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Abstract: The problem of acquiring multiple tasks from demonstration is typi-
cally divided in two sequential processes: (1) the segmentation or identification
of different subgoals/subtasks and (2) a separate learning process that parameter-
izes a control policy for each subtask. As a result, segmentation criteria typically
neglect the characteristics of control policies and rely instead on simplified mod-
els. This paper aims for a single model capable of learning sequences of complex
time-independent control policies that provide robust and stable behavior. To this
end, we first present a novel and efficient approach to learn goal-oriented time-
independent motion models by estimating both attractor and dynamic behavior
from data guaranteeing stability using linear parameter varying (LPV) systems.
This method enables learning complex task sequences with hidden Markov mod-
els (HMMs), where each state/subtask is given by a stable LPV system and where
transitions are most likely around the corresponding attractor. We study the dy-
namics of the HMM-LPV model and propose a motion generation method that
guarantees the stability of task sequences. We validate our approach in two sets of
demonstrated human motions.

Keywords: Dynamical systems, Stability, Linear Parameter Varying Systems

1 Introduction

Learning from Demonstration (LfD) has become one of the most effective tools to enable robot
autonomy. The majority of work in this field has been devoted to encoding demonstrations of a sin-
gle task into a controller that synthesizes accurate, robust and generalizable robotic behavior. In
this context, Dynamical Systems (DS) have become the most popular method due to their abil-
ity to provide behavioral guarantees. Specifically, if defined properly, DSs ensure convergence to
a pre-specified attractor or goal (stability). Recently, many researchers have focused on extend-
ing these models from a single task to more complex sequences of tasks. A typical approach to
this problem is the application of a two-steps: (1) a segmentation algorithm is first applied to ac-
quire potential subtask demonstrations and (2) a stable DS is learned from the resulting segments
assuming that end-points determine the attractors. However, segmentation algorithms rely on over-
simplified linear models that neglect the properties of the DS considered. In addition, assuming that
the end-point of a potential segment is an attractor might not hold, e.g. when data does not exhibit
convergence (a bad segmentation point). An unified way of representing multiple sequential control
policies is to model the currently active subtask with a discrete latent variable such as in a Hidden
Markov Model (HMM): the hidden state indicates the current subtask and each subtask is given by a
different parameterization of a DS. This way, subtasks are learned jointly without explicitly assum-
ing segmentation points. Following this idea, HMMs have been successfully applied with simple
Gaussian [1], linear Gaussian [2] or potentially non-stable dynamical system policies [3]. However,
learning HMMs with stable complex nonlinear subtasks becomes more challenging. In fact, the
standard learning procedure of stable goal-oriented motions prevents from learning such a unified
model as it requires knowing the attractor a priori.

In this work, we first present a novel method to learn asymptotically stable goal-oriented motions
capable of estimating the dynamic behavior and the attractor/goal from demonstrations. We param-
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eterize motions as linear parameter varying (LPV) systems by means of Gaussian Mixture Mod-
els (GMM). The most likely parameters are learned applying the Expectation-Maximization (EM)
algorithm and relying only on convex optimization programs. To represent complex task sequences,
we formulate an HMM where each state/subtask is given by a stable LPV system and where tran-
sitions between subtasks are most likely around the corresponding attractor, which guarantees con-
vergence of the full sequence. We validate this approach in a simulated experiment and in a set of
recorded human motions.

Related work: Learning autonomous DSs has been a recurrent problem since the early works
from [4] and [5]. More recently, the SEDS approach [6] ensures asymptotic stability to a previ-
ously known attractor and is also applicable to second-order systems [7] and incremental learning
settings [8]. All aforementioned methods assume that the attractor is known a priori and is not part
of the estimation process. In [9], the attractors of Dynamic Motor Primitives (DMPs) are estimated
based on a previously trained library assuming simplified linear models. In contrast, the learning
method proposed in this work estimates the attractor and dynamic behavior only from data in a
time-independent manner and with no prior knowledge about the underlying primitive.

A body of work has been devoted to learning task sequences. While some early works exploit
mixtures of autonomous DSs to synthesize complex behavior [10], most algorithms rely on an ini-
tial segmentation step followed by a model learning phase. In [1], a segmentation algorithm pro-
vide potential primitives which are learned an clustered by means of HMMs and their sequence
is determined by a graph. Other segmentation algorithms for manipulation rely on contact infor-
mation [11, 12]. A more informed segmentation that considers changes of potential constraints is
presented in [13] to later fit hybrid position/force controllers with the resulting segments. Although
the sequencing policy is typically represented by a graph, more sophisticated conditions can be ex-
tracted from data. In [14] a set of pre- and post-conditions is identified thereby learning a Petri net.
Other works rely on linear policies [2] or directional normal distributions [15] as state emissions
of HMMs [16] that consider state-dependent termination policies [17] for each state. The resulting
model is later used to train movement primitives for each subtask. An interesting alternative is pro-
posed in [18], where, given a set of potential segmentation points, the most probable ones are chosen
depending on the model later used for control. In contrast to previous work, our proposed approach
directly fits an HMM where each state is given by a stable LPV sytem. The capability of estimating
the attractor from data enables a solution that considers all subtasks jointly given an initial guess.

The rest of this paper is organized as follows. Section 2 presents and evaluates the LPV model.
Section 3 introduces and validates the HMM where each subtask is given by a stable LPV model. A
discussion and concluding remarks are given in Section 4.

2 Learning asymptotically stable LPV systems with unknown attractor

Autonomous DSs represent motions as ξ̇ = f(ξ), where ξ ∈ Rn represents the system’s state
and f : Rn 7→ Rn. A suitable option to encode nonlinear systems is given by a mixture of C local
linear DSs

ξ̇ = −
C∑
c=1

hc(α)(Acξ + bc) , (1)

where −A ∈ Rn×n is the dynamics matrix, bc the bias and α ∈ Rm is a measurable external

parameter that defines the mixing coefficient hc(α),
C∑
c=1

hc(α) = 1 and hc(α) > 0. In this case, if

Ac +A′c � 0 , ξ∗ = A−1c bc ∀c = 1 · · ·C (2)

the system asymptotically converges to the unique attractor ξ∗ [6]. This is a specific instance of a
stable LPV system (if α = ξ it is denoted quasi-LPV system) [19] and its parameterization can be
estimated from data if the attractor is known a priori using GMMs [20] or fuzzy models [21, 22, 23].
However, when the attractor is unknown, the estimation of ξ∗ becomes a challenging problem due
to the nonconvexity arising from (2). Instead of considering (1), the main idea behind the method
presented in this section is to avoid this dependency by considering its inverse, i.e. the mixture of
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local inverse linear dynamical systems

ξ =

C∑
c=1

hc(α)(ξ∗ −A−1c ξ̇) = ξ∗ −
C∑
c=1

hc(α)A−1c ξ̇

This alternative representation simplifies the identification of LPV and quasi-LPV systems when the
attractor ξ∗ is unknown, as it becomes a bias in the model.

Problem formulation: Given a set ofM i.i.d. samples {ξi, ξ̇i,αi}Mi=1 the problem considered in this
section is the estimation of the dynamic behavior represented in the observations assuming that it is
globally asymptotically stable and has a single unknown attractor ξ∗.

2.1 Modeling asymptotically stable LPV systems with GMMs

The model presented in this section assumes that the joint distribution of α and the observed dy-
namic behavior represented by ξ̇, ξ is given by a GMM. Specifically, observations are distributed
as

P

([
α

ξ̇

] ∣∣∣ξ ;θ

)
=

C∑
c=1

P (c ;θ)P

([
α

ξ̇

] ∣∣∣ξ, c ;θ

)
(3)

where P (c ;θ) = πc represents the prior and the conditional probability density function of each
component

P

([
α

ξ̇

] ∣∣∣ξ, c ;θ

)
= P

(
ξ̇|ξ, c ;θ

)
P (α|c ;θ)

P
(
ξ̇|ξ, c ;θ

)
= N

(
−Ac(ξ − ξ∗),Σc,ε̇

)
P (α|c ;θ) = N (µc,α,Σc,α) (4)

has dynamics matrix Ac, estimation noise Σc,ε̇ and µc,α,Σc,α denote the mean and variance of α
respectively. Note that all mixture components share the same attractor ξ∗ by design. The param-
eter set is given by θ = {ξ∗,θ1, · · · ,θC} where θc = {πc,µc,α,Σc,α, Ac,Σc,ξ̇}. For the sake of
simplicity, in the following we will omit the dependency w.r.t θ.

For a standard LPV system, i.e. α 6= ξ, equation (4) accordingly assumes that α is independent of
the system’s state or its derivative. In the case of a quasi-LPV system, i.e. α = ξ, expression (4)

reduces to the joint density P

([
ξ

ξ̇

] ∣∣∣c) = P
(
ξ̇|ξ, c

)
P (ξ|c), as in the SEDS approach [6]. For later

convenience, we also define the inverse linear dynamics of each component, which, under the asym-
totic stability constraint are

P
(
ξ|ξ̇, c

)
= N

(
ξ∗ −A−1c ξ̇,Σc,ε

)
(5)

and, again, all components share the same attractor ξ∗.

2.2 Expected dynamics of the GMM

Given an observed pair {α, ξ}, the dynamic behavior specified by the conditional distribution of ξ̇
from (3) is also Gaussian, with mean

E
[
P
(
ξ̇|ξ,α

)]
=

C∑
c=1

hc(α)(−Ac(ξ − ξ∗)) hc(α) =
πcN

(
α|µc,α,Σc,α

)
C∑

j=1
πjN (α|µj,α,Σj,α)

. (6)

Note that hc(α) ≥ 0 and
C∑
c=1

hc(α) = 1. Sufficient conditions for convergence of (6) are given in

the following proposition.
Proposition 1 (Asymptotic stability [6]). Let ε ∈ R be a small positive constant. Dynamics (6)
globally asymptotically converge to the attractor ξ∗ if

Ac +AT
c � εI ∀c = 1 · · ·C . (7)
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2.3 Learning asymptotically stable LPV systems with the EM algorithm

Given a set of observations, the LPV parameters θ that maximize the likelihood are estimated by
means of the expectation-maximization (EM) algorithm [24]. To ensure convergence of (6) we
constrain the maximization problem with the set of convex constraints (7), yielding

arg max
θ

M∑
i=1

logP

([
αi
ξ̇i

] ∣∣∣ξi ;θ

)
s.t. Ac +AT

c � εI ∀c = 1 · · ·C . (8)

The EM algorithm aims for a locally optimal solution of this problem by maximizing a lower bound
of the log-likelihood in an iterative process. Let Ci be a latent variable representing the membership
of the i-th obsevation. The expectation step (E-step) maximizes the distribution of Ci for current
parameters θ, yielding the responsibility of each component

P (Ci = c) =
P(c)P

([
αi
ξ̇i

] ∣∣∣ξi, c)
C∑

k=1

P(k)P
([

αi
ξ̇i

] ∣∣∣ξi, k) . (9)

Leveraging this distribution, the maximization step (M-step) computes the optimal parameters solv-
ing the now simplified optimization problem

θ̂ = argmax
θ

M∑
i=1

C∑
c=1

P (Ci = c) logP (c)P
(
ξ̇i|ξi, c

)
P (αi|c)

s.t. Ac +AT
c � εI ∀c = 1 · · ·C . (10)

The optimal {π̂c, µ̂c,α, Σ̂c,α} are computed in closed form, see [24]. To estimate attractor ξ̂
∗

and
avoid nonconvexity, we approximate (10) considering inverse dynamics (5) yielding surrogate prob-
lem

θ̂ = arg max
θ

M∑
i=1

C∑
c=1

P (Ci = c) logP (c)P
(
ξi|ξ̇i, c

)
P (αi|c)

s.t. A−1c +A−Tc � εinvI ∀c = 1 · · ·C , (11)

with εinv > 0. The stationary point for the estimation noise covariance in terms of the constrained
optimal inverse dynamic parameters ξ̂

∗
, Â−1c is given by

Σ̂c,ε =

M∑
i=1

P
(
Ci = c

)
(ξi−ξ̂

∗
+Â−1

c ξ̇i)(ξi−ξ̂
∗
+Â−1

c ξ̇i)
T

M∑
i=1

C∑
c=1

P
(
Ci = c

) .

Substituting this expression into (11), neglecting constant terms and assuming a diagonal covariance
matrix, the constrained maximization step for ξ̂

∗
, Â−11..C simplifies to the convex quadratic program

ξ̂
∗
,Â−11..C = arg max

ξ∗,A−1
1..C

C∑
c=1

−1

2
tr
(
Σ̂c,ε

)( M∑
i=1

P (Ci = c)

)
s.t. A−1c +A−Tc � εinvI ∀c = 1 · · ·C . (12)

Although Â−1c is a valid estimate of the inverse of the forward dynamics matrix Ac of each com-
ponent, a direct optimization of (10) considering the resulting ξ̂

∗
after solving (12) yields more

accurate results. This requires an additional convex optimization step for Â1..C and Σ̂c,ε similar
to (12) but considering forward dynamics (4). Given an initial θ, the EM algorithm iteratively ap-
plies the E-step (9) followed by the M-steps for {π̂c, µ̂c,α, Σ̂c,α} from (10), attractor ξ̂

∗
from (12)

and linear dynamics matrix Â1..C and estimation noise Σ̂c,ε until convergence.
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Figure 1: Results for the LASA handwriting dataset for SEDS and LPV-EM with and without knowing the
attractor ξ∗. The left and center plots show the prediction RMSE and the the training time respectively for all
four conditions. The right plot shows the attractor RMSE for conditions with unknown attractor.
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Figure 2: Streamlines and attractors of four recordings of the LASA handwriting dataset for SEDS (first row)
and LPV-EM (second row) with unknown attractor ξ∗ and c = 7 components. Red dots show the training
samples and the blue marker indicates the estimated attractor.

2.4 Evaluation
We implemented our method in MATLAB using the sedumi [25] solver and the YALMIP [26]
interface to solve (12). We compare our method LPV-EM with α = ξ to the SEDS method mini-
mizing the mean squared error using the LASA handwriting dataset and the provided code from [6],
which consists of 24 demonstrated two-dimensional trajectories of handwritten letters. We consider
four conditions: SEDS and LPV-EM both with and without known attractor ξ∗. All conditions
are evaluated between 1 and 25 components. For the EM algorithm, we initialize ξ∗ with the av-
erage of observed states and the rest of parameters with the initial clustering given by k-means.
We set εinv = 0.5 and ε = 10−6. We evaluate our approach in terms of the root mean squared er-

ror (RMSE) of the estimated velocity computed as 1
M

M∑
i=1

||ξ̇i −
ˆ̇
ξi||, the RMSE of the estimation of

the attractor ξ∗ and the computation time.

In terms of the prediction RMSE, as shown in Fig. 1, when the attractor is known SEDS outperforms
all other conditions as it directly minimizes the MSE. LPV-EM maximizes the whole likelihood in-
cluding the distribution of α (which will be necessary in the next section) resulting in a slightly less
accurate prediction. When the attractor is unknown, LPV-EM clearly outperforms the SEDS variant
and the prediction performance of LPV-EM with and without knowning the attractor is almost iden-
tical. In terms of computation time, both LPV-EM conditions yield significantly faster computation
times. Concerning the RMSE of of the estimation of the attractor, the LPV-EM condition yields sig-
nificantly better results. As illustrated in Fig. 2, when the attractor is unknown, the SEDS estimation
might fall into local minima, while the LPV-EM variant achieves always consistent results due to the
convexity of (12). In summary, the LPV-EM model is a fast alternative to SEDS when the attractor
is known and it is the only reliable option when the attractor is unknown.

3 Learning Task Sequences with HMMs and stable LPV systems
In this section, to represent task sequences, we formulate an HMM where each subtask is given by
an asymptotically stable quasi-LPV system. In addition, following recent work [2, 27], transitions
between latent states (subtasks) depend on observations by means of a termination policy. We then
study the dynamics of the HMM-LPV model and propose a learning and motion generation method
that guarantees stability of the full sequence for left-to-right and periodic models.
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Problem formulation: Given a set of demonstrated trajectories {Ξd = {ξi, ξ̇i,αi}
Td
i=1}Dd=1, the

problem considered in this section is the acquisition of a dynamic model of the task assuming that it
consists of a sequence of S goal-oriented globally asymptotically stable subtasks.

3.1 The HMM-LPV model
Let si ∈ {1, 2, ..., S} be a discrete latent variable representing a subtask at time step i and bi ∈ {0, 1}
a termination binary variable that represents the event of finishing (bi = 1) or not (bi = 0) subtask si.
The HMM-LPV model assumes that observed trajectories are distributed as

P (Ξ ;λ) =

(
S∑

s1=1

1∑
bi−1=0

P (s1 ;λπ)P

([
ξ1

ξ̇1

] ∣∣∣s1 ;λe

))
T∏
i=1

S∑
si=1

S∑
si−1=1

1∑
bi−1=0

P (si|si−1, bi−1 ;λa)P (bi−1|si−1, ξi−1 ;λb)P

([
ξi
ξ̇i

] ∣∣∣si ;λe) , (13)

with parameter set λ = {λπ,λa,λb,λe} and where

• initial subtask probabilities are P (s ;λπ) = λπ = {πs} for 1 ≤ s ≤ S.
• subtask transition parameters λa = {ajk} for 1 ≤ j, k ≤ S, with j 6= k, are such

that in case of no termination P (j|j, b = 0 ;λa) = 1 and in case of termina-
tion P (j|k, b = 1 ;λa) = ajk and P (j|j, b = 1 ;λa) = 0. As we are only considering
left-to-right or periodic topology, if j precedes k then ajk = 1.

• emission probabilities are given by a quasi-LPV systems, i.e. λe = {θ1 · · ·θS}

and P

([
ξ

ξ̇

] ∣∣∣s ;λe) = P

([
ξ

ξ̇

]
;θs

)
as in (3) where θs = {ξ∗s,θs,1, · · · ,θs,C}

and θs,c = {πs,c,µs,c,α,Σs,c,α, As,c,Σs,c,ξ̇}.
• termination probabilities are given by an ξ-dependent Bernouilli distribution

P (b = 1|s, ξ ;λb) = exp{−(ξ − µb,s)TΣ−1b,s(ξ − µb,s)} (14)

with parameters λb = {µb,1,Σb,1 · · ·µb,S ,Σb,S}. From the assumed distribu-
tion P (b = 0|s, ξ ;λb) = 1− P (b = 1|s, ξ ;λb).

3.2 Expected dynamics of the HMM-LPV model
At time step i and given t samples, i.e. {ξt}it=1, the expected dynamics are

ξ̇hmm = E
[
P
(
ξ̇i|{ξt}it=1;λ

)]
=

S∑
s=1

h̃s,i+1(ξi)E
[
P
(
ξ̇i|ξi;θs

)]
, (15)

where E
[
P
(
ξ̇i|ξi ;θs

)]
is given by (6) and h̃s,i+1(ξi) = P

(
si|{ξt}it=1 ;λ

)
is the forward variable

computed as

h̃s,i+1(ξi) =

S∑
si=1

1∑
bi=0

h̃s,i(ξi−1)P (s|si, bi ;λa)P (bi|si, ξi ;λb)P
(
ξi

∣∣∣si ;λe

)
(16)

and is normalized such that
S∑
s=1

h̃s,i+1(ξi) = 1. In this case, we only preserve the stability properties

of the s-th subtask if h̃s,i(ξi) = 1, when we recover dynamics (6). To ensure convergence of the
whole sequence, we define scurr as the current subtask and snext as the next subtask with dynamics

scurr,i+1 =

{
snext,i if h̃snext(ξi) = 1

scurr,i otherwise
snext,i+1 =

{
snext,i + 1 if h̃snext(ξi) = 1

snext,i otherwise
. (17)

Conditions for the stability of transitions from scurr to snext are given in the following proposition.
Proposition 2 (Stability of transitions). Let scurr, snext be the current and the next subtask respec-
tively with dynamics (17) and let the conditional forward probability be computed considering these
two states only, i.e. S = {scurr, snext} in (16). Any trajectory that reaches the attractor ξ∗scurr

will
converge to the subtask distribution h̃scurr,i(ξi) = 0, h̃snext,i(ξi) = 1 if

P
(
b = 1|scurr, ξ

∗
scurr

;λb
)

= 1 . (18)
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Figure 3: Resulting subtasks with sequence (a)-(b)-(c)-(d) and simulated trajectories for the HMM-LPV model
with 4 subtasks and 7 GMM components each for two exemplary sets of human demonstrations captured with
a mouse. Black trajectories represent training samples and the pink asterisk indicates the initial positions. The
first two rows depict the subtask parameters while the last row shows simulated trajectories depicted by the
green solid lines generated following (19) with (left) and without (right) random perturbations every second.

Proof. Evaluating (16) for S = {scurr, snext} at ξi = ξ∗scurr
and with (18) yields h̃snext,i(ξi) = 1. �

To guarantee that ξ∗scurr
is reached, we modify the original expected dynamics (15) adding a stabiliz-

ing input [28] such that

ξ̇ = ξ̇hmm + ξ̇corr ξ̇corr =

{
0 if lTξ̇hmm > 0

− l
Tξ̇hmm
‖l‖ l+ εcorrl otherwise

(19)

where l = (ξ∗scurr
− α) and εcorr > 0. If Proposition 2 is fulfilled by every subtask, a left-to-

right model following (19) is guaranteed to converge to the attractor of the last subtask, while a
periodic model exhibits stable discrete limit cycle dynamics. Note that Proposition 2 provides very
conservative conditions and transitions usually converge without intervention of the corrective input.

3.3 Learning an HMM-LPV model with the Baum-Welch algorithm
To estimate parameters from demonstrations we apply the Baum-Welch algorithm [29], the EM
algorithm for HMMs considering conditions from Proposition 1 and 2 as

arg max
λ

D∑
d=1

logP (Ξd ;λ) (20)

s.t. P (b = 1|s, ξ∗s ;λb) = 1 , As,c +AT
s,c � 0 ∀s = 1 · · ·S, ∀c = 1 · · ·C . (21)

The E-step and the M-steps for λπ,λa are detailed in [29] and [27]. The M-step for emission prob-
abilities λe, is similar to (12) differing only in the responsibilities computed in the E-step. The
M-step for the termination probabilities λb with RBF function (14) yields a similar problem struc-
ture to logistic regression [27] but with an ellipsoid boundary function and therefore a nonconvex
objective. However, constraint (21) couples these two problems together and, intuitively, the maxi-
mization of λe drives solutions for λb towards regions where dynamics converge. Given an initial λ,
the optimal parameters are computed applying the E- and M-step iteratively until convergence.

3.4 Validation

We implemented our approach in MATLAB using the FMINSDP solver [30] to solve the joint
maximization of λb and λe from (20). We initialize the model parameters with k-means. With
this initial clustering we apply the M-step of the LPV-EM to initialize λe while the covariance of
the RBF termination function is initially set to the variance of the corresponding cluster. In our
experiments, we set positive constants to εcorr = 1 in (19), and εinv = 0.5, εinv = 10−6 in (12).

We first illustrate the capability of our model in two exemplary sets of 2-dimensional human mo-
tions captured with a mouse. As shown in Fig. 3 the HMM-LPV model is able to extract meaningful
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Approach

Slide

Retract

Figure 4: (left) Schematic of the repetitive task reproduced through kinaesthetic demonstrations. (right)
Resulting subtasks with cyclic subtask sequence (b)-(c)-(a) and simulated trajectories for the HMM-LPV model
with 3 subtasks with 5 GMM components each for the kinaesthetic teaching task. (a),(b) and (c) depict the
parameters of each subtask. The bottom right plot shows the simulated trajectory generated following (19).

subtask dynamics and termination policies. Extracted attractors are typically at the end of the direc-
tion of motion, but in some cases, e.g. Example 1 (a) or Example 2 (a) they are placed further away
as the corresponding data does not exhibit convergence. In both examples, generated trajectories
without perturbations yielded no corrections from the stabilizing input. In simulations with distur-
bances the time-independent state-feedback nature of the model allows for immediate replanning
and trajectories converge to the last attractor. To validate our approach in a more realistic setting,
we run our approach on the motions obtained during a kinaesthetic teaching session where a human
teacher drives a compliant passive robot to perform a repetitive task. The resulting subtasks are
depicted in Fig. 4. The periodic topology of the model successfully captures the observed motions
structure and the approach-slide-retract subtasks are represented by subtasks (b)-(c)-(a) respectively.
Also, the simulated trajectory shows the state-dependent limit cycle behavior captured by the model,
similar to the demonstrations. In summary, the HMM-LPV model is a suitable method to represent
complex dynamic behavior with multiple attractors from data. The resulting dynamic policies are
stable, time-independent and insensitive to perturbations.

4 Conclusions and Outlook
In this paper, we first presented a method to learn asymptotically stable motions from demonstrations
based on the formulation of an LPV system as a GMM. The main novelty lies on the proposed
LPV-EM algorithm, which robustly learns both attractor and dynamics from data. We believe that
the LPV-EM algorithm has potential application in other domains that require nonlinear system
identification and that has also interesting extensions, such as the the addition of linear dependencies
or constraints on the attractor for which the proposed M-step remains convex. This could be applied
to interaction settings, where, the state of the interacting agent shifts the robot’s attractor.

The capability of the LPV-EM algorithm to estimate the attractor enabled the formulation of the
HMM-LPV model, a dynamic model for complex task sequences where each subtask is given by a
stable LPV system and transitions between subtasks are guaranteed by means of a state-dependent
termination policy. All subtasks are learned jointly without strict segmentation bounds and the way
subtasks transition is also learned from data. Although our validation shows promising results, per-
formance strongly depend on the initialization values. In our evaluation k-means provided satisfac-
tory results but more complex experiments would require more sophisticated initialization methods.
An interesting future work is the application of our model to incremental and nonparametric set-
tings [31], which would partially mitigate the initialization issue. Other interesting direction is the
application of the HMM-LPV model as a stable but flexible closed loop policy for reinforcement
learning settings [32].
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