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Abstract
As of today, programming has never been so accessible. Yet, it remains a challenge
for end-users: students, non-technical employees, experts in their domains outside of
computer science, and so on.

With its forecast potential for solving problems by only observing inputs and outputs,
programming-by-example was supposed to alleviate complex tasks requiring programming
for end-users. The initial ideas of macro-based editors paved the way to subsequent
practical solutions, such as spreadsheet transformations from examples.

Finding the right program is the core of the programming-by-example systems. However,
users find it difficult to trust such generated programs. In this thesis, we contribute to
proving that some forms of interaction alleviate, by having users provide examples, the
problem of finding correct and reliable programs.
We first report on two experiments that enable us to conjecture what kind of interaction
brings benefits to programming-by-example. First, we present a new kind of game engine,
Pong Designer. In this game engine, by using their finger, users program rules on the fly,
by modifying the game state. We analyze its potential, and its eventual downsides that
have probably prevented its wide adoption. Second, we present StriSynth, an interactive
command-line tool that uses programming-by-example to transform string and collections.
The resulting programs can also rename or otherwise manage files. We obtained the result
that confirms that many users preferred StriSynth over usual programming languages,
but would appreciate to have both.

We then report on two new exciting experiments with verified results, using two forms of
interaction truly benefiting programming-by-example. Third, on top of a programming-
by-example-based engine for extracting structured data out of text files, in this thesis
we study two interaction models implemented in a tool named FlashProg: a view
of the program with notification about ambiguities, and the asking of clarification
questions. In this thesis, we prove that these two interaction models enable users to
perform tasks with less errors and to be more confident with the results. Last, for
learning recursive tree-to-string functions (e.g., pretty-printers), in this thesis we prove
that questioning reduces the learning complexity from a cubic to a linear number of
questions, in practice making programming-by-example even more accessible than regular
programming. The implementation, named Prosy, could be easily added to integrated
development environments.
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Résumé
Aujourd’hui, la programmation n’a jamais été autant à portée de tous. Cependant, de
nombreux utilisateurs rechignent encore à l’utiliser, comme des étudiants, des employés
de domaines non techniques, des experts en dehors de l’informatique, et ainsi de suite.
Avec sa vocation à résoudre les problèmes rien qu’en recevant des exemples de ce qui
rentre et ce qui doit sortir, la programmation par l’exemple était censée mettre des tâches
complexes demandant de la programmation à portée de main tous les utilisateurs. Les
idées initiales des éditeurs de texte basés sur les macros ont ouvert la voie à des solutions
pratiques ultérieures, telles que les transformations de tableurs à partir d’exemples.
Le cœur de la programmation par l’exemple, c’est de trouver le programme correct.
Cependant, les utilisateurs peinent à se fier à de tels programmes générés. Cette thèse
contribue à prouver que certaines formes d’interaction simplifient le problème de trouver
des programmes corrects et fiables quand il s’agit de tirer profit d’exemples.
Tout d’abord, nous rendons compte de deux expériences qui nous ont permis de conjec-
turer quelles étaient les formes d’interaction qui pourraient améliorer la programmation
par l’exemple. En premier lieu, nous présentons un nouveau genre de moteur de jeu,
Pong Designer. Dans ce moteur de jeu, les utilisateurs programment des règles à la volée,
en modifiant l’état du jeu avec leur doigt. Nous analysons son potentiel et finalement ses
inconvénients qui l’ont probablement emêché d’être populaire. Deuxièmement, nous pré-
sentons un outil interactif en ligne de commande, StriSynth, qui utilise la programmation
par l’exemple pour transformer des chaînes de caractères et des collections. Entre autres,
ces transformations peuvent aussi renommer ou autrement gérer des fichiers. Nous avons
obtenu le résultat que beaucoup d’utilisateurs ont préféré StriSynth à des langages de
programmation conventionels, mais qu’ils apprécieraient d’avoir les deux.
Pour la suite, nous rendons compte de deux expériences innovantes aux résultats éprouvés,
montrant à quel point deux nouvelles formes d’interaction peuvent améliorer quantitati-
vement la programmation par l’exemple. Troisièmement, par-dessus un extracteur de
données structurées sur un texte brut, extracteur fonctionnant en programmation par
l’exemple, nous étudions dans cette thèse deux modèles d’interaction implantés dans
un logiciel nommé FlashProg : une vue du programme avec des notifications à propos
des ambiguités, et une fenêtre où l’ordinateur peut poser des questions pour clarifier
certaines extractions. Dans cette thèse, nous prouvons que ces deux nouveaux modèles
d’interaction permettent aux utilisateurs d’accomplir des tâches avec moins d’erreurs,
et d’exprimer une plus grande confiance envers les résultats que s’ils n’avaient pas ces
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Résumé

modèles d’interaction. En dernier lieu, quand il s’agit à l’ordinateur d’apprendre des
fonctions récursives transformant des arbres en chaînes de caractères, par exemple pour
afficher une représentation claire de données lors d’un déboguage, cette thèse prouve que
l’interaction sous la forme de questions casse la complexité d’un nombre de question pas-
sant de cubique à linéaire, ce qui fait que la programmation par l’exemple devient même
plus accessible que la programmation habituelle pour ce genre de tâches. L’implantation,
nommée Prosy, pourrait facilement s’ajouter à des environnements de développement
intégrés.

Mots clefs : Programmation par l’exemple, programmation par la démonstration, synthèse
de programmes, accessibilité, langages spécifiques à un domaine, apprentissage actif
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1 Introduction

“Your wish is my command” “Vos désirs sont mes ordres”
Anonymous traditional arabo-persic genie Génie traditionel arabo-perse anonyme

Programming is the translation from abstract wishes to concrete instructions executable
by the computer. In other words, programming is about closing the gap between what
users want and what computers execute.

High-level programming languages partially fill the gap from abstract wishes to concrete
instructions, building on top of low-level instructions. Functional programming, object-
oriented programming, library management, model-based system design, and many other
constructs empower users to think at a higher level. Furthermore, programming languages
are increasingly accessible for those who want to learn. There are plenty of free online
tutorials, open classrooms, massive online open courses (MOOCs) and social communities
dedicated to the learning of a language, e.g. [Resnick et al., 2009]. Specific programming
languages are also very rewarding job skills1.

Specifications are another step to building the bridge between abstract wishes and
high-level programs, often building on top of programming languages. By formally
specifying the expected behavior of a program, users might eliminate crashes and bugs;
and in many cases verify that programs perform as intended. Without specifications,
costly crashes can occur. In 1985, people died from the radiotherapy machine Therac
25 [Atomic Energy of Canada Limited, 1985]. In 1996, millions of dollars were lost in the
launching of Ariane 5 [European Space Agency, 1996]. In 2011, a lot of soldiers were
not correctly paid with Louvois [Ministère de la Défense Française, 2011]. Programming
with specifications [Suter, 2012] has gained in popularity and is at the heart of many
successful businesses [Vigyan Singhal, 1999, Cousot et al., 2001, Distefano and Calcagno,
2009, Synopsys, 2016]. Specifications often reflect the abstract wishes more than the

1https://techbeacon.com/best-paying-programming-languages
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code. For example, we could specify that a list sorting algorithm is correct by
def sort(in: List) = . . . ensuring { out ⇒ isSorted(out) && content(in) == content(out) }

which is much closer to the wish of “a sorted list” than any implementation.

As users are not yet intimately linked to computers, there is no formal known interme-
diate step between abstract wishes and specifications. Users fill this gap by a form of
organizational and algorithmic thinking, identifying how to decompose the needs into
constraints for the computer. We admittedly suppose that, to some extent, abstract
wishes can serve to decide if the specifications are coherent or not.

For example, let us consider a usual workflow from abstract wishes to computer instructi-
ons. First, we start with an abstract wish:

“My university wishes to select the fifty best candidates for a prize.

then after thinking about how to transform this wish to specifications, provided a list of
students named ‘in’ we might write:
size(out)=50, (∀ s ∈ out, ∀ student ∈ in \ out, s.score ≥ student.score) and out ⊂ in

At this point, some algorithms might help to derive the following high-level program, or
we could find it manually:
val sorted = in.sortBy(_.score)
sorted.take(50)

and then we compile it to some executable code understandable by the computer. Below
is the beginning of such code produced for the Java virtual machine (JVM), in three
aligned formats: binary code, assembly, paraphrased version.
0010 1011 1011 1011 0000 0000 0000 1100 0101 1001 0010 1010 1011 0111. . .

[aload_1] [ new ] [ 12 ] [ dup ] [aload_0] [invokesp. . .

load create a score extractor duplicate load initialize
in referenced at address 12 it context extractor

The remaining steps are: “create an ordering for integers, call the sort method, push
50, call the take method, return the result”. Note that calling methods consume their
arguments.

We can trust a computer for two out of these three steps. The compilation from programs
to executable code rarely produces bugs [Le et al., 2015], and there is no error at all
when using certified compilers [Leroy, 2006]. Furthermore, modern theorem provers
can automatically prove that programs meet their specifications [Kuncak, 2007, Piskac
et al., 2014, Kuncak, 2015] formally prove that programs have an absence of run-time
errors [Cousot et al., 2001, Jourdan et al., 2015], or even suggest corrections [Chandra
et al., 2011]. Even better, recent research in program synthesis suggests that a computer
can itself translate specifications to programs [Solar-Lezama et al., 2007, Srivastava
et al., 2010, Kuncak et al., 2010b, Kneuss et al., 2013, Alur et al., 2013, Kneuss et al.,
2015, Reynolds et al., 2015, Koukoutos et al., 2016]. It appears that only the translation
of abstract wishes to specifications is error-prone. If the latter are not complete enough,
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or if they do not match the abstract wishes, there is almost no hope for the remaining
pipeline to eventually produce a correct program.

Although we cannot measure the internal thinking of users to see if specifications match
their abstract wishes, we believe that we can still alleviate the translation of abstract
wishes to specifications, by letting computers interactively provide feedback to users.

1.1 Examples as Ambiguous Specifications

In this thesis, we focus on specifications that have the form of input/output examples [My-
ers, 1987, Cypher, 1991, Lieberman, 2000, Lieberman, 2001, Ruvini, 2004, Gulwani,
2011, Zhang and Sun, 2013, Kini and Gulwani, 2015, Feser et al., 2015, Frankle et al.,
2016], rather than mathematical formulae that entirely describe a problem. Examples
are naturally under-specified mathematical formulae, and are representative of the whole
set of inputs. Furthermore, as examples are tied to the kind of data programs operate on,
and not from the program structure itself, they are often easier to reason about. Note
the difference between programming-by-example and programming-by-demonstration. In
the state of the art, programming-by-demonstration usually consists in providing detailed
steps on how to produce the output, whereas programming-by-example usually consists
in providing only the output. However, the difference is thin, and for the remaining of
this chapter, we are using only the wording of programming-by-example.

For example, it is natural to specify how to rename files using examples, rather than
using formal specifications. Compare a formal complete specification:
def rename(file: String, index: Int) = {

...
} ensuring { result ⇒

result == "%03d".format(index+1) +
" " +
"^(\\w)".r.findFirstIn(file).get +
"^\\w+ (\\w)".findFirstIn(file).get +
".png"

}
with an example-based specification:
def rename(file: String, index: Int) = {

...
} ensuring { result ⇒

file → index → result passes {
case ("Mikael Mayer.PNG", 0) ⇒ "001 MM.png"

}}
The second one feels more natural than the first. The first specification is merely
computational, and might be even wrong, for example, if we wanted to extract all initials,
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not just the first two.

Most programming-by-example engines rely on prior knowledge about the shape of
programs [Alur et al., 2013], if not all engines. A (context-free) grammar usually
determines the shape of programs, its rules dictate how to combine them. Let us take as
example the task of renaming files. The grammar might define a program as being either
(1) a constant, or (2) an extraction of the input that uses regular expressions, or (3) a
concatenation of two programs. The programs satisfying a given input/output example
pair are thus either (1) the constant program returning the output, or (2) if the output
is present in the input using a regular expression, an extraction of the input using this
regular expression, or (3) a combination obtained after recursively learning programs
producing complementary parts of the output. For (3), we split the output string O into
two non-empty strings A and B such that O = A + B, and we recursively solve the sub-
problems of the input/A and input/B example pairs (this procedure is sometimes called
witness function). Due to the grammar, we can ensure that the first program cannot be
a concatenation, to avoid duplicates. Having a set of candidates for the first program,
and a set of candidates for the second program, we combine them efficiently using a “join
set” computing the cartesian product lazily. Similarly, using different decompositions
of the output string, we obtain different join sets which we can put in a “union set”.
Join and union sets form a version space algebra (VSA) [Lau et al., 2000, Lau et al.,
2003a, Singh, 2016]. By caching the computation of some of these steps [Polozov and
Gulwani, 2015], this version spaces can efficiently represent sets of billions of programs
without enumerating them all. Given multiple input/output examples, we can intersect
the resulting program sets from each of the examples. Intersections of version spaces sets
can be computed faster than the intersection of plain sets, up to an exponential ratio.
Finally, to obtain only one program, we select the best one according to heuristics that
provide a score to all programs.

Software offering programming-by-example mostly failed until recently [Lau, 2009]. One
of the reasons is that a learning algorithm might fail to learn the correct program because
of ambiguous specifications. Failing to translate specifications to correct programs
means that the former are either incomplete, or that the translation itself should be
improved. Improving the translation of example specifications to programs using existing
knowledge [Gulwani, 2013] and machine learning [Singh and Gulwani, 2015] is possible
up to a certain level. However, such models cannot account for all possible scenarios.
It remains that the user is responsible for correctly translating abstract wishes to
specifications. It is hence challenging to ensure that the examples accurately reflect
the wishes. To avoid errors, the computer can provide feedback to “encourage trust
by presenting a model users can understand” [Lau and others, 2008], so that users can
act on it. We identify three kinds of orthogonal feedback that can help users to better
perform a translation from their abstract wishes to specifications: the output feedback,
the program feedback and the specification feedback.
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• The output feedback is arguably the simplest feedback for programming-by-example,
but it is still useful. It consists in showing the output of the generated programs,
so that if these outputs are not correct, the user might infer the need of more
specifications [Smith et al., 2000, Yessenov et al., 2013].

• The program feedback consists in showing the generated programs to users, so that
if users detect a wrong piece of code, they can refine the specifications [AgentSheets,
Inc., 2017].

• The specification feedback consists in giving feedback on the specifications written
by the user, by suggesting to add, remove or modify specifications. In [Gulwani,
2011], Gulwani shows that we can spot potential errors in the specifications of
users, based on the surrounding specifications.

1.2 Output Feedback

The output feedback is an indirect feedback. The computer runs the program on several
other or subsequent inputs, so that the user can detect wrong outputs.

For example, suppose that we have an engine enabling us to program a game by
demonstration. At some point, we add an integer of value 0 to the game. After selecting
a collision between the ball and a block, we change the value of the integer to 1, because
it represents a score to increase each time there is a collision between the ball and the
block. Then we resume the game. After a second collision of the ball with this block, the
score is still at 1. This might indicate that the specification was not understood correctly
because it conflicted with the abstract wish that the score should be 2. By selecting the
collision event and changing the value of the score to 2, the system can correctly infer
the rule of incrementation, and successive collisions can increment the score. Viewing
the result of the rules, or the output feedback, enabled us to correct the behavior.

Another possibility consists of renaming a file. By showing the user how the subsequent
files are to be renamed, this output feedback provides the user a quick feedback, and
eventually confidence – or not ! – about the precision of the specification.

1.3 Program Feedback

The program feedback is a more direct kind of feedback. The computer exhibits its
findings so that users might inspect it. If some piece of code does not reflect what users
had in mind, it supposedly helps them to refine their specifications by further providing
suitable input/output examples.

The program feedback might be useful for larger sets of inputs, because it might not
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always be possible to present all outputs. Furthermore, even if a program is valid on a
visible subset of the inputs, it will not always be correct on all inputs. We might also
want to reuse the program, customize or maintain it. A specialized kind of program
feedback also shows what the subparts of the program are doing. For example, if a
regular expression appears in a generated program, the computer could display where
this regular expression matches the input.

Another way of providing feedback on programs is to paraphrase it. Without paraphrasing,
engineer-designed languages are often cryptic 2. Paraphrasing helps to understand the
program at a glance, and should not be too low-level [Lau, 2009]. Instead of
Concat(Counter(1,3), Concat(Const(" "),
Concat(Substring(Position("","[A-Z]",1),Position("[A-Z]","",1)),
Concat(Substring(Position(" ","[A-Z]",-1),Position(" [A-Z]","",-1)),

Const(".png")))))
we would arguably prefer the following more readable paraphrased representation:

A 3-digit counter starting at 1 + the string " " + the first uppercase letter +
the last uppercase letter after space + the string ".png"

Some frameworks allow for the creation of programs by using natural language [Le
et al., 2013, Gulwani and Marron, 2014, Gao et al., 2015, Gvero and Kuncak, 2015] or
quasi-natural language [Androutsopoulos et al., 1995, Popescu et al., 2004, Myers et al.,
2004, Wang et al., 2017]. However we are currently not aware of any tool that enables
both paraphrasing and the edition of the paraphrasing. In the loop of programming-
by-example, program feedback is useful for the user merely to indicate what kind of
examples he needs to add.

1.4 Specification Feedback

“Programming is hard” [Suter, 2012], especially reading programs that a person did not
write himself. Indeed, the feedback of reading programs is not always sufficient for users
to recognize and to compare against their abstract wishes “Yes, that is the right thing to
do”. Not only might the program be difficult to read, despite that it is paraphrased, but
when there are many similar programs matching the input/output examples, the user
might be uncertain about which one is correct.

From the previous example, the following program is valid and equivalent for the same
input (bold added for the difference). Choosing which of the two programs is correct, or
even which parts of them are, highly depends on the context.

2powershellmagazine.com/2014/09/09/using-the-convertfrom-string-cmdlet-to-parse-structured-text
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A 3-digit counter starting at 1 + the string between the first two words +
the first uppercase letter + the second uppercase letter + the lowercased
string starting at the first dot

Users usually need programs because they have many inputs to process, some of which
are sometimes already available. In any case, users might be willing to manually provide
outputs for only a few of the inputs. Exploiting other inputs, the computer can start to
provide feedback at the specification level, by suggesting to add or modify examples.

Let us suppose that there is a second file to rename, for example “Leonardo Da Vinci.JPG”.
The original program in the previous section will produce “002 LV.png”. In order to be
able to suggest new specifications to add, the computer can take the programs found
in the previous step (which all have the same behavior on the first file), and compare
their output when it runs them on this new file. As there can be billions of programs,
the computer might select a subset of the programs, according to some heuristics. From
the original program, we present some variants that produce the same output for the
first example, but differ for the second file:

The first output “001 MM.png” is produced from the first
input “Mikael Mayer.PNG” by:

Output for second
input “Leonardo Da

Vinci.JPG”
the original program: A 3-digit counter starting at 1 + the
string “ ” + the first uppercase letter + the last uppercase
letter after space + the string “.png”

“002 LV.png”

a variant where the digits (“[001] MM.png”) could be. . .
. . . a constant string “001 LV.png”
. . . the index concatenated with “01” “101 LV.png”
a variant where the space (“001[ ]MM.png”) could be. . .
. . . the string between the end of the first word and the start
of the penultimate word

“002 Da LV.png”

a variant where the first letter (“001 [M]M.png”) could be. . .
. . . a constant string “M” “002 MV.png”
. . . the second uppercase letter “002 VV.png”
. . . the fifth uppercase letter from the end “002 DV.png”
. . . the string between the end of the first space and the start
of the last lowercase word

“002 Da VV.png”

a variant where the second letter (“001 M[M].png”) could
be. . .
. . . a constant string “M” “002 LM.png”
. . . the first uppercase letter “002 LL.png”
. . . the second uppercase letter “002 LD.png”
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. . . the string between the end of the first space and the start
of the last lowercase word

“002 LDa V.png”

a variant where the two letters (“001 [MM].png”) could be. . .
. . . the sequence of all capitals letters which are followed by a
lowercase word

“002 LDV.png”

a variant where the extension (“001 MM[.png]”) could be. . .
. . . the lowercased string appearing after the first dot “002 LV.jpg”

Note that with only the variants above, there are 3 × 2 × 5 × 5 × 2 + 3 × 2 × 2 = 312 valid
programs, each one likely to return a different result compared to any other program.
By offering only the suggestions of the second column, users might choose with one click
which one is correct. With the right heuristics, there is a high probability that the correct
output is among them. Using this specification feedback from yet unhandled inputs,
users can thus expect to find the correct program much faster and with better reliability.

1.5 Outline of the Dissertation

This thesis focuses on interaction techniques that make programming-by-example more
trustful and more reliable than it was before. More precisely, we define what the most
efficient interactions are. The remaining of this thesis is organized as follows:

Chapter 2 presents a Game Engine (Pong Designer) offering the ability to program
games by demonstration using touch. Its novel architecture enable users to go back
in time up to five seconds in the game, to edit the game state on-the-fly and to add
rules when they select an event before editing the game. Furthermore, the rules
thus produced are part of the game itself, and users can modify its constants. If
the rule the system inferred is not the correct one, the user can select the corret
alternative. We discuss the benefits of such a game engine.

Chapter 3 introduces StriSynth, a tool that can synthesize code from examples for
file management tasks. We design algorithms for learning how to rename, filter
and partition files by example. Because StriSynth is embedded in a programming
language Scala, it offers the possibility of composing programs and applying them to
collections. StriSynth can synthesize code on a variety of benchmarks in reasonable
time, often faster than a programmer could do. We also asked users to compare
StriSynth with a ‘conventional’ programming language (PowerShell) for some
specific tasks, and we show that there are some tasks for which StriSynth is highly
preferable.

Chapter 4 presents FLashProg, a tool for interactively extracting structured data from
raw text using examples. The interface offers to highlight the text to be extracted
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with the mouse, which is intuitive. From a user study, we draw the statistically
significant result that two novel interaction models cause users to gain trust in the
results and make less errors than without them. The first interaction model is to
display a rich version of the program, whereas the second interaction model is to
ask clarification questions, We further demonstrate that users prefer clarification
questions over program investigation.

Chapter 5 constructively proves several theoretical results that make questioning a first-
class citizen in Prosy, a programming-by-example-based engine to learning recursive
tree-to-string functions. As we progressively enhance an algorithm for learning
these functions, we prove that, without interaction, finding such a recursive function
is an NP-complete problem. With one step of interaction, where the computer
can select the examples to provide, we demonstrate that an upper bound on the
number of examples is of the order of O(n3), matching for the first time the
lower bound found 20 years ago. Furthermore, the learning algorithm obtains a
polynomial-time complexity. Finally, with an unbounded number of interaction
steps, we demonstrate that the computer requires only a linear number of questions,
making this sort of interactive programming-by-example technically as precise and
as fast, if not faster, as normal programming.

Chapter 6 presents a qualitative comparison of the contributions of Chapters 2 to 5
on two scales. The first scale compares how each of the four previous chapters
address the needs of users, according to the answers they provide to the following
six observation questions:

• Are tasks conducted faster and/or easier using Programming by Example
than just programming?

• Do users need to see and understand the generated programs?

• Do users need to tweak, modify or reuse the generated programs?

• Can displaying the generated program in a paraphrased form simplify its
understanding?

• Do users trust more the results of programming-by-example when the computer
provides the generated program than when it does not?

• Is programming by example is more reliable/faster when the computer asks
questions?

We present partial answers to these questions, along with a short analysis at the
end of each chapter (pages 44, 76, 106, 161). We also discuss and compare the
utility of the tools of the four previous chapters by using three qualitative criteria
related to the title of this thesis:

• Interactivity: Is there feedback, or is there an effort from the computer to
understand the user’s goal?
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• Programmability: Is the program modifiable? Is the programming language
expressive?

• Exemplarity: Are examples well suited for the task? Do they reflect the goal?

We also discuss the future work for each of the previous chapters, and in general.

Chapter 7 concludes this thesis.

In Chapters 2 to 5, the alphabetical numbering of sections (A., B., C.) denote sections
not part of any published papers.
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2 Game Programming by Demon-
stration

“Une chose intelligente, c’est une chose que “A clever thing is something
n’importe quel imbécile peut comprendre.” that any fool can understand”

Georges Wolinski

A. The Ideal Goal of Self-Reconfiguring Interfaces

The main problem in developing most desktop software is that it requires a cycle of
writing code / compiling / testing. What can we do if we want to modify the interface
on-the-fly, while using it? Can we eliminate the cycle and do programmatic editing while
using the interface?

After thinking about it for a while, we decided to implement this idea as the form of a
game engine, where the user can modify the game itself on-the-fly, while playing, and
using programming-by-example editing.

For this, we first thought about the process of demonstrating game rules, such as selecting
an event and demonstrating the result. The game engine would run the program that
describes the rules of the game. After receiving rule demonstrations, the game engine
would record ambiguities. We also wanted to be able to recreate all possible classic games
easily. Pong Designer was born.

Game Programming by Demonstration

The following pages 12-42 are the content of the peer-reviewed paper named “Game
Programming by Demonstration” (DOI: 10.1145/2509578.2509583) that appeared in
Onward! 2013 and published by ACM. I reproduced it with the permission of the authors,
who are myself and Viktor Kuncak. In addition to the original appendix, the appendix B.1
page 187 contains a tutorial for creating a space-invaders like game.
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Chapter 2. Game Programming by Demonstration

Contributions: All the software presented in this paper is my own contribution.

The increasing adoption of smartphones and tablets has provided tens of millions of users
with substantial resources for computation, communication and sensing. The availability
of these resources has a huge potential to positively transform our society and empower
individuals. Unfortunately, although the number of users has increased dramatically,
the number of developers is still limited by the high barrier that existing programming
environments impose.

To understand possible directions for helping end users to program, we present Pong
Designer, an environment for developing 2D physics games through direct manipulation
of object behaviors. Pong Designer is built using Scala and runs on Android tablets
with the multi-touch screen as the main input. We show that Pong Designer can create
simple games in a few steps. This includes (multi-player and multi-screen) Pong, Brick
Breaker, Pacman, Tilting maze. We make available Pong Designer as well as several
editable games that we created using it. This paper describes the main principles behind
Pong Designer, and illustrates the process of developing and customizing behavior in
this approach.

2.1 Introduction

Smartphone and tablet devices have dramatically increased the number of individuals
with access to computing resources. The availability of these resources has an enormous
potential to positively transform our society. Unfortunately, using traditional development
methods for such devices is at least as difficult than for desktops, and possibly more
difficult due to new constraints on device input size, energy consumption, and the
complexity of the software stack. Furthermore, the benefits of these platforms can
be fully realized only by specialization of applications to particular domains, or even
particular users. We would like to enable domain experts that are not software developers
by training to develop applications that support well their domain activities. Many
educational, scientific, engineering and artistic domains would benefit from such end-user
programming. For tasks such as scripting and home automation, we would like to
deliver personalized applications at the low price that makes current phone applications
accessible. To achieve this level of specialization, the number of developers needs to be
much closer to the number of users. A promising approach to realize these goals is to
empower users themselves to program, blurring the traditional divide between professional
software developers and end users. This direction is especially appealing as the increasing
computing capabilities of these ubiquitous devices enable more advanced run-times
and software development tools, and as new algorithmic techniques enable automated
programming assistance and synthesis [Lau et al., 2003a, Gvero et al., 2013, Shacham
et al., 2009, Gulwani, 2012a, Singh and Gulwani, 2012b].
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2.2. Building Games by Demonstration

One of the challenges when programming using conventional text-oriented editors is the
disconnect between program representation and its effect during execution. Several recent
approaches support understanding the effect of a line of code with an enhanced editor
[Nasilowski, 2011] or with very high-level constructs such as behaviors and constraints
[Scirra, 2013], [Stolee and Fristoe, 2011]. Others prefer to guide the programmer by
providing code structures that can fit together, either modifiable during the game
simulation [Resnick et al., 2009] or in a special structured editor [Scirra, 2013], [Abelson
and McKinney, 2010]. These approaches reduce the burden of syntax checking. However,
few of them provide a way to directly modify the running application by demonstrating
the desired behavior using examples.

Recently, programming by demonstration has been revisited and shown very successful
in domains such as spreadsheets [Gulwani, 2012a, Singh and Gulwani, 2012b], which map
inputs to outputs. We wish to understand the potential of programming by example
on a new generation of touch-enabled devices and apply it to more complex domains,
containing interactive behavior. This led us to the domain of graphical games running
on tablets.

2.1.1 Contributions

This paper presents a development approach for graphical games where developers use
demonstration to describe not only application state, but also its behavior. The developer
can pause the game and directly manipulate objects to demonstrate the desired effects
through examples. The key aspects of our approach are the following:

• An on-the-fly editing principle: the users can pause, rewind, and modify a running
game using a time progress bar, with graphical access to events from the past.

• Rule demonstration: a rule-based execution model, where developers dynamically
create and update rules using concrete demonstrations on objects. The system
automatically infers candidate rule conditions and actions from such demonstrations.

• A freely available working Scala/Android implementation that leverages these
principles on runs on devices enabled with multitouch and accelerometer input.
The system and several examples of (editable) games are freely available as “Pong
Designer” app from Play Store, as well as at http://lara.epfl.ch/w/pong/ .

2.2 Building Games by Demonstration

We illustrate the flavor of game development in Pong Designer by showing how to develop
several games using a remarkably small number of steps on a tablet computer (we used
Asus Eee Pad Transformer for our experiments).

13
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We first show how to build a brick breaker (Breakout-style) game. We then present the
process of building a variant of Pacman with moving camera and accelerometer input.

The Appendix B.2 presents an additional example and screen shots.

2.2.1 Breakout-Style Game

This example illustrates the use of time slider and demonstration of behavior in response
of actions.

Suppose that we wish to program a classic Breakout-style game, where the goal is to
drive the bouncing ball, using a sliding paddle to ensure it does not escape the screen at
the bottom, and aiming to ensure that the ball breaks all the bricks on the screen.

Describing the initial state. We begin by creating the game objects, using predefined
shapes. This process resembles drawing in a simple vector graphic design application,
such as the ones used to create conference presentation slides. To introduce shapes into
the playing field or modify their properties we use buttons from an on-screen toolbar:

The buttons provide a way to increment or decrement a number, set up the velocity and
angle value of any shape, whether the shape can move or not as well as its visibility, size
and color. Setting up the game layout plays the role of defining data structures and
objects in a conventional process. Figure 2.1 shows a possible result for our example,
which includes the walls, bricks, the ball, and the paddle.

Setting dynamic properties such as velocity. In con-
trast to a drawing program, the objects we created are in
fact models of physical objects with associated behavior in
a two-dimensional physics world. Objects can be either non-
movable (pinned to the ground), or movable according to
Newton’s inertial laws with friction. By default, all objects
have zero initial velocity. If we select the ball object, we
can change its speed by moving the endpoint of the velocity
vector displayed on screen. In this example, we set the initial velocity of the ball to move
towards a nearby brick:
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Starting the game. Pressing the “play” button starts the game, running the physics
simulation from the current state and displaying the outcome in real time on the screen
(in this case, the ball moves towards the brick). As the game runs, we observe that the
time bar at the bottom of the screen makes progress, indicating the passage of time,
much like when playing a music or a video stream.

During this time the system silently records internal events, such as object collisions, as
well as user input, including user’s movements on the multi-touch screen.

Identifying events of interest. In our example we observe the ball hitting the brick
and bouncing off it, with the brick staying intact. We would like to change this behavior
to ensure that that, when the ball hits a brick, the score increments and the brick
disappears. We press the “Pause” button to stop the simulation, which allows us to again
edit objects in the last simulated state. This time, however, the game also contains the
history of past events. Pressing the events button displays the events using appropriate
graphical metaphors. The following representation shows that there was a recent collision
between the brick and the ball:

Navigation in time and space to select events. Note that the number of events
recorded can be large, but the user can navigate them using the fact that an event is
indicated near the relevant objects, and at the relevant time. The user uses the time bar
to go back in past to the approximate point in time when the event of interest occurred
and then selects the event. In our example, the user chooses the collision event between
the ball and the brick.

Describing actions: breaking a brick. The selected event represents a condition for
triggering a rule. The entire game is governed by such event-triggered rules. To specify
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the action that should take place in case of a given event, the user simply performs the
desired action in the game editor. This approach subsumes macro recording present in
editors, but, unlike simple macro recording, it is followed by a crucial generalization step.
In our current example, we would like to indicate that the brick should disappear in case
of a collision with the ball. To do this, after selecting the collision event, we simply move
the brick outside the visible screen, or set its visibility to invisible. We also increment
the score counter. After pressing the OK button, the system automatically generates the
corresponding rule.

The user can edit and delete some of its parts, if desired, or simply accept it as it is.
The rule will now be applied whenever the ball hits this brick. If we copy any object,
the system copies the rule along with the objects to which they apply. In this case we
first create one brick and the rule. When duplicating the brick, the system will duplicate
the rule. (This corresponds to a prototype-based object system; we are currently adding
support for classes of objects.)

Second rule: moving the paddle. We next wish to specify that the paddle follows
the horizontal movements on the touch screen when they occur on the paddle. To do this,
we run the game and attempt to move the paddle. The paddle does not respond, but the
movement is recorded in the event history. We can then use the recorded movement to
correct the existing behavior as follows. We pause the game and move the time slider
towards the point where we made the movement on the screen. The movements are
displayed using curves that describe the path traced on the screen, as in the following
movement to the right:
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We select the move event, which acts as the condition of our rule. As the action for the
rule, we demonstrate the corresponding change in the position of the object, moving it
from the initial position

into the final position:

Because of a “snapping-to-position” feature, this movement is recorded as a perfectly
horizontal movement. At this point the system performs a generalization from the
concrete demonstration and generates a rule that applies to these two objects whenever
rule conditions are met. Note that, even if the two movements demonstrated were not
perfectly identical, the system finds that they are sufficiently close. It therefore derives
the following rule, which matches the location of touch event to the horizontal movement
of the paddle:

In general, our system uses a set of parametrized templates to compute a set of possible
actions that could explain the demonstrated state change. If the user expands the
generated rule, they are able to delete lines and select the intended result from the
templates by pressing arrows.

Describing the losing condition. We would like to specify that a text displaying
“Game over” appears when the ball is out of screen. For that, we first create the label
and make it invisible by default. To specify when this text should become visible again,
we follow these steps. We set the velocity of the ball towards the bottom of the game
and launch the simulation. When the ball goes out of the screen, we pause the game.
The engine detected the event of the ball going out of screen.
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We select the out-of-screen event, make the “Game over” text box visible, and confirm this
behavior by pressing OK. The system then creates the corresponding rule automatically.

Describing the winning condition. Finally, we would like to specify that a label
“Victory” should appear when the score reaches 19, which is the number of blocks in
the game. For this purpose, we make a text displaying “Victory” in the middle, initially
invisible. We then change the score to 18 to indicate an interesting starting scenario for
simulation. We then play the game until the score reaches 19. When we press the event
menu, the system detected the previous change as a number change event. We select it
and accept the offered condition “When score == 19”.

We then make the “Victory” text visible and confirm the rule.

This completes the description of the basic functionality of a break out style game.

2.2.2 Pacman with Accelerometer Input

We next show how to build a Pacman-like game controlled using the accelerometer (the
angle of the device). Only one part of the game field is visible on the screen, so the
camera (viewpoint) needs to follow the player. The player moves in the labyrinth, and
needs to eat all food chunks without touching any of the enemies. We will introduce
three enemies; if they touch the player, the player loses a life. After losing four lives, the
game is lost. The player wins by eating all food chunks.

We create the game logic from scratch, specifying that the player should be able to pass
through black walls, eat the chunks, and indicating when the enemy should pass through
the chunks and when they make the player lose a life. The steps are as follows.

1. Create a yellow circle for a player, a red circle for an enemy, a yellow circle for a
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food chunk, a brown rectangle for a wall and a black rectangle for “home” (a wall
through which the player can go, but not the enemies). Add two numbers, set one
to 0 to count the number of chunks eaten, and the other one to 4 to count the
number of lives. Set the initial speed of the player and the enemy.

2. Start the game. After a few seconds, pause it.

3. Suppose the player, undesirably, bounces against the black rectangle. Press the
event menu, select the collision, and press on the button to remove the collision.
Now the player passes through the black wall. Follow similar steps to remove the
collision between the enemy and the food chunk.

4. Next, observe that the player collides with the food. Select an instance of this
collision, choose an action that the objects should go through each other but the
collision is recorded, augment the score from 0 to 1, and move the food away from
the visible part of the screen.

5. Move the time forward to observe the enemy bouncing against the wall and colliding
with the player. Select the collision, select the option that the object should go
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through each other but the collision is recorded (as for the food), move the player
back to the base, set its speed to zero, and decrease the number of lives.

6. Create the remaining part of the game field, including a maze, by duplicating the
walls. Replicate food and enemies, as needed.

In the second phase of constructing the game, we would like to have the player to be
affected by a notion of gravity, and we would also like the camera to follow the player.

1. Press the accelerometer button to be able to select the shapes affected by
this sensor, and select the player. Press the accelerometer button to stop selecting
objects.

2. Press the camera button and then select the player. As a result, the camera
will follow the player. To adjust the view screen, resize the camera.

3. To add “Victory” and “Game over” labels, follow the steps mentioned in the
previous game.

In addition to its immediate use when following the player in a large game field, the
camera can be used to switch between several screens in case of a multi-level game, or a
game with menus and options.
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Figure 2.1 – Static Initial State of a Breakout-Style Game
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Figure 2.2 – Screenshot of a Pacman-like game build in Pong Designer
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2.3 Pong Designer Principles

The key novelty of Pong Designer is the rule-based model with the ability to dynamically
change rules through concrete demonstrations in a desired context.

Starting from one or more concrete demonstration (which can be introduced incrementally
at different points in time), the system performs a generalization to obtain a rule that
applies beyond the concrete state in which it was demonstrated. Rules contain a condition
i.e. an event, and the action (state change).

2.3.1 Events

Pong Designer currently supports six kinds of events. Each kind of event may include
several variations. For example, the user can specialize collision rules as “objects go
through each other and no rule is executed”, “objects go through each other and the rule
is executed” or “objects bounce against each other and the rule is executed”.

collision numbers out of screen

touch down move touch up

2.3.2 Specifying Actions

Selecting an event enables the user to specify an action using an example of an input
and the corresponding output, which the system generalizes.

During the modification of the game state, the system draws two versions of objects
being changed. The first version shows the original state of objects (input); the second
state is the transformed state of the objects (output). It is possible to modify either the
input or the output. However, the user mostly only changes the output state, as the
input state is often the current state before adding a rule. To switch between these two,
the developer toggles the input/output button.

When the user changes the output, moving a shape moves it as usual normally (the first
picture below). This is the default mode. When the user changes the input state, moving
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a shape will move a shadow version of it.

2.3.3 Editing Created Rules

Once created through demonstration, it is possible to directly adjust the rules. This
functionality is provided as a fallback for the cases in which the demonstration does not
achieve the desired effect or the user prefers to examine a more textual version of the rules.
Note that, even in this representation we use graphical notation for events. Moreover, it is
possible to edit constants in rules using selection or increment and decrement actions that
requires no keyboard input and is therefore convenient for touch-based input. Finally, a
preview feature makes it possible to quickly preview the effect of a single rule invocation
on the current state.

Pressing the OK button creates a new rule based on the modifications of the game,
or refines the existing open rule by providing a new demonstration.

After a rule is created, one can display its content in a form that mixes text and
graphics for further review and editing.

Drag movement on the touch screen over a constant in dark blue modifies
the value of the constant. Depending on the type of the number, an
appropriate input method is invoked. For example, changing a color

constant opens a color palette.

Pressing the arrows enables choosing different code possibilities that were generated by
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the system. For example, we can switch between three candidate code fragments that
transform 1 into 3, which are = . . . × 3, = . . . + 2 and = 3.

To apply the code of the rule to the game, press the play button. This can be
used for example to modify parameters and to see how the rule behaves for them,
in order to correct them. If the rule is opened, the game shows what the results of

the rule would be.

2.3.4 Underlying Domain-Specific Language

Each game in Pong Designer can be described by its initial state and the set of rules.
Although rules can be modified and displayed graphically, they also have a textual
representation as a domain-specific language embedded into Scala. We use this domain-
specific language as reference semantics, but also as a way to emit a compiled version of
the game. Figure 2.3 summarizes this domain-specific language.

The game engine considers rules similar to logic gates. This means that the order in
which the game executes their inner lines of code is not important. The game modifies
all the parameters at the same time, through the use of a stacking mechanism illustrated
in Figure 2.3. In all the assignments, the parameters names to the right of the equality
start with “prev”, which means that their value is the one before the rule started. In
the sequel, whenever v += C is written, it means in reality v = prev_v + C so that the
previous value of v is left unchanged for other lines of code.

When the user provides an input/output example of how the game state should change,
the code generator compares the example against the list of actions in Figure 2.4. If several
actions are suitable for the same change, the code generator wraps all of them in a parallel
instruction PARALLEL_EXPR, in the same order as in Figure 2.4. The meaning of such an
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expression is “Execute the first action, but keep the others in the case the first action is
wrong.” For example, if the code has to change a score value v from 1 to 2 when a certain
event occurs, the system will create the line PARALLEL_EXPR(v = 2, v += 1, v ∗= 2).
Now, if the same event occurs and the user specifies that the score should increase up to
3, the system will drop the first v = 2 and the last v ∗= 2 and will keep only the second
v += 1.

Furthermore, if the user enters a new input/output example which is contradictory
regarding an existing piece of code, the code generator selects the most recent one.
For example, if the code for a rule is PARALLEL_EXPR(v = 2, v += 1), and the player
asserts that the value should increase from 2 to 4, this is not consistent. Therefore,
the code generator will overwrite the previous rule by producing the following code
PARALLEL_EXPR(v ∗= 2, v += 2, v = 4).

If the event occurs when there is a finger move on a shape, then the variables describing
the move can be used in the code. The system accepts relative coordinates imprecisions up
to 40%. For example, if the user moved his finger from xFrom = 90 to xTo = 140, and he
also moved the shape x from 80 to 128, the system outputs the code PARALLEL_EXPR(x +=
xTo − xFrom, x += 50, x = 128) because 128 − 80 is approximately equal to 140 − 90.
Enriching such expressions by considering an arithmetic interval solver to accomodate
imprecisions is a problem we might investigate in the future.

Although each atomic modification MODIF_LINE could be, in principle, arbitrarily genera-
ted by the grammar, the generator may only use patterns from Figure 2.4, especially for
conditional if-then-else statements. Whenever other shapes are involved in those patterns,
it means that the generator loops over all the shapes having the desired property, such
as a “width”. For each shape so that the pattern works, it outputs a code snippet. These
patterns ensure coherent code and might be extended in the future as we add other
behaviors.

2.3.5 Rule Creation Algorithm

Whenever the user performs a new demonstration, Pong Designer uses it to adjust the
existing set of rules.

Creating and updating rules are similar activities. If the rule does not exist yet, the
system creates it according to the type of the selected event, and its action is initially
empty (see Figure 2.8)

The system extracts the code from the game state. It uses templates to generate the
code (see Figure 2.6). Templates have access to the game state, so they can, for example,
provide a code to align shapes, or set up a number as a combination of two other numbers.
The template system in Figure 2.5 gives an idea of our template matching process.
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When the system recovers the code from the game, it merges them with the existing
code from the rule (see Figure 2.7). If there are number conditions for the new code,
the system generates corresponding if-then-else statements or refines the existing ones.
Generated if-then-else statements currently only check whether the number is less than
constant, so the code is easily maintainable.

When the user duplicates a shape, if the condition of a rule contains the shape, the
system duplicates the entire rule by replacing all occurrences of the old shape with the
new shape. This can lead to an substantial increase in the size of the code, which we
hope to reduce in the future by abstracting collections. If the condition of a rule does
not contain the shape, the system duplicates every line of code modifying one of the
shape’s properties for the new shape property.

In the future we expect to deploy more sophisticated algorithms for learning from examples,
and, more broadly, machine learning techniques to infer the intended behavior.
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GAME := class NAME extends Game
’{’ GAME_CONTENT ’}’

GAME_CONTENT := layout_width = constant
layout_height = constant
{SHAPE_DEF}+ {CATEGORY_DEF}+
{RULE_DEF}+

SHAPE_DEF :=
val NAME = new (Rectangle | Circle | IntegerBox | TextBox)
’{’ {property = value}+ ’}’

CATEGORY_DEF := Accelerometer({NAME}+)
| Gravity2D({NAME}+)

RULE_DEF :=
WhenFingerDownOn(NAME) ’{’ CODE ’}’

| WhenFingerUpOn(NAME) ’{’ CODE ’}’
| WhenFingerMovesFrom(NAME) ’{’

(xFrom: Float, yFrom: Float,
xTo: Float, yTo: Float) =>

CODE
’}’

| WhenNumberChanges(NAME) ’{’
(newValue: Int) =>
CODE

’}’
| WhenEver(BOOL_EXPR) ’{’ CODE ’}’
| WhenCollisionBetween(NAME, NAME) ’{’

CODE
’}’

| NoCollisionBetween(NAME, NAME)
| NoCollisionEffectBetween(NAME, NAME)

CODE := SIMPLE_CODE
| if(BOOL_EXPR, SIMPLE_CODE, CODE)

SIMPLE_CODE := {PARALLEL_EXPR}+
PARALLEL_EXPR := Parallel(MODIF_LINE+)
MODIF_LINE := NAME.property = FORMULA
FORMULA := FORMULA (+|−|∗|%|/) FORMULA
FORMULA := NAME.prev_property
FORMULA := constant
FORMULA := newValue|xFrom|yFrom|xTo|yTo
BOOL_EXPR := FORMULA (≤|≥|<|>|==) FORMULA
BOOL_EXPR := BOOL_EXPR (|| | &&) BOOL_EXPR
BOOL_EXPR := !BOOL_EXPR

Figure 2.3 – An overiew of the language and grammar used by our system to generate
code
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cx = x1, cx = cx1, cx = x1+w1
x = x1−w, x = cx1−w, x = x1+q1−w
x = x1, x = cx1, x = x1+w1
x += xTo−xFrom, x += xFrom−xTo
x += CN , x = CN

x += yTo−yFrom, x += yFrom−yTo
(cx, cy) = (2∗cx1−cx2, 2∗cx2−cx1),

Templates for generic shapes position. Templates for y are simply obtained by replacing
x by y. The last line describes the detection of mirrored shapes. Identifiers xFrom,
yFrom, xTo, yTo representing finger movements are available only if the code is inside a
WhenFingerMovesOn rule.
angle = CN , angle += CN

angle = angle(x1, y1, xTo, yTo)
velocity ∗= CF , velocity = CF

color = CN

visible = CB

Templates for generic shapes properties. The function angle describes the angle of the
center of a shape to the finger.
width += xTo−xFrom, width += CN

width = CN width ∗= CF

height += yTo−yFrom height = CN

height ∗= CF height += CN

radius += CN , radius ∗= CF

radius = CN radius += xTo−xFrom ...

Templates for rectangular and circular shapes.
v = nv
v = nv / i if nv % i == 0
v = nv ∗ i
v += CN if CN == 1 or −1
v = v1 + v2, v = v1 − v2
v = v1 ∗ v2, v = v1 / v2
v = v1 ∗ CN , v = v1
v += CN if |CN | > 1
v = CN

text = text1 text = text1 + text2
text = Constant

Templates for integer and text boxes. We write “v” instead of “value”. The identifier “nv”
represents the new value if the rule is triggered by a changing number.

Figure 2.4 – The language of actions that the game engine generates by decreasing priority
for each property. For each property, we write "property" instead of NAME.property.
“other” and “other2” are identifiers to describe other shapes. We abreviate “other.property”
to “property1” and “other2.property” to “property2”. cx is “center_x”, w is “width” and
h is “height”. CN is an integer constant, CF a float constant and CB a boolean constant.
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trait TemplateShape {
var shape: Shape
def variants(s: Shape): List[Expression] = {

shape = s
if(condition) List(result) else Nil }

def condition: Boolean
def result: Expression

}

Generic template definition as a trait. A template needs to define its condition and its
result.
trait TemplateOtherShape extends TemplateShape {

var other_shape: Shape
override def variants(s: Shape) = {

shape = s
var expressions = Nil
for(o ← game.shapes) {

other_shape = o
if(other_shape �= shape && condition)

expressions += result
} } }

Generic template to compare against other shapes. Such template can be use to detect
alignments, same color, number equality, etc.
trait TemplateParallel extends Template {

def templates: Traversable[Template[T]]
def result: Expression = {

var expressions = Nil
for(template ← templates)

expressions += template.variants(shape)
Parallel(expressions)

} }
trait TemplateBlock ...

Special templates regrouping other templates in parallel or in block.
object TX_DX2 extends Template[Shape] {

def condition = ofType(TOUCHMOVE_EVENT) &&
approx(shape.x−shape.prev_x, xTo−xFrom) &&
!movementIsVertical

def result = "shape.x = shape.prev_x+(xTo−xFrom)") }
object TX_AlignLeft1 extends TemplateOtherShape {

def condition = approx(shape.x, other_shape.prev_x, 20)
def result = "shape.x = other_shape.prev_x" }

object TX extends TemplateParallel {
def condition = shape.prev_x �= shape.x
val templates = List(TX_DX2, TX_AlignLeft1) }

object TShape extends TemplateBlock {
def condition = true
val templates = List(TX, TY, TColor ...) }

Basic templates to match horizontal finger tracking, alignments on x, and mutliple variants
for changes observed on x. The last template TShape regroups other templates to create
the body of a rule.

Figure 2.5 – Templates are named structures producing code for a given shape. Figure 2.4
describes the possible results.
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def codeGeneration(game, event,
actionsCondition, existingActions) = {

actions ← ()
initialize templates
for{shape ∈ game} {

variants ← TemplateShape.variants(shape)
if{variants �= ()} {

actions += ParallelExpr{variants}
}

}
mergeCode{game, event, actions,

actionsCondition, existingActions}
}

Figure 2.6 – codeGeneration: Algorithm which takes a “game”, an “event”, an optional
condition “actionsCondition” under which actions in the game should be performed, a
list “existingActions” of actions that are currently performed when this event is triggered.
Outputs a sequence of actions describing the intended action merged with the previous
ones.

def mergeCode(game, event, actions,
actionsCondition, existingActions) = {

(actionsCondition, existingActions) match {
case (true, ()) ⇒

actions
case (true, "if("cond")" codeT "else" codeF ) ⇒

"if("cond")" mergeCode(..., actions, true, codeT )
"else" mergeCode(..., actions, true, codeF )

case (true, _) =>
- Group by assigned property existingActions and actions.
- Intersect expressions parallelExpr for the same property
- If intersection is empty, take the new code.
- Return the resulting block code.

case ("newValue ≤" B,
"if(newValue ≤" A")" codeT "else" codeF ) ⇒

if( B < A ) {
"if(newValue ≤" B")" mergeCode(..., actions, true, codeT )
"else (if(newValue ≤" A")" codeT "else" codeF ")"

}
. . .

}

Figure 2.7 – mergeCode: Algorithm which takes a “game”, an “event”, an optional
condition “actionsCqondition” under which actions in the game should be performed, a
list “existingActions” of actions that are currently performed when this event is triggered.
Outputs a sequence of actions describing the intended action merged with the previous
ones. Notice how conditionals are merged: The structure of the program remains
consistent. Texts in quotes are the representation of a program.
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def ruleMerge(game, event,
existingRule, actionsCondition) = {

if{existingRule is not defined} {
existingRule ← emptyRuleFrom(event)
//existingRule.code is empty

}
actionsCondition ← ‘‘true"
if(event is a ‘‘Number change event’’) {

if(event is a ‘‘Number equal event’’) {
actionsCondition ← ‘‘newValue == event.shape.value’’

}
else if(event is a ‘‘Number greater event’’){

actionsCondition ← ‘‘newValue ≥ event.value’’
}
else if(event is a ‘‘Number less event’’){

actionsCondition ← ‘‘newValue ≤ event.value’’
}
else if(event is a ‘‘Number positive event’’){

actionsCondition ← ‘‘newValue ≥ 0 ’’
}
else if(event is a ‘‘Number negative event’’){

actionsCondition ← ‘‘newValue ≤ 0 ’’
}

}
rule.code = codeGeneration(game, event,

actionsCondition, existingRule.code)
game.rules += rule

Figure 2.8 – ruleMerge: Algorithm which takes a game with input and output state
available, an event and an optional existing rule. Outputs a rule to describe the complete
event handling.

Figure 2.9 – The two states of the game engine
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2.4 Implementation Aspects

We next describe the architecture of Pong Designer that enables the modification of
run-time behaviors.

2.4.1 Role of the game engine

Time plays an important role in the game engine. The game itself is not aware of the real
time, only the game engine is. To manage time, Pong Designer can be in two different
states. In the running state, the game runs naturally, whereas in the editing state, the
game is paused and everything, including current time, is editable. Because of these two
states, we made sure that the time of the game is tightly controlled by the game engine.

To control the time for the current game, the game engine performs the following actions
synchronously and forever:

1. When in the running state, it updates the time of the game from a clock.

2. When in the editing state and if modified, it updates the time of the game from
the time slider.

3. Displays the game.

4. When in the editing state, displays more information about the game state, such
as if objects are static or if an object has been modified.

5. When in the editing state and activated, displays selectable events from the last 5
seconds in order to let the user create or modify rules.

6. When in the editing state, displays the game menu on top of it.

Concerning touch events, the game engine behaves differently. Because of the platform,
touch events are received asynchronously. The game engine deals with them in two
different ways:

1. When in the editing state, the game engine dispatches touch events to menus which
in return modify the game state

2. When in the running state, the game engine dispatches touch events directly to
the game

Figure 2.9 gives a summary of the interface between the game engine and the game in
the two states The slider controlling time is included in the box “menus”.
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2.4.2 Time management by games

Games running with this game engine need to have the possibility to go back in time for
at least a short period. Therefore, a game needs to store internally a 5-second history
of all of its parameters and its shapes’ parameters. Events are a particular case (see
below) but are still recorded in a 5-second history. If the user wishes to start from the
beginning, or if the game has been wrong and not corrected for the last five seconds, it is
still possible to reset it to the initial state.

The data structure storing the history of parameters is a double linked list of values
ordered by timestamps. This structure is parametrized in the type of the values, which
can be anything among integers, floats, string and events. Except for events, we optimized
the history by storing values only when they change, so that if the parameters of an
object does not change, its history holds only one value.

When time elapses (forwards) to a new value set by the game engine, the following
actions occur:

1. The game goes through all touch events that were stored asynchronously, and
executes them according to its rules.

2. The game updates the physics by moving shapes and handling collisions and at
the same time triggers synchronous events, like those from collisions, out-of-screen
events and number change events.

The time can elapse backwards only when the game engine is in the editing state. In
this case, if the user goes backwards in time with the slider (up to 5 seconds) the game
reverts all its parameters and all its shapes’ parameters to their value at the given time.
If the user moves the time slider back to the right, the game executes forwards as if it
was running.

2.4.3 Two kinds of events

How events are generated and stored is the key point to understanding how games are
executed in Pong Designer. We distinguish two kinds of events.

Firstly, asynchronous events, such as touch gestures and accelerometer changes, are
stored in a buffer. When the time increases to another value, the game flushes all these
events. Because they are external to the game, they provide the necessary input to play
it. After having triggered corresponding rules, these events are recorded in a 5-second
history. When the game engine is in the editing state, they can therefore be selected
by the user to create new rules or modify existing ones. When the user then lets the
time elapse forwards in the editing state, the game replays these events from the edited
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history. It is thus possible to change the rules and to see their different outcome for the
same touch input immediately, making it convenient to determine constants, for instance
if rules are changing speed, position, etc.

The second types of events, synchronous events, such as collisions, out-of-screen events
or number change detection, are detected after the physics is updated. When they are
detected, these events might also trigger rules that are part of the game. They are also
stored in a 5-second history. Although the user can still select them to create new rules
and to modify existing ones, they will always be recomputed when the time elapses
forwards, both in the editing state or in the running state.

2.4.4 Deployment on Android

We are compiling against the latest Android API version 17 (Jelly Bean) by using
the SDK that Android provides. Our application is also compatible until the API 10
(Gingerbread). Because the SDK is written in Java, and because the Android virtual
machine only deals with Java-like classes, we are using two different plug-ins to be able
to program in scala: sbt and AndroidProguardScala. Because Scala libraries are not
available on Android by default, the two plug-ins embed Scala libraries to provide a final
stand-alone application. Our prototype application is available from the Android Play
store as Pong Designer.

2.5 Discussion

Our purpose is twofold. The first objective is to reduce the gap between coding and
testing, and the second is to allow the user to learn faster how to program by providing
him a comfortable environment.

First, let us remark that there is an inherent duality between the code and the interface.
This dual paradigm is representative of a major duality in the software development:
compilation vs. testing, programmer vs. designer, engineering vs. marketing, developer
vs. user, etc.

Because of too simple design decisions, for many systems the interface maps the code
implementation, and do not meet the goals of the users [Cooper et al., 2012]. For example,
a program would like to ask if the user wants to save the changes, which in most cases
should be done without asking. This happens because it reflects more or less the way
the file system internally works.

The approach of self-reconfiguring interfaces is to try to reduce as much as possible the
gap between the configuration and the execution. Reactive customization is at the core
of self-reconfiguring interfaces. The purpose is to empower the user with programming
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capacities, by specifying a desired behaviour on-the-fly. Coding should be done by the
interface itself, so that the programmer would not spend too much time learning an API.

Bret Victor investigated the way courses currently teach programming [Victor, 2012b]
and depicted its bottlenecks. By comparing the program output to the code, B. Victor
found principles for programming environments, if implemented correctly, would lead to
a better understanding and a better learning curve for users and programmers.

“Traditional visual environments visualize the code. They visualize static
structure. But that’s not what we need to understand. We need to understand
what the code is doing.”

To understand what the code is doing, we use visualization, debugging and verification
systems. However, there are few programming environments that allow to directly
manipulate what the code is acting on. Usually, any interaction of this kind only provides
backwards pointers, such as retrieving the original position in the source of a compiled
TeX file. We aim at providing more code What You See Is What You Get (WYSIWYG)
customization features based on the manipulation of the outcome of the code, in order
to demonstrate intended behaviors.

B. Victor identified the following list that users need for an enjoyable coding experience.
We add a comment after each principle to suggest how we may be contributing to these
guidelines:

• Show the data - we show the physical world;

• Show comparisons - we use the time slider to compare the initial and final states
of actions;

• Get something on the screen as soon as possible - users can insert basic
shapes easily;

• Create by reacting - to create the rules, users select events that occurred in the
past;

• Create by abstracting - the system automatically abstracts demonstrations into
general rules.

Looking into future, the main challenge will likely be to find the right tradeoff between the
complexity of the code we want to generate by demonstration and the visual simplicity.
For example, it might be difficult to design multiple winning conditions in our current
game engine if they are described by a complex boolean formula. Generalizing conditions
in certain ways is currently impossible, for example, checking if all numbers within a
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Figure 2.10 – Code required in Scratch to describe consequence of a collision.

Figure 2.11 – Hypothetical illustration of applying Pong Designer approach to the Scratch
example. The developer pinpoints to a visually represented event, then changes the
state into the desired one. The system infers the state transformation from the example
demonstration by finding a function that maps the input to the output state.

certain range are greater than 10, and adding a new number to the range. We believe,
however, that we are close to a system that can be used productively for a range of
2D games. We hope that, in the future, we can carry such directly manipulation to
other domains, using the idea of physical manipulation as a metaphor with which most
individuals have deep and early experience.

2.6 Related Work

Most existing approach for game programming do not support inference of rules from
demonstrations. We make an overview of some of those systems, as well as some of the
approaches for inferring code from examples.

Scratch. Scratch is a game engine that helps to teach programming to children aged
8+. It provides all the typical structures of programming, loops, threads, if-constructs,
tests, intersection detection, stylus, etc. There are two main screen areas in Scratch: one
with programming blocks, and the other with the canvas. The objects on the canvas can
be directly moved and rotated with the mouse, and programming has been made easier
through assembling of compatible predefined blocks, which prevents the construction of
programs that would not correct according to types and the syntax. The system is simple
and seem appealing for teaching conventional programming through a graphical variation
of the usual textual rendering of program text. While the code is running, it is possible
to grasp objects, move and rotate them. However, we found that writing coordinates
by hand, which is the only way to introduce specific coordinates into a program, can
be cumbersome. Consider a situation where we wish to move the cat when a given line
of code is executed to a position for which we do not know the coordinates. Currently,
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one needs to first move the cat round, note down the coordinates, and then enter them
into the source code, which is much less immediate than in our system. In general, the
programmer needs to define all constants by hand. Another important feature that we
found lacking is the ability to go back in time to identify the desired behaviors. A major
part of programming is to define the behavior of the interaction between two objects,
but such behaviors cannot be defined on-the-fly in Scratch. If an object, let us say a cat,
should loose a life when it touches a red enemy, the programmer normally creates the
code such as in Figure 2.11. The creation of the analogous code is easier if we graphically
set up the effects of the collision. To do so, in our system we just select the event on the
screen, then change the position and the number of lives. The desired code is generated
automatically. we believe that educational systems such as Scratch would also benefit
from our demonstration-based approach

When it comes to program a single stand-alone behavior, e.g. for an enemy to try to
reach a player, Scratch allows the user to program any looping constructions, branching
conditions, lists and variables to achieve the desired result. Because of its programming
paradigm, Pong Designer still lacks such explicit programming features. However, we
could imagine in the future to program an AI by specifying a score which needs to be
incremented, and the rules that increment the score. With some learning algorithms and
input restrictions, the AI could learn to move a paddle towards a ball, or to go away
from the player if the latter is in an invincible mode in order not to lose lives. For more
sophisticated AI strategies and descriptions. we still need to enrich the interface and our
language.

Programming by example. [McDaniel, 2001] reports that programming-by-demonstration
paradigms are often Turing-complete, so is our engine. However, this completeness usually
does not lower the complexity of programming non trivial tasks. Such paradigms become
useful in the presence of a library, which directs the purpose of the programming. This
is a reason why we choose to provide a direct support for physics, so that providing
examples allows the programmer to quickly create games without having to worry about
details. For example, he does not need to create the bouncing code when a collision
occurs.

[Gulwani, 2012a] and [Singh and Gulwani, 2012b] reports that programming constraints
can be learned and generalized by their system through a given set of input/output
examples. By using inductive synthesis with a DSL, they were able to find all the
expressions that could match the inputs to the outputs. Their examples included text
editing macros and spreadsheets. Our engine follows a similar algorithm on graphical
input, although it is much less complex for now.

The way rules are refined according to multiple input-output examples is similar to the
Version Space Algebra method which automatically learns programs from traces [Lau
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et al., 2003a], as well as to Angelic nondeterminism [Bodík et al., 2010], which also
provides a methodology to fill the missing parts of code based on trace executions and
specifications.

Quickdraw [Cheema et al., 2012] is a graphical system which rebuilds precise graphics
based on vague input. It also inspired us to enforce the robustness of our system against
minor graphics specification errors.

Finding a way to manage coexistence between the code and its execution has already
been a source of many more or less fruitful experiments. The Khan Academy [Sal, 2012]
focuses more on “play with the code” than on its graphical output, which is vigorously
criticized by [Victor, 2012b]. Our approach incorporates many important points of this
criticism to make graphical programming enjoyable.

Simula and Smalltalk. A pioneering object-oriented programming language Simula
is an excellent programming model for physics-based games as well as other domains
that can be viewed in analogy with the physical world. Smalltalk builds on this tradition
and further emphasizes graphical environment and the ability to manipulate the state
directly. Sánchez-Ruíz et al. [Sánchez-Ruíz and Jamba, 2008] showed that 4th and 5th
graders liked to program using the object-oriented programming interface Squeak and its
graphics, but disliked correcting errors. Squeak provides a graphical interface, as well
as contextual menus for on-the-fly editing purposes. Our tool also aims to provide a
graphical interface that even children enjoy programming. The Morphic environment
allows the user to program graphical interactions between objects called Morphs and
has an object-oriented language inspired from Smalltalk. The structure of Morphs is
organized around a hierarchy of traits and prototypes, which allows the user to factor
behaviors and attributes. Similarly to our system, it let the user bind input events to
actions. It provides a graphical editor as well as an interactive way of writing code for
objects, especially prototypes.

Programming for phones. We also draw inspiration and insight from the Touch-
Studio/TouchDevelop project [Tillmann et al., 2011]. The TouchStudio/TouchDevelop
project is related in the spirit to our work, because it also uses the hand to graphically
program scripts on tablets and has a language that simplifies the general programming
model.

Game engines. According to [Bishop et al., 1998] there is a need to separate the game
content from the game engine. For efficiency reasons, he asserts that there is a need to
specialize the game engine according to the kind of game that can be produced. One of
the main design goals of the game engine should be the speed of execution. With a proper
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scene manager, a dynamic collision engine and detection of visible objects, they were
able to obtain a reasonable speed. The design of our game engine is similarly specific for
the kind of games we would like to run. We are also taking inspiration from this paper
to make our game engine faster, even if our collision engine is for the moment statical.

Construct 2 is a commercial HTML5 game prototyping engine with the associated
community of developers and a portal for trading game components[Scirra, 2013]. It
provides a game layout, a camera usually smaller than the layout, and lets the user add
his or her own sprites. The game logic is on a separate sheet that is executed 60 times
per second, resulting in professional quality of animation. We observed, however, that for
some on-line games the authors mentioned that they had a hard time to debug their game
logic. In our own experience, we observed that, for example, writing the specification to
“spawn” objects (such as a bullet from a gun) requires the programmer to go back from
the game to the game engine, to the image editor, and then to the event sheet. This
process supports precise modifications, but misses the opportunity of intuitive contextual
modifications. Therefore, we found this system would benefit from the techniques that
we incorporated into Pong Designer.

Game Maker is a nice pioneering commercial game engine [Duncan and Kay, 2013]. It
features room, sprite and object management, as well as customizable rules by behaviors
or event/action. Although powerful in terms of the quality of games it can produce and
export, the gap between the edition of the game and its compiled playable version is
quite large. Even for tutorial games, the risk of misspelling variable in code is high. If
for instance the user renames an object, the system does not rename it in the code, so
compile errors appear. Furthermore, when playing, if error messages occur, there is no
feature to modify the code where the error is to continue the game. We would therefore
say that it does not meet the principles that we aim to fulfill and that we illustrated
through our system.

Functional programming. Fruit [Elliott, 2001] is a functional programming language
that defines GUI logic as signals and signal transformers. Signals approximately corre-
spond to continuous variables, and signal transformers are code that perform actions on
signals, such as integrals or conditional assignments. With this approach, a Pong-like
game is programmed with only 20 lines of code. Part of the efficiency of this approach
can be found in our game engine, where parameters and events play the role of signals,
and signal transformers resemble rules.

Sound processing. ChucK [Wang and Cook, 2004] is a strongly typed language
designed to write functional audio synthesis programs. Its programming paradigm is
to provide full control over time features, and to use an arrow operator which captures
the sequential operations of programming. One of the specificity of ChucK is on-the-fly
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programming, which allows people to modify their program without having to interrupt
the execution of the program, for example during a live performance.

Debugging environments. WhyLine [Ko and Myers, 2008] is a modern interactive
debugging tool where the user can ask questions during debugging about why a certain
change happened. By recording the execution trace, it is possible to solve complex
debugging problems by navigating through history. Our system similarly uses time-
backtracking to enable the precise design, refinement and modification of rules.

According to Lieberman [Lieberman, 1993], there is a huge gap between the environment
of the code and the environment of the software. He suggests that visual users should be
teachers for the interface of the software itself, which in return would act like as a learning
student. His graphical programming environment includes the possibility to program
macros by demonstration and to generalize them when translating them into code. He
suggests that the generalization process is a key part of the learning of the software, and
that small errors should be detected and corrected when generalizing. Similarly, our
tool aims to be a learning student, which for example tries to correct small alignment
mistakes made by the user who plays the role of the programmer. It produces macros
that generalize the intended behavior provided by examples.

Tools and runtimes for existing languages. There are several tools that find,
rank and present the most appropriated synthesized code portions to the programmer.
InSynth [Gvero et al., 2013] is an IDE extension which allows users to synthesize code
snippets based on the type of the current expression. Although these approaches are
not completely automatic due to the lack of complete specifications, they reduce the
burden of the programmer. Similarly, our tool finds, ranks and presents different code
portions, so that the user can choose among them based on their original intent. On
another side of the spectrum, Chameleon [Shacham et al., 2009] assists the programmer
in the difficult task of choosing the best data type for the collections in a program.

Programming language extensions with constraints. Kaplan [Köksal et al., 2012]
and Comfusy [Kuncak et al., 2010a] support the use of constraints as programming struc-
tures. Such structures allow programmers to work productively on explicit specifications
rather than explicit code. The automatically generated code is thus less error-prone.
Decreasing the number of potential errors is also the goal of domain-specific languages
like those designed by Intentional Programming [Simonyi et al., 2006], which allows the
programmer to work on a language that is closer to his needs. Our game engine also has
a domain-specific rule-based language that is generated by the graphical selections made
by the user.
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2.7 Conclusions

Pong Designer enables users to modify games while they run, to step back in time, and
to provide demonstrations of desired behaviors. The system infers corresponding rules
and constraints, which can be manually modified afterwards. Based on object-based
programming principles, users can create their game by moving and arranging elements
while stepping through time. The system can generate code in a domain-specific language
embedded in Scala, which runs on the Android platform using the standard toolkit.

We believe Pong Designer can be used to make games that are as fun to modify as
they are fun to play. While there already exist games whose game worlds can be edited,
the changes to behavior are currently limited, and there is a large gap between the
sophisticated built-in behavior on the one side and simple customizations on the other
side. We believe that Pong Designer leads reduces this gap, and we hope that this
encourages experimentation and building of fun logic-based games and interactive games.
We believe that the system can also be used for experiments exploring the learning and
teaching of programming.

We are at this point confident that the approach can be successful in particular domains.
The open question is the extent to which this success generalizes to broader domains, and
the extent in which this paradigm can incorporate principles for managing complexity of
larger applications.
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B. Epilogue to Game Programming by Demonstration

B.1 New Findings

I had four friends without programming background, and I asked them to try out Pong
Designer. The first two were 16-year old boys, the second a 23-year old girl and the third
a 25-year old girl. I interviewed the first boy in July 2013, and the second roughly at
the same time as I presented the previous publication, in October 2013. At the first
usage of the application, a non-interactive tutorial (only pressing the “next” button)
demonstrated Pong Designer’s features: the time bar, the creation of an object, playing,
creating a rule, selecting a collision, changing some effects, seeing the rule being recorded
and replaying.

After the tutorial, I asked the boys to perform certain actions, such as:

• In a Pong Game, add a text displaying “Game Over” when the score reaches 5,
and stops the ball.

• In a maze where we move the ball by tilting the tablet, find the unanchored wall
and pin it so that it does not move anymore.

• Add a “teleporter” block, which makes the ball move closer to finish.

After the first two interviews, it became clear that I had to correct several mistakes:

• There were unexpected crashes, especially when undoing/redoing actions.

• There were unwanted side-effects when using the time slider.

• The homemade physics game engine was not always physically accurate.

• The meaning of the icons, especially those for finger gestures, was unclear.

• The selection of events and objects was ambiguous.

• It was unclear how to create rules for objects.

Although my friends seemed enthusiastic about the game engine, one of them described
his experience as being forced to “think like the machine”, probably referring to the fact
that every rule needs multiple steps. For example, I asked him to create an object that,
if collided with the ball, would teleport it to a given place. After a few minutes of seeing
him confounded, I showed him the solution. However, he was not able to reproduce the
solution after seeing it. Creating an object and a rule associated with it was new to him.
Furthermore, he assumed that teleportation would be somehow built-in, not that he had
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to simplify demonstrate the ball physically moving to another place. Finally, he assumed
that he did not need to select the event, just go back to the time of the collision and
move the ball. The two boys had similar reactions.

This discussion gave me some insight into the limitations of this system. Pong Designer
felt to him like a new programming language, not the programming-by-example experience
that I had in mind.

Four months later, I interviewed the two girls separately, asking approximately the same
questions. This time I added some hand icons that appeared where the finger touched
the screen, a preference of selecting objects incriminated by an event, and many bug
fixes.

Still, some issues appeared when they used the interface:

• One girl first tried to demonstrate the effect (e.g., changing the ball’s color) before
selecting an event.

• She also forgot to “confirm” the rule by pressing OK, for example by launching the
game. She complained that the confirmation should be closer to the modification.

• She did not understand the icons if there was no text associated with them.

• For both girls, the tutorial was not clear; one would have preferred an interactive
one.

• Both girls told me they would feel limited if something more complex was created,
for example with layers.

After pondering the issues, I also found more limitations:

• A limiting expressiveness of the underlying programming language

• No way to write custom game rules

• A messy way of mixing code and game blocks in the same area.

• An exponential blow-up in the number of rules if we duplicated objects interacting
between them.

B.2 Discussion

We now answer the questions we asked in the introduction (see page 9) with respect to
the work of this chapter.
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Question Game
Is it faster/easier to conduct tasks using
programming-by-example?

Yes/No

Do users need to see the generated program? Yes
Do users need to take on the generated program? Yes
Is the paraphrased version of the program useful? Conjectured
Is it more reliable when the program is shown? N/A
Is it more reliable when the computer asks questions? N/A

The comparative summary for all the papers is available on page 163.

We explain the answers to these questions. In this environment, developing certain kinds
of games is faster than in any other environment that we know of. For example, in less
than one minute, we successfully programmed a basic two-player Pong Game with scores.
However, more advanced tasks, such as copying rules or adding custom code, are harder.
It appeared quickly that users needed to see the generated program, in order to tweak
it. The paraphrased version of the program, available in the second version of Pong
Designer, looked promising but we did not test it. We did not have any evidence to
conjecture that showing the program would increase the reliability. Similarly, we did not
have any active questioning mechanism; the closest we had was a tool for “repairing”
on-the-fly some game rules that the system had wrongly inferred.

Pong Designer v2.0: New interaction models

I continued to work in Pong Designer this time with a master’s student, Lomig Mégard.
We addressed the problems encountered in the previous approach.

Lomig Mégard implemented the new system from scratch, and I reintegrated the previous
menus. After a few months, we had:

• A faster native 2D engine: Box2D (box2d.org).

• A categorization of objects: Every objects belong to a category.

• An on-the-fly rule repair engine: By selecting an event, all recently executed rules
and their alternatives appear, in case the user wants to correct the inferred code.

• Text-based programming: Instead of mixing the code with the game on editing,
which is quickly messy, we split the window in half: the code on the right side,
the game on the left side. However, we did not enable users to edit the program,
except for constants and alternatives.

• Modification of physical properties: We included the modification for any physical
object of its friction, elasticity and many others, all editable in the text view by
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clicking on it and selecting default or custom values.

• Rule broadening: Using the repair-engine on an event, it becomes possible to
generalize the rule to all objects of the same category.

• Paraphrased programs: Instead of displaying some obscure code, whenever possible
we show a paraphrased representation of it.

• Multi-language: We offered the translation of all the content to English and French.

• Juicy features: Color, textures and photo for block textures, text-to-speech, string
learning (e.g., concatenation of strings).

• Timed vectorial paint experiment: We added a special objects that can record
drawing in time, and another that can record sound. We were thus able to
demonstrate a lightweight doodle recorder.

However, after all of this, I did not push this work forward. The next steps looked too
risky with little possible outcome. First, I envisioned opening the door to any coding by
parsing what the user would write; I also realized that writing code with the fingers on a
tablet might not be ideal. Second, I envisioned creating a social community similar to
Scratch [Resnick et al., 2009], so that users could share their code, and reproduce others’
works. Nonetheless, the first step of basic programming would have been a prerequisite,
for it is extremely hard in Pong Designer to modify a piece of code inferred by the
computer.

I began to realize that the program should play a much important role in programming-
by-example, at least after reaching the limitations of pure examples. This was my
motivation for the second work, integrating a programming-by-example engine into a
programming language.
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3 Managing Files by Using Exam-
ples

“Si vous voulez vraiment comprendre “If you really want to understand
une chose, essayez de la modifier.” something, try to change it.”

Kurt Lewin

A. Prologue

After having developed a game engine seemingly too simple for experts and too complex
for beginners (Chapter 2), I wanted more examples of how to apply programming-by-
example in everyday life. I wanted to have the examples much closer to the user’s abstract
wishes than it was in Pong Designer.

Ruzica Piskac, one of the co-authors of this work, had the original idea of applying
a successful programming-by-example-engine for string transformation to the task of
manipulating files. Imagine that you are ordering your files, moving and renaming
them; then, at some point the system understands what you are doing and suggests a
transformation that you can accept or not. Following this vision, we realized this work.

StriSynth: Composite Scripting using Examples

The following pages 48-73 are the extension of the peer-reviewed paper named “ StriSynth:
Synthesis for Live Programming” (DOI: 10.1109/ICSE.2015.227) that appeared in the
International Conference of Software Engineering (ICSE) in 2015 and was published by
IEEE. The name of the extended paper is “Composite Scripting Using Examples”. Probably
because, in the paper, the results were not strong enough, there were no conferences that
would publish this extended version of the paper. We include the work here with the
permission of the authors, who are myself, Sumit Gulwani, Ruzica Piskac, Filip Niksic,
and Marc Santolucito.
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Contributions: I did the entire technical part of the work. For efficiency and re-
producibility, I reprogrammed almost all of Flash Fill’s algorithms into a JVM-based
implementation StringSolver1, written in Scala, based only on published papers. I designed
the language for providing examples, wrote the program exporter to PowerShell and Scala,
implemented the learning algorithms for partition and filtering following Ruzica Piskac’s
advice, and encoded and run the benchmarks in order to time them. Furthermore, I also
designed algorithms for the ellipsis construct (to avoid specifying the entire output), for
multi-digit counters and for number transformations (to enable the numbering of files).
Mark Santolucito and Ruzica Piskac took care of the user study.

In this paper, we describe a live programming framework that enables end-users to perform
transformations over strings by using examples and to generate reusable stand-alone
PowerShell scripts. Motivated by applications for automating repetitive file manipulations,
we present synthesis algorithms and a language that are able to handle related tasks.
This language contains operators that can be easily combined to create more complex
transformers. We developed an open-source tool named StriSynth. StriSynth produces a
script from user-provided examples. The user receives a feedback after every example.
This way the user can choose examples to direct synthesis. StriSynth works in a live
programming framework: the user can interactively start to learn new tasks, cancel
given examples, test generated functions, and export the learned scripts. We evaluate
ease-of-use and preferences for StriSynth over traditional scripting languages on both
expert and end users.

3.1 Introduction

Many tedious and repetitive tasks, including file manipulations and organizing data,
can easily be automated by writing a program in some scripting language. Yet, such
languages usually require a good knowledge of regular expressions, and often their syntax
does not correspond to modern high level programming languages. Additionally, small
errors in the scripts can lead to malicious behavior, such as data loss [Mazurak and
Zdancewic, 2007]. As an example, consider an attempt to remove all backup emacs
files with the command rm * ∼. For these reasons, many end-users search for help
on on-line forums when they need to write some script [Stack Overflow, 2009, Stack
Overflow, 2011, Super User, 2011]. We noticed that when a non-expert user seeks help
in writing a script on user forums, she usually provides a few illustrative examples that
convey her intentions about what this script is supposed to do. In this paper we describe
StriSynth, a tool that successfully synthesizes scripts for string manipulations, based on
given examples.

Programming by example (PBE) [Cypher and Halbert, 1993, Lieberman, 2001, Osera
and Zdancewic, 2015, Feser et al., 2015] is a form of program synthesis. It works

1github.com/MikaelMayer/StringSolver
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by automatically generating programs that coincide with given examples. This way
the examples can be seen as an incomplete, but easily readable and understandable
specification. However, even if the synthesized program satisfies all the provided examples,
it might not correspond to user’s intentions, due to this incompleteness in the specification.
To address this issue, we propose a live programming environment [Burckhardt et al.,
2013] as a framework for PBE. In this way, a synthesized script can be refined with
every new provided example, and thus yields more interactive experience for the user.
Interactive PBE allows end-users to provide a single example at a time, rather than
guessing at the full example set that is necessary for synthesis. More significantly, it
helps them to identify new examples that will accelerate convergence to the intended
result/program. Additional features of StriSynth include:

• providing a human-readable description of a learned script after each interaction so
users do not need to read synthesized code.

• The user can save the learned programs, and compose them together.

• The learned scripts can be exported to other formats, for example PowerShell.

The main motivation for StriSynth came from automating file manipulation tasks, as we
had seen the potential for this type of system in Flash Fill’s [Gulwani, 2013] synthesis of
spreadsheet manipulations. While the use of scripting language such as sed, awk, bash
or PowerShell requires a certain level of expertise, many tasks can be easily described
using natural language or through examples. Inspired by encouraging feedback at a demo
presentation of StriSynth [Gulwani et al., 2015b], we have since expanded functionality,
reevaluated performance, and explored the potential of our new interface. Supported
use cases include filtering files, grouping them, and performing various other commands
on both individual files and groups of files. All of these operations work on a time scale
acceptable for interactive use. We also conducted a user study (Sec. 3.6) that shows that
with StriSynth the learning curve is a fast and pleasant experience for users. The study
shows that users with a wide range of programming experience have a clear interest in
being able to complete everyday scripting tasks with StriSynth.

This paper makes the following contributions.

• We designed and implemented a live programming environment for PBE, called
StriSynth, that supports learning operations such as Transform, Reduce, Partition,
Filter, and Split. In addition, StriSynth supports composition of operations.

• We describe algorithms for synthesizing the above operations from given input
examples. These algorithms invoke the corresponding synthesis algorithms for the
atomic data-types in a manner that allows leveraging existing proprietary PBE
technologies for base data-types. We also describe a powerful synthesis algorithm
for string transformations that extends Flash Fill with various novel capabilities.
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• We designed and implemented a lightweight example-driven language which also
provides Lifting (map) and Composition to combine these operators.

• We show how concepts from live programming can be applied to make an interactive
PBE system. This allows users to incrementally create scripts while receiving
feedback on their progress.

• We have an open-source, core JVM implementation of the existing Flash Fill
algorithm, augmented with transformations involving numbers and counters. We
designed robust program set intersection for learning counters. We show that these
transformations can greatly help to design scripts dealing with file manipulations.

• We provide a script exporter which exports any script designed using StriSynth
to a runnable PowerShell script. We also enhance the future reusability of the
generated script by including the human-readable representation as a comment at
its beginning.

• We evaluated our tool with a set of expert users, including PowerShell experts. We
show that if the users have the choice between a scripting language and StriSynth,
they will prefer StriSynth for more complex tasks.

3.2 Motivating Examples

We start by presenting a collection of tasks that demonstrate capabilities of StriSynth.

3.2.1 Generating HTML

Our first example comes from a StackOverflow post, where the users discuss complex
and challenging regular expressions [Stack Overflow, 2009]. The user asked for a script
that will create a link from every item in a directory. To better illustrate her intentions,
the user provided two examples: for given files

Document1.docx
Document2.docx

the script should output

<A HREF=’Document1.docx’>Document1</A>
<A HREF=’Document2.docx’>Document2</A>

The other users on the forum suggested a solution that checks if the input string matches
the regular expression \(^[a-zA-Z0-9]+\)\.\([a-z]+\), and then replaces the input
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string with \<A HREF\=\"\1\.\2\" \>\1\<\/A\>. A script doing this find/replace task
using the popular tool sed looks as follows:

sed/\(^[a-zA-Z0-9]+\)\.\([a-z]+\)/\<a href\=\’\1
\.\2\’ \>\1\<\/a\>/g

While it was very easy for the user to express her initial intentions by providing examples,
the resulting script is arguably less readable, even for such a simple problem. Furthermore,
small changes might require an entirely new regular expression to be written.

We next solve the same problem with StriSynth. We first provide an example showing
what a script should do:

> NEW
> "Document1.doc" ==> "<a href=’Document1.doc’>Document1</a>"
> val F = TRANSFORM

The keyword NEW denotes the start for learning of a new script, but it can be also used to
restart the learning process, if the user decides to ignore the examples that she provided
previously.

After the command NEW the user provides examples that convey her intentions. Based on
this single example, StriSynth learns a string transformer, and we save it with the next
command. Every learned function can be saved using the command val name = ....

The tool then outputs an automatically generated description in English about a learned
function F . In this particular case, it tells us that F takes an input string s and splits
it into two parts: the one before the first occurrence of “.” (s1), and the one after. F

then takes the constant string <a href=", concatenates it with s, then adds the constant
string ’>, followed by s1, followed by the constant string </a>.

In general, automatically generated messages can sometimes be confusing. Therefore we
can check how F works on different examples.

> F("Document1.docx")
<A HREF=’Document1.docx’>Document1</A>
> F("Document2.docx")
<A HREF=’Document2.docx’>Document2</A>

We observe that the learned transformer F is a function that exactly does what the user
asked initially. However, it only takes a single string as input, while the user wanted
a script that operates on a list of strings. In StriSynth there is an option to naturally
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extend every operator “as map”. If a function G has a signature G : T1 → T2, then
applying the operator as map will result in

G as map : List(T1) → List(T2)

We can now easily create a script which takes as input a list of file names and creates a
list of HTML links.

> val linkify = F as map

Note the difference compared to the sed script: in StriSynth it was enough to provide a
single representative example illustrating what should a script do, and then save this
learned transformer as a map.

3.2.2 Auto-Incrementing a Variable in a String

The next example comes again from a StackOverflow post [Stack Overflow, 2011]: users
discuss how to auto-increment a part of a regular expression containing a variable that
has to be incremented every time. One user even suggests that regular expressions are
for matching strings - they are not for manipulating variables as the matching occurs.
However, there are solutions to this problem, consider, for instance the following perl
script: ’s/[A-Z]{3},\d*/$count++.",$&,"/egi’

To demonstrate how StriSynth deals with counters, we take the problem given at [Stack
Overflow, 2011] and abstract away unnecessary details. In summary, the goal is to put a
counter in front of an input string. The user provides an example

> "ABC" ==> "1ABC"

Based on only this example, StriSynth reports that the learned transformer puts a
constant "1" in front of the input string. This, however, does not convey the user’s
intentions. In interactive manner she provides another example:

> "XYZ" ==> "2XYZ"

With this additional example StriSynth learns a new transformer that works for both
examples: it puts a 1-digit counter in front of the input string.

3.2.3 Creating Photo Albums

Our next example was motivated by [Super User, 2011], but also by our own experience.
The user wants to merge all the JPG files present in a folder, and would like to create

52



3.2. Motivating Examples

.PDF photo albums, but based on locations where photographs were taken. While forum
user did not delivered a required batch script in [Super User, 2011], StriSynth can easily
generate such a script. In addition, we use this example to illustrate the composite
behavior of StriSynth.

The folder contains various JPG files, and our first task is to partition those files based on
their location. The file names contain the location where they were taken. In StriSynth
there is the partition function, which learns the criteria how to divide strings into different
partitions. In this particular case we provide two examples of such a division:

> NEW
> ==> ("London-01.jpg", "London-02.jpg")
> ==> ("Paris-01.jpg", "Paris-02.jpg")
> val par = PARTITION

These two examples were sufficient to derive a partition function which groups strings
based on their prefix upto the first “-” symbol. All the files will be partitioned according
to that rule. When par is applied to a list of files, the result can, of course, contain more
than two groups.

We now have the partitioning function par; the next goal is to learn a function which
merges all the files in one partition. For this purpose we use the reduce operator.

> NEW
> ("NY-01.jpg", "NY-02.jpg", "NY-03.jpg",

"NY-04.jpg") ==>
"merge NY-01.jpg NY-02.jpg... NY.pdf"

> val rd = REDUCE

By inspecting the automatically generated description of rd, we confirm that the learned
reduce operator precisely mimics our intentions. Note that in the resulting string we
did not need to write down the entire string. We used the ellipsis operator (...), and
StriSynth completed the string automatically.

Finally, we construct the initially required script: it combines par and rd. The par
operator takes as input a list of JPG files, partitions them based on their locations, and
returns this partition (as a list of lists). We next apply the rd operator on each class in
the partition. The operator andThen is a composition operator.

> val toAlbums = (par andThen (rd as map))
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3.2.4 Filtering

Our last example illustrates the filter operator in StriSynth. Consider the previous
example, but when the directory contains all types of files. We first need to extract only
the JPG files. In order to learn the criterion used for filtering, we provide positive and
negative examples:

> NEW
> YES ==> ("a.jpg", "b.c.jpg")
> NO ==> ("a.txt")
> val takeJpgs = FILTER

StriSynth correctly learned that we are interested only in the JPG files. The results of
filtering are usually combined with other operators:

> val final = (takeJpgs andThen toAlbums)

3.3 StriSynth Interface

StriSynth has taken inspiration from recent work in live programming[Burckhardt et al.,
2013, Victor, 2012a] to introduce interactive PBE. In interactive PBE, users incrementally
provide one example at a time, as opposed to need to provide a full example set. This
small change in the interface is critical for StriSynth, as scripting is often an interactive
process. In general, interactive PBE can be a more effective way to reach the intended
audience, a casual novice user, that PBE often targets. StriSynth has implemented
interactive PBE in a command line mode, through a standard REPL (Read Evaluate
Print Loop) environment:

• read - StriSynth reads a single example from the user.

• evaluate - based on the example type StriSynth can either: start a new synthesis
environment, refine an existing synthesized function, save/export the current
synthesized function.

• print - the user receives feedback from the tool - it automatically generates an
English description of the synthesized function

• loop - this process runs in a loop, allowing a continuous interaction between the
user and StriSynth

The REPL framework is an instance of live programming that is being utilized here for
interactive PBE. In the live programming environment the user actively participates in
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code development and can immediately observe the changes in the code. Additionally,
the user can inspect and test a synthesized script for correctness. If the script does not
convey her intentions, the user provides more examples. This shift in the code interaction
model is especially important for PBE systems targeting casual users.

Once a function has been synthesized to the user’s satisfaction, it may be saved to a
variable for further manipulation. Users may use high level composition operators to
generate different scripts from their synthesized functions. These scripts and functions
may also be exported to a PowerShell executable format.

3.3.1 Functions that StriSynth can Synthesize

In Sec. 3.2 we gave examples of some functions that StriSynth can learn. In this section
we list them all. The generated functions usually take a string or a list of strings as input.
They return a string, or a list of strings, or a list of lists of strings.

Transform : String → String
Reduce : List(String) → String

Partition : List(String) → List(List(String))
Filter : List(String) → List(String)

Split : String → List(String)

To describe those functions in more detail, Transform is just a string transformation
function. The Partition function takes as input a list of strings, and divides them into
groups based on the partitioning criterion. Those groups are then returned as a list of
lists of strings. Filter is a function which takes a list of strings as input and removes
some of the elements based on the filtering criterion. Reduce is an operator that merges
the elements in a list into a single string. The Split operator does the opposite: it
returns a list of strings from the input string.

All those functions are generated based on the examples provided by the user. Once
created, the functions may be exported directly as shell scripts, or can be saved and
further composed and augmented using the following higher-order operators:

as map : (a → b) → (List(a) → List(b))
andThen : ((a → b), (b → c)) → (a → c)

The as map operator lifts any transformation so that it can be applied to a List of the
original input type. The composition operator andThen, also aliased with |, composes
type compatible transformations.
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3.3.2 Providing Examples for Synthesis

To learn the above operators the user must provide examples. To start providing new
examples, the user first types NEW into the interpreter. As we have seen in Sec. 3.2 the
input examples can have various different forms. The form of the first given example
will direct the user to one of the five learning modes among Transform, Reduce,
Partition, Filter or Split. Once in a mode, the user either needs to continue to
provide examples of the same mode, or enter NEW to switch modes and start learning a
different function. To remove the last provided example, the user can enter CANCEL.
However, this does not change the learning mode, even if all examples are canceled. If the
user provides a non-corresponding example while in a specific learning mode, StriSynth
returns syntactic error.

Below we list the syntax and mapping between the first example provided and the
function to be learned. We denote a string variable with S.

Example given Will learn
S =⇒ S Transform
List(S, . . . , S) =⇒ S Reduce
(S, . . . , S) =⇒ S Reduce
=⇒ (S, . . . , S) Partition
YES =⇒ (S, . . . , S) Filter
NO =⇒ (S, . . . , S) Filter
S =⇒ (S, . . . , S) Split

3.4 System Design

This section details how the system described in Sec. 3.3 is implemented. A high level
overview of the system design structure is shown in Fig. 3.1. StriSynth uses three primary
subcomponents: a) the example parser connects the user input to the system; b) the
synthesizer acts as the learning module; and c) the converters translate the synthesizer’s
output into an operator that the user can see.
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Examples

Example Parser

Synthesizer

Converters

Operator

StriSynth
Backend

Figure 3.1 – StriSynth System Overview: the main three phases in the process of learning
functions from the examples

3.4.1 Example Parser

The syntax used for examples consisting of only three main concepts.

1. The core syntactic form is the arrow symbol =⇒, as shown in Sec. 3.3.

2. An ellipsis string(“. . .”) is used as an optional final argument for examples to learn
the Split operator. It indicates autocompletion. The ellipsis can also be used in
the resulting string of examples for the Reduce operator.

3. Determining counters from examples: If a counter is present in user provided
examples, StriSynth will detect and utilize them without any further user instruction.
(more in Sec. 3.4.5)

We next provide some implementation details about parsing input examples.

Scala desugars the expression A =⇒ B as the method call A.=⇒(B). The =⇒ is imple-
mented as an extension method for String (for Transform, Reduce and Split), List of
strings (for Reduce), the objects YES and NO (for Filter). In the case of Partition,
StriSynth defines a special stand-alone function =⇒ (not a method) so that it can be
used as a static function, as in =⇒(P1, P2, . . . ). To learn the Split operator an example
must provide at least 2 arguments to differentiate from Transform or Reduce.

The ellipsis construct inside example strings (. . .) helps StriSynth in detecting repetitive
patterns. When StriSynth encounters a string of the form “s . . .”, it analyzes the string s
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with the goal of dividing into three parts: s1, a separator ⊕, and s2. Namely, it should
hold that s is a concatenation of these three strings. Once we guessed the separator,
substrings s1 and s2 should be the instances of some general expression, and thus we
should be able to autocomplete the missing part of the string s . . ..

In parsing the examples with the ellipsis operator the main task is to find the separator.
Applying the exhaustive search would result in an O(n3) algorithm. For practical
purposes, we developed various heuristics for boundaries and separators to reduce this
cost.

3.4.2 Synthesizer

We build upon, but also extend the functionality of the Flash Fill[Gulwani, 2013]
algorithm: only the Transform operator can be directly simulated using Flash Fill. All
other operators present in StriSynth do not exist in Flash Fill. However, since most of
our algorithms rely on learning string transformers from given examples, we are able
to use our own, modified version of the Flash Fill algorithm as a black box. While
our algorithms are structured to allow use of proprietary PBE systems, we chose to
re-implement the Flash Fill algorithm ourselves. In order to understand how it works,
let us denote the original Flash Fill’s learning algorithm as FF :

FF : List(Stringn × String) → (Stringn → String) .

FF takes as input examples a list of n-tuples of strings, and an additional string showing
how those tuples are transformed. Flash Fill learns and returns a transformer that works
correctly on the provided examples. StriSynth’s main synthesis algorithm, denoted by S

is a modified version of Flash Fill’s learning algorithm, and has the following synthesis
signature:

S : List(List(String) × Int × String)
→ (List(String) × Int) → String

This more general signature allows StriSynth to accept examples and generate transfor-
mers for all the operations mentioned in Sec. 3.3. The algorithm also extends Flash Fill
with two additional features. First, instead of a tuple of strings for input, we let the
input be a list of strings of possibly various length (List). This is useful for learning the
Reduce operator. Second, there is an integer (Int) added to every input. This integer
enables learning counters (cf. Sec. 3.4.5). Additionally, it is also used for learning the
Split operator which internally extracts items based on an index.

The resulting output of S is called a transformer. All transformers, regardless of their
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type, have the following unified signature:

ST : (List(String) × Int) → String

3.4.3 Converter

In the last phase, a transformer is converted into an operator using a converter. For
every operator there is a different converter. StriSynth’s algorithms for the converters
are given in Sec. 3.5.

ConvertTransform : ST → (Transform)
ConvertReduce : ST → (Reduce)

ConvertPartition : ST → (Partition)
ConvertFilter : (ST × String) → (Filter)
ConvertSplit : ST → (Split)

3.4.4 Language Ls: Syntax and Semantics

Motivated by the string transformation language introduced in [Gulwani, 2011], we
describe a subset of that language for syntactic string manipulations, denoted by Ls. We
further extend this language in Sec. 3.4.5 to allow the use of counters, and describe novel
ways to use Ls in Sec. 3.5. Every operator in StriSynth is defined using Ls.

The language Ls is generated by the following context-free grammar, where t is the
top-level symbol:

t ::= e | Concatenate(e1, . . . , en)
Atomic expr e ::= vc | ConstStr(s) | SubStr(vc, p1, p2) |

Loop(λw.t)
Position p ::= k | Pos(r1, r2, c)

Integer expr c ::= k | k1w + k2

Regular expr r ::= ε | τ | TokenSeq(τ1, . . . , τn)
Token τ ::= C+ | ¬C+

To define the semantics of Ls, we explain each constructs of Ls individually. A better
understanding of these constructs one obtains after examining the examples in Sec. 3.5.

An atomic expression e can either be a free input string variable vc, a constant string
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ConstStr(s), a substring of some input string vc, or a loop construct. A string t belongs
to Ls if it is either an atomic expression e, or is obtained by concatenating atomic
expressions e1, . . . , en using the Concatenate constructor. The substring expression
SubStr(vi, p1, p2) is defined partly by the position expressions (to be detailed below) p1
and p2, which must refer to valid positions within the string vi. The SubStr constructor
returns ⊥ (undefined value) if p1 or p2 are outside the range of the string vc, The loop
construct Loop(λw.t) denotes concatenation of e1, . . . , en, where ei is obtained from e by
replacing all occurrences of w by i, and n is the smallest integer such that evaluation of
en+1 results in ⊥.

A position expression represented by a non-negative integer constant k denotes the k-th
position in the string. For a negative integer constant k, it denotes the (n + 1 + k)-
th position in the string, where n is the length of the string. A position expression
Pos(r1, r2, c) evaluates to a position t in the subject string s such that regular expression
r1 matches some suffix of s[0 : t − 1], and r2 matches some prefix of s[t : n − 1], where
n is the length of s, and s[t1 : t2] is the substring of s between positions t1 and t2.
Furthermore, if c is positive, then t is the c-th such match starting from the left side.
Analogously, if c is negative, then t is the (−c)-th such match starting from the right
side.

An integer expression c is either an integer constant k, or c has a form k1w + k2, where
w is a bounded integer variable.

A regular expression r is TokenSeq(τ1, . . . , τn), which is a token sequence of at most three
tokens. If the sequence is empty, we denote it as ε (empty string).

Tokens τ are constructed from character classes C: token C+ matches non-empty se-
quences of characters that belong to C, and token ¬C+ matches non-empty sequences
of characters that do not belong to C. As an illustration, tokens UpperTok = [A − Z]+,
NumTok = [0 − 9]+, and AlphTok = [a − zA − Z0 − 9]+ match non-empty sequences of
uppercase alphabetic characters, numeric digits, and alphanumeric characters, respecti-
vely.

3.4.5 Counters

Finally, we describe the counter construct, a new construct that we introduce in StriSynth
and that does not exist in Flash Fill. Since the original Flash Fill algorithms do not
contain the counters, we developed an entirely new algorithm for detecting and learning
counters.

In Sec. 3.2.2, StriSynth was able to learn a counter. The counter construct belongs to
atomic expressions in language Ls: Counter(start, step, nDigits). This atomic expression
evaluates to a string representing some number, let us denote it with m. The resulting
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string is the shortest representation of m with at least nDigits digits, filled with zeros on
the left, if necessary.

In order to recognize and create new counters, StriSynth keeps an internal variable
index. Its default value is zero, but it can also be explicitly set. The index variable
increments whenever an example is added or an output is computed. Given the expression
Counter(start, step, nDigits), the number m is computed as start + index × step.

When StriSynth detects a number n in the output string, it will store the possibility
that this number n represents a counter. We use the following internal program set to
store that fact: CounterSet(nDigitSet, startSet, index, n). Here, index is the value of
the index variable when the example was given and:

• nDigitSet is a set containing numbers that are candidates for the value of the
nDigits variable. If n is a number starting with a zero, then nDigit is uniquely
determined by the size of n. For example, if n = 0012, nDigitSet = {4}. On the
other hand, if the first digit of n is non-zero, then nDigit is a number between the
size of n and 1. For example, if n = 243, nDigitSet = {1, 2, 3}.

• startSet is a set containing numbers that are candidates for the value of the start
variable. For example, if n = 10 at index = 2, then startSet = {8, 6, 4, 2, 0}. If
n = 10 at index = 3, then startSet = {7, 4, 1}.

An important function in StriSynth’s synthesis algorithm is computing the intersection
of two program sets.

The first problem we encounter is finding the sets of numbers of digits can be intersected
safely. The main issues arise with the intersection of the sets of starts. Consider the
following scenario: let us suppose that at index = 2 the value of n is n = 12, and at
index = 3 the value of n is n = 13. The first example returns the following possible
starts {0, 2, 4, 6, 8, 10}, whereas the second example has the possible starts {10, 7, 4, 1}.
Computing only the intersection of these two sets is not enough. Let us check whether
4 is a possible good start for both examples. It is not, because taking 4 as a starting
counter will result that in the first example the step should be equal to 4, while in the
second example the step should be equal to 3. This implies that the only possible start
is 10.

Finally, we describe how to find the start variable. The intersection of two counters at the
different values of the index variable can only yield one or zero possible start variables.
The start variable can exist only if n2 − n1 is a multiple of index2 − index1. In that case,
we can compute the new step by dividing the difference of numbers by the difference of
indexes. The only start which is feasible would be given by newStart = n1 − index1 ×step.
By computing the intersection of {newStart} with the intersection of the starts, we can
find the start variable.
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3.5 Synthesizing Operations

We now show how to use the general synthesizer S described in Sec. 3.4 to synthesize each
of the particular operations available in StriSynth. Each operation has its corresponding
learning procedure. The list of learning procedures along with their signatures is shown
in Fig. 3.2. For each learning procedure, we show how to manipulate the examples into a
form acceptable for S, and how to use the transformer produced by S to synthesize the
corresponding operation.

LearnTransform : List(String × String) → String → String
LearnReduce : List(List(String) × String)

→ List(String) → String
LearnPartition : List(List(String))

→ List(String) → List(List(String))
LearnFilter : List(String) × List(String)

→ List(String) → List(String)
LearnSplit : String × List(String)

→ String → List(String)

Figure 3.2 – List of learning procedures.

3.5.1 Transform and Reduce

Synthesizing Transform and Reduce is fairly straightforward, as they are nothing
but special cases of transformers ST . Indeed, as shown in Fig. 3.3, the learning procedu-
res simply apply the corresponding converters, which specialize the transformers into
appropriate types.

In pseudo-code listings we assume that some type conversions happen without saying.
For example, in Fig. 3.3 pairs of strings are automatically promoted into triples of
type List(String) × Int × String: the first string of the pair becomes a singleton list and
populates the first component of the triple, the second string of the pair populates the
last component of the triple, and the unused counter in the middle of the triple defaults
to zero.

3.5.2 Partition

Pseudo-code for learning Partition is shown in Fig. 3.4. Recall that examples for
Partition are given as a list of lists, where each inner list contains strings that should
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LearnTransform =
λ examples: List (String ×String).

return ConvertTransform(S(examples))

ConvertTransform = λ t: ST , s: String. return t([ s],0)

LearnReduce =
λ examples: List (List (String )×String).

return ConvertReduce(S(examples))

ConvertReduce =
λ t: ST , list: List (String ). return t(list ,0)

Figure 3.3 – Pseudo-code for learning Transform and Reduce. For brevity, in
this and the subsequent figures we assume implicit type conversions where types do
not match.

be grouped together. For each inner list l we non-deterministically2 select a string el

such that: (a) it is a common substring of the strings in l, and (b) it is unique among
substrings selected for other inner lists. We form the input for S by conjoining strings
from the inner lists with their corresponding substrings el.

The transformer obtained from S in this case maps a string into a classifier. The final
Partition operation returned by ConvertPartition groups together strings from the input
list if they share the same classifier.

In order to illustrate the learning process, we return to the photo album scenario from
Sec. 3.2.3. In the scenario, the examples provided by the user correspond to the following
list of lists:

[[London01.jpg, London02.jpg], [Paris01.jpg, Paris02.jpg]]

Common substrings that satisfy conditions (a) and (b) are London and Paris. We use
them to construct the following input for S:

London01.jpg =⇒ London
London02.jpg =⇒ London

Paris01.jpg =⇒ Paris
Paris02.jpg =⇒ Paris

2In practice, the non-determinism is resolved by considering longest common substrings that satisfy
the uniqueness condition. Longest common substring, as well as other substring extraction problems
mentioned in this paper, can be efficiently solved using suffix arrays [Manber and Myers, 1993].
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LearnPartition =
λ lists : List (List (String )).

for each l ∈ lists
select substring el common to strings in l

assume ∀ l, l′ ∈ lists. l �= l′ =⇒ el �= el′

t = S( [([s],0,el) | l ∈ lists, s ∈ l] )
return ConvertPartition (t)

ConvertPartition =
λ t: ST , list: List (String ).

m = empty map String→List(String)
for each s ∈ list

classifier = t([s],0)
m[classifier ] . append(s)

return m.values

Figure 3.4 – Pseudo-code for learning Partition.

When these input-output examples are given to S, it constructs a string transformation
expression

T = SubStr(v1, 0, Pos(ε, NumTok, 1)) ,

which extracts the prefix of a string up to the first occurrence of a numerical token. This
is precisely the classifier that groups photos based on their location.

Note three points. First, while only giving examples for two groups, the synthesized
transformer is able to correctly classify additional groups, e.g.

T (NY01.jpg) = NY .

Second, the user usually has to give at least one group with two examples, else it will
put each string into its own group. She also usually has to give at least two different
groups. Third, the determining substring is not necessarily the longest substring of a
group. For instance, if the file names in the example were a1.jpg, a2.jpg, g1.jpg and
g2.jpg, the longest common substring for both groups would be .jpg, which does not
define a partition.

In the extreme case, it might happen that there are no common substrings that can
uniquely distinguish a group. If that is the case, partitioning fails. However, since the
user manipulates data in an interactive way, she can help the partitioning algorithm by
providing a new set of examples.
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LearnFilter =
λ yes, no: List (String ).

select substring ey common to strings in yes
t = S( [([s],0,ey) | s ∈ yes] )
assume ∀ e ∈ no. t([e],0) �= ey

return ConvertFilter (t,ey)

ConvertFilter =
λ (t, s): ST ×String, list: List(String ).

result = []
for each s’ ∈ list

if t([ s’],0) = s then result . append(s’)
return result

Figure 3.5 – Pseudo-code for learning Filter.

3.5.3 Filter

On the first thought, filtering is conceptually just a special case of partitioning, and as
such perhaps does not deserve to be singled out as a separate operation. However, there is
a practical difference between partitioning and filtering. Namely, we expect each part in
a partition to be homogeneous in a way that strings in a part share a common substring.
In contrast, strings that are to be filtered out could be completely heterogeneous, so we
cannot rely on them having common substrings. Therefore, the synthesis algorithm for
Filter is slightly different.

The algorithm, shown in Fig. 3.5, accepts a list of positive examples called yes, and a list
of negative examples called no. Similarly as before, we select a string ey such that: (a) it
is a common substring of the positive examples, and (b) the produced transformer does
not transform any of the negative examples into ey. The final Filter operation returned
by ConvertFilter only leaves strings from the input list if they are transformed into ey.

As with Partition, there might be no common substring of the positive examples that
yields a valid transformer. If that is the case, filtering fails. Again, the user might be
able to help the filtering algorithm by providing additional examples.

3.5.4 Split

Pseudo-code for synthesizing Split is shown in Fig. 3.6. Note that in this case we
use numerical indices both when constructing the input for S and when converting the
obtained transformer into the Split operation. When constructing the input for S, an
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LearnSplit =
λ s: String , list : List (String ).

t = S( [([s],k, s’) | (k, s’) ∈ indexed(list )] )
return ConvertSplit (t)

ConvertSplit =
λ t: ST , s: String.

result = []
for each k=1,2,...

r = t([s], k)
if r is empty then break
result . append(r)

return result

Figure 3.6 – Pseudo-code for learning Split.

example is formed by conjoining the input string s, a string s′ from the input list list,
and an index k of s′ in list. When converting the obtained transformer t, an index k is
passed to t in order to extract the k-th component of the string s.

To better illustrate the process, consider the following string denoted by s:

img1.jpg; img2.gif; reportA.doc; reportA.pdf; reportB.doc;
report4.pdf; adw.doc; conf.mp3

The user wants to split the string into a list of strings:

[img1.jpg, img2.gif, reportA.doc, reportA.pdf, reportB.doc,

report4.pdf, adw.doc, conf.mp3]

To do so, she gives examples of the first two elements in the list: img1.jpg, img2.gif. The
procedure LearnSplit constructs the following list to be passed to S:

[([s], 1, img1.jpg), ([s], 2, img2.gif)]

The obtained transformer t transforms the string according to the following expression
parametrized by the index k:

SubStr
(
v1, Pos(ε, NonSpaceTok, k), Pos(AlphTok, ε, 2k)

)
.

The expression reads as follows: extract a substring starting at the beginning of k-th
non-space token, and ending at the end of 2k-th alphabetic token. The non-space tokens
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as map = λ f: A → B, list: List(A).
result = []
for each a ∈ list

result . append(f(a))
return result

andThen = λ f: A → B, g: B → C.
return λ a: A. g(f(a))

Figure 3.7 – Pseudo-code for higher-order operations.

in this case are img1.jpg;, img2.gif;, etc., and the alphabetic tokens are img, jpg, img, gif,
etc. The function ConvertSplit returns a Split operation that iterates over k, starting
from k = 1, and evaluates t on s until the evaluation returns the empty string.

3.5.5 Higher-Order Operations

The pseudo-code for the higher-order operations as map and andThen is shown in Fig. 3.7.
These operations do not require learning. as map is used to lift any element-wise
transformation to lists of elements. It is written using the postfix notation. andThen,
or its alias |, is an infix composition operator used to compose transformations with
compatible signatures.

Note that if the learning algorithm for Transform or Reduce recognizes a counter in
provided examples, the counter is also incremented in the operations lifted by as map.
Consider the following scenario:

> NEW
> "file.txt" ==> "file496.txt"
> "test.pdf" ==> "test498.pdf"
> (TRANSFORM as map)(List("doc.txt",
..> "report.pdf", "leg.jpg"))

The last command returns the list

[doc496.txt, report498.pdf, leg500.jpg] .
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3.6 Evaluation

The main goal of our user study was to demonstrate that StriSynth, and programming-by-
example in general, is a useful alternative to traditional coding approaches. In particular,
we show that users prefer such a tool in various cases and to various degrees. While no
one paradigm will fit all users, this study establishes the clear need for tools such as
StriSynth when attempting to reach the broadest audience of potential programmers.

3.6.1 Study Design

The 50-minute study consisted of two parts: a tutorial and a questionnaire (available
in appendix C page 197). The goal of the tutorial section was familiarize participants
with both StriSynth and PowerShell. To this end, they completed the same three tasks
with both tools, which were similar to the motivating examples presented in section 3.2.
Once participants were well-acquainted with both PowerShell and StriSynth, they were
asked to extrapolate their experience to more general situations. They were given a
questionnaire consisting of 11 natural scripting tasks and asked users to choose between
PowerShell, StriSynth, or their other favorite scripting language.

For the tasks on the questionnaire, we used a benchmark set built from selections from
the online coding forums StackOverflow and Superuser [Stack Overflow, 2009, Stack
Overflow, 2011, Super User, 2011]. The benchmark was built in 2013 as a separate
investigative project to identify use cases for a PBE tool. All materials from the study,
including results, are available online at http://santolucito.github.io/StudyData.zip.

We recruited 15 participants that had some prior experience with scripting languages,
ranging from 2-7 on a seven point Likert scale, with an average of 4.86 and standard
deviation of 1.75. Our participants were undergraduate and graduate students in STEM
(Science, Technology, Engineering, and Math) fields, as well as professional academics
and programmers (some of them being a Microsoft Most Valuable Professional (MVP)).
Geographically, our participants came from the USA, Europe and Asia. Because of a
relatively low response rate and the fact that participants’ profession was not tied to data
collection for anonymization guarantees, we cannot provide exact numbers on profession
distribution.

We setup a remote machine with all necessary software installed and created user accounts
for all participants. Users were allowed access to any reference materials they needed,
including searching the Internet. This limited the variability in the testing environment
between users, while still providing an accurate real-life simulation.
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3.6.2 StriSynth Usability

The goal of this study is not to infer correlations between experience and preference to
StriSynth, nor is it to show that StriSynth is a replacement for a more traditional scripting
environment. Instead we remark that a wide range of users preferred to complete many
tasks with StriSynth, demonstrating a strong interest in this research direction among
real programmers. We present a few of the tasks from the study where the participants
indicated a clear preference for our tool:

• A task similar to the one given in Sec. 3.2: the task was to generate a link to all
documents in the folder.

• A task to generate a list of the file names in a folder. The list should contain the
file name without the extension. For example, a directory with foo.txt, bar.pdf,
and foo.bar.doc will yield [foo,bar,foo.bar].

• Users were asked to reorder commands, according to some rules. For instance, a
command ./c.exe in.txt out.txt; should be transformed into the command
./c.exe out.txt in.txt;

Figure 3.8 shows how many times users would choose either StriSynth or PowerShell or
some other scripting language. The users’ responses have been semi-sorted by their choices
in order to more clearly communicate the spectrum of preferences among participants. All
users except one selected StriSynth for some set of tasks. The middle section illustrates
the personal nature of programming by example.

Table 3.1 details the number of users that selected each tool over all the tasks in the
study. While StriSynth seems overwhelmingly well suited for tasks like “Linking to
items”, where one can easily convey intentions through an example, it is more interesting
to see that there are always some users that found StriSynth useful. For every task we
presented, there existed some users who preferred to use StriSynth.

3.6.3 Feedback

The survey also collected qualitative data from the user in the form of open-ended
questions. Many users enjoyed the new paradigm because "giving examples is intuitive",
and "you just write what you want it do." The live coding aspect and immediate feedback
was helpful to some, who said it "is very nice - I like the way it tries to explain what
we write." Some users had trouble getting started with the completely new paradigm.
One user said "I found difficult the first 30 minutes trying to figure out how everything
worked." This steep learning curve had a high payoff though, as one user stated "once I
had understood the basics, I enjoyed how quickly the language was learning."
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Figure 3.8 – Tool of choice for all users.

One question was: "Would any of your answers [about tool choice] changed if StriSynth
were integrated into an existing scripting language." Ten out of fifteen of our participants
made an affirming statement in response. Some of the answers included "...the result
would be flawless", "...would make it much more attractive", and "if you made it more
user friendly it would be awesome." This is encouraging as it provides a clear direction
for future work that will have an impact on usability.

3.6.4 Performance

While our previous work has shown that earlier version of StriSynth can quickly and
accurately synthesize functions[Gulwani et al., 2015b], in addition to usability, we also
tested the StriSynth’s performance. We expanded the initial timing result with more
benchmarks. Additionally, rather than giving to the system a full example set, we
record the interaction time between each example given. Table 3.2 presents StriSynth’s
performance on the tasks presented in the user study. StriSynth was able to synthesize
the correct algorithm based on only one or two examples for nearly all tasks. While we
wish to continue to make StriSynth faster, we seem to have reached the critical threshold
of being able to synthesis a script as quickly as a user can write it by hand.
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ID Task PowerShell StriSynth Other
11 Merging a book 4 8 3
10 Printing pdfs 2 8 5
9 Art Project 0 7 8
8 Move 4 8 3
7 Initials 2 8 5
6 Extract Filenames 2 10 3
5 Report Building 1 6 8
4 Reorder commands 1 9 4
3 Health Data 1 6 8
2 Linking to items 1 12 2
1 Automated Emails 2 7 6

Table 3.1 – Number of users choosing a particular tool (PowerShell, StriSynth, or some
other language) for the given scripting tasks.

ID Example 1st 2nd 3rd
11 Merging a book 40.8 - -
10 Printing pdfs 9.9 - -
9 Art Project 4.4 - -
8 Move 0.170 0.130 -
7 Initials 0.330 1.7 -
6 Extract Filenames 0.013 0.015 0.180
5 Report Building 7.5 22.7 -
4 Reorder commands 16.2 47.1 -
3 Health Data 15.9 17.0 -
2 Linking to items 4.4 - -
1 Automated Emails 15.1 - -

Table 3.2 – Amount of time (in seconds) needed at each step for the given scripting tasks.
A blank box indicates the correct script had been synthesized and no further examples
were needed.
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3.7 Limitations

As shown in Sec. 3.3 StriSynth relies on the Flash Fill algorithm. Although we have
extended and re-implemented it as an open-source tool in Scala, there are still some
potential limitations. Flash Fill only works on strings as a base dataype. We have
extended it with some support for integers with the counter construct here, but more
general applications will require integrating full integer theory support. Additionally, we
may need to explore structural changes to the Flash Fill algorithm to reduce synthesis
times.

Although the user study has yielded promising results, it has three potential shortcomings
- a limited sample size, convenience selection, and the need-to-please phenomena.

Our sample size of 15 is not large enough to draw statistically significant claims for this
data, however it has provided a convincing support for the arguments above.

Convenience selection can be an issue if the set of users selected systematically differs
from the target population. Since our participants answered an open call and came from
universities and companies across the world, there is no reason to believe this has affected
our results.

The need-to-please phenomena drives participants to slightly favor a researcher’s work,
even if the participant has no association to the researcher. There is a possibility this
has affected our results - and although the effect would be small, it should be eliminated
in future user studies. We could present user’s with a choice between StriSynth, and
SuperShell, which would be a thin wrapper around PowerShell. We would claim that
both are our tools. In this way, users would be asked about a preference between two
tools of the researchers creation, thereby eliminating the need-to-please.

3.8 Related Work

Modern methods of learning by example are based on program intersection [Menon et al.,
2013] until the user finds the program to be correct. Gulwani et al. [Gulwani et al., 2012]
prove that this integrates well into spreadsheet manipulation, whether for strings [Gulwani,
2013, Gulwani, 2012a, Gulwani, 2011], number, table transformation [Gulwani, 2012b] or
look-up [Singh and Gulwani, 2012a]. Topes [Scaffidi et al., 2008] system lets users create
abstractions (called topes) for different data present in a spreadsheet. The user uses a
GUI to define constraints on the data, and to generate a context-free grammar that is
used to validate and reformat the data.

The differences between the mentioned approaches are in the particular domain where the
synthesis is happening and the particular search technique that is used for synthesis. In
case of Flash Fill [Gulwani, 2011, Gulwani, 2013], the domain is the string transformations
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described in Section 3.4, and the search technique is based on version-space algebra [Lau
et al., 2003b]. Interaction and evaluation developments aside, our work extends upon
Flash Fill by supporting more operations (Partition, Split, Reduce). While synthesizing
these operations can be reduced the to the basic Flash Fill learning problem, novel
techniques were needed to support counters.

The Myth[Osera and Zdancewic, 2015] and Λ2[Feser et al., 2015] systems support PBE
for inductively defined data-types. We may be able to leverage this approach to support
more complex script synthesis for the object-oriented paradigm of PowerShell. These
systems however, require the user to specify a full example set, then compile the examples
to code. The user must manually inspect the synthesized code to verify that it is complete
to the user’s intention. Although these systems target a different domain than StriSynth,
they could still benefit greatly from interactive, live programming approach.

Instead of providing specification in terms of examples or demonstrations, specification
can be given in more traditional ways. InSynth [Gvero et al., 2011, Gvero et al., 2013],
CodeHint [Galenson et al., 2014] and more recently the C# code snippets on demand [Wei
et al., 2014] aim at providing code snippets based on the context such as the inferred type
or the surrounding comments. Leon [Kuncak et al., 2012] and Comfusy [Kuncak et al.,
2010b, Kuncak et al., 2010a] synthesize code snippets based on complete specifications
expressed in the same language that is used for programming. Sketch [Solar-Lezama,
2008] takes as input an incomplete program with holes, which it tries to fill with values
that ultimately make the program meet the specification. In contrast to these code-
generating solutions, StriSynth does not take a context or a complete specification into
account—it only needs input-output examples. Thus, it is more suitable for isolating
and solving local problems.

3.9 Conclusions

We have presented a tool for the synthesis of functions in a live coding environment that
supports immediate feedback to the user. New algorithms presented here enable our tool
to learn complex functions and features, such as partitions and counters. StriSynth also
supports the composition of synthesized functions by using high-order operators such as
andThen and asMap. Together, these developments empower users to create complex
scripts by providing simple examples while they receive constructive feedback from the
system.

Our user study suggests that this is a promising path for programming-by-example,
sparking the interest of novice and expert users alike. An understanding of the user’s
needs is critical for the sufficient advancement of high-level languages. The ultimate goal
is, of course, to give the user language control that is indistinguishable from magic; and
as one user said of his experience with StriSynth, "I liked the magic."
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Page 48 until this page 73 contained the content of the paper “Composite Scripting Using
Examples“. We will now add our own comments.

74



B. Epilogue to StriSynth

B. Epilogue to StriSynth

B.1 Usages of StriSynth

This automated approach to renaming files is so impressive that I use it each time I want
to describe the power of programming-by-example. Many of StriSynth’s novel features
would select it as a candidate for integration in future file systems, although much more
work is needed.

Recent updates in StriSynth enabled users to write programs by example in a syntax
more friendly than before, such as:
("document.doc" ==> "<a href=’document.doc’>document</a>")("report.pdf")
This is a valid program that, after execution, returns the following string:
"<a href=’report.pdf’>report</a>"
Such an easy-to-read but valid function definition can be found nowhere, in any basic
programming language.

Recently, I added the automatic insertion of the operator as map when it is obvious that
an operation should be applied on a collection. This means that, for example, users can
easily produce a PowerShell program scriptgen.ps1 that, when we execute it, produces
a script to rename JavaScript files (.js) to TypeScript files (.ts). A way to create this
program is to execute the following code in the StriSynth command line:
{ OK ==> ("main.js", "aux.js"); NOTOK ==> "main.doc"} andThen
"main.js" ==> "mv main.js main.ts" in PowerShell to "scriptgen.ps1"
Executing the program scriptgen.ps1 in a folder containing index.js, main.html and proto-
col.js displays the following script ready-to-execute:
mv index.js index.ts
mv protocol.js protocol.ts

I used StriSynth once for myself, and once for my own father who had to rename many
files at once and asked me to do it for him. It worked well. As I was working on real
files, I still felt slightly insecure about renaming them automatically, so I first created a
copy of them and then I applied my tool. This experience illustrates well the problem of
trust. It was not as if I saw that the computer always found the correct program before:
I did see the computer fail many times to find the correct program, so it was possible, if
not probable.

How could we prevent this situation? To solve the ambiguity, my first idea was the
program feedback, i.e. to make an effort to paraphrase programs in order to display them,
so that we could decide if the programs were right or not. However, when the program
became complicated, especially with advanced regular expressions, it was pointless to
show the program. I thought about the output feedback as well. When I wrote the
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Windows extension to display the transformation in a balloon, before executing it, the
system would display a few examples in the balloon 3. But the space there was limited.

As a result, the interaction was missing some guidance to find the right program. I would
have loved StriSynth to guide me by telling me if there were ambiguities, but I did not
know at the time how to program such a guide. At the time of writing this thesis, after
the work of the next chapter, the solution is much clearer; we need only to run different
programs obtained by the computer, not just the first arbitrarily ranked one. This way,
we can compare their results and ask further questions. The question about how to
choose these programs, and what input on which to compare them, is still not evident at
all.

In the next chapter, we will investigate another programming-by-example problem: It
consists in extracting data from a file. Due to the experience I gained while writing
this chapter, I implemented this clarification questioning. My co-authors later called it
“conversational clarification”. It seemed that interaction is truly about communicating
bidirectionally with the computer, not just being able to give iteratively order by order,
as we assumed in this chapter.

B.2 Discussion

We now answer the questions we asked in the introduction (see page 9) with respect to
the work of this chapter.

Question StriSynth
Is it faster/easier to conduct tasks using
programming-by-example?

Yes/No

Do users need to see the generated program? Yes
Do users need to take on the generated program? No
Is the paraphrased version of the program useful? Yes
Is it more reliable when the program is shown? Yes
Is it more reliable when the computer asks questions? N/A

The comparative summary for all the papers is available on page 163.

It would be definitely faster to use StriSynth for certain tasks such as renaming files
using a counter than regular programming languages. However, for tasks such as complex
partitioning, filtering and flattening, the learning curve prevents its adoption. Most users
want to see the program, as many of our benchmarks came from forums of programmers
who asked for code snippets. Displaying the program in a paraphrased version makes
it shorter and more meaningful, although for complex partitioning the paraphrasing is
not that clear. Using the comments, we found some evidence that showing the program

3youtu.be/rbhAv3uBFqw
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helps users to trust them. Programmers usually do not need to take on the generated
program as they are usually run once. They might, however, want to store it for later
reuse. We did not experiment with questioning at this point.
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4 Displaying Programs and Asking
Questions

“Ne comprennent que ceux “Only they understand,
qui ont envie de comprendre.” those who want to understand.”

Bernard Werber - L’Empire des Anges

A. Prologue

The interface was looking awesome, but as soon as I tried to use it, it broke down. This
is the first experience I had when testing the original interface of Flash Extract [Le
and Gulwani, 2014], a very recent programming-by-example technology inspired from
Flash Fill. Flash Extract enables the user to select and color some part of a text, and to
automatically find a program that extracts the parts and generalizes to extract others.

The idea still looked great to me. I started to work on it, during a one-year internship
at Microsoft Research. I wanted to apply what I thought were potential successes from
the two previous chapters. I wanted to show the inferred program, as I did for Pong
Designer and later for StriSynth.

Hence, the first step was to design a homemade converter of the programs to HTML and
a way to view them side by side with the text on which to perform extraction. Soon
enough, I realized that the program structure closely resembled the structure of the set of
all possible programs found by the machine (Version Space Algebra [Lau et al., 2003a]),

My second major step was to make “alternative programs” be available at every program
node, in a contextual select box, so that the user could choose the alternative. Then, I
realized that there were too many program nodes to click on. Each time, I needed to
find quickly which one deserved my attention. For this, I implemented a first program
comparer. It would take the original program and the alternative program, run both of
them and compare the output. If the output differed, I would add a sign close to the
program node, indicating that there were not any obvious alternatives. Then, I added a
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feature to temporarily highlight the output of an alternative that a user hovers with the
mouse, so that I could quickly see the difference between them.

I did not think about clarification questioning at the beginning, this came later, organically.
When I observed that my main workflow was to observe the program, click on the nodes
with a sign, hover on the alternatives and add a new example based on these results, I
decided to create a feature for that.

My third major step was therefore to create a program that identifies differences between
the outputs of programs it chooses by itself, and present these outputs in a view to me
so that I could choose which one was correct. This was the icing on the cake. No more
program, and a clear question, understandable by anyone. This made the success of the
user study.

Before writing this paper, we won first prize for our presentation of FlashProg at an
internal event of Microsoft Research. Later, one of the most influential people from
Microsoft, having heard of our success, asked for a private demo. He gave the comment
when looking at this interface (and at other similar technologies presented by my manager
that day): “We need more technologies like that”.

User Interaction Models for Disambiguation in Program-
ming by Example

The following pages 80-105 are the content of the peer-reviewed paper named “User
Interaction Models for Disambiguation in Programming by Example”
(DOI: 10.1145/2807442.2807459) appearing in the User Interface Software Technologies
conference (UIST) in 2015, published by ACM. We reproduce this article in this thesis
with the permission of all the authors, who are myself, Gustavo Soares, Maxim Grechkin,
Vu Le, Mark Marron, Oleksandr Polozov, Rishabh Singh, Benjamin Zorn and Sumit
Gulwani.

Contributions: Drawing inspiration from Gustavo’s previous work, I created the Flash-
Prog interface from scratch, with custom paintbrush highlighting algorithms, highlight
preview, label organization preview, and a table of results. I also invented and maintained
the language for CSS-inspired paraphrasing into trees and their instances. I designed and
implemented the program navigation view. I programmed and tweaked the back-end and
front-end of the clarification engine. I prepared the interface for recording the user study,
and I wrote the tutorial.

Programming by Examples (PBE) has the potential to revolutionize end-user program-
ming by enabling end users, most of whom are non-programmers, to create small scripts
for automating repetitive tasks. However, examples, though often easy to provide, are
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an ambiguous specification of the user’s intent. Because of this, a key impedance in
adoption of PBE systems is the lack of user confidence in the correctness of the program
that was synthesized by the system. We present two novel user interaction models that
communicate actionable information to the user to help resolve ambiguity in the examples.
One of these models enables the user to effectively navigate between the huge set of
programs that are consistent with the examples provided by the user. The other model
uses active learning to ask directed example-based questions to the user on the test input
data over which the user intends to run the synthesized program. Our user studies show
that each of these models significantly reduces the number of errors in the performed
task without any difference in completion time. Moreover, both models are perceived as
useful, and the proactive active-learning based model has a slightly higher preference
regarding the users’ confidence in the result.

4.1 Introduction

Today, billions of users have access to computational devices. However, 99% of these end
users do not have programming expertise and they often struggle with repetitive tasks in
various domains that could otherwise be automated using small scripts. Programming-
by-examples (PBE) [Lieberman, 2001, Cypher and Halbert, 1993] has the potential to
revolutionize this landscape since users can often specify their intent using examples as has
been observed on various help forums [Gulwani et al., 2012]. PBE involves techniques that
generalize example behaviors on concrete inputs provided by the user into programs that
can operate on new unseen inputs. PBE has traditionally been applied to synthesizing
small programs in various domain-specific languages (DSLs) such as string and table
transformations [Gulwani et al., 2012] and data extraction [Le and Gulwani, 2014]. PBE
has been pursued in various communities including programming languages [Leung et al.,
2015, Feser et al., 2015, Barowy et al., 2015], inductive programming [Gulwani et al.,
2015a], machine learning [Menon et al., 2013], artificial intelligence [Raza et al., 2014],
and databases [Shen et al., 2014]. Work in these communities has focused on addressing
one of the key challenges in PBE, that of efficiently searching the huge state space
(potentially infinite) of programs defined by the underlying DSL for a program that is
consistent with the user-provided examples.

However, not much attention has been given to dealing with another key technical
challenge in PBE, that of dealing with ambiguities. Examples are an ambiguous form of
specification in the sense that there can be different programs that are consistent with
the provided examples, but these programs differ in their behavior on some other inputs.
The underlying PBE system might end up synthesizing an unintended program that is
consistent with the examples provided by the user but does not generate the intended
results on some other inputs that the user cares about. In 2009 Tessa Lau presented
a critical discussion of PBE systems noting that adoption of PBE systems is not yet
widespread, and proposing that this is mainly due to lack of usability and confidence
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in such systems [Lau, 2009]. complementary user interaction models for PBE that help
increase user confidence in the underlying system.

Motivational Real-world PBE Case Studies Recently, a first mass-market PBE
product was released in the form of the FlashFill feature in Microsoft Excel 2013. It
allows end users to automate sophisticated string transformations in real time from one
or more user-provided examples [Gulwani, 2011]. While the PBE engine behind FlashFill
received many positive reviews from popular media (bit.ly/flashfill) the user interface for
FlashFill leaves a lot to be desired. John Walkenbach, an author renowned for his Excel
textbooks, labeled FlashFill as a “controversial” feature. He wrote “It’s a great concept,
but it can also lead to lots of bad data. (...) Be very careful. (...) [M]ost of the extracted
data will be fine. But there might be exceptions that you don’t notice unless you examine
the results very carefully.” (spreadsheetpage.com/index.php/blog/C10)

Another mass-market PBE product, recently released as part of the Windows 10 preview,
is the ConvertFrom-String feature in PowerShell (bit.ly/convertfrom-string). It allows
end users to extract structured data out of semi-structured text/log files from one or
more user-provided examples. It is based on the FlashExtract PBE engine that can
synthesize sophisticated data extraction scripts in real time [Le and Gulwani, 2014].
It was well-received by various Microsoft MVPs (Most Valued Professionals), who
described it as “New kid on the block”, “This is super cool !!”, “must admit that this
cmdlet is to me one of the best improvement that came with WMF5.0 and PowerShell v5”.
(bit.ly/flashextract) However, the MVPs also complained that they had no visibility into
the process for debugging purposes. This prompted Microsoft to release an improved
version of FlashExtract that provided a flag to display the top-ranked program synthesized
by FlashExtract. An MVP still complained: “If you can understand this, you’re a better
person than I am.”

User Interaction Models We propose two novel user interaction models that aim
to alleviate above-mentioned transparency concerns by exposing more information to
the user in a form that can be easily understood and acted upon. These models help
resolve ambiguity in the example-based specification, thereby increasing user’s trust in
the results produced by the PBE engine.

Program Navigation: A typical PBE engine operates by synthesizing multiple
programs that are consistent with the examples provided by the user, and then ranking
the programs in order of their likelihood of being the intended program [Gulwani et al.,
2012]. A typical PBE interface would pick the top-ranked program and use it to automate
the user’s task; possibly this top-ranked program can even be shown to the user. We
propose a novel user interaction model, called Program Navigation, that allows the user
to navigate between all programs synthesized by the underlying PBE engine (as opposed
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to displaying only the top-ranked program) and to pick one that is intended. The number
of such programs can usually be huge (several powers of 10 such as 1030 [Gulwani et al.,
2012]). However, these programs usually share common sub-expressions and are described
succinctly using version space algebra based data structures [Polozov and Gulwani, 2015].
We leverage this sharing to create a navigational interface that allows the user to select
from different ranked choices for various parts of the top-ranked program. Furthermore,
these programs are paraphrased in English for easy readability.

Conversational Clarification: We propose a complementary novel user interaction
model based on active learning, called Conversational Clarification, wherein the system
asks questions to the user to resolve ambiguities in the user’s specification with respect
to the available test data. These questions are generated after the PBE engine has
synthesized multiple programs that are consistent with the user-provided examples. The
system executes these multiple programs on the test data to identify any discrepancies
in the execution and uses that as the basis for asking questions to the user. The user
responses are used to refine the initial example-based specification and the process of
program synthesis is repeated.

FlashProg Framework for Data Manipulation We have implemented the above
two user interaction models in a generic manner in a UI framework called FlashProg.
The FlashProg framework provides UI support for several PBE engines related to data
manipulation, namely FlashFill [Gulwani, 2011], FlashRelate [Barowy et al., 2015], Flas-
hExtract [Le and Gulwani, 2014], and FlashWeb. Even though PBE has been applied
to various application domains, we focus our attention in this paper on data manipu-
lation, which we believe is one of the most impactful applications for PBE. Data is
locked up in semi-structured formats (such as spreadsheets, text/log files, webpages,
and PDF documents), which offer great flexibility in storing hierarchical data by combi-
ning presentation/formatting with the underlying data model, but make it extremely
hard to manipulate that data. PBE holds the promise of enabling a delightful data
wrangling experience because many tedious data manipulation tasks such as extraction,
transformation, and formatting can be easily described using examples.

The FlashProg UI builds over the STEPS approach [Yessenov et al., 2013] to PBE, wherein
the user breaks down a sophisticated task into a sequence of simpler steps, and each step
is automated using PBE. We conducted a user study, where we asked participants to
extract structured data from semi-structured text files using FlashProg. We observe that
participants perform more correct extraction when they make use of the new interaction
models. To our surprise, participants preferred Conversational Clarification over Program
Navigation slightly more even though past case studies suggested that users wanted to
look at the synthesized programs. We believe this is because Conversational Clarification
is a proactive interface that asks clarifying questions, whereas Program Navigation is a
reactive interface that expects an explicit correction of a mistake. This paper makes the
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following contributions:

• We propose a user interaction model for PBE called Program Navigation. It lets
the users browse the large space of programs that satisfy the user specification by
selecting ranked alternatives for different program subexpressions.

• We propose another complementary user interaction model for PBE called Con-
versational Clarification. It involves asking directed example-based questions to
the user, whose responses are then automatically fed back into the example-based
specification model.

• We present a generic framework called FlashProg that implements Program Navi-
gation and Conversational Clarification on top of any PBE engine. We have used
FlashProg to develop user interfaces for four different PBE engines.

• We present results of a user study that evaluated our two user interaction models.
We discover that both models significantly reduce the number of errors without
any difference in completion time. Both models are perceived as useful, but
Conversational Clarification has a slightly higher preference w.r.t. the users’
confidence in the result.

4.2 Related work

FlashProg user interface is inspired by that of the STEPS system [Yessenov et al., 2013]
that uses hierarchical structure coloring for text extraction and manipulation. STEPS
showed the usefulness of PBE systems for text processing: STEPS users completed
more tasks and were faster than conventional programmers. For disambiguation and
converging to the desired task, STEPS supports two interaction mechanisms: (i) provide
additional mock input-output examples that capture specific intents and corner cases, and
(ii) navigate through a flattened list of a small set of programs (paraphrased in English).
Since the DSLs supported by FlashProg are more expressive, there is often a huge number
of programs that are consistent with few examples, which makes the interaction model
of navigating the flattened list of programs unusable. Providing mock input-output
examples puts additional burden on users to first identify why the system is learning an
incorrect program and then construct specific examples to avoid learning them. FlashProg
provides two new interaction models to alleviate this problem: 1) Program Navigation to
browse the set of learned programs (paraphrased in English) in a hierarchical manner,
and 2) Conversational Clarification to ask users to select the desired output on inputs
for which the system has learned multiple interpretations.

Wrangler [Kandel et al., 2011] is an interactive system for data transformations on
tabular data. It automatically suggests a ranked list of paraphrased transformations
based on the context of user interactions. A user can then navigate the space of suggested
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transformations in three ways: (i) by providing additional examples, (ii) by selecting an
operator from the transform menu, and (iii) by editing the parameters of the suggested
transforms. Wrangler’s language is aimed at data cleaning and transformation, but not
for extracting data from semi-structured sources. Moreover, the new interaction models
of Program Navigation and Conversational Clarification can augment and complement
Wrangler’s interaction model.

LAPIS [Miller and Myers, 2002] is a text-editor that incorporates the concept of lightweight
structure to recognize the text structure using an extensible library of patterns and parsers.
Given positive and negative examples, LAPIS learns a pattern in a language called text
constraints (TC), and highlights other matches in the file. This enables users to perform
multiple selections and simultaneous editing to apply the same set of edits to a group
of elements. LAPIS does not has good support for nested and overlapping regions,
which are essential for data extraction tasks. LAPIS also introduced the idea of outlier
detection for finding atypical pattern matches to focus user’s attention for potential
incorrect generalizations [Miller and Myers, 2001], which is related to the Conversational
Clarification interaction model. The main difference between the two is the way in
which the match discrepancies are computed. LAPIS models pattern matches as a
list of binary-valued features and computes outlier matches based on their weighted
Euclidean distance from the feature vector of the median match. FlashProg uses program
semantics to identify ambiguous examples, where the highly ranked learnt programs
generate different outputs on the examples.

Amershi et al. [Amershi et al., 2009, Amershi et al., 2011] have explored two strategies for
soliciting effective training examples in interactive ML systems. The first strategy of global
overview selects a subset of training examples that maximizes the mutual information
with the high-dimensional vector space of the examples, and is most representative of
the training set. The second strategy of projected overview projects examples onto a
set of principal dimensions and then selects examples that illustrate variation amongst
those dimensions. Our Conversational Clarification model presents a complementary
technique for selecting training examples to learn a richer class of programs (as opposed
to classifiers) based on the semantics of the learnt programs.

Several PBE-based text manipulation systems exist. FlashFill [Gulwani, 2011] learns
syntactic string transformations (involving concatenation of regex-based substrings)
from few examples. SmartEdit [Lau et al., 2001] automates text processing tasks from
demonstrations by interactively navigating the space of learned programs (represented
using a version-space algebra) using a mixed-initiative interface. Visual AWK [Landauer
and Hirakawa, 1995] provides a graphical environment to drag and drop relevant text
selections to learn patterns based on trial and error demonstrations. It allows users to
separately learn conditionals and edit the learned programs graphically. Peridot [Myers
and Buxton, 1986] allows users to interactively create graphical user interfaces by
demonstrations. The TELS [Witten and Mo, 1993] system records a trace, generalizes
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it, and then executes and extends the generated program based on user feedback.
Marquise [Myers et al., 1993] lets users provide example actions to create user interfaces
and uses a feedback window to show the inferred operation using english sentences
with buttons that can be pressed to pop up the list of alternative options. Many of
these systems do not expose the learned programs to the user and depend on manual
inspection of generated outputs for validation. However, some systems such as SmartEdit,
Peridot, Marquise, and Visual AWK do expose the learned programs, but the class of
transformations supported by them are limited and are not expressive enough for learning
hierarchical extraction of nested records.

FlashProg is based on automated program synthesis. Programs are synthesized in
DSLs that are expressive enough to encode most common tasks, but at the same time
concise enough for efficient learning. The synthesis algorithm uses a divide-and-conquer
based strategy to decompose the original learning task to smaller sub-tasks [Polozov
and Gulwani, 2015]. This approach has been used to develop several PBE systems
in the domains of syntactic string transformations [Gulwani, 2011], semantic string
transformations [Gulwani et al., 2012], data extraction from semi-structured sources [Le
and Gulwani, 2014], and transformation of semi-structured tables [Barowy et al., 2015].
The FlashProg framework provides a general user interface for all these PBE systems,
where users can use Program Navigation to navigate the space of learned programs in a
hierarchical manner, and use Conversational Clarification to provide additional examples.

Jha et.al. [Jha et al., 2010] proposed distinguishing inputs for disambiguation in pro-
gram synthesis - their synthesizer generates two consistent programs P1 and P2, and
a distinguishing input on which P1 and P2 yield different results. The Conversational
Clarification interaction model uses a similar idea to ask questions but it differs in several
ways: (i) it selects distinguishing inputs from the user data instead of generating random
inputs, (ii) it converges faster since it can execute all learned programs (instead of two)
to ask for more important clarifications, and (iii) it works in real-time and is interactive
unlike the constraint-solver based technique used in [Jha et al., 2010].

Topes [Scaffidi et al., 2008] allows developers to implement abstractions for interactively
validating and transforming data in many different formats. It can recognize valid inputs
in multiple different formats on a non-binary scale as opposed to binary-valued regular
expressions. It provides transformation functions to convert inputs in different formats
to a consistent format. The DSLs for FlashProg build on top of regular expressions and
are quite different from the validation and transformation functions supported by Topes.
Conversational Clarification uses the set of learnt programs to find ambiguous inputs
unlike the non-binary valued matches used by Topes for finding questionable inputs.

Gamut [McDaniel and Myers, 1999] is a PBD system that enables non-programmers
to create interactive games and educational software using demonstrations. Gamut’s
interaction techniques allows users to specify relationships between developer-generated
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objects such as guide objects, cards, and decks of cards, and then use nudges and hints
to modify or provide new behaviors. The "Do Something" interaction model lets users
specify new behaviors on an object, whereas the "Stop That" interaction model lets users
specify undesired behaviors. Similar to the "Stop That" model, FlashProg also lets users
specify negative examples by clicking the labelled output in the input pane or marking
the entry in the output table as incorrect.

Import.Io and Kimono are recent commercial tools that aim at extracting data from semi-
structured sources. Import.Io performs extraction automatically without any human
intervention. Although this works well for some simple semi-structured sources, it fails
on relatively complex data sources. Adding support for handling newer semi-structured
sources would require one to add new complex rules and heuristics. Kimono, on the other
hand, performs data extraction by examples similar to FlashProg and provides a similar
user interface. The range of logics for extracting sub-string data from html elements
supported by Kimono, however, is not as rich compared to FlashProg. The learned
regular expressions exposed by Kimono are too low-level to be easily understable by
programmers, whereas FlashProg paraphrases the set of learned programs in a hierarchical
manner. Moreover, Kimono does not support any conversational interaction model for
disambiguating ambiguous cases.
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Figure 4.1 – FlashProg UI with PBE Interaction View in the “Output” mode, before and
after the learning process. 1 – Top Toolbar, 2 – Input Text View, 3 – PBE Interaction
View.
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4.3 FlashProg User Interface

FlashProg is a web application for PBE-based data extraction from textual documents,
spreadsheets, and Web pages. In this overview, we focus on the text domain, but the UI
behaves similarly for all other domains as well. Figure 4.1 shows a FlashProg window
after providing several examples (on the left), and after invoking the learning process
(on the right). The FlashProg window consists of 3 sections: Top Toolbar (1), Input Text
View (2), and PBE Interaction View (3).

The Top Toolbar contains: (a) an input button to open and upload files, (b) a button
that resets FlashProg to an initial state, (c) undo/redo buttons as expected, and (d) a
“Results” button to download the output as a CSV file for further processing.

The Input Text View is the main area. It gives users the ability to provide examples by
highlighting desired sections of the document, producing a set of nested colored blocks.
Additionally, users may omit the structure boundary and only provide examples for the
fields as shown in Figure 4.1. After an automated learning phase, the output of the
highest ranked program is displayed in the Output pane. Each new row in the output is
also matched to the corresponding region of the original document that is highlighted
with dimmer colors. The scroll bars are colored with a bird’s-eye view of highlighting, as
a minimap feature (as SublimeText.com). We have found this view helpful for looking for
discrepancies in the produced highlighting. The user can also provide negative examples
by clicking on previously marked regions to communicate to the PBE system that the
region should not be selected as part of the output.

The PBE Interaction View is a tabbed pane giving users an opportunity to interact with
the PBE system in three different ways: (i) exploring the produced output, (ii) exploring
the learned program set paraphrased into English inside program viewer (Program
Navigation), and (iii) engaging in an active learning session through the “Disambiguation”
feature (Conversational Clarification).1

The Output pane displays the current state of data extraction result either as a relational
table or as a tree. To facilitate exploration of the data, the Input Text View is scrolled
to the source position of each cell when the user hovers over it. The user can also mark
incorrect table rows as negative examples.

The Program viewer pane (Figure 4.2) lets users explore the learned programs. We
concisely describe regexes that are used to match strings in the input text. For instance,

1 Note that throughout the paper, we refer to the “disambiguation” as an overall problem of selecting
the program that realizes user’s intent in PBE. However, in our UI we use the word “Disambiguation”
as a header of a pane with one iteration of the Conversational Clarification process. We found that it
describes Conversational Clarification most lucidly to the users. Hereinafter in the paper, we refer to the
“Disambiguation pane” in our UI if the context does not facilitate any confusion with the “disambiguation
problem”.
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Figure 4.2 – Program Viewer tab of FlashProg. It shows the extraction programs that
were learned in the session in Figure 4.1. The programs are paraphrased in English and
indented.

“Words/dots/hyphens.WhiteSpace” (the circle is an infix concatenation) represents
[-.\pLu\pLl]+o\pZs+ (viewable in code mode). To facilitate understanding of these
regexes, when the user hovers over part of a regex, our UI highlights matches of that part
in the text. In Figure 4.2, Name-Struct refers to the region between two consecutive
names; City-Struct refers to the region between City and the end of the enclosing
Name-Struct region. Learned programs reference these regions to extract data. For
instance, Phone is learnt relatively to enclosing City-struct region: “second line”
refers to the line in the City region. In addition, clicking on the triangular marker opens
a list of alternative suggestions for each subexpression. We show number of highlights
that will be added (or changed/removed) by the alternative program as a +number (or
a -number). If the program is incorrect, the user can replace some expressions with
alternatives from the suggested list (Figure 4.6).

The Disambiguation pane (Figure 4.7) presents the Conversational Clarification inte-
raction model. The PBE engine often learns multiple programs that are consistent with
the examples but produce different outputs on the rest of the document. In such cases,
this difference is highlighted and user is presented with an option to choose between
the two behaviors. Choosing one of the options is always equivalent to providing one
more example (either positive or negative), thereby invoking the learning again on the
extended specification.

4.3.1 Illustrative Scenario

To illustrate the different interaction models and features of FlashProg, we consider the
task of extracting the set of individual authors from the Bibliography section of a paper
“A Formally-Verified C Static Analyzer” [Jourdan et al., 2015] (Figure 4.3). Our model
user Alice wants to extract this data to figure out who is the most cited author in papers
presented at POPL 2015.
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Figure 4.3 – Initial input to FlashProg in our illustrative scenario: extraction of the author
list from the PDF bibliography of “A Formally-Verified C Static Analyzer” [Jourdan
et al., 2015].

Figure 4.4 – Bird’s eye view showing discrepancy in extraction.

First, Alice provides an example of an outer region containing each publication record.
After providing two examples, a program is learned and other publications are highlighted,
but the user notices that there is an unexpected gap between two extracted regions
using the bird’s-eye view (Figure 4.4). Giving another example to also include the
text “Springer, 2014.” fixes the problem and a correct program is learned for the
publication record regions.

Next, Alice wants to extract the list of authors and provides an example inside the first
record. After learning, she observes that the program learned is behaving incorrectly
(Figure 4.5). At this point, Alice can provide more examples as before to fix the problem,
but it is easier to switch to the Program Viewer tab, and select a correct alternative for the
wrong subexpression (Figure 4.6). The top-ranked program for extracting the Author list
from a Record is “extract the substring starting at first occurrence of end
of whitespace and ending at the first occurrence of end of Camel Case in
the second line”. The sub-program for the starting position seems correct but the
sub-program for the ending position seems too specific for the given example, and
Alice can ask for other alternative programs that the system has learned for the end
position. Hovering over each alternative previews the extraction results in the input
pane. In this case, Alice hovers over the first alternative, which generates the correct
result. The final learned program turns out to be “extract everything between
first whitespace and first occurrence of Dot after CamelCase” that is correct
("Wang" is considered to be in CamelCase by FlashProg, even though it is just one word),
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Figure 4.5 – An error during the author list extraction.

Figure 4.6 – Program Viewer tab & alternative subexpressions.

but the logic is quite non-obvious even for a programmer to come up with.

Now Alice wants to extract each author individually, and provides two examples within
the first publication record. FlashProg again does not identify all authors correctly. Alice
can provide additional examples or look at the extraction program, but she decides to
engage the Conversational Clarification mode, and help FlashProg disambiguate between
programs by answering clarifying questions (such as should the output include “D.
Richards” or “C. D. Richards” and if “and” should be included, as shown in Figure
4.7). At each iteration, FlashProg asks her to choose between several possible highlightings
in the unmarked portion of the document. Each choice is then communicated to the
PBE system and the set of programs is re-learned. After two iterations of Conversational
Clarification, FlashProg converges on a correct program, and Alice is confident in it
(Figure 4.8).
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Figure 4.7 – Conversational Clarification being used to disambiguate different programs
that extract individual authors.

Figure 4.8 – Final result of the bibliography extraction scenario.
4.4 Implementation

Our underlying program learning engine is a rich toolkit of generic algorithms for PBE.
It allows a domain expert to easily define a domain-specific language (DSL) of programs
that perform data manipulation tasks in a given domain [Polozov and Gulwani, 2015].
The expert (DSL designer) only defines the semantics of DSL operators, from which our
engine automatically generates a synthesizer. A synthesizer is an algorithm that, at run
time, accepts a specification from a user, and returns a set of DSL programs that satisfy
this specification. For instance, a specification in FlashExtract, the text processing DSL
of FlashProg, is given by a sequence of positive and negative highlightings. The efficiency
of our learning engine is based on two ideas from our prior work in PBE: our synthesis
algorithm and our program set representation.

Synthesis algorithm Most prior work in PBE implement their synthesis algorithms
by exhaustive search over the DSL, or delegate the task to constraint solvers [Alur
et al., 2013]. In contrast, our engine employs an intelligent “top-down” search over the
DSL structure, in which it iteratively transforms the examples given by an end user
for the entire DSL program into the examples that should be satisfied by individual
subexpressions in the program [Polozov and Gulwani, 2015]. Such an approach allows
FlashProg to be responsive within 1-3 seconds for each learning round, whereas state-of-
the-art PBE techniques can take minutes or even hours on similar tasks. Moreover, it
also allows us to generate a set of programs satisfying a specification, instead of a single
candidate. We then use a domain-specific ranking scheme to select a program that will
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be presented to the user.

Program set representation A typical learning session can return up to 1030

ambiguous programs, all consistent with the current specification [Gulwani et al., 2012].
Our engine makes use of a polynomial-space representation of such a program set, known
as version space algebra (VSA). It has been introduced by Mitchell [Mitchell, 1982] in
the context of machine learning, and later used by Lau et al. [Lau et al., 2001], Polozov
and Gulwani [Gulwani, 2011, Polozov and Gulwani, 2015].

The key idea of VSAs is sharing of subspaces. Consider an operator SubStr(s, p1, p2),
which extracts a substring of s that starts at the position p1 and ends at the position
p2. Here p1 and p2 can expand to various position logics, e.g. absolute (“5th character
from the right”) or based on regular expressions (“after the second number”). On a
given example, p1 and p2 are known to evaluate to 1 and 4, respectively (i.e. the result
of SubStr(s, p1, p2) is the string s[1 : 4]). Importantly, both p1 and p2 may satisfy this
specification in multiple possible ways. For example, p1 can expand to a program “1st

character from the left”, or a program “(|s| − 1)th character from the right”, or any
consistent regex-based program (based on the content of s in a given example). Thus,
the total number of possible consistent SubStr(s, p1, p2) programs is quadratic in the
number of possible consistent position programs (since any consistent p1 can be combined
with any consistent p2).

A VSA stores these programs concisely as a join structure over the two program sets
with learned consistent program sets for p1 and p2 (also represented as VSAs). Such a
structure consists of the two learned program sets for p1 and p2 and a “join tag”, which
specifies that any combination of the programs sampled from these two sets is a valid
combination of parameters for the SubStr operator. Therefore, the overall size of a VSA
is typically logarithmic in the number of programs it semantically represents.

Formally, our learning engine represents program sets as a combination of shared program
sets using two operators: union and join. A union of two VSAs Ñ1 and Ñ2 represents a
set that is a union of two sets represented by Ñ1 and Ñ2. A join of two VSAs Ñ1 and Ñ2
represents a set that is a Cartesian product of two sets represented by Ñ1 and Ñ2. Such a
representation has two major benefits: (a) it stores an exponential number of candidate
programs using only polynomial space, and (b) it allows exploring the shared parts of
the space of candidates, and quickly examine the alternative candidate subexpressions at
any given program level.

The ideas explained above are the key to our novel Program Navigation and Conversational
Clarification interaction models. We present their implementation below.
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4.4.1 Program Navigation

The two key challenges in Program Navigation are: paraphrasing of the DSL programs
in English, and providing alternative suggestions for program expressions.

Templating language

To enable paraphrasing, we implemented a high-level templating language, which maps
partial programs into partial English phrases. Lau stated [Lau, 2009]:

“Users complained about arcane instructions such as “set the CharWeight to 1” (make
the text bold). [. . .] SMARTedit users also thought a higher-level description such as
“delete all hyperlinks” would be more understandable than a series of lower level editing
commands.”

Our template-based strategy for paraphrasing avoids arcane instructions by using "context-
sensitive formatting rules", and avoids low-level instructions by using "idiomatic rules",
solving Lau’s two problems.

Paraphrasing is a conflictless bottom-up process. If possible, we use an idiom. We then
remove context formatters from the template and apply them to their referenced child’s
template. Let us illustrate the development process with an example, a toy program
named S1:

PosPair(Pos(Line(1), 1), Pos(Line(1), −1))

which evaluates to the string between the start and end of the second line. Line indexes
start at 0, whereas char indexes start at 1. The relevant DSL portion is defined as a
CFG:

S := PosPair(p, p) p := Pos(L, n)
L := Line(n) n := int

We add three paraphrasing rules:

PosPair → “extract the string between {:0} and {:1}”
Pos → “the char number {:1} of {:0}”
Line → “line {:0}”

{:0} and {:1} refer to first and second arguments. Paraphrasing S1 yields (parentheses
added to see the paraphrase tree):

“extract the string between (the char number (1) of (line (1))) and (the char
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number (-1) of (line (1)))”

To differentiate the two 1, we rewrite the last two rules above with a list of dot-prefixed
formatters:

Pos → “the {:1.charNum} of {:0}”
Line → “{:0.lineNum}”

charNum (resp. lineNum) is a formatter mapping ints to a char ordinal (resp. line ordinal).
Formatters are lists of 〈regex, result〉 pairs modifying the template of the targeted child.
Its template is then replaced by the first matching regex result. For example, the
formatter for charNum (and another formatter ordinal) is:

charNum : [ {regex: "^1$", result: "beginning"}, . . .

{regex: "^(\\d+)$", result: "{:1.ordinal} char"}],
ordinal : [ {regex: "^1$", result: "first"},

{regex: "^2$", result: "second"}. . . ]

Note how we handle corner cases. Paraphrasing S1 yields

“extract the string between (the (beginning) of (second line)) and (the (end) of
(second line)))”

The paraphrasing can be made even more concise by adding idiom rules, which produce
more natural paraphrasing for certain idiomatic expressions. An idiom rule applies to
subexpressions that satisfy given equality conditions between subterms or inner terms,
specified by their paths. A path is a colon-separated list of symbols, function names
and child indexes referring to a particular node. The rule below expresses the idiom of
extracting the entire line:

PosPair(Pos(?L, 1), Pos(?L, −1)) → “extract the {:L}”
when {:0:L} = {:1:L}

S1 is finally paraphrased into “extract the (second line)”.

The limitations of this approach are mostly that all rules are written and updated
manually. When the DSL changes, this is extra work. Furthermore, paraphrasing
depends on order of formatters and idioms, and idiom templates may also not allow the
user to explore the full program. We overcome this by letting the user switch between
the paraphrase and the code (the latter being always complete).
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Program alternatives

To enable alternatives, we record the original candidate program set for each subexpression
in the chosen program. Since it is represented as a VSA, we can easily retrieve a subspace
of alternatives for each program subexpression, and apply the domain-specific ranking
scheme on them. The top 5 alternatives are then presented to the user.

4.4.2 Conversational Clarification

Conversational Clarification selects examples based on different outputs produced by
generated programs. Each synthesis step produces a VSA of ambiguous programs that
are consistent with the given examples. Conversational Clarification iteratively replaces
the subexpressions of the top-ranked program with its top k alternatives from the VSA.
This produces k clarification candidates (in FlashProg, k is set to 10). The clarifying
question for the user is based on the first discrepancy between the outputs of the currently
selected program P and the clarification candidateP ′. Such a discrepancy can have three
possible manifestations:

• The outputs of P and P ′ match until P selects a region r, which does not intersect
any selection of P ′. This leads to the question “Should r be highlighted or not?”

• The outputs of P and P ′ match until P ′ selects a region r′, which does not intersect
any selection of P . This leads to the question “Should r′ have been highlighted?”

• The outputs of P and P ′ match until P selects a region r, P ′ selects a different region
r′, and r intersects r′. This leads to the question “Should r or r′ be highlighted?”

For better usability (and faster convergence), we merge the three question types into one,
and ask the user “What should be highlighted: r1, r2, or nothing?” Selecting r1 or r2
would mark the selected region as a positive example. Selecting “nothing” would mark
both r1 and r2 as negative examples. After selecting an option, we convert the choice
into one or more examples, and invoke a new synthesis process.

Analysis Since Conversational Clarification is an iterative refinement of a previous
synthesis process, it is guaranteed to perform several times more efficiently compared to
the last process. Moreover, since we pick a clarifying question based on different outputs
produced by two ambiguous candidates, the new set of candidates is guaranteed to be
smaller than the previous one. Therefore, Conversational Clarification converges to the
program(s) representing user’s intent in a finite number of rounds (if such programs
exist). The number of rounds depends on the space of collisions in DSL outputs and can
be exponential. In our user study and in most of our benchmarks however, the number
of Conversational Clarification rounds never exceeded 5 for a single label.
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A Conversational Clarification round is sound by construction (i.e. accepting a suggestion
always yields a program that is consistent with both the suggestion and the prior
examples). However, since our choice of clarification candidates is limited to top k

alternatives at each level of the VSA, the Conversational Clarification round may be
incomplete (i.e. the suggestions may not include the intended correct output). User can
always provide a manual example instead of using CC suggestions in such a situation.
The performance of a single Conversational Clarification round is linear in the VSA
space (which is typically logarithmic in the number of ambiguous programs), since CC is
implemented over our novel (recursively defined) ranking operation over the VSA [Polozov
and Gulwani, 2015].

4.4.3 Domain-specific languages

The generic implementation of our learning engine allows rapid development of DSLs
for various data manipulation domains without the accompanying burden of designing
individual synthesis algorithms or other FlashProg functionality for them. Following this
methodology, we easily incorporated the following data manipulation DSLs in FlashProg:

1. FlashFill – a DSL for syntactic string transformations [Gulwani, 2011].

2. FlashExtract – a DSL for extracting textual information from semi-structured
documents [Le and Gulwani, 2014].

3. FlashRelate – a DSL for extracting relational tables from semi-structured spreads-
heets [Barowy et al., 2015].

4. FlashWeb – a DSL for extracting webpage content based on CSS selectors.

We design these DSLs such that they are succinct enough to enable efficient learning,
yet expressive enough to support many real-world tasks. If a task can be expressed in
our language, our engine will learn a program for it given sufficiently many examples.
The engine fails if the language cannot express the task. For example, FlashExtract
does not support arbitrary boolean conjunctions and disjunctions. Hence, if the tasks
require learning a complex boolean expression, FlashExtract will not be able to perform
it [Gulwani, 2011, Le and Gulwani, 2014, Barowy et al., 2015].

Next, we present our user study on FlashExtract below, but the functionality of FlashProg
is automatically provided for any compliant DSL. We plan to incorporate more extraction
domains, such as PDF documents, in future work.
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4.5 Evaluation

In this section, we present a user study to evaluate FlashProg. In particular, we address
three research questions for PBE:

• RQ1: Do Program Navigation and Conversational Clarification contribute to
correctness?

• RQ2: Which of Program Navigation and Conversational Clarification is perceived
more useful for data extraction?

• RQ3: Do FlashProg’s novel interaction models help alleviate typical distrust in
PBE systems?

4.5.1 User study design

Because our tasks can be solved without any programming skills, we performed a within-
subject study over an heterogeneous population of 29 people: 4 women aged between 19
and 24 and 25 men aged between 19 and 34. Their programming experience ranged from
none (a 32-year man doing extraction tasks several times a month), less than 5 years (8
people), less than 10 (9), less than 15 (8) to less than 20 (3). They reported performing
data extraction tasks never (4 people), several times a year (7), several times a month
(11), several times a week (3) up to every day (2).

We selected 3 files containing several ambiguities these users have to find out and to
resolve. We chose these files among anonymized files provided by our customers. Our
choice was also motivated by repetitive tasks, where extraction programs are meant to
be reused on other similar files. The three files are the following:

1. Bank listing. List of bank addresses and capital grouped by state. The postal code
can be ambiguous.

2. Amazon research. The text of the search results on Amazon for the query “chair”.
The data is visually structured as a list of records, but contains spacing and noise.

3. Bioinformatic log. A log of numerical values obtained from five experiments, from
bioinformatics research (Figure 4.10). Straightforward extraction misses one expe-
riment.

We first provided users a brief video tutorial using the address file as example (Figure 4.1,
youtu.be/JFRI4wIR0LE). The video shows how to perform two extractions and to
use features such as undo/redo. It partially covers the Program Viewer tab and the
Disambiguation tab. It explains that these features will or will not be available, depending
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Figure 4.9 – Bioinformatic log: Result sample.

on the tasks. When users start FlashProg, they are given the same file as in the video.
A pop-up encourages them to play with it, and to continue when they feel ready. The
Program Viewer tab and the Disambiguation tab are both available at this point.

We then ask users to perform extraction on the three files. For each extraction task, we
provide a result sample (Figure 4.9). Users then manipulate FlashProg to generate the
entire output table corresponding to that task. We further instruct them that the order
of labels do not matter, but they have to rename them to match our result sample.

To answer RQ1, we select a number of representative values across all fields for each task,
and we automatically measure how many of them were incorrectly highlighted. These
values were selected by running FlashProg sessions in advance ourselves and observing
insightful checkpoints that require attention. In total, we selected 6 values for task #1,
13 for task #2 and 12 for task #3. We do not notify users about their errors. This
metric has more meaning than if we recorded all errors. As an illustration, a raw error
measurement in the third task for a user forgetting about the third main record would
yield more than 140 errors. Our approach returns 2 errors, one for the missing record,
and one for another ambiguity that needed to be checked but could not. This makes
error measurement comparable across tasks.

Environments To measure the impact of Program Navigation and Conversational
Clarification interaction models independently, we set up three interface environments.

Basic Interface (BI). This environment enables only the Colored Data Highlighting
interaction model. It includes the following UI features: the labeling interface for
mouse-triggered highlighting, the label menu to rename labels, to switch between
them and the Output tab.

BI + Program Navigation (BI + PN). Besides the Colored Data Highlighting, this
interface enables the Program Navigation interaction model, which includes the Pro-
gram Viewer tab and its features (e.g. Regular expression highlighting, Alternative
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Figure 4.10 – Highlighting for obtaining Figure 4.9.

subexpression viewer).

BI + Conversational Clarification (BI + CC). Besides the Colored Data Highlig-
hting, this environment enables the Conversational Clarification interaction model,
which includes the Disambiguation tab.

To emphasize PN and CC, the system automatically opens the matching tab, if they are
part of the environment.

Configurations To compensate the learning curve effects when comparing the usefulness
of various interaction models, we set up the environments in three configurations A,
B, and C. Each configuration has the same order of files/tasks, but we chose three
environment permutations. As we could not force people to finish the study, the number
of users per environment is not perfectly balanced.

Tasks

Config. 1. Bank 2. Amazon 3. Bio log # of users

A BI + PN BI + CC BI 8
B BI BI + PN BI + CC 12
C BI + CC BI BI + PN 9

Survey To answer RQ2 and RQ3, we asked the participants about the perceived
usefulness of our novel interaction models, and the confidence about the extraction of
each file, using a Likert scale from 1 to 7, 1 being the least useful/confident.

4.5.2 Results

We analyzed the data both from the logs collected by the UI instrumentation, and from
the initial and final surveys. If a feature was activated, we counted the user for statistics
even if he reported not using it.
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Figure 4.11 – Distribution of error count across environments. Both Conversational
Clarification (CC) and Program Navigation (PN) significantly decrease the number of
errors.

RQ1: Do Program Navigation and Conversational Clarification contribute to correctness?
Yes. We have found significant reduction of number of errors with each of
these new interaction models (See Figure 4.11). Our new interaction models reduce
the error rate in data extraction without any negative effect on the users’ extraction speed.
To obtain this result, we applied the Wilcoxon rank-sum test on the instrumentation
data. More precisely, users in BI + CC (W = 78.5, p = 0.01) and BI + PN (W = 99.5,
p = 0.06) performed better than BI, with no significant difference between the two of
them (W = 94, n.s.). There was also no statistically significant difference between the
completion time in BI and completion time in BI + CC (W = 178.5, n.s.) or BI + PN
(W = 173, n.s.).

RQ2: Which of Program Navigation and Conversational Clarification is perceived more
useful for data extraction? Conversational Clarification is perceived more useful
than Program Navigation (see Figure 4.12a and Figure 4.12b). Comparing the user-
reported usefulness between the Conversational Clarification and the Program Navigation,
on a scale from 1 (not useful at all) to 7 (extremely useful), the Conversational Clarification
has a mean score of 5.4 (σ = 1.50) whereas the Program Navigation has 4.2 (σ = 2.12)
Only 4 users out of 29 score Program Navigation more useful than Conversational
Clarification, whereas Conversational Clarification is scored more useful by 15 users.

RQ3: Do FlashProg’s novel interaction models help alleviate typical distrust in PBE
systems? Yes for Conversational Clarification. Considering the confidence in the
final result of each task, tasks finished with Conversational Clarification obtained a
higher confidence score compared to those without (W = 181.5, p = 0.07). No significant
difference was found for Program Navigation (W = 152.5, n.s.). Regarding the trust our
users would have if they had to run the learned program on other inputs, we did not find
any significant differences for Conversational Clarification (W = 146, n.s.) and Program
Navigation (W = 161, n.s.) over only BI.

Regarding the question “How often would you use FlashProg, compared to other extraction
tools?”, on a Likert scale from 1 (never) to 5 (always), 4 users answered 5, 17 answered 4,
3 answered 3, and the remaining 4 answered 2 or less. Furthermore, all would recommend
FlashProg to others. When asked how excited would they be to have such a tool on a
scale from 1 to 5, 8 users answered 5, and 15 answered 4.
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Figure 4.12 – User-reported: (a) usefulness of PN, (b) usefulness of CC, (c) correctness
of one of the choices of CC.

The users’ trust is supported by data: Perceived correctness is negatively correlated
with number of errors (Spearman ρ = −0.25, p = 0.07). However, there is no significant
correlation between number of errors made and the programming experience mapped
between 0 and 4 (ρ = −0.09, n.s.).

Other results. We observed that only 13 (45%) of our users used the Program Viewer tab
when it was available. These 13 users having experienced Program Navigation got mixed
feelings about it. A 22-year woman with more than 5 years of programming experience
gave a positive review: “I absolutely loved [regular expression highlighting]. I think that
perfectly helps one understand what the computer is thinking at the moment and to identify
things that were misunderstood”. According to a 27-year man with more than 10 years of
programming experience, the interaction was not easy enough: “the program [is] quite
understandable but it was not clear how to modify the program”. 9 users out of 13 did not
report using the Alternative subexpression viewer when using the Program Navigation.

On the other hand, 27 (93%) used the Disambiguation tab when it was available. Users
appreciated it. The previous woman said: “in the last example, in which I didn’t have
[Conversational Clarification] as an option, I felt like I miss it so much”. A 27-year man with
5+ years of programming experience said: “It always helps me to find the right matching”.
A 19-year old novice programmer woman said: “The purpose of each box wasn’t clear
enough, but after the text on left became highlighted (hovering the boxes), the task became
easier”. Although there were tooltips, some users were initially confused about how we
presented negative choices with XXX crossing the answer.
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4.5.3 Discussion

With so many experienced users, we did not expect that only half of them would interact
with Program Navigation, and even less with the Alternative subexpression viewer. To
ensure usability, we developed FlashProg and Program Navigation iteratively based on
the feedback of many demo sessions and a small 3-user pilot study before running the
full user study. We did not receive any specific complaints about the paraphrasing itself,
although it certainly required substantial time to understand their semantics. In the
tasked they solved, users might then have thought that it would take more time to figure
out where the program failed, and to find a correct alternative, than to add one more
example. We believe that in other more complex scenarios, such as with larger files
or multiple files, the time spent using Program Navigation could be perceived as more
valuable and measured as such. The decrease of errors may then be explained by the
fact that when Program Navigation was turned on, users have stared at FlashProg more
and took more time to catch errors.

The negative correlation between the confidence of users in the result and the number of
errors is insightful. Although we asked them to make sure the extraction is correct and
never told them they did errors, users making more errors (thus unseen) reported to be
less sure about the extraction. The problem is therefore not just about alleviating the
users’ typical distrust in the result, it is really about its correctness.

We also acknowledge that several factors may be a limitation of this study: (a) we have a
limited amount of heterogeneous users; (b) the time was uncontrolled, thus we could not
prevent users from getting tired or from pausing in the middle of extraction tasks; (c)
besides the 29 users having completed all the study, more than 50 users who decided to
start the study stopped before finishing the last task (this explains the unbalanced number
of users for each condition). Thus, they were not part of the qualitative correlations
(e.g. between confidence and errors), but we did include each finished task for the error
metrics; (d) if a user extracts all regions manually, replacing a record not covered by the
checkpoints by another, we do not measure this error (false negatives).

4.6 Conclusion and further work

We have implemented FlashProg, a prototype PBE system for data extraction and
manipulation that supports two novel user interaction models for disambiguation in PBE,
namely Program Navigation and Conversational Clarification. In user studies, where
users were given three data extraction tasks, we found that a significant majority of users
found the tool effective and were confident in the results. This confidence is supported
by data: both models significantly reduced the number of extraction errors. Further,
the users found the proactive behavior of Conversational Clarification very useful, and
preferred it to the Program Navigation interface.
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Page 80 until this page 105 contained the content of the paper “User Interaction Models
for Disambiguation in Programming by Example“. We will now add more insights.

105



Chapter 4. Displaying Programs and Asking Questions

B. Epilogue to FlashProg

B.1 Generalizing Conversational Clarification

After the experience of the last paper, and before the end of my internship at Microsoft, I
tried to generalize these interaction models to other languages built on top of FlashMeta
[Polozov and Gulwani, 2015]. I was able to implement programming-by-example ex-
traction engines for FlashRelate, a language that is learnable by example and that
describes relational transformations of tables [Barowy et al., 2015], and ‘FlashWeb’, a
language without any publication attached to it for extracting data from web pages, but
still available on Microsoft Prose’s Playground2. I successfully reused the paraphrasing
engines for both languages, and I also implemented conversational clarification for the
extraction of web pages.

However, I could not figure out how to support a conversational clarification feature for
FlashRelate. First, the engine of FlashRelate did not support the negative examples
FlashProg needed when the user says that the extraction is wrong. Second, because the
examples consisted in a row of related cells, the ambiguous input/output pairs provided
by the machine were partially correct, not completely wrong. However, we could not
figure a consistent way of asking for this information from the user without disclosing
the language behind. We did not want to disclose the language of FlashRelate because
it was meant to evolve. Besides, we wanted to keep conversational clarification from
programming notions.

I also wanted to generalize the notion of disambiguation to FlashMeta itself. Disam-
biguation would be then configurable for any new language. However, because of the
short amount of time remaining, I was not able to do so. Two years later, the team at
Microsoft continued the effort and prepared a paper formalizing many notions related to
disambiguation [Le et al., 2017]. In May 2017, two years after I left Microsoft, contrary
to many abandoned research projects, this work was still more alive than ever. I received
the following comment from the Head of Products of Microsoft Prose:

“You were the one who, together with Gustavo [Soares], laid the foundation
of the FlashProg demo site that we continue to use even today to find oppor-
tunities for our team! Once again, thanks a lot for all your contributions.“

B.2 Discussion

We now answer the questions we asked in the introduction (see page 9) with respect to
the work of this chapter.

2microsoft.github.io/prose
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Question FlashProg
Is it faster/easier to conduct tasks using
programming-by-example?

Yes

Do users need to see the generated program? Yes
Do users need to take on the generated program? No
Is the paraphrased version of the program useful? Yes
Is it more reliable when the program is shown? Yes
Is it more reliable when the computer asks questions? Yes

The comparative summary for all the papers is available on page 163.

Arguably, the cognitive model of text extraction is very close to what users might want,
and it takes much less time to extract tables from the text, in comparison with designing
and writing suitable regular expressions. Using the feedback of the tool ConverFrom-String,
we acknowledge that users asked to see the program. However, users prefer to stay in the
extraction interface, rather than trying to tweak the program, as suggested by the user
study. Thanks to users’ comments and results, we noted that the paraphrased version of
the program is useful and provides reliability to this kind of programming-by-example
tasks. Finally, the questioning was a feature that helped users gain trust of this kind of
programming-by-example.
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“Celui qui aime à demander conseil “He who loves to ask for advice
grandira.” will grow.”
Proverbe chinois Chinese proverb

A. Prologue: Attempts to Reproduce Interaction Models

Back at EPFL, I wondered if I could replicate the exciting results of the previous chapter
in some other domains, specifically how new interaction models could possibly bring a
new life to programming-by-example and lower the barrier between abstract wishes and
specifications. I began investigating database-management systems1, website engines,
and looking for opportunities for computers to actively communicate with users to create
software. With a few thousand questions, I dreamed that we would be able to create
something as complex as a car-pooling website. I started to look for benchmarks that
serve as a basepoint for such systems. Quickly, it became extremely difficult to figure
out the line between programming-by-example and basic programming. In complicated
websites, it seemed that giving examples of how the website should work would take
much more time than just coding it.

After three months of investigation, I had a precise, simple, yet encouraging idea of what
kind of problem related to the programming-by-example that I wanted to solve: Build
a static webpage produced by a programming language, enabling dual modifications
in either the webpage or the programming language. For this, I started to encode a
simple specialized solver for strings, where one side of the equation is a constant. At
the completion of my thesis, I have not fully completed the original dream of dual
programming, because I came across another challenge that raised my interest and was
related to my previous work.

1https://github.com/OlivierBlanvillain/SlickChair-report/blob/master/report/main.pdf
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Back from a conference, Jad Hamza and Viktor Kuncak had a new challenge for me.
When asked to prove conjectures, the prover of the lab was returning counter-examples
on the form of trees that were so big that they were unintelligible. Here is one of them:

f(Cons[Event[StackTid, StackMethodName, Option[BigInt], Option[BigInt]]](CallEvent[StackTid,
StackMethodName, Option[BigInt], Option[BigInt]](T1(), Push(), Some[BigInt](5)), Cons[
Event[StackTid, StackMethodName, Option[BigInt], Option[BigInt]]](InternalEvent[StackTid,
StackMethodName, Option[BigInt], Option[BigInt]](T1()), Cons[Event[StackTid,
StackMethodName, Option[BigInt], Option[BigInt]]](CallEvent[StackTid, StackMethodName,
Option[BigInt], Option[BigInt]](T2(), Pop(), None[BigInt]()), Cons[Event[StackTid,
StackMethodName, Option[BigInt], Option[BigInt]]](RetEvent[StackTid, StackMethodName,
Option[BigInt], Option[BigInt]](T1(), Push(), Some[BigInt](5), None[BigInt]()), Cons[Event[
StackTid, StackMethodName, Option[BigInt], Option[BigInt]]](InternalEvent[StackTid,
StackMethodName, Option[BigInt], Option[BigInt]](T2()), Cons[Event[StackTid,
StackMethodName, Option[BigInt], Option[BigInt]]](RetEvent[StackTid, StackMethodName,
Option[BigInt], Option[BigInt]](T2(), Pop(), None[BigInt](), Some[BigInt](5)), Nil[Event[
StackTid, StackMethodName, Option[BigInt], Option[BigInt]]]()))))))

Even after pruning the generic types, it is still not convenient to read:

Cons(CallEvent(T1(), Push(), Some(5)), Cons(InternalEvent(T1()), Cons(CallEvent(T2(), Pop(),
None()), Cons(RetEvent(T1(), Push(), Some(5), None()), Cons(InternalEvent(T2()), Cons(
RetEvent(T2(), Pop(), None(), Some(5)), Nil()))))))

Viktor Kuncak and Jad Hamza wanted a way to convert these trees to strings in order to
alleviate the task of understanding them. Even better, if they had been able to provide
examples on-the-fly of how to print, that would have been great. For example, Jad Hamza
told me he wanted to print the above tree as follows:

T1: call Push(5)
T1: internal
T2: call Pop()
T1: ret Push(5)
T2: internal
T2: ret Pop() → 5

There were several challenges. For example, the system should print Some and None
differently, depending on the context.

I started to work on Jad Hamza’s idea. After a few months, I had a prototype working,
built on top of my previous specialized solver on strings. My first solution was to build
function templates and guess the missing string constants using examples. I obtained
the templates of mutually recursive functions directly from the definitions of datatypes.
After describing the way it should build the above counter-example, the system would
ask the following question:

How (...) should be rendered?
T1: ret Pop(1) → 2T1: ret Pop(3) → 4
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Or T1: ret Pop(1) → 2
T1: ret Pop(3) → 4

to which a user could answer the second one, apparently eliminating the remaining
ambiguities. Conversational Clarification (page 83) was working again.

In order to print datatypes differently, depending on the context – as for the previous
Some datatype – I started to enable the automatic unrolling of methods, so that the
engine would have more degrees of freedom to find programs. Eventually, I made this
approach complete by proving that it could theoretically reach any grammar-defined
pretty printer, by enumerating grammars recursively one by one. This was not very
efficient, but it worked.

I also wanted, however, that the engine asks questions to find the constants, instead
of initially forcing the user to provide all the necessary examples. As the outputs are
composed of a concatenation of the constants of the program and the strings of the input,
my first guess was to find inputs covering the entire program.

Therefore, I made a coverage engine to compute a set of inputs that cover the whole
program. For this, I modified the program to return pairs, such that the second element
would be true if and only if the program reached a particular line. Using the verification
engine, by asking it to prove that the second element of the pair is always false, I would
obtain one by one counter-examples that precisely covered the mentioned line.

Quickly, I discovered that coverage was not enough. Even if executing the program on
the inputs would reach all the constants of the programs, I found examples that were
ambiguous. For example, I could miss the order in which trees ought to be printed.

def print1(l: List) = l match {
case Cons(a: String, b: List) => a + print1(b)
case Nil() => ""

}
def print2(l: List) = l match {

case Cons(a: String, b: List) => print2(b) + a
case Nil() => ""

}
print1(Cons("1", Nil)) = "1"
print2(Cons("1", Nil)) = "1"

In this case, Cons(1, Nil) obviously covers all program lines, but the two functions print
the lists in a different order.

To circumvent this problem, I tried to obtain a more general notion of coverage. I
originally defined the notion of a "rec-covering" input set, which is a covering set such
that for all concatenation in the program

∑
i Mi, by permuting the concatenation yields
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either the same program, or changes the output of one of the elements of the set.

Then I needed to check whether any two programs are the same. As we will see in the
next chapter, this is not an easy task.

Even though I had an incomplete coverage theory, I was still able to generate questions
because I would run the rec-coverage engine on many programs that I found consistent
with the provided input/output examples. Whenever I would have two different outputs,
the engine created the question for the user. After she answered this question by choosing
an output, the engine would add a new constraining input/chosen-output pair to the
problem.

We realized that we were going in the wrong direction, because there were infinitely many
different programs that the system could generate based on successive unfoldings of the
grammar and that were eventually consistent with the set of input/output examples. I
remember the system asking me the following question, when printing lists:

Should we print Cons(1, Cons(2, Cons(3, Nil))) either
[1, 23] or [1, 2, 3] ?

and right after I answered by the second, it would ask:

Should we print Cons(1, Cons(2, Cons(3, Cons(4, Nil)))) either
[1, 2, 34] or [1, 2, 3, 4] ?

This could continue forever. Thus arose the not-so-obvious question:

When do we stop questioning the user?
“How can any system successfully guess the user’s intended program out of an infinite
space of possible programs?” [Lau, 2009]

Even at the time of writing this thesis, I do not have an answer for this question. However,
in the next chapter, we will study an apparently smaller problem that consists of learning
tree-to-string functions without state and without unfoldable grammars. Nonetheless, we
still obtained the not-so-obvious result that questioning is so important that it reduces
the complexity of learning printers.

B. The Patented Sandwich Metaphor

In the area of program verification, proving conjectures is a task that requires under-
standing the counter-examples that any automated prover can provide. By analyzing
counter-examples, we can refine the conjecture and transform it into a theorem. With
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a programming-by-example technique to teach the computer how it should display its
counter-examples, to make sure it understood correctly, we might be tempted to enable
the computer to ask more questions. However, the computer might begin to ask an
infinite number of questions. Hence, knowing when to stop questioning is a major element
in the building of programs (helpers) that correctly render counter-examples.

In order to not fall asleep while I was driving on a long trip, my wife kindly asked me
once again to explain what I was currently working on. As the result of an effort to
get the best metaphor, I invented the educative stories on patented sandwiches which I
present on the next page.
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nce upon a time, in a country where only one type of coin was in circulation,
someone started to sell sandwich machines. These sandwich machines became

so popular that most merchants began to use them. Their use was the following.
Merchants provided the machine great quantities of middle toppings (M), top toppings
(T) and bottom toppings (B), each having the form of a square. When a user spent
one coin in the machine, the machine would provide a middle topping M. By inserting
one more coin, the machine would append a bottom topping B below the sandwich in
construction, and a top topping T above the sandwich in construction. Repeating this
operation by inserting more coins, the machine would continue to add for each coin one
topping B below and one topping T above. For example, one merchant assigned a slice
of white bread to M, brown bread above ham to T and cereal bread below salad to B
(see Figure 5.1). The more coins a user put, the more ham/brown bread and cereal
bread/salad the machine adds to their sandwich.

Then there came the problem of patents. Merchants could patent their machine after
they configured the toppings. But then, they started to sue each other for creating
machines that produced the same kind of sandwiches.

B.1 The First Case: Chocolate Brioches

A merchant brought another merchant to the court, because their machines were both
producing a “sandwich” consisting of a slice of brioche below a slice of chocolate, repeated
as many times as users gave coins.

The second merchant had learned that the first merchant assigned brioche/chocolate to
M, brioche/chocolate to T, and nothing to the bottom. Therefore, he decided to configure
his machine slightly different by producing the same sandwiches, but exchanging T and
B:

Machine 1 Machine 2
Top: Chocolate

Brioche
Top:

Middle: Chocolate
Brioche

Middle: Chocolate
Brioche

Bottom: Bottom: Chocolate
Brioche

However, obviously, the obtained sandwiches would be the same. The judge decided that
this was a violation of the patent. No matter the internal details, machines owned by
different merchants should not produce the same sandwiches.
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Figure 5.1 – Outputs produced for respectively 1, 2 and 3 coins from a machine configured
for M to be a slice of white bread, T to be brown bread over ham and B to be salad over
cereal bread. In this setting, for n coins, the sandwich composition will always be from
bottom to top Bn−1MT n−1.
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B.2 The Second Chocolate-Brioche Case

Then a curious case was brought before the judge. The first merchant tested the second
merchant’s machine with one, and then two coins, and saw that it produced the same
sandwiches as his own:

Machine 1 Machine 2
One coin: Chocolate

Brioche
One coin: Chocolate

Brioche
Two coins: Brioche

Chocolate
Brioche

Chocolate
Brioche

Two coins: Brioche
Chocolate
Brioche

Chocolate
Brioche

Therefore, he complained to the judge that the sandwiches were always the same. Were
the machines equivalent? The judge asked to look inside the machines, saw that with
three coins they would produce different sandwiches. Usually, I allow people time to
think about what could have happened. Nevertheless, here is the solution:

Machine 1 Machine 2
Top: Brioche Top: Brioche

Chocolate
Brioche

Middle: Chocolate
Brioche

Middle: Chocolate
Brioche

Bottom: Chocolate
Brioche

Bottom:

Testing with three coins thus revealed different sandwiches, since the sandwich of the
first machine would have two brioches on top, and not the second one, which will always
have brioche/chocolate on top.

Therefore, the judge asked all merchants to test equality for not only one and two coins,
but also for three coins.

B.3 Are Three Coins Enough?

But what if next time the merchants test their sandwich machines with up to 3 coins,
will it still be enough to conclude that the machines are always equivalent ? Fortunately,
in appendix D page 205, I developed a computer-verified proof that it is sufficient.
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B.4 One More Type of Coin

After the growth of the country, the original coin E was not enough; the machines were
replaced by new machines accepting the coin E and a new coin type F. With two coins E
and F, the merchants had to provide two kinds of Top, Middle and Bottom toppings,
one for each coin. This provided more freedom for users on how to compose sandwiches.

B.5 The Third Case: Bread/Ham

Having one more type of coin gave more freedom to the merchants, but another case
appeared in the court. The first merchant had tested the second merchant’s machine
with E, EE and EEE, F, FF, FFF and it gave the same sandwiches as his own machine.
Here are the results of the test:

Machine 1 Machine 2
E: E:
EE: Bread EE: Bread
EEE: Bread

Bread
EEE: Bread

Bread
F: F:
FF: Ham FF: Ham
FFF: Ham

Ham
FFF: Ham

Ham

Can two such machines be different?

Opening the machines, the judge saw their difference:

Machine 1 Machine 2

Coin E
Top: Bread

Coin E
Top:

Middle: Middle:
Bottom: Bottom: Bread

Coin F
Top: Ham

Coin F
Top: Ham

Middle: Middle:
Bottom: Bottom:

The judge then tested the two machines with coins EFE in this order, and obtained two
different sandwiches:

Machine 1 Machine 2
EFE: Bread

Ham
EFE: Ham

Bread

Hence, there was no violation of patent. The judge decided that all machines had to be
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tested with all configurations of up to three coins before being brought to him.

B.6 Advanced Bread/Ham Case

Later, a merchant found that another merchant’s machine was giving the same sandwiches
as his own machine for any of up to three coin combinations: E, F, EE, EF, FE, FF,
EEE, EEF, EFE, EFF, FEE, FEF, FFE and FFF. He subsequently concluded that the
machines were equivalent. Having a small doubt, the judge decided to look into the
internals of both machines to check for equivalence.

Machine 1 Machine 2

Coin E
Top: Bread

Coin E
Top: Bread

Middle: Middle:
Bottom: Ham Bottom: Ham

Coin F
Top: Bread

Ham Coin F
Top:

Middle: Middle:
Bottom: Bottom: Bread

Ham

The judge thus realized that the two sandwiches given by both machines for the coin
order FEFE would not be the same, so there was no patent infringement.

B.7 General Case

Should we try all combinations of four coins? What should we do if we have more types
of coins?

Due to the results in the remainder of this chapter, we know that checking up to four
coins is sufficient to prove or disprove the equality of both machines, whatever the number
of types of coins there is. We even have a more general result applicable to other data
structures, not just linear ones such as coins.

I am still aware that by applying our results to the above problem for one coin type, we
obtain that we have to check up to four coins, which we know is too much. Actually we
can prove that checking the sandwiches for two and three coins is sufficient because then
we can infer the sandwich for just one coin (this is left as an exercise for the reader).
Therefore, there are still efforts to be made in this direction.

Nonetheless, in the interactive approach (see Section 5.8 page 149) we do not need to
test all combinations. Without it, the number of sandwiches to test would be at least
in the cubic order, compared to the number of type of coins. With interactivity, the
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computer never asks a question if the answer is unambiguous, by leveraging previous
answers. The nice property we proved is that the number of questions, with respect to
the size of the input, is linear.
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Proactive Synthesis of Recursive Tree-to-String Functions
from Examples

The following pages 120-160 contain the reformatted content of the peer-reviewed paper
named “ Proactive Synthesis of Recursive Tree-to-String Functions from Examples” (DOI:
10.4230/LIPIcs.ECOOP.2017.19) that appeared in the European Conference on Object-
Oriented Programming (ECOOP) in 2017. I reproduce this work here with the permission
of the authors, who are myself, Jad Hamza and Viktor Kuncak. In addition to this paper,
at the end of my thesis, I provide an appendix with all the remaining proofs. (page 208
to page 214)

Contributions: Overall, my key contributions to this paper are as follows: the walkthrough
example and the examples throughout the paper; for Algorithm 2, the intersection of
the automata is a subset of the two; for Algorithm 3, the proof that it asks a linear
number of questions; the parser to parse scala files; the multiple choice questioning; and
the adaptation of the algorithms for strings and values. Jad Hamza’s key contributions
were the idea to obtain the test set of size O(n3), the idea to use automata to represent
solutions for Algorithm 2, the proof that the naive algorithm is NP-complete, and the
core implementation of Prosy. Jad Hamza and I share the tribute for all other ideas, as
we were together when we discovered them.

Synthesis from examples enables non-expert users to generate programs by specifying
examples of their behavior. A domain-specific form of such synthesis has been recently
deployed in a widely used spreadsheet software product. In this paper we contribute to
the foundations of such techniques and present a complete algorithm for the synthesis of
a class of recursive functions defined by structural recursion over a given algebraic data
type definition. The functions that we consider map an algebraic data type to a string;
they are useful for pretty printing and serialization of programs and data, for example.
We formalize our problem as learning deterministic sequential top-down tree-to-string
transducers with a single state (1STS).

The first problem we consider is how to learn a tree-to-string transducer from any set of
input/output examples provided by the user. We show that, given a set of input/output
examples, checking whether there exists a 1STS consistent with these examples is NP-
complete in general. In contrast, the problem can be solved in polynomial time under
a (practically useful) closure condition that each subtree of a tree in the input/output
example set is also part of the input/output examples.

As coming up with relevant input/output examples can be difficult for the user while
creating hard constraint problems for the synthesizer, we also study a more automated
active learning scenario in which the algorithm chooses the inputs for which the user
provides the outputs. To determine a unique transducer, Our algorithm asks a worst-case
linear number of queries as a function of the size of the algebraic data type definition.
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To construct our algorithms we present two new results on formal languages.

First, we define a class of word equations, called sequential word equations, for which
we prove that satisfiability can be solved in deterministic polynomial time. This is in
contrast to the general word equations for which the best known complexity upper bound
is in linear space.

Second, we close a long-standing open problem about the asymptotic size of test sets for
context-free languages. A test set of a language of words L is a subset T of L such that
any two word homomorphisms equivalent on T are also equivalent on L. We prove that
it is possible to build test sets of cubic size for context-free languages, thus matching for
the first time the lower bound found 20 years ago.

5.1 Introduction

Synthesis-by-example has been very successful in helping users deal with the tedious task
of writing programs. This technique enables the user to specify input/output examples
in order to describe the intended behavior of a desired program. Synthesis-by-example
will then inspect the examples given by the user and generalize them into a program that
respects these examples and that is able to handle other inputs.

Therefore, synthesis-by-example enables non-programmers to write programs without
programming experience, and gives experienced users one more way of programming
that could fit their needs. Current synthesis techniques usually rely on domain-specific
heuristics to try and infer the desired program from the user. When there are multiple
(non-equivalent) programs that are compatible with the input/output examples provided
by the user, these heuristics might fail to choose the program that the user had in mind
when writing the examples.

We believe it is important to have algorithms that provide formal guarantees based on
strong theoretical foundations. Our algorithms ensure that the solution is found whenever
it exists in a class of functions of interest. Furthermore, the algorithms ensure that the
generated program is indeed the program the user wants by detecting once the solution
is unique, or otherwise identifying a differentiating example whose output reduces the
space of possible solutions.

In this paper, we focus on synthesizing the printing functions for objects or algebraic
data types (ADT), which are at the core of many programming languages. Converting
such structured values to strings is very common, including uses such as pretty printing,
debugging, and serialization. Writing methods to convert objects to strings is repetitive
and usually requires the user to code himself mutually recursive toString functions.
Although some languages have default printing functions, these functions are often not
adequate. For example, the object Person(“Joe”, 31) might have to be printed “Joe is 31
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years old” for better readability, or “<td>Joe</td><td>31</td>” if printed as part of
an HTML table. How feasible is it for the computer to learn these “printing” functions
from examples?

The state of the art in this context [Laurence et al., 2014, Laurence, 2014] requires
the user to provide enough examples. If the user gives too few examples, the synthesis
algorithm is not guaranteed to return a valid printing function, and there is no simple
way for the user to know which examples should be added so that the synthesis algorithm
finishes properly.

Our contribution is to provide an algorithm that is able to determine exactly which
questions to ask the user so that the desired function can be derived. Moreover, in order
to learn a function, our algorithm (Algorithm 3) only needs to ask a linear number of
questions (as a function of the size of the ADT declaration).

Our results hold for recursive functions that take ADT as input, and output strings. We
model these functions by tree-to-string transducers, called single-state sequential top-down
tree-to-string transducers [Boiret, 2016, Graehl and Knight, 2004, Helmut Seidl et al.,
2015, Laurence et al., 2014, Staworko et al., 2009], or 1STS for short. In this formalism,
objects are represented as labelled trees, and a transducer goes through the tree top down
in order to display it as a string. Single-state means the transducer keeps no memory as
it traverses the tree. Sequential is a shorthand for linear and order-preserving, meaning
that each subtree is printed only once (linear), and the subtrees of a node are displayed
in order (order-preserving). In particular, such transducers cannot directly represent
recursive functions that have extra parameters alongside the tree to print. Our work on
1STSs establishes a foundation that may be used for larger classes of transducers.

Our goal is to learn a 1STS from a set of positive input/output examples, called a sample.
We prove the problem of checking whether there exists a 1STS consistent with a given
sample is NP-complete in general. Yet, we prove that when the given sample is closed
under subtree, i.e., every tree in the sample has all of its subtrees in the sample, the
problem of finding a compatible 1STS can be solved in polynomial time. For this, we
reduce the problem of checking whether there exists an 1STS consistent with a sample to
the problem of solving word equations. The best known algorithm to solve word equations
takes linear space, and exponential time [Plandowski, 1999, Jeż, 2017]. However, we
prove that the word equations we build are of a particular form, which we call sequential,
and our first algorithm learns 1STSs by solving sequential equations in polynomial time.

We then tackle the problem of ambiguities that come from underspecified samples. More
precisely, it is possible that, given a sample, there exist two 1STSs that are consistent
with the sample, but that are not equivalent on a domain D of trees. We thus define
the notion of tree test set of a domain D, which guarantees that, any two 1STSs which
are equivalent on the tree test set are also equivalent on the whole domain D. We
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give a method to build tree test sets of size O(|D|3) from a domain of trees given as a
non-deterministic top-down automaton. Our second learning algorithm takes as input
a domain D, builds the tree test set of D, and asks for the user the output to all trees
in the tree test set. Our second algorithm then invokes our first algorithm on the given
sample.

This construction relies on fundamental results on a known relation between sequential
top-down tree-to-string transducers and morphisms (a morphism is a function that maps
the concatenation of two words to the concatenation of their images), and on the notion
of test set [Staworko et al., 2009]. Informally, a test set of a language of words L is a
subset T ⊆ L such that any two morphisms which are equivalent on T are also equivalent
on L. In the context of 1STSs, the language L is a context-free language, intuitively
representing the yield of the domain D mentioned above. Prior to our work announced
in [Mayer and Hamza, 2016], the best known construction for a test set of a context-free
grammar G produced test sets of size O(|G|6), while the best known lower bound was
O(|G|3) [Plandowski, 1994, Plandowski, 1995]. We show the O(|G|3) is in fact tight, and
give a construction that, given any grammar G, produces a test set for G of size O(|G|3).

Finally, our third and, from a practical point of view, the main algorithm, improves the
second one by analyzing the previous outputs entered by the user, in order to infer the
next output. More specifically, the outputs previously entered by the user give constraints
on the transducer being learned, and therefore restrict the possible outputs for the next
questions. Our algorithm computes these possible outputs and, when there is only one,
skips the question. Our algorithm only asks the user a question when there are at least
two possible outputs for a particular input. The crucial part of this algorithm is to prove
that such ambiguities happen at most O(|D|) times. Therefore, our third algorithm
asks the user only O(|D|) questions, greatly improving our second one that asks O(|D|3)
questions. Our result relies on carefully inspecting the word equations produced by the
input/output examples.

We implemented our algorithms in an open-source tool available at https://github.com/
epfl-lara/prosy. In sections 5.9 and 5.10, we describe how to extend our algorithms and
tool to ADTs which contain String (or Int) as a primitive type. We call the implementation
of our algorithms proactive synthesis, because it produces a complete set of questions
ahead-of-time whose answers will help to synthesize a unique tree-to-string function,
filters out future questions whose answer could be actively inferred after each user’s
answer, and produces suggestions as multiple choice or pre-filled answers to minimize
the answering effort.

Contributions

Our paper makes the following contributions:
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1. A new efficient algorithm to synthesize recursive functions from examples. We
give a polynomial-time algorithm to obtain a 1STS from a sample closed under
subtree. When the sample is not necessarily closed under subtree, we prove that
the problem of checking whether there exists a 1STS consistent with the sample is
NP-complete (Section 5.6). This result is based on a fundamental contribution:

• A polynomial-time algorithm for solving a class of word equations that come
from a synthesis problem (sequential word equations, Section 5.6).

2. An algorithm that synthesize recursive functions without ambiguity by generating
an exhaustive set of questions to ask to the user, in the sense that any two recursive
functions that agree on these inputs, are equal on their entire domain (Section 5.7).
This is based on the following fundamental contribution:

• A constructive upper bound of O(|G|3) on the size of a test set for a context-free
grammar G, improving on the previous known bound of O(|G|6) [Plandowski,
1994, Plandowski, 1995] (Section 5.7).

3. A proactive and efficient algorithm that synthesizes recursive functions, which only
requires the user to enter outputs for the inputs determined by the algorithm.
Formally, we present an interactive algorithm to learn a 1STS for a domain of trees,
with the guarantee that the obtained 1STS is functionally unique. Our algorithm
asks the user only a linear number of questions (Section 5.8).

4. A construction of a linear tree test set for data types with Strings, which enables
constructing a small set of inputs that distinguish between two recursive functions
(Section 5.9).

5. An implementation of our algorithms as an interactive command-line tool (Section 5.10)

We note that the fundamental contributions of (1) and (2) are new general results about
formal languages and may be of interest on their own.

For readability purposes, we only show proof sketches and intuition; detailed proofs are
located in the appendices (pages 208 to 214).

5.2 Example Run of Our Synthesis Algorithm

To motivate our problem domain, we present a run of our algorithm on an example. The
example is an ADT representing a context-free grammar. It defines its custom alphabet
(Char), words (CharList), and non-terminals indexed by words (NonTerminal). A rule
(Rule) is a pair made of a non-terminal and a sequence of symbols (ListSymbol), which
can be non-terminals or terminals (Terminal). Finally, a grammar is a pair made of a
(starting) non-terminal and a sequence of rules.
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The input of our algorithm is the following file (written in Scala syntax):

abstract class Char
case class a() extends Char
case class b() extends Char

abstract class CharList
case class NilChar() extends CharList
case class ConsChar(c: Char, l: CharList) extends CharList

abstract class Symbol
case class Terminal(t: Char) extends Symbol
case class NonTerminal(s: CharList) extends Symbol

case class Rule(lhs: NonTerminal, rhs: ListSymbol)

abstract class ListRule
case class ConsRule(r: Rule, tail: ListRule) extends ListRule
case class NilRule() extends ListRule

abstract class ListSymbol
case class ConsSymbol(s: Symbol, tail: ListSymbol) extends ListSymbol
case class NilSymbol() extends ListSymbol

case class Grammar(s: NonTerminal, r: ListRule)

We would like to synthesize a recursive tree-to-string function print, such that if we
compute, for example:

print(Grammar(NonTerminal(NilChar()),
ConsRule(Rule(NonTerminal(NilChar()),

ConsSymbol(Terminal(a()),
ConsSymbol(NonTerminal(NilChar()),

ConsSymbol(Terminal(b()), NilSymbol())))),
ConsRule(Rule(NonTerminal(NilChar()),

NilSymbol())), NilRule())))

the result should be:

Start: N
N −> a N b
N −>

We would like the print function to handle any valid Grammar tree.

When given these class definitions above, our algorithm precomputes a set of terms from
the ADT, so that any two single-state recursive functions which output the same Strings
for these terms also output the same Strings for any term from this ADT. (This is related
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to the notion of tree test set defined in Section 5.7.2.) Our algorithm will determine the
outputs for these terms by interacting with the user and asking questions. Overall, for
this example, our algorithm asks the output for 14 terms.

For readability, question lines provided by the synthesizer are indented. Lines entered by
the user finish by the symbol ←↩ , meaning that she pressed the ENTER key. Everything
after ←↩ on the same line is our comment on the interaction. “It” usually refers to the
synthesizer. After few interactions, the questions themselves are shortened for conciseness.
The interaction is the following:

Proactive Synthesis.
If you ever want to enter a new line, terminate your line by \ and press Enter.
What should be the function output for the following input tree?
a

a←↩

What should be the function output for the following input tree?
b

b←↩

NilChar ?
←↩ indeed, NilChar is an empty string.

NilSymbol ?
←↩ No symbol at the right-hand-side of a rule

NilRule ?
←↩ No rule left describing the grammar

What should be the function output for the following input tree?
Terminal(a)
Something of the form: [...]a[...]

a←↩ Terminals contain only one char. Note the hint provided by the synthesizer.
NonTerminal(NilChar) ?

N←↩

ConsChar(b,NilChar) ? Something of the form: [...]b[...]
b←↩ A ConsChar is a concatenation of a char and a string

What should be the function output for the following input tree?
NonTerminal(ConsChar(b,NilChar))
1) Nb
2) bN
Please enter a number between 1 and 2, or 0 if you really want to enter your answer manually

1←↩ Note that it was able to infer only two possibilities, thus the closed question.
Grammar(NonTerminal(NilChar),NilRule) ? Something of the form: [...]N[...]

Start: N←↩

ConsSymbol(Terminal(a),NilSymbol) ? Something of the form: [...]‘a‘[...]
a←↩ Symbols on the right-hand-side of a Rule are prefixed with a space

Rule(NonTerminal(NilChar),NilSymbol) ? Something of the form: [...]N[...]
N −>←↩ A rule with no symbols on the right-hand-side

ConsRule(Rule(NonTerminal(NilChar),NilSymbol),NilRule) ?
Something of the form: [...]N −>[...]

\←↩ A newline
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N −>←↩

What should be the function output for the following input tree?
Rule(NonTerminal(NilChar),ConsSymbol(Terminal(‘a‘),NilSymbol))
1) N ‘a‘−>
2) N − ‘a‘>
3) N −> ‘a‘
4) N ‘a‘ −>
Please enter a number between 1 and 4, or 0 if you really want to enter your answer manually

3←↩

The synthesizer then emits the desired recursive tree-to-string function, along with a
complete set of the tests that determine it:

def print(t: Any): String = t match {
case a() ⇒ "a"
case b() ⇒ "b"
case NilChar() ⇒ ""
case ConsChar(t1,t2) ⇒ print(t1) + print(t2)
case Terminal(t1) ⇒ "‘" + print(t1) + "‘"
case NonTerminal(t1) ⇒ "N" + print(t1)
case Rule(t1,t2) ⇒ print(t1) + " −>" + print(t2)
case ConsRule(t1,t2) ⇒ "\n" + print(t1) + print(t2)
case NilRule() ⇒ ""
case ConsSymbol(t1,t2) ⇒ " " + print(t1) + print(t2)
case NilSymbol() ⇒ ""
case Grammar(t1,t2) ⇒ "Start: " + print(t1) + print(t2)

} // the part below is a contract, not needed to execute the recursive function
ensuring { (res: string) => res == (t match {

case a() => "a"
case b() => "b"
case NilChar() => ""
case NilSymbol() => ""
case NilRule() => ""
case Terminal(a()) => "a"
case NonTerminal(NilChar()) => "N"
case ConsChar(b(),NilChar()) => "b"
case NonTerminal(ConsChar(b(),NilChar())) => "Nb"
case Grammar(NonTerminal(NilChar()),NilRule()) => "Start: N"
case ConsSymbol(Terminal(a()),NilSymbol()) => " a"
case Rule(NonTerminal(NilChar()),NilSymbol()) => "N −>"
case ConsRule(Rule(NonTerminal(NilChar()),NilSymbol()),NilRule()) => "\nN −>"
case Rule(NonTerminal(NilChar()),ConsSymbol(Terminal(a()),NilSymbol())) => "N −> a"
case _ => res})

}

Observe that, in addition to the program, the synthesis system emits as a postcondition
(after the ensuring construct) the recorded input/output examples (tests). Our work
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enables the construction of an IDE that would automatically maintain the bidirectional
correspondence between the body of the recursive function and the postcondition that
specifies its input/output tests. If the user modifies an example in the postcondition, the
system could re-synthesize the function, asking for clarification in cases where the tests
become ambiguous. If the user modifies the program, such system can regenerate the
tests.

Depending on user’s answers, the total number of questions that the synthesizers asks
varies (see section 5.11). Nonetheless, the properties that we proved for our algorithm
guarantee that the number of questions remains at most linear as a function of the size
of the algebraic data type declaration.

When the user enters outputs which are not consistent, i.e., for which there exists no
printing function in the class of functions that we consider, our tool directly detects it
and warns the user. For instance, for the tree
ConsRule(Rule(NonTerminal(NilChar),NilSymbol),NilRule)
if the user enters N- > with the space and the dash inverted, the system detects that
this output is not consistent with the output provided for tree
Rule(NonTerminal(NilChar),NilSymbol)
and asks the question again.

We cannot have the transducer convert ConsRule(Rule(NonTerminal(NilChar),NilSymbol),NilRule)
to N− >.
Please enter something consistent with what you previously entered (e.g. ’N −>’,’N −>bar

’,...)?

5.3 Discussion

5.3.1 Advantages of Synthesis Approach

It is important to emphasize that in the approach we outline, the developer not only
enters less text in terms of the number of characters than in the above source code, but
that the input from the user is entirely in terms of concrete input-output values, which
can be easier to reason about for non-expert users than recursive programs with variable
names and control-flow.

It is notable that the synthesizer in many cases offered suggestions, which means that
the user often simply needed to check whether one of the candidate outputs is acceptable.
Even in cases where the user needed to provide new parts of the string, the synthesizer
in many cases guided the user towards a form of the output consistent with the outputs
provided so far. Because of this knowledge, the synthesizer could also be stopped early
by, for example, guessing the unknown information according to some preference (e.g.
replacing all unknown string constants by empty strings), so the user can in many cases
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obtain a program by providing a very small amount of information.

Such easy-to-use interactions could be implemented as a pretty printing wizard in an
IDE, for example triggered when the user starts to write a function to convert an ADT
to a String.

Our experience in writing pretty printers manually suggests that they often require
testing to ensure that the generated output corresponds to the desired intuition of the
developer, suggesting that input-output tests may be a better form of specification even
if in cases where they are more verbose. We therefore believe that it is valuable to make
available to users and developers sucn an alternative method of specifying recursive
functions, a method that can co-exist with the conventional explicitly written recursive
functions and the functions derived automatically (but generically) by the compiler (such
as default printing of algebraic data type values in Scala), or using polytypic programming
approaches [Jansson, 2000] and serialization libraries [Miller et al., 2013]. (Note that
the generic approaches can reduce the boilerplate, but do not address the problem of
unambiguously generalizing examples to recursive functions.)

5.3.2 Challenges in Obtaining Efficient Algorithms

The problem of inferring a program from examples requires recovering the constants
embedded in the program from the results of concatenating these constants according to
the structure of the given input tree examples. This presents two main challenges. The
first one is that the algorithm needs to split the output string and identify which parts
correspond to constants and which to recursive calls. This process becomes particularly
ambiguous if the alphabet used is small or if some constants are empty strings. A natural
way to solve such problems is to formulate them as a conjunction of word equations.
Unfortunately, the best known deterministic algorithms for solving word equations run
in exponential time (the best complexity upper bound for the problem takes linear
space [Plandowski, 1999, Jeż, 2017]). Our paper shows that, under an assumption that,
when specifying printing of a tree, we also specify printing of its subtrees, we obtain
word equations solvable in polynomial time.

The next challenge is the number of examples that need to be solved. Here, a previous
upper bound derived from the theory of test sets of context-free languages was Ω(n6),
which, even if polynomial, results in impractical number of user interactions. In this
paper we improve this theoretical result and show that tests sets are in fact in O(n3),
asymptotically matching the known lower bound.

Furthermore, if we allow the learning algorithm to choose the inputs one by one after
obtaining outputs, the overall learning algorithm has a linear number of queries to user
and to equation solving subroutine, as a function of the size of tree data type definition.
Our contributions therefore lead to tools that have completeness guarantees with much

129



Chapter 5. Complete Interactive Questioning

less user input and a shorter running time than the algorithms based on prior techniques.

We next present our algorithms as well as the results that justify their correctness and
completeness.

5.4 Notation

We start by introducing our notation and terminology for some standard concepts. Given
a (partial) function from f : A → B, and a set C, f|C denotes the (partial) function
g : A ∩ C → B such that g(a) = f(a) for all a ∈ A ∩ C.

A word (string) is a finite sequence of elements of a finite set Σ, which we call an alphabet.

A morphism f : Σ∗ → Γ∗ is a function such that f(ε) = ε and for every u, v ∈ Σ∗,
f(u · v) = f(u) · f(v), where the symbol ‘·’ denotes the concatenation of words (strings).

A non-deterministic finite automaton (NFA) is a tuple (Γ, Q, qi, F, δ) where Γ is the
alphabet, Q is the set of states, qi ∈ Q is the initial state, F is the set of final states,
δ ⊆ Q × Γ × Q is the transition relation. When the transition relation is deterministic,
that is for all q, p1, p2 ∈ Q, a ∈ Γ, if (q, a, p1) ∈ δ and (q, a, p2) ∈ δ, then p1 = p2, we say
that A is a deterministic finite automaton (DFA).

A context-free grammar G is a tuple (N, Σ, R, S) where:

• N is a set of non-terminals,

• Σ is a set of terminals, disjoint from N ,

• R ⊆ N × (N ∪ Σ)∗ is a set of production rules,

• S ∈ N is the starting non-terminal symbol.

A production (A, rhs) ∈ R is denoted A → rhs. The size of G, denoted |G|, is the sum
of sizes of each production in R:

∑
A→rhs∈R 1 + |rhs|. A grammar is linear if for every

production A → rhs ∈ R, the rhs string contains at most one occurrence of N . By an
abuse of notation, we denote by G the set of words produced by G.

5.4.1 Trees and Domains

A ranked alphabet Σ is a set of pairs (f, k) where f is a symbol from a finite alphabet,
and k ∈ N. A pair (f, k) of a ranked alphabet is also denoted f (k). We say that symbol f

has a rank (or arity) equal to k. We define by TΣ the set of trees defined over alphabet Σ.
Formally, TΣ is the smallest set such that, if t1, . . . , tk ∈ TΣ, and f (k) ∈ Σ for some k ∈ N,
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then f(t1, . . . , tk) ∈ TΣ. A set of trees T is closed under subtree if for all f(t1, . . . , tk) ∈ T ,
for all i ∈ {1, . . . , k}, ti ∈ T .

A top-down tree automaton T is a tuple (Σ, Q, I, δ) where Σ is a ranked alphabet, I ⊆ Q

is the set of initial states, and δ ⊆ Σ × Q × Q∗. The set of trees L(T ) recognized by T is
defined recursively as follows. For f (k) ∈ Σ, q ∈ Q, and t = f(t1, . . . , tk) ∈ TΣ, we have
t ∈ L(T )q iff there exists (f, q, q1 · · · qk) ∈ δ such that for 1 ≤ i ≤ k, ti ∈ L(T )qi . The set
L(T ) is then defined as

⋃
q∈I L(T )q.

Algebraic data types are described by the notion of domain, which is a set of trees
recognized by a top-down tree automaton T = (Σ, Q, I, δ). The size of the domain is the
sum of sizes of each transition in δ, that is

∑
(f (k),q,q1···qk)∈δ 1 + k.

Example 1. In this example and the following ones, we illustrate our notions using
an encoding of HTML-like data structures. Consider the following algebraic data type
definitions in Scala:

abstract class Node
case class node(t: Tag, l: List) extends Node

abstract class Tag
case class div() extends Tag
case class pre() extends Tag
case class span() extends Tag

abstract class List
case class cons(n: Node, l: List) extends List
case class nil() extends List

The corresponding domain Dhtml is described by the following:

Σ = {nil(0), cons(2), node(2), div(0), pre(0), span(0)}
Q = {Node, Tag, List}
I = {Node, Tag, List}
δ = {(node, Node, (Tag, List)),

(div, Tag, ()), (pre, Tag, ()), (span, Tag, ()),
(cons, List, (Node, List)),
(nil, List, ())}

5.4.2 Transducers

A deterministic, sequential, single-state, top-down tree-to-string transducer τ (1STS for
short) is a tuple (Σ, Γ, δ) where:
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• Σ is a ranked alphabet (of trees),

• Γ is an alphabet (of words),

• δ is a function over Σ such that ∀f (k) ∈ Σ. δ(f) ∈ (Γ∗)k+1.

Note that the transducer does not depend on a particular domain for Σ, but instead can
map any tree from TΣ to a word. Later, when we present our learning algorithms for
1STSs, we restrict ourselves to particular domains provided by the user of the algorithm.

We denote by �τ� the function from trees to words associated with the 1STS τ . Formally,
for every f (k) ∈ Σ, we have �τ�(f(t1, . . . , tk)) = u0 · �τ�(t1) · u1 · · · �τ�(tk) · uk if δ(f) =
(u0, u1, . . . , uk). When clear from context, we abuse notation and use τ as a shorthand
for the function �τ�.

Example 2. A transducer τ = (Σ, Γ, δ) converting HTML trees into a convenient syntax
for some programmatic templating engines2 may be described by:

Σ ={nil(0), cons(2), node(2), div(0), pre(0), span(0)}}
Γ =[All symbols]

δ(node) =(“<.”, ε, ε)
δ(div) =(“div”) δ(pre) =(“pre”) δ(span) = (“span”),

δ(cons) =(“(”, “)”, ε) δ(nil) =(ε)

In Scala, this is written as follows:

def tau(input: Tree) = input match {
case node(t, l) ⇒ "<." + tau(t) + "" + tau(l) + ""
case div() ⇒ "div"
case pre() ⇒ "pre"
case span() ⇒ "span"
case cons(n, l) ⇒ "(" + tau(n) + ")" + tau(l) + ""
case nil() ⇒ ""

}

For example, tau(node(div,cons(node(span,nil,cons(node(pre,nil))))))= "<.div(<.span())(<.pre
())"

5.5 Transducers as Morphisms

For a given alphabet Σ, a 1STS (Σ, Γ, δ) is completely determined by the constants that
appear in δ. This allows us to define a one-to-one correspondence between transducers

2https://github.com/lihaoyi/scalatags
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and morphisms. This correspondence is made through what we call the default transducer.
More specifically, Γ is the set Σ = {(f, i) | f (k) ∈ Σ ∧ 0 ≤ i ≤ k} and for all f (k) ∈ Σ, we
have δ(f) = ((f, 0), (f, 1), . . . , (f, k)). The default transducer produces sequences of pairs
from Σ.

Example 3. For Σ = {nil(0), cons(2), node(2), div(0), pre(0), span(0)}, τΣ is:

Γ ={ (node, 0), (node, 1), (node, 2), (div, 0), (pre, 0), (span, 0)
(cons, 0), (cons, 1), (cons, 2), (nil, 0)}

δ(node) = ((node, 0), (node, 1), (node, 2))
δ(div) = (div, 0) δ(pre) = (pre, 0) δ(span) = (span, 0)

δ(cons) = ((cons, 0), (cons, 1), (cons, 2)) δ(nil) = (nil, 0))

In Scala, τΣ can be written as follows (+ is used to concatenate elements and lists):

def tauSigma(input: Tree): List[Σ] = input match {
case node(t, l) ⇒ (node,0) + tauSigma(t) + (node,1) + tauSigma(l) + (node,2)
case div() ⇒ (div,0)
case pre() ⇒ (pre,0)
case span() ⇒ (span,0)
case cons(n, l) ⇒ (cons,0) + tauSigma(n) + (cons,1) + tauSigma(l) + (cons,2)
case nil(n, l) ⇒ (nil,0)

}

Lemma 5.5.1.1. For any ranked alphabet Σ, the function �τΣ� is injective.

Proof. The proof of this result is located in Appendix E.1.

Following Lemma 5.5.1.1, for a word w ∈ Σ∗, we define tree(w) to be the unique tree
(when it exists) such that τΣ(tree(w)) = w. We show in Figure 5.2 how to obtain tree(w)
in linear time from w.

For a 1STS τ = (Σ, Γ, δ), we define the morphism morph[τ ] from Σ to Γ∗, and such
that, for all f (k) ∈ Σ, i ∈ {0, . . . , k}, morph[τ ](f, i) = ui where δ(f) = (u0, u1, . . . , uk).
Conversely, given a morphism μ : Σ → Γ∗, we define sts(μ) as τΣ where each output
l ∈ Σ is replaced by μ(l).
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def tree(w: List[Σ]): Tree =
if w is empty or does not start with some (f, 0):

throw error
let (f, 0) = w.head
w ← w.tail
for i from 1 to arity(f)

ti = tree(w)
assert(w starts with (f, i))
w ← w.tail

return f(t1, . . ., tk)

Figure 5.2 – Parsing algorithm to obtain tree(w) from a word w ∈ Σ∗. When the
algorithm fails, because of a pattern matching error or because of the thrown exception,
it means there exists no t such that τΣ(t) = w.

Example 4. For Example 2, morph[τ ] is defined by:

morph[τ ](node, 0) = “<.” morph[τ ](cons, 0) = “(”
morph[τ ](node, 1) = ε morph[τ ](cons, 1) = “)”
morph[τ ](node, 2) = ε morph[τ ](cons, 2) = ε

morph[τ ](div, 0) = “div” morph[τ ](nil, 0) = ε

morph[τ ](pre, 0) = “pre” morph[τ ](span, 0) = “span”

Note that for any morphism: μ : Σ → Γ∗, morph[sts(μ)] = μ and for any 1STS τ ,
sts(morph[τ ]) = τ . Moreover, we have the following result, which expresses the output
of a 1STS τ using the morphism morph[τ ].

Lemma 5.5.1.2. For a 1STS τ , and for all t ∈ TΣ, morph[τ ](τΣ(t)) = τ(t).

Proof. Follows directly from the definitions of morph[τ ] and τΣ.

Example 5. Let t = cons(node(div, nil), nil). For morph[] defined as in Example 4 and
the transducer τ as in Example 2, the left-hand-side of the equation of Lemma 5.5.1.2
translates to:

morph[τ ](τΣ(t))
= morph[τ ](τΣ(cons(node(div, nil), nil)))
= morph[τ ]((cons, 0)(node, 0)(div, 0)(node, 1)(nil, 0)(node, 2)(cons, 1)(nil, 0)(cons, 2))
= “(” · “<.” · “div” · ε · ε · ε · “)” · ε · ε

= “(<.div)”
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Similarly, the right-hand-side of the equation can be computed as follows:

τ(t)
= τ(cons(node(div, nil), nil))
= “(” · τ(node(div, nil)) · “)” · τ(nil) · ε

= “(” · “<.” · τ(div) · ε · τ(nil) · ε · “)” · ε · ε

= “(<.div)”

We thus obtain that checking equivalence of 1STSs can be reduced to checking equivalence
of morphisms on a context-free language.

Lemma 5.5.1.3 (See [Staworko et al., 2009]). Let τ1 and τ2 be two 1STSs, and D =
(Σ, Q, I, δ) a domain. Then �τ1�|D = �τ2�|D if and only if morph[τ1]|G = morph[τ2]|G
where G is the context-free language {τΣ(t) | t ∈ D}.

Proof. Follows from Lemma 5.5.1.2. G is context-free, as it can be recognized by the
grammar (NG, Σ, RG, SG) where:

• NG = {SG} ∪ {Aq | q ∈ Q}, where SG is a fresh symbol used as the starting
non-terminal,

• The productions are:

RG = {Aq → (f, 0) · Aq1 · (f, 1) · · · Aqk
· (f, k) | f (k) ∈ Σ ∧ (q, f, (q1, . . . , qk)) ∈ δ}

∪ {SG → Aq | q ∈ I}

Note that the size of G is linear in the size of |D| (as long as there are no unused states
in D).

5.6 Learning 1STS from a Sample

We now present a learning algorithm for learning 1STSs from sets of input/output
examples, or a sample. Formally, a sample S : TΣ �→ Γ∗ is a partial function from trees
to words, or alternatively, a set of pairs (t, w) with t ∈ TΣ and w ∈ Γ∗ such that each t is
paired with at most one w.

5.6.1 NP-completeness of the general case

In general, we prove that finding whether there exists a 1STS consistent with a given a
sample is an NP-complete problem. To prove NP-hardness, we reduce the one-in-three
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positive SAT problem. This problem asks, given a formula ϕ with no negated variables,
whether there exists an assignment such that for each clause of ϕ, exactly one variable
(out of three) evaluates to true.

Theorem 5.6.1.1. Given a sample S, checking whether there exists a 1STS τ such that
for all (t, w) ∈ S, τ(t) = w is an NP-complete problem.

Proof. (Sketch) We can check for the existence of τ in NP using the following idea. Every
input/output example from the sample gives constraints on the constants of τ . Therefore,
to check for the existence of τ , it is sufficient to non-deterministically guess constants
which are subwords of the given output examples. We can then verify in polynomial-time
whether the guessed constants form a 1STS τ which is consistent with the sample S.

To prove NP-hardness, we consider a formula ϕ, instance of the one-in-three positive SAT.
The formula ϕ has no negated variables, and is satisfiable if there exists an assignment
to the boolean variables such that for each clause of ϕ, exactly one variable (out of three)
evaluates to true.

We construct a sample S such that there exists a 1STS τ such that for all (t, w) ∈ S,
τ(t) = w if and only if ϕ is satisfiable. For each clause (x, y, z) ∈ ϕ, we construct an
input/output example of the form S(x(y(z(nil)))) = a# where x, y and z are symbols
of arity 1 corresponding to the variables of the same name in ϕ, nil is a symbol of arity
0, and a and # are two special characters. Moreover, we add an input/output example
stating that S(nil) = #.

This construction forces the fact that a 1STS τ consistent with S will have a non-empty
output (a) for exactly one symbol out of x, y, and z (therefore matching the requirements
of one-in-three positive SAT formulas).

The complete proof is located in Appendix E.2.

In the sequel, we prove that if the domain of the given sample is closed under subtree,
this problem can be solved in polynomial time.

5.6.2 Word Equations

Our learning algorithm relies on reducing the problem of learning a 1STS from a sample to
the problem of solving word equations. In general, the best known algorithm for solving
word equations is in linear space [Plandowski, 1999, Jeż, 2017], and takes exponential
time to run. When the domain of the sample S is closed under subtree, the equations
we construct have a particular form, and we call them sequential formulas. We show
there is a polynomial-time algorithm for checking whether a sequential word formula is
satisfiable.
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Definition 6. Let X be a finite set of variables, and Γ a finite alphabet. A word equation
e is a pair y1 = y2 where y1, y2 ∈ (X ∪ Γ)∗. A word formula ϕ is a conjunction of word
equations. An assignment is a function from X to Γ∗, and can be seen as a morphism
μ : (X ∪ Γ) → Γ∗ such that μ(a) = a for all a ∈ Γ.

A word formula is satisfiable if there exists an assignment μ : (X ∪ Γ) → Γ∗ such that for
all equations y1 = y2 in ϕ, μ(y1) = μ(y2).

A word formula ϕ is called sequential if: 1) for each equation y1 = y2 ∈ ϕ, y2 ∈ Γ∗

contains no variable, and y1 ∈ (Γ ∪ X)∗ contains at most one occurrence of each variable,
2) for all equations y = _ and y′ = _ in ϕ, either y and y′ do not have variables in
common, or y|X = y′|X, that is y and y′ have the same sequence of variables. We used
the name sequential due to this last fact.

Example 7. For X1, X2, X3, X4, X5 ∈ X and p, q ∈ Γ∗, each of the four formulas below
is sequential:

X1 = pq X1X3 = qpqpqqpqpq ∧ X1qX3 = qpqpqqqpqpq

X1pX2qX3 = qppq X1pqX2X3 = pqpqpp ∧ X1X2qpX3 = pqppqp ∧ X5pX4 = qpq

The following formulas (and any formula containing them) are not sequential:

X1pqX2X3 = pX3pq (rhs is not in Γ∗)
X1pqX2pX3X2 = ppqqpp (X2 appears twice in lhs)

X1pqX2X3 = pqpqpp ∧ X2pX5 = qpq (X2 is shared)
X1pqX2X3 = pqpqpp ∧ X1pX3X2 = pqppp (different orderings of X1 X2 X3)

We prove that any sequential word formula ϕ can be solved in polynomial time.

Lemma 5.6.2.1. Let ϕ be a sequential word formula. Let n be the number of equations
in ϕ, V the number of variables, and C be the size of the largest constant appearing in ϕ.
We can determine in polynomial time O(nV C) whether ϕ is satisfiable. When it is, we
can also produce a satisfying assignment for ϕ.

Proof. By definition of sequential, ϕ can be written as ϕ1 ∧ · · · ∧ ϕl for some l ∈ N,
where for i �= j, ϕi and ϕj do not have variables in common. We can thus check for
satisfiability of ϕ by checking satisfiability of each ϕi independently. Let ψ be one of ϕi

for i ∈ {1, . . . , l}.

By definition of sequential, we know there exists n ∈ N with ψ ≡ y1 = w1 ∧· · ·∧ yn = wn,
and there exist k ∈ N and X0, . . . , Xk ∈ X, such that for all i ∈ {1, . . . , n}, wi ∈ Γ∗, and
yi|X = X0 · · · Xk.
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Figure 5.3 – On the left, two automata representing the solutions of equations X0 p
X1 X2 = pqpp and X0 X1 p X2 = qppp respectively. On the right, their intersection
represents the solutions of the conjunction of equations. Note that the third automaton
can be obtained from the first (and the second) by removing states and transitions.

The outline of the proof is the following. For i ∈ {1, . . . , n}, we build an acyclic DFA,
denoted Ai = automaton(yi, wi), that recognizes the set

{μ(X0)#μ(X1) · · · #μ(Xk) | μ : X → Γ∗ ∧ μ(yi) = wi}

where # is a special character we introduce, used as a separator.

Then, there exists an assignment μ : X → Γ∗ such that for all i ∈ {1, . . . , n}, μ(yi) = wi

if and only if A1 ∩ · · · ∩ An �= ∅. We then show that the emptiness of this intersection can
be checked in polynomial time, due to the particular form of the automata. (In general,
checking the emptiness of the intersection of n automata is a PSPACE-complete problem,
and thus takes exponential time to check.)

We now give the formal details of the proof. Let i ∈ {1, . . . , n}, and yi = X0u1X1 · · · ukXk.
We define Ai = automaton(yi, wi) = (Qi, qi, δi) as follows:

• Qi = {0, . . . , k} × {0, . . . , |yi|} is the set of states,

• qi = (0, 0) is the initial state,

• for a ∈ {0, . . . , k}, b ∈ {0, . . . , |yi|},

– δ((a, b), #) = (a + 1, b + |ua+1|)
if a < k and yi[b, b + |ua+1|] = ua+1,

– δ((a, b), σ) = (a, b + 1) if the (b + 1)th letter of |yi| is σ.

We now prove that the intersection A1 ∩ · · · ∩ An can be represented by an automaton
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which has as many states as the smallest Ai. We first compute the intersection between
A1 and A2, and show that the resulting automaton can be obtained from A1 by deleting
transitions (see Figure 5.3).

We denote the states of A1 by P = {p(i,j) | i ∈ {0, . . . , k}, j ∈ {0, . . . , |w1|}} and the
states of A2 by Q = {q(i,j) | i ∈ {0, . . . , k}, j ∈ {0, . . . , |w2|}}.

Let y1 = X0u1X1 · · · ukXk, and y2 = X0v1X1 · · · vkXk, where u1, . . . , uk, v1, . . . , vk ∈ Γ∗

We know that whenever there is a transition from a state p(i,j) to p(i′,j′) in A1 then either:

• i′ = i and j′ = j + 1 (Γ-transitions), or

• i′ = i + 1 and j′ = j + |ui+1| (#-transitions)

The same property holds for A2, by replacing ui+1 with vi+1.

We compute the cartesian product B2 of A1 and A2. The states of B2 are pairs from
P × Q. Consider such a state (p(i,j), q(i′,j′)) which is reachable in B2 from the initial state
(p(0,0), q(0,0)).

First, we can show that i = i′. The only transitions that increase i and i′ in A1 and A2
are #-transitions, and they increase i and i′ by 1. Thus, in the cartesian product B2, we
always have i = i′.

Similarly, the following invariant holds for the reachable states (p(i,j), q(i,j′)) of B2:

j − j′ =
i∑

k=1
|uk| − |vk|

In particular, this means that each state p ∈ P can be paired with at most one state
q ∈ Q in B2 (and each state of Q can be paired with at most one state of P ). This
entails that B2 can be obtained from A1 or A2 by erasing transition, and that it has at
most as many reachable states as min(|P |, |Q|).

For 3 ≤ i ≤ n, we then compute Bi = Ai ∩ Bi−1 similarly, and obtain that Bn =
A1 ∩ · · · ∩ An has at most as many reachable states as the smallest Ai.

5.6.3 Algorithm for Learning from a Sample

Consider a sample S such that dom(S) is closed under subtree. Given (t, w) ∈ S, we
define the word equation equation(t, w) as:

τΣ(t) = w
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Algorithm 1 Learning 1STSs from a sample.
Input: A sample S whose domain is closed under subtree.
Output: If there exists a 1STS τ such that τ(t) = w for all (t, w) ∈ S, output Yes and
τ , otherwise, output No.

1. Build the sequential formula ϕ ≡ ∧
(t,w)∈S regEquation(t, w, S)

2. Check whether ϕ has a satisfying assignment μ as follows: (see Lemma 5.6.2.1):

• For every word equation regEquation(t, w, S) where t has root f , build a DFA
that represents all possible solutions for the words μ(f, 0),. . . ,μ(f, k).

• Check whether the intersection of all DFAs contains some word w.
– If no, exit the algorithm and return No.
– If yes, define the words μ(f, 0),. . . ,μ(f, k) following w.

3. Return (Yes and) sts(μ).

where the left hand side τΣ(t) is a concatenation of elements from Σ, considered as word
variables, and the right hand side w ∈ Γ∗ is considered to be a word constant.

Assume all equations corresponding to a set of input/output examples are simultaneously
satisfiable, with an assignment μ : Σ → Γ∗. Our algorithm then returns the 1STS
τ = sts(μ), thus guarantying that τ(t) = w for all (t, w) ∈ Σ.

If the equations are not simultaneously satisfiable, our algorithm returns No.

Example 8. For Σ = {nil(0), cons(2), node(2), div(0), pre(0), span(0)}, given the examples:

τΣ(node(div, nil)) = “<.div”
τΣ(div) = “div” τΣ(span) = “span” τΣ(pre) = “pre”

τΣ(cons(node(div, nil), nil) = “(<.div)” τΣ(nil) = “”

we obtain the following equations:

(node, 0) · (div, 0) · (node, 1) · (nil, 0) · (node, 2) = “<.div”
(div, 0) = “div”

(span, 0) = “span”
(pre, 0) = “pre”

(cons, 0) · (node, 0) · (div, 0) · (node, 1) · (nil, 0)·
(node, 2) · (cons, 1) · (nil, 0) · (cons, 2) = “(<.div)”

(nil, 0) = “”

A satisfying assignment for these equations is the morphism morph[τ ] given in Example 4.
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Note that this assignment is not unique (see Example 9). We resolve ambiguities in
Section 5.7.

To check for satisfiability of
∧

(t,w)∈S equation(t, w), we slightly transform the equations
in order to obtain a sequential formula. For (t, w) ∈ S, with t = f(t1, . . . , tk), we define
the word equation regEquation(t, w, S) as:

(f, 0) w1 (f, 1) · · · wk (f, k) = w

where for all i ∈ {1, . . . , k}, wi = S(ti). Note that S(ti) must be defined, since t is in the
domain of S, which is closed under subtree. Moreover, the formula

ϕ ≡
∧

(t,w)∈S
regEquation(t, w, S)

is satisfiable iff
∧

(t,w)∈S equation(t, w) is satisfiable.

Finally, ϕ is a sequential formula. Indeed, two equations corresponding to trees having the
same root f (k) ∈ Σ have the same sequence of variables (f, 0) . . . (f, k) in their left hand
sides. And two equations corresponding to trees not having the same root have disjoint
variables. Thus, using Lemma 5.6.2.1, we can check satisfiability of ϕ in polynomial time
(and obtain a satisfying assignment for ϕ if there exists one).

Theorem 5.6.3.1 (Correctness and running time of Algorithm 1). Let S be a sample
whose domain is closed under subtree. If there exists a 1STS τ such that τ(t) = w for
all (t, w) ∈ S, Algorithm 1 returns one such 1STS. Otherwise, Algorithm 1 returns No.
Algorithm 1 terminates in time polynomial in the size of S.

Proof. Assume ϕ has a satisfying assignment μ : Σ → Γ∗, in step (2) of Algorithm 1.
In that case, Algorithm 1 returns τ = sts(μ). By definition of ϕ, we know, for all
(t, w) ∈ S, μ(τΣ(t)) = w. Moreover, since morph[τ ] = μ, we have by Lemma 5.5.1.2 that
τ(t) = μ(τΣ(t)), so τ(t) = w.

Conversely, if there exists τ such that τ(t) = w for all (t, w) ∈ S. Then, again by
Lemma 5.5.1.2, morph[τ ] is a satisfying assignment for ϕ, and Algorithm 1 must return
Yes.

The polynomial running time follows from Lemma 5.6.2.1.

Remark. For samples whose domains are not closed under subtree, we may modify
Algorithm 1 to check for satisfiability of word equations which are not necessarily
sequential. In that case, we are not guaranteed that the running time is polynomial.
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5.7 Learning 1STSs Without Ambiguity

The issue with Algorithm 1 is that the 1STS expected by the user may be different than
the one returned by the algorithm (see Example 9 below). To circumvent this issue, we
use the notion of tree test set. Formally, a set of trees T ⊆ D is a tree test set for the
domain D if for all 1STSs τ1 and τ2, �τ1�|T = �τ2�|T implies �τ1�|D = �τ2�|D.

Example 9. The transducer τ2 defined below satisfies the requirements of Example 8
but is different than the transducer in Example 2. Namely, the values in the box have
been switched.

δ2(node) =(“<.”, ε, ε)
δ2(div) =(“div”) δ2(pre) =(“pre”) δ2(span) = (“span”)

δ2(cons) =(“(”, ε, “)” ) δ2(nil) =(ε)

We can verify that the two transducers are not equal on the domain Dhtml:

τ(cons(node(div, nil), cons(node(div, nil), nil))) = “(<.div)(<.div)”
τ2(cons(node(div, nil), cons(node(div, nil), nil))) = “(<.div(<.div))”

Therefore, if a user had the 1STS τ in mind when giving the sample of Example 8, it is
still possible that Algorithm 1 returns τ2. However, by definition of tree test set, if the
sample given to Algorithm 1 contains a tree test set for Dhtml, we are guaranteed that
the resulting transducer is equivalent to the transducer that the user has in mind, for all
trees on Dhtml.

Our goal in this section is to compute from a given domain D a tree test set for D.
The notion of tree test set is derived from the well-known notion of test set in formal
languages. The test set of a language L (a set of words) is a subset T ⊆ L such that for
any two morphisms f, g : Σ∗ → Γ∗, f|T = g|T implies f|L = g|L.

To compute a tree test set T for D, we first compute a test set TG for the context-
free language G = {τΣ(t) | t ∈ D} (built in Lemma 5.5.1.3), and then define T =
{tree(w) | w ∈ TG}. We prove in Lemma 5.7.2.1 that T is indeed a tree test set for D.

We introduce in Section 5.7.1 a new construction, asymptotically optimal, for building
test sets of context-free languages. We show in Section 5.7.2 how this translates to a
construction of a tree test set for a domain D. We also give a sufficient condition of D

so that the obtained tree test set is closed under subtree. This allows us to present, in
Section 5.7.3, an algorithm that learns 1STSs from a domain D in polynomial-time (by
building the tree test set T of D, and asking to the user the outputs corresponding to
the trees of T ).
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5.7.1 Test Sets for Context-Free Languages

We show in this section how to build, from a context-free grammar G, a test set of size of
O(|G|3). Our construction is asymptotically optimal. We reuse lemmas from [Plandowski,
1994, Plandowski, 1995], which were originally used to give a O(|G|6) construction.

Plandowski’s Test Set

The following lemma was originally used in [Plandowski, 1994, Plandowski, 1995] to show
that any linear context-free grammar has a test set containing at most O(|R|6) elements.
We show in Section 5.7.1 how this lemma can be used to show a 2|R|3 bound.

Let Σ4 = {ai, ai, bi, bi | i ∈ {1, 2, 3, 4}} be an alphabet. We define:

L4 = {x4 x3 x2 x1 x1 x2 x3 x4 | ∀i ∈ {1, 2, 3, 4}. (xi, xi) = (ai, ai) ∨ (xi, xi) = (bi, bi)}

and T4 = L4 \ {b4 b3 b2 b1 b1 b2 b3 b4}.

The sets L4, T4 ⊆ Σ4 have 16 and 15 elements respectively.

Lemma 5.7.1.1 ([Plandowski, 1994, Plandowski, 1995]). T4 is a test set for L4.

Linear Context-Free Grammars

We now prove that for any linear context-free grammar G, there exists a test set whose
size is 2|R|3. Like the original proof of [Plandowski, 1994, Plandowski, 1995] that gave
a O(|R|6) upper bound, our proof relies on Lemma 5.7.1.1. However, our proof uses a
different construction to obtain the new, tight, bound.

Theorem 5.7.1.1. Let G = (N, Σ, R, S) be a linear context-free grammar. There exists
a test set T ⊆ G for G containing at most 2|R|3 elements.

Proof. Before building the test set, we introduce some notation.

Graph of G. Define the labeled graph graph(G) = (V, E) where V = N ∪ {⊥}, ⊥ is a
new symbol, and E ⊆ V × R × V such that:

• for non-terminals A, B ∈ N and a rule r ∈ R, let (A, r, B) ∈ E iff r is of the form
A → uBv where u, v ∈ Σ∗ (i.e., B is the only non-terminal occurring in rhs).

• for a non-terminal A ∈ N and r ∈ R, (A, r, ⊥) ∈ E if and only if r = A → rhs for
some rhs ∈ Σ∗.
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Q1 Q2 Q3 Q4

P1 P2 P3 P4 W5e1 e2 e3 e4S ⊥

Figure 5.4 – The four optimal subpaths Q1, Q2, Q3, and Q4 define 15 alternative
paths from S to ⊥ which are all strictly smaller (with respect to order <) than
P1e1P2e2P3e3P4e4W5.

A path of graph(G) is a (possibly cyclic) sequence of edges of E, of the form: (A1, r1, A2) ·
(A2, r2, A3) · · · (An, rn, An+1). A path is accepting if A1 = S and An+1 = ⊥.

Link between graph(G) and G. Given a rule A → uBv ∈ R, where A, B ∈ N and
u, v ∈ Σ∗, we denote π(r) = u and π(r) = v. For a rule of the form A → u where u ∈ Σ∗ we
denote π(r) = u and π(r) = ε. For a path P = (A1, r1, A2) ·(A2, r2, A3) · · · · (An, rn, An+1)
we define π(P ) = π(r1) · · · π(rn), and π(P ) = π(rn) · · · π(r1).

Each accepting path P in graph(G) corresponds to a word π(P )·π(P ) in G, and conversely,
for any word w ∈ G, there exists an accepting path (not necessarily unique) in graph(G)
corresponding to w.

Total order on paths. We fix an arbitrary total order < on R, and extend it to
sequence of edges in R∗ as follows. Given paths P1, P2 ∈ R∗, we have P1 < P2 iff

• |P1| < |P2| (length of P1 is smaller than length of P2), or

• |P1| = |P2| and P1 is smaller lexicographically than P2.

A path P is called optimal if it is the minimal path from the first vertex of P to the last
vertex of P .

Test set for G. Let Φk(G) be the set of words of G corresponding to accepting
paths of the form P1e1P2 · · · PnenPn+1, n ≤ k, with Pi ∈ R∗, ei ∈ R, and where
for i ∈ {1, . . . , n + 1}, Pi is optimal, and for i ∈ {1, . . . , n}, Piei is not optimal. By
construction, a path in Φk(G) is uniquely determined (when it exists) by the choice of
edges e1, . . . , en, as optimal paths between two vertices are unique. Therefore, Φk(G)
contains at most

∑k
i=0 |R|i ≤ 2|R|k words.

We now show that Φ3(G) is a test set for G (which gives us the desired bound of
the theorem: 2|R|k). Assume there exist two morphisms f, g : Σ∗ → Γ∗ such that
f|Φ3(G) = g|Φ3(G) and there exists w ∈ G such that f(w) �= g(w).
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By assumption, w does not belong to Φ3(G), and must correspond to a path P =
P1e1P2 · · · PnenPn+1 for n ≥ 4, such that for i ∈ {1, . . . , n + 1}, Pi is optimal, and Piei

is not optimal. We pick w having the property f(w) �= g(w) such that the path P is the
smallest possible (according to the order < defined above).

The path P can be written P1e1P2e2P3e3P4e4W5 where for i ∈ {1, 2, 3, 4}, Pi is optimal,
and Piei is not optimal (W5 is not necessarily optimal). For i ∈ {1, 2, 3}, we define Qi to
be the optimal path from the source of Piei to its target; hence Qi < Piei. Moreover,
Q4 is defined to be the optimal path from the source of P4e4W5 to its target, with
Q4 < P4e4W5. Effectively, as shown in Figure 5.4, this defines 15 paths that can be
derived from P by replacing subpaths by their corresponding optimal path (Q1, Q2, Q3,
Q4).

Let P ′ be one of those 15 paths (where at least one subpath has been replaced by its
optimal counterpart Q1, Q2, Q3, or Q4), and let w′ ∈ G be the word corresponding to
P ′. By construction of P ′, and by definition of the order <, we have P ′ < P . Since we
have chosen P to be the smallest possible path such that f and g are not equal on the
corresponding word, we deduce that f(w′) = g(w′).

To conclude, we show that we obtain a contradiction, thanks to Lemma 5.7.1.1. For this,
we construct two morphisms f ′, g′ : Σ4 → Γ as follows (i ranges over {1, 2, 3, 4} and j

over {1, 2, 3}):

• f ′(ai) = f(π(Qi)),

• f ′(ai) = f(π(Qi)),

• f ′(bj) = f(π(Pjej)),

• f ′(bj) = f(π(Pjej)).

• f ′(b4) = f(π(P4e4W5)),

• f ′(b4) = f(π(P4e4W5)).

The morphism g′ is defined similarly, using g instead of f . We can then verify that
f ′ and g′ coincide on T4, but are not equal on the word b4 b3 b2 b1 b1 b2 b3 b4 ∈ L4, thus
contradicting Lemma 5.7.1.1.

We make use of this theorem in the next section to obtain test sets for context-free
grammars which are not necessarily linear.
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Context-Free Grammars

To obtain a test set for a context-free grammar G which is not necessarily linear,
[Plandowski, 1994] constructs from G a linear context-free grammar, Lin(G), which
produces a subset of G, and which is a test set for G.

Formally, Lin(G) is derived from G as follows:

• For every productive non-terminal symbol A in G, choose a word xA produced by
A.

• Every rule r : A → x0A1x1 . . . Anxn in G, where for every i, xi ∈ Σ∗ and Ai ∈ N is
productive, is replaced by n different rules, each one obtained from r by replacing
all Ai with xAi , except one.

Note that the definition of Lin(G) is not unique, and depends on the choice of the words
xA. The following result holds for any choice of the words xA.

Lemma 5.7.1.2 ([Plandowski, 1994, Plandowski, 1995]). Lin(G) is a test set for G.

Using Theorem 5.7.1.1, we improve the O(|G|6) bound of [Plandowski, 1994, Plandowski,
1995] for the test set of G to 2|G|3.

Theorem 5.7.1.2. Let G = (N, Σ, R, S) be a context-free grammar. There exists a test
set T ⊆ G for G containing at most 2|G|3 elements.

Proof. Follows from Theorem 5.7.1.1, Lemma 5.7.1.2, and from the fact that Lin(G) has
at most |G| =

∑
A→rhs∈R(|rhs| + 1) rules. (When constructing Lin(G), each rule A → rhs

of G is duplicated at most |rhs| times.)

5.7.2 Tree Test Sets for Transducers

We use the results of the previous section to construct a tree test set for a domain D.

Lemma 5.7.2.1. Any domain D = (Σ, Q, I, δ) has a tree test set T of size at most
O(|D|)3. Moreover, if I = Q, then we can build T such that T is closed under subtree.

Proof. Intuitively, we build the tree test set for D by taking the set of trees corresponding
to the test set of G, where G is the grammar built in Lemma 5.5.1.3.

Let τ1 and τ2 be two 1STSs. Let TG be a test set for G. Define T = {tree(w) | w ∈ TG}.
By Theorem 5.7.1.2, we can assume TG has size at most |G|3, and hence, T has size at
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most |D|3. Let μ1 and μ2 be morph[τ1] and morph[τ2], respectively. We have:

�τ1�|T = �τ2�|T ⇐⇒
∀t ∈ T. τ1(t) = τ2(t) ⇐⇒
∀w ∈ TG. τ1(tree(w)) = τ2(tree(w)) ⇐⇒ (by Lemma 5.5.1.2)
∀w ∈ TG. μ1(τΣ(tree(w))) = μ2(τΣ(tree(w))) ⇐⇒ (by definition of tree)
∀w ∈ TG. μ1(w) = μ2(w) ⇐⇒ (since TG is a test set for G)
∀w ∈ G. μ1(w) = μ2(w) ⇐⇒ (see Lemma 5.5.1.3)
�τ1�|D = �τ2�|D

This ends the proof that T is a tree test set for D.

We now show how to construct T such that it is closed under subtree. For every non-
terminal A of G, we define the minimal word wA. These words are built inductively,
starting from the non-terminals which have a rule whose right-hand-side is only made of
terminals. In the definition of Lin(G), we use these words when modifying the rules of G

into linear rules.

When then define TG as the test set of Lin(G) (which is also a test set of G), and
T = {tree(w) | w ∈ TG} ∪ {tree(wA) | A ∈ G}. As shown previously, T is a tree test set
for D. We can now prove that T is closed under subtree. Let t = f(t1, . . . , tk) ∈ T . Let
i ∈ {1, . . . , k}. We want to prove that ti ∈ T .

We consider two cases. Either there exists w ∈ TG such that t = f(t1, . . . , tk) = tree(w),
or there exists A ∈ G, t = f(t1, . . . , tk) = tree(wA).

• First, if there exists w ∈ TG such that t = f(t1, . . . , tk) = tree(w). Consider a
derivation p for w in the Lin(G). By construction of Lin(G), the first rule is an
ε-transition of the form S → N while the second rule is of the form:

N → (f, 0) · w1 · (f, 1) · · · wj−1 · (f, j − 1) · Nj · (f, j) · wj+1 · · · wk · (f, k).

This second rule corresponds to a rule in G, of the form:

N → (f, 0) · N1 · (f, 1) · · · Nj−1 · (f, j − 1) · Nj · (f, j) · Nj+1 · · · Nk · (f, k).

We then have two subcases to consider. Either i �= j, and in that case ti = tree(wi).
By construction of Lin(G), wi must be equal to wA for some A ∈ G. Thus, we have
ti ∈ T by definition of T .

Or i = j, in that case ti = tree(w′), where w′ is derived by the derivation p where
the first two derivation rules, outlined above, are replaced with the ε-rule S → Ni.
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This production rule is ensured to exist in Lin(G), as all states of D are initial, so
there exists a rule S → Nq for all q ∈ Q. (see definition of G in Lemma 5.5.1.3).
Then, since w ∈ Φ3(Lin(G)), and by construction of Φ3(Lin(G)), we conclude that
w′ ∈ Φ3(Lin(G)). This ensures that w′ ∈ TG, and ti ∈ T .

• Otherwise, there exists A ∈ G such that t = f(t1, . . . , tk) = tree(wA). Using the
fact that wA was build inductively in the grammar G, using other minimal words
wA′ for A′ ∈ G, we deduce there exists A′ ∈ G such that ti = tree(wA′), and ti ∈ T .

Lemma 5.7.2.2 shows the bound given in Lemma 5.7.2.1 is tight, in the sense that there
exists an infinite class of growing domains D for which the smallest tree test set has size
|D|3.

Lemma 5.7.2.2. There exists a sequence of domains D1, D2, . . . such that for every
n ≥ 1, the smallest tree test set of Dn has at least n3 elements, and the size of Dn is
linear in n. Furthermore, this lower bound holds even with the extra assumption that all
states of the domain are initial.

Proof. (Sketch) Our proof is inspired by the lower bound proof for test sets of context-free
languages [Plandowski, 1994, Plandowski, 1995]. For n ≥ 1, we build a particular domain
Dn (whose states are all initial), and we assume by contradiction that it has a test set
T of size less than n3. From this assumption, we expose a tree t ∈ Dn, as well as two
1STSs τ1 and τ2 such that τ1|T = τ2|T but τ1(t) �= τ2(t).

The complete example for the lower bound is located in Appendix E.3

5.7.3 Learning 1STSs Without Ambiguity

Algorithm 2 Learning 1STSs from a domain.
Input: A domain D, and an oracle 1STS τu.
Output: A 1STS τ functionally equivalent to τu.

1. Build a tree test set {t1 . . . tn} of D, following Lemma 5.7.2.1.

2. For every ti ∈ {t1 . . . tn}, ask the oracle for wi = τu(ti).

3. Run Algorithm 1 on the sample {(ti, wi) | 1 ≤ i ≤ n}.

Our second algorithm (see Algorithm 2) takes as input a domain D, and computes a tree
test set T ⊆ D. It then asks the user the expected output for each tree t ∈ T . The user is
modelled by a 1STS τu that can be used as an oracle in the algorithm. Algorithm 2 then
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runs Algorithm 1 on the obtained sample. The 1STS τu expected by the user may still
be syntactically different the 1STS τ returned by our algorithm, but we are guaranteed
that �τ�|D = �τu�|D (by definition of tree test set).

Theorem 5.7.3.1 (Correctness and running time of Algorithm 2). Let τu be a 1STS
(used as an oracle), and D = (Σ, Q, I, δ) a domain such that I = Q. The output τ of
Algorithm 2 is a 1STS τ such that �τ�|D = �τu�|D.

Furthermore, Algorithm 2 invokes the oracle O(|D|3) times, and terminates in time
polynomial in |D|.

Proof. The correctness of Algorithm 2 follows from the correctness of Algorithm 1 and
from the fact that T is a tree test set for D. The fact that Algorithm 2 invokes the
algorithm O(|D|3) times follows from the size of the tree test set (see Lemma 5.7.2.1).

Moreover, since all states of D are initial, the tree test set of D that we build is closed
under subtree. The polynomial running time then follows from the fact that Algorithm 1
ends in polynomial time for samples whose domains are closed under subtree.

Remark. Similarly to Algorithm 1, Algorithm 2 also applies for domains such that I �= Q,
but the running time is not guaranteed to be polynomial.

5.8 Learning 1STS Interactively

Our third algorithm (see Algorithm 3) takes as input a domain D, and computes a tree
test set T ⊆ D. For this algorithm, we require from the beginning that all states of
D are initial, so that T is closed under subtree. For a sample S such that dom(S) is
closed under subtree, and for (t, w) ∈ S, we denote by automaton(t, w) the automaton
automaton(y, w) where y = w is the equation regEquation(t, w, S).

Instead of building the sample S and the intersection
⋂

(t,w)∈S automaton(t, w) all at once,
like algorithms 1 and 2 do, Algorithm 3 builds S and the intersection incrementally. It
then uses the intermediary results to infer outputs, in order to avoid calling the oracle
τu too many times. Overall, we prove that Algorithm 3 invokes the oracle τu at most
O(|D|) times, while Algorithm 2 invokes it O(|D|3) times.

To infer outputs, Algorithm 3 maintains the following invariant for the while loop. First
S is such that dom(S) ⊆ T , and its domain increases at each iteration. Then, for any
f (k) ∈ Σ, sol(f) is equal to

⋂
(t,w)∈S automaton(t, w), and thus recognizes the set

{μ(f, 0)#μ(f, 1)# . . . #μ(f, k) | μ : Σ → Γ satisfies
∧

(t,w)∈S
regEquation(t, w, S)}.
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Algorithm 3 Interactive learning of 1STSs.
Input: A domain D, and an oracle 1STS τu whose output alphabet is Γ.
Output: A 1STS τ functionally equivalent to τu.

1. Initialize a map sol from Σ to Automata, such that for f (k) ∈ Σ, sol(f) recognizes
{x0# · · · #xk | xi ∈ Γ∗},

2. Build a tree test set T of D, following Lemma 5.7.2.1.

3. Initialize a partial function S : TΣ �→ Γ∗, initially undefined everywhere.

4. While dom(S) �= T :

• Choose a tree f(t1, . . . , tk) /∈ dom(S) such that all subtrees of t belong to
dom(S) (possible since T is closed under subtree).

• Build the automaton A recognizing {x0 S(t1) x1 · · · S(tk) xk | x0#x1 · · · #xk ∈ sol(f)},
representing all possibles values of τu(t) that do not contradict previous
outputs.

– If A recognizes only 1 word w, define S(t) = w.
– Otherwise (A recognizes at least 2 words), define S(t) = τu(t) using the

oracle.
• Update sol(f) = sol(f) ∩ automaton(t, S(t)).

5. Run Algorithm 1 on S.
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Intuitively, sol(f) represents the possible values for the output of f in the transducer
τu, based on the constraints given so far.

To infer the output of a tree t = f(t1, . . . , tk), for some f (k) ∈ Σ, Algorithm 3 uses
the fact that τu(f(t1, . . . , tk)) must be of the form μ(f, 0)S(t1)μ(f, 1) · · · S(tk)μ(f, k) for
some morphism μ : Σ → Γ satisfying

∧
(t,w)∈S equation(t, w). By construction, the NFA

A, that recognizes the set {x0 S(t1) x1 · · · S(tk) xk | x0#x1 · · · #xk ∈ sol(f)}, recognizes
exactly these words of the form μ(f, 0)S(t1)μ(f, 1) · · · S(tk)μ(f, k).

We then check whether A recognizes exactly one word w, in which case, we know τu(t) = w,
and we do not need to invoke the oracle. Otherwise, there are several alternatives which
are consistent with the previous outputs provided by the user, and we cannot infer τu(t).
We thus invoke the oracle (the user) to obtain τu(t).

Before proving the theorem corresponding to Algorithm 3, we give a lemma on words
which we use extensively in the theorem.

Lemma 5.8.1.1. Let u, v, w ∈ Γ∗. If uv = vu and uw = wu and u �= ε, then vw = wv.

Proof. A word p ∈ Γ∗ is primitive if there does not exist r ∈ Γ∗, i > 1 such that
p = ri. Proposition 1.3.2 of [Lothaire, 1997] states that the set of words commuting
with a non-empty word u is a monoid generated by a single primitive word p. Since
v and w both commute with u, there exist i and j such that v = pi and w = pj , thus
vw = wv = pi+j .

The difficult part of Theorem 5.8.1.1 is to show the number of times the oracle τu is
invoked is O(|D|). We prove this by assuming by contradiction that the number of times
τu is invoked is strictly greater than 3|D| + |Q| times. We prove this entails there are four
trees which are nearly identical and for which our algorithm invokes the oracle (the four
trees have the same root, and differ only for one child). Then, by a close analysis of the
word equations corresponding to these four terms, we obtain a contradiction by proving
our algorithm must have been able to infer the output for at least one of those terms.

Theorem 5.8.1.1 (Correctness and running time of Algorithm 3). Let τu be a 1STS
(used as an oracle), and D = (Σ, Q, I, δ) a domain such that I = Q. The output τ of
Algorithm 3 is a 1STS τ such that �τ�|D = �τu�|D.

Algorithm 3 ends in time polynomial in |D| and the number of times it invokes the oracle
τu is in O(|D|).

Proof. The correctness and the polynomial running time of Algorithm 3 can be proved
similarly to Algorithm 2.
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Note that we can check whether the NFA A recognizes only one word using the following
polynomial time procedure. First, check if there exists a word w recognized by A. If
there is, pick a minimal word w ∈ A, and compute the automaton A ∩ B, where B

recognizes all words different than w (the size of B is roughly |w|). If the automaton
A ∩ B is empty, then A recognizes only w, otherwise A recognizes more than one word.

The crucial part of Algorithm 3 is that it invokes the oracle τu at most O(|D|) times. More
precisely, we show that Algorithm 3 invokes τu at most |Q| + 3

∑
(q,f (k),(q1,...,qk)∈δ 1 + k

times, which is |Q| + 3|D|, and in O(|D|).

Let Tinv ⊆ T be the set of trees for which Algorithm 3 invokes the oracle. Let Tmin ⊆ T be
the set of trees which are of the form tree(wA) for some A ∈ G (where wA is the minimal
word that can be produced from A, see Lemma 5.7.2.1). Note that, by construction of
G, |Tmin| ≤ |Q|.

Consider the set T ′
inv = Tinv \ Tmin. Let W ′

inv = {τΣ(t) | t ∈ T ′
inv} (or equivalently,

T ′
inv = {tree(w) | w ∈ W ′

inv}). We want to prove that |T ′
inv| ≤ 3|D|, thus implying that

|Tinv| ≤ 3|D| + |Q|. Assume by contradiction |T ′
inv| > 3|D|.

Remember that, by construction of T , we have W ′
inv ⊆ Lin(G). For w ∈ Winv, consider

the first non-epsilon rule in some derivation of w in Lin(G). By construction, Lin(G) has
at most |D| rules.

Moreover, since Winv contains strictly more than 3|D| words, Winv must contain at least
four words that share the same first non-epsilon rule in their derivation. Let wa, wb, wc, wd

be four such words, and ta, tb, tc, td their corresponding trees (with tl = tree(wl) for
l ∈ {a, b, c, d}).

Without loss of generality, assume that Algorithm 3 invoked τu on the trees ta, tb, tc,
and td in that order. By construction of Lin(G), and from the fact that wa, wb, wc,
and wd share the first non-epsilon rule, we know there exists f (k) ∈ Σ, i ∈ {1, . . . , k},
t1, . . . , ti−1, ti+1, . . . , tk ∈ T , and ta

i , tb
i , tc

i , td
i ∈ T such that:

ta =f(t1, . . . , ti−1, ta
i , ti+1, . . . , tk)

tb =f(t1, . . . , ti−1, tb
i , ti+1, . . . , tk)

tc =f(t1, . . . , ti−1, tc
i , ti+1, . . . , tk)

td =f(t1, . . . , ti−1, td
i , ti+1, . . . , tk).

Said otherwise ta, tb, tc, and td only differ on their ith subtree. Let xl
i = τu(tl

i) and
xl = τu(tl), for l ∈ {a, b, c, d}.

Given an assignment μ : Σ → Γ∗, we define uμ = μ(f, 0) · τu(t1) · μ(f, 1) · · · μ(f, i − 1),
and vμ = μ(f, i + 1) · · · τu(tk) · μ(f, k).
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We consider several cases, all of them leading to a contradiction.

• There exist xk
i , xl

i ∈ {xa
i , xb

i , xc
i} such that x1 is not a prefix of x2 and x2 is not

a prefix of x1. Assume without loss of generality x1 = xa
i and x2 = xb

i . Since
Algorithm 3 invoked the oracle τu on the tree td, there are two assignments
μ, μ′ : Σ → Γ∗ such that uμxd

i vμ ∈ A, uμ′xd
i vμ′ ∈ A, and uμxd

i vμ �= uμ′xd
i vμ′ . Using

the invariant of Algorithm 3 on trees ta and tb, we know:

xa = uμxa
i vμ = uμ′xa

i vμ′

xb = uμxb
ivμ = uμ′xb

ivμ′

Finally, since xa
i is not a prefix of xb

i , and xb
i is not a prefix of xa

i , we have
lcp(xa, xb) = uμ lcp(xa

i , xb
i) and lcp(xa, xb) = uμ′ lcp(xa

i , xb
i). Thus, uμ = uμ′ and we

can deduce vμ = vμ′ . Thus, uμ xd
i vμ = uμ′ xd

i vμ′ , and we have a contradiction.

• Two elements of {xa
i , xb

i , xc
i} are equal. For instance if xa

i = xb
i , then Algorithm 3

could not have invoked the oracle τu on the tree tb, as the only possible solution
for xb is xa.

• If we are not in one of the previous cases, we know that xa
i , xb

i , xc
i are of the form x1,

x1x2, x1x2x3 (not necessarily in that order) for some x1, x2, x3 ∈ Γ∗, and x2 �= ε

and x3 �= ε. Consider the case where x2x3 �= x3x2.

Since Algorithm 3 invoked τu on the tree td, there are two assignments μ, μ′ : Σ → Γ∗

such that uμxd
i vμ ∈ A, uμ′xd

i vμ′ ∈ A, and uμxd
i vμ �= uμ′xd

i vμ′ . Using the invariant
of Algorithm 3, we know:

uμx1vμ = uμ′x1vμ′

uμx1x2vμ = uμ′x1x2vμ′

uμx1x2x3vμ = uμ′x1x2x3vμ′

Without loss of generality, assume that uμ′ is a prefix of uμ and vμ is a suffix of vμ′ .
So uμ = uμ′u′′ and vμ′ = v′′vμ for some u′′, v′′ ∈ Γ∗. Then, we have u′′ x1 = x1 v′′,
u′′ x1x2 = x1x2 v′′, and u′′ x1x2x3 = x1x2x3 v′′. We deduce, x1 v′′x2 = x1x2 v′′, and
v′′ commutes with x2.

Similarly, v′′ commutes with x2x3. Assume by contradiction that v′′ �= ε. Then, by
Lemma 5.8.1.1, x2 must commute with x2x3, and x2x2x3 = x2x3x2, which implies
x2x3 = x3x2, and x2 commutes with x3, contradicting our assumption. This
means that v′′ = ε, vμ = vμ′ , and uμ = uμ′ . We thus conclude uμxd

i vμ = uμ′xd
i vμ′ ,

contradicting the fact that Algorithm 3 invoked τu on tree td.

• The last case is when the xa
i , xb

i , xc
i are of the form x1, x1x2, x1x2x3 (not necessarily

in that order) for some x1, x2, x3 ∈ Γ∗, with x2 �= ε and x3 �= ε, and x2x3 = x3x2.
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Since Algorithm 3 invoked τu on the tree tc, there are two assignments μ, μ′ : Σ → Γ∗

such that uμxc
ivμ ∈ A, uμ′xc

ivμ′ ∈ A, and uμxc
ivμ �= uμ′xc

ivμ′ , where A is the
automaton constructed in Algorithm 3 at the iteration where τu(tc) was invoked.

Without loss of generality, assume that uμ′ is a prefix of uμ and vμ is a suffix of vμ′ .
So uμ = uμ′u′′ and vμ′ = v′′vμ for some u′′, v′′ ∈ Γ∗. We consider three subcases:

– Case xc
i = x1x2x3. Using the invariant of Algorithm 3 for trees ta and tb, we

know:

uμx1vμ = uμ′x1vμ′

uμx1x2vμ = uμ′x1x2vμ′

Then, we have u′′ x1 = x1 v′′, u′′ x1x2 = x1x2 v′′. We deduce, x1 v′′x2 =
x1x2 v′′, and v′′ commutes with x2.

Thus, x2 commutes both with v′′ and x3. By Lemma 5.8.1.1, v′′ commutes
with x3. We deduce that x1x2x3v′′ = x1v′′x2x3 = u′′x1x2x3, and finally that
uμx1x2x3vμ = uμ′x1x2x3vμ′ , contradicting uμxc

ivμ �= uμ′xc
ivμ′ .

– Case xc
i = x1x2. Using the invariant of Algorithm 3 for the trees ta and tb, we

know:

uμx1vμ = uμ′x1vμ′

uμx1x2x3vμ = uμ′x1x2x3vμ′

Then, we have u′′ x1 = x1 v′′, u′′ x1x2x3 = x1x2x3 v′′. We deduce, x1 v′′x2x3 =
x1x2x3 v′′, and v′′ commutes with x2x3.

Since x2x3 commutes both with v′′ and x2 (as x2 and x3 commute), we
know by Lemma 5.8.1.1 that x2 and v′′ commute. We deduce that x1x2v′′ =
x1v′′x2 = u′′x1x2, and finally that uμx1x2vμ = uμ′x1x2vμ′ , contradicting
uμxc

ivμ �= uμ′xc
ivμ′ .

– Case xc
i = x1. Using the invariant of Algorithm 3 for the trees ta and tb, we

know:

uμx1x2vμ = uμ′x1x2vμ′

uμx1x2x3vμ = uμ′x1x2x3vμ′

Then, we have u′′ x1x2 = x1x2 v′′, u′′ x1x2x3 = x1x2x3 v′′. We deduce,
x1x2 v′′x3 = x1x2x3 v′′, and v′′ commutes with x3.

Thus, x3 commutes both with v′′ and x2. By Lemma 5.8.1.1, v′′ commutes
with x2. Moreover, since u′′ x1x2 = x1x2 v′′, we have u′′ x1x2 = x1 v′′x2,
and u′′ x1 = x1 v′′. We conclude that uμx1vμ = uμ′x1vμ′ , contradicting
uμxc

ivμ �= uμ′xc
ivμ′ .
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5.9 Tree with Values

Until now, we have considered a set of trees TΣ which contained only other trees as
subtrees, and with a test set of size O(n3), although we have a linear learning time if we
have interactivity. However, in practice, data structures such as XML are usually trees
containing values. Values are typically of type stringor int, and may be used instead of
subtrees. For convenience, we will suppose that we only have string elements, and that
string elements are rendered raw. We will demonstrate how we can directly obtain a test
set of size O(n).

Formally, let us add a special symbol v ∈ Σ, of arity 0, which has another version which
can have a parameter. For each string s ∈ Γ∗ we can thus define the symbol vs and
extend the notion of trees and domains as follows.

For a set of trees T, we define the extended set T ′ by:

T ′ = {t′ | ∃t ∈ T, t′ is obtained from t by replacing each v by a vs for some s ∈ Γ∗}

Note that given a domain D and a height h, there is an infinite number of trees of height
h in D′, while only a finite number in D. Fortunately, thanks to the semantics of the
transducers on vs we define below, finding the tree test sets is easier in this setting.

For any transducer τ we extend the definition of �τ� to T ′
Σ by defining �τ�(vs) = s. We

naturally extend the definition of tree test set of an extended domain D′ to be a set
T ′ ⊂ D′ such that for all 1STSs τ1 and τ2, �τ1�|T ′ = �τ2�|T ′ implies �τ1�|D′ = �τ2�|D′ .
After proving the following lemma, we will state and prove the theorem on linear test
sets.

Lemma 5.9.1.1. For a, b, x, y ∈ Γ∗, c �= d in Γ, if acx = bcy and adx = bdy, then a = b.

Proof. Either a or b is a prefix of the other. Let us suppose that a = bk for some suffix
k ∈ Γ∗. It follows that kcx = cy and kdx = dy. If k is not empty, then k starts with c

and with d, which is not possible. Hence k is empty and a = b.

Theorem 5.9.1.1. If the domain D = (Σ, Q, I, δ) is such that for every f ∈ Σ of arity
k > 0, there exist trees in t1, . . . , tk ∈ D such that f(t1, . . . , tk) ∈ D and each ti contains
at least one v, then there exists a tree test set of D′ of linear size O(|Σ| · A) where A is
the maximal arity of a symbol of Σ.

Proof. (Sketch) Using the trees provided in the theorem’s hypothesis, we build a linear
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set of trees of D′ where the v nodes are replaced successively by two different symbols
v“#” and v“?”. Then, we prove that any two 1STSs which are equal on this set of trees,
are syntactically equal.

The complete proof is located in Appendix E.5.

5.10 Implementation

Our tool (walkthrough in Section 5.2) is open-source and available at https://github.
com/epfl-lara/prosy. It takes as input an ADT represented by case class definitions
written in a Scala-like syntax, and outputs a recursive printer for this ADT. For the
automata constructions of Algorithm 3, we used the brics Java library3.

In the walkthrough, notice that our tool gives propositions to the user so that the user
does not have to enter the answers manually. The user may choose how many propositions
are to be displayed (default is 9). To obtain these propositions, we use the following
procedure. Remember that for each tree t for which we need to obtain the output,
Algorithm 3 builds an NFA A that recognizes the set of all possible outputs for t (see
Section 5.8). We check for the existence of an accepted word w0 in A, and compute the
intersection A1 between A and an automaton recognizing all words except w0. We then
have two cases. Either A1 is empty, and therefore we know the output for tree t is w0.
In that case, we do not need to interact with the user, and can continue on to the next
tree. Otherwise, A1 recognizes some word w1 �= w0, which we display as a proposition
to the user (alongside w0). We then obtain A2 as the intersection between A and an
automaton recognizing all words except w0 and w1. We continue this procedure until
we have 9 propositions (or whichever number the user entered), or when the intersected
automaton becomes empty.

Concerning support for the String data type, we use ideas from Section 5.9 and reused
our code from Algorithm 3 to infer outputs. Technically, we replace the String data type
with an abstract class with two case classes, foo, and bar, that must be printed as “foo”
and “bar” respectively. We then obtain an ADT without Strings, on which we apply the
implementation of Algorithm 3 described above. We handle the Int and Boolean data
types similarly, each with two different values which are not prefix of each other (we refer
to the proof of theorem 5.8.1.1).

5.11 Evaluation

Although this work is mostly theoretical, we now depict through some benchmarks how
many and which kind of questions our system is able to ask (Figure 5.5).

3http://www.brics.dk/automaton/
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Test set The output was
size inferred asked asked with. . .

Name Total total total nothing a hint suggestions
Grammar (Sec. 5.2) 116 102 14 6 6 2
Html tags (Ex. 2, 8, 9) 35 28 7 4 2 1
Html tags+attributes 60 52 8 2 4 2
Html xml+attributes 193 179 14 5 3 6
Binary (01001x) 15 12 3 1 2 0
Binary (11x) 15 12 3 3 0 0
Binary (ababx) 15 11 4 3 0 1
Binary (01001) 15 10 5 3 0 2
Binary (aabababbab) 15 9 6 3 0 3
Ax(By(Fz)) 1 3 0 3 1 2 0
Ax(By(Fz)) 2 14 8 6 3 3 0
Ax(By(Fz)) 4 84 67 17 8 4 5
Ax(By(Fz)) 8 584 552 32 19 5 8
Ax(By(Fz)) 16 4368 4305 63 32 16 15

Figure 5.5 – Comparison of the number of questions asked for different benchmarks.

The first column is the name of the benchmark. The first two appear in Section 5.2 and
in the examples. The third is a variation of the second where we add attributes as well,
rendered “ˆ.foo := "bar"”. The fourth is the same but rendered in XML instead of tags.
Note that because we do not support duplication, we need to have a finite number of
tags for XML.

The four rows “binary” illustrate how the number and type of questions may vary only
depending on the user’s answers. We represent binary numbers as either Empty or
Zero(x) or One(x) where x is a binary number. We put in parenthesis what a user
willing to print Zero(One(Zero(Zero(One(Empty))))) would have in mind. The second
and the third “discard” Zero when printing. The fourth one prints Empty as empty,
Zero(x) as {x}ab and One(x) as a{x}b, which result in an ambiguity not resolved until
asking a 3-digit number.

The last five rows of Figure 5.5 also illustrate how the number of asked questions grows
linearly, whereas the number of elements in the test set grows cubically. These five rows
represent a set of classes of type A taking as argument a class of type B, which themselves
take as argument a class of type F. We report on the statistics by varying the number of
concrete classes between 1, 2, 4, 8 and 16 (see proof of Lemma 5.7.2.2)

The second column is the size of the test set. For the last five rows, the test set contains a
cubic number of elements. The third column is the number of answers our tool was able
to “infer” based on previously “asked” questions, whose total number is in the fourth
column. The fourth column plus the third one thus equal the second one.
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Columns five, six and seven decompose the fourth column into the questions which were
either asked without any indication, or with a hint of type “[...]foo[...]” (because the
arguments were known), or with explicit suggestions where the user just had to enter a
number for the choice (see Section 5.10).

5.12 Related Work

Our approach of proactively learning transducers by example, or tree-to-string programs,
can be viewed as a particular case of Programming-by-Example. Programming-by-
example, also named inductive programming [Polozov and Gulwani, 2015] or test-driven
synthesis [Perelman et al., 2014], is gaining more and more attention, notably thanks
to Flash Fill in Excel 2013 [Gulwani, 2012a]. Subsequent work demonstrated that
these techniques could widely be applicable not only to strings, but when extracting
documents [Le and Gulwani, 2014], normalizing text [Kini and Gulwani, 2015] and
number transformations [Singh and Gulwani, 2012b]. However, most state-of-the-art
programming-by-example techniques rely on the fact that examples are unambiguous
and/or that the example provider can check the validity of the final program [Angluin,
1987] [Yessenov et al., 2013] [Feser et al., 2015]. The scope of their algorithms may be
larger but they do not guarantee formal result such as polynomial time or non-ambiguity,
and often require the user to come up with the examples by himself. More generally,
synthesizing recursive functions has recently gained an interest among computer scientists
from repairing fragments [Koukoutos et al., 2016] to very precise types [Polikarpova et al.,
2016], even by formalizing programming-by-example [Frankle et al., 2016].

Recently, research has pointed out that solving ambiguities is a key to make program-
ming by example accessible, trustful and reduce the number of errors[Mayer et al.,
2015][Hottelier et al., 2014]. The power of interaction is already well known in more
statistical approaches, e.g. machine learning [Zhang and Chaudhuri, 2015], although
recent machine-learning based formatting techniques could benefit from more interaction,
because they acknowledge some anomalies [Parr and Vinju, 2016]. In [Gvero et al., 2011]
and even [Gvero et al., 2013], the authors solve ambiguities by presenting different code
snippets, obtained from synthesizing expressions of an expected type and from other
sources of information. Nonetheless, the user has to choose between hard-to-read code
snippets. Instead of asking which transducer is correct, we ask for what is the right output.
Asking sub-examples at run-time proved to be a successful strategy when synthesizing
recursive functions [Albarghouthi et al., 2013]. To deal with ambiguous samples, they
developed a Saturate rule to ask for inputs covering the inferred program. In our case,
however, such coverage rule still yield the ambiguity raised in example 9, leaving the
chance of finding the right program to heuristics.

Researchers have investigated fundamental properties of tree-to-string or tree-to-word
transducers [Alur and Cerný, 2010], including expressiveness of even more complex classes
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than we consider [Alur and D’Antoni, 2012], but none of them proposed a practical
learning algorithm for such transducers. The situation is analogous for Macro Tree
Transducers [Bahr and Day, 2013] [Engelfriet and Maneth, 2002]. Lemay [Lemay et al.,
2010] explores the synthesis of top-down tree-to-tree transducers using an algorithm
similar to L∗ for automata [Angluin, 1987] and tree automata [Besombes and Marion,
2004]. These learning algorithms require the user to be in possession of a set of examples
that uniquely defines the top-down tree transducer. We instead are able to incrementally
ask for examples which resolve ambiguities, although our transducers are single-state.
There are also probabilistic tree-to-string transducers [Graehl and Knight, 2004], but
they require the use of a corpus and are not adapted to synthesizing small-size code
portions with a few examples.

A Gold-style learning algorithm [Laurence et al., 2014, Laurence, 2014, Lemay et al.,
2010] was created for sequential tree-to-string transducers. It runs in polynomial-time,
but has a drawback: it requires the input/output examples to form a characteristic
sample for the transducer which is being learned. The transducer which is being learned is
however not known in advance. As such, it is not clear in practice how to construct such
a characteristic sample. When the input/output examples do not form a characteristic
sample, the algorithm might fail, and the user of the algorithm has no indication on
which input/output examples should be added to obtain a characteristic sample.

In the case when trees to be printed are programming abstract syntax trees, our work is
the dual of the mixfix parsing problem [Jouannaud et al., 1992]. Mixfix parsing takes
strings to parse and the wrapping constants to print the trees, and produces the shape
of the tree for each string. Our approach requires the shape of the trees and strings of
some trees, and produces the wrapping constants to print the trees.

5.12.1 Equivalence of top-down tree-to-string transducers

Since tree test sets uniquely define the behavior of tree-to-string transducers, they can
be used for checking tree-to-word transducers equivalence. Checking equivalence of
sequential (order-preserving, non-duplicating) tree-to-string transducers can already be
solved in polynomial time [Staworko et al., 2009], even when they are duplicating, and
not necessarily order-preserving [Maneth and Seidl, 2007].

It was also shown [Helmut Seidl et al., 2015] that checking equivalence of deterministic
top-down macro tree-to-string transducers (duplication is allowed, storing strings in
registers to output them later is allowed) is decidable. Complexity-wise, this result gives
a co-randomized polynomial time algorithm for linear (non-duplicating) tree-to-string
transducers. This complexity result was recently improved in [Boiret and Palenta, 2016],
where it was proved that checking equivalence of linear tree-to-string transducers can be
done in polynomial time.
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5.12.2 Test sets

The polynomial time algorithms of [Staworko et al., 2009, Boiret and Palenta, 2016]
exploit a connection between the problem of checking equivalence of sequential top-down
tree-to-string transducers and the problem of checking equivalence of morphisms over
context-free languages [Staworko et al., 2009].

This latter problem was shown to be solvable in polynomial time [Plandowski, 1994,
Plandowski, 1995] using test sets. More specifically, this work shows that each context-
free language L has a (finite) test set whose size is O(n6) (originally “finite” in [Albert
and Lawrence, 1985, Guba, 1986] and then “exponential” in [Albert et al., 1982]), where
n is the size of the grammar. They also provide a lower bound on the sizes of the test
sets of context-free languages, by exposing a family of grammars for which the size of
the smallest test is O(n3).

As a result, when checking the equivalence of two morphisms f and g over a context-free
language L, it is enough to check the equivalence on the test set of L whose size is
polynomial. This result translates (as described in [Staworko et al., 2009]) to checking
equivalence between sequential top-down tree-to-string transducers in the following sense.
When checking the equivalence of two such transducers P1 and P2, it is enough to do so
for a finite number of trees, which correspond to the test set of a particular context-free
language. This language can be constructed from P1 and P2 in time |P1||P2|.

Remark. Theorem 5.7.1.1 also helps improve the bound for checking equivalence of
1STS with states, using the known reduction from equivalence of 1STS with states to
morphisms equivalence over a context-free language (reduction similar to Lemma 5.5.1.3,
see [Staworko et al., 2009, Laurence, 2014]).

5.13 Conclusion

We have presented a synthesis algorithms that can learn from example tree-to-string
functions, with the input tree as the only argument. This includes functions such as
pretty printers. It is crucial that our algorithm can automatically construct a sufficient
finite set of input trees, resulting in an interactive synthesis approach that in which the
user needs to answer only a linear number of questions in the grammar size. Furthermore,
the interaction process driven by our algorithm guarantees that there is no ambiguity:
the recursive function of the expected form is unique for a given set of input-output
examples. Moreover, we have analyzed the structure of word equations that the algorithm
needs to solve and shown that they have a special structure enabling them to be solved
in deterministic polynomial time, which results in overall polynomial running time of
our synthesizer. Our results make a case that providing tests for tree-to-string functions
is a viable alternative to writing the recursive programs directly, an alternative that is
particularly appealing for non-expert users.
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C. Epilogue to Proactive Synthesis

Page 120 until this page 160 contained the content of the paper “Proactive Synthesis of
Recursive Tree-to-String Functions from Examples“. We will now add further insights.

C. Epilogue to Proactive Synthesis

C.1 Strong Theoretical Results

In this paper, we proved two strong theoretical results. The first concerning the cubic
size of test sets is of historical importance, because it might apply to domains other than
tree-to-strings. I remembered talking to my wife about it as the “Mayer-Hamza” theorem,
and she would further enjoy the fact that she was married to me because the theorem
thus also beared her (married) name. However, I still feel grateful for the original work
of Plandowski [Karhumaki et al., 1995] because, without him, we would have never find
out this result.

It turns out that we could have found the second theoretical result independently of the
first. The linear questioning does not arise from the size of the test set, it is a rather
independent property. We did not expect it, to be honest. When we began writing the
paper, we did not have this result yet. I then remember conjecturing that we do not need
all the elements of the test set, and trying to look for the reason. After we found a way
to remove the fourth equation after three of them (see Theorem 5.8.1.1), we suddenly
realized that it would imply a linear complexity, and we were amazed. Still, we spent
several days finishing the proof on all the cases, which was not obvious at all.

C.2 Discussion

We now answer the questions we asked in the introduction (see page 9) with respect to
the work of this chapter.

Question Prosy
Is it faster/easier to conduct tasks using
programming-by-example?

Yes/No

Do users need to see the generated program? No
Do users need to take on the generated program? Yes
Is the paraphrased version of the program useful? N/A
Is it more reliable when the program is shown? No
Is it more reliable when the computer asks questions? Yes

The comparative summary for all the papers is available on page 163.

Compared to standard programming without help, it is faster to answer the questions
than to write the program oneself. However, we did not measure its performance against
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what a full-grown integrated development environment toolkit could bring. Users do not
need to see the generated program because it can be trusted mathematically. However,
they might want to take it and incorporate it in their existing codebase. Moreover, as
we can produce a (unfinished) printer as soon as we have examples covering the whole
program, the complete questioning is necessary to gain the trust of the user.
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6 Discussion and Future Work

“La programmation par l’exemple est l’une “Programming-by-example is one of
des rares technologies pouvant faire chuter the few technologies with the potential
le mur de Berlin qui a toujours séparé for breaking down the Berlin Wall that has
les programmeurs des utilisateurs.” always separated programmers from users.”

Henry Lieberman

Here, we quantitatively and qualitatively analyze the findings of the previous chapters.
We summarize the answers to the questions of the introduction for each chapter, and
cross-compare them. Then we compare the utility of the tools developed within each
chapter, with respect to the three dimensions of interactivity, programmability, and
exemplarity.

6.1 Contributions and Empirical Answers

We summarize the answer to the questions of the introduction (page 9) for the papers
mentioned in this thesis (pages 44, 75, 106, 161). These questions formulate what could
be the needs of users and how the four papers bring different answers, depending on
their context. The answers in bold represent the results with strong evidence, such as a
proof or a statistically significant user study.
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Game StriSynth FlashProg Prosy
Is it faster/easier to conduct
tasks using
programming-by-example?

Yes/No Yes/No Yes Yes/No

Do users need to see the
generated program?

Yes Yes Yes No

Do users need to take on the
generated program?

Yes No No Yes

Is the paraphrased version of
the program useful?

Conjectured Yes Yes N/A

Is it more reliable when the
program is shown?

N/A Yes Yes No

Is it more reliable when the
computer asks questions?

N/A N/A Yes Yes

We note that, although programming-by-example looks better in most of the works,
it would still be worth integrating it in a true programming language, especially for
users looking to reuse the generated programs. We identified the needs for seeing and
modifying the generated program; we also identified that questioning, or interactivity or
pro-activeness from the computer, is a key role for the enhancement of programming-
by-example. From the results on paraphrasing, it appears that generating comments
on what the program is doing is as important as generating the program itself. This is
consistent with many software development methods that require developers to write
documentation or tests about the same time as writing their code (e.g. Rapid application
development1, Waterfall development2)

6.2 Comparison of the Four Papers on the Dimensions
of “Interactivity”, “Programmability”, and “Exempla-
rity’

We compare the works of the four previous chapters on three dimensions that are directly
linked with the title of this thesis (see Figure 6.1).

• Interactivity: Is there feedback, or is there an effort from the computer to understand
the user’s goal?

• Programmability: Is the program modifiable? Is the programming language
expressive?

• Exemplarity: Are examples well suited for the task? Do they reflect the goal?
1wikipedia.org/wiki/Rapid_application_development
2wikipedia.org/wiki/Waterfall_model
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6.2. Comparison of the Four Papers on the Dimensions of “Interactivity”,
“Programmability”, and “Exemplarity’

Interactivity

Programmability Exemplarity

Chapter 2: Pong Designer
Chapter 3: StriSynth
Chapter 4: FlashProg
Chapter 5: Proactive Synthesis

Figure 6.1 – Comparison of the four works in this thesis according to interactivity,
programmability, and exemplarity.

For each dimension, we set up a qualitative scale of 0 (completely no, the center) to 6
(yes, absolutely), and we assigned numbers based on the following remarks:

“Interactivity”

Is there feedback, or is there an effort from the computer to understand the user’s goal?

• Pong Designer: Besides the interaction with the finger, every interaction comes
from the user, there is no feedback from the computer in case of ambiguity, so we
gave the rating 1/6.

• StriSynth: With the read-eval-print loop (REPL) of StriSynth, there is always some
feedback printed by the computer about what it was able to infer, this explains
our rating of 3/6.

• FlashProg: With the iterated questioning, the feedback is very high, and because
we proved that it reduced the number of errors and augmented the trust, we put a
rating of 6/6.

• Prosy: The algorithms work at best with interaction from the beginning, they offer
strong guarantees for the complexity, and the suggestions are pre-computed, we
rated it 6/6

“Programmability”

Is the program modifiable? Is the programming language expressive?
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• Pong Designer: Users can change the constants of the program statements and
choose alternatives. However, they cannot add or write anything: Even if the
underlying DSL is Turing-complete, it is not possible to write any program from
the interface. Hence, we rated it 2/6.

• StriSynth: As we embedded StriSynth in Scala, users can chain and reuse the
programs very easily. However, they cannot modify them directly, they can only
add new examples; nonetheless, the export script to PowerShell makes it possible
to edit a raw version of the program. We rated it 5/6.

• FlashProg: A user can choose alternatives in the program view, as she would do
for Pong Designer. And, choosing alternatives adds examples, hence it does not
display discarded alternatives anymore. In addition, programs can be chained using
examples and by manipulating the output. It is however not possible to export or
modify the program. We rated it 3/6

• Prosy: Prosy produces a complete program that can be further edited and maintai-
ned. With the help of an integrated development editor (IDE), the program can be
maintained by updating examples. We rated it 6/6.

“Exemplarity”

Are examples well suited for the task? Do they reflect the goal?

• Pong Designer: As observed in the Epilogue, it is not obvious what an example of
a game rule means for new persons. We rated it 2/6.

• StriSynth: For transforming strings, examples are straightforward and much better
suited for the task. For partitioning and filtering, the way of providing examples
would also match users’ goals. However, there is no way to specify examples for
chaining operations, and currently the syntax is everything but appealing. We
rated it 4/6.

• FlashProg: The examples consisting of painting the text are popular and straight-
forward to understand, and they truly reflect the need. We rated it 6/6.

• Prosy: Telling the computer how to print the trees it provides is one way to program
pretty-printers, but we do not have evidence that providing examples is more suited
to the task than writing the program directly if the IDE could create beforehand
the program structure. We rated it 4/6.
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6.3 Future Work

We have several ideas that could serve as future work. First, we could start to improve
on the topics related to each of these papers.

• Pong Designer: As a side effect of Pong designer, a way to record doodles, such as
those created by Wandida (Wandida.com) could be created. Currently, doodles re-
quire a toolchain such as filming, cutting, squeezing animations to sound, mounting
and exporting. With an engine such as the one Pong Designer provides, editing
videos recorded by using this toolchain would be much easier.

• StriSynth: A way to push StriSynth to the limits would be to natively integrate
automatic assistants in OS in order to dealing with the renaming and the moving of
files. Reusing new and much faster learning engines ([Singh, 2016]) would probably
increase the chances of such technology to be adopted.

• FlashProg: The technology behind FlashProg has been renamed Microsoft Prose [Gul-
wani, 2015], and it is currently serving many teams in Microsoft. The real benefit
from this thesis would be to export the interactivity features to products using Mi-
crosoft Prose. For example, system administrators would enjoy having augmented
versions of Convert-String [PowerShell Microsoft team, 2015] and ConvertFrom-
String [PowerShell Microsoft Team, 2014, PowerShell Microsoft Team, 2015], where
the interaction helps them to choose the right extraction program.

• Prosy: For the future, it would be interesting to see how we could avoid generating
the O(n3) set and then prune the questions. Indeed, in our approach, the test set
of size O(n3) is already factorized because it comes from paths in a graph. Being
able to learn programs with state would be useful, for example to learn indentation.
It would also be useful to discover how to learn recursive functions that deal with
duplicated elements (e.g., opening and closing XML tags) and out-of-order elements.

We might also to ask even less questions if we could ask them in the right order.
For example, at the end of the sandwich story (page 118), we briefly mention that
testing for two and three coins enables us to determine the result for one coin.

Finally, asking questions about trees larger than elements in the test set could
reduce the number of questions to ask. We conjecture, for example, that only two
questions would suffice for correctly printing trees, whatever the number of nodes
there are. Of course, users might spend more time writing the answer to one such
big question than writing answers for every small question our algorithms ask.

Based on the previous qualitative analysis, it appears that it becomes desirable to have
hybrid programming engines that not only provide the standard functionalities of IDEs
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but that also provide functionalities for developing programs in native and comfortable
user-interfaces by using programming-by-example engines.

For example, instead of building tools on top of a programming language, why not have
the tool itself to write and maintain a program? Many editors lack the flexibility to create
and reuse abstractions and constraints, and programming languages usually cannot be
modified by modifying their output. There is room for bridging the gap between the two.
We could imagine empowering users with an interface as nice as Microsoft PowerPoint,
but as flexible and programmatic as LATEX; or an interface as nice as Google Sites but
as programmable as PhP; or an interface as nice as Word, but with commands that
have the power of LATEX; or an online slide editor as nice as Reveal.js but as editable as
JavaScript. Chugh [Chugh et al., 2016] already started the work of having an interface as
nice as Inkscape for editing SVGs but as powerful as Lisp, hence this is becoming reality.
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7 Conclusion

“Dans la vie, rien n’est à craindre, “In life, there is nothing to fear,
tout est à comprendre.” everything is to be understood.”

Marie Curie

Throughout this thesis, we have reviewed experiences investigating how to improve
programming-by-example. We analyzed a programming-by-example-based game engine
for tablets, a toolkit for managing files by example, an engine for extracting data
based on examples, and strong algorithms for learning recursive tree-to-string functions.
We have compared these works together, and we have reached the conclusion that
programming-by-example is desirable for many tasks, and that its inherent ambiguity
can be resolved through various interaction models. Especially, we acknowledge that
questioning (otherwise named conversational clarification, disambiguation or feedback)
provably increases the performance of programming-by-demonstration and augments the
confidence of users in the result. Furthermore, we discovered that showing the program
helps users to gain trust, especially when the computer paraphrases it in plain English.

We hope that this five-year work will serve as an example that influences the future
of programming-by-example, urging researchers and developers to create interactive
communication techniques between computers and users. We expect such advances to
contribute further to bridging the gap between users’ goals and computers’ ability to
understand them. We wish that this bridging eventually opens a new door to people
who would be interested by programming, if only its first step consisted in providing
examples and receiving feedback about them.
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A Take-aways

To put this thesis briefly, one can refer to these take-aways written by the author. They
are available in English (right) and in French (left).

“Tous les programmes ont des limites: “All programs have limitations:
Un jour, quelqu’un qui aura besoin d’une option Finally, someone needing
ne la trouvera pas dans le programme. a feature will not find it in the program.
Un pouvoir illimité vient avec un accès An unlimited power comes with
illimité en écriture au programme, an unlimited modifiability to the program,
surtout pour qui aura besoin d’options. especially for anyone needing features.”

“Deux organisations font leur travail “Two organizations do their job without
sans poser de questions, bien qu’il faudrait: asking questions, although they should:
Les assassins et les ordinateurs. Assassins and computers.”

“Les ordis savent résoudre des problèmes. “Computers are good at solving problems.
Leur problème le plus difficile est de trouver Their hardest problem is to find the
les problèmes que les gens veulent résoudre. problems people want to solve.”

“Mieux vaut prévenir que guérir. “Prevention is better than cure.
Mieux vaut vérifier que déboguer. Verification is better than debugging.
Mieux vaut communiquer qu’ordonner.” Communication is better than ordering.”

“Quel est actuellement le point commun “What is currently the main common point
principal entre la programmation between programming
et la gestion d’une équipe? and managing a team?
C’est le point sur le i.” It’s the point on the i.”
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Appendix A. Take-aways

“La question n’est pas comment les scientifiques “The question is not how scientists
peuvent rendre les ordinateurs plus productifs can make computers more productive,
mais comment les ordinateurs but how computers
peuvent rendre les scientifiques plus productifs can make scientists more productive.”

“Les entreprises ont besoin de programmes vérifiés. “Businesses need verified programs.
Les utilisateurs ont besoin de programmes clarifiés.” End-users need clarified programs.”

“Ordinateur: Vos désirs sont mes ordres. “Computer: Your wish is my command.
Humain: Génial, je veux un jeu de Pong Human: Great! I would like a Pong
avec des animations 3D ! game with 3D animations!
Ordinateur: Erreur de syntaxe. Merci Computer: Syntax error. Please
d’écrire vos désirs dans un langage write your wish in an unambiguous
de programmation non ambigü.” programming language.”

“. . . [Après 3772 questions] “. . . [After 3772 questions]
Ordinateur: Qu’entends-tu par “raquette” ? Computer: What do you mean by

"paddle"?
Humain: Je n’aurais jamais dû essayer de Human: I knew I should have never tried
programmer un jeu de pong par la voix. . . “ programming a pong game by voice . . . “

Mikaël Mayer
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B Pong Designer Tutorials

B.1 Space Invaders Tutorial

In this appendix not published with the paper of chapter 2 page 11, we explain how to
use Pong Designer to create a Space-Invaders game.

The purpose of a space-invaders game is to destroy the invaders that are descending
from the sky. Programming such a game involves a little bit more logic than usual.
It demonstrates a not so straightforward use of conditional statements to describe the
moves of the enemy.

Enemies are slowly traveling from right to left, and at time intervals,
they velocity is inversed and they step down a little. After 10 steps
downwards, instead of stepping down, they step up until they reach their
initial position.
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Appendix B. Pong Designer Tutorials

As we do not yet support path-by-example paradigms, we will demonstrate how to
program this trajectory by graphically specifying how the speed vector changes and the
relative movement.

A bouncing block will control the regularity of this movement, regularly decreasing a
number. Depending on the number’s value, the game will move the enemy either up or
down, and each time reverse its speed.

The player controls a circular paddle constrained on the bottom of the screen. If they
press “Fire”, a projectile appears in front of them and shoots upwards. If the projectile
hits the enemy, we remove the enemy, and the player can shoot again.

Each time the projectile hits an enemy, the score increases. From time to time, a random
projectile from the sky goes through the enemies, and if it hits the player, the player
looses a point.

We start with a layout containing all the necessary shapes and only one enemy. First, we
would like the game to start when we press on “start”. This requires the enemy and the
block decreasing the counter to start to move.

• Press on the event menu, press on the “start” label. Even if no events occurred yet,
it displays three possible events that could occur on this label. Select the green
circle corresponding to a “finger up” event. Change the velocity of the moving
block to point downwards, and the speed of the enemy to point to the left, and
hide the start label. Accept the rule.
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B.1. Space Invaders Tutorial

Second, we would like to set up the moving block to decrease the counter, and by the
same way to set up the counter change to make the enemy change its direction. Besides,
when this counter is positive, the enemy should step down a little, and when it is negative,
the enemy should step up a little. When the counter reaches -10, it goes back to 10.

1. Start the game, wait for the collision of the trigger with the orange wall. Pause
the game, press on the event menu, select the collision. Change the counter on the
right from 10 to 9. Accept the rule.

2. Select the counter that now displays 9. Change its value to 0. Click on the event
menu. Press on the counter, and choose the event when its value is greater or equal
to 0. Turn the speed of the enemy by 180 degrees, and make it step down a little.
Accept the rule.

3. Start the game for a while. Watch the counter decreasing once. When it reaches
−1, pause the game. It is also possible to change it manually without waiting.
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4. Press on the event menu, select the event that occurred to produce −1. Select the
condition “when the value is ≤ −1”. Turn the speed of the enemy by 180 degrees,
and make it step up a little. Accept the rule.

5. Start the game for a while. Watch the counter decreasing to −3. Unfortunately,
the enemy does not go up any further. By pausing the game and selecting the rule,
we would see that the system inferred absolute positions. By explicitly switching
between the lines of code or providing a new input/output example, we can solve
the problem.

6. Relaunch the simulation. When the counter reaches −10, pause the game.

Press on the event menu, select the event that occurred to produce −10. Select
the condition “when the value equals −10”. Change the value from −10 to 10 (see
below). Accept the rule.

Below, we show the kind of code our system produced for the last three steps.
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To cover all cases, the generator automatically splits all integer conditions into disjoint
intervals. Therefore, the code in the if-statement over the intervals [−∞, −11] and
[−9, −1] describes the enemy going up, whereas the code in the if-statement over the
interval [0, +∞[ describes the enemy going down. The special singleton {−10} contains
the change of the counter to 10.

Furthermore, the ambiguity of the line of code transforming -10 to 10 is a problem solved
by subtracting the current value of the counter from the score, which is currently equal
to zero. Although correct for the moment, this formula will be wrong. One can manually
modify it at this stage using arrows, or one can correct it later when the game will be
more complex.

We next wish to make the player to follow the finger horizontally, as for the brick breaker
game. We proceed as follows. Start the game. While watching the enemy going up and
down, move the finger to drag the player’s ball to the right. Pause the game. Press on
the event menu, select the move event that just occurred, drag the ball to the right, and
accept the rule.

We next enable the player to shoot at the enemy when “Fire” is pressed. For that, we
first create a small orange bullet anywhere outside the screen. Then we add the logic.
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1. Start the game. Press the “Fire” button. Pause the game. Create a small orange
bullet anywhere outside the screen. Press on the event menu, select the press on
the “Fire” button. Move the bullet to the top of the player, sets its speed to the
top. The system will infer that this circle’s new position should be relative to the
player. Also, set the visibility of the “fire” button to invisible, since the player is
not using more than a bullet a time.

2. Start the game. The bullet hits the enemy. Pause the game, press on the event
menu, select the collision, and change the game such that the score increases, the
enemy and the bullet disappear, the score augments, and the fire button becomes
visible.

3. What happens if the bullet does not hit any enemy? Rewind the game just before
the circle hits the enemy, and move the enemy away. Start the game. After
the bullet hits the top wall, pause the game. Select the event menu, select the
collision, move the bullet away, set its speed to zero, and make the “Fire” button
to reappear.
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4. Let us add more enemies. Go back to the beginning. Duplicate enemies to make an
array. For that, select an enemy and create a new circle. The system automatically
duplicates rules and parameters.

Using techniques explained in the Breakout style game, it is straightforward to add a
victory label, a game over, to have a specific enemy to fire other bullets at the player, etc.

In the sequel, we illustrate the expressiveness of Pong Designer for describing integer
computations by showing how to compute the Fibonacci sequence. This also suggests that
this programming paradigm can introduce programming concepts, regardless whether
these concepts are related to games.

B.2 Fibonacci Sequence Tutorial

A user usually programs a Fibonacci sequence by explicitly providing the calculation
steps. However, the Fibonacci sequence follows a simple recognizable pattern. Our
game engine is able to recognize this pattern after a few input/output examples, and it
computes the expected program.

Although it appears to use a sledgehammer to kill a fly, demonstrating the behavior
instead of providing the code has several advantages:

• The user is sure that the generated function complies with the provided examples.

• He can directly test the generated function on other inputs to check the generaliza-
tion made by the system.

• He can demonstrate other non-trivial sequences such as the reverse Fibonacci
sequence (see step 13) and indicate wrong behaviors.

• Finally, the system could be able to ask for disambiguation by providing differenti-
ating examples in a future version.
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The implementation of this “game” results in an interactive Fibonacci sequence. The
interaction is the following: when the user presses the green ball that acts as a trigger,
the game computes the next numbers in the Fibonacci sequence. When the user presses
on the red ball, it computes the sequence in the reverse order.

1. Insert three score counters into the game, and two ball shapes: one green and one
red.

2. Set their respective values to 1, 1, 2.

3. Press the event menu, and press on the green ball. Select the finger down event.

4. Change the numbers to 1, 2, 3.

5. Select OK.

6. Open the rule.

7. Apply the rule once. The numbers now become 1,2,3, but their next values 1,3,4
are wrong.

8. Modify the next values to 2,3,5, and press OK. The system immediately update
the rule.

9. Apply the rule once. The numbers now become 2,3,5, but their next values 3,4,8
are still wrong.
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10. Modify the next values to 3,5,8, and press OK. The system immediately update
the rule. The formula for computing the second number is now correct.

11. Apply the rule once again, and change the 4,8,13 to 5,8,13, and accept it.

12. Run the game, press two times on the ball. The game correctly computes the
Fibonacci numbers.

13. To create the rule for the reverse computation, the steps could be similar, but we
will use a faster way. Press on the red ball and pause the game. Press on the event
menu, select the press on the red ball, and change the numbers from 13,21,34 to
8,13,21. Accept the rule.

14. Launch the game. Because of the few possibilities, the system inferred the correct
rule for the reverse Fibonacci sequence.

195





C User Study for Composite Scrip-
ting

The following pages 197-205 contain the user study for the work on Composite Scripting
(See Chapter 3 page 47, especially section 3.6.1 page 68). We had two variants of this
user study, one starting with exercises with our tool StriSynth and then continuing with
Powershell, and the other doing it with Powershell first.
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StriSynth

User Study A

1 Overview
StriSynth is a "programming by example" language for string transformation. By giving examples of the transforma-
tions you would like, StriSynth will generate a script (in this case a PowerShell script) that generalizes the pattern
you have given.

This study will be used to determine which sorts of problems are most appropriate for StriSynth from the user’s
perspective. We will give you an introduction to StriSynth, highlighting both it’s strengths and limitations. Then, you
will complete a series of scripting tasks designed to explore how you prefer to use StriSynth. We expect this study to
take approximately an hour.

Please do not close the terminal windows until you are completely finished, we are collecting data on your session
and cannot save everything we need if you close the window in the middle of the study. You may disconnect from the
RDP, or walk away from your computer for a time, as long as the PowerShell terminal remains open.

There are three sets of tasks - the first two will each be exclusive to either StriSynth or PowerShell. The third set
you will not need to code, you will only be asked to choose between use StriSynth or PowerShell for each task.

By completing this study you grant us the rights to analyze any scripts or commands you write for this study. We
will collect no personally identifying information on you for this study. You may decline to participate or complete
the study at any time.

2 PowerShell Tutorial
PowerShell is an object based scripting language.

If you would like to retrieve the list of all the files in a directory, you can use ’ls’. This command will return a
List (array) of objects, which you can then manipulate. For example, for this study you will often need only the name
attribute from the objects. (ls | select -ExpandProperty Name) will return a List(String) of names. This list can be
piped into StriSynth generated scripts, explained in the next section. To get the contents of the file in PowerShell use
(Get-Contents), which will return List(String), where each element is a line from the file.

Here is a reference that gives powershell commands, equivalent bash commands, and an English explanation of the
command. http://cecs.wright.edu/~pmateti/Courses/233/Labs/Scripting/bashVsPowerShellTable.html

3 StriSynth Tutorial
StriSynth is a "programming by example" language for string manipulation. To program in StriSynth you need to
provide one or more examples of input to output. The StriSynth engine will then synthesize a script based on your
given examples.

A tutorial video is available at https://www.youtube.com/watch?v=GVvTdwulWPY
Here is a in-depth tutorial that gives StriSynth commands and an English explanation of the command. http:

//santolucito.github.io/strisynth/
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4 Tasks
You have been given login information to a remote Windows machine. Use the Remote Desktop viewer software of
your choice to login. Once connected, open a PowerShell window to begin.

There will be a directory that matches your user identification number on this form. Within this directory you will
find directories for each set of tasks (set1, set2). Set3 does not require coding. Within each of these directories, you
will find directories for each task (set1/task1, set1/task2,...). Please complete all sets and tasks in numerical order.

You will need to be in the StringSolver directory to build scripts with StriSynth (sbt console). Once you have
finished using StriSynth to make a script, you can use it in the the appropriate directory.
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4.1 Set 1 - StriSynth
Please complete all these tasks with StriSynth.

If you feel you are not able to come to a solution for any of these problems after 8min, please move on. It is not
important that you find the solutions to these problems, but rather that you gain a sense of what it is like to work
with this tool.

Note that you are free to use the Internet, including copying and pasting. We hope to create a simulation of your
typical decision procedure for finding a solution.

After finishing each task, please make a note how much time you took. You will be asked to enter this time into
a survey given at the end of the study. Do not take more than 25 minutes on this set.

4.1.1 Linking to items

Create a script (solution.ps1) to generate a link to all the documents in the folder. That is, "test.doc" should become
"<A HREF="test.doc">test</A>".

4.1.2 Printing pdfs

You are given a list of files of coma-separated file names in the file list.txt. Create a script (solution.ps1) that will
print all .pdf files using the imaginary ’print <filename>’ command. Do not print any other files extensions.

4.1.3 Merging a book

You are given the pages of three books, Algorithms, Graphics, and Math. Create a script (solution.ps1) to merge all
the pages (existing .pdf files) to a new .pdf with the name of the book using the command ’merge <list of in files>
<merged filename>. Math1.pdf and Math2.pdf should be combined to make Math.pdf using the command ’merge
Math1.pdf Math2.pdf Math.pdf’.
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4.2 Set 2 - PowerShell
Please complete all these tasks with PowerShell.

If you feel you are not able to come to a solution for any of these problems after 8min, please move on. It is not
important that you find the solutions to these problems, but rather that you gain a sense of what it is like to work
with this tool.

Note that you are free to use the Internet, including copying and pasting. We hope to create a simulation of your
typical decision procedure for finding a solution.

After finishing each task, please make a note how much time you took. You will be asked to enter this time into
a survey given at the end of the study. Do not take more than 25 minutes on this set.

4.2.1 Linking to items

Create a script (solution.ps1) to generate a link to all the documents in the folder. That is, "test.doc" should become
"<A HREF="test.doc">test</A>".

4.2.2 Printing pdfs

You are given a list of files of coma-separated file names in the file list.txt. Create a script (solution.ps1) that will
print all .pdf files using the imaginary ’print <filename>’ command. Do not print any other files extensions.

4.2.3 Merging a book

You are given the pages of three books, Algorithms, Graphics, and Math. Create a script (solution.ps1) to merge all
the pages (existing .pdf files) to a new .pdf with the name of the book using the command ’merge <list of in files>
<merged filename>. Math1.pdf and Math2.pdf should be combined to make Math.pdf using the command ’merge
Math1.pdf Math2.pdf Math.pdf’.
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4.3 Set 3 - Your Choice
This set will be completed concurrently with the survey. You will be asked to rank your preference for tool to use to
complete each task. Your options are StriSynth, PowerShell, and any other scripting language (bash, perl, sed, etc).
Both approaches are possible for every task, however you will not be asked to actually code the solution. We just want
to know which tool you would choose for each task if you were to code a solution.

Note that you would be free to use the Internet, including copying and pasting. We hope that you will imagine
this as a simulation of your typical decision procedure for finding a solution.

4.3.1 Automated Emails

Please create a script (solution.ps1) to send emails to ’president@yale.edu’. Send as many emails as there are lines in
the input file.

The command to send an email is "Send-Email <address> \# <subject> \# <message>". The message of the
email will be one line taken from the file ’in.txt’ and the subject will just be the string ’test’. For example, if ’in.txt’
contains the "foobar", you should generate the command...

"Send-Email president@yale.edu # test # foobar"

4.3.2 Health Data

Write a script to extract data from a patient health records.
The input format is below. The numbers indicate name; age; diseases; weight; height; and blood pressure.

Patient #091234; Alice Smith; 24; Genital Herpes ; 71.2; 180; 130/80

Patient #4155; Bob Brown; Asthma; 9; 35.8; 100; 120/78

Patient #18535; Evelyn Doyle; HPV; 19,64.4,150,120/79

For all patients that are 10 years or older, you need to extract the patients’ diseases. Since this will be a publicly
available database, you need to be sure to use the patient id rather than the name. The output format is below.

#091234 has Genital Herpes

#18535 has Asthma

4.3.3 Reorder commands

You have a program, p.out, that you want to run on many files. p.out will read two files and write to two other files.
The commands have already been constructed, but the ordering of the arguments has changed for p.out. If a command
looked this this before the change

./p.out in1.txt in2.txt out1.txt out2.txt;

now it should look like

./p.out in1.txt out1.txt in2.txt out2.txt;

The input output files are all .txt file, but otherwise have no pattern. The list of commands is given you to as a
file shown below.

./p.out foo.txt bar.txt f.txt b.txt;

./p.out a.txt b.txt c.txt d.txt;

./p.out ying.txt yang.txt ting.txt tang.txt;

4.3.4 Report Building

You are given a text file (in.txt) that contains a bank account history. Please generate a new organized report in the
below format. To get the contents of the file in PowerShell use ’Get-Contents’, which will return List(String), where
each element is a line from the file. So, if the input report looks like...

20061120_Yale +100

20150119_MSR +100

20100315_MSR +20

19980905_Yale -10
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the output report (out.txt) should look like...

Yale-report +100 -10

MSR-report +100 +20

4.3.5 Extract Filenames

Write a script to make a list of the files in a folder. The list should contain the filename without the extension. For
example, the following directory...

foo.txt

bar.pdf

foo.bar.doc

will yield [foo,bar,foo.bar]

4.3.6 Initials

You will need to convert a number of "Full Name" data fields to a common format. Here are the input formats.

FirstName MiddleName LastName

FirstName M. LastName

LastName, FirstName MiddleName

LastName, FirstName M.

FirstName LastName

LastName, FirstName

The target format is the user’s initials and a unique counter (John Abe Doe becomes J.A.D.-01). The order of
the counter doesn’t matter, only that each item has a unique value.

4.3.7 Move

Move all the .png files to the imgs/ subdirectory.

4.3.8 Art Project

Write a script that will work as part of a digital art project.
You will collect data from the location services platform, 3Triangle, to be sent to a visualizer. The 3Triangle API

provides the following data.

last checkins-(41.316070, -72.943445),(41.311090, -72.932008); Username-james9867; Device-Windows

last checkins-(41.316470, -72.943040); Username-jane1995; Device-Windows

last checkins-(41.316588, -72.943467),(41.311348, -72.932065),(41.315090, -72.932008); Username-joey24; Devi

Create a list of all the locations that have been recorded by Android phones, and a list of all the locations that
have been recorded by Windows phones

(41.316070, -72.943445),(41.311090, -72.932008), (41.316470, -72.943040)

4.3.9 Linking to items

Create a script (solution.ps1) to generate a link to all the documents in the folder. That is, "test.doc" should become
"<A HREF="test.doc">test</A>".

4.3.10 Printing pdfs

You are given a list of files of coma-separated file names in the file list.txt. Create a script (solution.ps1) that will
print all .pdf files using the imaginary ’print <filename>’ command. Do not print any other files extensions.

4.3.11 Merging a book

You are given the pages of three books, Algorithms, Graphics, and Math. Create a script (solution.ps1) to merge all
the pages (existing .pdf files) to a new .pdf with the name of the book using the command ’merge <list of in files>
<merged filename>. Math1.pdf and Math2.pdf should be combined to make Math.pdf using the command ’merge
Math1.pdf Math2.pdf Math.pdf’.
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5 End of Study
Now that you have completed all the tasks please save your terminal history with the following command. In the
window you have been using for PowerShell, run "h -count 500 > ~/history.txt". Your StringSolver command
history has already been automatically captured.

5.1 Writeup
Please fill out the short survey at the following address https://yalesurvey.qualtrics.com/SE/?SID=SV_afv1UNqr1LLtAMZ.

You may now log out of the Remote Desktop connection. Thank you for participating in this study. If you have
any questions or would like to know more about this research, please contact your recruiter.
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D The Three Coins Proof

It was useful to rely on automated tools for verification and proof during the work of
Chapter 5, page 109.

One of this automated proofs is particularly interesting. It proves the fact stated by
the sandwich story on page 112 that testing up to three coins is enough. Reproducing
the proof as a formally verified program would be 16 pages long in this thesis format1.
The complexity could be reduced if trivial operations, such as the associativity of
concatenation, were built-in by default. I used the Leon2 tool to prove this theorem.

In the sequel, I present a still formal but readable version of the proof after an introduction.

D.1 Code Coverage Is Not Enough

Let us consider the following type hierarchy and the most simple template f to render it:

abstract class List
case class Cons(e: List) extends List
case class Nil() extends List

def f(l: List) = l match {
case c: Cons ⇒ C1 + f(c.e) + C2
case n: Nil ⇒ C3

}

If we were to learn f by example, it would not be sufficient to have input examples
covering the entire program, in order to guess the value of the free variables C1, C2 and
C3. Indeed, a code coverage procedure might produce the outputs Cons(Nil()) and maybe
even Nil(). However, the following functions are equal on these two terms and produce “”

1github.com/MikaelMayer/string-proofs/blob/master/StringTheorems.scala
2https://github.com/epfl-lara/leon
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and “ab”, but differ afterwards because f1 produces “aabb” whereas f2 produces “abab”.

def f1(l: List) = l match {
case c: Cons ⇒ “a” + f(c.e) + “b”
case n: Nil ⇒ “”

}
def f2(l: List) = l match {

case c: Cons ⇒ “ab” + f(c.e) + “”
case n: Nil ⇒ “”

}

D.2 Characterizing Unary Lists Printers

We now prove the following statement, which could be used to finish an active learning
phase for a hierarchy of unary lists by asking at most three questions. Given two functions
of the shape given by f in appendix D.1, they are equal if and only if they are equal
on Exs = {Nil(), Cons(Nil()), Cons(Cons(Nil()))}. In the sandwich metaphor of Chapter 5,
page 118, this means that we need to test the machines with up to three coins.

Proof. For that, let us first define a few lemmas on strings (we use the multiplication
notation for the concatenation of strings).

Lemma 1. (Equation split) If A, B, C, D are strings, then:

AB = CD ∧ |A| = |C| ⇔ A = C ∧ B = D

Lemma 2. (Inegality-propagate) If p, A, q, B are strings, then:

(AB = CD ∧ |A| < |C|) ⇔ (AB = CD ∧ |B| < |D|)

Lemma 3. (Prefix-introduce) If p, A, q, B are strings, then:

(|p|‘ < |q| ∧ pA = qB) ⇔ (∃k.q = pk ∧ A = kB)

Lemma 4. (Suffix-introduce) If p, A, q, B are strings, then:

(|p|‘ < |q| ∧ Ap = Bq) ⇔ (∃k.q = kp ∧ A = Bk)

Lemma 5. (constructive-commutation) If C, q, p are strings, then

Cq = pC ⇔
∃k1, k2 : string, n ∈ N.p = k1k2, q = k2k1, C = k1(k2k1)n

Lemma 6. (commutative-recurrence) If A, B are strings and n an integer such that
AB = BA, then (AB)n = AnBn
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Lemma 7. (associativity) If A, B are strings and n an integer, then (AB)nA = A(BA)n

Let us have two functions f and g obtained from the template f in appendix D.1, the first
one being parameterized by the constants A, B and C and the second by D, E and F.

The fact that f and g are equal on Exs yields the three equations:

C = F (D.1)

ACB = DFE (D.2)

AACBB = DDFEE (D.3)

If |A| = |D| it follows that |B| = |E| and from lemma 1 we can deduce that the functions
are equal.

Without loss of generality, let us suppose that |A| < |D|. From equation D.2 and lemma
2, we obtain that |B| > |E|. Hence from lemma 3 and lemma 4, we obtain the existence
of two constants p and q such that D = Ap and B = qE. Hence equations D.2 and D.3
can be rewritten and simplified as:

Cq = pC (D.4)

ACqEq = pApCE (D.5)

Applying lemma 5 to equation D.4 produces constants k1, k2 and n as in the lemma
making euqation D.4 to hold and rewriting equation D.5 to:

Ak1(k2k1)nk2k1Ek2k1 = k1k2Ak1k2k1(k2k1)nE (D.6)

If n = 0, then

Ak1k2k1Ek2k1 = k1k2Ak1k2k1E (D.7)

and it follows from the fact that |Ak1k2| = |k1k2A|, |Ek2k1| = |k2k1E| and lemma 1 used
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twice that:

Ak1k2 = k1k2A ∧ Ek2k1 = k2k1E (D.8)

A similar reasoning for n > 0 would yield the same equation D.8.

To conclude, we remark that, if we abbreviate an input Cons(Cons(. . .Nil())) by Consm(Nil())
where m is the number of Cons in the expression, invoking the lemma 6 and 7:

f(Consm(Nil())) = AmCBm

= Amk1(k2k1)n(qE)m

= Amk1(k2k1)n(k2k1E)m

= Amk1(k2k1)n(k2k1)mEm

= Amk1(k2k1)n(k2k1)mEm

= Amk1(k2k1)m(k2k1)nEm

= Am(k1k2)mk1(k2k1)nEm

= Am(k1k2)mCEm

= Am(k1k2)mFEm

= (Ak1k2)mFEm

= DmFEm

= g(Consm(Nil()))

So we proved that f and g are equivalent.
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E Proactive Synthesis Proofs

E.1 Injectivity of τΣ

Lemma 5.5.1.1. For any ranked alphabet Σ, the function �τΣ� is injective.

Proof. Assume that �τΣ� is not injective, and let t = f(t1, . . . , tn) and t′ = f ′(t′
1, . . . , t′

m)
be two trees with t �= t′, such that τΣ(t) = τΣ(t′). We pick t and t′ satisfying those
conditions such that τΣ(t) has the smallest possible length.

By definition of τΣ, we have

τΣ(t) = (f, 0)τΣ(t1)(f, 1) · · · τΣ(tn)(f, n)

and

τΣ(t′) = (f ′, 0)τΣ(t′
1)(f ′, 1) · · · τΣ(t′

m)(f ′, m).

Since τΣ(t) = τΣ(t′), we deduce that (f, 0) = (f ′, 0) and f = f ′, meaning that t and t′

have the same root.

Thus, t = f(t1, . . . , tn), and t′ = f(t′
1, . . . , t′

n).

To conclude, we consider two cases. If for all i ∈ {1, . . . , n}, τΣ(ti) = τΣ(t′
i), we have

ti = t′
i, as the length of τΣ(ti) is strictly smaller than τΣ(t). This ensures that t = t′, and

we obtain a contradiction.

On the other hand, if there exists i ∈ {1, . . . , n}, τΣ(ti) �= τΣ(t′
i), consider the smallest

such i. We then have:

τΣ(t) = (f, 0)τΣ(t1)(f, 1) · · · τΣ(ti−1)(f, i − 1)τΣ(ti)(f, i) · · · τΣ(tn)(f, n)
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and

τΣ(t′) = (f, 0)τΣ(t1)(f, 1) · · · τΣ(ti−1)(f, i − 1)τΣ(t′
i)(f, i) · · · τΣ(t′

n)(f, n).

Since τΣ(t) = τΣ(t′), and the prefixes are identical up until (f, i − 1), we deduce

τΣ(ti)(f, i) · · · τΣ(tn)(f, n) = τΣ(t′
i)(f, i) · · · τΣ(t′

n)(f, n).

We finally consider three subcases, with respect to this last equation.

• If τΣ(ti) and τΣ(t′
i) have the same length, we deduce τΣ(ti) = τΣ(t′

i), contradicting
our assumption.

• If τΣ(ti) is strictly shorter than τΣ(t′
i), we deduce that τΣ(ti)(f, i) is a prefix of

τΣ(t′
i). This is not possible as τΣ(t′

i) must be well parenthesized if (f, 0) is seen as
an open parenthesis, and (f, i) as a closing parenthesis (by definition of τΣ).

• The case where τΣ(ti) is strictly longer than τΣ(t′
i) is symmetrical to the previous

one.

E.2 Proof of NP-completeness

Theorem 5.6.1.1. Given a sample S, checking whether there exists a 1STS τ such that
for all (t, w) ∈ S, τ(t) = w is an NP-complete problem.

Proof. In general, we can check for the existence of τ in NP using the following idea.
Every input/output example from the sample gives constraints on the constants of τ .
Therefore, to check for the existence of τ , it is sufficient to non-deterministically guess
constants which are subwords of the given output examples. We can then verify in
polynomial-time whether the guessed constants form a 1STS τ which is consistent with
the sample S.

To prove NP-hardness, we consider a formula ϕ, instance of the one-in-three positive SAT.
The formula ϕ has no negated variables, and is satisfiable if there exists an assignment
to the boolean variables such that for each clause of ϕ, exactly one variable evaluates to
true.

Formally, let X be a set of variables and let ϕ ≡ C1 ∧ · · · ∧ Cn such that for every
i ∈ {1, . . . , n}, Ci ≡ OneInThree(xi

1, xi
2, xi

3) with xi
1, xi

2, xi
3 ∈ X.
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E.3. Cubic Lower Bound

Let Σ = nil(0)∪{x(1) | x ∈ X}. Let Γ = {a, #}. Then, for every clause OneInThree(xi
1, xi

2, xi
3),

we define S(xi
1(xi

2(xi
3(nil)))) = a#. Finally, we define S(nil) = #.

We now prove the following equivalence. There exists a 1STS τ such that for all (t, w) ∈ S,
τ(t) = w if and only if ϕ is satisfiable.

(⇒) Let τ = (Σ, Γ, δ) be a 1STS such that for all (t, w) ∈ S, τ(t) = w By definition of S,
we know τ(nil) = # and and for all i ∈ {1, . . . , n}, τ(xi

1(xi
2(xi

3(nil)))) = a#.

Moreover, if for all x ∈ X, we denote δ(x) = (left(x), right(x)), with left(x), right(x) ∈ Γ∗.
Then, by definition of τ , we have, for i ∈ {1, . . . , n}:

τ(xi
1(xi

2(xi
3(nil)))) = left(xi

1)left(xi
2)left(xi

3)τ(nil)right(xi
3)right(xi

2)right(xi
1)

= left(xi
1)left(xi

2)left(xi
3)#right(xi

3)right(xi
2)right(xi

1)

We deduce that left(xi
1)left(xi

2)left(xi
3) = a and right(xi

3)right(xi
2)right(xi

1) = ε.

Thus, exactly one of left(xi
1), left(xi

2), left(xi
3) must be equal to a ∈ Γ, while the other

two must be equal to ε. Then, ϕ is satisfiable using the boolean assignment that maps a
variable x ∈ X to � if left(x) = a, and to ⊥ if left(x) = ε.

(⇐) Conversely, assume there exists a satisfying assignment μ : X → {⊥, �} for ϕ. Then,
we define the 1STS τ = (Σ, Γ, δ) where δ(nil) = # and for all x ∈ X δ(x) = (a, ε) if
μ(x) = �, and δ(x) = (ε, ε) if μ(x) = ⊥. We then have τ(t) = w for all (t, w) ∈ S.

Remark. The NP-completeness proof of [Laurence, 2014] could not apply here, because
the transducers are more general. Namely, they are allowed to have multiple states in
their setting.

E.3 Cubic Lower Bound

Lemma 5.7.2.2. There exists a sequence of domains D1, D2, . . . such that for every
n ≥ 1, the smallest tree test set of Dn has at least n3 elements, and the size of Dn is
linear in n. Furthermore, this lower bound holds even with the extra assumption that all
states of the domain are initial.

Proof. Our proof is inspired by the lower bound proof for test sets of context-free
languages [Plandowski, 1994, Plandowski, 1995]. However, that lower bound did not
work for context-free grammars with the extra assumption that all non-terminal symbols
are starting symbols. Therefore, their proof cannot be applied for domains where all
states are initial. Our contribution is a variant which shows that, even when all states of
the domain are initial, the lower bound still holds and the minimal test-set has a cubic
size.
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Appendix E. Proactive Synthesis Proofs

For n ≥ 1, we first define the domain Dn = (Σ, Q, I = Q, δ) containing linear trees (lists)
of depth 1 to 3, and using n different symbols of each level. Formally, we have (we use a
functional notation for δ, as δ is here deterministic):

• Σ = {Aj
(1), Bj

(1), Fj
(0) | 1 ≤ j ≤ n},

• Q = {q2, q1, q0},

• δ(Aj
(1), q2) = (q1),

• δ(Bj
(1), q1) = (q0),

• δ(Fj
(0), q0) = ().

Dn recognizes n3 + n2 + n trees. Our goal is to prove, by contradiction, that Dn does not
have a tree test set T ⊂ Dn of size less than n3. Let t = Ax(By(Fz)) ∈ Dn \ T for some
arbitrary x, y, z ∈ [1, n]. t exists when the size of T is strictly less than n3. We construct
two 1STSs τ1 and τ2 such that �τ1�|T = �τ2�|T but �τ1�(t) �= �τ2�(t), contradicting the
fact that T is a tree test set.

Let Γ = {p, q} be an alphabet, and τ1 = (Σ, Γ, δ1), τ2 = (Σ, Γ, δ2), where

• δ1(Aj) = (ε, pq) if j = x,

• δ1(Aj) = (ε, ε) otherwise,

• δ1(Bj) = (ε, ε) if j = y,

• δ1(Bj) = (p, q) otherwise,

• δ1(Fj) = (qp) if j = z,

• δ1(Fj) = (ε) otherwise,

and

• δ2(Aj) = (pq, ε) if j = x,

• δ2(Aj) = (ε, ε) otherwise,

• δ2(Bj) = (ε, ε) if j = y,

• δ2(Bj) = (p, q) otherwise,

• δ2(Fj) = (qp) if j = z,

• δ2(Fj) = (ε) otherwise.
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E.4. Construction of Φ3(G)

We can verify that �τ1�|T = �τ2�|T , but τ1(t) �= τ2(t), as τ1(t) = pqqp and τ2(t) = qppq.

We conclude that the only tree test set of Dn is Dn itself, which contains n3 = ( |Σ|
3 )3

words. Moreover, the (syntactic) size of Dn is O(n).

We note that the above transducers δ1 and δ2 have the same output on all Fk and on all
Bj(Fk). Therefore, even if we interactively ask questions as for Theorem 5.8.1.1, these
questions will not be able to resolve the ambiguity which will appear only at the specific
Ax(By(Fz)).

E.4 Construction of Φ3(G)

To construct Φ3(G) for a linear context-free grammar G = (N, Σ, R, S), we precompute
in time O(|N |2|R|), for each pair of vertices (A, B), the optimal path from A to B in
graph(G). Then for each possible choice of at most 3 edges e1 = (A1, r1, B1), . . . en =
(An, rn, Bn), with 0 ≤ n ≤ 3, we construct the path P = P1e1 . . . PnenPn+1 where each
Pi is the optimal path from Ai−1 to Bi (if it exists) with A0 = S and Bn+1 = ⊥ by
convention. We then add the word corresponding to P to our result.

To conclude, since the length of each optimal path is bounded by |N |, we can construct
Φ3(G) in time O(|N | · |R|3).

E.5 Proof of Theorem 5.9.1.1

Theorem 5.9.1.1. If the domain D = (Σ, Q, I, δ) is such that for every f ∈ Σ of arity
k > 0, there exist trees in t1, . . . , tk ∈ D such that f(t1, . . . , tk) ∈ D and each ti contains
at least one v, then there exists a tree test set of D′ of linear size O(|Σ| · A) where A is
the maximal arity of a symbol of Σ.

Proof. Let D be a domain with the property above. First, remark that for some s, u ∈ Γ∗,
if t′ ∈ D′ and t′ contains vs, then all the trees obtained from t′ by replacing vs by vu are
also in D′.

We build the linear tree test set T′ as follows.

Let us associate to every symbol f (k) ∈ Σ and to every position in the arity i ∈ [1, k] the
tree ti as provided by the hypothesis. Let us take one of its t′

i ∈ D′ (denoted f i[s]) such
that t′

i contains at least one vs for some s ∈ Γ∗, the other v being mapped to any other
constant. For all other u ∈ Γ∗, remark that f i[u] ∈ D′.

Define T′ containing all “default” trees and all their variations, changing one “#” to “?”:
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Appendix E. Proactive Synthesis Proofs

T′ =
⋃

f (k)∈Σ

⎛
⎜⎝{f (k)(f i[“#”]i∈[1,k])} ∪ {f (k)(f i

⎡
⎣

⎧⎨
⎩

“?” if i = j

“#” else

⎤
⎦

i∈[1,k]

)|j ∈ [1, k]}

⎞
⎟⎠

.

Note that T′ is included in D′, since the original tree was in D′.

The size of the set T′ is at most 2|Σ| · A. We will now prove that T′ is a tree test set for
D′. Indeed, suppose that we have two transducers τ1, and τ2, and that they are equal on
T′. We will show the strong result that they have the same constants.

Let f (k) ∈ Σ. Since f i[“#”] , f i[“?”] ∈ T′ for i ∈ [1, k], we can write

�τ1�(f i[“#”]) = �τ2�(f i[“#”]) ∧ �τ1�(f i[“?”]) = �τ2�(f i[“?”])

which, for some wi and zi can be rewritten to:

wi · “#” · zi = w′
i · “#” · z′

i ∧ wi · “?” · zi = w′
i · “?” · z′

i

We apply Lemma 5.9.1.1 to conclude that wi = w′
i and zi = z′

i, so we can remove the
primes.

By hypothesis, we have that:

�τ1�(f (k)(f i[“#”]i∈[1,k])) = �τ2�(f (k)(f i[“#”]i∈[1,k]))

which we can rewrite to:

u0w1“#”z1 · u1 · · · wk“#”zk · uk = u′
0w1“#”z1 · u′

1 · · · wk“#”zk · u′
k

We also have k other similar equalities by changing any of the “#” by a “?” at the same
place in the two sides of the equation. Using Lemma 5.9.1.1, and by changing the first
“#” to “?”, we obtain that u0w1 = u′

0w1 so u0 = u′
0. After simplifying the equations, it

remains that:
u1 · · · wk“#”zk · uk = u′

1 · · · wk“#”zk · u′
k

so we can continuously apply the lemma to obtain that u1 = u′
1, . . . uk = u′

k. Hence T′ is
a tree test set of linear size.
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