the rapid advances in deep learning methods, we can argue that our current recommen-

dation and profiling methods are more advantageous over deep learning methods in terms of a)

handling small datasets and b) minimal human effort to determine the initialization of the models.

However, near-future resarch on behavior recommenders will find it useful to test new approaches

in deep learning.

6.3 Recommendation

As we explained in Chapter 1, a behavior recommender must find the optimal trade-off between

safe and effective pattern for its users. With this constraint in mind, we can assess three possible

ways to generate pattern suggestions: non-personalized, naive similarity-based, and balanced

recommendations. A non-personalized approach (e.g. taking the global average of user patterns)

discards a user’s innate capabilities in generating suggestions. This clearly violates the well-

established principles of Trans-Theoretical Model and Social Cognitive Theory (see Section

2.3). In this perspective, it is straightforward to deduce that a non-personalized approach cannot

guarantee that the recommendations will satisfy the trade-off challenge.

A naive, similarity-based approach obtains recommendations as described in Algorithm 1. How-

ever, this approach will help the users maintain their existing patterns. For instance, in the

case of activity recommendations, inactive users will receive pattern suggestions based on other

inactive users. Therefore a similarity-based recommendation will not be able to engage the users

according to the the well-established principles of the Flow Concept (see Chapter 2.4).

In this chapter, we propose a third alternative. In this alternative, the system obtains people’s
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ALGORITHM 1: The SIM Algorithm: Computing recommendations using only similarities

Input: T Su - User u’s data in time series format, C l uster s - the list of temporal profiles, T Si -

time series data of each User i in dataset

Output: T SREC - the average trend based on the best neighbours for User u
nei g hbor _candi d ates = heap(maxi mum_el ement_l i mi t = 10);

closest_cluster = argmin(DT W _LB_K EOG H (T Su , C l uster s [c].centr oi d ));

for each T Si in closest_cluster do
di st ance = DT W _LB_K EOG H(T Su ,T Si );
nei g hbor _candi d ates.insert(item=T Si , value=di st ance);

end
return temporal_average(nei g hbor _candi d ates)

behavior profiles, and generates recommendations with the following procedure:

1. Get the user’s data thus far, and identify the best matching temporal pattern followed by

the system’s users. The system obtains these patterns as described in Section 6.4.

2. Find the users whose patterns were similar to user’s patterns, but responded positively

to recommendations. The system discovers the responses of users (and whether they

improved their patterns) beforehand as described in Section 6.5.

3. Identify and output the average trends of the closest successful users (produced by averaging

the values on each time point as in Appendix A.7)

This procedure in effect finds T SREC , out of all time series objects (T S) that can be obtained

from our dataset such that:

T SREC = ar g max(p(user = Responder |user pr o f i l e = 〈T P, I P〉,r ecommend ati on = T S))

(6.2)

The search space of all possible T S objects is prohibitively large, but we can use the nearest-

neighbour approach to approximate the optimal recommendation. Algorithm 2 describes our

approach in more detail. We use the 10-nearest neighbors procedure with DT W _LB_K EOG H

to obtain the most eligible time series patterns for recommendation (See Appendix A.2). The

comparisons are based on pre-recommendation patterns: we assume that the new user has not

received a recommendation before. With the temporal profiles obtained in Section 6.4, the

algorithm determines the closest cluster to the target user faster than comparing his patterns

with every other user. The intervention profiles obtained in Section 6.5 help the algorithm skip

the clusters that are populated with non-responders and temporary responders. The resulting
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Figure 6.2 – This figure illustrates how InpiRE processes time series data in temporal profiling

stage. T− and D− stands for Trends and Deviations respectively. Figure reproduced with

permission [YP16] for the sake of clarity.

recommendation is a temporal pattern, whose daily rate of change depends on the new user’s

pattern and the existing attempts at behavior change.

ALGORITHM 2: Computing Recommendations with InspiRE

Input: T Su - User u’s data in time series format, C l uster s - the list of temporal profiles, T Si -

time series data of each User i in dataset

Output: T SREC - the average trend based on the best neighbours for User u
nei g hbor _candi d ates = heap(maxi mum_el ement_l i mi t = 10);

closest_cluster = argmin(DT W _LB_K EOG H (T Su , C l uster s [c].centr oi d ));

for each cluster C in {C l uster s \ closest_cluster } do
if (C .r esponse_t y pe == Responder ) then

for each T Si in C do
di st ance = DT W _LB_K EOG H(T Su ,T Si );
nei g hbor _candi d ates.insert(item=T Si , value=di st ance);

end
end

end
return temporal_average(nei g hbor _candi d ates)

6.4 Behavior Profiling: Temporal Profiles

Raw time series data typically consists of rich, yet noisy and diverse information. In order to

capture this information, we employ an approach as depicted in Figure 6.2. We have developed

this method in a prior work [YZP14], which is described more in detail in Chapter 4. In summary,

we take the following steps: First, we apply filtering to remove excessive noise in our time series

dataset. Then, we decompose the dataset into two matrices: one matrix contains common trends,

and the other matrix contains deviations. As soon as we obtain these two matrices, we perform a

clustering operations on them in parallel, and discover the broad patterns of trends and deviations.

Finally, we merge the broad patterns from trends and deviations in order to obtain final clusters.

The collection of these final clusters, i.e., the set of distinct behavior patterns, represents the

temporal profiles.
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Prior applications [KC12a, MZWM10a, YZP14] validate this technique’s noise tolerance, mini-

mal dependency on external labels, and superiority against baseline methods in terms of clustering

quality in time series data [YZP14]. With it we obtain trends matrix and deviations matrix. Once

this stage is completed, the final clusters are the temporal profiles, i.e., the set of distinct behavior

patterns. The system can identify a user’s temporal profile by comparing the patterns from her

time series data with the clusters.

6.5 Behavior Profiling: Intervention Profiles

While sensor data generally lacks annotation, it is still possible to assess external effects, i.e.

interventions on the time series data. We take this opportunity to develop Intervention Profiling for

InspiRE. This method has two major stages: In the first stage, we compute each user’s response

to a recommendation. This stage represents the responses in two quantities: the immediate and

the daily rate of the change a person’s level of activeness after the recommendation. In the second

stage, we identify the categories of the responses using the quantities we obtained from the first

stage. These categories are the intervention profiles. We now describe these stages in more detail.

Physical 
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(e.g. steps) 

Time 

Recommendation/
i i

immediate change 
( βaccumulative = β2 ) 

Post-recommendation 
slope: daily change 
( βdaily = β1 + β3 ) 
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Post-
recommendation 

Expected slope 
without 
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recommendation 
slope: Initial Trend 
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Figure 6.3 – A conceptual chart that depicts how Interrupted Time Series analysis models the

intervention and change.

6.5.1 Computing Responses

In this stage, we use pre-recommendation data as baseline, and post-recommendation data to

measure the impact of the recommendation on the time series data. We treat recommendations as

interventions, and compute the responses through an interrupted time series (ITS) analysis, which

is known to be the strongest quasi-experimental approach for evaluating the longitudinal effects
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of interventions [WSZRD02]. We solve the following linear regression problem on a user’s time

series data:

T St =β0 +β1 ∗ t i met +β2 ∗ i nter venti ont +β3 ∗ t i me_a f ter _i nter venti ont (6.3)

where T St denotes the user’s number of steps at day t , where t and t i met ranges from 1 to

the length of the sensor usage of the user. i nter venti ont is an indicator for time t occur-

ring before (i nter venti ont =0 ) or after (i nter venti ont =1 ) the time of recommendation.

t i me_a f ter _i nter venti ont is the number of days after the recommendation. It values as 0

before the recommendation and (t i met –t i me_o f _r ecommend ati on) after the recommenda-

tion.

Next, as we depict in Figure 6.3, we obtain the value β1 +β3 as βd ai l y : this value indicates the

daily rate of increase in steps after the intervention. At the same time, we obtain the value β2 as

βaccumul ati ve : this value explains the accumulative increase of steps not included in βd ai l y , i.e.,

short-term surges in the given time series data. It is theoretically possible to model more than one

intervention. In such cases, we can update the equation 6.3 with additional terms to calculate the

daily rate of increase and the accumulative increase in response to each additional intervention.

6.5.2 Identifying the Response Categories

The interpretation of the coefficients depends on the data. The HT-83 dataset (see Section 5.1)

consists of step data, thus positive β-values are more desirable: they indicate increased level

of activeness. On the other hand, the SNACK dataset (see Section 5.4) consists of number

of unhealthy snacks during the day, thus negative β-values are more desirable: they indicate

decreased level of snacking.

Upon inspecting the averages of statistically significant βaccumul ati ve and βd ai l y values within

the clusters we obtained from HT-83 (Section 6.4), we can identify three distinct intervention

profiles of users based on their responses to the recommendation:

• Responders (R): Those who adopt a steady increase of activeness after the social recom-

mendation. A cluster is R when βd ai l y is positive and larger than β1, and βaccumul ati ve is

non-negative.

• Temporary Responders (TR): Those who have an immediate increase when the rec-

ommendation takes place, but do not maintain a steady increase. A cluster is TR if

βaccumul ati ve > 0, but βd ai l y = 0.

• Non-Responders (NR): Those who do not have a steady increase, and perhaps even

continue losing the level of activeness after the recommendation. A cluster is NR if
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bet ad ai l y < 0, or bet ad ai l y is not significantly different than bet a1 while βaccumul ati ve

is non-positive.

With this analysis, users are further differentiated in terms of their responses to recommendations

in addition to their temporal profiles. This means, for instance, users from two different temporal

profiles could be “Responders” (both have significantly increased their level of activeness after

the recommendation).

It is possible to measure the impact of any type of intervention with this method. In our primary

evaluations, we used the introduction of exercise partners as the intervention - just like receiving

a pattern as recommendation, the participants in our data curation study were able to see their

exercise partner’s pattern and adjust their behavior accordingly.

6.6 Evaluations

In this section, we discuss the validation of InspiRE’s data engine:

• To validate temporal profiling stage, we show that we obtain distinct and internally con-

sistent profiles. We measure this by inspecting the internal validation indices (Average

Silhouette Width) of the clusters we obtained.

• To validate intervention profiling stage, we show that intervention analysis helps the system

identify people’s capability for behavior change, and that recommendations influence

people’s behavior patterns to a significant extent. We measure these features by analyzing

the regression coefficients and coefficients of determination.

• To validate recommendation stage, we investigate the disparities between the patterns from

a user, his/her activity partner (if applicable), and from recommendations generated for

this user. We measure these relations by computing disparity scores, and showed that our

recommendation strategy is the best approach to obtain the trade-off between effective and

feasible recommendations. (See Section 6.6.2 for details).

We have used the HT-83 Dataset (Section 5.3.3) for our primary validations, and the SNACK

dataset (Section 5.4) to show that we can generalize our recommendations beyond physical

activity patterns, to snacking patterns.

6.6.1 Validating Profiling Stages

Quality of Temporal Profiles

We validate temporal profiles with Average Silhouette Width [KR09a] - see its details in Appendix

A.3. Figure 6.4 summarizes the ASW scores for clusters obtained when the data granularity
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Figure 6.4 – Average Silhouette Widths of each cluster from the Temporal Profiling stage. ASW

measures clustering quality, and higher values indicate better clustering quality. 0.5 is the

boundary for high quality clustering, and 0.25 is the boundary for acceptable quality. Our method

produces high quality temporal profiles.

consists of daily step counts for users. In this study, we obtained 6 clusters. The average silhouette

width is 0.86, which indicates a strong level of clustering quality: thus every temporal profile

represents a distinct pattern.

Significance of Intervention Profiles

We validate the significance of behavior change attempts with the statistical results concerning the

models fitted on activity data with Interrupted Time Series analysis. This includes significance of

the regression coefficients, and the R2 statistic (i.e., coefficient of determination), as well as the

differences between pre- and post-intervention slopes (as we elaborated in Section 6.5).

Table 6.1 summarizes the average of regression coefficients from the analysis of users that belong

to each cluster from temporal profiles. The coefficients in the fitted models are statistically

significant (p < 0.05). We observe that Intervention Profiles introduce further details on temporal

profiles: Users in each profile have distinct starting trends and unique responses to recommenda-
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tions. For instance, users in C1 have a high accumulative increase in their activeness, but fail to

maintain a steadily increasing trend. However, users in C6 can do a similar accumulative increase

and keep increasing their activeness over time. This further suggests that it is necessary to tailor

different recommendations to each profile.

In addition to these evidences, the minimum adjusted coefficient of determination in models

is 0.12 (in C1), therefore satisfying ad j usted −R2 > 0.1 for all solutions. As such, while

there can be many unobserved, contextual factors that could influence the change of a person’s

activeness, our intervention profiling successfully explains the influence of recommendations to

the post-recommendation activeness to a significant extent. This, in effect, removes the need to

collect external ground truth information to validate recommendations.

By the end of our intervention profiling procedure, we identify that there are 8 T R, 29 N R, and

46 R users in the HT-83 dataset.

Table 6.1 – The parameters obtained via ITS on HT-83 clusters. β0 to β3 are coefficients of fitted

linear model, with βaccumul ati ve = β2 and βd ai l y = β1 +β3 These coefficients are statistically

significant in all cases (p < 0.05), thus our intervention profiling can detect the potential impacts

of recommendations.

Cluster Initial Accumulative Daily Minimum Interpretation

Trend Change Change Adjusted-R2

(β1) (βaccumul ati ve) (βd ai l y )

C1 -5.5 1044.35 0 0.12 Temporary

Responder

C2 -2.43 -497.24 4.292 0.18 Non-Responder

C3 -53.3 527.46 40.56 0.22 Responder

C4 21.99 -822.34 -17.85 0.22 Non-Responder

C5 11.27 521.66 12.7 0.15 Responder

C6 -350.6 1466.5 638.98 0.32 Responder

6.6.2 Validating the Recommendation Stage

The implementation of the guidelines in Section 6.1.1 may vary based on specific cases. In

the absence of the partner information, as we demonstrate in Section 6.7, we can examine the

differences between patterns of the users and the recommendation. In cases like HT-83 dataset,

where the users do have exercise partners, we can further enrich our examinations: we can

compare the relations between the patterns of the user, the partner and the recommendation.

In all cases, it is necessary to quantify the differences between the time series patterns. Toward

this end, we calculate disparity scores - a variant of mean absolute error. In the case of HT-83, for

instance, we can calculate the disparity between a user and a partner or the recommended pattern
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as:

di spar i t y(user, par tner ) =
∑T

t=1 |d user
t −d par tner

t |
T

(6.4)

where d represents the number of steps in a single day, and T is the length of the given

user’s data in days. Higher values of di spar i t y(user, par tner ) partners indicate more dif-

ference between the patterns of the user and his exercise partner. Consequently, a small differ-

ence between di spar i t y(user, par tner ) and di spar i t y(user,r ecommend ati on) indicates

a stronger similarity between this user’s partner’s pattern and the system’s recommendation.

Disparities Between Exercise Partners

Figure 6.5 summarizes the distribution of di spar i t y(user, par tner ) scores in R, N R, and T R

users. The average disparity in R, N R and T R users are 931, 3685, and 3822 respectively. The

ANOVA test between the three categories (R, TR, and NR) concludes that these differences

are statistically significant (F = 24.5,p < 0.001,d f = 2). It is rather predictable that the level of

disparity within T R users is slightly higher than N R users: T R users start off with high levels of

activeness but then drop down. N R users never achieve such surges of activeness.

These results suggest that for HT-83 participants, optimal recommendations would emphasize

more on feasibilityof the suggested number of steps per day. Thus we need to perform two

tests. First, recommended patterns for N R and T R should be significantly easier for them to

follow. In other words, di spar i t y(user,r ecommend ati on) should be significantly smaller

than di spar i t y(user, par tner ) for N R and T R users. Second, these two quantities should be

statistically similar for R users - this observation guarantees that recommendations help R users

to maintain their pace of improvement.

Comparing Recommendations and Actual Exercise Partners

Table 6.2 summarizes the statistical comparisons between users’ disparities with their actual

partners, and similarity-based and InspiRE’s recommendations. We see that both recommendation

strategies will minimize the disparity between the recommended pattern and user’s current pattern.

However, we also observe that:

• A similarity-based recommendation strategy (i.e., finding 10-nearest neighbors for a user

to recommend) always recommends patterns with significantly smaller disparity scores

than InspiRE’s approach (597.2 versus 856.5 on average, t=-3.72, p <0.001). Thus it is also

more likely that the similarity-based strategy will recommend inactive people’s patterns to

users who are already inactive.
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Figure 6.5 – The di spar i t y(user, par tner ) scores of Responders (R), Non-Responders (N R)

and Temporary Responders (T R).

• InspiRE’s recommendation strategy produces very similar recommendations for R users

(p = 0.26), whereas a similarity-based recommendation strategy generates significantly

different recommendations for R users (p = 0.002).

We conclude that our recommendation strategy overlaps with the strategies of users with proven

behavior changes, and improves the chances of future users to have behavior change.
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Table 6.2 – Comparing di spar i t y(user, par tner ) and di spar i t y(user,r ecommend ati on)
scores. InspiRE’s strategy produces more desirable recommendations.

Profile Actual vs. Actual vs. ANOVA Test

Similarity-Based InspiRE

Responders t = 3.08, p = 0.002 t = 1.11, p = 0.26 F = 7.07, p = 0.001

Others t = 5.87, p <0.001 t = 5.94, p <0.001 F = 30.5, p <0.01

6.6.3 Additional Observations

We further tested the system’s capabilities and limitations by tuning various parameters involved

in our procedures. We particularly focused on the data length and granularity, as well as using

contextual information to guide the system.

Optimal Training Set Size for Predicting the Intervention Profile

Users’ activity trends may change over time. This may cause shifts in their intervention profiles.

In order to maintain the quality of recommendations from Algorithm 2, the system may need

to reassess the profile assigned to its users. It is thus an important task to determine when

this reassessment should take place. Toward this end, we measured the predictability of users’

intervention profile (being an R, N R, or T R user) given a certain portion of their data.

We used each user’s data in relative lengths, i.e., 1/6, 1/5, 1/4, 1/3 and 1/2 to set up the cases

for the prediction. For each case, we implemented a 10-nearest neighbor with 10-fold cross

validation. We measure the accuracy of predictions by unbiased F1-score (see Appendix A.4 for

its calculation).

We summarize the F1 scores paired t-test comparison results in Table 6.3. We see that the

prediction quality increases together with the relative length of training data - the more data the

system has, the better the predictions. However, this improvement is no longer significant when

we increase the relative length from 1/3 to 1/2 (p = 0.28). This hints that InspiRE should reassess

the intervention profile when the length of pre-recommendation data of a user is less than a third

of his entire data. For instance, assuming that InspiRE gives recommendations to a user 1 month

after having started using the system, it should reassess this user’s patterns no later than 2 months

after the recommendation took place.

This result is particularly interesting, as it is supported by other behavior studies. For instance, a

weight loss analysis study suggests that 1/3 of a user’s weight loss trend is a significant predictor

of the rest of his trend [WNW+11]. Furthermore, this analysis also suggests the maximum length

of the recommendation pattern for a user should not surpass twice the length of his/her ADL data.
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Table 6.3 – F1-scores based on the relative length of the training set. Results indicate that

InspiRE should recalculate the profiles after twice the amount of time has passed since the last

recommendation.

Relative length of training data 1/6 1/5 1/4 1/3 1/2

F1-score 0.63 0.67 0.7 0.75 0.76

Paired t-test significance

p = 0.01

p=0.04

p=0.03

p=0.28

Incorporating Contextual Information for Profiling

The quality of recommendations may alter with external/contextual information to guide both

of the profiling stages. For instance, as in our dataset, there could be two demographically

distinct populations that would use the system. Using contextual information can help the system

make better predictions for the intervention profiles, and consequently tailor more personalized

recommendations.

There are sophisticated methods to automatically detect relevant contextual information in the

domain of movie recommendations [OTTK13]. Such methods are yet to be developed for behavior

recommenders. As such, for the sake of scope of this thesis, we have manually determined a

context: we separately processed Students and Patients in the HT-83 dataset (see Section 5.3.3),

and compared the prediction quality of this style of partitioning against the case when the system

processes the mixture of these two populations. When we train our system separately for patients

and students, we observe that it predicts the intervention profiles more accurately than when we

train the system with mixed data - see Table 6.4.

A further inspection on the temporal profiles validates this finding: We observe that (a) clusters

are statistically distinct, and their average steps are different and (b) Patients and Students

have statistically different distribution across the clusters (ANOV A : F = 10.42, p < 0.01). Thus,

students and patients in our datasets follow different daily activity routines, and thus they may

require different (and sometimes conflicting) strategies to achieve more active lifestyles.

Table 6.4 – F1-scores we obtain when we partition the dataset based on population. Separating

the populations result in better predictions for intervention profiles.

All Users Students only Patients only

0.62 0.68 0.82

Extracting Temporal Profiles in Varying Granularities in the Dataset

We had aggregated the sensor data into daily points ın our main experiments. In this setting, the

Temporal Profiling procedure processed activity data for every minute for every user. The overall
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ASW scores for this setting is 0.67, which is lower than original setting (1 data point for each

day) but still above the 0.5 threshold for high quality clustering. The statistical distinctiveness

of temporal patterns in these clusters (ANOVA with repeated measurements, p < 0.01), further

demonstrates the robustness of the temporal profiling stage.

6.7 Generalizing InspiRE: The SNACK Dataset

We use the SNACK dataset (see Section 5.4) to show the generalizability of InspiRE. This dataset

contains the daily unhealthy snack logs of 73 people, all Dutch citizens, from various age groups

and genders. In the context of nutrition habits, the task of a behavior recommender is to inspire

users to cut down the number of unhealthy snacks taken each day.
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Figure 6.6 – The timeline for SNACK study. N = 73 participants joined the study.

Figure 6.7 conveys the behavior profiles in the SNACK datasets. InspiRE obtains 4 clusters for

Temporal Profiles, with good clustering quality (ASW > 0.5). Through intervention profiling,

InspiRE identifies these clusters as N R, R, R and T R, respectively. By the end of our intervention

profiling procedure, we identify that there are 18 T R, 19 N R, and 36 R users in the SNACK

dataset.

Table 6.5 summarizes the average of regression coefficients from the analysis of SNACK users that
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Figure 6.7 – The Behavior Profiles and recommendations generated by InspiRE on SNACK

dataset. The blue line represents the median of the users in each profile, whereas the green line

represents the median of the users that InspiRE uses to generate recommendations for each user

in the given profile.

belong to each cluster from temporal profiles. The coefficients in the fitted models are statistically

significant (p < 0.05). In addition to these evidences, the minimum adjusted coefficient of

determination in models is 0.22 (in C1), therefore satisfying ad j usted−R2 > 0.1 for all solutions.

For the coefficients of SNACK Intervention profiles, we reverse our interpretations we made in

HT-83 Intervention Profiles. In this case, it’s the negative values that indicate a person improving

his/her well-being (by decreasing the amount of unhealthy snacks)

The way we evaluate the recommendation quality on the SNACK dataset is slightly different

than HT-83 dataset, as the SNACK users did not have a partner. We nevertheless follow the

guidelines we proposed in Section 6.6.2: We instead compare the recommendations of the naive

SIM Algorithm (see Algorithm 1) and InspiRE’s Algorthim (see Algorithm 2) in three key tests:

1. We compare whether the two approaches recommend different patterns. We do so by

comparing the quantities di spar i t y(user,SI M) and di spar i t y(user, Inspi RE)

2. We compare Responder users’ post-intervention slopes and the slopes of the patterns
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Table 6.5 – The parameters obtained via ITS on SNACK clusters. β0 to β3 are coefficients of fitted

linear model, with βaccumul ati ve = β2 and βd ai l y = β1 +β3 These coefficients are statistically

significant in all cases (p < 0.05), thus our intervention profiling can detect the potential impacts

of recommendations.

Cluster Initial Accumulative Daily Minimum Interpretation

Trend Change Change Adjusted-R2

(β1) (βaccumul ati ve) (βd ai l y )

C1 -0.31 -0.05 0.31 0.22 Non-Responder

C2 0.05 -0.34 -0.08 0.41 Responder

C3 -0.08 -0.34 -0.13 0.36 Responder

C4 -0.27 -0.56 0 0.35 Temporary

Responder

generated by both algorithms. The latter quantity should be statistically similar to the

former. In that case, we can state that the recommendation can help the responder users

maintain their rate of improvement.

3. We compare Other users’ (N R and T R combined) post-intervention slopes and the slopes

of the patterns generated by both algorithms. The difference between these two quantities

should be significant, so that we can state that the recommendations can help N R’s and

T R’s to improve their behaviors.

For the first test, a t-test validates that InspiRE’s recommended patterns have higher dispari-

ties from the users than the patterns generated by similarity-based recommendations (t=-2.70,

p=0.007). Table 6.6 summarizes the tests 2 and 3.

In the case of SNACK dataset, we see that both similarity-based recommendations and InspiRE-

based recommendations help R profiles maintain their patterns (p > 0.05). For N R and T R

profiles, InspiRE’s recommended patterns could help the users with a significantly higher rate of

improvement (p < 0.05). On the other hand, similarity-based recommendations cannot deliver

rates that are significantly better than users’ existing patterns (p > 0.05).

In other words, InspiRE’s recommendations can help Non-Responders and Temporary responders

significantly improve their patterns, as well as help Responders maintain their patterns. A

similarity-based recommendation strategy cannot achieve the same effect.

Table 6.6 – Comparing the average of post-intervention (PI) slopes of users, similarity-based

recommendation patterns and InspiRE patterns.

PI Similarity-Based InspiRE ANOVA Test

Responders -0.67 -1.09 (t = 1.43, p = 0.15) -0.62 (t = -0.16, p = 0.87) F = 1.97, p = 0.14

Others -0.44 -0.77 (t = 1.09, p = 0.27) -1.09 (t = 2.25, p = 0.02) F = 3.11, p = 0.04

As a final step of validation in SNACK dataset, we investigated how well the behavior profiles
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explain the real life conditions of the participants of the SNACK study. In this study, the

participants were assigned to Tailored Condition (TC), Contra-Tailored (CTC), and Random
Condition (RC) - see Section 5.4 for more details on these conditions. Their results had indicated

that TC participants had the most stable rate of improvement. They were followed by RC

participants, whose patterns shown little and unstable improvement. C T C participants were the

least to improve, and they even showed signs of relapse [KRMA12].

We have observed a strong overlap between our behavior profiles, and the conditions assigned to

study participants:

• The composition of SNACK Cluster C 1, which contains Non-Responders, is 60% C T C ,

20% TC , and 20%RC participants.

• The composition of SNACK Cluster C 2, which contains Responders, is 60% T C , 30% RC ,

and 10%C T C participants.

• The composition of SNACK Cluster C 3, which contains Responders, is 50% T C , 40% RC ,

and 10%C T C participants.

• The composition of SNACK Cluster C 3, which contains Responders, is 100% RC partici-

pants.

Therefore, we further validated that our profiling methods realistically represent users’ temporal

patterns and their responses to interventions.

6.8 Chapter Summary

In this chapter, we have elaborated on the core components of InspiRE the behavior recommender.

We have justified its recommendation strategy through the behavior change theories that we

reviewed in Chapter 2.

We have performed a rigorous validation on the behavior profiling and the recommendation

strategies of InspiRE. In our evaluations, we have demonstrated that InspiRE successfully obtains

the trade-off between effectiveness and feasibility of recommendations. In more details, our

findings show that:

• Our methods obtain temporal profiles that capture distinct behavior patterns among users.

Thus we minimize human effort to categorize behavior patterns.

• Our intervention profiling successfully explains the influence of recommendations to the

user’s post-recommendation patterns to a significant extent. As such, the system can use

baseline data instead of manual annotations.
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• Our recommendation strategy coincides with the strategies followed by users with success-

ful behaivor change.

We have also shown that similarity-based recommendations cannot guarantee the desirable

suggestions to achieve behavior changet: such an approach ultimately recommends the users to

maintain their existing pattern, whether they are improving or declining their well-being.

We demonstrated the capabilities of InspiRE through two datasets: while HT-83 dataset is a

collection of physical activity habits, the SNACK dataset is a collection of nutrition habits. In-

spiRE’s success on both datasets suggests that our strategy can generalize to multiple dimensions

of well-being. We are excited by the future opportunities to test InspiRE on other dimensions of

well-being such as sleep and stress.

InspiRE performs a high-quality behavior profiling before generating the recommendations. We

composed this behavior profiling as temporal profiles and intervention profiles. The advances

of sensor technology suggests that future deployments of InspiRE will perform the behavior

profiling exclusively on sensor-based data. As such, the temporal profiling component includes

various techniques to handle sensor-based data. We elaborate more on these techniques in Chapter

4.

InspiRE can only exhibit its capabilities if it processes a carefully curated dataset. In Chapter 5,

we give the details of this data curation approach, including the key considerations in designing a

longitudinal study for data collection.
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7.1 Summary

An active lifestyle prevents the onset of many diseases associated with obesity, diabetes and

heart-related issues. This requires a careful planning and conduct of behavior change. In this

thesis, we proposed that a behavior recommender system can help its users with effective but

feasible behavior recommendations. Design of such a system is an ambitious goal, and it calls for

many important research challenges. We proposed a sophisticated set of methods as the analytical

building blocks of InspiRE, our recommender system for healthy behavior change. We developed

the appropriate approaches to address key challenges towards behavior recommenders, namely;

data curation, behavior profiling, and evaluations.

We extended the state-of-the-art methods to meet these challenges, and described how the system

generates recommendations as behavior patterns. We represented behavior profiles as tuples,

which consist of temporal and intervention profiles.

1. Identifying temporal profiles: For this challenge, we demonstrated in Chapter 4 how

to obtain distinct clusters from high-dimensional time series activity data as Temporal
Profiles, which exploit common trends and deviations in ADL time series data.

2. Identifying intervention profiles: To measure the impact of recommendations, we imple-

mented interrupted time series analysis and obtained statistical representations of proven

behavior change. Our methods in Chapter 6 help the system identify the baseline (pre-

recommendation) data, and detect significant differences in users’ behavior patterns before

and after recommendations.

3. Data curation: In Chapter 5, we proposed our data curation study with real users to obtain

all the necessary information for our profiling methods.

We rigorously evaluated InspiRE’s method with various datasets:
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1. The Reality Mining Dataset to draw insights about the relations between well-being and

activitiy patterns (see Chapter 3). Here, we discovered that regularity of behavior patterns

are strong predictors of increased well-being.

2. Cylinder-Bell-Funnel (an artificial dataset), YQZ (a dataset of physical activities), and

HT-48 (our initially curated dataset) for proof-of-concept validation of our data processing

method (see Chapter 4). We have shown that our methods outperform the baseline methods

in terms of clustering quality.

3. YELP Academic Dataset (a massive dataset of ratings), YQZ (a dataset of physical

activities) to evaluate the scalability of our temporal profiling methods (see Chapter 4). We

have shown that our method has the same level of scalability with state-of-the-art matrix

factorization methods, while outperforming them in physical activity datasets.

4. HT-83 (a sensor-based physical activity dataset) to evaluate the quality of recommendation

and behavior profiling. Here, we have developed and validated our recommendation

strategy, which outperforms classical similarity-based approach.

5. SNACK (a dataset of snacking habits) to show the generalizability of our methods to other

domains, and to investigate how well the behavior profiles explain the real life conditions

of the participants of an earlier study. We have observed a strong overlap between our

behavior profiles, and the conditions assigned to study participants.Therefore, we further

validated that our profiling methods realistically represent users’ temporal patterns and

their responses to interventions.

We demonstrated that our design is in line with the suggestions from the theories of behavior

change:

1. Validating the temporal profiles: We used Average Silhouette Width scores to measure

to what extent can our methods obtain distinct temporal patterns from the given datasets.

We rigorously showed that our method outperforms baseline and state-of-the-art methods

for clustering ADL data.

2. Validating the intervention profiles: We ensured that our intervention profiles statistically

fit our curated dataset and the temporal profiles. Thanks to this validation, InspiRE

can predict with the users’ most likely responses to various recommendations with high

confidence.

3. Validating the recommendation strategy: We argued that as a recommendation proposes

the most likely strategy to improve the recipient’s patterns, it also captures the optimal trade-

off between effectiveness and feasibility. For this challenge, we used the disparity scores to

examine the differences between users, their exercise partners, and the recommendations.

This examination helped us to see that some users needed a faster pace of improvement

(more effective than their existing patterns), while the others needed to maintain or slow
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down (more feasible than their existing patterns). Our analysis in HealthyTogether and

SNACK datasets showed that InspiRE not only achieves these criteria, but also outperforms

the classical similarity-based recommendation approach.

7.2 Implications of Our Studies

Our results have several practical and theoretical implications for the related resarch in the future.

In a practical perspective, to our best knowledge, InspiRE is the first behavior recommender

that follows a recommendation strategy backed by behavior change theories. This results in a

timely contribution given the increasing demand on adaptive interventions in preventive medicine

[CMB04, NSST+14]. Our system further contributes to the research on behavior recommenders

as a first step to use sensor-based data to generate recommendations for safe behavioral changes.

Lastly, the analytical methods of InspiRE requires minimal manual input. As such, the findings

of this study allows us to divert the knowledge and efforts of experts towards other complicated

challenges in wellness management systems, such as finding the right instruments of intervention

(social influence, medications, etc.). Further enhancements of InspiRE will lead to a personal

wellness management system for injury-free behavior change.

In a theoretical perspective, our study has improved our understanding on the connection between

sensor-based data and well-being. It establishes a connection between wearable sensors and theo-

ries of behavior change: it is possible to use sensor-based data to identify small and incremental

steps for safe behavior change.

7.3 Recommendations for Building Behavior Recommenders

In the preparation of this thesis, we have tackled several challenges under the categories of data

curation, behavior profiling, and evaluation. Based on our findings, we have derived the following

guidelines for researchers and practitioners in this field:

Data Curation:

• Consider sensor data as the primary source of information. We have shown that the

wearable sensor technology is becoming more prominent every coming day. This current

trend is not likely to reverse. For practical reasons, consider the sensors that collect external

measures such as nutrition, exercise, sleep, and stress of their users.

• Consider adopting Single-Case Designs and Randomized Controlled Trials. This thesis

shows that behavior recommender systems must calculate their users’ potential behav-

ioral responses to recommendations. When we delibrerately introduce interventions to

the longitudinal study, the curated dataset contains the necessary information to make

these calculations. We have shown that it is possible to implement Single-Case Designs,
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which helps the system obtain pre-intervention and post-intervention patterns of the partici-

pants. The researchers should implement randomized controlled trials given that there is

a sufficient number of participants (typically in the order of hundreds). Following these

approaches guarantee the validity of the subsequent experiments on recommendations.

Behavior Profiling:

• Consider the data processing approaches that minimizes manual annotation. Our investi-

gations showed that it is impractical to annotate the ever-growin sensor datasets. Thus, the

behavior profiling should employ unsupervised methods to process low-level information.

• Consider the statistical properties of behavior patterns. We have noted that people adopt

routines in their activities of daily living, with some possible deviations every day. Behavior

profiling component of the system can exploit this insight by separately treating trends and

deviations. Such a treatment results in clusters with high internal validity, i.e., they can

accurately represent the common behavior patterns.

• Consider adopting algorithms that can handle time series data from wearable sensors. We

have shown that when the system explicitly handle temporal dynamics, they can further

increase the quality of behavior profiles. These systems should also incorporate methods

to leverage the abundant but noisy sensor signals.

• Consider modeling the behavioral responses for the recommendations. We have shown

that methods like interrupted time series analysis can measure the significance and the

impact of the recommendations or interventions employed in the data curation. This further

enriches the behavior profiles, and allows the system to generate recommendations based

on previous users who significantly improved their behavior patterns.

Evaluations:

• Consider evaluating the quality of behavior profiles. The quality of recommendations

ultimately depend on how well does the system forms the behavior profiles. We have

used internal validity indices (such as Silhouette Width) and statistical assessments of the

obtained profiles. Such assessments enable the researchers to perform a fair comparison

between different recommendation strategies.

• Consider the trade-off between effective and feasible recommendations. In this thesis,

we investigate the disparities between the patterns from a user, his/her activity partner

(if applicable), and from recommendations generated for this user. We showed that our

recommendation strategy is the best approach to obtain the trade-off between effective

and feasible recommendations. Computing an MAE-like disparity score helps us measure

these relations accurately.
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7.4 Directions for the Near Future

7.4.1 Profiling the Persuadability of Users

We regard persuasion as an indispensable aspect in delivering behavior recommendations, as

persuasive recommendations have higher chances of acceptance and adoption by the users of the

system. This requires incorporating persuasion strategies to the system, along with a qualitative

study to validate the acceptance of recommendations. Earlier studies [LML+06] explored

various strategies to encourage physical activeness, and validated the success of their approach

with theories of behavior change such as Trans-Theoretical Model [PV97]. We are further

motivated by well-established theories in technology acceptance [Dav86], user engagement

[NC02], and principles of persuasion [Cia01]. Prior studies successfully applied these theories in

exercising, pervasive systems, Human-Computer Interaction and eCommerce [BTS+13, HP09,

HP10, KLS10, KRMA12, JTMS01, TBV12b, WTR94, OVM14]. Lastly, in our analysis of the

SNACK dataset (see Section 6.7), we observed that there are some associations between the

behavioral responses of users and the style of persuasion they have received. While we could

not observe a statistical significance for this association, it further reinforces our motivation to

incorporate elements of persuasion to InspiRE.

In our future studies, we will extend our previous behavior profiling that comprised of temporal

profiles and intervention profiles. This will result in a new component, the persuadability profiles.

This extension inspires from the six principles of persuasion stated by Robert Cialdini [Cia01]:

reciprocity, scarcity, authority, commitment, consistency, and liking. The research agenda for this

extension includes:

1. Designing features for accurate descriptions of persuadability profiles

2. The information required to obtain the features

3. Conducting longitudinal user studies along with interviews and field observations

4. Validating the consistency and relevance of the collected information.

Besides the qualitative aspects, such a study can further enrich our offline validations with online

observations. Moreover, it will help us devise approaches that render our behavior profiling

methods even more adaptive to novel behavior patterns.

7.4.2 Predictors of Successful Behavior Change

In recent years much research work has been dedicated to detecting user activity patterns from

sensor data such as location, movement and proximity. The researchers can exploit the relations

between multiple types of behavior patterns and improve the design for healthcare systems and
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behavior recommenders. For instance, a system like InspiRE could integrate water intake trends

of a user, and use it to enrich its snacking recommendations.

While there exists several studies that employ different techniques to recognize activity patterns

[MKK+12, SQM12, ZN12a]; little has been done to understand the relations between them

[TBV12a]. Furthermore, how sensor-based daily activities influence people’s well-being (such

as their satisfaction from work and social lives) is not well explored. Thus, a detailed analytical

procedure is required to identify the structural relations between activities and well-being.

In this thesis, we performed a preliminary investigation on the relationship between users’ daily

activity patterns and their life satisfaction level. Our results show that our analytical procedure

can identify meaningful assumptions of causality between activities and satisfaction. Particularly,

keeping regularity in daily activities can significantly improve the life satisfaction.

As one future step, we will further investigate the relationship between ADL patterns and

indicators of physical well-being.

7.5 Further Directions for Future studies

7.5.1 Intra-Personal Recommendations

A behavior recommender system may as well operate on intrapersonal retrospective data, i.e.,

providing recommendations to a user based only on his/her own history. The initial ideas for such

an intrapersonal recommender system is established by Farrell et al. [FDRK12]. However, to our

best knowledge, it has not yet been tested on sensor data.

The basic benefit of such a design is a guarantee on personalized recommendations - in case

where people’s physical capabilities are significantly different from one another, this type of

recommender minimizes any risk of injury caused by trying interpersonal behavior patterns.

However, it also introduces two fundamental challenges: First, an intrapersonal retrospective

recommender will require much more data than interpersonal recommenders. Second, a pure

intrapersonal retrospective recommendation can only come from past data. As such, there must

be additional mechanisms to guarantee that recommendation has novel elements that help the

user improve his activeness.

In this study, we have not explicitly tested intrapersonal retrospective recommendations with

InspiRE. However, our system does not require additional modifications to work in that set-

ting. In our future studies, we intend to report a comparison of intrapersonal and interpersonal

recommendations, as well as the optimal balance between these two strategies.

92



7.5. Further Directions for Future studies

7.5.2 Emergency Detection

Our behavior recommender design has a pro-active outlook to managing well-being. In the future,

this system can also incorporate solutions to react in cases of emergency (e.g. detecting heart

attacks and falls [SZD+15]). As opposed to our analysis on long-term patterns, such cases require

an analysis on short-term data.

The research on activity recognition produced many potential methods to address such an

opportunity. For instance, well-established methods [LKLC03] can detect unexpected behaviors

from time-series data. Our survey also reveals well-studied principles for fall detection [NFR+07],

along with sample implementations based on gyroscope and accelerometer sensors [LSH+09b]

and vision systems [NCM04]. In our future studies, we will assess the opportunity to merge

InspiRE with such methods for a more extensive system for pervasive well-being management.

7.5.3 Detecting Context in Behavior Datasets

In Section 6.6.3, we revealed that contextual information can significantly improve the quality of

recommendations. Some subdomains of recommender systems have incorporated methods to

recognize useful contextual information [OTTK13]. This is yet to be implemented for behavior

recommender systems. In our future studies, we will experiment the extension of such methods

on InspiRE.
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A Appendix

In this chapter, elaborate on the formulas and algorithms omitted from the main text for the sake

of the flow.

Further instructions and potential extensions in each of the components, as well as their im-

plementations will be maintained in Bitbucket 1 and GitHub 2. The components of the system

was implemented in different programming languages and environments: Java, C++, MATLAB,

Python, R.

A.1 Low Rank and Sparse Decomposition

Given a matrix M , the decomposition is achieved by solving:

mi n ∥ A ∥∗ +λ ∥ E ∥1 such that M = A+E (A.1)

Here, ∥ . ∥∗ denotes the nuclear norm of a matrix, ∥ . ∥1 is the number of non-zero entries in a

matrix, and λ is a positive parameter. The most common method to solve the equation above has

a time complexity of O(N 3) [MZWM10a], which is very costly for large datasets. We instead

use Robust Grassmann Averages [HFB14]. Its worst-case performance is O(N D2), where N is

the number of rows and D is the number of columns.

1https://bitbucket.org/onuryuruten/behaviorrecommender
2https://github.com/onuryuruten
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ALGORITHM 3: DTW_ LB_ KEOGH

Input: Time series objects Y,Z and window length r

Output: The DTW Distance

LB_sum = 0;

for each (timestamp, value) in Y do
lower _bound = min(Z[(timestamp-r):(timestamp+r)]);

upper _bound = max(Z[(timestamp-r):(timestamp+r)]);

if value > upper _bound then
LB_sum = LB_sum + (value −upper _bound)2;

else
LB_sum = LB_sum + (value − lower _bound)2;

end
end
return

�
LB_SU M

A.2 Dynamic Time Warping

Dynamic Time Warping between the time series data Y and Z can be calculated as:

DT W (Y , Z ) = mi nw

[
K∑

k=1
d(wk )

]
(A.2)

where d(wk ) = (yi − z j )2 such that (yi , z j ) is on the warping path w . In this naïve form the

dynamic time warping costs O(D2) for comparing a single pair of time series objects given

D = max(l eng th(Y ), l eng th(Z )). Various extensions of this method reduce this complexity

[SC78a, KP99a]. For an optimized performance, we use Dynamic Time Warping with Keogh’s

lower bound[KR05], which runs in linear time. Algorithm 3 describes this modified version of

Dynamic Time Warping.

A.3 Average Silhouette Width

The ASW for a given cluster C is calculated as:

ASWC =
∑

iεC s(i )

|C | such that s(i ) = b(i )−a(i )

max(a(i ),b(i ))
(A.3)

where a(i ) is the average dissimilarity of i with all other data within its cluster, and b(i ) is the

average dissimilarity of i to the closest cluster that i does not belong. The scores are bounded in

the interval [−1,1]. Any score below 0.25 would indicate a bad quality of clustering, scores within

96



A.4. The Unbiased F1 Score

[0.25,0.5] would indicate an acceptable level of quality, and scores above 0.5 would indicate a

high quality of clustering [KR09a].

A.4 The Unbiased F1 Score

The unbiased F1 score avoids biased measurements in cross-validation experiments, especially

under high class imbalance in the datasets. It is calculated as follows [FS10]:

Funbi ased = 2×T P

2×T P +F P +F N
(A.4)

In this equation, T P represents the number of “True Positive” classifications (behavioural

changes correctly predicted as Responder), F P represents the number of “False Positive”

classifications (Non-Responders/Temporary Responders misclassified as Responder), and F N

represents the number of “False Negative” classifications (Responders misclassified as Non-

Responders/Temporary Responders). F1-scores are bounded within the interval [0,1].

A.5 Normalized Mutual Information

Normalized Mutual Information (NMI) measures the correlation between the true labels and the

labels predicted by the system. This measure scales the results between 0 (no mutual information)

and 1 (perfect correlation). Normalized Mutual Information is obtained by:

N M I =
√

H(l abel sactual )∗H(l abel spr edi cted ) (A.5)

where H stands for the marginal entropy.

A.6 Jaccard Index

Jaccard index measures the similarities between two sets. In our setting, these sets represent actual

and predicted labels of the datapoints. Jaccard index is bounded between 0 (total dissimilarity)

and 1 (perfect similarity)

J (A = l abel sactual ,B = l abel spr edi cted ) = | A
⋂

B |
| A | + | B | − | A

⋂
B | (A.6)
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A.7 Temporal Average

We calculate the temporal average as in Algorithm 4:

ALGORITHM 4: temporal_ average

Input: T Si - User i ’s data in time series format (1 ≤ i ≤ N ), D - the maximum length of time

series in the given subset of data

Output: T Sav g - the temporal average

for l in (1,D) do
cur r entSum = 0;

cur r entCount = 0;

for i in (1,N ) do
if (length(T Si ) ≤ l ) then

cur r entCount++;

cur r entSum = cur r entSum + T Si [l ] ;

end
end
T Sav g [l ] = cur r entSum ÷cur r entCount ;

end
return T Sav g
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