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Abstract—Linear and nonlinear 2-D image processing ap-
proaches are analyzed with the aim of removing the noise from
data acquired by distributed optical fiber sensors based on Bril-
louin optical time-domain analysis (BOTDA). The impact of the fil-
ter parameters on the denoised data is analyzed, especially for the
nonlinear image denoising method called non-local means (NLM).
In particular, an optimization procedure to find the optimal param-
eters of the NLM method for BOTDA data denoising is proposed.
The described optimization procedure has enabled, to the best of
our knowledge, the first experimental demonstration of a conven-
tional BOTDA scheme (i.e., with no modifications in the layout)
capable of measuring along a 100-km sensing range over a 200-km
fiber loop, using a spatial resolution of 2 m, a frequency sampling
step of 1 MHz, and reaching a frequency uncertainty of 0.77 MHz
with 2’000 averaged time-domain traces. The experimental sens-
ing performance here achieved has been evaluated with a figure of
merit (FoM) of 225’000. This is the highest FoM reached without
hardware sophistication in BOTDA sensing.

Index Terms—Brillouin scattering, distributed optical fiber sen-
sors, image denoising, optical fibers, strain and temperature mea-
surements.

I. INTRODUCTION

A FTER almost three decades of research and development,
distributed optical fiber sensors based on stimulated Bril-

louin scattering (SBS) have shown to have relevant and un-
matched advantages compared to other distributed sensing tech-
niques, especially when aiming at very long sensing ranges. The
time-domain interrogation approach based on a pump-probe
SBS interaction, named Brillouin optical time-domain analy-
sis (BOTDA) [1], has allowed for distributed temperature and
strain sensing over several tens of kilometers, with spatial resolu-
tions typically of a few meters [2]. Today, the factors ultimately
limiting the performance of BOTDA sensors have been clearly
identified. On the one hand, the intrinsic loss of the sensing fiber
imposes a fundamental limit [2], since it reduces the power of the
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optical signals interacting in the SBS process, resulting in low
optical power levels reaching the detector. On the other hand,
different sources of noise can impact on the BOTDA measure-
ments, imposing serious limitations to the signal-to-noise ratio
(SNR) of the measurements [3], [4]. The SNR is actually the
parameter ultimately determining the capabilities and perfor-
mance of BOTDA sensors [2]. Unfortunately, the maximum
pump and probe powers that can be launched into the sens-
ing fiber are limited by the onset of nonlinear effects. While the
pump pulse power is limited to a critical power of about 100 mW
by modulation instability (MI) [5], the maximum probe power
is also constrained to low levels to avoid distortions in the mea-
surements resulting from pump depletion [6], [7].

Several techniques have been proposed in the state-of-the-art
to improve the performance of BOTDA systems and to make
them more robust against detrimental effects [8]. For instance,
using a double-sideband probe scheme, detrimental pump deple-
tion effects can be mitigated [6], while the use of more sophis-
ticated schemes can enable a probe power reaching the ultimate
limit imposed by the onset of amplified spontaneous Brillouin
scattering [7], [9]. On the other hand, techniques such as optical
pulse coding methods [10]–[12], distributed optical amplifica-
tion (based on Raman or Brillouin scattering) [13]–[15], and
time-frequency multiplexing schemes [16]–[18], have allowed
increasing the average pump power launched into the fiber, and
thus enhancing the measurement SNR while maintaining the
peak pump power below the onset of modulation instability. All
these sophisticated methods for performance enhancement re-
quire some modifications of the conventional BOTDA scheme,
which in some cases can lead to complex configurations, mainly
when combining several techniques in a single system to reach
very long ranges [19], [20]. Recently a technique based on image
processing has been proposed [21], [22] to enhance the perfor-
mance of distributed optical fiber sensors. With no modifications
of the classical BOTDA sensor layout, reported experimental re-
sults have shown that the SNR can be considerably enhanced by
image denoising [21]–[23], obtaining similar or even better per-
formance when compared to other techniques for performance
enhancement. Preliminary results have also demonstrated sens-
ing ranges of 100 km over 200 km fiber-loop schemes [22], [24].
Although significant SNR enhancements have been obtained in
the literature, no descriptions and details have been reported on
the optimization procedure of image processing techniques for
BOTDA data denoising.

In this paper several approaches for linear and nonlinear
image processing methods for BOTDA data denoising are
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described. Special attention is paid to a nonlinear image
denoising method called non-local means (NLM), which is
optimized to extend the sensing range of conventional BOTDA
sensors. The impact of the denoising parameters of this NLM
algorithm is described in order to secure a significant SNR
enhancement with no loss of information. To the best of our
knowledge, this is the first time that an optimization procedure
for an image processing method is proposed for BOTDA data
denoising. Experimental results validate the proposed opti-
mization procedure, allowing also for the demonstration of the
first implementation of a conventional BOTDA sensor scheme
(i.e., with no modification on the standard implementation)
reaching a sensing range of 100 km, in a 200 km fiber-loop
configuration, with 2 meter spatial resolution and a standard
measurement time of a few minutes.

II. IMAGE DENOISING TECHNIQUES FOR BOTDA DATA

The conventional measurement procedure in a distributed
Brillouin optical fiber sensor requires the acquisition of the Bril-
louin gain spectrum (BGS) as a function of distance over the
sensing fiber [1], [2]. Acquired data points are commonly stored
in a two-dimensional (2D) matrix gB[z, � f ], in which the value
of each position-frequency [z, �f] pair corresponds to the Bril-
louin gain at a given position z and pump-probe frequency offset
�f.

In order to reduce noise from the BOTDA measured data,
two-dimensional signal processing techniques, such as image
denoising algorithms, can be used [21]. The idea exploited in
this approach is based on the high level of redundancy of in-
formation contained in the data measured by BOTDA sensors
[21]–[23]. This means that the 2D data structure storing the
measured Brillouin gain response at each fiber location z for
different pump-probe frequency offsets �f contains repeated
data patterns, which can be efficiently used to reduce noise. In
particular, the Brillouin gain associated to each sampled point in
the spatio-frequency domain [z, �f] can be processed by an im-
age denoising procedure mapping the measured SBS gain value
into the intensity of a gray-scale (or monochromatic) digital
image corrupted by noise [21]–[23].

Image denoising techniques that can be used to reduce noise
from BOTDA data are classified as linear and nonlinear [23].
These two approaches are described hereafter. Compared to
classical unidimensional filtering methods, image denoising al-
gorithms can be more efficient in terms of noise removal since
they can smartly exploit all data patterns existing in the two
dimensions of the measured data (this is especially true when
using nonlinear image filters).

A. Linear Image Denoising Methods

Linear image filters are basically two-dimensional linear
filters. They use 2D neighbourhood (local) operators to reduce
noise from noisy pixels in an image, i.e., from the BOTDA data.
The filtering process can be represented by a two-dimensional
convolution: gf[z, � f ] = h[z, � f ] ∗ gB[z, � f ], where h[z,
�f] is the spatial impulse response of the filter (spatial kernel
in the z and �f domains) [23]. Fig. 1(a) illustrates this 2D

Fig. 1. Approaches for BOTDA data denoising using linear image filters.
(a) Approach in the spatial domain, in which the BOTDA data is filtered through
a 2D convolution with a filter kernel h[z, �f]. (b) Approach in the frequency do-
main, in which the 2D Fourier transform of the BOTDA data (left) is multiplied
by the 2D Fourier transform of the filter (right).

convolution process, in which the filter h[z, �f] is used to
eliminate noise by processing the BOTDA data directly over
the spatial domain [z, �f]. Note that, since this kind of filters are
linear and space- and time-invariant, this 2D filtering process
can also be represented in frequency domain (see Fig. 1(b)) as
the multiplication of the Fourier transforms of the BOTDA data
GB[u, v] (left) and of the filter spatial response H[u, v] (right),
as: Gf[u, v] = H[u, v]GB[u, v].

This means that there are two equivalent approaches to per-
form 2D linear image filtering of the BOTDA data [23], [25]:
i) in the spatial domain (i.e., directly in the [z, �f] space of the
BOTDA data) by convolving the data matrix with the 2D filter
spatial impulse response, and ii) in the frequency domain by
simply multiplying the 2D Fourier transforms of the BOTDA
data and filter, and then calculating the 2D inverse Fourier trans-
form of the product. Both approaches are basically equivalent,
existing only differences in the processing time of their im-
plementation, which depends basically on the number of data
points and on the complexity of the linear filter being used.

One of the main advantages of linear filters is their possible
dual description in the frequency and spatial domains of the
image. This feature actually makes possible to easily design
the spatial and spectral features of the filter. Whilst the proper
design of the spatial features is important to secure that the
spatial resolution of the BOTDA data is not impaired, spectral
features are also relevant to define the amount of noise that
is eliminated. Like 1D digital filters, the spectral features of
linear image filters are determined by the operating band and
bandwidth; however, and unlike 1D filters, here the 2 dimensions
of the data must be considered. Interestingly this 2D approach
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Fig. 2. Spatial and spectral responses of two linear image filters for BOTDA
data denoising. 2D mean filter: (a) Spatial kernel and (b) 2D Fourier transform.
2D Gaussian filter: (c) Spatial kernel and (d) 2D Fourier transform.

allows for the design of the spatial and spectral features of the
filters independently over the two dimensions of the data. In the
case of BOTDA data, the ratio between the spatial resolution
and the sampling interval typically define the size of the spatial
kernel h[z, �f] along the z axis of the data; whilst the BGS width
and the scanning frequency step define the kernel size in the �f
axis. This implies that not only square spatial kernels could be
used, but also rectangular shapes (being longer in the �f axis)
can be suitable for BOTDA data denoising.

Note that suitable linear image filters commonly operate
as simple 2D low-pass filters, and therefore removing a large
amount of noise typically results in blurring and spatial over-
smoothing. This feature can lead to a loss of the high-frequency
details contained in the BOTDA data, thus reducing the spa-
tial resolving capability of the sensor. However, although hav-
ing limited denoising capabilities, one of the advantages of 2D
linear filters is that they performance does not depend on the
data (e.g., on the noise and SNR of the BOTDA measure-
ments). The parameters of the filters can be adjusted based
only on the spectral and spatial sampling of the data, and on
the original and target signal bandwidths. This feature makes
linear filters predictable, offering the possibility of providing
a deterministic SNR improvement (for a given original system
bandwidth).

Some examples of the most common linear image filters are
the 2D mean filter (also known as moving averaging filter) and
the 2D Gaussian filter [25]. Fig. 2 shows the spatial and spectral
features of these two filters. In particular Fig. 2(a) shows the
spatial kernel h[z, �f] of the 2D mean filter, which corresponds
to a constant value within a well-defined 2D window (this means
that all values within this window are averaged with the same
weight). This spatial response is actually ideal to constrain the

spatial blurring effect within a very well defined 2D spatial win-
dow, allowing a good control of the spatial features (in the [z,
�f] space) of the denoised BOTDA data (i.e., securing a given
well-defined spatial resolution and no impairments on the BGS
shape). However, Fig. 2(b) points out that the 2D spectral re-
sponse of this filter (being a 2D sinc-shaped function) contains
spectral sidelobes, implying that high-frequency noise cannot
be fully eliminated from the BOTDA data. From this point of
view, the 2D mean filter is not ideal to remove large amount of
noise from the data. In order to maximize the noise removal, one
might think about the possibility of using a filter with ideal rect-
angular spectral response, in order to well define the bandwidth
of the filter and the amount of removed noise; however such
a filter would have a 2D sinc-shaped spatial response, which
will deteriorate the spatial information of the sensor. A good
trade-off between spatial and spectral responses can be reached
with 2D Gaussian filters. Fig. 2(c) and (d) show the spatial and
spectral responses of this kind of filter. The curves indicate that
while the noise in the BOTDA data can be removed by weight-
ing average within a 2D window centered on each processed
data point [z, �f], the 2D Gaussian filter can more efficiently at-
tenuate high-frequency components beyond a given bandwidth.
This way, a good trade-off between noise removal and blurring
effect can be achieved with 2D Gaussian filters. For instance,
using an isotropic 2D Gaussian kernel with standard deviation
of about 2 sampled points, 1 MHz scanning step and sampling
interval of 0.5 m/pt, an SNR improvement of about 7.5 dB has
been reported in a 50 km-long BOTDA sensor with 2 m spatial
resolution [22].

B. Nonlinear Image Denoising Methods

Note that linear image filters are easy to design and imple-
ment; however, they tend to blur sharp edges contained in the
data. Thus, when aiming at large levels of noise reduction, lines
and other fine image details tend commonly to be lost. To par-
tially overcome this trade-off between spatial smoothing and
noise removal, nonlinear image filters can be used. Even though
their design and implementation are normally more complex
than linear image filters, they can potentially remove much more
noise. This feature results in significantly higher SNR enhance-
ment possibilities, while keeping the details of the data. Note
that these filters involve the use of a nonlinear function for de-
noising, which in many cases correspond to time-variant and/or
space-variant functions. Therefore, the filtering process cannot
be equivalently represented in both space and frequency domain
using Fourier analysis, as in the case of linear filters. Based on
this feature, there exist two independent categories of nonlinear
image denoising methods [23], [25]: i) pixel-wise techniques,
in which a nonlinear denoising operator is applied directly to
the gain values on the [z, �f] space of the BOTDA data, and
ii) transformation-based methods, in which the nonlinear filter-
ing function is applied in a domain representing the frequency
content of the data, followed by a process to converted back the
denoised data to the original [z, �f] space the BOTDA data. Ex-
amples of the first category are the median filter, bilateral filter
and non-local means (NLM); whilst transform-based techniques
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Fig. 3. 2D wavelet denoising approach for BOTDA data.

(second category) can be based, for example, on 2D discrete co-
sine transform or 2D discrete wavelet transform [25].

It must be pointed out that the performance of these nonlinear
filters and amount of removed noise highly depend on the data
itself. Indeed the parameters of the filters typically depend on
the features of the BOTDA data, such as on the existing patterns,
or standard deviation of the measurement noise [26]–[28]. This
implies that the SNR enhancement obtained by nonlinear image
denoising cannot be fully predefined by the filter design if the
features of the BOTDA measurements are not completely known
in advance.

One of the nonlinear image filtering methods that has proved
to be efficient for BOTDA data denoising is the 2D wavelet
denoising technique [26]. This denoising method requires three
steps, as depicted in Fig. 3. In the first one, discrete wavelet
transform (DWT) is used to decompose the image defined by
the BOTDA data gB[z, � f ] into multiple frequency bands and
small sub-images containing different levels of detail. Using fil-
ter banks (low-pass and high-pass filters) and down-sampling,
the coefficients obtained by 2D DWT indicate different lev-
els of precision in the decomposition. The second step con-
sists in applying a nonlinear thresholding function (so-called
wavelet shrinkage) to the wavelet coefficients obtained by 2D
DWT [26]. In this step, all wavelet coefficients below a given
threshold level are associated to noise, and hence set to zero
(nonlinear noise elimination function), whilst high-amplitude
wavelet coefficients are related to useful information mea-
sured by the sensor. Finally, once wavelet thresholding has
been applied, inverse discrete wavelet transform is used to re-
construct a denoised version of the BOTDA data in the [z,
�f] space using only the remaining high-amplitude wavelet
coefficients.

Another example of nonlinear image filtering is the nonlocal
means [27]–[29], which takes advantage of the high level of
redundancy and similarity contained in the [z, �f] space of the
BOTDA data [21]. This approach is indeed ideal for the kind of
data measured by BOTDA sensors, which basically consists of
a spectral resonance peak that is repeatedly measured at each
fiber position. This local resonance peak has in principle the
same shape at any fiber location, being only attenuated over dis-
tance and spectrally shifted at different fiber positions depending
on the temperature and strain distribution along the fiber. This
NLM technique searches for 2D data patterns with high level of
similarity over the data, being an ideal approach for denoising
BOTDA data. More details on this method will be provided in
Section III.

Using 2D wavelet denoising and nonlocal means, SNR en-
hancements of ∼14 dB have been demonstrated in the literature
using a 50 km-long classical BOTDA sensor scheme with 2 m
spatial resolution [21].

III. DESIGNING A NLM FILTER FOR ULTRA-LONG SENSING

Preliminary results have demonstrated the benefits of using
the image denoising methods in BOTDA sensing schemes cov-
ering ranges over 50 km [21], [22], whilst much more demand-
ing conditions have also been successfully demonstrated over
200 km-long loop schemes [22], [24]. Although these relevant
experimental demonstrations have been presented in the lit-
erature, no descriptions and details on the design of optimal
nonlinear image filters have been reported so far.

This work focuses on the optimization of the NLM method
for ultra-long BOTDA sensing, aiming at a 100 km sensing
range over a 200 km fiber-loop scheme. This means that the
optimization here is performed under a very much demanding
SNR condition when compared to [21], [22], thus testing the
ultimate denoising capabilities of the NLM for BOTDA sensing
enhancement. Furthermore, a 200 km-long fiber-loop configura-
tion allows for an effective increase in the real remotness of the
sensor [16], [19], allowing for the measurement a pont located
to a real distance of 100 km away from the sensor unit. This
way the ultra-long sensing capabilities of a standard BOTDA
scheme are explored.

It must be noted that in a 200 km fiber-loop BOTDA system,
the probe power is attenuated by ∼40 dB due the intrinsic fiber
loss. In order to detect the low-power signal reaching the photo-
receiver, a low-noise optical amplifier is usually placed at the
receiver front-end as a preamplifier. This makes the BOTDA
measurements to be highly dominated by the amplified spon-
taneous emission (ASE) noise introduced by the amplifier [3];
in particular by the ASE-signal beat noise in the receiver. In
the case of a BOTDA sensor, this beat noise can be consid-
ered as additive and uncorrelated (white) noise, since the mea-
sured time-domain traces are essentially made of a strong DC
probe component, topped by a very small Brillouin amplifica-
tion (about 1% over the first kilometers of fiber). The Brillouin
response has therefore negligible contribution to the total noise
of the system [3], and the dominating ASE-signal beat noise can
be considered to be independent of the longitudinal evolution
of the sensor response, so totally constant and stationary. This
condition actually fulfils the requirements for efficient NLM de-
noising, making the method an effective tool to reduce noise in
long-range BOTDA sensors.

In the NLM method, the restored Brillouin gain value at-
tributed to each position-frequency [z, �f] pair is obtained by
the weighted average of the gain values of all other pairs in the
2D data structure [21], [27]. In order to calculate the weight
associated to each position-frequency pair, neighborhood cor-
responding to 2D patches and called similarity windows, are
defined, as illustrated in Fig. 4. This way, the weighting factors
used in the filtering function do not only depend on the pixel
values being compared (red dots in the figure), but are calcu-
lated to be proportional to the similarity between the entire local
neighborhood (squares in the figure) around those data points
η(z, �f) and the neighborhood of the data point being processed
η(z0, � f0). Thus considering that i = [z0, � f0] is the position-
frequency pair (pixel) being processed and j = [z, � f ] repre-
sents all other position-frequency pairs in the data set gB[z, � f ],
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Fig. 4. Definition of local neighborhoods (also called similarity windows)
in the NLM method. The neighborhood around the data point being denoised
η(z0, � f0) is compared with other neighborhoods η(z, �f) over the entire data
set. The red dots represent the pixels (data points) that are being compared
in the denoising of [z0, � f0], and represent the center pixel of the respective
neighborhoods.

the NLM filtering function can be written as [27]:

N L M {gB [i]} =
∑

∀ j

w [i, j] gB [ j], (1)

where w[i, j] are the weights calculated as the Euclidean dis-
tance between the respective neighborhoods divided by the
square of a smoothing parameter h [27], so that:

w [i, j] = 1

k [i]
exp

{−‖gB [i] − gB [ j]‖2

h2

}
, (2)

where k[i] is a normalization factor, which makes the sum of all
weights associated to the data point i = [z0, � f0] equal to 1.

To avoid loss of information, the size of the similarity window
(which is of odd dimensions) has to be smaller than the smallest
detail that has to be retrieved in the image. This means that to
remove noise in a BOTDA sensor, the similarity window size has
to be smaller than the number of digital points sampled within
the spatial resolution of the sensor (i.e., smaller than the ratio
between spatial resolution and sampling interval). Note that,
in the pump-probe frequency offset axis, the typical scanning
frequency step of a few MHz (normally below 5 MHz) and the
BGS spectral width of tens of MHz generally offer a sufficient
spectral sampling, so that limitations on the window size are
less restrictive in the �f direction. Based on this approach, it is
important to point out that image denoising can only be used in
case of oversampling the BOTDA traces in the z axis, while also
a sufficient spectral sampling of the BGS is performed. It must
however mentioned that the SNR enhancement provided by
this NLM method, and also by other nonlinear image denoising
methods, is much higher than the SNR improvement obtained by
this oversampling factor in linear filtering approaches (typically
determined by a square-root dependence on the oversampling
factor).

In principle, the search for repeated patterns could be per-
formed by comparing each neighborhood (similarity window)
with all other windows existing in the entire 2D data set. How-
ever, this can result in very long processing times, especially

Fig. 5. Experimental setup of a conventional BOTDA sensor scheme using a
200 km fiber-loop configuration (100 km sensing range).

in a long-range BOTDA sensor in which millions of position-
frequency [z, �f] pairs are typically measured [21]. In order to
decrease this computation time, the search for similar neighbor-
hood can be reduced to a searching window [21], [27] centered
on the similarity window being processed. The use of this limited
searching area also avoids distortions induced by the inclusion
of poorly-correlated data into the NLM function described in
(1). This makes the NLM denoising to adopt a semi-local ap-
proach, which is perfectly compatible with the characteristics of
the data measured by a BOTDA sensor (a bell-shaped spectrum
with an exponentially decaying behavior over distance), since
closely located data points are typically expected to have very
close average values [21]. It should be noted that the size of the
searching window has to be large enough to secure that several
similarity windows are included in the processing and that the
algorithm can find enough similar patterns to preserve an opti-
mal level of denoising. However, on the other hand, it should
be kept in mind that an extremely large searching window will
deteriorate the spatial information and lead to an unacceptably
long processing time, which must be dismissed. Thus, an opti-
mal searching window size has to be found for BOTDA sensing
data, as it will be described in the analysis of the experimental
data presented in Section V-A.

IV. EXPERIMENTAL SETUP

To optimize the NLM denoising algorithm and evaluate its
performance in distributed sensing over ultra-long ranges, a con-
ventional BOTDA scheme [2] has been implemented, with no
additional hardware sophistications. Targeting a real remoteness
of 100 km from the sensing unit, and in order to validate the
impact of the NLM denoising in very challenging SNR condi-
tions, a 200 km-long fiber-loop configuration is implemented
using the experimental setup shown in Fig. 5.

A standard distributed-feedback laser operating at 1550 nm
is here used as optical source. The laser light is split to generate
a continuous-wave probe (upper branch in the figure) and a
pulsed pump (lower branch). In the lower branch of the setup,
a 20 ns pump pulse with high on-off ratio (>60 dB) is created
by cascading two electro-optic modulators (EOMs) of high-
extinction ratio. Note that, instead of using two cascaded EOMs,
pulses with high extinction ratio can also be obtained by using
a semiconductor optical amplifier. The pump pulse is boosted
by an erbium-doped fiber amplifier (EDFA) up to a peak power
of ∼100 mW (limit imposed by modulation instability [5]). The
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sensing fiber is 100 km-long and is composed of two 50 km
spools of standard single-mode fiber having similar Brillouin
frequency shift (BFS).

In the upper branch of the setup an EOM of high-extinction
ratio (>40 dB) and driven by a microwave signal is used to
generate a two-sideband probe with suppressed carrier [6]. A
polarization switch is inserted to mitigate the polarization de-
pendence of the SBS gain. The probe signal is then amplified by
an EDFA and launched into a 100 km leading fiber that is used
to convey the probe signal to the farthest end of the sensing fiber
(at a real 100 km distance from the interrogation unit). Note that
the use of a leading fiber composed of spools with different
BFS has allowed us to increase the input probe power up to
∼9 dBm, without activating the detrimental amplified sponta-
neous Brillouin scattering. Considering the losses of the leading
fiber (∼21 dB), the actual probe power per sideband entering in
the sensing fiber is below −11 dBm, representing a safe probe
power to secure that no pump pulse distortions and no nonlocal
effects occur over the sensing fiber [6], [7].

In the receiver block, the probe signal containing the Brillouin
gain response of the sensing fiber is amplified by a low-noise
EDFA. A narrowband (∼7 GHz) fiber Bragg grating (FBG) is
then used to select the lower-frequency probe sideband and to
filter out unwanted spectral components. Note that to increase
the reliability of the BOTDA system and minimize performance
degradation during operation, an FBG with an athermal pack-
aging is used in this case. The selected probe component is
detected by a 125 MHz photodetector and digitalized by a fast
data acquisition (DAQ) system connected to a computer.

V. EXPERIMENTAL RESULTS

Time-domain BOTDA traces have been acquired with 2’000
averages per scanned frequency (i.e., 1’000 averages for each
orthogonal polarization), while 300 frequencies have been
scanned with steps of 1 MHz. The acquired data points have
been arrayed in a 2D matrix gB[z, � f ], containing the Brillouin
gain response for the different pump-probe frequency offsets �f
at each longitudinal point z sampled every 0.5 m along the fiber.
This has led to a matrix gB[z, � f ] of very large size, containing
200’000 × 300 points.

A. Optimizing the Parameters of a NLM Filter

Before evaluating the performance of the ultra-long BOTDA
sensor here implemented, the parameters of the NLM denoising
method are optimized. Note that although the optimal param-
eters and resulting SNR of the denoised data depend on the
features of the measured data itself (e.g., noise standard devi-
ation, spatial resolution, sampling interval, scanning frequency
step), the optimization procedure here proposed is valid to de-
noise data obtained by most of BOTDA sensors, provided that
additive Gaussian noise is the dominant kind of noise affecting
the measurements.

As described in Section III, there are 3 parameters that must
be optimized in the NLM [27]–[29]: the smoothing parameter
h, the similarity window size, and the searching window size.
There exist sophisticated optimization methods developed in

the literature based on specific features of natural images [27]–
[29], however here the features of the BOTDA data are very
particular. Indeed some of the denoising approaches to improve
the quality of natural images are based on the subjective visual
perception; however this is not the right approach to enhance
the quality of BOTDA data. Here the proposed optimization
procedure is based only on the improvement of an objective
metric: the SNR of the data. It must be however mentioned
that while the main objective of the optimization is to find the
parameters that maximize the SNR, the optimal parameters must
also secure no loss of spatial and frequency resolutions.

First, to optimize the size of the similarity window (here
assumed to be square, as in the classical implementation of
the NLM [27]), it should be considered that the longitudinal
sampling interval of the measurements is 0.5 m and the spa-
tial resolution of the sensor is 2 m. This means that the sensor
should be able to detect events as short as 4 longitudinal points
(in the z axis), and therefore the similarity window cannot be
larger than the number defined by the ratio between spatial res-
olution and sampling interval. This number of points actually
imposes a minimum necessary (but not sufficient) condition to
secure no detrimental impact on the spatial resolution due to
NLM denoising. Since the similarity window must be of odd
dimensions, the only square window size satisfying this neces-
sary condition in this case is 3 × 3. This window size secures
no data over-smoothing over fiber sections longer than the spa-
tial resolution (4 points). Note also that no impairment on the
frequency resolution and BGS spectral shape is expected with
this similarity window size, due to the large enough ratio be-
tween the BGS spectral width (in this case of ∼60 MHz) and the
scanning frequency step of 1 MHz. Actually that the similarity
window could have been defined of rectangular shape so that a
larger number of points could be chosen in the pump-probe fre-
quency offset �f dimension. This sophistication is however not
analyzed in this paper, which only focuses on the optimization
of the classical NLM algorithm using square windows.

The other two parameters of the NLM algorithm, i.e., the
searching window size and smoothing parameter h, have both
a significant impact on the resulting SNR of the denoised data.
It is however important to highlight that both parameters could
also have a detrimental impact on the spatial resolution of the
sensor. Therefore, the optimization procedure proposed here
requires first to measure a hot-spot event of length similar to
the target spatial resolution. The optimization of the searching
window and smoothing parameter is then performed by an ex-
haustive experimental analysis by denoising the BOTDA data
with a set of different searching window sizes and parameter h.
The optimal parameters are found to be those ones maximizing
the SNR of the denoised data while securing that the amplitude
of the hot-spot (i.e., the retrieved temperature shift, or simply
the respective BFS change) is not affected (reduced) due to
eventual data over-smoothing. For this purpose, a 2 m-long hot-
spot of 20 K above the ambient temperature has been induced
by heating 2 m of fiber, near 100 km distance. Measurements
have been continuously repeated in order to have reliable esti-
mations of the noise standard deviation σ and of the resulting
SNR over consecutive BOTDA measurements. Considering the
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Fig. 6. Impact of the searching window size on the SNR of the denoised data,
for different values of smoothing parameter h. Searching windows are assumed
to be square.

Fig. 7. Error on the retrieved hot-spot amplitude as a function of the searching
window size, for different values of smoothing parameter h. Searching windows
are assumed to be square.

optical pump and probe powers used in the experiment and the
number of averages, the noise standard σ in this case is equiv-
alent to a Brillouin gain of 0.0114% at the end of the sensing
fiber. This results in an SNR of ∼0 dB at 100 km distance (SNR
over the trace at the peak Brillouin frequency).

Fig. 6 shows the impact of the searching window size on the
output SNR for different values of h (ranging from 4σ up to
18σ ). The figure points out that the use of a small searching
window size leads to a low SNR enhancement, due to the re-
duced number of similar patterns that the algorithm can find in
a small searching area. Enlarging the searching window actu-
ally increases the SNR, but at the expenses of longer processing
times. Note that increasing the parameter h also enhances the
SNR of the denoised data. However, increasing h beyond 8 or
10 times the noise standard deviation has less impact on the
SNR enhancement (this will be further clarified later in the
description of Fig. 8). It must be pointed out that the hot-spot
measurement plays a key role in the optimization, since it shows
the actual spatial capabilities of the sensor. Any over-smoothing
of the data as a result of a wrong choice of parameters must be
avoided to secure a target spatial resolution. Thus, during the
evaluation of different searching window sizes, the effect on the
hot-spot amplitude has also been estimated from the retrieved

Fig. 8. Impact of the smoothing parameter h on the SNR of the denoised data,
for different values of searching window sizes (Sw).

BFS profiles. In order to find the optimal searching window size
it becomes important to analyze the impact of this window size
on the hot-spot amplitude.

Fig. 7 shows the absolute value of the mean error (over 5
consecutive measurements) in the estimated BFS value inside
the hot-spot section with respect to the expected BFS, as a
function of the searching window size, for different values of
h. Results point out that the use of small searching windows
leads to a relatively uniform BFS error, determined basically
by the remaining noise on the measurements. Those errors are
all within the BFS uncertainty of the sensor for windows up
to 13 × 13. However, when the searching window is increased
beyond 13 × 13, then the error on the BFS estimation increases
significantly as a consequence of an enlarged spatial resolution
(i.e., the data is over-smoothed by the NLM image processing
algorithm, resulting in a loss of the spatial resolving capabilities
of the sensor). Indeed a natural effect of the spatial resolution
broadening is the loss of contrast in the retrieved hot-spot value,
inducing errors of, for instance, 1.8 MHz and 3.2 MHz for win-
dow sizes of 17 × 17 and 21 × 21, respectively, when using
h = 10σ . These errors could be explained by the low similitude
existing between the 2D patches included in the processing for
searching windows larger than the optimal size, thus blurring
the information contained in the 2D data. In order words, the use
of too many uncorrelated, but non-zero, weights in Eq. (1) turns
out to blur and deteriorate the spatial features of the information
being denoised.

Fig. 8 shows the impact of the smoothing parameter h on the
SNR of the denoised data, for the different searching window
sizes analyzed in Figs. 6-7. Note that the horizontal axis rep-
resents the factor x multiplying the noise standard deviation in
the definition of h = xσ . The figure points out that the use of
a high value of h increases the output SNR, especially when
using large searching windows. However, when increasing the
h beyond 8×10 times the noise standard deviation only a minor
improvement on the SNR is achieved, due to an appreciable
asymptotic behavior in the SNR curves. It is however important
to notice in Fig. 7 that h has also a small impact on the spatial
resolution due to the low-pass filtering effect that introduces.
While the error introduced by h is lower than ∼0.4 MHz (∼2%
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Fig. 9. BOTDA trace at the peak SBS gain frequency, obtained from the raw
and denoised data.

of the hot-spot amplitude) for all the analyzed cases (when the
window size is below the optimal of 13 × 13), it still remains
important to minimize this error by choosing the lowest possible
h. It turns out that the use of h � 10σ satisfies a condition in
which a good enough SNR enhancement is obtained with minor
impact on the spatial resolution and hot-spot amplitude (here
a tolerance error of ∼2% on the hot-spot amplitude has been
accepted). Interestingly, this is exactly the same behavior and
conclusion reported in the literature when optimizing the NLM
algorithm to denoise natural images [27]. It can therefore be
safely inferred that the use of h � 10σ is the optimal (or close
to optimal) smoothing parameter value for denoising BOTDA
data dominated by additive Gaussian noise.

B. Ultra-Long BOTDA Sensing Using Conventional Scheme
Over a 200 km-Long Fiber-Loop Configuration

Using the optimal parameters found in Section V-A (i.e., a
similarity window of 3 × 3, a searching window of 13 × 13
and a smoothing parameter h � 10σ ), the actual performance of
the implemented long-range BOTDA sensor is evaluated. Note
that with the chosen parameters, and using a conventional per-
sonal computer with an Intel Core i7-2600 3.4 GHz processor
having 8 cores and a RAM memory of 16 GB, the overall pro-
cessing time was about 4 minutes in our floating-point Matlab
implementation (to denoise the entire matrix of 300 × 200′000
data points). Although this time is much shorter than the total
measurement time (being ∼10 minutes), this can be highly re-
duced by a further optimization of the algorithm. For instance,
making use of the NLM algorithm implemented in OpenCV
library (using an 8 bit representation of the data), the processing
time was substantially reduced down to 10 s, indicating the huge
potential improvement eventually existing for our Matlab-based
implementation.

Fig. 9 shows the raw (blue) and denoised (red) BOTDA
traces at the peak Brillouin gain frequency. The figure points
out that a large amount of noise is removed from the raw noisy
measurements when using the optimized NLM parameters, re-
sulting in a significant increase in the contrast of the BOTDA
traces. An SNR improvement of 12.5 dB is verified in this case.
Note that this SNR improvement is lower than the enhancement

Fig. 10. Brillouin gain spectrum measured near the farthest end of the sensing
range (i.e., near 100 km distance), obtained from the raw and denoised data.

Fig. 11. Brillouin frequency shift profile along the 100 km-long sensing range,
obtained from the quadratic fitting over the denoised data.

reported in [21] using similar NLM algorithm. However, it must
be pointed out that in this case the SNR of the raw data is prac-
tically 0 dB at the end of the 100 km sensing distance (after
42 dB of probe attenuation over the entire 200 km fiber loop).
This condition makes the signal presence extremely tenuous
compared to the noise level. Remarkably, the NLM could re-
cover the Brillouin gain response in this case along the entire
sensing range, as demonstrated in Fig. 10. This figure actually
shows the Brillouin gain spectrum at 100 km distance for the
raw and denoised data. The impact of the optimized NLM im-
age denoising method to recover the gain response contained
in the noisy measurement is evident, even under this very low
SNR condition. Furthermore no distortions (e.g., broadening
and smoothing effects) are observed on the BGS shape obtained
after denoising.

The distributed BFS profile over the sensing fiber has been
retrieved by using a parabolic fitting [2] of the Brillouin gain
spectrum at each fiber location. The estimated BFS profile is
shown in Fig. 11. As mentioned before, the 100 km sensing
fiber is composed of two fiber spools having similar BFS; being
separated by about 13 MHz, as shown in the figure. Note that
the thickness of the BFS profile shown in the figure is not
representative of the noise and is basically given by the coiling
strain in the fibers, inducing BFS oscillations along the entire
sensing range.



1176 JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 36, NO. 4, FEBRUARY 15, 2018

Fig. 12. Frequency uncertainty on the BFS along the 100 km sensing range,
obtained from the denoised data of repeated measurements.

Fig. 13. Demonstration of the 2 m-long hot-spot resolved detection near the
sensing range end (i.e., near a 100 km distance), when using NLM.

To evaluate the uncertainty of the estimated BFS profile, mea-
surements have been continuously repeated, and the standard
deviation of the BFS retrieved after denoising has been calcu-
lated at each fiber location. The calculated frequency uncertainty
versus distance is shown in Fig. 12. The red dashed line corre-
sponds to an exponential fitting of the calculated uncertainty as
a function of distance. Results demonstrate that the use of the
optimized NLM algorithm leads to BOTDA measurements with
a frequency uncertainty of ∼0.77 MHz at 100 km distance.

To verify the spatial resolution of the denoised data, Fig. 13
shows the BFS profile obtained after denoising with optimal
NLM parameters around the 2 m-long hot-spot, placed near the
far end of the sensing fiber (∼100 km distance). The obtained
BFS profile demonstrates that the optimized NLM denoising
does not distort the data and no loss of information occurs,
correctly resolving the 2 m-long spot event.

In order to evaluate the BOTDA performance achieved by
this optimized NLM algorithm, the figure-of-merit (FoM) [2]
of this implementation has been calculated. Thanks to the large
noise removal capability of the NLM method and the use of a
200 km loop scheme, the achieved performance is rated by a
FoM equal to 225’000. This value corresponds to the highest
FoM demonstrated using a standard BOTDA sensor system with
no hardware sophistications.

In addition, the denoising capabilities and limits of the NLM
method for distributed Brillouin sensing have been further ex-
plored by reducing the SNR of the raw measurements below
0 dB. Since only small variations of the SNR have been ana-
lyzed, the same optimal parameters of the NLM method found in
Section V-A are here used in this analysis. Results have shown
that when the SNR decreases below −3 dB, the NLM algo-
rithm practically cannot recover the data contained in the ma-
trix gB[z, � f ]. In the SNR range between −3 dB and 0 dB the
information contained in the BOTDA data can only be partially
recovered with very poor repeatability. This behavior can be ex-
plained by the fact that when having negative SNR values, the
large amount of noise dominates over the real data, preventing
image processing from performing a reliable denoising. It can
be concluded that, based on this experimental study and on the
fundamental principle of the NLM algorithm, an SNR of 0 dB
can be considered to be the lowest SNR in the system for NLM
to reliably restore the data contained in BOTDA measurements.

VI. CONCLUSION

In conclusion, an overview of linear and nonlinear image
processing techniques suitable for BOTDA data denoising has
been presented. Image denoising has demonstrated to be an ef-
ficient and powerful tool to remove noise from measurements
of Brillouin distributed optical fiber sensors with no hardware
modifications. This feature makes this two-dimensional signal
processing approach very attractive for a cost-effective indus-
trial development, since the technique can be readily applied
to any existing instrument. The presented analysis points out
that whilst the SNR enhancement provided by linear image de-
noising filters can be deterministically designed based on the
spatial and spectral responses of the filter, nonlinear filters of-
fer better denoising capabilities but their performance is more
unpredictable, since the provided SNR enhancement highly de-
pends on the data being denoised.

Furthermore, an optimization procedure to find the param-
eters of a nonlinear image denoising method called nonlocal
means has been proposed. Based on the fundamental principle
of the method and making use of experimental data, the opti-
mal design of a NLM filter has enabled the implementation of
a standard BOTDA sensor scheme covering a sensing range of
100 km over a 200 km-long fiber-loop configuration, with 2 m
spatial resolution. To the best of our knowledge, this is the first
time that a plain BOTDA scheme over such a distance is demon-
strated with no hardware modifications, representing the highest
FoM (� 225’000) achieved with a standard BOTDA scheme. It
is anticipated that image denoising combined with other tech-
niques for BOTDA enhancement, such as optical pulse coding
and/or Raman amplification, can lead to a noticeably increased
performance, rated by a much larger FoM.

Although the use of image denoising has been here de-
scribed for long-range BOTDA sensing, the method can be
extended (with a suitable adaptation) to other distributed fiber
sensing techniques, such as Raman and Rayleigh distributed
fiber sensors. This potential extension also includes schemes for
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sub-meter spatial resolution, distributed dynamic sensing or dis-
tributed acoustic/vibration sensing, among other schemes.
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