
The Operational Semantics and
Implementation

of a Core Dart language

Zhivka Gucevska

School of Computer and Communication Sciences

A thesis submitted for the degree of Master of Computer Science
at École Polytechnique Fédérale de Lausanne

August 2017

Supervisor
Prof. Viktor Kuncak

EPFL / LARA

Supervisor
Kevin Millikin

Google

Abstract

In this report we present the specification of the operational se-
mantics of Dart Kernel and a reference implementation of Dart
Kernel in Dart.

We design a CESK-like machine to specify the operational seman-
tics of Dart Kernel and we implement an interpreter that follows
closely the small-step semantics of the language. This approach allows
us to define the behaviour of the rich features of Dart Kernel, such
as exception handling and asynchronous execution. Since Dart Ker-
nel is an evolving language, the specification is expected to evolve with
it and the semantics for new features needs to be defined further.

The work done for this project sets the grounds for further formal-
ization of the behaviour of the language with a formal proof manage-
ment system, as Coq.

2

Contents
1 Introduction 5

2 Dart 7
2.1 Overview of Dart . 7
2.2 Dart SDK . 8

3 Dart Kernel 10
3.1 Overview of Dart Kernel 10
3.2 Abstract syntax . 12

4 Object Model 15
4.1 Classes . 15
4.2 Objects . 17
4.3 Vector values . 19
4.4 Function values . 20
4.5 Identical . 20

5 Operational Semantics 22
5.1 Styles of Operational Semantics 22
5.2 CESK machine . 23

6 Small-step Operational Semantics for Dart Kernel 25
6.1 Abstract machine for Dart Kernel 25

6.1.1 Configurations . 25
6.1.2 Environments . 28
6.1.3 Store . 30
6.1.4 Continuations . 31
6.1.5 Break and Switch labels 32
6.1.6 Exception components 33
6.1.7 Event loop . 33
6.1.8 Implicit components for Dart Kernel’s CESK ma-

chine . 34
6.2 Statements . 34

6.2.1 Expression and block statements 34
6.2.2 Variable Declaration 35
6.2.3 Return . 36
6.2.4 Loops . 36
6.2.5 Labelled statements and break 36
6.2.6 Labelled switch cases and continue 37
6.2.7 Exceptions . 39

6.3 Expressions . 41
6.3.1 Local Variables . 42
6.3.2 Instance Properties . 43
6.3.3 Static Properties . 43

3

6.4 Invocations . 45
6.5 Exceptions . 46
6.6 Asynchronous execution . 46
6.7 Execution of a program . 47

7 Implementation in Dart 49

8 Future work 51

9 Conclusion 52

10 Acknowledgments 53

Listings
1 Driver loop in Dart . 49
2 Configurations implementation in Dart 49
3 Continuations implmentation in Dart 50

List of Figures
1 Expressions in Dart Kernel 13
2 Statements in Dart Kernel 14

4

1 Introduction

Formally proving that an implementation of a programming language speci-
fication faithfully implements the intended semantics of the language is hard.
There are often many implementation-level details whose relation with the
semantics specification is non trivial or does not exist, which further hinders
proofs of correctness.

The Dart project has decided to separate the implementation of its front
end, that consumes Dart code and the runtime implementations, i.e., the
back ends that run Dart programs. For this purpose they have designed
a high level intermediate representation (IR) for the Dart language, called
Dart Kernel. This IR is the interface between the front end and the differ-
ent back ends and it is a programming language in its own right. It supports
the Dart programming language features that are needed for runtime imple-
mentations and allows for simpler back ends that only need to implement this
core language. The new generation of Dart tools implemented by the lan-
guage developers consumes Dart Kernel programs instead of Dart source
code.

Dart Kernel is also designed to be a framework for program trans-
formation. Different back ends can define their own transformations that
eliminate some features of the language and replace them with others. The
Dart Kernel team is interested in correctness of these transformations, as
well as in correctness of Dart to Dart Kernel translation.

Dart Kernel is also believed to be more susceptible to formalization.
In this project we define the operational semantics of the Dart Kernel
language by presenting an abstract machine that implements its semantics.
We then implement an interpreter that follows closely the formally described
semantics. Since the back end implementations will implement Dart Ker-
nel, having a reference implementation for it can be of great value to the
language implementers. The CESK-like machine for Dart Kernel is de-
signed with possibility to be implemented in the proof management system
Coq, to formally specify and prove properties of the language.

A reference implementation of Dart Kernel in Dart can also serve
as a test-bed for language changes that can not be desugared and require
modifications in the back end.

The main contributions in this report are:

• A specification of the operational semantics of Dart Kernel. [21]

• An interpreter for a subset of the language Dart Kernel written in
Dart.[16]

5

We also started the formalization of the operational semantics with the
proof assistant Coq[21]. The specification of the operational semantics by
design is easily portable to Coq – a formal proof management system[26], but
due to time constraints and focus, was not done in the scope of this project.

The rest of the report is organized as follows.

In Sections 2 and 3 we present the Dart programming language and a
high level intermediate representation for it, Dart Kernel. In Section 4
we present Dart Kernel’s object model. Then, we give an overview of the
CESK machine, and the modifications of it to support different features of
the Dart Kernel language. We show the transition based system for a
subset of Dart Kernel’s expressions and statements. We then describe a
reference implementation of Dart Kernel as an interpreter in Dart.

6

2 Dart

Dart1 is a pure class-based, single-inheritance, object-oriented programming
language created by Google[7]. It is designed to be used for large web and
mobile applications. One example of such application is Google’s next gener-
ation of the AdWords2 front end that is built in Dart[13].

Dart is also the language of the framework for cross-platform mobile
applications, Flutter3, and the framework for web application development,
AngularDart, that is used by Google engineers to build sophisticated mission-
critical applications.4

2.1 Overview of Dart

Dart is statically typed56 with type inference and has a sound type sys-
tem[11]. In Dart 2.0 valid Dart programs behave as expected, with runtime
checks added to invalidate programs with type problems[14].

In Dart everything is an object and every object is an instance of a class.
All objects in Dart inherit from the “Object” class, which is at the root
of the class hierarchy. The language has an automatically imported library,
dart:core7, that defines the built-in types, such as numbers, strings and
basic collections.

The Dart programming language supports a wide range of features found
in modern programming languages. We present some of them below.

Interfaces and mixins Classes in Dart define implicit interfaces, contain-
ing all instance members of a class and all the classes it implements. They
are used to support an API without inheriting its implementation and classes
can implement multiple interfaces via the keyword implements.

Dart also supports mixins derived from class declarations and mixin ap-
plications. Mixin applications occur when a mixin is mixed into a class dec-

1Dart, dartlang.org
2AdWords, www.adwords.google.com
3Flutter, flutter.io
4AngularDart, webdev.dartlang.org/angular
5Dart 1.x is optionally typed, but had an experimental type system called Strong

Mode. In Dart 2.0, the next release of the language, Strong Mode will be the type sys-
tem of the language.

6In this report we only consider Dart 2.0, since the intermediate language consid-
ered will only be used for Dart 2.0.

7Library dart:core, www.dartlang.org/guides/libraries/library-tour

7

dartlang.org
www.adwords.google.com
flutter.io
webdev.dartlang.org/angular
www.dartlang.org/guides/libraries/library-tour

laration via the keyword with.

Getters and setters Dart provides implicit getters for all instance fields
and setters for all non-final instance fields in a class. These implicit getters
and setters share the same namespace with all other methods, including user
defined getters and setters.

Functions Functions in Dart are first class values that are instances of
the built-in class “Function”. They can be created with function expressions,
local function declarations or method tear-offs.

Exports and imports Dart supports modularity via libraries. A Dart
program consists of one or more libraries, combined with imports and exports.
An import specifies a library to be used in the scope of another library and
an export in a given library specifies a namespace that is made available to
other libraries that import the given library. As mentioned before Dart has
the dart:core library implicitly imported to all Dart programs.

Explicit control flow Dart supports labels, which have a separate names-
pace, and control flow with break and continue to these labels. An interesting
feature is continue in switch statements, which introduces irreducible con-
trol flow in the language. Dart also supports structured exception handling
with try/catch/finally.

2.2 Dart SDK

The Dart language developers provide the Dart SDK, which is an imple-
mentation of the Dart language and a set of development tools for the users
of the language. It contains three different implementations of Dart:

Dart VM The Dart Virtual Machine[8] is implemented in C++. It is
a Just-in-Time native-code virtual machine supporting multiple target archi-
tectures. It also supports Ahead-of-Time compilation.

Dart Dev Compiler (DDC) The DDC compiler[6], implemented in Dart,
is intended to be used for developement. It is a non-optimizing compiler
of Dart programs to JavaScript with the goal of fast compile times and
idiomatic human-readable generated JavaScript code.

8

dart2js The dart2js compiler[9], implemented in Dart, is an optimizing
compiler. It compiles Dart programs to JavaScript for the web and performs
aggressive whole-program optimizations. It is used for deployment of Dart
code.

All three of these implementations are monolithic and they do not share
any components with each other.

In an effort to combine the common parts of the back ends, the Dart
project has begun the implementation of a shared Dart front end, imple-
mented in Dart, that will be used by all three implementation back ends.
All common functionalities of the back ends will be combined in the shared
front end. The goal of the shared front end effort is to enable faster language
evolution, to reduce differences between the implementations’ behaviour, and
to reduce complexity in the back ends. The shared front end, Fasta (Fully
resolved AST, Accelerated)[10], is a compiler framework for compiling Dart
sources to a high level intermediate representation, Dart Kernel.

Dart Kernel was designed by the Dart team to be the interface be-
tween the shared front end and the different back ends.

9

3 Dart Kernel

Dart Kernel is an intermediate language for Dart, designed by the Dart
team, to be consumed by the different back ends.8 This intermediate language
is a simplified representation of the Dart programming language and it is
intended to have Dart-like semantics and to fully support all Dart 2.0
features.

The introduction of the intermediate representation Dart Kernel en-
ables moving all the shared components from the back ends to the common
front end. Only features that require runtime support are represented in
Dart Kernel, allowing for simpler back ends that implement only a core
language. Similar approaches have been previously used in other program-
ming systems. A few such examples are Java, with Lightweight Java which
was designed for academic purposes[25], LLVM[15], and the GHC Haskell
compiler, with a core language designed for compilation[27][1].

Dart Kernel has a binary and in-memory representation, and in this
report we generally refer to the in-memory representation of Dart Kernel
programs.

3.1 Overview of Dart Kernel

Dart Kernel is explicitly typed and runtime checks that are needed for
soundness of the type system are inserted by the front end. It is a simplified
version of Dart, where many of Dart’s features are desugared by the front
end. There are some Dart features that do not appear in Dart Kernel at
all, such as postfix and null-aware operators.

In Dart Kernel static parts of the program are fully resolved. Static ac-
cessors and invocations point to the node in the Dart Kernel graph. Dart
Kernel is also designed for separate compilation, hence it uses canonical
names that are linked with the other modules.

We present below how some concepts of Dart are presented in Dart
Kernel:

Interfaces and mixins In Dart Kernel a class definition is a record that
contains all instance members defined in it and a reference to its superclass.
Mixins are generated as synthetic class definition records by the frontend and

8The Dart Kernel language did not evolve in the scope of or during this project.
However the language may evolve in the future, e.g. for introduction of new language
features in Dart that require back end support.

10

Dart Kernel has syntactic support for them. Implemented interfaces are
remembered for runtime type checks in the record representing the Dart
Kernel class. The object model of Dart Kernel is defined in detail in
Section 4.

Getters and setters Instance field members in Dart Kernel are pre-
sented as records containing an identifier and an initializer. Other metadata
is also contained in these records. In particular, the metadata indicating
whether the field is final encodes whether an implementer should generate an
implicit setter for the field.

Functions In Dart Kernel, functions are created with function expres-
sions and function declarations, which have a reference to a function record
containing all the necessary information for the function, such as formal pa-
rameters and statement body. References to function records are also encoun-
tered in constructors, user defined getters and setters, and methods.

Explicit control flow Dart Kernel also supports explicit control flow
with labelled statements. Labels in Dart Kernel are resolved by the front
end and the target of break is a statement in the in-memory representation
of Dart Kernel. Note that continue statements are translated to break
statements, except for continues in switch which have a different semantics.9
The target of continue statement is resolved by the front end to be the
switch case corresponding to the label.

Dart Kernel is also designed to be a framework for program transfor-
mation. These program transformations can be implemented by back ends
to desugar some features of the language to simpler features or to a subset of
features that the back end implements.

An example of a transformation is desugaring for in loops to while loops.
After this transformation the Dart Kernel program would not contain
any for in loops, therefore the back end wont need to support them in its
implementation. Note that even though some features can be desugared or
translated in terms of other features of Dart Kernel, this is not done and
these decisions are left to the back end implementers. 10

9Contrary to breaks and continues in labelled statements, continues in switch can
target labels of non-enclosing catch clauses.

10For example, some back ends might find the distinction between for in and while
loops useful.

11

3.2 Abstract syntax

As mentioned above, Dart Kernel has a compact binary representation11,
with de Bruijn’s levels[3][18] for indexing of variables and labels, contrary to
the more commonly used de Bruijn’s indices. Dart Kernel also has an
in-memory representation and we will refer to it in this report.

The abstract syntax of Dart Kernel is a graph that contains a unique
tree, by designating some edges as “references“ which are not part of the tree.
Graph-based abstract syntax is used for implementing fast rewriting algo-
rithms[2][19]. We refer to the Dart Kernel graph as an Abstract Syntax
Tree, AST.

We consider the expressions and statements from Figures 1 and 2 for
Dart Kernel AST in the remainder of the report. Expressions in Dart
Kernel are denoted as E . As shown in Figure 1, expressions may contain
other expressions or statements from the Dart Kernel AST, and the same
holds for statements.

For example, variable declarations, denoted as D , are specific statements
and when encountered as such, they introduce a variable x in the current
scope. A reference to a variable declaration can also appear in other Dart
Kernel nodes, such as access to a variable.12 However, when we consider it
in the context of expressions, its semantics is access of the latest value bound
to the variable declaration D .

A program in Dart Kernel is represented as a data structure that con-
tains a main method and a list of libraries. The execution of the program
starts by executing the body of the main method.

11Dart Kernel’s binary representation https://github.com/dart-lang/sdk/
blob/master/pkg/kernel/binary.md

12This also allows us to have unique representation of variables and ignore concerns
such as α-conversion.

12

https://github.com/dart-lang/sdk/blob/master/pkg/kernel/binary.md
https://github.com/dart-lang/sdk/blob/master/pkg/kernel/binary.md

E ∈ Expr ::=

L literal
x local variable access
x = E local variable assignment
E .X property extraction
E .X = E property assignment
super.X super property extraction
super.X = E super property assignment
{M } static variable access
{M } = E static variable assignment
{M }(Es) static invocation
E .X (Es) dynamic invocation
E &&E
new C (Es) instance creation
E isT type test
E asT type cast
this
rethrow
throwE
awaitE
letD inE

Figure 1: Expressions in Dart Kernel

13

S ∈ Stmt ::=

E expression
{ Ss } block of statements
D local variable declaration
T x(As) S local function declaration
L labelled statement
breakL
while (E) S
switch (E) SCs
continue SC
returnE
return
try S catch CCs
try S finally S

L ∈ Stmt ::= l : S

D ∈ Stmt ::= T x = E

Figure 2: Statements in Dart Kernel

14

4 Object Model

In this section we define the object model for Dart Kernel. The Dart
language is a pure object-oriented language and Dart Kernel inherits that
property. Objects in Dart Kernel are presented as values with a class
component and a data component.

4.1 Classes

Classes in Dart Kernel capture the information needed for dynamic dis-
patch and runtime type checks.

Before execution of the program, we construct a class table that contains
all the classes needed for the execution of a given Dart Kernel program.
The class table, denoted as τ , maps a reference of a class, which is the Dart
Kernel graph node for the class, to its class definition:

τ = ClassReference 7→ Class

Dart Kernel nodes that operate within a class, such as instance member
accessors, or Dart Kernel interface types, contain the corresponding class
reference.

A class definition is constructed from a Dart Kernel node and is rep-
resented as an element of Class. An element of Class is defined as a triple
of superclass, interfaces and members as follows:

Class =(∅ ∪ClassReference)

× List〈ClassReference〉
× (Identifier 7→Member)

where the domain of Member is defined as:

Member = Getter ∪ Setter ∪Method

Getter = N ∪ Stmt

Setter = N ∪ Formals× Stmt

Method = Formals× Stmt

The domain Identifier represents the domain of identifiers.

The components superclass and interfaces are included in the defi-
nition of a class to provide support for runtime type checks, while the com-
ponent members contains information for dynamic dispatch. Runtime type

15

checks are nominal13, which is why we need to remember the superclass and
the implemented interfaces.

Superclass The first component of elements from the domain Class rep-
resents the superclass of the given class. We allow this component to be
empty. In Dart the class “Object” is the top of the class hierarchy, therefore
its superclass component is empty, i.e. ∅, and all other Dart classes have
a reference to the “Object” class as a superclass component. We define the
following function for accessing the superclass component of c ∈ Class:

superclass ∈ Class→ Class,

superclass(c1) = τ(π1(c1)) = c2,

where c2 ∈ Class is the class in the class table τ corresponding to the first
component of c1 ∈ Class. 14

Interfaces A class definition contains a list of references to the interfaces
the given class implements, represented as elements of Class stored in the
class table τ .

Members The third component of a class definition contains the informa-
tion needed for dynamic dispatch. It contains a complete map of members of
a class definition, including inherited members. We use the identifiers from
the Dart Kernel nodes to index the map of members. These identifiers are
guaranteed to be unique, because Dart has the same namespace for instance
fields, methods, getters and setters.15

We define the following function for access of the members component for
elements in the domain Class:

members ∈ Class→ (Identifier 7→Member),

members(c) = π3(c),

where c ∈ Class.
13Type equivalence and sub-typing are defined in terms of declarations by the pro-

grammer.
14Here and in the remainder of the report we use πi to express projection on the ith

component in a tuple.
15From the perspective of the programmer it may seem that setters and getters can

have the same identifier in Dart, however identifiers of setters are modified by the front
end, which makes them unique and allows co-existence in the same namespace as getters.

16

We also define the following function for looking up a member, given its
identifier:

lookupMember ∈ Class× Identifier→Member,

lookupMember(c, X) = members(c)(X),

where c ∈ Class,X ∈ Identifier.

In Dart Kernel’s object model we consider that members for a given
class are the instance getters and setters, and the instance methods for that
class. This also includes the inherited members.

The accessors from the member’s component, i.e. elements of Getter ∪
Setter, contain both user defined and implicit getters and setters. Dart’s
language specification explicitly defines the creation of implicit getters and
setters for instance fields. In Dart Kernel’s object model we represent these
implicit getters and setters as elements in N. They represent the position of
the field with identifier X in the object’s payload that we introduce in the
next section.

Dart supports mixins, and Dart Kernel has syntax to support mixins
as well. Mixins can be translated to normal classes by the frontend, but
this is not done yet because of separate compilation. For example the DDC
backend cares about speed of compilation and would suffer in performance if
mixin applications are translated to normal classes. The semantics of mixin
applications is not specified in this report.

4.2 Objects

In Dart Kernel objects are represented as pairs of a class reference and a
payload. We distinguish ordinary and primitive object values.

Ordinary object values Ordinary object values are created with a con-
structor invocation expression. We represent these values as elements of the
domain ObjectValue, where ObjectValue is defined as follows:

ObjectValue = ClassReference× List〈Location〉

The first component of elements from the domain ObjectValue is the
class component, which captures the class definition for the given object value.
We define the following function for accessing the class component of a value:

class ∈ ObjectValue→ Class,

class(v) = τ(π1(v)) = c,

17

where c ∈ Class is the class corresponding to the first component of v ∈
ObjectValue.

The second component of an element in ObjectValue is the fields com-
ponent. It is represented as a list of final locations for the values of the fields
of the object. The size of this list is given by the class component. The layout
of locations for the fields for an object value in the fields component is the
following:

∅ fields in Object . . . fields in c

The first position of this list is reserved for a fresh location which does
not correspond to a field and does not store any value. This implies that all
objects have at least one fresh location associated to them and we can use it
to define “identical” below. In an implementation, this location would store
the object header.

The fields in the object are ordered starting from the fields inherited from
the topmost class in the hierarchy. The fields from the immediately enclosing
class of the object appear last in this list.

We define the following function for accessing the fields component of an
element in ObjectValue:

fields ∈ ObjectValue→ List〈Location〉,
fields(v) = π2(v)

We define the following function for accessing a field of an element in
ObjectValue:

field ∈ ObjectValue× N→ Location,

field(v, i) = πi(fields(v))

Primitive object values Dart Kernel supports objects of primitive
types, such as bools, numbers and Strings. The semantics of these values
depends on raw data and to support it we introduce values that we call
primitive object values. Primitive object values are created with dedicated
Dart Kernel graph nodes – literals, that have payload of typed data: int,
double, String or bool.

We define them as elements of the domain PrimitiveValue, where
PrimitiveValue is defined as follows:

PrimitiveValue = ClassReference×Primitive

18

where Primitive = int ∪ bool ∪ double ∪ String.

We define the operation “primitive”, that projects the second component
of a primitive object value:

primitive ∈ PrimitiveValue→ Primitive
primitive(v) = π2(v) = l

where v ∈ Value, l ∈ Primitive.

4.3 Vector values

Dart Kernel supports homogeneous16 arrays with fixed size via vectors.
Vectors are introduced to simplify backend implementations of features such
as lists, maps or closures.

Vectors of a given size are created with a vector creation expression. We
represent vectors as arrays with fixed size.

v ∈ Vector : Valuen

where n ∈ N is the size of v

We define the following operations on vector values:

Vector access The ith component of a vector is accessed with the vectorGet
operator:

vectorGet(v, i) = πi(v),

where i ∈ N.

Vector mutation The ith component of a vector is mutated to store a given
value with the vectorSet operator:

vectorSet(v, i, v) = v′,

where

vectorGet(v′, j) =

{
vectorGet(v, j) if j 6= i

v otherwise

16The Dart Kernel team has not yet seen the need to introduce non-homogeneous
structures, but the language may evolve to support structs with typed fields in the fu-
ture.

19

The bounds for accessing components of the vector array are not checked
and we will say that the transitions where the component that is accessed is
out of bounds are not defined.

4.4 Function values

Dart Kernel supports local functions and method tear-offs. For this pur-
pose we introduce the domain of function values, or closures, FunctionValue,
which is defined as follows:

FunctionValue = ClassReference× Formals× Stmt× Env

FunctionValue(As, S , ρ) ∈ FunctionValue

where

As ∈ Formals formal parameters of the function
S ∈ Stmt body of the function
ρ ∈ Env environment in which the function was created

The associated class component for function values is the built-in class
“Function”.

4.5 Identical

The Dart language has a built-in function that can detect object identity.
It is defined differently for primitive and ordinary objects.

We define identical to be false for all values v1 ∈ Dom1 and v2 ∈ Dom2

such that Dom1 6= Dom2. Otherwise, we define it differently for each of the
domains below.

Ordinary object values For non primitive object values, we define “iden-
tical” to compare the locations of the objects at position 0 in the field com-
ponent. We say that two objects are identical if these locations are the same:

identical ∈ ObjectValue×ObjectValue→ bool

identical(v1, v2) =

{
true if field(v1, 0) == field(v2, 0)

false otherwise

20

Primitive object values

identical ∈ PrimitiveValue×PrimitiveValue→ bool

identical(v1, v2) =

{
true if identical(primitive(v1), primitive(v2))

false otherwise

The function identical has the semantics described in Section Object Iden-
tity in “Dart Programming Language Specification”[7] for primitive objects
in Dart.

Vector values Vector values are introduced by transformations to simplify
implementations in back end. We do not define identical for vector values
and calling this built-in function on these values is an error.

Function values Function values are introduced in the semantic domain
of values to represent closures at runtime. Similarly to vector values, we do
not define identical for them.

21

5 Operational Semantics

Formal specification of a programming language usually is a specification
that shows the syntax of the language and describes the exact behaviour of
its various features. The syntax of the language represents its structure, while
the semantics studies the meaning of grammatically correct programs.

Historically, there have been three main approaches to formalizing and
studying the semantics of a programming language: operational, denotational
and axiomatic semantics.

In denotational semantics the meanings of programs are modelled by
mathematical objects that represent the effects of its constructs, by studying
the effect of the program rather then how it was obtained. The axiomatic se-
mantics provides a logical system for proving partial correctness of programs
by verifying assertions defined with pre- and post-conditions. The operational
semantics is closely related to interpreters and abstract interpretation and it
defines how an effect of a computation is obtained by giving an abstraction
of how the program is executed on a machine[20].

5.1 Styles of Operational Semantics

Operational semantics is a fundamental tool in language design: it gives an
unambigous definition of the behaviour of programs written in the language.
It allows reasoning about properties of programs in terms of the constructs of
the language and facilitates verification of properties, such as correctness or
safety. There are two flavours of operational semantics: big-step, also known
as natural semantics, and small-step operational semantics.

Natural Semantics Khan introduced natural semantics in the ‘80s[17]. In
natural semantics we reason about the meaning of programs by looking at
the value the program evaluates to, without necessarily specifying the steps
to obtain that value. The steps from an initial state to a final state of an
execution are implicit.

Small-step Semantics The small-step operational semantics, also known
as reduction semantics, or small-step structural operational semantics, intro-
duced by Plotkin[22][23], describes how a program is executed on an abstract
machine in detail. It is defined in terms of atomic transitions that describe the
local behaviour of a program. Unlike big-step operational semantics, which
tells us what the final result of a program is, a step in small-step semantics
represents only one step of a computation until the program has been reduced

22

to a value. With this approach we can define the exact order of evaluation,
and the direct control of what is executed and when allows us to model the
rich features of the Dart Kernel language, such as labelled statements, struc-
tured exception handling and asynchronous execution.

5.2 CESK machine

A common approach of specifying the operational semantics of a language
is by giving a definitional interpreter that implements the semantics. In his
paper “Definitional Interpreters for Higher-Order Programming Languages”
Reynolds defines four categories of interpreters depending on whether the
interpreter contains higher-order functions, and whether the order of applica-
tion (i.e., call by value versus call by name) in the defined language depends
upon the order of application in the defining language[24].

To define the operational semantics of Dart Kernel we consider the CESK
machine, introduced by Felleisen and Friedman [4], that relates to Reynolds
interpreter definitions by trampolining: instead of calling the eval, or apply,
function in tail position, it returns the function’s arguments which are tagged
to indicate the next step of evaluation. The CESK-machine is a state machine
where each state has the following components: Control String, Environment,
Store and Continuation Code.

States are denoted as quadruples :

σ =< C,E, S,K >∈ Σ,

where Σ is the domain of configurations.

Transitions from one state to another state are defined with a step function
that deterministically produces the next state of the machine based on the
control string or continuation code component. A step of the CESK machine
starts in some configuration σ and does one step of computation. The step
function is implied with the notation ‘⇒‘ and a transition from configuration
σ1 to configuration σ2 is denoted as ‘σ1 ⇒ σ2‘. The different components of
a state are:

Control String The control string component of a configuration captures
the code of the program currently being executed.

Environment The environment is a component that associates variables
to locations in the store.

ρ ∈ Env = VariableDeclaration 7→ Location,

23

Store The store, similar to the environment, is a structure that maps loca-
tions to values. The store is denoted as:

s ∈ Location 7→ Value,

where Location 7→ Value is a map.

In the original CESK machine, locations are integers and values are clo-
sures.

Continuation Code The continuation code component captures the be-
haviour of the program when the control sequence can’t be divided further.

24

6 Small-step Operational Semantics for Dart
Kernel

In this section we present the techniques used for defining the small-step
operational semantics of Dart Kernel. We present transitions for a subset
of its expressions and statements. A more complete set of rules can be found
in the report “Operational Semantics of Dart Kernel“[21].

6.1 Abstract machine for Dart Kernel

In Section 5.2 we presented the components of the CESK machine, which
is similar to the abstract machine we use in this report. In this section we
present the state-based machine used for specification of Dart Kernel’s
operational semantics and decribe in detail its components.

6.1.1 Configurations

The states of the machine are presented as elements of the domain of config-
urations, Configuration.

In this section we also mention elements of the domain of continuations,
Continuation, denoted as κ∗. We define this domain in detail in Sec-
tion 6.1.4.

We differentiate configurations that have a control code component which
is part of the program, such as a Dart Kernel expression or a statement,
and configurations whose control code component is an element from the
semantic domain of continuations.

• Configurations with control component that is part of the program. If
the control component is part of the program, it is either an expres-
sion, a statement or a semantic list of expressions. In this case the step
function will produce the next configuration by focusing on one of the
sub-terms of the given expression, statement or semantic list of expres-
sions. Depending on the current control component, the transition step
may also result with a configuration that has a continuation as control
component.

• Configurations with control component from the semantic domain of
continuations. If the control component is an element from the semantic
domain of continuations, the step function will apply the continuation.

25

We differentiate the following states for the CESK machine for the small-
step operational semantics of Dart Kernel: evaluation of expression, eval-
uation of a list of expressions, execution of a statement, handling of an ex-
ception or application of a continuation.

We present below the configuration with control component that is part
of the program.

EvalConfiguration States in the domain EvalConfiguration capture an
expression AST node, the current environment and additional components.
The additional components will be explained in more detail in the following
sections in the report and can be ignored here. We denote these configurations
as follows:

〈E , ρ, st,H , cst, cex, κE〉eval (1)

where

E ∈ Expr : expression that is currently being evaluated
ρ ∈ Env : current environment
st, cst ∈ List〈Expr〉 : current stack traces
H ∈ Continuation : exception handler
cex ∈ Value : current exception
κE ∈ Continuation : current continuation

The step function for elements of EvalConfiguration is defined with
respect to the first component, the expression AST node of the configuration.

EvalListConfiguration The first component of the configurations in the
domain EvalListConfiguration is a semantic list of expression AST nodes
and the transition step for this configuration uses this component to produce
the next state. The tuple representing these configurations is the following:

〈Es, ρ, st,H , cex, cst, κA〉evalList (2)

where

Es ∈ List〈Expr〉 : expressions currently being evaluated
ρ ∈ Env : current environment
st, cst ∈ List〈Expr〉 : current stack trace
H ∈ Continuation : exception handler
cex ∈ Value : current exception
κA ∈ Continuation : current continuation

The step function for elements of EvalListConfiguration is defined with
respect to the first component, the semantic list of expressions.

26

ExecConfiguration The first component of configurations in the domain
ExecConfiguration is a statement AST node and the transition step for
this configuration uses this component to produce the next state. The tuple
representing these configurations is the following:

〈S , ρ, lbls, clbls, st, H , cex, cst, κE, κS〉exec (3)

where
S : statement currently being executed
ρ : current environment
lbls : current list of break continuations
clbls : current list of switch continuations
st, cst ∈ List〈Expr〉 : current stack trace
H ∈ Continuation : exception handler
cex ∈ Value : current exception
κE ∈ Continuation : current return continuation
κS ∈ Continuation : current continuation

The step function elements of ExecConfiguration is defined with respect
to the first component, the statement.

Next we present the configurations whose control component is a continu-
ation. The various kinds of continuations are explained in more detail in the
next section.

ValuePassingConfiguration, ApplicationConfiguration,
ForwardConfiguration The states from these domains capture an expres-
sion continuation (4), application continuation (5) and a statement continu-
ation (6). They also capture a second component: a value, semantic list of
values and an environment, respectively.

〈κE, v〉cont (4)
〈κA, vs〉acont (5)
〈κS, ρ〉scont (6)

where
κE : current expression continuation
κA : current application continuation
κS : current statement continuation
v : current value
vs : current list of values
ρ : current environment

27

The step function of these configurations only applies the first component
on the second one.

BreakConfiguration, SwitchConfiguration The states for the domains
BreakConfiguration (7) and SwitchConfiguration (8) capture the cor-
responding continuations for break and switch labels.

〈κB〉breakCont (7)
〈κswitch, clbls〉switchCont (8)

The step function for these states applies the continuation to produce the
next state.

ThrowConfiguration The states from the domainThrowConfiguration
have a continuation component, which is the exception handler and compo-
nents that capture the current error and stack trace. Elements of this domain
are represented as follows:

〈H , v, st〉throw (9)

where
H ∈ Continuation : current exception handler
v ∈ Value : current exception
st ∈ List〈E 〉 : current stack trace

The step function for these states applies the handler to the current ex-
ception and stack trace.

EventConfiguration The states from the domain EventConfiguration
are represented as the tuple:

〈κN〉event (10)

where
κN ∈ Continuation : current continuation

6.1.2 Environments

We consider two kinds of environments for Dart Kernel : top-level en-
vironments and local environments. The domain of environments for Dart
Kernel is defined as follows:

28

Env = (VariableDeclaration ∪Member)→ Location

Elements from the domain Env are defined as functions, therefore they
can not be modified. This implies that we can safely capture environments,
a property that is widely used in the remainder of the report.

Note that image domain of these functions is Location, rather than
Value. We define the domain Location in Section 6.1.3.

Local environment Dart Kernel is lexically scoped and supports mu-
table variables. To support this feature, we define elements of the domain
Env, denoted as ρ that we call local environments.

ρ ∈ VariableDeclaration→ Location

Top level environment Dart Kernel supports static and library fields,
which are initialized when first accessed and mutations of values stored in
these fields are visible in all subsequent execution of statements or evaluation
of expressions. To support this feature, we introduce a top level environment,
denoted as ρM that we call top level environment.

ρM ∈Member→ Location

We define the following functions for manipulating elements of the domain
Env:

Contains We define the function contains as follows:

contains ∈ Env × (VariableDeclaration ∪Member)→ bool

contains(ρ, x) =

{
true if x ∈ dom(ρ)

false otherwise

where dom(ρ) is the domain of the environment ρ, i.e., the set of variables or
members for which ρ is defined.

Lookup The function lookup is defined as follows:

lookup ∈ Env × (VariableDeclaration ∪Member)→ Location

lookup(ρ, x) = ρ(x)

29

where x ∈ dom(ρ). Note that the function lookup is defined only for elements
of dom(ρ).

Extend We define the function extend as follows:

extend ∈ Env × (VariableDeclaration ∪Member)×Value→ Env

extend(ρ, x, v) = ρ′

where

∀y ∈ dom(ρ) ∪ x, ρ′(y) =

{
α if y = x

ρ(y) otherwise

and α is a fresh location that stores the value v.

6.1.3 Store

The store for Dart Kernel, denoted as s, is defined as follows:

s ∈ Store = Location→ Value

The store is indexed by locations, elements of Location denoted as α. We
consider the domain of Location to be countably infinite and fresh, unique
elements of it can be generated within the CESK machine.

We define the following functions for the store s:

Read We define a function for reading a value from the store given its
location as follows:

read ∈ Store× Location→ Value

read(s, α) = s(α)

This function is defined only for elements of dom(s).

30

Update We define a function for updating a location in the store with a
given value:

update ∈ Store× Location×Value→ Store
update(s, α, v) = s′

where

∀α′ ∈ dom(s), s′(α′) =

{
v if α′ = α

s(α′) otherwise

6.1.4 Continuations

In this section we present an overview of the different kinds of continuations,
elements of subsets of the domain Continuation. We consider the follow-
ing kinds of continuations: expression continuations, κE, statement contin-
uations, κS, application continuations, κA, break continuations, κB, switch
continuations, κswitch, exception handlers, H , and event continuations, κN .

Expression Continuations We define the domain of expression continua-
tions as ExprCont and we use κE for its elements. Expression continuations
capture the behaviour after the evaluation of an expression to a value, i.e.,
when an expression can not be decomposed any further and evaluates to a
value with the current transition. We say that κE ∈ ExprCont are applied
to values.

We define the domain of statement continuations as StmtCont and we
use the notation κS for its elements. Statement continuations capture the
behaviour after the execution of a statement. Statements at the same level,
that is a statement in a block, may extend the current local environment
and the new bindings are visible for the subsequent statements. Therefore,
statement continuations are applied to local environments.

Application Continuation We define the domain of application continua-
tions as ApplCont and we use the notation κA for its elements. Application
continuations capture the behaviour of applying a semantic list of values.
They are used for the evaluation of semantic list of expressions, for example,
for evaluation of the arguments of a function invocation. Therefore, applica-
tion continuations are applied to list of values.

Break Continuations We define the domain of break continuations as
BreakCont and we use the notation κB for its elements. Break continuations
capture the behaviour of the program when a break to a label is executed.

31

Switch Continuations We define the domain of switch continuations as
SwitchCont and we use the notation κswitch for its elements. Switch contin-
uations capture the behaviour of the program when a continue to a label is
executed.

Exception Handlers We define the domain of exception handlers as
Handler and we use the notation H for its elements. Exception handlers
are also continuations and they capture the behaviour of the program when
an exception in encountered. They are applied to an exception value and a
stack trace.

Event Continuation We define the domain of event continuations as
EventCont and we use the notation κN for its elements. Event continua-
tions capture the behaviour for asynchronous executions and are the building
components of the event loop G, introduced in Section 6.1.7 below.

For each sub-domain of Continuation there are various kinds of con-
tinuations. We will introduce the different kinds when they are required to
understand the semantics in the report.

6.1.5 Break and Switch labels

In some of the configurations above we introduce two components for sup-
port of break and continue to a label in Dart Kernel. We denote these
components as:

lbl : break label
lbls : semantic list of break labels
clbl : continue label
clbls : semantic list of continue labels

Break Label We define a break label as follows:

lbl ∈ Stmt×BreakCont

lbl = BLabel(SL, κB)

where SL is the Dart Kernel AST node for labelled statements and κB ∈
BreakCont captures the next statement continuation and the corresponding
environment.

32

Continue Label We define a continue label as follows:

clbl ∈ SwitchCase× SwitchCont

clbl = CLabel(SCL, κswitch)

where SCL is the Dart Kernel structure for labelled switch case and
κswitch ∈ SwitchCont captures the statement continuation for executing the
body of the case and the corresponding environment.

6.1.6 Exception components

Dart Kernel supports structured exception handling with try/catch and
try/finally, and exception throwing with throw and rethrow. To support
these features, we introduce the following exception components: exception
handler, H , stack trace, st, current exception, cex, and current stack trace,
cst, for support of exception handling.

Exception Handler A handler is a continuation H ∈ Handler, as defined
in Section 6.1.4.

Stack trace The stack trace records the call expressions evaluated that
have not returned yet preceeding a given configuration. It is represented as
st ∈ List〈Expr〉 and we use it to show the execution that has led to an
exception.

Current exception The component cex ∈ (∅ ∪Value) represents the cur-
rent exception and is set while executing the body of a catch statement and
unset otherwise.

Current stack trace Similar to the component cex, this component is
defined as cst ∈ (∅ ∪ List〈Expr〉) and represents the stack trace that has led
to the exception cex.

6.1.7 Event loop

Dart Kernel supports asynchronous execution and we introduce the event
loop, G, to define the behaviour of asynchronous features of the language.
The event loop is defined as:

G = List〈EventCont〉

33

We support the usual list operations on the event loop, such as head, tail
and append which produce the event continuation that is the first element of
G, list of all elements of G except the head and list containing all elements
of G and an additional element as the last element of the list, respectively.

6.1.8 Implicit components for Dart Kernel’s CESK machine

In the remainder of the report we assume the following implicit components
for the states of Dart Kernel’s CESK machine:

ρM : Top-level environment
s : Store
G : Event loop
τ : Class table

We say that these components are present in all the states of Dart Ker-
nel’s CESK machine, but for the purpose of simplifying the notation, they
are omitted in most of the transition rules.

When a component is omitted in a transition rule C1 ⇒ C2, we assume
the component from the new configuration C2 is the same component as the
one in the initial configuration C1. In some transition rules, we modify these
components. In that case, we explicitly mention that a given component in
the resulting configuration C2 is not the same as the one in the previous
configuration C1.

6.2 Statements

In this section we present the CESK-transition function starting in configu-
ration in the domain ExecConfiguration for execution of statements. In
Dart Kernel the execution of a program starts with execution of the body
of the main method, which is a block of statements.

We describe some of the features supported with statements and present
the transition step for their execution.

6.2.1 Expression and block statements

Expressions appear as statements in Dart Kernel. They are evaluated with
an expression continuation that discards the value the expression evaluates

34

to and applied the next statement continuation, as shown in the transition
below.

〈E , ρ, lbls, clbls, st, H , cex, cst, κE, κS〉exec ⇒
〈E , ρ, st,H , cst, cex, ExpressionEK(κS, ρ)〉eval

〈ExpressionEK(κS, ρ), v〉cont ⇒ 〈κS, ρ〉scont

Block statements are list of statements in Dart Kernel. If a statement
in this list is a variable or function declaration, it extends the current envi-
ronment and the new binding is visible to the remaining statements in the
list. Block statements are executed as follows:

〈{ S1 :: Ss }, ρ, lbls, clbls, st, H , cex, cst, κE, κS〉exec ⇒
〈S1, ρ, lbls, clbls, st, H , cex, cst, κE, κ′S〉exec

〈BlockSK(S :: Ss , ρ, lbls, clbls, H , cst, cex, κE, κS), ρ′〉scont ⇒
〈S , ρ′, lbls, clbls, st, H , cst, cex, κE, κ′S〉exec

〈BlockSK([], ρ, lbls, clbls, H , cst, cex, κE, κS), _〉scont ⇒ 〈κS, ρ〉scont

where κ′S = BlockSK(Ss, ρ, lbls, clbls, H , cst, cex, κE, κS). Note that state-
ments from the statement list are executed with environment on which the
BlockSK is applied, ρ′, and only when the list is empty the current application
continuation is applied to the captured environment ρ.

6.2.2 Variable Declaration

Variable declaration statements in Dart Kernel extend the environment
with a new variable. The statement is executed as follows:

〈varx, ρ, lbls, clbls, st, H , cex, cst, κE, κS〉exec ⇒
〈κS, extend(ρ, x, null)〉scont

The variable declaration can optionally have an initializer expression. If
the variable declaration has an initializer, the execution will proceed to eval-
uate the expression. If the expression evaluates to a value, that value will
eventually be applied to the newly introduced variable declaration expression
continuation, as shown in (12).

〈D, ρ, lbls, clbls, st, H , cex, cst, κE, κS〉exec ⇒
〈E , ρ, st,H , cst, cex, VarDeclarationEK(ρ, x, κS)〉eval

(11)

〈VarDeclarationEK(ρ, x, κS), v〉cont ⇒ 〈κS, extend(ρ, x, v)〉scont (12)

35

The transitions above show how the expression continuation is used to
capture the behaviour of a variable declaration statement, when additional
steps are needed to reduce the initializer expression to a value.

6.2.3 Return

To support returning from the body of a function, we add an expression
continuation component to the configuration for execution of statements,
ExecConfiguration. We call this continuation a return continuation.

An empty return statement applies this continuation immediately to a
null value.

〈return , ρ, lbls, clbls, st, H , cex, cst, κE, κS〉exec ⇒ 〈κE, null〉cont (13)

when a return expression is provided, this expression is evaluated first
and the return continuation is added as the next expression continuation.

〈returnE , ρ, lbls, clbls, st, H , cex, cst, κE, κS〉exec ⇒
〈E , ρ, st,H , cst, cex, κE〉eval (14)

6.2.4 Loops

Dart Kernel supports while, for, do while and for in loops. The tran-
sition rules for while and for loops can be found in “Operational Semantics
of Dart Kernel“[21]. The semantics of do while loops is defined in terms
of the while loop. Defining the semantics of loops does not require introduc-
tion of components in the CESK machine, therefore we will not present them
in this report.

The semantics of for in, which has synchronous and asynchronous vari-
ant, relies on the built-in class “iterator“ which was not specified in the context
of this project.

6.2.5 Labelled statements and break

Dart Kernel supports labelled statements, L = l : S and breakL state-
ments. break statements break from the target labelled statement and pro-
ceed to execution of the rest of the program after it. Execution of labelled

36

statements modifies the break labels component of the current. It adds a new
label as head of the break labels component lbls. The new label captures the
current statement continuation and the corresponding environment.

〈L, ρ, lbls, clbls, st, H , cex, cst, κE, κS〉exec ⇒
〈S , ρ, lbl :: lbls, clbls, st, H , cex, cst, κE, κS〉exec,

where L = l : S , lbl = BLabel(L, κB), κB = BreakBK(κS, ρ)

(15)

Execution of a break with target a labelled statement can only occur
inside the labelled statement. When a break L is executed, the corresponding
continuation is looked up in the break labels component lbls. The CESK
machine then transitions to a BreakConfiguration state that applies the
break continuation accordingly.

〈breakL, ρ, lbls, clbls, st, H , cex, cst, κE, κS〉exec ⇒ 〈κB〉breakCont,
where lbl = BLabel(L′, κB) ∈ lbls such that L′ = L

(16)

The break continuation introduced above, BreakBK(κS, ρ), applies the
captured statement continuation to the environment.

6.2.6 Labelled switch cases and continue

Dart Kernel supports switch and continue statements. To support ex-
ecution of these statements, we introduce a continue labels component clbl
in the configuration for execution of statements ExecConfiguration. This
component is modified when executing the bodies of the different switch cases.
The execution of switch statement proceeds first with evaluation of the tar-
get expression. We introduce a new expression continuation, SwitchEK, that
captures all the components from the ExecConfiguration. These compo-
nents are needed to later execute the body of the switch statement, as well
as the switch cases denoted as SCs .

〈switch (E) SCs , ρ, lbls, clbls, st, H , cex, cst, κE, κS〉exec ⇒
〈E , ρ, st,H , cst, cex, κ′E〉eval,

where κ′E = SwitchEK(SCs , ρ, lbls, clbls′, st, H , cst, cex, κE, κS)

We also modify the clbls component to add the corresponding continue labels,
CLabel. The new continue labels component clbls′ is constructed by adding

37

labels for all switch cases in the statement, so that the following holds:

∀clbl ∈ clbls′ (17)
clbl ∈ clbls or
clbl = CLabel(SC , κswitch)

where
κswitch = ContinueK(SCs ′, S , ρ, lbls, clbls st, H , cex, cst, κE, κ′S)

SC = case v1, . . . , vi:S ∈ SCs ,

SCs ′ = SCs \ SC
κ′S = SwitchExitSK() if SC is the last switch case,
κ′S = ThrowingSwitchExitSK() otherwise

We introduce the continue continuation, ContinueK, that captures the
components necessary for the execution of a continue statement in the body
of the switch case. Note that we also capture the other switch cases in the
current switch statement in each of these continuations. This is necessary
to construct the correct continue label list when this continuation is applied.

We denote switch case as SC = case v1, . . . , vi:S .

In Dart Kernel the case contains a list of expressions. We consider
the expressions in a switch case as values to simplify the transitions shown
below. To implement the correct behaviour, additional computations are
needed in order to evaluate the list of expressions in the case to the list of
values considered here.

The statement body of a matching switch case is executed with a state-
ment continuation that will throw when reached if the list of remaining cases
is non-empty. We add such a statement continuation because Dart Ker-
nel does not support implicit fall-through cases and explicit change of flow
is required with return, throw, rethrow, break, or continue.

〈SwitchEK(SC :: SCs , ρ, lbls, clbls, st, H , cst, cex, κE, κS), v〉cont ⇒
〈S , ρ, lbls, clbls′, st, H , cex, cst, κE, κS〉exec,

where SC = case v1, . . . , vi:S , v ∈ v1, . . . , vi
clbls′ = clbls \CLabel(SC , κswitch)

κS = SwitchExitSK() if SC is the last switch case,
κS = ThrowingSwitchExitSK() otherwise

We modify the continue label list and remove the label corresponding to
the current switch case, since only other switch cases can be targets of an
enclosed continue statement.

38

When a switch case is non-matching, we proceed with the next case, as
folows:

〈SwitchEK(SC :: SCs , ρ, lbls, clbls, st, H , cst, cex, κE, κS), v〉cont ⇒
〈SwitchEK(SCs , ρ, lbls, clbls, st, H , cst, cex, κE, κS), v〉cont,

〈SwitchEK([], ρ, lbls, clbls, st, H , cst, cex, κE, κS), v〉cont ⇒ 〈κS, ρ〉scont

A continue statement has another switch case as target and when ex-
ecuted, proceeds to executing the body of the corresponding switch case,
from the current continue labels component, clbls.

〈continueSCL, ρ, lbls, clbls, st, H , cex, cst, κE, κS〉exec ⇒
〈κswitch〉switchCont,

where clbl = CLabel(SC ′L, κswitch) ∈ clbls with SC ′L == SCL

The newly introduced continue continuation, ContinueK, is applied as
follows:

〈ContinueK(SCs ′, S , ρ, lbls, clbls st, H , cex, cst, κE, κ′S)〉switchCont ⇒
〈S , ρ, lbls, clbls′, st, H , cex, cst, κE, κ′S〉exec

where clbls′ is constructed from clbls and SCs ′ as in the equation (17)

6.2.7 Exceptions

Dart Kernel supports structured exception handling with try/finally
and try/catch statements.

try/finally try/finally statements ensure that a finalizer statement is
executed before exiting the current try/finally statement. This implies that
the finalizer statement is executed after the execution of the body, but also
that it should be executed before an exception is thrown, a return statement,
a break statement of an enclosing labelled statement or a continue statement
to another switch case is executed.

Therefore, execution of try/finally statement modifies the current state-
ment continuation, the exception handlers, the return continuation, the break
and continue label components.

〈try S0 finally S1, ρ, lbls, clbls, st, H , cex, cst, κE, κS〉exec ⇒
〈S0, ρ, lbls′, clbls′, H ′, cex, cst, κ′E, κ

′
S〉exec

39

where

H ′ = FinallyH(S1, ρ, lbls, clbls, st, H , κE),

κ′E = FinallyReturnEK(S1, ρ, lbls, clbls, st, H , κE),

κ′S = FinallySK(S1, ρ, lbls, clbls, st, H , κE, κS),

lbls′ = {Label(L, κ′B) | Label(L, κB) ∈ lbls},
κ′B = FinallyBreak(S1, ρ, lbls, clbls, st, H , cst, cex, κE, κB),

clbls′ = {CLabel(SCL, κ
′
switch) | CLabel(SCL, κswitch) ∈ clbls},

κ′switch = FinallyContinue(S1, ρ, lbls, clbls, st, H , cst, cex, κE, κswitch)

We introduce a number of continuations here that ensure the execution of
the finalizer statement. Their application is straight forward: they produce a
state in ExecConfiguration that executes the finalizer statement with the
appropriate components captured in the continuations. In the case of the
introduced handler H ′, it additionally ensures that the next handler, H , is
applied.

try/catch try/catch statements modify the exception handlers compo-
nent and add an exception handler that captures the catch clauses of the
statement and the remaining components needed for their execution.

〈try S catch cs, ρ, lbls, clbls, st, H , cex, cst, κE, κS〉exec ⇒
〈S , ρ, lbls, clbls, st, H ′, cex, cst, κE, κS〉exec,
where H ′ = CatchH(cs, ρ, lbls, clbls, st, H , κE, κS)

To support rethrow expressions, we add the optional components current
error and current stack trace that are only set when executing the body of a
matching catch clause.

40

6.3 Expressions

In this section we present the CESK-transition function for evaluation of
expressions. We consider transitions starting in states from the domains
EvalConfiguration and EvalListConfiguration.

We describe some of the features supported with expressions. The rules
described in this section are only for synchronous executions. Definitions of
the CESK-transition function for the rest of Dart Kernel’s expressions can
be found in “Operational Semantics for Dart Kernel“[21].

Evaluation of list of expressions We first introduce steps starting in
states from EvalListConfiguration. In Dart Kernel list of expressions
do not occur as expressions. For simplifying the operational semantics we
introduce a semantic list of expressions, which we denote as es . Elements of
this list are elements that have an expression to be evaluated and an additional
component, a syntactic identifier. The additional component is set when
named argument expressions for function invocation are evaluated, and unset
otherwise.

States from EvalListConfiguration dispatch on the component es and
produce the next configuration as follows:

〈e :: es , ρ, st,H , cst, cex, κA〉evalList ⇒ 〈E , ρ, st,H , cst, cex, κE〉eval,
where κE = ExpressionsEK(e, es , ρ, st, H , cst, cex, κA)

E = π1(e)

〈[], ρ, st,H , cst, cex, κA〉evalList ⇒ 〈κA, []〉acont

We introduce an expression continuation, ExpressionsEK, that captures the
current components and will proceed to evaluation of the rest of the expression
list as shown:

〈ExpressionsEK(e, es , ρ, st, H , cst, cex, κA), v〉cont ⇒
〈es , ρ, st,H , cst, cex, ValueA(v, κA)〉evalList

We introduce an application continuation that captures the value for the
current expression. This application continuation is applied as follows:

〈ValueA(v, κA), vs〉acont ⇒ 〈κA, v :: vs〉acont

41

In the rest of the report, when the arrival state is inEvalListConfiguration,
the steps presented in this section define the transitions from it and we
will only present the transition from a ApplicationConfiguration when
κA 6= ValueA(_, _).

We assume that semantic values may have a syntactic identifier that cor-
responds to the syntactic identifier in the corresponding semantic expression
e.

Evaluation of an expression The transition step from configurations
starting in EvalConfiguration dispatches on the expression E , and based on
it produces the next configuration. For some expressions it uses the handler
H or the continuation κE to produce the next configuration. We can say that
the step function for states in EvalConfiguration considers the following
cases for E :

• It reduces to a value in one step.

• It can be decomposed to smaller terms from the program, sub-expressions.

• It implies execution of a statement.

• It throws.

We present below examples for each of the above mentioned cases.

6.3.1 Local Variables

Access The expression x evaluates to a value in one step by looking up the
binding to x in the current environment:

〈x, ρ, st,H , cst, cex, κE〉eval ⇒ 〈κE, v〉cont, , where v = s(ρ(x))

Assignment The expression x = E proceeds to evaluation of the right-
hand side of the expression.

〈x = E , ρ, st,H , cst, cex, κE〉eval ⇒ 〈E , ρ, st,H , cst, cex, κ′E〉eval

where κ′E = VarSetEK(x , ρ, κE).

We introduce the expression continuation VarSetEK that captures the
component needed to update the value stored at location ρ(x). This means
that this transition step modifies the store. The update of the store on the

42

right-hand side is also shown below. This continuation is applied to a value
and produces the next state as follows:

〈VarSetEK(X , ρ, κE), v〉cont ⇒ 〈κE, v〉cont

where sR = update(sL, ρ(X), v) after transition.

6.3.2 Instance Properties

Property extraction and assignment in Dart Kernel can be extraction or
assignment of a property via its identifier or fully resolved.

In the first case, we use dynamic dispatch to lookup the property corre-
sponding to the identifier in the class of the receiver.

When the property extraction or assignment is fully resolved, also called
direct, the expression itself points to the Dart Kernel structure that rep-
resents the property, hence the lookup step is skipped.

6.3.3 Static Properties

In Dart Kernel static property accessors are fully resolved and the cor-
responding expressions have pointer to the member record. Static property
extraction and assignment may modify the top level environment by adding
a new binding to it.

Extraction Static property extraction may result in field access, execution
of a user defined getter or a method tear-off.

We first consider field extraction. Static fields are only initialized when
accessed, so static property extraction is reduced to a value in one step or
implies evaluation of an expression.

When a property has been previously initialized, we have the following
case:

〈{M }, ρ, st,H , cst, cex, κE〉eval ⇒ 〈κE, s(ρM(M))〉cont,
where M is a static field and contains(ρM ,M)

Otherwise, the property is accessed for the first time. When the accessed

43

field does not have an initializer, the evaluation proceeds as follows:

〈{M }, ρ, st,H , cst, cex, κE〉eval ⇒ 〈κE, null〉cont,
where M is a static field without an initializer expression,

not contains(ρM ,M),

ρMR = extend(ρML ,M , null)

Otherwise, the initializer expression is evaluated:

〈{M }, ρ, st,H , cst, cex, κE〉eval ⇒ 〈E , ρ, st,H , cst, cex, κ′E〉eval,
where M is a static field with initializer expression E ,

not contains(ρM ,M),

κ′E = StaticGetEK(M , κE)

We introduce StaticGetEK that captures the member and the expression
continuation and it is applied as follows:

〈StaticGetEK(M , κE), v〉cont ⇒ 〈κE, v〉cont,where ρMR = extend(ρML , M , v)

When the property accessors is a user defined getter, the evaluation of the
function proceeds as follows:

〈{M }, ρ, st,H , cst, cex, κE〉eval ⇒
〈S , ρempty, [], [], {M } :: st, H , cex, cst, κE, κS〉exec
where M is a getter with body S , κS = ExitSK(κE, null)

Otherwise, we have a method tear-off and the evaluation of the expression
proceeds as follows:

〈{M }, ρ, st,H , cst, cex, κE〉eval ⇒ 〈κE, FunctionValue(As, S , ρ′)〉cont,
where ρ′ = ρempty after transition

M is a method tear-off with formal parameters As and body S

Assignment Static property assignment modifies the value stored at the
location corresponding to the property when it is a static field, or execute the
user defined setter. They may modify the top level environment as well, if a
field is accessed for the first time.

The evaluation of the expression proceeds with evaluation of the right-
hand side expression.

44

〈{M } = E , ρ, st,H , cst, cex, κE〉eval ⇒ 〈E , ρ, st,H , cst, cex, κ′E〉eval,
where κ′E = StaticSetEK(M , κE)

We introduce StaticSetEK that will update the binding or execute the
setter as follows:

〈StaticSetEK(M , κE), v〉cont ⇒ 〈κE, v〉cont,
where ρMR = extend(ρML , M , v) and not contains(ρML ,M)

sR = update(sL, ρ
M
L (M), v) and contains(ρML ,M)

〈StaticSetEK(M , κE), v〉cont ⇒ 〈S , ρ, [], [], st, H , cex, cst, κE, κS〉exec,
where M is a static setter with formal parameter A and body S

κS = ExitSK(κE, v),

ρ = extend(ρempty, A, v)

We introduce a new statement continuation ExitSK that ensures the cor-
rect execution of the program when explicit control flow with return is miss-
ing in the body of a statement.

6.4 Invocations

Dart Kernel has an in-memory representation of functions that is refer-
enced in local functions, instance methods and constructors.

Function Invocations in Dart Kernel are expressed as static and in-
stance invocations. Static invocations are fully resolved and the correspond-
ing Dart Kernel expression has a reference to the function node to be
invoked. Instance invocations appear in two flavours: with a reference to
the function node to be invoked and with an identifier, X , where dynamic
dispatch is necessary.

Constructor Constructors in Dart Kernel appear only as generative
constructors. The Dart language has support for factory constructors, which
are translated to static methods in Dart Kernel.

The CESK-transition function for invocations is presented in detail in the
specification. It does not require special components in the CESK states,
hence we are omitting them in this report. An interesting thing to note for
invocations is that they modify the stack trace by appending the invocation
expression to the stack trace component.

45

6.5 Exceptions

In Section 6.2.7 we present try/catch and try/finally statements that
introduce exception handlers. Exceptions are thrown with the expressions
throw and rethrow.

Throw throw expressions in Dart Kernel explicitly modify the flow of
the execution of the program. The target of a throw is an expression, which
is first evaluated to a value:

〈throwE , ρ, st,H , cst, cex, κE〉eval ⇒
〈E , ρ, st,H , cst, cex, ThrowEK((throwE) :: st, H)〉eval

We introduce an expression continuation, ThrowEK, that captures the
current handler and stack trace. When applied, this continuation will produce
the corresponding state in ThrowConfiguration:

〈ThrowEK(st, H), v〉cont ⇒ 〈H , v, st〉throw

Rethrow rethrow expressions appear in the body of catch statements.
They apply the current handler to the current exception and stack trace.

〈rethrow, ρ, st,H , cst, cex, κE〉eval ⇒ 〈H , cex, cst〉throw

The components current exception and stack trace are set accordingly
when the body of a catch is executed.

6.6 Asynchronous execution

Asynchronous execution in Dart is supported with async functions, await
expressions, and asynchronous for in loops.

Dart has an event loop on which asynchronous code is scheduled to be
executed. The tasks scheduled in the event loop are called microtasks[12][19].
Since Dart Kernel has Dart-like semantics, it also supports asynchornous
execution, with the event loop component introduced in Section 6.1.7. In
the Dart 2.0 specification, execution of asynchronous functions starts syn-
chronously, i.e., when the function is invoked. A microtask for the invocation
is scheduled on the event loop and the execution is paused only when the body

46

of the function is suspended. One example when the execution is suspended
is the evaluation of an await expression.

To support asynchronous execution we introduced the configuration do-
main EventConfiguration, which applies continuations from the domain of
event continuations, κN ∈ EventCont.

6.7 Execution of a program

The CESK machine has an external driver loop that starts in state Cintial

and transitions with the defined step to the next state until the machine is in
Cfinal state. When Cfinal is reached, the driver loop stops. The step function
and states Cinitial and Cfinal are defined below.

Step function The transition function is defined as a step function from
every configuration. Different configurations have different step functions and
we have briefly introduced them in the previous sections of the report.

We define an initial state, Cinitial ∈ ExecConfiguration and a final state
Cfinal ∈ Configuration.

Initial state The initial state is defined as the tuple:

Cinitial = 〈S , ρempty, [], [], [], H , ∅, ∅, κE, κS〉exec
where

S : the body of the main method,
ρempty : empty environment,
[] : empty lists of break and continue labels
[] : empty list of expressions for stack trace
H = TopH
∅ : empty current exception and stack trace
κE = MainEK
κS = MainSK

We introduce the following continuations, which produce an event config-
uration for executing asynchronous code or transition the machine to a final
state.

• An exception handler, H = TopH. When this continuation is applied,
it transitions the machine to the final state.

〈TopH, v, st〉throw ⇒ 〈 〉final

47

• A return continuation, κE = MainEK. When this continuation is ap-
plied and the event loop G is empty, it transitions the machine to the
final state. Otherwise, it transitions to an event configuration.

〈MainEK, v〉cont ⇒ 〈 〉final where G = []
〈MainEK, v〉cont ⇒ 〈head(G)〉event where GR = tail(GL) otherwise

• A statement continuation, κS = MainSK. When this continuation is
applied and the event loop G is empty, it transitions the machine to the
final state. Otherwise, it transitions to an event configuration.

〈MainSK, ρ〉scont ⇒ 〈 〉final where G = []
〈MainSK, ρ〉scont ⇒ 〈head(G)〉event where GR = tail(GL) otherwise

Final state The final state is denoted as an empty tuple Cfinal = 〈 〉final
and it is used to detect the end of the execution of the program.

48

7 Implementation in Dart

We have implemented an interpreter for Dart Kernel that supports a sub-
set of the features defined in the specification of the operational semantics.

We choose to define the semantics in a small-step manner with a state-
machine which can easily be implemented as an interpreter, because it pro-
vides architecture for support of mutation, recursion, exceptions and asyn-
chronous execution. We can support all these features with an implementa-
tion in applicative language, which is important since one of the goals of our
implementation is to provide clarity. Additionally, this choice allows writing
the abstract machine in Coq.

The implementation is in Dart, but many of the features of the Dart
language are not used. A motivation for writing an interpreter for the opera-
tional semantics is to provide a reference implementation that can be used as
testbed for new language features or to show correctness of transformations
by demonstrating that they preserve the semantics. We use Dart in an ap-
plicative style in order to achieve clarity, so a deep understanding of how the
Dart language works is not needed to understand the reference implementa-
tion of Dart Kernel. A meta-circular implementation in Dart, by using
all of its features, would be of little value.

The implementation follows closely the described CESK machine in Sec-
tion 5. We present the step function in trampolined style, where the execution
is organized in a single driver loop. Trampolined style means that a single
“scheduler“ loop, called trampoline manages all transfers of control[5].

The execution of a Dart Kernel program proceeds in discrete steps by
performing one computation at a time. The driver loop of the interpreter is
shown in Code 1.

Example of how configurations are presented fot the CESK machine can
be seen in Code 2 and in Code 3 for continuations.

Code 1: Driver loop in Dart
1 while(config != const FinalConfiguration()) {
2 config = config.step();
3 }

Code 2: Configurations implementation in Dart
1 abstract class Configuration{
2 Configuration step();
3 }
4

5 class FinalConfiguration extends Configuration {

49

6 const FinalConfiguration();
7

8 Configuration step() =>
9 throw ’step is not defined for FinalConfiguration.’;

10 }
11

12 class EvalConfiguration extends Configuration {
13 final Expression expression;
14 final Environment environment;
15 final ExceptionComponents exceptionComponent;
16 final ExpressionContinuation continuation;
17

18 Configuration step() => eval(expression, this);
19

20 /// ...
21 }
22

23 class ExecConfiguration extends Configuration {
24 final Statement statement;
25 /// Represents the current state: exception components
26 /// environment and continuations.
27 final State state;
28

29 Configuration step() => exec(statement, environment, state);
30

31 /// ...
32 }
33

34 /// ...

Code 3: Continuations implmentation in Dart
1 abstract class Continuation{}
2

3 abstract class ExpressionContinuation extends Continuation {
4 Configuration call(Value v);
5 }
6

7 abstract class StatementContinuation extends Continuation {
8 Configuration call(Environment env);
9 }

10

11 /// ...

50

8 Future work

While this project sets the grounds for formalization of the operational seman-
tics of the core Dart language, Dart Kernel, it lacks proper formalization
of some of Dart Kernel’s features. In this section we talk how to fur-
ther contribute to the formalization of the operational semantics of the core
language Dart Kernel.

To achieve completeness, the specification of the asynchronous part of
the language needs to be adapted to support the latest Dart semantics,
where asynchronous functions are executed synchronously until explicitly sus-
pended.

The reference interpreter lacks some of the features described in the spec-
ification, such as reference implementation of switch statements, for loops
and async execution.

Dart Kernel also has a static semantics, with a formal type system that
is sound and decidable, and a linking semantics. To achieve completeness
in the operational semantics and the reference implementation, the static
semantics of Dart Kernel needs to be formally specified. Dart Kernel
also serves as a specification of a separately compiled modules. Some of the
features in Dart Kernel do not have a runtime meaning, but have a link-
time semantics, that needs to be specified.

This will allow us to formally specify Dart Kernel in Coq and show
properties of the language.

51

9 Conclusion

In this report we presented the core Dart language, Dart Kernel and
started the formalization of its operational semantics. We designed an ab-
stract machine that implements the semantics with components to handle the
rich features of the language.

We implemented a reference implementation for the Dart Kernel lan-
guage as an interpreter in Dart, that can be used to execute Dart Kernel
programs.

52

10 Acknowledgments

I would like to thank Professor Viktor Kuncak for supervising this project.
I am grateful to Kevin Millikin, my supervisor at Google, for giving me the
opportunity to work on this project and for following me closely and providing
guidance. I would also like to thank my team at Google, the Dart Kernel
team, and especially Dmitry Stefantsov, for working closely with me during
the last 6 months.

53

References

[1] Tim Chevalier Andrew Tolmach and The GHC Team. An External
Representation for the GHC Core Language. url: www.haskell.org/
ghc/docs/6.12.2/core.pdf.

[2] Nick Benton et al. “Shrinking Reductions in SML.NET”. In: Proceed-
ings of the 16th International Conference on Implementation and Ap-
plication of Functional Languages. IFL’04. Lübeck, Germany:
Springer-Verlag, 2005, pp. 142–159. isbn: 3-540-26094-3, 978-3-540-
26094-3. doi: 10.1007/11431664_9. url: http://dx.doi.org/10.
1007/11431664_9.

[3] N.G de Bruijn. “Lambda calculus notation with nameless dummies,
a tool for automatic formula manipulation, with application to the
Church-Rosser theorem”. In: Indagationes Mathematicae (Proceed-
ings) 75.5 (1972), pp. 381 –392. issn: 1385-7258. doi: http://dx.
doi.org/10.1016/1385-7258(72)90034-0. url: http://www.
sciencedirect.com/science/article/pii/1385725872900340.

[4] Matthias Felleisen and Daniel P. Friedman. “Control operators, the
SECD-machine, and the lambda-calculus”. In: 3rd Working Confer-
ence on the Formal Description of Programming Concepts. Aug. 1986.

[5] Steven E. Ganz, Daniel P. Friedman, and Mitchell Wand. “Trampo-
lined Style”. In: SIGPLAN Not. 34.9 (Sept. 1999), pp. 18–27. issn:
0362-1340. doi: 10.1145/317765.317779. url: http://doi.acm.
org/10.1145/317765.317779.

[6] Google. Dart Dev Compiler (DDC). url: webdev.dartlang.org/
tools/dartdevc.

[7] Google. Dart Programming Language Specification. 2017. url: github.
com/dart-lang/sdk/tree/master/docs/language.

[8] Google. Dart VM. url: dartlang.org/dart-vm.

[9] Google. dart2js: The Dart-to-JavaScript Compiler. url: webdev .
dartlang.org/tools/dart2js.

[10] Google. Fasta – Fully-resolved AST, Accelerated. url: github.com/
dart-lang/sdk/tree/master/pkg/front_end/lib/src/fasta.

[11] Google. Strong Mode Dart. 2017. url: www.dartlang.org/guides/
language/sound-dart.

[12] Google. The Event Loop and Dart. url: webdev.dartlang.org/
articles/performance/event-loop.

[13] Google. The new AdWords UI uses Dart — we asked why. 2016. url:
http://news.dartlang.org/2016/03/the-new-adwords-ui-uses-
dart-we-asked.html.

54

www.haskell.org/ghc/docs/6.12.2/core.pdf
www.haskell.org/ghc/docs/6.12.2/core.pdf
http://dx.doi.org/10.1007/11431664_9
http://dx.doi.org/10.1007/11431664_9
http://dx.doi.org/10.1007/11431664_9
http://dx.doi.org/http://dx.doi.org/10.1016/1385-7258(72)90034-0
http://dx.doi.org/http://dx.doi.org/10.1016/1385-7258(72)90034-0
http://www.sciencedirect.com/science/article/pii/1385725872900340
http://www.sciencedirect.com/science/article/pii/1385725872900340
http://dx.doi.org/10.1145/317765.317779
http://doi.acm.org/10.1145/317765.317779
http://doi.acm.org/10.1145/317765.317779
webdev.dartlang.org/tools/dartdevc
webdev.dartlang.org/tools/dartdevc
github.com/dart-lang/sdk/tree/master/docs/language
github.com/dart-lang/sdk/tree/master/docs/language
dartlang.org/dart-vm
webdev.dartlang.org/tools/dart2js
webdev.dartlang.org/tools/dart2js
github.com/dart-lang/sdk/tree/master/pkg/front_end/lib/src/fasta
github.com/dart-lang/sdk/tree/master/pkg/front_end/lib/src/fasta
www.dartlang.org/guides/language/sound-dart
www.dartlang.org/guides/language/sound-dart
webdev.dartlang.org/articles/performance/event-loop
webdev.dartlang.org/articles/performance/event-loop
http://news.dartlang.org/2016/03/the-new-adwords-ui-uses-dart-we-asked.html
http://news.dartlang.org/2016/03/the-new-adwords-ui-uses-dart-we-asked.html

[14] David Morgan Google. Strong Mode Dart. 2017. url: medium.com/
dartlang/dart-gets-a-type-system-6bd3121772de.

[15] Neville Grech et al. “Static Analysis of Energy Consumption for LLVM
IR Programs”. In: Proceedings of the 18th International Workshop on
Software and Compilers for Embedded Systems. SCOPES ’15. Sankt
Goar, Germany: ACM, 2015, pp. 12–21. isbn: 978-1-4503-3593-5. doi:
10.1145/2764967.2764974. url: http://doi.acm.org/10.1145/
2764967.2764974.

[16] Interpreter for Dart Kernel. 2017. url: https://github.com/dart-
lang/sdk/tree/master/pkg/kernel/lib/interpreter.

[17] Gilles Kahn. “Natural Semantics”. In: Proceedings of the 4th Annual
Symposium on Theoretical Aspects of Computer Science. STACS ’87.
London, UK, UK: Springer-Verlag, 1987, pp. 22–39. isbn: 3-540-17219-
X. url: http://dl.acm.org/citation.cfm?id=646503.696269.

[18] Pierre Lescanne and Jocelyne Rouyer-Degli. “Explicit Substitutions
with De Bruijn’s Levels”. In: Proceedings of the 6th International Con-
ference on Rewriting Techniques and Applications. RTA ’95. London,
UK, UK: Springer-Verlag, 1995, pp. 294–308. isbn: 3-540-59200-8.
url: http://dl.acm.org/citation.cfm?id=647194.720811.

[19] Erik Meijer, Kevin Millikin, and Gilad Bracha. “Spicing Up Dart with
Side Effects”. In: Queue 13.3 (Mar. 2015), 40:40–40:59. issn: 1542-
7730. doi: 10.1145/2742694.2747873. url: http://doi.acm.org/
10.1145/2742694.2747873.

[20] Hanne Riis Nielson and Flemming Nielson. Semantics with Applica-
tions: A Formal Introduction. New York, NY, USA: John Wiley &
Sons, Inc., 1992. isbn: 0-471-92980-8.

[21] Operational Semantics of Dart Kernel. 2017. url: https://github.
com/zhivkag/dart-kernel-semantics.

[22] Gordon D. Plotkin. A structural approach to operational semantics.
Lecture notes, Computer Science Department, Aarhus University,
1981. url: http://homepages.inf.ed.ac.uk/gdp/publications/
sos_jlap.pdf.

[23] Gordon D Plotkin. “The origins of structural operational semantics”.
In: The Journal of Logic and Algebraic Programming 60 (2004). Struc-
tural Operational Semantics, pp. 3 –15. issn: 1567-8326. doi: http:
//dx.doi.org/10.1016/j.jlap.2004.03.009. url: http://www.
sciencedirect.com/science/article/pii/S1567832604000268.

[24] John C. Reynolds. “Definitional Interpreters for Higher-order Pro-
gramming Languages”. In: Proceedings of the ACM Annual Confer-
ence - Volume 2. ACM ’72. Boston, Massachusetts, USA: ACM, 1972,
pp. 717–740. doi: 10.1145/800194.805852. url: http://doi.acm.
org/10.1145/800194.805852.

55

medium.com/dartlang/dart-gets-a-type-system-6bd3121772de
medium.com/dartlang/dart-gets-a-type-system-6bd3121772de
http://dx.doi.org/10.1145/2764967.2764974
http://doi.acm.org/10.1145/2764967.2764974
http://doi.acm.org/10.1145/2764967.2764974
https://github.com/dart-lang/sdk/tree/master/pkg/kernel/lib/interpreter
https://github.com/dart-lang/sdk/tree/master/pkg/kernel/lib/interpreter
http://dl.acm.org/citation.cfm?id=646503.696269
http://dl.acm.org/citation.cfm?id=647194.720811
http://dx.doi.org/10.1145/2742694.2747873
http://doi.acm.org/10.1145/2742694.2747873
http://doi.acm.org/10.1145/2742694.2747873
https://github.com/zhivkag/dart-kernel-semantics
https://github.com/zhivkag/dart-kernel-semantics
http://homepages.inf.ed.ac.uk/gdp/publications/sos_jlap.pdf
http://homepages.inf.ed.ac.uk/gdp/publications/sos_jlap.pdf
http://dx.doi.org/http://dx.doi.org/10.1016/j.jlap.2004.03.009
http://dx.doi.org/http://dx.doi.org/10.1016/j.jlap.2004.03.009
http://www.sciencedirect.com/science/article/pii/S1567832604000268
http://www.sciencedirect.com/science/article/pii/S1567832604000268
http://dx.doi.org/10.1145/800194.805852
http://doi.acm.org/10.1145/800194.805852
http://doi.acm.org/10.1145/800194.805852

[25] Rok Strniša, Peter Sewell, and Matthew Parkinson. “The Java Mod-
ule System: Core Design and Semantic Definition”. In: SIGPLAN
Not. 42.10 (Oct. 2007), pp. 499–514. issn: 0362-1340. doi: 10.1145/
1297105.1297064. url: http://doi.acm.org/10.1145/1297105.
1297064.

[26] The Coq development team. The Coq proof assistant. url: coq .
inria.fr.

[27] The GHC Team. The GHC compiler. url: www.haskell.org.ghc.

56

http://dx.doi.org/10.1145/1297105.1297064
http://dx.doi.org/10.1145/1297105.1297064
http://doi.acm.org/10.1145/1297105.1297064
http://doi.acm.org/10.1145/1297105.1297064
coq.inria.fr
coq.inria.fr
www.haskell.org.ghc

	Introduction
	Dart
	Overview of Dart
	Dart SDK

	Dart Kernel
	Overview of Dart Kernel
	Abstract syntax

	Object Model
	Classes
	Objects
	Vector values
	Function values
	Identical

	Operational Semantics
	Styles of Operational Semantics
	CESK machine

	Small-step Operational Semantics for Dart Kernel
	Abstract machine for Dart Kernel
	Configurations
	Environments
	Store
	Continuations
	Break and Switch labels
	Exception components
	Event loop
	Implicit components for Dart Kernel's CESK machine

	Statements
	Expression and block statements
	Variable Declaration
	Return
	Loops
	Labelled statements and break
	Labelled switch cases and continue
	Exceptions

	Expressions
	Local Variables
	Instance Properties
	Static Properties

	Invocations
	Exceptions
	Asynchronous execution
	Execution of a program

	Implementation in Dart
	Future work
	Conclusion
	Acknowledgments

