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Abstract

This technical note discusses convergence conditions of a generalized variant of primal-dual interior point methods. The
generalization arises due to the permitted case of having a non-uniform complementarity perturbation vector, which is equivalent
to having different barrier parameters for each constraint instead of a global barrier parameter. Widely used prediction-correction
methods and recently developed coordinated schemes can be considered as specific cases of the non-uniform perturbation
framework. For convex quadratic programs, the polynomial complexity result of the standard feasible path following method
with uniform perturbation vector is extended to the generalized case by imposing safeguarding conditions that keep the iterates
close to the central-path.

I. INTRODUCTION

We consider the following convex quadratic optimization problem:

min.
x,s

1

2
xTHx+ qTx

s. t. Ax+ b+ s = 0 ,

s ≥ 0 , (λ)

(1)

where λ is the dual variable associated to the positivity constraint. This problem can be efficiently solved with primal-dual
interior point methods that enjoy worst-case polynomial complexity [6].

In standard primal-dual methods, the problem is solved with the help of a smoothing on the KKT system. The smoothing
is obtained by perturbing the complementarity conditions with a uniform and positive vector. In practice, certain correction
terms are added to the perturbation vector [4], [7], to account for the non-linearity of the complementarity equation. This
type of correction can be considered as a ‘non-uniform’ perturbation vector since the ‘corrected’ perturbation parameter for
each constraint can be different. Another motivation for using a non-uniform perturbation arises from the implementation
of primal-dual methods in a multi-agent setting [1] where it is desirable to use a different perturbation vector for each set
of local constraints in order to reduce the communication burden. In this technical note we will analyze the convergence
properties of primal-dual interior points with non-uniform complementarity perturbation vector for quadratic programming.
Following closely the analysis of [6], we will show that in this generalized setting, identical worst-case complexity results
can be obtained, provided that certain centrality conditions are enforced. These conditions are automatically satisfied in the
uniform setting, and provide guidelines for ensuring safe operation for practical implementations of coordinated or prediction
correction type primal-dual interior-point methods.

In the following we will first introduce the standard primal-dual interior point method and then provide the complexity
result for the non-uniform setting.

II. PRIMAL-DUAL INTERIOR POINT METHOD

This section provides a summary of standard primal-dual interior point framework. See [8], [9] for a more in depth
treatment and [5] for an up to date survey.

The first order optimality conditions for problem (1), or the Karush-Khun-Tucker(KKT) system, can be written as

r(x, s, λ) = 0. (2)

Where r = (rTdual, r
T
comp, r

T
prim)T and the following definitions are used:

rdual(x, λ) = Hx+ q +ATλ ,

rprim(x, s) = Ax+ b+ s ,

rcomp(λ, s) = ΛS1 ,

(3)

where Λ = diag(λ), S = diag(s) and the operator diag(.) constructs a diagonal matrix from the input vector.

*This technical note includes some of the explanatory material from [1] and provides the proof of Theorem 1 of [1].
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Primal-dual interior point (PDIP) methods operate by applying Newton’s method on a smoothed version of the nonlinear
set of equations (2). The smoothing is obtained by perturbing the complementary slackness condition:

rcent(β, λ, s) = ΛS1− β, β > 0 , (4)

and using the modified function r̂(β) = (rTdual, r
T
cent(β), rTprim)T . In order to retain the optimizer of the original KKT system, the

perturbation parameter is decreased progressively. As β → 0, the primal-dual pairs converge to the optimizer of (1) following
the so called ‘central path’. In general the perturbation vector β is obtained by multiplying a scalar with a vector of ones.
However we will let it attain different values for each constraint. The Newton direction ∆z = (∆x,∆y,∆s,∆λ,∆µ,∆γ),
for the perturbed KKT system can be found by solving the following linear system of equations:H 0 AT

0 Λ S
A Is 0

∆x
∆s
∆λ

 = −r̂(β) . (5)

‘Long step’ methods use the maximum step size that preserves strict positivity of the pair λ, s such that (s+t∆s, λ+t∆λ) > 0
holds, whereas ‘short step’ variants further restrict the step size to preserve ‘centrality’ and/or to ensure sufficient decrease
in the residuals. The primal dual interior point method will terminate when the duality gap measure

η = λT s

and the primal dual residuals are reduced below desired thresholds. η becomes equal to the actual duality gap, when the
iterates are primal and dual feasible, rdual = 0, rprimal = 0 [2]. For a uniform perturbation vector β, when the perturbed KKT
system is solved, that is we obtain a point on the central path, we have that

η̂ :=
η

M
=
λT s

M
, η̂1 = β ,

where λ, s ∈ RM , M is the total number of inequality constraints and the average complementarity value η̂ provides a
measure for the duality gap. In practice it is not necessary to wait for convergence to the central path, before reducing the
perturbation parameter. In the standard ‘feasible path following’ method, for which convergence and complexity results are
relatively easy to provide [8], the perturbation vector at each step is chosen as

β = ση̂1, σ ∈ (0, 1) .

To ensure that proximity to the central path is preserved, the iterates can be constrained to stay within certain neighbor-
hoods [3], [8].

III. CONVERGENCE WITH NON-UNIFORM PERTURBATION

For brevity, we write the Netwon system in compact form

M∆z = −
[
rprimal,dual
ΛS1− β

]
.

Consider the modified Newton step with a non-uniform perturbation vector on the complementarity condition:

M∆z = −
[

rprim,dual
ΛS1− ΛSξ

]
, (6)

where the vector ξ specifies how much change in each complementarity pair is desired, with ξ ∈ RM and ξ > 0. For a
given σ > 0, ξ can be selected as ξj = σ η̂

λjsj
to recover the standard uniform perturbation vector with σ. Note that any

corrector applied together with the uniform-perturbation can be considered as a non-uniform perturbation vector.
In this section, we will state the convergence conditions for quadratic programs (QP) in the feasible case, where the

primal-dual residuals are equal to 0, to make the analysis simpler, as is common in the interior point literature [6], [10]. The
results can be extended to the non-feasible case and for LPs and QPs, a feasible point can be obtained with reformulations
of the problem [5], [6].

We restrict the iterations to lie inside the ‘symmetric neighborhood’ [6],

Ns = {(x, s, λ) ∈ F0 :
1

ψ
η̂ ≥ λjsj ≥ ψη̂, ∀j ∈ [1,M ]} (7)

for some 1� ψ > 0, where the strictly feasible set F0 is defined as

F0 = {(x, s, λ) : (rprim, rdual) = 0, (s, λ) > 0}.



Furthermore we restrict the reduction vector ξ to satisfy the following criteria,

∃c : 0 < c < 1,

∑
j ξjλjsj

M
= cη̂ (8)

1

φ

cη̂

λjsj
≥ ξj ≥ φ

cη̂

λjsj
(9)

for some 1 � φ > ψ. The constraints (9), (8) enforce that the next point we would like to arrive with the Newton step,
does not have to be on the central path as in the uniform case, but it should be at least strictly within the Ns and aim to
reduce the overall duality gap.

By applying these conditions, we will ensure that the linearization error in the Newton step is bounded, and there is
always some finite step-size that can reduce the duality-gap and keep the system within Ns. The following theorem states
the convergence and complexity result.

Theorem 1: If the problem (1) is a convex QP, given ε > 0, suppose that a starting point (x0, s0, λ0) ∈ Ns satisfies

η0 ≤
1

εκ
(10)

for some positive constant κ. Let {ηk} be a sequence generated by the iteration scheme, which takes steps using the Newton
relation (6) with admissible parameters φ, ψ and reduction vectors ξk that satisfy (8), (9), with some α, γ ∈ (0, 1), γ < 1−α
and ck ≤ γ. Then, there exists an admissible step-size tk ∼ O( 1

M ) and an index K ∼ O(M log( 1
ε )), such that

ηk ≤ ε, ∀k ≥ K.

The analysis and the proof will be similar to that of [6] by showing that starting from a point within Ns, it is possible
to keep the linearization error small and obtain an admissible step-size of complexity O( 1

M ) that reduces the duality gap
sufficiently and keep the iterates within Ns. Allowing non-uniformity necessitates additional constraints (9), (8) on the
perturbation vector and results in different bounding terms compared to [6], however the complexity result is identical.

We start the analysis by deriving bounds on the linearization error.
Lemma 1: For (x, s, λ) ∈ Ns, the Newton direction resulting from (6) satisfies the following relations;

0 ≤ ∆λT∆s ≤ θλT s (11)

−θλT s ≤ ∆λj∆sj ≤
√

2θλjsj (12)

where θ is defined as
θ := 2−3/2max (

c

φψ
− 1, 1− φψc). (13)

Proof: We start by proving (11). Under the feasibility assumption, primal-dual residuals are set to 0 and from (5), we
have the following relations

∆s = −A∆x,

AT∆λ = −H∆x,

and therefore

∆sT∆λ = −∆xTAT∆λ

= ∆xTH∆x .

Since the cost function is assumed to be convex, we have H � 0, which validates the left-hand side inequality in (11).
For the right-hand side of (11) we need a technical result ( [5], Lemma 3.3.). Given two vectors u, v ∈ Rn, if uT v ≥ 0

then,
‖UV 1‖ ≤ 2−3/2‖u+ v‖2 (14)

where U := diag(u), V := diag(v). With relation (14) at hand, we start with the non-uniformly perturbed centrality equation

S∆λ+ Λ∆s = ΛS(ξ − 1). (15)

Multiply both sides with (ΛS)−1/2;

Λ−1/2S1/2∆λ+ Λ1/2S−1/2∆s = (ΛS)1/2(ξ − 1). (16)

Since ∆Λ,Λ, S,∆S are all diagonal matrices we have that

‖∆Λ∆S1‖ = ‖Λ−1/2S1/2∆λΛ1/2S−1/2∆s‖



Next we use (14) with u := Λ−1/2S1/2∆λ and v := Λ1/2S−1/2∆s. Note that the condition uT v ≥ 0 is satisfied since
∆λT∆s ≥ 0.

‖∆Λ∆S1‖ = ‖Λ−1/2S1/2∆λΛ1/2S−1/2∆s‖
≤ 2−3/2‖Λ−1/2S1/2∆λ+ Λ1/2S−1/2∆s‖2

= 2−3/2‖(ΛS)1/2(ξ − 1)‖2

= 2−3/2
∑
j

(λjsj)(ξj − 1)2

≤ 2−3/2‖ξ − 1‖2∞λT s due to(λjsj > 0, ∀j)

Relying on the constraints (9), (8) imposed on the non-uniform perturbation vector ξ, we can obtain a parametric expression
for ‖ξ − 1‖∞

‖ξ − 1‖2∞ = max (
c

φψ
− 1, 1− φψc)

which is equal to θ/(2−3/2), by definition (13). Therefore, we can write the bound on ‖∆Λ∆S1‖ as

‖∆Λ∆S1‖ ≤ θλT s

Finally using Cauchy-Schwarz inequality we arrive at the upper bound on ∆λT∆s;

∆λT∆s = (∆Λ∆S1)T1 ≤ ‖∆Λ∆S1‖‖1‖ = θλT s

which proves the right-hand side of (11).
Next, we prove the relation (12) that provide bounds on ∆λj∆sj . We write equation (16) element-wise and square both

sides

λ
−1/2
j s

1/2
j ∆λj + λ

1/2
j s

−1/2
j ∆sj = λ

1/2
j s

1/2
j (ξj − 1)

⇒ λ−1j sj∆λ
2
j + λjs

−1
j ∆s2j + 2∆λj∆sj = (ξj − 1)2λjsj

Since λ, s > 0, we have that

2∆λj∆sj ≤ (ξj − 1)2λjsj

⇒∆λj∆sj ≤ 0.5‖(ξj − 1)‖2∞λjsj

Using the relation |∆λj∆sj | ≤ ‖∆Λ∆S1‖∞ ≤ ‖∆Λ∆S1‖, and the definition of θ, we arrive at

−θλT s ≤ ∆λj∆sj ≤
√

2θλjsj

In the following, we will show that a finite step-size can be obtained such that the neighborhood constraints are preserved
and a sufficient decrease in the duality gap is achieved.

For a given direction, we describe the values after a step with a step-size t ∈ (0, 1] as

λj(t) = λj + t∆λj , sj(t) = sj + t∆sj .

Lemma 2: For a given point (x, s, λ) ∈ Ns, and the Newton direction resulting from (6), if the step-size t ∈ (0, 1] satisfies
the following conditions;

t ≤ c(φ− ψ)

(ψ +M)θ
(17)

t ≤ c(φ− ψ)√
2θφ

(18)

then the new point attained by taking a step in the Newton direction with step-size t stays in the neighborhood Ns, that is

(x(t), s(t), λ(t)) ∈ Ns. (19)

Proof: Symmetric neighborhood Ns implies lower and upper bound constraints on complementarity pairs and feasibility
of the iterates. We start with the lower bound constraint. Using Lemma 1, the centrality equation (15) and neighborhood



constraints on the current point λjsj ≥ ψη̂ and the perturbation vector ξj ≥ φ cη̂
λjsj

we obtain an initial lower bound on
λj(t)sj(t)

λj(t)sj(t) = (λj + t∆λj)(sj + t∆sj)

= λjsj(1− t) + tξjλjsj + t2∆λj∆sj

≥ ψη̂(1− t) + tφcη̂ − t2θMη̂

Next, we derive an upper bound on η̂(t), using the relation (8), centrality equation (15) and Lemma 1

η̂(t) = λ(t)T s(t)/M

=
(
λT s+ t(c− 1)λT s+ t2∆λT∆s

)
/M

≤
(
λT s+ t(c− 1)λT s+ t2θλT s

)
/M

= η̂
(
(1− t) + tc+ t2θ

) (20)

Using the upper bound on η̂(t) and lower bound on λj(t)sj(t) we can write a sufficient condition for λj(t)sj(t) ≥ ψη̂(t),

ψη̂(1− t) + tφcη̂ − t2θMη̂ ≥ ψη̂ (1− t) + tψcη̂ + ψt2θη̂

(φ− ψ)cη̂ ≥ t ((ψ +M)θ) η̂

which is identical to condition (17).
Next, we tackle the upper bound constraint on λj(t)sj(t) ≤ 1

ψ η̂(t) which is equivalent to

λjsj(1− t) + tξjλjsj + t2∆λj∆sj ≤
1

ψ

(
η̂(1− t) + tcη̂ + t2∆λT∆s/M

)
Seeing that λjsj ≤ 1

ψ η̂, and ξj ≤ 1
φ

cη̂
λisi

a sufficient condition is

1

ψ
η̂(1− t) + t

1

φ
cη̂ + t2∆λj∆sj ≤

1

ψ
η̂(1− t) + t

1

ψ
cη̂ + t2

1

ψ
∆λT∆s/M

t
1

φ
cη̂ + t2∆λj∆sj ≤ t

1

ψ
cη̂ + t2

1

ψ
∆λT∆s/M

t2
(

∆λj∆sj −
1

ψ
∆λT∆s/n

)
≤ tcη̂(

1

ψ
− 1

φ
) .

Since ∆λj∆sj ≤
√

2θλjsj ≤
√

2θ 1
ψ η̂ and ∆λT∆s ≥ 0 another sufficient condition is

t
√

2θ
1

ψ
η̂ ≤ cη̂(

1

ψ
− 1

φ
)

t ≤
ψc( 1

ψ −
1
φ )

√
2θ

=
c(φ− ψ)√

2θφ
.

which is equivalent to (18).
For a LP and QP, the KKT system is composed of linear equations, except for the complementarity equation. Therefore

the Newton step with rdual = 0, rprimal = 0, will preserve the feasibility for any step-size, from which we conclude that a
step-size t ∈ (0, 1] satisfying (17), (18) will keep the iterates within Ns.

Lemma 3: For a given point (x, s, λ) ∈ Ns, parameter α ∈ (0, 1) and the Newton direction resulting from (6), if the
step-size t, and the mean reduction parameter c, satisfy the conditions;

1− c > α, 0 < t ≤ 1− c− α
θ

(21)

then the new duality gap η(t) satisfies the reduction requirement

η(t) ≤ (1− αt) η . (22)

Proof:
From (20), we have that

η(t) ≤ (1− γ(t)) η



with γ(t) = t(1− c)− t2θ. Therefore, a sufficient condition for satisfying (22) is

γ(t) = t(1− c)− t2θ ≥ αt

⇒ t2θ ≤ t(1− c− α)⇒ 0 < t ≤ 1− c− α
θ

which is equivalent to (21).
In order to obtain the convergence and complexity result, first we will show that there exists a t ∼ O( 1

M ) that
satisfies (18), (17) and (21). Then, application of Thorem 3.2 from [10] will provide the desired result.

The set of admissible step-sizes are given by;

{t | 0 < t ≤ min
(

1− c− α
θ

,
c(φ− ψ)

(ψ +M)θ
,
c(φ− ψ)√

2θφ

)
} (23)

where θ := 2−3/2max ( c
φψ − 1, 1− φψc).

Choose α = 0.1, ψ = 0.1 and φ = 0.2 and fix reduction parameter c = 0.8 for every step. For these values θ is given by
2−3/2( 0.8

0.2∗0.1 − 1) ' 13.8 It can be shown that the step-size selection t̂ = 1
200M will be always admissible, which provides

t ∼ O( 1
M ).

Proof of Theorem 1: We have already shown that with judicious selection of parameters, it is possible to find an
admissible t ∼ O( 1

M ). Plugging this into the reduction requirement (22), we get

ηk+1 ≤ (1− δ

M
)ηk, k = 1, 2, . . . , (24)

for some constant δ > 0. From here, we can directly apply Thorem 3.2 from [10] and state the result. We provide the proof
for completeness. First we take the log of both sides in (24)

log ηk+1 ≤ log(1− δ

M
) + log ηk .

Writing the right hand side recursively and using (10) we get

log ηk+1 ≤ k log(1− δ

M
) + log η0 ≤ k log(1− δ

M
) + κ log(

1

ε
) .

The log function has the property that
log(1 + x) ≤ x, ∀x > −1 .

Since α, t < 1, this leads to

log ηk+1 ≤ k(− δ

M
) + κ log(

1

ε
) .

For the convergence criterion ηk < ε to be satisfied, it is sufficient to have

k(− δ

M
) + κ log(

1

ε
) ≤ log ε ,

which is satisfied for all k, such that
k ≥ K = (1 + κ)

M

δ
log

1

ε
.
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