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Abstract—Automatic speaker verification systems can be
spoofed through recorded, synthetic or voice converted speech
of target speakers. To make these systems practically viable, the
detection of such attacks, referred to as presentation attacks, is
of paramount interest. In that direction, this paper investigates
two aspects: (a) a novel approach to detect presentation attacks
where, unlike conventional approaches, no speech signal modeling
related assumptions are made, rather the attacks are detected
by computing first order and second order spectral statistics
and feeding them to a classifier, and (b) generalization of the
presentation attack detection systems across databases. Our
investigations on ASVspoof 2015 challenge database and AVspoof
database show that, when compared to the approaches based on
conventional short-term spectral features, the proposed approach
with a linear discriminative classifier yields a better system,
irrespective of whether the spoofed signal is replayed to the mi-
crophone or is directly injected into the system software process.
Cross-database investigations show that neither the short-term
spectral processing based approaches nor the proposed approach
yield systems which are able to generalize across databases or
methods of attack. Thus, revealing the difficulty of the problem
and the need for further resources and research.

Index Terms—Presentation attack detection, anti-spoofing,
spectral statistics, cross-database

I. INTRODUCTION

THE goal of an automatic speaker verification (ASV)
system is to verify a person through her/his voice. The

system receives as input a speech sample along with an
identity claim. It outputs a binary decision: the speech sample
corresponds to the claimed identity or not. ASV systems can
make two types of errors: reject a true or genuine claim
referred to as false rejection, or accept a false or impostor
claim referred to as false acceptance. ASV systems can be
applied in different scenarios such as forensic or personal
authentication. Although the ultimate goal is to have a system
that is error free, in practice, the ASV systems are error prone
and, depending upon the application, a trade-off between the
error types exist. For example, in forensic applications, false
rejections would be considered more costly, while in speech-
based personal authentication applications, false acceptances
would be considered more costly. This paper is concerned with
an up-and-coming issue related to ASV systems in the latter
scenario, i.e., personal authentication scenario.

Like any biometric system, ASV-based authentication sys-
tems can be attacked at different points [1], as illustrated
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in Fig. 1. In this paper, our interest lies in attacks at point
(1) and point (2), called spoofing attacks, where the system
can be attacked by presenting a spoofed signal as input. It
has been shown that ASV systems are vulnerable to such
elaborated attacks [2], [3]. As for points of attack (3) - (9), the
attacker needs to be aware of the computing system as well as
the operational details of the biometric system. Preventing or
countering such attacks is more related to cyber-security, and
is thus out of the scope of the present paper.

Fig. 1. Potential points of attack in a biometric system, as defined in the
ISO-standard 30107-1 [4]. Points 1 and 2 correspond respectively to attacks
performed via physical and via logical access.

Attack at point (1) is referred to as presentation attack as
per ISO-standard 30107-1 [4] or as physical access attack.
Formally, it refers to the case where falsified or altered samples
are presented to the biometric sensor (microphone in the case
of ASV system) to induce illegitimate acceptance. Attack at
point (2) is referred to as logical access attack where the
sensor is bypassed and the spoofed signal is directly injected
into the ASV system process. The main difference between
these two kinds of attacks is that in the case of physical access
attacks, the attacker, apart from having access to the sensor,
needs less expertise or little knowledge about the underlying
software. Whilst in the case of logical access attacks, the
attacker needs the skills to hack into the system as well as
knowledge of the underlying software process. In that respect,
physical access attacks are more likely or practically feasible
than logical access attacks. Despite the technical differences,
in an abstract sense this paper treats physical access attacks
and logical access attacks as presentation attacks, as both are
related to presentation of falsified or altered signal as input to
the ASV system.

There are three prominent methods through which these
attacks can be carried out, namely, (a) recording and replaying
the target speakers speech, (b) synthesizing speech that carries
target speaker characteristics, and (c) applying voice conver-
sion methods to convert impostor speech into target speaker
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speech. Among these three, replay attack is the most viable
attack, as the attacker mainly needs a recording and playback
device. In the literature, it has been found that ASV systems,
while immune to “zero-effort” impostor claims and mimicry
attacks [5], are vulnerable to such elaborated attacks [2]. The
vulnerability could arise due to the fact that ASV systems
are inherently built to handle undesirable variabilities. The
spoofed speech can exhibit variabilities that ASV systems are
robust to and thus, can pass undetected.

As a consequence, developing countermeasures to detect
presentation attacks is of paramount interest, and is constantly
gaining interest in the speech community [3]. In that regard,
the emphasis until now has been on logical access attacks,
largely thanks to the “Automatic Speaker Verification Spoofing
and Countermeasures Challenge” [6], which provided a large
benchmark corpus containing voice conversion based and
speech synthesis based attacks. As discussed in more detail in
Section II, in the literature, countermeasure development has
largely focused on investigating short-term speech processing
based features that can aid in discriminating genuine speech
from spoofed signal. This includes cepstral-based features,
phase information, and fundamental frequency based informa-
tion, to name a few.

The present paper focuses on two broad inter-connected re-
search problems concerned with presentation attack detection
(PAD), namely,

1) Most of the countermeasures developed until now have
been built on top of standard short-term speech process-
ing techniques that enable decomposition of speech sig-
nal into source and system, and develop countermeasures
focusing on either one of them or both. However, both
genuine accesses and presentation attacks are speech
signals that carry the same high level information, such
as message, speaker identity, and information about
environment. There is little prior knowledge that can
guide us to differentiate genuine access speech from
presentation attack speech. Hence, a question that arises
is: do we still need to follow standard short-term speech
processing techniques for PAD? Aiming to answer this
question, we develop a novel approach that does not
make speech signal modeling related assumptions, such
as quasi-stationarity. It simply computes the first and the
second order spectral statistics over Fourier magnitude
spectrum to detect presentation attacks without any
dimensionality reduction.

2) As mentioned earlier, research on detecting presentation
attacks has mainly focused on logical access attacks,
though physical access attacks are more likely or prac-
tically easier. So a first set of questions that arises is:
are physical access attack detection and logical access
attack detection different? Would the methods developed
for logical access attack detection be scalable to phys-
ical access attack detection? Towards that, we present
benchmarking experiments on AVspoof corpus, which
contains physical access attacks. Specifically, we use the
recent work by Sahidullah et al. [7], which benchmarked
several anti-spoofing systems for logical access attacks,
as a starting point. We select several well-performing

methods and evaluate them along with the proposed
approach of using spectral statistics based features on
physical access attack detection, through an open source
implementation based on the Bob framework [8], and
contrast them w.r.t. logical access attack detection. We
then, in one of the first efforts, further study these as-
pects from cross-database and cross-attack perspective.

It is worth mentioning that a part of the results presented
in the paper has appeared in [9] and in [10]. Specifically, the
previous work on long-term spectral statistics (LTSS) [9] was
limited to comparison to the top five systems of ASVspoof
Interspeech 2015 challenge. In this paper, we study the LTSS-
based approach in comparison to short-term spectral feature
based systems selected from [7] and benchmarked in [10] on
both ASVspoof and AVspoof databases. We also investigate
the LTSS-based approach in a cross database scenario. Fur-
thermore, we analyze different aspects related to the proposed
LTSS-based approach, namely, (a) is it better to model the raw
log magnitude spectrum, as done in previous works [7], [11],
[12], or use statistics of the raw log magnitude spectrum, as
done in the proposed approach? (b) Impact of the window size
on the detection of physical access attacks and logical access
attacks, (c) analysis of the system at decision level to get
insight about the generalization capabilities in cross database
studies, and (d) analysis of the trained models to understand
the discriminative information learned by the LDA classifier
for different types of attacks, including the importance of first
order and second order statistics.

The remainder of the paper is organized as follows. Sec-
tion II provides a background on the countermeasures de-
veloped for logical access attacks. Section III then motivates
and presents the proposed spectral statistic based approach
for PAD. Section IV presents the experimental setup. Section
V presents the results and Section VI presents an analysis
of the proposed approach and results obtained. Finally, in
Section VII, we conclude.

II. RELATED WORK

As mentioned earlier, various methods have been proposed
in the context of logical access attack detection. All these ap-
proaches can be broadly seen as development of a binary clas-
sification system. This involves extraction of features based
on conventional short-term speech processing and training a
classifier. In this section, we provide a brief overview about
the methods. For a more comprehensive survey, please refer
to [3], [13].

A. Features

In the literature, different feature representations based on
short-term spectrum have been proposed for synthetic speech
detection. These features can be grouped as follows:

1) magnitude spectrum based features with temporal
derivatives [14], [15]: this includes standard cepstral
features (e.g., mel frequency cepstral coefficients, per-
ceptual linear prediction cepstral coefficients, linear pre-
diction cepstral coefficients), spectral flux-based features
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that represent changes in power spectrum on frame-to-
frame basis, sub-band spectral centroid based features,
and shifted delta coefficients.

2) phase spectrum based features [14], [16]: this includes
group delay-based features, cosine-phase function, and
relative phase shift.

3) spectral-temporal features: this includes modulation
spectrum [16], frequency domain linear prediction [7],
extraction of local binary patterns in the cepstral do-
main [17], [18], and spectrogram based features [19].

The magnitude spectrum based features and phase spectrum
based features have been investigated individually as well as
in combination [20], [21], [22], [23]. All the aforementioned
features are based on short-term processing. However, some
features such as modulation spectrum or frequency domain
linear prediction tend to model phonetic structure related long-
term information.

In addition to these spectral-based features, features based
on pitch frequency patterns have been proposed [24], [25].
There are also methods that aim to extract “pop-noise” related
information that is indicative of the breathing effect inherent
in normal human speech [26].

B. Classifiers
Choosing a reliable classifier is especially important given

possibly unpredictable nature of attacks in a practical system,
since it is unknown what kind of attack the perpetrator may
use when spoofing the verification system. Different classifi-
cation methods have been investigated in conjunction with the
above described features such as logistic regression, support
vector machine (SVM) [7], [17], artificial neural networks
(ANNs) [27], [11], and Gaussian mixture models (GMMs) [7],
[14], [16], [20], [21], [22], [23]. The choice of classifier is
also dictated by factors like dimensionality of features and
characteristics of features. For example, in [7], GMMs were
able to model sufficiently well the de-correlated spectral-based
features of dimension 20-60 and yield highly competitive
systems. Whilst in [12], ANNs were used to model large
dimensional heterogeneous features.

The classifiers are trained in a supervised manner, i.e., the
training data is labeled in terms of genuine accesses and
attacks. During recognition or detection, the classifier outputs
a frame level evidence or scores for each class, which are then
combined to make a final decision. For instance, in the case
of GMM-based classifier, the log-likelihood ratio is computed
similarly to a Gaussian Mixture Model-Universal Background
Model (GMM-UBM) ASV system, and is then compared to a
preset threshold to make the final decision.

Leveraging on recent findings in machine learning, deep
ANNs have also been employed to learn automatically the
features using intermediate representations as input such as
log-scale spectrograms [28] or filterbanks [27], [29], [30].

III. PROPOSED APPROACH: LONG-TERM SPECTRAL
STATISTICS

This section first motivates the scientific basis for the use of
long-term spectral statistics based information for PAD, and
then presents the details of the proposed approach.

A. Motivation

In presentation attack detection, we face a situation where
we need to discriminate a speech signal (genuine) against
another speech signal (attack) without a good prior knowledge
about the characteristics that distinguishes the two speech
signals. In the literature, as discussed in Section II, approaches
have been developed by applying conventional speech mod-
eling techniques to extract features and then classify them.
The difficulty stems from the fact that conventional speech
modeling is equally applicable to both genuine access signals
and attack signals, even when synthesized. More precisely, the
synthesis and voice conversion systems are largely built around
the notion of source-system modeling, which is also used
for extracting features for PAD. Success of such approaches
largely depends upon the details involved in source-system
modeling, and consequently, may need more than a single
feature representation. For instance, the top five systems in
ASVspoof Challenge 2015 employed multiple features. In
this paper, we take an approach where we make minimal
assumptions about the signal. More precisely, we assume that
the two signals have two different statistical characteristics,
irrespective of what is spoken and who has spoken. One such
statistical property is the means and variances of the energy
distributed in the different frequency bins.

first order statistics: Long-term average spectrum (LTAS) is
a first order spectral statistics that can be estimated either by
performing a single Fourier transform of the whole utterance
or by averaging the spectrum computed by windowing the
speech signal over the utterance [31], [32]. Originally, the
interest in estimating LTAS emerged from the studies on
speech transmission [33] and the studies on intelligibility of
speech sounds, specifically measurement of articulation index,
which represents the proportion of average speech signal that
is audible to a human subject [34]. Later in the literature, LTAS
has been extensively used to study voice characteristics [32].
It is employed for example for the early detection of voice
pathology [35] or Parkinson disease [36], or for evaluating the
effect of speech therapy or surgery on the voice quality [37].
In addition to assessing voice quality, LTAS has also been used
to differentiate between speakers gender [38] and speakers age
[39], to study singers and actors voices [40], [41] and also to
perform speaker verification [31]. First order statistics is inter-
esting for developing countermeasures for presentation attacks
as natural speech and synthetic speech differ in terms of both
intelligibility and quality. In particular, during estimation of
LTAS the short-term variation due to phonetic structures get
averaged out, and thus facilitates study of voice source [32].
Modeling effectively voice source in statistical parametric
speech synthesis systems is still an open challenge [42], [43].
This aspect can be potentially exploited to detect attacks by
using LTAS as features.

second order statistics: Speech is a non-stationary signal.
The energy in each frequency bin changes over the time.
Natural speech and synthetic speech can differ in terms of
such dynamics. Indeed one of the successful approaches to
classify natural and synthetic speech signals is use of dynamic
temporal derivative information of short-term spectrum as
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opposed to static information [7]. Variance of magnitude
spectrum can be seen as a gross estimate of such dynamics.
More precisely, standard deviation is indicative of the dynamic
range of the magnitude in a frequency bin. Thus, variance
could be useful for detecting attacks.

Speech signal is acquired through a sensor, which has its
own channel characteristics. Information about the channel
characteristics can be modeled through spectral statistics.
State-of-the-art speech and speaker recognition systems em-
ploy the first order spectral statistics, e.g. mean of cepstral
coefficients1 [46] and the second order spectral statistics, e.g.
variance of cepstral coefficients to make the system robust
to channel variability. Channel information, however, is a
desirable information for the detection of both physical access
attacks and logical access attacks. In the case of physical
access attacks, the spoofed signal is played through a loud
speaker, which is captured via the system microphone. Such
channel effects are cues for detecting attacks. For instance,
hypothetically should the channel effect of the recording
sensor and the loud speaker be ”perfectly” removed then de-
tecting record-and-replay attack is a non-trivial task. Channel
information is also interesting for detecting logical access
attacks, as the spoofed speech signal obtained from speech
synthesis or voice conversion systems is injected into the
system, while the genuine speech signal is captured through
the sensor of the system. In the literature it has been shown
that first order and second order spectral statistics can be used
to predict speech quality or quality assessment [47], [48]. In
the case of both physical access attacks and logical access
attacks, we can expect the speech quality to differ w.r.t the
genuine speech signal.

The simplest approach to make minimal assumptions about
the signal is to use the raw log-magnitude spectrum directly as
feature input to the classifier. In that direction, the use of the
short-term raw log-magnitude spectrum has been investigated
in several works [7], [11], [12]. However, it has been found
to perform poorly when compared to standard features such
as Mel-frequency cepstral coefficients (MFCC). A potential
reason for that can be that short-term raw log-magnitude
spectrum contains several types of information, such as mes-
sage, speaker, channel and environment. As we shall see
later in Section VI-A, this puts onus on the classification
method to learn the information that discriminates genuine
access and attack. On the contrary, as explained above, the
long term spectral statistics average out phonetic structure
information [32], [49] and are indicative of voice quality as
well as speech quality. Thus, we hypothesize that statistics
of raw log magnitude spectrum can be effectively modeled
for PAD when compared to raw log magnitude spectrum. The
following section presents our approach in detail.

B. Approach

The approach consists of three main steps:
1) Fourier magnitude spectrum computation: the input ut-

terance or speech signal x is split into M frames using

1Formally, the cepstrum is the Fourier transform of the log magnitude
spectrum [44], [45].

a frame size of wl samples and a frame shift of ws
samples. We first pre-emphasize each frame to enhance
the high frequency components, and then compute the
N -point discrete Fourier transform (DFT) F , i.e., for
frame m, m ∈ {1 · · ·M}:

Xm[k] = F(xm[n]), (1)

where n = 0 · · ·N − 1, with N = 2dlog2(wl)e, and
k = 0 · · · N2 − 1, since the signal is symmetric around
N
2 in the frequency domain. If |Xm[k]| < 1, we floor

it to 1, i.e., we set |Xm[k]| = 1 so that the log
spectrum is always positive. For each frame m, this
process yields a vector of DFT coefficients Xm =
[Xm[0] · · ·Xm[k] · · ·Xm[N2 − 1]]T.
The number of frequency bins depends upon the frame
size wl as N = 2dlog2(wl)e. In our approach, it is a hyper-
parameter that is determined based on the performance
obtained on the development set.

2) Estimation of utterance level first order (mean) and
second order (variance) statistics per Fourier frequency
bin: given the sequence of DFT coefficient vectors
{X1, · · ·Xm, · · ·XM}, we compute the mean µ[k] and
the standard deviation σ[k] over the M frames of the
log magnitude of the DFT coefficients:

µ[k] =
1

M

M∑
m=1

log |Xm[k]|, (2)

σ2[k] =
1

M

M∑
m=1

(log |Xm[k]| − µ[k])2, (3)

k = 0 · · · N2 − 1.
The mean and standard deviation are concatenated,
which yields a single vector representation for each
utterance.

3) Classification: the single vector long-term spectral statis-
tic representation of the input signal is fed into a binary
classifier to decide if the utterance is a genuine sample
or an attack. In the present work, we investigate two
discriminative classifiers: a linear classifier based on
linear discriminant analysis (LDA) and a multi-layer
perceptron (MLP) with one hidden layer.

IV. EXPERIMENTAL SETUP

We describe the details of the experimental setup in this
section. All the systems described here are based on the
open-source toolbox Bob2 [8] and on Quicknet [50] and are
reproducible3.

A. Databases

We present experiments on two databases: (a) the automatic
speaker verification spoofing (ASVspoof) database, which
contains only logical access attacks; and (b) the audio-visual
spoofing (AVspoof) database, which contains both logical and
physical access attacks.

2https://www.idiap.ch/software/bob/
3Source code: https://pypi.python.org/pypi/bob.paper.taslp 2017
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1) ASVspoof: The ASVspoof4 database contains genuine
and spoofed samples from 45 male and 61 female speak-
ers. This database contains only speech synthesis and voice
conversion attacks produced via logical access, i.e., they are
directly injected in the system. The attacks in this database
were generated with 10 different speech synthesis and voice
conversion algorithms. Only 5 types of attacks are in the
training and development set (S1 to S5), while 10 types are
in the evaluation set (S1 to S10). This allows to evaluate the
systems on known and unknown attacks. The full description
of the database and the evaluation protocol are given in [6].
This database was used for the ASVspoof 2015 Challenge and
is a good basis for system comparison as several systems have
already been tested on it.

2) AVspoof: The AVspoof database5 contains replay at-
tacks, as well as speech synthesis and voice conversion attacks
both produced via logical and physical access. This database
contains the recordings of 31 male and 13 female participants
divided into four sessions. Each session is recorded in different
environments and different setups. For each session, there are
three types of speech:
• Reading: pre-defined sentences read by the participants,
• Pass-phrase: short prompts,
• Free speech: the participants talk freely for 3 to 10

minutes.
For physical access attack scenario, the attacks are played

with four different loudspeakers: the loudspeakers of the laptop
used for the ASV system, external high-quality loudspeakers,
the loudspeakers of a Samsung Galaxy S4 and the loudspeak-
ers of an iPhone 3GS. For the replay attacks, the original
samples are recorded with: the microphone of the ASV system,
a good-quality microphone AT2020USB+, the microphone of
a Samsung Galaxy S4 and the microphone of an iPhone 3GS.
The use of diverse devices for physical access attacks enables
the database to be more realistic. This database is a subset
of the one used for the BTAS challenge [51]. The training
and development sets are the same while some additional
attacks were recorded for the BTAS challenge in order to have
“unknown” attacks in the evaluation set. Here, the types of
attacks are the same in the three sets.

B. Evaluation Protocol

In both databases, the dataset is divided into three subsets,
each containing a set of non-overlapping speakers: the training
set, the development set and the evaluation set. The number of
speakers and utterances corresponding to these three subsets
are presented in Table I and in Table II respectively for the
ASVspoof database and the AVspoof database.

The evaluation measure used in ASVspoof 2015 Challenge
was equal error rate (EER), where the decision threshold τ∗
is set as:

τ∗ = argmin
τ
|FARτ − FRRτ |

More specifically, in both the development and evaluation set,
the threshold is fixed independently for each type of attack

4http://dx.doi.org/10.7488/ds/298
5https://www.idiap.ch/dataset/avspoof

TABLE I
NUMBER OF SPEAKERS AND UTTERANCES FOR EACH SET OF THE

ASVSPOOF DATABASE: TRAINING, DEVELOPMENT AND EVALUATION.

data set speakers utterances
male female genuine LA attacks

train 10 15 3750 12625
development 15 20 3497 49875

evaluation 20 26 9404 184000

TABLE II
NUMBER OF SPEAKERS AND UTTERANCES FOR EACH SET OF THE

AVSPOOF DATABASE: TRAINING, DEVELOPMENT AND EVALUATION.

data set speakers utterances
male female genuine PA attacks LA attacks

train 10 4 4973 38580 17890
development 10 4 4995 38580 17890

evaluation 11 5 5576 43320 20060

with the EER criterion. Then, the performance of the system
is evaluated by averaging the EER over the known attacks
(S1-S5), the unknown attacks (S6-S10) and all the attacks.

In realistic applications, the decision threshold is a hyper-
parameter that has to be set a priori. So evaluation of systems
simply based on EER, where the optimal threshold is found on
the evaluation set, may not reflect the realistic scenario well.
A more realistic evaluation approach would be to determine
τ∗ on the development set and compute the half total error
rate (HTER) on the evaluation set:

HTERτ∗ =
FARτ∗ + FRRτ∗

2
,

where FAR corresponds to the false acceptance rate and FRR
the false rejection rate.

As presented in the following section, we adopt HTER
as the evaluation measure for both ASVspoof and AVspoof
databases.

C. Methodology

We study the proposed approach along with other ap-
proaches proposed in the literature in the following manner:

1) we first conduct experiments on the ASVspoof database
using the evaluation measure employed in the Inter-
speech 2015 competition, i.e., EER. We then extend the
experiments with HTER as the evaluation measure;

2) next, we conduct experiments on the AVspoof database
and study both logical access and physical access attacks
with HTER as the evaluation measure;

3) and finally, we investigate the generalization of the sys-
tems through cross-database experiments. More specif-
ically, we use the training and development sets of
one database to train the system and determine the
decision threshold, and then evaluate the systems on the
evaluation set of the other database with HTER as the
evaluation measure.

D. Systems

In this section, we present the systems investigated, namely,
baseline systems and the LTSS based systems. All these
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systems have a common preprocessing step for voice activity
detection (VAD) to detect the begin and end points of the
utterance, which is done by jointly using the normalized log
energy and the 4 Hz modulation energy [52] on frame sizes
of 20 ms and frame shift of 10 ms. It is worth mentioning
that, in case of physical access attacks, this step removes an
indicative noise present at the beginning and the end of the
utterances, as a consequence of pressing play and stop buttons.
Removing those parts ensures that our system is not relying on
these portions to differentiate between genuine accesses and
attacks.

1) Baseline systems: We selected several state-of-the-art
PAD systems that performed well in a recent evaluation by
Sahidullah et al. [7] on the ASVspoof database as baseline
systems.

a) Feature extraction: By following [7], we selected four
cepstral-based features with linear-scale triangular (LFCC)
and rectangular (RFCC), mel-scale triangular (MFCC) [53],
and inverted mel-scale triangular (IMFCC) filters. It is worth
pointing out that: (a) RFCC and LFCC only differ in the filter
shapes; and (b) LFCC, MFCC, and IMFCC have the same
filter shapes but differ in filter placements. These features are
computed from a power spectrum (squared magnitude of 512-
point fast Fourier transform (FFT)) by applying one of the
above filters of a given size (we use size 20 as per [7]). We also
implemented spectral flux-based features (SSFC) [52], which
are Euclidean distances between power spectrums (normalized
by the maximum value) of two consecutive frames, subband
centroid frequency (SCFC) [54], and subband centroid magni-
tude (SCMC) [54] features. A discrete cosine transform (DCT-
II) is applied when computing all the above features, except
for SCFC, and the first 20 coefficients are taken.

Since Sahidullah et al. [7] reported that static features
degrade performance of PAD systems, we kept only deltas
and double-deltas [55] (40 in total) computed for all features.

b) Classifier: We adopted a GMM-based classifier (two
models corresponding to genuine access and attack), since
it yielded better systems when compared to SVM. We used
the same 512 number of mixtures and 10 EM iterations as
done in [7]. The score for each utterance in the evaluation
set is computed as a difference between the log-likelihoods
of the genuine access model and attack model. The score is
thresholded to make the final decision.

2) LTSS-based systems:
a) Feature extraction: The underlying idea of the pro-

posed approach is that the attacks could be detected based
on spectral statistics. It is well known that when applying
Fourier transform there is a trade-off between time and fre-
quency resolution, i.e., the smaller the frame size, the lower
the frequency resolution and the larger the frame size, the
higher the frequency resolution. So, the frame size affects the
estimation of the spectral statistics.

For both logical access attack and physical access attacks,
we determined the frame sizes based on cross validation, while
using a frame shift of 10 ms. More precisely, we varied the
frame size from 16 ms to 512 ms and chose the frame size
that yielded the lowest EER on the development set. For the
case of logical access attacks, we have found that frame size

of 256 ms yields 0% EER on both ASVspoof and AVspoof
databases. In the case of physical access attacks on AVspoof
database, we found that 32 ms yields the lowest EER, which
is 0.02%. A potential reason for this difference could be that
the channel information inherent in physical access attacks is
spread across frequency bins while in the case of logical access
attacks the relevant information may be localized. We dwell
in more detail about it later in Section VI-E.

b) Classifier: We investigate two classifiers, namely, a
linear classifier based on linear discriminant analysis (LDA)
and a non-linear classifier based on multi-layer perceptron
(MLP). The input to the classifiers are the spectral statistics
estimated at the utterance level as given in Equation (2) and
Equation (3), i.e., one input feature vector per utterance.
LDA: the input features are projected onto one dimension
with LDA , i.e., by finding the linear projection of the features
components that minimizes intra-class variance and maximizes
inter-class variance. We then directly use the values as scores.
MLP: we use an MLP with one hidden layer and two output
units. The MLP was trained with a cost function based on
the cross entropy using the back propagation algorithm and
early stopping criteria. We used the Quicknet software [50] to
train the MLP. The number of hidden units was determined
through a coarse grid search based on the performance on
the development set: 100 hidden units for AVspoof-LA and
AVspoof-PA and 10000 hidden units for ASVspoof. During
testing we threshold the output probability and make the
decision.

We had also carried out investigations using GMMs. How-
ever, we do not present those studies as the error rates were
significantly higher. This is potentially due to a combination
of factors: (a) curse of dimensionality and (b) insufficient data
for robust parameter estimation, as we obtain only one feature
vector per utterance.

V. RESULTS

This section presents the performance of the different sys-
tems investigated. We first present the studies on ASVspoof
database in Section V-A, followed by the studies on AVspoof
database in Section V-B, and finally the cross database studies
in Section V-C.

A. Performance on ASVspoof database

Table III presents the results based on the evaluation proto-
col used in the ASVspoof 2015 competition. The results for
known and unknown attacks of the evaluation set are presented
separately. We show the results presented in Table 4 of [7]
(columns titled as “[7] EER (%)”) as well as our Bob-based
implementation of the same systems (columns titled as “Bob
EER (%)”). We can observe that both implementations lead to
similar results for known attacks, while our Bob-based system
shows smaller error rates for unknown attacks.

Table IV presents the results in terms of HTER. It can be
observed that the proposed approach yields the lowest HTERs
for known attacks scenario when using a LDA classifier and
the lowest HTER for unknown attacks scenario when using a
MLP. From the results, it seems that the LDA-based approach
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TABLE III
EER(%) OF PAD SYSTEMS ON ASVSPOOF WITH RESULTS IN “[7] EER

(%)” COLUMN TAKEN FROM [7]. EVALUATION SET.

System [7] EER (%) Bob EER (%)
Known Unknown Known Unknown

SCFC 0.07 8.84 0.10 5.17
RFCC 0.12 1.92 0.12 1.32
LFCC 0.11 1.67 0.13 1.20
MFCC 0.39 3.84 0.46 2.93
IMFCC 0.15 1.86 0.20 1.57
SSFC 0.30 1.96 0.23 1.60
SCMC 0.17 1.71 0.18 1.37
LTSS, LDA N/A N/A 0.03 2.09
LTSS, MLP N/A N/A 0.10 0.40

does not generalize well to unknown attacks. However, as we
shall see later in Section VI-B, the performance difference
is mainly due to the unknown S10 condition. Furthermore,
these results can be contrasted with the results in the right
column of Table III, i.e., Bob EER, as they share the same
implementation except for the evaluation measure. It can be
observed that the rank order of the systems based on the HTER
and EER are not the same, especially for the case of unknown
attacks. Thus, indicating that choosing the threshold based on
the EER of each type of attack in the evaluation set might not
a true indicator of practical scenario.

TABLE IV
HTER(%) OF PAD SYSTEMS ON ASVSPOOF. EVALUATION SET.

System Known Unknown
SCFC 0.20 6.71
RFCC 0.21 2.11
LFCC 0.27 1.77
MFCC 0.84 3.76
IMFCC 0.32 3.19
SSFC 0.35 2.12
SCMC 0.38 1.88
LTSS, LDA 0.03 6.36
LTSS, MLP 0.18 0.60

B. Performance on AVspoof database

Table V presents the results on the AVspoof database, which
contains both logical access (LA) attacks and physical access
(PA) attacks. For each attack type, corresponding baseline and
LTSS-based systems were trained and evaluated independently.

TABLE V
HTER (%) OF PAD SYSTEMS ON AVSPOOF, SEPARATELY TRAINED FOR

THE DETECTION OF PHYSICAL ACCESS (PA) AND LOGICAL ACCESS (LA)
ATTACKS. EVALUATION SET.

System LA PA
SCFC 0.00 5.15
RFCC 0.03 2.70
LFCC 0.00 5.00
MFCC 0.00 5.34
IMFCC 0.01 3.76
SSFC 0.70 4.17
SCMC 0.01 3.24
LTSS, LDA 0.04 0.18
LTSS, MLP 1.00 0.14

We can note that: (i) the LA set of AVspoof is less chal-
lenging compared to ASVspoof for all, except for SSFC-based

methods and for our MLP-based system, and (ii) presentation
attacks are significantly more challenging compared to LA
attacks for all the baseline systems. This means that presenta-
tion attacks, besides emulating a more realistic scenario, pose
a serious threat to the state of the art systems and need to be
considered in all future evaluations of anti-spoofing systems.
On the other hand, the proposed approach with linear classifier
outperforms the baseline systems on both LA attacks and PA
attacks. The MLP-based system yields one of the lowest error
rate on PA but performs worse on LA.

C. Cross-database testing

This section presents the study on generalization capabilities
of the systems. To do so, as mentioned earlier in Section IV-C,
we used the training and development sets of one database and
the evaluation set of another database. We train the systems on
the detection of logical access attacks and observe whether or
not it can generalize to the detection of logical access attacks
of another database and to the detection of physical access
attacks.

Table VI presents the results of the study. We see that
there is no system that outperforms the others in all the
scenarios. The performance depends on which data was used
during the training and during the evaluation. Furthermore,
even though our system outperforms the others when training
and evaluating on the same dataset, we observe that it does not
generalize well to unseen attacks and unseen recording con-
ditions. Furthermore, LDA-based system outperforms MLP-
based system on three scenarios, suggesting that the MLP-
based system overfits. We analyze the reasons in Section VI-C.

VI. ANALYSIS

In this section, we give further insights into the long-term
spectral statistics based approach. We first compare our ap-
proach to systems based on raw log-magnitude spectrum. We
then analyze the results obtained on the ASVspoof database
per type of attack with a focus on the S10 attack as this is
the most challenging one. Afterward, we analyze why our
system yields one of the highest error rate in Table VI when
trained on the AVspoof-LA database and evaluated on the
ASVspoof database. Then, we analyze the LDA classifier to
understand the information modeled for logical and physical
access attacks. Finally, we study the impact of the frames
length, which is directly related to the frequency resolution,
on the performance of the system.

A. Comparison to magnitude spectrum-based systems

The raw log-magnitude spectrum computed over short time
frames of ≈ 20− 25 ms has been used as features in several
works, classified either with a GMM [7], a SVM [29], a
MLP [11], [12] or with deep architectures [27], [28], [29],
[30]. In Table VII, we present the available results on the
evaluation set of the ASVspoof database with systems using ei-
ther raw log-magnitude spectrum (“spec”), filter banks applied
after computing the raw log-magnitude spectrum (“fbanks”)
or with a log-scale spectrogram (“spectro”). “spec + MLP”
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TABLE VI
CROSS DATABASE EVALUATION ON ASVSPOOF AND AVSPOOF DATABASES OF PAD SYSTEMS IN TERMS OF HTER (%). EVALUATION SET.

System ASVspoof (Train/Dev) AVspoof-LA (Train/Dev)
AVspoof-LA (Eval) AVspoof-PA (Eval) ASVspoof (Eval) AVspoof-PA (Eval)

SCFC 1.43 6.48 19.99 7.56
RFCC 34.93 38.54 25.58 13.20
LFCC 0.71 10.58 18.44 8.40
MFCC 1.87 9.82 10.13 5.15
IMFCC 2.28 46.49 21.80 49.57
SSFC 34.64 41.68 43.50 36.26
SCMC 1.23 12.16 22.99 7.97
LTSS, LDA 43.35 45.62 14.08 36.64
LTSS, MLP 50.00 50.00 46.13 23.01

corresponds to the results presented in [12], where the raw
log-magnitude spectra are classified with a one hidden layer
MLP. “fbanks + SVM” and “fbanks + DNN” were presented
in [29], filter banks outputs are respectively classified with a
SVM and with a 2 hidden layers DNN. “fbanks + DNN [27]”
corresponds to filter banks fed to a 5-layers DNN to extract
features and classification using Mahalanobis distance. “fbanks
+ {DNN,RNN}” corresponds to the best system obtained
in [30], which is a score-level fusion of features learned with
a DNN and classified with a LDA and features learned with a
RNN and classified with a support vector machine. The system
“spectro + {CNN,RNN,CNN+RNN}” was developed in [28]
and is a score-level fusion of a CNN, a RNN and a combined
CNN and RNN, all trained on the log-scale spectrogram of
the speech utterances. “spec + GMM” and “cep + GMM”
correspond to our implementation of log-magnitude spectrum
classified with a 512 mixtures GMM. “LTSS + SVM”, “LTSS
+ LR”, “LTSS + LDA” and “LTSS + MLP” correspond to long-
term spectral statistics based systems with different classifiers:
SVM, logistic regression (LR), LDA and MLP, respectively.
We can observe that the LTSS linearly classified with LR
or LDA outperforms all other systems, even the ones using
ANNs with deep architectures to model magnitude spectrum.
This shows that indeed the statistics are more informative than
the conventional short-term raw log magnitude spectrum, as
hypothesized in Section III-A.

Yet, another way to understand these results is through the
current trends in ASV, where the state-of-the-art systems are
built on top of statistics of cepstral features. More precisely,
a GMM-UBM trained with cepstral features is adapted on the
speaker data. The parameters, more precisely the mean vectors,
of the adapted GMM are then further processed to extract
i-vectors, to build systems that are better than the standard
GMM-UBM likelihood ratio based system [56]. In our case,
we observe a similar trend, i.e., modeling statistics of the raw
log magnitude spectrum yields a better system than modeling
the raw log magnitude spectrum.

B. Analysis of ASVspoof results

As explained in Section IV-A, the evaluation set of the
ASVspoof database contains 10 different types of attacks,
denoted respectively S1 to S10, which are either voice con-
version or speech synthesis attacks. The attacks S1 to S5 are
present in the training, development and evaluation set, while
the unknown attacks S6 to S10 are in the evaluation set only.

TABLE VII
EER(%) OF MAGNITUDE SPECTRUM-BASED SYSTEMS ON ASVSPOOF

DATABASE. EVALUATION SET.

System Known Unknown Average
spec + MLP [12] 0.06 8.33 4.20
spec + SVM [29] 0.13 9.58 4.85
spec + DNN [29] 0.05 8.70 4.38

fbanks + DNN [27] 0.05 4.52 2.28
fbanks + {DNN,RNN} [30] 0.0 2.2 1.1

spectro + {CNN,RNN,CNN+RNN} [28] 0.27 2.66 1.47
spec + GMM 0.16 3.05 1.60
cep + GMM 0.05 6.23 3.14

LTSS + SVM 0.25 2.70 1.47
LTSS + LR 0.02 1.58 0.80

LTSS + LDA 0.03 2.09 1.06
LTSS + MLP 0.10 0.40 0.25

The attacks S1 to S4 and S6 to S9 are all based on the same
“STRAIGHT” vocoder [59], while S5 is based on the MLSA
vocoder [60] and S10 is a unit-selection based attack, which
does not require any vocoder.

Table VIII shows the per-attack based comparison between
the best systems of the Interspeech 2015 ASVspoof competi-
tion for which the per-attack results were published (systems
“A”, “B”, “D” and “E”), the best baseline system (LFCC),
the recent system based on constant Q cepstral coefficients
(CQCC) [58], and the systems based on the proposed LTSS
approach. We can observe that all systems achieve very low
EERs on the attacks S1 to S9. The main source of error is
the S10 attack and the overall performance of the systems
differ as a consequence of that. More precisely, among the
systems compared, System B and System D in the ASVspoof
2015 challenge yield the best performance across all the
attacks except for S10. Similarly, we can see that, in our
approach, the LDA classifier consistently yields a comparable
or better system than the MLP classifier, except for the S10
attack. This indicates that a more sophisticated classifier is
needed to detect attacks arising from concatenative speech
synthesis systems. Otherwise, a linear classifier is sufficient
to discriminate genuine accesses and attacks based on LTSS.
These observations also help in understanding the trends on
AVspoof-LA where the LDA based system outperforms the
MLP based system.

Finally, it is worth pointing out that in the literature, to the
best of our knowledge, CQCC-based approach has achieved
the best performance on S10 attack, and as a consequence
one of the best overall average performance. We can observe
that the proposed LTSS based approach with MLP as classifier
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TABLE VIII
EER (%) PER TYPE OF ATTACK COMPUTED ON THE ASVSPOOF DATABASE. EVALUATION SET.

System S1 S2 S3 S4 S5 S6 S7 S8 S9 S10
A [20] 0.10 0.86 0.00 0.00 1.08 0.85 0.24 0.14 0.35 8.49
B [57] 0.00 0.02 0.00 0.00 0.01 0.02 0.00 0.02 0.00 19.57
D [11] 0.0 0.0 0.0 0.0 0.01 0.01 0.0 0.0 0.0 26.1
E [21] 0.024 0.105 0.025 0.017 0.033 0.093 0.011 0.236 0.000 26.393
LFCC 0.032 0.500 0.000 0.000 0.126 0.151 0.011 0.234 0.032 5.561

CQCC [58] 0.005 0.106 0.000 0.000 0.130 0.098 0.064 1.033 0.053 1.065
LTSS, LDA 0.000 0.043 0.000 0.000 0.086 0.086 0.022 0.086 0.032 10.218
LTSS, MLP 0.011 0.151 0.000 0.000 0.352 0.288 0.054 0.043 0.065 1.564

closely matches that.

C. Analysis of cross-database performance

In our experimental studies on ASVspoof database, we
observed that the proposed approach generalizes across un-
seen attacks. However, in the case of cross database studies,
especially when trained on ASVspoof and tested on AVspoof-
LA (see Table VI), we observe that it is worse than all systems.
In order to understand, we analyzed the score histograms on
ASVspoof that are used to determine the threshold and the
score histograms that are obtained in the test condition. Fig. 2
shows these histograms. We see that on the development set of
the ASVspoof database, the attacks scores are clearly separated
from the genuine accesses scores. However, when applying the
same threshold on the evaluation of the AVspoof database,
we see that a lot of genuine accesses are wrongly classified
as attacks, i.e., the FRR is high (86.496%) while the FAR
is still very low (0.002%). We believe that this difference
is a consequence of the difference in the recording condi-
tions. Specifically, the genuine speech in ASVspoof database
was recorded in a hemi-anechoic chamber using an omni-
directional head-mounted microphone. On the other hand, the
genuine speech of AVspoof-LA database was recorded in
realistic conditions with different microphones: a very good
quality microphone, laptop microphone and two smartphones
microphones.

D. Analysis of the discrimination

When classifying the features with a LDA, we project them
into one dimension, which best separates the genuine accesses
from the attacks in the sense that we maximize the ratio of
the “between class variance” to the “within-class variance”.
By analyzing this projection, we can gain insight about the
importance of each component in the original space. More
precisely, each extracted feature vector is a concatenation
of a spectral mean and a spectral standard deviation. Thus,
each half of a feature vector lies in the frequency domain,
and their components are linearly spaced between 0 and 8
kHz. For example, if we compute the spectral statistics over
frames of 256 ms, each spectral mean and spectral standard
deviation vectors are composed of 2048 components and the
ith component will correspond to the frequency ≈ i×3.91Hz.
Analyzing the LDA projection vector can thus lead us to
understand the importance of each frequency region.

Fig. 3 shows the plot of the absolute values of the first
800 components of the projection vector learned by the LDA

(a) Development set: ASVspoof database

(b) Evaluation set: AVspoof LA database

Fig. 2. Score histograms of the proposed LDA-based system, trained on the
ASVspoof database and evaluated on the AVspoof-LA dataset.

classifier trained to detect the physical access (AVspoof-PA)
and logical access (AVspoof-LA) attacks on the AVspoof
database, and the logical access attacks on the ASVspoof
database (ASVspoof). These components correspond to the
spectral mean between 0 and ≈ 3128 Hz. As the frequency
increase above this value, the average amplitude of the LDA
weights does not change, which is why the high-frequency
components are not shown on this figure.

We observe that when detecting physical access attacks,
even though the weights are slightly higher in the low frequen-
cies, importance is given to all the frequency bins. This can
be explained by the fact that playing the fake sample through
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(a) physical access attacks (AVspoof PA) (b) logical access attacks (AVspoof LA) (c) logical access attacks (ASVspoof)

Fig. 3. 800 first LDA weights for physical and logical attacks of AVspoof and ASVspoof databases, corresponding to the frequency range [0, 3128] Hz of the
spectral mean.

(a) physical access attacks (AVspoof-PA) (b) logical access attacks (AVspoof-LA) (c) logical access attacks (ASVspoof)

Fig. 4. LDA weights corresponding to the spectral standard deviation for physical and logical attacks of AVspoof and ASVspoof databases.

loudspeakers will modify the channel impulse response across
the whole bandwidth. Thus, the relevant information to detect
such attacks is spread across all frequency bins. However, in
the case of logical access attacks, we observe that the largest
weights correspond to a few frequency bins that are well below
50 Hz, i.e., the discriminative information in the frequency
domain is highly localized in the low frequencies.

Figure 4 presents the LDA weights corresponding to the
spectral standard deviation. The observations are similar to the
ones made on the spectral mean. For the detection of physical
access attacks, i.e., on AVspoof-PA, the information is spread
across all the frequencies. On the other hand, in the case of
logical access attacks, i.e., on AVspoof-LA and ASVspoof,
the emphasis is given to the low frequencies. Furthermore we
can observe that the LDA weights are relatively smaller when
compared to the spectral mean. This suggests that the mean
is more discriminative than the standard deviation. To confirm
this hypothesis, we conducted an investigation using stand-
alone features. Table IX presents the results. It can be seen
that the stand-alone mean (µ) features yields a better system
than the stand-alone standard deviation (σ) features, including
in cross-database scenarios (systems trained on ASVspoof
and evaluated on AVspoof-LA and conversely). The combined
feature leads to a better system, except on ASVspoof known
attacks.

One explanation for the importance of the low frequency re-
gion for the detection of logical access attacks could be the fol-

TABLE IX
IMPACT OF THE MEAN AND STANDARD DEVIATION FEATURES USED

STAND-ALONE AND COMBINED.

AVspoof AVspoof ASVspoof ASVspoof (Train) AVspoofLA (Train)
PA LA known / unknown AVspoofLA (Eval) ASVspoof (Eval)

µ 0.51 0.04 0.02 / 6.96 45.56 26.25
σ 2.03 4.65 4.10 / 19.46 55.42 45.15

[µ, σ] 0.18 0.04 0.03 / 6.36 43.35 14.08

lowing. Natural speech is primarily realized by movement of
articulators that convert DC pressure variations created during
respiration into AC pressure variations or speech sounds [61].
Alternatively, there is an interaction between pulmonic and
oral systems during speech production. In speech processing,
including speech synthesis and voice conversion, the focus
is primarily on glottal and oral cavity through source-system
modeling. In the proposed LTSS-based approach, however,
no such assumptions are being made. As a consequence, the
proposed approach could be detecting logical access attacks
on the basis of the effect of interaction between pulmonic
and oral systems that exists in the natural speech but not in
the synthetic or voice converted speech (due to source-system
modeling and subsequent processing). It is understood that
the interaction between pulmonary and oral cavity systems
can create DC effects when producing sounds such as clicks,
ejectives, implosives [61]. Furthermore, human breath in the
respiration process can reach the microphone and appear as
“pop noise” [26], which again manifests in the very low
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frequency region. Finally, it is worth mentioning that our
observations are somewhat different than the observations
made in [62], [63], where the authors have observed that high
frequency regions were also helping in discriminating natural
speech against synthetic speech. This difference can be due
to the manner in which the signal is modeled and analyzed.
In [62], [63], the analysis has been carried out with standard
short-term speech processing, while in our case the analysis
is carried out on statistics of log magnitude spectrum of 256
ms signal. So the importance of high frequency in standard
short-term speech processing could be due to the differences
in the spectral characteristics of specific speech sounds (e.g.
fricatives) in genuine speech and synthetic speech. In our case,
the speech sound information is averaged out.

E. Analysis of the impact of the frame length

In the experimental studies, we observed that physical
access attacks and logical access attacks need two different
window sizes (found through cross-validation). A question that
arises is: what is the role of window size or frame lengths
in the proposed approach? In order to understand that, we
performed evaluation studies by varying the frame lengths:
16ms, 32 ms, 64 ms, 128 ms, 256 ms and 512 ms with a
frame shift of 10 ms. The length of each feature is 2dlog2wle.
For example, a frame length of 32 ms will yield features of
512 components. Fig. 5 presents the HTER computed on the
evaluation set for different frame lengths. We compare the
performance impact on the detection of physical and logical
access attacks of the AVspoof database and on the logical
access attacks of the ASVspoof database. For the sake of
clarity, unknown S10 attack results are presented separately
than the rest if unknown attacks S6-S9.

Fig. 5. Impact of frames lengths on the performance of the proposed LDA-
based approach, evaluated on the three datasets: ASVspoof, AVspoof-LA and
AVspoof-PA.

For physical access attacks AVspoof-PA, it can be observed
that the HTER slightly decreases from 16 ms to 128 ms and
after that it degrades. A likely reason for the degradation after
128 ms is that in physical access attacks there is a channel

effect. For that effect to be separable and meaningful for the
task at hand, the channel needs to be stationary. We speculate
that the stationary assumption is not holding well on longer
window sizes.

For logical access attacks, it can be observed that for
AVspoof-LA, ASVspoof S1-S5 (known) and ASVspoof S6-
S9 (unknown), the HTER steadily drops from 16 ms until 256
ms with a slight increase at 512 ms. Whilst for ASVspoof
S10, which contains attacks synthesized using unit selection
speech synthesis system, the performance degrades at first
and then steadily drops with increase of window size. This
could be due to the fact that long-term temporal information
is important to detect concatenated speech, since artefacts
can happen at the phoneme joint areas. Our results indicate
that for attacks based on parametric modeling of speech, as
in the case of ASVspoof S1-S9 and AVspoof-LA, frequency
resolution is not an important factor while for unit selection
based concatenative synthesis, where the speech is synthesized
by concatenating speech waveforms, high frequency resolution
is advantageous or helpful. More specifically, together with
the observations made in the previous section, we conclude
that the relevant information to discriminate genuine access
and logical access attacks based on concatenative speech
synthesis is highly localized in the low frequency region. This
conclusion is in line with the observations made with the use
of CQCC feature [58], which also provides high frequency
resolution in the low frequency regions and leads to large gains
on S10 attack condition.

Building on these observations, we asked a question: what is
the impact of window length on modeling raw log-magnitude
spectrum features? We conducted an experiment, where simi-
lar to the analysis, the window length was varied as 16ms,
32ms, 64ms, 128ms and 256ms, always shifted by 10ms,
and the raw log-magnitude spectrum was modeled by 512-
components GMM. The EERs obtained on the evaluation set
of the ASVspoof database are shown in Table X. We can
observe that for statistical parametric speech synthesis based
attacks (S1-S9), the optimal frame length is 64ms, while it is
128ms for unit-selection based attacks (S10). Hypothetically,
increase of window size should converge towards LTAS, as it
would average out phonetic structure information. However,
when compared to spectral statistics, increasing the window
size beyond 128 ms starts degrading the performance. This
could be potentially due to the difficulty in modeling discrim-
inative information in the high dimensional raw log magnitude
spectrum. In fact, in the present study modeling raw log
magnitude spectrum of 512ms window became prohibitive
both in terms of storage and computation.

Taken together, these analyses clearly show that typical
short-term speech processing with 20-30 ms window size and
other speech signal related assumptions such as source-system
modeling is not a must for detecting presentation attacks.

VII. CONCLUSIONS

In one of the first efforts, this paper investigated in depth
the detection of both physical access attacks and logical
access attacks. In this context, we proposed a novel approach
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TABLE X
IMPACT OF FRAMES LENGTHS ON THE PERFORMANCE OF RAY

LOG-MAGNITUDE SPECTRUM CLASSIFIED WITH A GMM. EER(%) OF
EVALUATION SET OF ASVSPOOF DATABASE.

frames length Known Unknown Average
(ms) S6-S9 S10
16 0.11 0.10 17.95 1.89
32 0.06 0.08 18.59 1.92
64 0.04 0.04 8.97 0.94
128 0.05 0.05 6.81 0.72
256 0.06 0.09 8.26 0.89

that detects presentation attacks based on the input signal
magnitude spectrum statistics and studied it in comparison to
approaches based on conventional short-term spectral features.
Our investigations on two separate datasets, namely, ASVspoof
2015 challenge and AVspoof led to the following observations:

1) The proposed approach, which does not make any
speech signal modeling related assumptions, works
equally well for both physical access attacks and log-
ical access attacks. However, analysis of the linear
discriminative classifier shows that for physical access
attacks the discriminative information is spread over
different frequency bins while for logical access attacks
the discriminative information is more localized in low
frequency bins.

2) Standard short-term spectral features based approaches
proposed in the literature work well for logical access
attacks but lead to inferior systems on physical access
attacks, when compared to the proposed approach. This
can be due to the fact that in the literature the research
has mainly focused on logical access attacks. As a
consequence, the methods may be more tuned to that.

3) Cross-database and cross-attack studies suggest that
long-term spectral statistics based approach do not gen-
eralize well. The cross-attack aspect is understandable
given that the classifier models different information
for physical access attacks and logical access attacks.
Our studies also show that none of the approaches
based on standard short-term spectral processing truly
generalize across databases. Such a claim arises as,
despite observing that the LFCC-based system trained
on ASVspoof leads to a low HTER on AVspoof-LA
test set, a small modification, i.e., by just replacing the
triangular shaped filters by rectangular shaped ones leads
to a drastic degradation.

Taken together these observations provide the following
directions for future research:

1) The proposed approach of using long-term spectral
statistics provides benefits such as a simple feature
extraction with no speech signal related assumption
and a linear classifier. So, should we treat the problem
from the perspective of prior knowledge based speech
processing or not? In that direction, we aim to focus on
up-and-coming deep learning based approaches that in a
data- and task-driven manner determines the appropriate
block processing and learns the relevant features and
the classifier jointly from the raw speech signal [64],

[65]. Such methods of discovering features could lead
to better understanding of the problem.

2) The cross-domain studies show that there is a need
for more resources and further research on how to
make the counter-measure systems robust or domain
invariant. Furthermore, LTSS-based approach has been
investigated in relatively clean conditions. Further inves-
tigations are needed to ascertain their benefit in adverse
conditions. In our future work, we aim to explore
multiple classifier fusion techniques in these directions,
as the studies indicate that a single feature would not be
sufficient.

3) Our experiments and analyses show that physical access
attacks and logical access attacks are not of the same
nature. So should the future research emphasis lie on
physical access attacks or logical access attacks? Given
the realistic nature of physical access attacks, our future
work will build on the on-going initiatives in the context
of the SWAN project6 for data collection and develop-
ment of counter-measures as well as in the context of
ASVspoof 20177 challenge.
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