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“No damn cat, and no damn cradle.”

“And?”

kids look and look and look at all those X’s. . . ”

but a bunch of X’s between somebody’s hands, and little

“No wonder kids grow up crazy. A cat’s cradle is nothing

— Kurt Vonnegut

To my parents. . .
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Abstract
Neurons are endowed with dendrites; specialized, tree-like structures that collect and trans-

form inputs. These arborizations have been the subject of intense study in the past years, as

they are believed to substantially enhance the computational repertoire of neurons. While it

has long been known that dendrites are not iso-potential units, only in the last few decades it

was shown experimentally that dendritic branches can transform local inputs in a non-linear

fashion. This finding provides evidence for the subunit hypothesis, which states that within the

dendritic tree, inputs arriving in one branch are transformed non-linearly and independently

from what happens in other branches. Recent progress in experimental recording techniques

shows that this highly localized dendritic integration contributes to shaping behaviour.

While it is generally accepted that the dendritic tree induces multiple subunits, many questions

remain unanswered. For instance, it is not known how much separation there needs to be

between different branches to be able to function as subunits. Consequently, there is no

information on how many subunits can coexist along a dendritic arborization. It is also not

known what the input-output relation of these subunits would be, or whether these subunits

can be modified by input patterns. As a consequence, assessing the effects of dendrites on the

workings of networks of neurons remains mere guesswork.

During this work, we choose a theory-driven approach to advance our knowledge about den-

drites. Theory can help us understand dendrites by deriving accurate, but conceptually simple

models of dendrites that still capture their main computational effects. The conceptually

simple models can then be analyzed and fully understood, which in turn teaches us how ac-

tual dendrites function computationally. Such simple models typically require less computer

operations to simulate than highly detailed dendrite models. Hence, these models increase

the speed of network simulations that incorporate dendrites, so that studying the effects of

dendrites on the workings of neural networks becomes easier.

The Green’s function forms the basis for our theory driven approach. We first explored whether

the Green’s function could be used to reduce the cost of simulating dendrite models. One

mathematically interesting finding in this regard is that the dendritic tree induces a special

structure in the Green’s function, so that the number of equations required to model the

dendritic tree reduces drastically. Nevertheless, we were forced to conclude that reducing

dendrites in this way does not yield new information about the subunit hypothesis.

We then focused our attention on another way of decomposing the Green’s function. We

found that the dendrite model obtained in this way reveals much information on the dendritic

subunits. In particular, we found that the occurrence of subunits is well predicted by the ratio
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of input over transfer impedance in dendrites. This allowed us to estimate the number of

subunits that can coexist on dendritic trees. We also found that this ratio can be modified

by other inputs, in particular shunting conductances, so that the number of subunits on a

dendritic tree can be modified dynamically. We finally were able to show that, due to this

dynamical increase of the number of subunits, individual branches that would otherwise

respond to inputs as a single unit, could become sensitive to different stimulus features. We

believe that this model can be implemented in such a way that it simulates dendrites in a

highly efficient manner. Thus, after incorporation in standard neural network simulation

software, it can substantially improve the accessibility of dendritic network simulations to

modelers.

Key words: Dendrites, Subunits, Simplified models, Green’s function
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Résumé
Les neurones sont équipés de dendrites : des arborisations spécialisées qui reçoivent et

transforment des signaux d’entrée. Ces arborisations ont été étudiées abondamment ces

dernières années, car on les soupçonne d’étendre fortement les possibilités de calcul des

neurones. Bien qu’il soit connu depuis longtemps que les dendrites ne sont pas des unités

équipotentielles, c’est seulement dans les trois dernières décennies qu’il a été démontré

expérimentalement que les branches dendritiques individuelles peuvent transformer des

signaux d’entrées d’une façon non linéaire. Ce résultat constitue une preuve de l’hypothèse

des sous-unités computationnelles, qui dit que dans les dendrites, les signaux d’entrées qui

arrivent sur une branche sont transformés non linéairement et indépendamment de ce qui ce

passe dans les autres branches. Des progrès récents des techniques d’enregistrement montrent

que cette intégration dendritique localisée contribue à produire certains comportements chez

les rongeurs.

Tandis qu’il est généralement accepté qu’un arbre dendritique induit plusieurs de ces sous-

unités, beaucoup de questions restent sans réponse. Par exemple, on ignore à quel point deux

branches doivent être séparées pour qu’elles puissent fonctionner comme des sous-unités

indépendantes. De ce fait, on ignore combien de sous-unités peuvent coexister sur le même

arbre dendritique. On ne connait pas non plus la relation entre les signaux d’entrée et de sortie

d’une telle sous-unité, ou bien si le nombre et la taille des sous-unités peuvent être modifiés

par certains motifs des signaux d’entrée. Par conséquent, on ne peut que deviner l’influence

des dendrites sur le fonctionnement des réseaux de neurones.

Dans cette thèse, nous avons choisi une approche mathématique pour comprendre le fonc-

tionnement des dendrites. Une telle approche peut aider à éclaircir le fonctionnement des

dendrites car elle permet de dériver des modèles de dendrites simplifiés, mais précis, qui cap-

turent toujours leurs effets computationnels les plus importants. Puis, ces modèles simplifiés

peuvent être analysés et compris entièrement, ce qui nous apprend comment les dendrites

réelles, elles, fonctionnent computationellement. De plus, simuler ces modèles simplifiés

exige typiquement moins de calculs que de simuler des modèles détaillés. Simuler des ré-

seaux de neurones avec des dendrites en est ainsi facilité, ce qui facilite en retour l’étude de

l’influence des dendrites sur des réseaux de neurones.

La fonction de Green constitue la base de notre approche théorique. D’abord, nous avons

cherché à comprendre si la fonction de Green pouvait réduire le coût des simulations des

dendrites. Cette fonction à une structure spéciale qui découle du fait qu’elle est définie sur

un arbre. Une découverte mathématiquement intéressante dans ce contexte est que cette
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structure permet de fortement réduire le nombre d’équations nécessaires pour modéliser

un arbre dendritique. Néanmoins, nous avons été forcés de reconnaître que simplifier les

dendrites de cette façon n’apporte pas d’information nouvelle sur l’hypothèse des sous-unités.

Ensuite, nous avons redirigé nos efforts vers une autre façon de décomposer la fonction de

Green. Le modèle de dendrite que nous avons construit de cette façon nous a apporté de

nombreux enseignements sur l’hypothèse des sous-unités. En particulier, nous avons remar-

qué que l’occurrence des sous-unités était bien prédite par le ratio de l’impédance locale sur

l’impédance de transfert dans les dendrites. Cette découverte a permis d’estimer le nombre

de sous-unités qui peuvent coexister sur un arbre dendritique. Nous avons constaté aussi

que ce ratio peut être modifié par d’autres signaux d’entrée, en particulier des conductances

inhibitrices, et donc que le nombre des sous-unités sur un arbre dendritique peut être modifié

d’une façon dynamique. Finalement, nous avons pu démontrer que, à cause de cette aug-

mentation dynamique du nombre de sous-unités, des branches individuelles qui autrement

auraient répondu aux signaux d’entrée comme une unité singulière, peuvent devenir sensible

aux motifs de signaux d’entrée différents. Nous pensons que ce modèle peut être implémenté

d’une façon très efficace. Une fois inclus dans des logiciels de simulations des réseaux de

neurones, il pourrait donc faciliter considérablement l’accès aux simulations des réseaux de

neurones avec dendrites pour les modélisateurs.

Mots clefs : Dendrites, Sous-unités, Modèles simplifiés, La fonction de Green
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1 Introduction

Since the pioneering work of Ramon y Cajal [Lerma and De Carlos, 2014], it has been known

that neurons consist of a soma and axonal and dendritic arborizations. As Cajal correctly

hypothesized, information flows in a directed fashion within these structures (Fig 1.1A): inputs

are received on the dendrites, flow through to the soma, where an output in the form of

rapid depolarizations, called action potentials (AP), is generated, that is then transmitted

downstream through the axon. Although dendrites where originally believed to simply collect

inputs and transmit them to the soma, evidence has emerged in the last three decades that

their function is much more intricate. It was shown that they are equipped with mecha-

nisms that allow non-linear processing of inputs [Johnston et al., 1996, Häusser et al., 2000,

Häusser and Mel, 2003, London and Häusser, 2005, Spruston, 2008, Branco and Häusser, 2010,

Antic et al., 2010], so that one nerve cell can effectively perform computations that were

previously believed to be only possible with networks of neurons. The advent of in-vivo

recording techniques in recent years has allowed for corroborating evidence, showing that

non-linear dendritic processing not only happens during, but is required for normal behaviour

[Grienberger et al., 2015, Takahashi et al., 2016, Smith et al., 2013, Moore et al., 2017].

The list of computations possible with dendrites is long. Indeed, dendrites enable branch-

specific control of AP backpropagation [Müllner et al., 2015], a process in which the generated

AP propagates back through the dendritic tree, thought to provide important feedback informa-

tion to synapses to determine whether they will strengthen or not [Gerstner and Kistler, 2002].

Dendrites thus allow precise control over which synapses will learn and which synapses

will remain static [Golding et al., 2002, Sjöström et al., 2008]. Dendrites also allow for the

generation of local, non-linear cooperative events, called dendritic spikes, when multiple

inputs arrive together [Larkum et al., 2007, Wei et al., 2001]. These events in turn are thought

to allow individual neurons to function as multilayer neural networks [Poirazi et al., 2003b,

Poirazi et al., 2003a, Behabadi and Mel, 2014]. Dendrites furthermore enable the direction-

specific detection of input sequences [Branco and Häusser, 2010], and differentiation between

different input streams based on their location on the neuron [Johenning et al., 2009] and/or

their frequency components [Laudanski et al., 2014]. Moreover, dendrites are hypothesized to

1



Chapter 1. Introduction

increase the memory capacity of neural networks [Poirazi and Mel, 2001, Wu and Mel, 2009,

Kastellakis et al., 2016].

Understanding the influence of these computations on network dynamics is of vital impor-

tance for understanding brain function. Nevertheless, barring a few exceptions [Markram et al., 2015,

Egger et al., 2015], the dendritic tree is usually omitted in network modeling. We identified

two reasons for this omission. First, simulating the dendritic tree is computationally expensive.

Whereas simulating a neuron as a point requires integrating a few tens of first-order coupled

differential equations at most, simulating dendrites in their full detail requires a few thousands

of equations. Second, if one wants to include a particular dendritic computation in a neural

network model, it is poorly understood how one can derive a simpler model that captures the

essence of the computation. Such conceptually simplified models could not only improve the

efficiency of simulating the computation in question, but also improve our understanding of

the computation itself and its influence on the dynamics of networks of neurons.

During the research that led to this thesis, we aimed to advance both points. We first stud-

ied whether the Green’s function (GF) formalism [Bayin, 2006], a technique pioneered by

the British mathematician George Green to solve differential equations, could be used to

improve the computational models of neurons. While we made great progress in improving

the GF formalism (see chapters 2 and 3, or [Wybo et al., 2013, Wybo et al., 2015]), the range

of applications where this formalism provides substantial advantage over the now highly

standardized compartmental models [Hines, 1984, Carnevale and Hines, 2006] remains too

small for wide-spread adoption. We then turned our attention to the second point, in par-

ticular to a computational aspect of dendrites that has received a lot of attention in recent

years: the subunit hypothesis. According to this hypothesis, inputs arriving at certain loci on

the dendritic tree undergo local, non-linear processing independently from inputs at other

loci. As a consequence, the rate-based response function of neurons bears similarities to a

multilayer neural network [Poirazi et al., 2003b, Poirazi et al., 2003a, Behabadi and Mel, 2014].

In § 1.4, we review some evidence that this finding can substantially enhance the computa-

tional power of neural circuits. Nevertheless, the precise separation between dendritic loci

required for them to function as independent subunits remains unknown. By consequence,

the number of subunits that can coexist on a dendritic tree also remains elusive, as well as the

input-ouput relation of the subunits and whether their size and number can be modified by

input patterns. We hypothesized that this lack of understanding stems from a lack of accurate,

but conceptually simple models that can describe these subunits as independent dynamical

integrators. In chapter 4, a method to derive such conceptually simple models of neural

subunits is described.

To understand (the need for) these methods to simplify and understand dendrities, it is useful

to be familiar with the way dendrites are modeled (§ 1.1) and with how solutions for dendritic

voltage transients can be obtained (§ 1.2). We also describe a number of existing simplification

strategies for dendrites and why they fall short of elucidating the subunit hypothesis (§ 1.3).
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1.1. How dendrites are modeled

1.1 How dendrites are modeled

Models have proved instrumental in understanding dendritic function. Many facts about

dendrites that are now standard knowledge have first been predicted through the simulation

and analysis of mathematical dendrite models. It is therefor useful to discuss how dendrites

are modeled and how solutions for voltage transients within the dendritic tree can be obtained.

1.1.1 The cable equation

The cable equation models leaky conduction lines, conceptualized as sequences of parallel

RC-circuits (Fig 1.1B, see [Dayan and Abbott, 2005] for an instructive derivation). In the 1950’s,

this equation had been used to successfully model the spread of currents through axonal

structures. Nevertheless, little was known about it’s use for dendrites, until Wilfried Rall

showed that by connecting the dendrites to the soma, the peculiar combination of time-scales

observed in the decay of somatic voltage transients could be explained [Rall et al., 1995]. His

explanation was as simple as it was elegant: instead of only leaking through the membrane,

the injected current also flows axially, back into the dendritic tree (Fig 1.1C), thus inducing

faster time-scales than expected in the somatic voltage transient. Rall hence showed for the

first time that the dendritic tree is not an iso-potential unit. Elaborating on this finding, he

predicted that at the thin tips of dendrites, relatively small synaptic input currents cause large

depolarizations, that in turn attenuate heavily on their way to the soma. This finding, not

confirmed in cortex until much later [Nevian et al., 2007], would lay the basis for the subunit

hypothesis [Häusser and Mel, 2003].

In nerve fibers, the cable equations takes on the following form:

2πacm
∂V

∂t
(x, t )+ πa2

ra

∂2V

∂x2 (x, t )−2πagm(V (x, t )−Eeq) = I (x, t ), (1.1)

where a is the fiber’s radius, cm the cell’s membrane capacitance per unit area, gm the mem-

brane conductance per unit area and ra the axial resistance over a unit of length. The mem-

brane potential is denoted by V (x, t) and the input current along the fiber by I (x, t). At rest

(I (x, t) = 0), the inside of the cell is found to have a negative polarity compared to the extra-

cellular medium, captured in this framework in the equilibrium potential Eeq (which usually

takes on values between −75 and −65 mV). To this day, equation (1.1) is used to model signal

conduction in nerve fibers. Contemporary modeling efforts enrich it with ion channels and

synaptic input conductances.

1.1.2 Ion channels: the Hodgkin-Huxley formalism

In 1952, Hodgkin and Huxley published a seminal paper [Hodgkin and Huxley, 1952] explain-

ing and modeling APs in the giant axon of the squid through the interplay of Na+ and K+

permeable ion channels. They conceptualized these channels as conductances, consisting of
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Chapter 1. Introduction

Figure 1.1 – A historical perspective on dendrites. A: Cajal’s drawing of a Golgi-stained cell
network. Arrows indicate his hypothesis on the flow of information in the cell. Adapted from
[Lerma and De Carlos, 2014]. B: Conceptual representation of the electrical circuit associated
with a nerve fiber. C: Diagram of the current flow through a dendritic arborization upon
creation of an electrical field between two electrodes, one of them in the soma (the other
electrode is not shown). Current flows longitudinally through the neuronal fibers and also
leaks through the cell membrane. Adapted from [Rall et al., 1995].

different units whose opening and closing dynamics depend non-linearly on the membrane

potential (see [Dayan and Abbott, 2005] for an instructive description). Since then, many

more ion channels have been measured and modeled [Podlaski et al., 2017], and it has been

shown that they do not just occur in the soma and axon; the dendritic tree is also littered with

them [Migliore and Shepherd, 2002, Angelo et al., 2007, Almog and Korngreen, 2014]. In-vivo

studies furthermore suggest that these ion-channels are active during and required for normal

behaviour [Takahashi et al., 2016, Moore et al., 2017].

Most often, ion channels are modeled as a set of gating variables y = (y1, . . . , yn), that each

depend on the local voltage through an activation function y∞
i (V ). This function also deter-

mines the steady state value of the gating variable at a given voltage (hence it is denoted by ∞
superscript), which the variable approaches with a time-scale that may also depend on the

voltage:

ẏi =
y∞

i (V )− yi

τyi (V )
for i = 1, . . . ,n.

The current associated with the ion channel is then given by Ohm’s law, as the product of
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1.1. How dendrites are modeled

conductance and potential difference:

Ic = g c fc (y) (V −Ec ).

Here, Ic denotes the channel current g c the maximal conductance of the channel type (deter-

mined as the product of conductance of a single channel and the number of channels per unit

area) and fc the fraction of open channels, which depends non-lineary on the gating variables

(who in turn depend non-linearly on the voltage). The factor (V −Ec ) serves as the driving

potential of the current, where the value of Ec , the channel’s reversal potantial, is derived from

the concentrations of the ions the channel is permeable to by thermodynamic arguments

[Dayan and Abbott, 2005]. Channel currents of this form are easily integrated in the cable

equation (1.1) by adding them as a term to the input current I (x, t ) on the right-hand side.

1.1.3 Synapses: linear and non-linear conductances

Synapses transmit information between neurons. At the presynaptic side, output spikes trigger

neurotransmitter release: glutamate for excitatory synapses or gamma-Aminobutyric acid

(GABA) at inhibitory synapses. On the postsynaptic neuron, glutamate binds either to alpha-

amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) or N-methyl-D-aspartate (NMDA)

receptors, whereas GABA binds to GABA receptors.

Both AMPA and GABA receptors are modeled by a current of the form:

Is = gs(t ) (V −Es), (1.2)

where gs(t ) is the synaptic conductance window, that models the time-course of transmitter

binding (most often an alpha-function or double exponential [Rotter and Diesmann, 1999]).

AMPA and GABA receptors are permeable to different ions and hence have different reversal

potentials Es : the AMPA current changes sign at around 0 mV and the GABA current around

-80 mV. Hence, AMPA currents tend to depolarize the cell – they are excitatory – whereas GABA

currents tend to hyperpolarize the cell – they are inhibitory. NMDA receptors, which often

occur in conjunction with AMPA receptors and also have a reversal potential of around 0

mV, depend non-linearly on the voltage through a magnesium block [Jahr and Stevens, 1990],

usually modeled as a sigmoidal dependence of the conductance on voltage:

Is = gs(t )σ(V ) (V −Es), (1.3)

where the following function is often used for the sigmoid:

σ(V ) = 1

1+ e−
V −12

10

. (1.4)

From this functional form, it can be seen that the sigmoid will be close to zero around the

equilibrium potential Eeq '−70.
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Chapter 1. Introduction

In both cases, the synaptic current depends on the local voltage. Nearby synapses may exert

influence on this voltage, and hence collectively modify the synaptic current. In particular,

nearby synapses may aid in depolarizing a stretch of dendrite, thus removing the magnesium

block of the NMDA receptors, resulting in a much larger current and dendritic depolarization

(the sigmoid (1.4) will have a much larger value). This phenomenon is known as the NMDA

spike [Rhodes, 2006, Major et al., 2008, Antic et al., 2010]. Together with the strong attenua-

tion in dendrites, this phenomenon forms the basis for the subunit hypothesis. Synaptic

currents can be added straightforwardly to the right-hand side of the cable equation (1.1).

They are localized in space, and are thus multiplied with a spatial Dirac-delta function δ(x−xs),

where xs is the spatial coordinate of the synapse.

1.2 Solving dendrites

1.2.1 Compartmental modeling

After proposing the cable equation to model dendrites, Rall obtained solutions for transient

synaptic inputs by sub-dividing the fiber in a discrete number of compartments [Rall et al., 1995].

Mathematically, this amounts to replacing the double spatial derivative in (1.1) by it’s 2nd

order finite difference (FD) approximation:

∂2V

∂x2 (xi , t ) ≈ V (xi−1, t )−2V (xi , t )+V (xi+1, t )

∆x2 , (1.5)

where xi−1, xi and xi+1 are points on the fiber mutually separated by a distance ∆x. Upon

substituting this in (1.1), and rearranging terms, one finds:

2πa∆xcm
∂V

∂t
(xi , t )+

πa2

ra∆x
(V (xi−1, t )−V (xi , t ))+ πa2

ra∆x
(V (xi+1, t )−V (xi , t ))−

2πa∆xgm (V (xi , t )−Eeq) =∆x I (xi , t ).

(1.6)

It can be seen that this equation is a literal implementation of the circuit depicted in Fig 1.1B:

each compartment is equipotential with voltage V (xi , t ), has a capacitance of 2πa∆xcm and

a resistance of 1/2πa∆xgm and is coupled to the neighboring compartments by an axial

resistance of ra∆x /πa2. Hence, a compartmental model is a large system of coupled ordinary

differential equations (ODE).

Solving such a system in a stable manner, especially when ion channels and non-linear

synapses are involved, requires inverting a matrix of the same dimension as the number L of

locations at which the voltage is evaluated [Joyner et al., 1978]. In non-branching nerve fibers,

where this matrix is tri-diagonal, this operation is feasible as it can be carried out in O(L) steps

[Moore et al., 1978]. Simulating more complex arborizations was prohibitively expensive in

the early days of compartmental modeling, since normal matrix inversion requires O(L3) steps.
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1.2. Solving dendrites

Hines however showed that because neuronal arborizations can be conceptualized as tree

graphs, an inversion algorithm can be derived that still only requires O(L) steps [Hines, 1984].

He incorporated this algorithm in his NEURON simulator [Carnevale and Hines, 2006], which

to this day is the most used simulation program to model dendrites.

Despite the great success of compartmental modeling, many questions still remain, as under-

standing simulation results is often a tedious and time-consuming process. A complementary,

theory-driven approach thus remains a necessity [Gerstner et al., 2012], as conceptually sim-

ple models that still capture the phenomena of interest, aid greatly in elucidating them. That is

why, during this thesis, the lack of concrete answers on many questions regarding the subunit

hypothesis nudged us towards investigating the GF formalism.

1.2.2 The Green’s function: from Fourier to the separation of variables

Before Hines discovered his algorithm that made compartmental simulations so success-

ful, much research was dedicated to deriving analytical steady-state and transient solutions

[Jack et al., 1975, Tuckwell, 1988] on dendritic trees. Such approaches often employ the GF

G(x, x ′, t − t ′), which is obtained as the solution of (1.1) when the right hand side is a Dirac

delta pulse (I (x, t) = δ(x − x ′)δ(t − t ′)). When the GF is found, the solution for an arbitrary

input is obtained by convolving that input with the GF:

V (x, t ) =
∫

dx ′ dt ′G(x, x ′, t − t ′) I (x ′, t ′). (1.7)

The GF thus contains all the information on how input current is converted into output voltage.

Butz and Cowan were the first to obtain the GF for any dendritic structure by deriving a set of

graphical rules that allowed for its computation in the Fourier domain [Butz and Cowan, 1974].

However, because of its intricate functional form and the difficulty of obtaining expressions in

the time domain, this approach remained of limited usefulness until Koch used it to derive

a computer algorithm to numerically evaluate the GF [Koch and Poggio, 1985]. Koch then

used the GF to analyze several computational aspects of synaptic interactions in dendrites

[Koch et al., 1982, Koch et al., 1983]. Note that his algorithm is not limited to equations of the

form (1.1); it can also incorporate linearized ion channels [Mauro et al., 1970, Koch, 1984].

Nevertheless, Koch later abandoned the GF, stating the drawbacks “(1) In the presence of N

current inputs – rather than a single one – on the order of N 2 additional computations have

to be performed; that is, these methods do not at all scale well to massive synaptic input. (2)

While these methods can be adapted to treat synaptic input as conductance changes, it is not

computationally efficient to do so. (3) Finally, and fatally, they assume linearity and fail in the

presence of voltage-dependent membrane components” [Koch, 1998]. We were however able to

show, using linear algebra and the tree graph structure of the neuronal arborization, that these

three points could be overcome by rearranging the system of GF equations [Wybo et al., 2015].

The obtained formalism can outperform standard compartmental simulations in certain

use-cases. Nevertheless, while our approach is mathematically interesting, the lack of readily
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available simulation software as well as the relatively small range of use cases impedes its

wide-spread adoption.

Both with Kochs method and our rearranged version, understanding where and under what

conditions subunits arise remains intractable. We therefor turned our attention to the sep-

aration of variables (SOV) approach, where the GF is approximated by a series of the form:

G(x, x ′, t − t ′) =
∞∑

k=0
φk (x)φk (x ′)e

− t−t ′
τk . (1.8)

In this expression, the time-scales τk decrease for increasing k and the functionsφk are combi-

nations of sine functions whose spatial scales decrease for increasing k. While Rall and others

had already derived solutions of this form for simple morphologies [Holmes et al., 1992], it

was Major who, in a mathematical tour de force, found an algorithm that could compute such

solutions for arbitrary dendritic trees [Major et al., 1993a, Major et al., 1993b, Major, 1993,

Major and Evans, 1994].

Being an infinite series, it is important to find a good estimate for the maximal number K of

terms that have to be included to accurately reproduce the membrane potential. Following

equation (1.7), we found that the overall importanceΥ of a term in this series for the voltage

dynamics is well indicated by:

Υ= τk

[∫
dx |φk (x)|

]2

.

As this value is proportional to τk , it was our hope that if we could find a minimal time-scale

τK beyond which the series could be truncated, the associated minimal spatial scale would

provide us with the size of the dendritic subunits.

This undertaking was bound to fail for two reasons. First, the functions φk are global; they

integrate inputs from across the whole neuron. As can be seen in Fig 1.2, independent

dynamics are implemented by compensatory functions φk . In a two branch case for instance

(Fig 1.2A), one function will have the same sign in both branches, whereas another function

(with similar time- and thus spatial scale) will have different signs. The overall consequence

being that if an input arrives in one branch, both functions will sum to construct the voltage

there, whereas in the other branch they will annihilate. When more branches are added, the

number of compensatory functions needed to be able to annihilate the voltage in all other

branches is equal to the total number of branches (Fig 1.2B,C). In real morphologies, with

complex branching patterns, the situation is not clear-cut and searching for all compensatory

functions becomes difficult (Fig 1.2D). Second, while sets of compensatory functions could

in theory provide some idea of the broad location of the subunits, many more smaller time-

scale terms have to be included in series (1.8) to accurately reproduce the local dynamics.

There may be a large grey zone where terms both contribute to subunit construction and

to the accurate reproduction of the local dynamics. Fig 1.3 illustrates this point: the main

8



1.2. Solving dendrites

 = 10.0 (ms)  = 10.0 (ms)  = 12.5 ( m)  = 0.3 ( m)  = 253 ( m)A

20

10

0

10

20

30

100.0 m

0 1 2

 = 10.00 (ms)  = 1.470 (ms)

 = 1.127 (ms)

 = 0.188 (ms)

 = 0.180 (ms)

B

20

10

0

10

20

30

200.0 m

0 1 2 3 4  = 10.00 (ms)  = 1.487 (ms)

 = 1.479 (ms)

 = 1.466 (ms)

 = 0.949 (ms)

 = 0.190 (ms)

 = 0.189 (ms)

 = 0.187 (ms)

 = 0.174 (ms)

C

20

10

0

10

20

30

500.0 m

0

1

2

3

4

5

6

7

8
 = 10.00 (ms)  = 1.492 (ms)

 = 1.486 (ms)

 = 1.478 (ms)

 = 1.466 (ms)

 = 1.456 (ms)

 = 1.453 (ms)

 = 1.448 (ms)

 = 0.757 (ms)

 = 0.191 (ms)

 = 0.190 (ms)

 = 0.189 (ms)

 = 0.187 (ms)

 = 0.186 (ms)

 = 0.185 (ms)

 = 0.185 (ms)

 = 0.162 (ms)

D

20

10

0

10

20

30

500.0 m

0

1

2

3

4

5

6

7

8

9

 = 20.00 (ms)  = 1.938 (ms)
 = 1.706 (ms)
 = 1.373 (ms)
 = 1.281 (ms)
 = 1.202 (ms)
 = 1.144 (ms)
 = 1.095 (ms)
 = 1.056 (ms)
 = 1.041 (ms)

 = 0.997 (ms)
 = 0.980 (ms)
 = 0.814 (ms)
 = 0.751 (ms)
 = 0.656 (ms)
 = 0.583 (ms)
 = 0.528 (ms)
 = 0.431 (ms)
 = 0.269 (ms)

Figure 1.2 – Functions and time-scales of the SOV expansion. Biophysical dendrite param-
eters are shown on top. A, B, C: SOV-expansion for resp. 2, 4 and 8 branch models. The left
panel shows the morphology, different branches have different colors. Middle panel shows
the functions φk for k = 0 to B (with B the number of branches). The functions for k = B +1 to
2B are also shown (transparent). Color on the x-axis corresponds to the color of the associated
branch in the left panel. The right panel shows the associated time-scales τk which can be
sub-divided in 3 groups according to their value: k = 0 is always the membrane time-scale,
k = 1 to B is the first group of compensatory functions and k = B +1 to 2B fixes the spatial
voltage distribution within each branch. D: SOV expansion for a stellate cell morphologies.
Left, middle and right panels are simulare as in A, B and C, but groups of time-scales can not
be distinguished.
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compensatory function have indices k = 1,2 (Fig 1.3B). Upon stimulating the tips of both

branches with independent Ornstein-Uhlenbeck processes, it can be seen that these terms

are responsible for the decrease in voltage correlation between the blue branch and location

xi1 (Fig 1.3F). Nevertheless, the terms with indices k = 3,4 are still required to approximate the

voltage statistics reasonable well (Fig 1.3D-F).

By consequence, we refrained from using the SOV-approach to understand dendritic subunits.

This approach proved very useful nonetheless, as it expresses the GF in a convenient form:

all the information required to compute the GF can be stored in a vector of time-scales τk of

size K and a matrixΦkl =φk (xl ) of size K ×L (with L the number of locations at which the GF

needs to be evaluated). Furthermore, if one wants to simulate with the GF, the convolution

(1.7) becomes a sum of convolutions with exponentials, which in turn can be solved as sim-

ple ODEs [Wybo et al., 2015]. We thus used the SOV method often throughout this thesis. It

should be noted though, that while not fundamentally impossible, incorporating linearized

ion channels would be very challenging. To compute the time-scales τk , one constructs a

transcendental function and solves for its zeros. In passive morphologies, these zeros are

all real numbers. With linearized ion channels, these zeros may be complex conjugate pairs

that lie anywhere in the negative half of the complex plane. While algorithms exist to com-

pute these zeros [Davies, 1986, Kravanja and Van Barel, 2000c, Kravanja and Van Barel, 2000a,

Kravanja and Van Barel, 2000b], the extremely complex form of the transcendental function

for real morphologies, with infinite numbers of closely spaced poles and zeros, makes it very

challenging to find a subdivision of the complex plane that allows the zero-finding algorithms

to be well-conditioned and work successfully.

1.3 Simplification strategies for dendrite models

Efforts to simplify dendrite models, whether it is to gain a better understanding of how den-

drites function or whether it is to gain computational efficiency in computer simulations,

are as old as these models themselves. Here, we explore three approaches that have been

commonly used in the past decades.

1.3.1 Linear response characteristics: collapsing the dendritic tree

When a synaptic current is injected somewhere along the dendritic tree, and the response

is measured at the soma, two things happen: the somatic response is slightly delayed with

a broader waveform compared to the dendritic current pulse and its amplitude is lower

than the dendritic depolarization [Nevian et al., 2007]. These effects were predicted by Rall

[Rall et al., 1995] and are respectively referred to as ‘delay’ and ‘attenuation’. Rall also realized

that for artificial dendritic trees with certain symmetry constraints, the exact same response

characteristics could be obtained by appropriately mapping the dendritic tree onto a single

cylinder [Rall et al., 1995]. This operation can be construed as the first simplification strategy

for dendritic trees. While the restrictive constraints of Rall where later relaxed somewhat
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1.3. Simplification strategies for dendrite models

Figure 1.3 – Reproducing voltage statistics with the SOV expansion. A: A simple bipolar
morphology. Locations xi0 and xi1 , where an Ornstein-Uhlenbeck current is injected, are
indicated. B: The SOV functions φk (k = 0, . . . ,4) associated with the morphology. Locations
xi0 and xi1 are indicated with a vertical line. C: The membrane voltage at both locations and
at the soma (average value is indicated with a dashed line). D: The mean of the voltage at all
locations, once computed with NEURON (black, dashed) and once with a large number of SOV
terms (yellow). Further lines indicate the mean computed with few SOV terms, where the
color corresponds to the same color in B and indicates that all terms were used for which k ≤
the index of the corresponding φ. E: Same as D, but for the variance. F: Same as D, but for the
correlation with location xi1 .

[Ohme and Schierwagen, 1998], real morphologies still do not adhere to these constraints and

consequently this approach remains of limited use.

Modern methods take a more ‘fuzzy’ approach to reproducing the linear response charac-

teristics of dendrites in simplified models. They content themselves with only reproducing

these characteristics approximately, but with the benefit that the methods works for any

dendritic tree. Essentially, the quality of any linear reduction can be measured by how well

it approximates the GF from dendrite to soma G(x = 0, x ′, t − t ′). A simple but reasonably

accurate approach would be to define a number of different domains on the dendritic tree

(which will depend mainly on the electrical distance to the soma), define an average kernel

for each domain and then filter all inputs arriving in that domain with this kernel. Further

computational efficiency could be gained by approximating this kernel with a sum of ex-

ponentials (for instance by using the vector fitting algorithm [Gustavsen and Semlyen, 1998,

Gustavsen and Semlyen, 1999, Hendrickx and Dhaene, 2006, Wybo et al., 2015]), so that the

filtering operations can be carried out by integrating simple ODEs [Wybo et al., 2015]. Even

when each kernel is comprised of only a single exponential, surprisingly accurate results can
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be achieved [Rössert et al., 2016].

It should be noted though that any such method forgoes the ability to model local interactions

between dendritic, voltage-dependent input currents (such as ion channels or synaptic inputs).

The response at the soma in a passive neuron following injection of two current pulses will

always be the linear sum of both individual responses (in a passive morphology), no matter

whether these pulses are delivered to different dendritic branches or to the same branch.

The current following synaptic conductance inputs however depends on the local voltage, as

can be seen in equations (1.2) and (1.3), and thus the eventual somatic response will depend

greatly on whether these synapses are located on the same branch or not [Hao et al., 2009].

1.3.2 Lumping compartments

Another set of methods to simplify dendritic trees is concerned with reducing the number

of points in the 2nd order FD approximation at which the voltage is evaluated, or, in other

words, reducing the number of compartments in (1.6). In such work, often the number of

dendrites is strongly reduced too, so that only on the order of∼ 10 to 100 compartments remain

[Traub and Miles, 1991, Bush and Sejnowski, 1993, Migliore et al., 1999, Traub et al., 2005], some-

times even as few as two compartments are retained [Clopath et al., 2007, Urbanczik and Senn, 2014,

Chua et al., 2015].

While this approach is very convenient, as standard simulation software such as NEURON can

be used, the methodology in choosing the reduced cells’ parameters varies greatly among

different studies and is often quite arbitrary. Sometimes the reduced model is optimized

to reproduce either some experimentally recorded data or some simulation results of com-

plex models, but often the reduction relies entirely on the needs and best judgment of the

modeler. Recently, a more systematic approach was pioneered to reduce the morphology,

while rescaling morphological and electrical parameters to keep the response properties

stable [Marasco et al., 2012, Marasco et al., 2013]. Nevertheless, reducing the morphology in

this way suffers from the same problem as described in § 1.3.1: local interactions between

synapses are not captured accurately. Thus, while this strategy reduces the computational

complexity of dendrite models, it does not elucidate the subunit hypothesis.

1.3.3 Reduced order modeling

Another sets of methods, referred to as ‘reduced basis’ (RB) methods, stems from recent

efforts in the applied mathematics and engineering fields to reduce the cost of solving partial

differential equations (PDE) [Quarteroni et al., 2016]. As discussed in § 1.2.1, solving for the

dendritic voltage requires inverting a matrix of size L:

A(gsyn)V = I(gsyn), (1.9)
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where A(gsyn) and I(gsyn) are the FD matrix and vector [Koch, 1998, appendix by Zador and

Pearlmutter], which both depend on the synaptic input conductances. RB methods aim to

express the voltage vector in a suitable basis of size N ¿ L:

V =
N∑

n=1
vn Un =Uv,

where v = (v1, . . . , vn) and U= (U1| . . . |UN ), so that the solution can be obtained by solving the

following smaller system of size N :

A′(gsyn)v = I′(gsyn),

where A′(gsyn) = UT A(gsyn)U and I′(gsyn) = UT I(gsyn). These methods aim to find an opti-

mal basis that minimizes the error between the reduced solution Uv and the full solution V.

Earlier approaches used empirical orthogonal functions as a basis [Monahan et al., 2009] or

principal interaction and oscillation patterns [Hasselmann, 1988]. These methods generally

construct a matrix of a set of well-chosen ‘snapshots’ of the dynamics (through solving (1.9)

for a well chosen sampling of the input space gsyn) and then derive a set of basis functions

from this matrix according to some optimality criterion. It can be shown that using the sin-

gular value decomposition of the snapshot matrix to construct the basis, yields a minimal

mean squared error between each snapshot and the subspace spanned by the basis functions

[Quarteroni et al., 2016]. This popular approach, commonly referred to as the ‘proper orthog-

onal decomposition’ (POD), was applied by [Kellems et al., 2010] to reduce neuron models.

Earlier, the same authors had also employed another approach to construct the reduced basis

[Kellems et al., 2009].

Such methods come with substantial difficulties however. As discussed in § 1.2.1, solving

system (1.9) requires only O(L) steps. On the other hand, the reduced matrixA′ is dense, and

thus requires O(N 3) steps to invert. This may negate much of the advantage of the lower

dimensionality of the system. In engineering applications this trade-off usually pays off, as

the PDEs of interest are often defined on 2- or 3-dimensional domains. By consequence,

many more grid-points are required to evaluate the field of interest (L ∼ 104 to L ∼ 106 instead

of L ∼ 102 to L ∼ 103) and the matrix inversion in the full system requires much more than

O(L) steps. Furthermore, when the dendritic tree is littered with closely spaced synaptic

conductances, or ion channel conductances that depend non-linearly on the voltage, the

matrix A(gsyn) still has to be computed in the original system of size L. When dealing with

such parameter dependence, RB methods assume that an affine decomposition of the matrix

A(gsyn) and vector I(gsyn) exists [Quarteroni et al., 2016]:

A(gsyn) =
Ma∑

m=1
θ(a)

m (gsyn)Am

I(gsyn) =
Mi∑

m=1
θ(i )

m (gsyn)Im ,

(1.10)
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Figure 1.4 – Comparison between SOV and POD basis. A: A simple morphology with 2 cylin-
drical dendrites was used to compare both bases. B: The first five functions φk of the SOV
basis for this morphology. C: A comparison between the steady-state FD and RB solutions for
the spatial voltage distribution for a particular combination of excitatory and inhibitory input.
They agree very well. D: The first five basis vectors Uk obtained by the POD method.

with Ma and Mi ¿ L. Consequently, Ma + Mi functions θ would have to be evaluated to

constructA(gsyn) and I(gsyn). In neuroscience however, any synaptic conductance is a priori

independent from all others and an affine representation simply has the same number L of

components as the original system. Hence, at every time-step, the full L ×L matrix A(gsyn)

and vector of size L I(gsyn) have to be computed. In [Kellems et al., 2010], this problem is

circumvented by deriving an optimal sampling of space in order to keep L minimal. While this

may yield an optimal distribution of evaluation points on the dendritic arborization, it shows

that computing the full spatial voltage still remains a necessity to accurately reproduce the

synaptic interactions.

We nevertheless explored whether the RB vectors could yield some information on the subunit

hypothesis. To do so, we implemented a steady-state version of the FD approximation (i.e.

where ∂V
∂t = 0), and used it to generate 200 snapshots for random combinations of excitatory

and inhibitory input on a simple two-branch morphology (Fig 1.4A). The POD basis obtained

in this way could accurately reproduce the spatial voltage distribution (Fig 1.4C) for random

excitatory and inhibitory conductances. We then plotted the first five obtained basis vectors

(Fig 1.4D). As can be seen, these basis vectors bear a striking resemblance to the SOV basis

(Fig 1.4B): the zero’th vector has the same value everywhere, vectors 1 and 2 have a similar

shape to the SOV compensatory functions and vectors 3 and 4 have approximately the same

spatial frequency as the corresponding SOV functions. Consequently, we concluded that we

could not learn anything new from these RB-methods regarding the subunit hypothesis.
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1.4 The subunit hypothesis

Not long after it was discovered that synaptic NMDA currents in the central nervous system de-

pend on the local voltage [MacDonald and Wojtowicz, 1982, Mayer et al., 1984], it was hypoth-

esized that these currents, in combination with the dendritic tree, could expand the computa-

tional repertoire of neurons [Mel, 1993], and that as a consequence the computational power

of a single nerve cell would depend on its dendritic branching pattern [Schaefer et al., 2003].

Specifically, such a current could compute a non-linear transformation on the inputs arriving

on a local stretch of dendrite. Hence, this stretch of dendrite would be a computational ‘sub-

unit’ of the neuron. Together, these subunits would add extra ‘layers’ of non-linear processing

to the brain [Häusser and Mel, 2003], a finding especially relevant today given the success of

recent deep-learning efforts [Mnih et al., 2015, Silver et al., 2016].

1.4.1 The significance of subunits

Broadly speaking, in a neuron with D dendritic subunits (indexed by d), which each re-

ceive Nd inputs xn , the rate-based output O can be summarized as [Poirazi et al., 2003b,

Poirazi et al., 2003a]:

O = hs

(
D∑

d=0
hd

(
Nd∑

n=0
xn

))
, (1.11)

with hs the somatic non-linear activation function and hd the non-linear activation function

of subunit d . Contrastingly, the model used in most computational studies rather has the

following form:

O = hs

(
D∑

d=0

Nd∑
n=0

xn

)
. (1.12)

As can be seen, the dendritic non-linearity is omitted and the somatic output is just a function

of the sum of all inputs. This difference in the functional form of the input-output relation has

drastic consequences for the computational power of a nerve cell.

To understand why this is so, one must first understand a few basic principles of how neurons

compute. In 1962, Hubel and Wiesel published a seminal paper on the functional organization

of the cat’s visual cortex [Hubel and Wiesel, 1962]. Upstream of the visual cortex, in the lateral

geniculate nucleus, they found cells that responded to a dot of light at a given location in the

cats’ receptive field. In the visual cortex, they found cells that were selective to a line of light at

a given location in the receptive field (Fig 1.5A). They hypothesized that if a cortical neuron

would receive inputs from multiple co-linear lateral geniculate cells, it could be excited above

its AP threshold and activate. Hence, this neuron would be sensitive to a line of light. When

multiple such neurons, all sensitive to for instance a vertical line at some coordinate in the

receptive field, would target another neuron, and this neuron would be activated above its AP
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Figure 1.5 – Basis of neural computation and the relevance of dendritic subunits. A: To cre-
ate a line-sensitive cell, multiple co-linear cells sensitive to a dot stimulus need to be active
together to activate the downstream neuron (adapted from [Hubel and Wiesel, 1962]). B: To
create a translation-invariant cell, the downstream neuron needs to be activated by any one of
the line sensitive cells (adapted from [Hubel and Wiesel, 1962]). C: Today, these ideas are still
pervasive in theories of object recognition (adapted from [Riesenhuber and Poggio, 1999]).
D: subunits increase the memory capacity of neurons. A neuron with three dendrites is
targeted by four white inputs (x1), three grey inputs (x2) and two black inputs (x3) in two
different configurations. With input-output relation (1.12), this neuron could not distin-
guish these configurations, whereas with input-output relation (1.11), it could (adapted from
[Poirazi and Mel, 2001]).

threshold by any one of the vertical line neurons, it would be sensitive to the orientation of

the line but not to its position (Fig 1.5B). These operations are nowadays still fundamental to

theories of visual object recognition (Fig 1.5C) and require non-linear transformations with

the right gain and threshold at each cell [Riesenhuber and Poggio, 1999]. In this way, neurons

deeper in the processing stream are able to respond to more and more abstract concepts,

independent of their location in the visual field. With dendritic subunits, one cell could

execute a multitude of these operations at once [Mel et al., 1998, Archie and Mel, 2000].

Another question central to computational neuroscience is how neurons store information

[Chaudhuri and Fiete, 2016]. Traditionally models of information storage treat neurons as

equipotential units that simply sum their inputs, as in equation (1.12) [Gerstner and Kistler, 2002,

Mongillo et al., 2008, Zenke et al., 2015, Brunel, 2016]. Converging experimental evidence

however suggests that information is stored in a highly localized fashion on dendrites [Losonczy et al., 2008,
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Makara et al., 2009, Govindarajan et al., 2011, Weber et al., 2016]. As illustrated in Fig 1.5D,

much more information can in principle be stored by a neuron with subunits (1.11) than by an

equipotential neuron (1.12) [Poirazi and Mel, 2001]. Only recently researchers have started to

explore how this could improve information storage in networks of neurons [Kastellakis et al., 2016].

1.4.2 The need for independent dynamical variables

Despite the large number of papers that assume some form of dendritic subunits, to this day

very little is understood about them. Only efforts to fit rate-based models of the form (1.11) to

the biophysical neuron models have been successful [Poirazi et al., 2003b, Poirazi et al., 2003a,

Behabadi and Mel, 2014]. Nevertheless, the precise timing of input and output spikes is also

believed to play and important role in how the brain encodes information [Gerstner et al., 1996,

Butts et al., 2007, Nemenman et al., 2008, Hong et al., 2012, Ratté et al., 2013]. A major ques-

tion is thus to understand the dynamical input-output transformation that a subunit per-

forms. Branco suggested that subunits in the dendritic tips would favor rate-based coding

[Branco and Häusser, 2011], but that assumes that the excitatory input there is strong enough

to remove the magnesium block of the NMDA channels. Before learning, inputs may not be

strong enough to remove this block and coincident inputs might still be required to activate

NMDA channels.

Another question is where on the dendritic tree these subunits are located. Clustering algo-

rithms have failed to produce convincing results [Rabinowitch and Segev, 2006], as they rely

on arbitrarily defined threshold correlations in the local membrane potential, while these

correlations depend heavily on the dynamical regime the neuron is in. This problem is further

complicated by the fact that subunits can not be seen independent of the inputs one aims to

study. It is the location of these inputs on the morphology that determines whether they will

belong to the same subunit or not.

Given this information, and after our various failed attempts to find a convincing method to

determine dendritic subunits with existing mathematical method, we came to the conclusion

that a method was needed that could, for any morphology and spatial combination of synapses,

derive a dynamical model that (i) accurately models the spatio-temporal voltage within the

dendritic tree and that (ii) features dynamical variables that only depend on the inputs arriving

to the respective subunits – if and only if such subunits exist. That way, both the question

about where on the dendritic tree the subunit is located and the question about how the

subunit integrates inputs can be answered. In chapter 4 we describe a model that does just

this, and an algorithm that derives this model for any morphology and set of synapse locations.

To our surprise, this model also showed that certain types of input can actively modify the

distribution of subunits on the dendritic tree. This amounts to modifying the grouping in

equation (1.11) by increasing D, and thus could be another mechanism that enhances the

computational repertoire of neurons.
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1.5 Structure of this thesis

The structure of this thesis consist of three main parts. In chapter 2, published as [Wybo et al., 2013],

we assess the computational performance of naively using the GF formalism to simulate

neuron models. We show that the somatic AP can be successfully reproduced in a neuron

performing an input-order detection task. We show furthermore that using the GF formalism

yields computational gain for a low number of input sites on the dendritic tree. Although this

number was too low for real world use-cases, chapter 2 provides a successful proof of concept

that the GF formalism can be used to accurately model any dendritic tree – no matter how

morphologically complex.

In chapter 3, published as [Wybo et al., 2015], we describe how the GF formalism can be

sparsified, greatly reducing the number of GF kernels, and how the remaining convolutions

can be integrated efficiently. With these two innovations, the number of input locations

for which computational gain is achieved is augmented greatly. Thus, as described in the

discussion section of chapter 3, there are real-world use-cases in which there is a gain in

computational performance.

Nevertheless, with these two approaches, we found that the two objectives – a computational

simplification, augmenting computational efficiency, and a conceptual simplification, render-

ing it easier to understand how dendrites compute – were not aligned. In particular, these

approaches provided little help in understanding the subunit hypothesis. By consequence, we

sought and found another approach, where the GF associated with a morphology is approxi-

mated by a tree-like, impedance based network. We found that the resulting models, which

we termed neural evaluation trees (NETs), yielded much insight in the subunit hypothesis. In

chapter 4 we describe the results of this approach.
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2 The Green’s function formalism as
a bridge between single and multi-
compartmental modeling
Willem A. M. Wybo, Klaus M. Stiefel and Benjamin Torben-Nielsen, published in Biological

Cybernetics [Wybo et al., 2013].

Abstract

Neurons are spatially extended structures that receive and process inputs on their dendrites. It

is generally accepted that neuronal computations arise from the active integration of synaptic

inputs along a dendrite between the input location and the location of spike generation in

the axon initial segment. However, many application such as simulations of brain networks,

use point-neurons –neurons without a morphological component– as computational units to

keep the conceptual complexity and computational costs low. Inevitably, these applications

thus omit a fundamental property of neuronal computation. In this work, we present an

approach to model an artificial synapse that mimics dendritic processing without the need to

explicitly simulate dendritic dynamics. The model synapse employs an analytic solution for

the cable equation to compute the neuron’s membrane potential following dendritic inputs.

Green’s function formalism is used to derive the closed version of the cable equation. We

show that by using this synapse model, point-neurons can achieve results that were previously

limited to the realms of multi-compartmental models. Moreover, a computational advantage

is achieved when only a small number of simulated synapses impinge on a morphologically

elaborate neuron. Opportunities and limitations are discussed.

2.1 Introduction

Neurons are morphological structures: they have dendritic branches on which most inputs

are received and an axonal tree through which the output signal is communicated with other

neurons. In this light, neuronal computations can be seen as the integration of synaptic

inputs along the dendrites up to the axon initial segment where an output signal is generated.
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Hence a key role in neuronal computation is taken by the exact shape and composition of

dendrites. Indeed, it is known that the neuronal response is shaped by the precise location and

activation pattern of synapses [Branco and Häusser, 2010, Torben-Nielsen and Stiefel, 2010,

Gidon and Segev, 2012] and by the expression and distribution of (voltage-gated) ion-channels

[Migliore and Shepherd, 2002, Magee, 1999, Torben-Nielsen and Stiefel, 2010, Spruston, 2008].

Despite this proven importance, dendritic processing is usually ignored in network simulation

[Gewaltig and Diesmann, 2007, Brette et al., 2007, Richert et al., 2011], but see [Markram, 2006]

for an exception. One reason is the computational cost associated with multi-compartmental

simulations: a costs that, at the level of the model neuron, scales with the morphological com-

plexity of the dendritic arborization. Related is the conceptual cost associated with building

detailed single-neuron models [Hay et al., 2013] with the spatial distribution of conductances

across the membrane and localized non-linearities. The key is to capture the somatic voltage

in response to synaptic inputs on the dendrites. Is there an alternative to multi-compartmental

models to simulate the effects of dendrites on synaptic potentials, without large computational

overhead?

To this end, two strategies are commonly adopted in the literature. The first consist of perform-

ing a morphological reduction by reducing the number of dendritic segments while attempting

to capture crucial characteristics of dendritic processing [Traub et al., 2005, Kellems et al., 2010].

A second strategy is to by-pass multiple (dendritic) compartments altogether by using point-

neurons and fit voltage-kernels that matches the dendritic signal transformation shaping the

voltage waveform caused by a synaptic input at the soma [Jolivet et al., 2004, Gütig and Sompolinsky, 2006].

The fitted [Jolivet et al., 2004] or learned [Gütig and Sompolinsky, 2006] kernel is then simply

added to the somatic membrane potential. While this strategy is computationally efficient and

some temporal effects of dendritic processing can be captured, it is a rather crude approxima-

tion of what dendritic integration stands for and elementary features of dendritic processing,

such as local interaction between inputs, are impossible to achieve.

In this work we present a true alternative based on applying the Green’s function formalism

to cable theory. This way we can exactly compute the effect of synaptic inputs located in the

dendrites on the somatic membrane potential [Koch and Poggio, 1985]. By design we thus

compute the linear transfer function between the site of the synaptic inputs and the soma.

The main advantage of this approach is that the effect of synaptic inputs along a dendrite on

the somatic membrane potential can be calculated analytically. Consequently, simulations in

our model are independent of the morphological complexity and a full reduction to a point-

neuron can be used, as the entire effect of the morphology is captured in a transfer function.

This property sets our approach apart from existing methods to model dendrites implicitly:

the approach based on the equivalent cable works only with geometrically tightly constrained

morphologies [Ohme and Schierwagen, 1998], while, as in [Van Pelt, 1992] all branch points

of a dendritic tree have to be modeled explicitly. Because we capture arbitrary dendritic mor-

phologies by means of transfer functions, our synapse model is able to use dendrite-specific

mechanism of computation, such as delay lines (as [Gütig and Sompolinsky, 2006]) but also
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local non-linearities due to membrane saturation. Hence, we can capture fundamental fea-

tures of dendritic integration by directly deriving the Green’s function from dendritic cable

theory.

We implemented our synapse model in the Python programming language as a proof of

principle, and validated it by evaluating its correctness and execution times on two tasks.

First, we show that a morphology-less point-neuron equipped with the proposed synapse

model can exploit differential dendritic processing to perform an input-order detection task

[Agmon-Snir et al., 1998]. We show that both for passive models and models with active cur-

rents in the soma, the agreement with a reference NEURON simulation [Carnevale and Hines, 2006]

is seamless. Second, we show that the proposed neuron model is capable of accurate temporal

integration of multiple synaptic inputs, a result for which knowledge of the precise neuronal

morphology in relation to the synaptic locations is imperative. To this end, we construct a

point-neuron model mimicking the dendritic processing in the dendrites of a Layer 5 pyrami-

dal cell. Again, we demonstrate that the agreement with a reference NEURON simulation is

seamless. By providing this example, we demonstrate that our proposed approach is highly

suitable for the common scenarios to investigate dendritic processing. In such scenarios, the

somatic response to a limited number of synapses located in the dendrites is measured while

changing the dendritic properties.

2.2 Synapse model based on the Green’s function formalism

The core rationale of this work is the simplification of a passive neuron model by analyti-

cally computing the transfer function between synapses and the soma. Solving the cable

equation for dendrites is not new, and several ways are documented [Koch and Poggio, 1985,

Butz and Cowan, 1974, Norman, 1972]. The application of the cable equation to simplify arbi-

trarily morphologically extended multi-compartmental models to a point-neuron is, however,

new.

By solving the cable equation, we thus substitute the effects of an electrical waveform traveling

down a dendrite by a so-called pulse-response kernel. Conceptually, we think of the neural

response to a spike input as being characterized by three functions: the conductance profile of

the synapse, the pulse-response kernel at the synapse and the pulse-response transfer kernel

between the input location and the soma to mimic the actual dendritic propagation. The first

function is chosen by the modeller: common examples are the alpha function, the double

exponential or the single decaying exponential [Rotter and Diesmann, 1999, Giugliano, 2000,

Carnevale and Hines, 2006]. The second function captures the decay of the voltage at the

synapse given a pulse input, and thus allows for a computation of the synaptic driving force,

whereas the third function allows for the computation of the response at the soma, given the

synaptic profile, driving force, and dendritic profile.

More formally, we write g (t) for the synaptic conductance profile, Gsyn(t) for the pulse re-

sponse kernel at the synapse and Gsom(t) for the pulse response kernel between synapse
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and soma. Then, given a presynaptic spiketrain {ts} and a synaptic reversal potential Er , the

somatic response of the neuron is characterized by:

g (t ) = F (a(t )),
da

dt
(t ) = H(a(t ), {ts})

Vsyn(t ) =
∫ t

−∞
dk Gsyn(t −k) g (k) (Vsyn(k)−Er )

Vsom(t ) =
∫ t

−∞
dk Gsom(t −k) g (k) (Vsyn(k)−Er ),

(2.1)

where Er is the synaptic reversal potential, F (.) and H (.) depend on the type of synapse chosen

and a denotes the set of synaptic parameters required to generate the conductance profile

g (t). Our task is to compute Gsyn(t) and Gsom(t). We will show that these functions follow

from the Green’s function formalism.

2.2.1 The neuron model in time and frequency domains

Time domain

Here, we assume a morphological neuron models with passive dendritic segments. Each

segment, labeled d = 1, . . . , N , is modeled as a passive cylinder of constant radius ad and

length Ld . It is assumed that all segments have an equal membrane conductance gm , reversal

potential E , intracellular axial resistance ra and membrane capacitance cm . By convention

we label the locations along a dendrite by x, with x = 0 and x = Ld denoting the proximal and

distal end of the dendrite, respectively. Then, in accordance with cable theory, the voltage in a

segment d follows from solving the partial differential equation [Tuckwell, 1988]:

πa2
d

ra

∂2Vd

∂x2 (x, t ) − 2πad gmVd (x, t ) −

2πad cm
∂Vd

∂t
(x, t ) = Id (x, t ),

(2.2)

where Id (x, t ) represents the input current in branch d , at time t and at location x. We assume

that the dendritic segments are linked together by boundary conditions that follow from

the requirement that the membrane potential is continuous and the longitudinal currents

(denoted by Il d ) conserved:

Vd (Ld , t ) =Vi (0, t ), i ∈C (d)

Ild (Ld , t ) = ∑
i∈C (d)

Il i (0, t ) (2.3)
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where C (d) denotes the set of all child segments of segment d . The longitudonal currents are

given by:

Ild (x, t ) = πa2
d

ra

∂Vd

∂x
(x, t ). (2.4)

Different dendritic branches originating at the soma are joined together by the lumped-soma

boundary condition, which implies for the somatic voltage Vsom(t ):

Vsom(t ) =Vd (0, t ) ∀d ∈C (soma) (2.5)

and

C (soma)∑
d=1

Ild (0, t ) = Isom(Vsom(t ))+Csom
∂Vsom

∂t
(t ), (2.6)

with Isom denoting the transmembrane currents in the soma, that can be either passive or

active. Note that, for all further calculations, we will treat Isom(Vsom(t)) as an external input

current, and apply the Green’s function formalism only on a soma with a capacitive current. For

segments that have no children (i.e., the leafs of the tree structure), the sealed end boundary

condition is used at the distal end:

Ild (Ld , t ) = 0 ∀d . (2.7)

Frequency domain

Fourrier-transforming this system of equations allows for the time-derivatives to be writ-

ten as complex multiplications, for which analytic [Butz and Cowan, 1974] or semi-analytic

[Koch and Poggio, 1985] solutions can be computed. Doing so transforms equation (3.3) into:

∂2Vd

∂x2 (0,ω)−γd (ω)2Vd (x,ω) = Id (x,ω) (2.8)

where ω is now a complex number and γd (ω) is the frequency-dependent space constant,

given by

γd (ω) =
√

zad

zmd (ω)
(2.9)

with zad = ra

πa2
d

the dendritic axial impedance and zmd = 1
2πad (i cmω+gm ) the membrane impedance

in branch d . The lumped soma boundary conditions (2.5) and (2.6) become

Vsom(ω) =Vd (0,ω) ∀d (2.10)
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and

N∑
d=1

Ild (0,ω) =
N∑

d=1

1

zad

∂Vd

∂x
(0,ω) = 1

Zsom(ω)
Vsom(ω), (2.11)

where

Zsom(ω) = 1

iCsomω
(2.12)

is the somatic impedance. The sealed-end boundary conditions are:

Il d (Ld ,ω) = 1

ZL
Vd (Ld ,ω) = 0 (2.13)

with sealed-end impedance ZL =∞.

2.2.2 Morphological simplification by applying Green’s function

Here we will describe the Green’s function formalism formally in the time domain to explain

the main principles. In the next paragraph we will then turn back to the frequency-domain to

compute the actual solution. For the argument we consider a general current input Id (x, t ). In

the case of dynamic synapses, such a current input is obtained from the synaptic conductances

by the Ohmic relation:

Id (x, t ) = g (t )(Er −Vd (x, t )) (2.14)

or, in the case of active channels, from the ion channel dynamics The cable equation (3.3) can

be written formally as:

L̂d Vd (x, t ) = Id (x, t ) (2.15)

where L̂d = πa2
d

ra

∂2

∂x2 − 2πad gm − 2πad cm
∂
∂t is a linear operator1, which means that for two

arbitrary functions V1(x, t ) and V2(x, t ) the following identity holds:

L̂d (aV1(x, t )+bV2(x, t )) = aL̂d V1(x, t )+bL̂d V2(x, t ) (2.16)

The Green’s function of the system is then defined as the solution of the following differential

equation:

L̂dGdd ′(x, x ′, t , t ′) = δ(x −x ′)δ(t − t ′)δdd ′ . (2.17)

1Note that formally, the operator L̂d depends on x explicitly in a discontinuous way: for for 0 < x < Ld :

L̂d (x) = πa2
d

ra
∂2

∂x2 −2πad gm −2πad cm
∂
∂t , and for x = 0: L̂d (x = 0) =∑N

d=1

πa2
d

ra
∂
∂x −Gsom −Csom

∂
∂t .

24



2.2. Synapse model based on the Green’s function formalism

which also justifies its name as “pulse-response kernel”. The solution to the general input

current Id (x, t ) is then written as

Vd (x, t ) =∑
d ′

∫ Ld

0
dx ′

∫ t

−∞
dt ′Gdd ′(x, x ′, t , t ′)Id ′(x ′, t ′), (2.18)

which can be verified by substituting this equation in (2.15) and using the assumption of

linearity (2.16).

Two considerations allow us to simplify this system: first, as a consequence of the fact that the

operator L̂d is translation invariant in the time domain, the Green’s function only depends on

temporal differences:

Gdd ′(x, x ′, t , t ′) =Gdd ′(x, x ′, t − t ′), (2.19)

second, in the case of neuronal dynamics, it often suffices to consider inputs at a discrete

number of locations, labeled xd ′
i , with d ′ denoting the segment of the input location:

Id (x, t ) =∑
xd ′

i

Id (x, t )δ(x −xd ′
i )δdd ′ , (2.20)

where Id can either denote a synaptic input current or an active membrane current at a point-

like location (here we only consider active currents at the soma). Given these considerations,

equation (2.18) reduces to

Vd (x, t ) =∑
xd ′

i

∫
dt ′Gdd ′(x, xd ′

i , t − t ′)Id ′(xd ′
i , t ′). (2.21)

Then it follows from equations (2.14) and (2.21) the membrane potentials at the N synapses

(labeled i ) distributed on dendritic branches di at locations xd1
1 , . . . , xdn

n are

Vd (x
d j

j , t ) =∑
i

∫ t

−∞
dt ′ Gd j di (x

d j

j , xdi

i , t − t ′) gi (t ′) (Er −Vdi (xdi

i , t ′))+∫ t

−∞
dt ′Gdi di (xdi

j , soma, t − t ′)Isom(Vsom(t ′)),

(2.22)

whereas the potential at the soma is given by:

Vsom(t ) =∑
i

∫ t

−∞
dt ′ Gdi di (soma, xdi

i , t − t ′) gi (t ′) (Er −Vd (xdi

i , t ′))+∫ t

−∞
dt ′G(soma,soma, t − t ′)Isom(Vsom(t ′)).

(2.23)
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Frequency domain solution for the Green’s function

Let us now turn to the calculation of the Green’s function for a pulse input at time t = 0 and at a

location xi in dendrite d . Here, we perform this calculation in the frequency domain, whereas

in the next paragraph we will show how the inverse transform, back to the time domain, can

be evaluated. To that end we use the algorithm described in [Koch and Poggio, 1985]. As an

example, we describe this procedure for a simplified morphology, where each dendritic branch

arriving at the soma is modeled as a single cylinder (we use this morphology in section 2.3.3

on input-order detection). In that case the dendrites that do not receive the pulse input merely

serve to modify the total somatic impedance. Application of rule I of [Koch and Poggio, 1985]

allows us to represent these dendrites (indexed by d ′) as impedances:

Zd ′(ω) = zcd ′(ω)

tanh(γd ′(ω)Ld ′)
(2.24)

and rule II allows us to modify the somatic impedance as

Z ′
som(ω) =

(
1

Zsom(ω)
+∑

d ′

1

Zd ′(ω)

)−1

(2.25)

Thus the entire effect of the rest of the morphology is summarized in the modified lumped-

soma boundary condition

Il d (0,ω) = 1

Z ′
som(ω)

Vsom(ω). (2.26)

The Green’s function in the frequency domain at location x then follows from solving equation

(2.8) for boundary conditions (2.26) and (2.13), with Id (x, t ) = δ(x−xi )δ(t ), and thus Id (x,ω) =
δ(x −xi ). From [Butz and Cowan, 1974] it follows that

Gdd (x, xi ,ω) =zcd (ω)2cosh(γd (ω)(Ld −xi ))·(
sinh(γd (ω)x)+ Z ′

som(ω)
zcd (ω) cosh(γd (ω)x)

)
zc (ω)sinh(γd (ω)Ld )+Z ′

som(ω)sinh(γd (ω)Ld )
,

(2.27)

for x 6 xi , where zcd (ω) = zad
γd (ω) is the characteristic impedance of dendrite d . Evaluating this

function at x = xi yields the transfer function of synapse i , putting x = x j (x j < xi ) gives the

transfer function between synapse i and synapse j and x = 0 results in the transfer function be-

tween synapse and soma. The Green’s function for x > xi follows from interchanging x and xi

in (3.80). To compute the effect of a synaptic input on the driving force in other branches (de-

noted by d ′), we first use equation (3.80) (corresponding to rule III of [Koch and Poggio, 1985])

to obtain the pulse-voltage response in the frequency domain at the soma. Then, to compute

the pulse voltage response in the branch where the driving force needs to be known, we use
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the following identity:

Gdd ′(x, x ′,ω) = Gd ′d ′(x,0,ω)Gdd (0, x ′,ω)

G(soma,soma,ω)
, (2.28)

corresponding to rule IV of [Koch and Poggio, 1985].

Transforming the Green’s function to the time domain

Given the conventions we assumed when transforming the original equation, the inverse

Fourier transform has following form:

G(x, xi , t ) = 1

2π

∫ ∞

−∞
dωG(x, xi ,ω) e iωt . (2.29)

If the Green’s function in the time-domain rises continuously from zero, which is generally

the case if x 6= xi , it can be approximated with negligible error by the standard technique for

evaluating Fourier integrals with the fast-Fourier transform (FFT) algorithm [Press et al., 2007]:

we choose a sufficiently large interval [−ωm ,ωm] (where G(x, xi ,±ωm) is practically 0), divide

it in M = 2n pieces of with ∆ω= 2ωm
M and approximate the integral by a discrete sum:

G(x, xi , t ) = 1

2π

M−1∑
j=0

G(x, xi ,ω j )e iω j t , (2.30)

where ω j =−ωm + j∆ω. The choice of discretization step then fixes the timestep ∆t = 2π
M∆ω .

Upon evaluating the Green’s function in the time-domain at tl = l∆t , l = 0, . . . , M
2 −1, expres-

sion (2.30) can be written in a form that is suitable for the fast Fourier transform algorithm:

G(x, xi , tl ) = ∆ω
2π

e−iωm tl
M−1∑
j=0

G(x, xi ,ω j )e i 2π
M j l , (2.31)

and hence:

G(x, xi , tl ) = M∆ω

2π
e−iωm tl FFT(G(x, xi ,ω j ))l (2.32)

The situation is different if we consider the Green’s function at the input location (x = xi ).

There, the function rises discontinuously from zero at t = 0, which causes the spectrum in

the frequency-domain to have non-vanishing values at arbitrary high frequencies. Hence,

the effect of integrating over a finite interval [−ωm ,ωm] will be non-negligible. Formally, this

truncation can be interpreted as multiplying the original function with a window function

H(ω) that is 1 in the interval [−ωm ,ωm] and 0 elsewhere, resulting in a time-domain function

27



Chapter 2. The Green’s function formalism as a bridge between single and
multi-compartmental modeling

that is a convolution of the real function and the transform of the window:

G̃(ω) =G(xi , xi ,ω)H(ω)

=⇒ G̃(t ) =
∫ ∞

−∞
G(xi , xi ,τ)H(t −τ).

(2.33)

For the rectangular window, the transform H(t) has significant amplitude components for

t 6= 0, an unwanted property that will cause the Green’s function to have spurious oscillations,

a phenomenon that is known as spectral leakage [Blackman and Tukey, 1958]. This problem

can be solved by chosing a different window function, which is 1 at the center of the spectrum

and drops continuously to zero at −ωm and ωm . For this work we found that the Hanning

window,

H(ω) = 1

2

(
1+cos

(
πω

ωm

))
, (2.34)

gave accurate results for t 6= 0. For t = 0, the amplitude is slightly underestimated as a conse-

quence of the truncation of the spectrum, whereas for t very close to, but larger than 0, the

amplitude is slightly overestimated. However, these errors only cause discrepancy in a very

small window (< 0.1ms) and thus have negligible effect on the neural dynamics.

2.3 Model implementation & Validation

2.3.1 Synapse model implementation

We implemented a prototype of the synapse model discussed above in two stages. First, after

specifying the morphology and the synapse locations, the Green’s Function is evaluated at the

locations that are needed to solve the system, thus yielding a set of pulse response kernels. As

modern high-level languages can handle vectorization very efficiently, these functions can

be evaluated for a large set of frequencies ω quickly, thus allowing for great accuracy. Second,

we implemented a model neuron that uses these Green’s functions, sampled at the desired

temporal accuracy. Then, given a set of synaptic parameters, the somatic membrane potential

is computed by integrating the Volterra-equations (2.22) and (2.23) [Press et al., 2007].

2.3.2 Multi-compartmental and point-neuron model

To compare the performance between a multi-compartmental model and a point-neuron

model using the proposed synapse model, we created two comparable neuron models.

In the multi-compartmental model, the dendrites are modeled explicitly using NEURON

[Carnevale and Hines, 2006], while in the point-neuron model the dendrites are omitted and

dendritic processing is carried out implicitly by the new synapse model. The properties of both

model neurons are listed in Table 2.1. Evidently, the implicit model has no real morphology

and the parameters related to the geometry are used to instantiate the synapse model.
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Physiology
Cm 1µF /cm2

gm 0.02 mS/cm2

ra 100Ωcm
El -65 mV

Morphology
Soma length 25µm
Soma diam 25µm

Fig 2.1B Fig 2.1C
dend 1 dend 2 dend 1 dend 2

Ld 950µm 450µm 900µm 500µm
ad 0.25µm 0.5µm 0.5µm 1µm

Synapses
syn 1 syn 2 syn 1 syn 2

Er 0 mV 0 mV 0 mV 0 mV
τ 1.5 ms 1.5 ms 1.5 ms 1.5 ms
g 5 nS 2 nS 20 nS 9 nS

Table 2.1 – Model neuron parameters. The multi-compartmental model explicitly simulates
the dendritic structure, while the point-neuron is equipped with our model synapse based on
Green’s functions and implicitly simulates the dendritic structure. Synaptic time constants
were chosen in accordance with canonically accepted values [Roth and van Rossum, 2009].

2.3.3 Input-order detection with differential dendritic filtering

To show the applicability of the new type of model synapse, we use it to perform input-

order detection: Suppose a neuron with two dendrites and one synapse (or one group of

synapses) on either dendrite (shown in figure 2.1A). In the input-order task, the neuron has to

generate a strong response to the temporal activation of the synapses 1 → 2, while generating

a weak response to the reversed temporal activation 2 → 1. This behavior is achieved by

differential dendritic filtering and can thus not be achieved in a straight-forward way by a

single-compartmental model.

We compared the implicit point-neuron model equipped with the new synapse model to

the explicit multi-compartmental model in the input-order detection task. The results are

illustrated in figure 2.1B. Somatic membrane voltages are shown for the point-neuron model

and the multi-compartmental model, after synapse activation in the preferred (left) and

null temporal order (right). Because the traces are nearly identical, this result validates our

approach and the implementation of the synapse model based on the Green’s function solution

to the cable theory.
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1 2

Figure 2.1 – Comparison between a reference multi-compartmental model and a point-
neuron model equipped with the new synapse model implicitly simulating dendritic pro-
cessing. A: Both model neurons performed the input-order detection task: The neuron has
to respond as strong as possible to the temporal activation 1 → 2 and as weak as possible
to the reverse temporal order. B: The input-order dectection task for a completely passive
neuron. Left and right panels contain the somatic membrane potential when the synapses
were activated in the preferred (1 → 2) and null (2 → 1) temporal order respectively. Colored
lines represent the voltage in the point-neuron model and the black dashed line depicts the
NEURON trace for comparison. As a reference the waveform when only the first synapse is
activated is also shown (left: 1 and right: 2). Vertical dashed-dotted lines denote the spikes
arriving at synapse 1 and 2 (left) or 2 and 1 (right). C Same as (B), but now the soma contained
active HH-currents.
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Figure 2.2 – Comparison between the “implicit” (red lines) and “explicit” (black lines)
model neurons of a pyramidal cell stimulated by Poisson spiketrains. A: The neuron mor-
phology together with the synapse locations.B: The membrane potential traces at the soma,
for the input locations shown in panel A (red dots). C: Comparison of the runtime versus the
number of input locations. For few input locations, our prototype python code outperforms
the NEURON code.

2.3.4 Voltage-gated active currents

The most prominent non-linear neuronal response is the action potential. Since it is possible

in our synapse model to include any non-linear conductance mechanism, as long as it is

spatially restricted to a point-like location, we built a prototype containing the Na+ and K+

conductances required to generated action potentials. By computing the kernels needed to

run the upgraded point-neuron model in the input-order detection task and by adjusting the

synaptic weights, we yielded a point-neuron model able to generate a spike in response to

the preferred activation pattern, while remaining silent in response to the reversed temporal

activation. Note that the active somatic currents shorten the timescale of the neuron’s response

compared to the passive model. The timscale of the t-axis was scaled accordingly. In order

to validate these outcomes, we again built an equivalent multi-compartmental model in

NEURON in which we inserted the same Na+ and K+ conductances into the soma. The multi-

compartmental model generated identical results, as shown in Figure 2.1C. Thus, in principle

we can include conductance descriptions to obtain hallmark neuronal non-linearities.
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2.3.5 Multiple synapse interactions

We then checked the correctness of the integrative properties of our implicit point-neuron

model by stimulating it with realistic spiketrains at multiple synapses. To that end we added

five synapses to a model of a Layer 5 pyramidal neuron equipped with a experimentally

reconstructed morphology. The morphology wad retrieved from the NeuroMorpho.org repos-

itory [Ascoli et al., 2007] and originally published in [Wang et al., 2002]. We stimulated each

synapse with Poisson spike trains of rate 10 Hz. The result is shown in Figure 2.2. Again,

we compared the implicit model’s membrane potential traces to the traces obtained from a

multi-compartmental model. The agreement is excellent, as can be seen in Figure 2.2B, which

also validates our approach when processing inputs from multiple, interacting synapses.

2.3.6 Runtime

We established that the “implicit” model neuron equipped with our new synapse model

generated near-identical voltage traces as a reference multi-compartmental model. Next we

compared the run-time of our implementation to the gold standard in multi-compartmental

modeling, the NEURON software [Carnevale and Hines, 2006]. To this end we simulated a

detailed multi-compartmental model (Figure 2.2) in NEURON as well as with our approach, for

increasing numbers of input locations. For each of those numbers we ran three simulations of

1 second of simulated time at an integration step of 0.1 ms (10 kHz). Because in our approach

the execution time is independent of the morphological complexity but rather scales with the

number of input locations, it is expected that for a low number of input locations, applying

our model will be much faster. As shown in Figure 2.2 C, for two input locations, our approach

runs 20 times faster than NEURON, while at 13 input locations the execution time is equal.

Keeping in mind i) that our implementation is done in Python, and ii) that often synapses can

be grouped together [Pissadaki et al., 2010] we consider this a good outcome.

2.4 Discussion

We presented a bridge between single-compartment and multi-compartmental neuron mod-

els by creating a synapse model that analytically computes the dendritic processing between

the synaptic input locations and the soma. We then demonstrated that point-neuron mod-

els equipped with this new synapse model could flawlessly perform the input-order de-

tection computation; a neuronal computation exploiting differential dendritic processing

[Agmon-Snir et al., 1998]. Thus, the new synapse model can be used to introduce computa-

tions to point-neurons that previously only belonged to the realm of multi-compartmental

neuron models, with a computational cost that does not depend on the morphological com-

plexity.

Then the question arises when it would be advisable to use our synapse model over the stan-

dard tools. Although a quantitative comparison should be treated with care due to the different
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implementation languages, we still found that our Python-prototype was much faster than the

optimized, C++-based NEURON-simulation when the number of input locations was low. This,

together with the fact that the computational cost of our model does not depend on morpho-

logical complexity, then defines the use case for our model. In scenarios where the number of

input locations is low, as is the case in some (invertebrate) cells [Bullock and Horridge, 1965]

and as in many in-silico scenarios, only few Volterra equations have to be integrated. There

our model represents considerable computational advantage. This arguments also holds

when more complex neuron types are considered: while cortical neurons receive often as

many as 10000 synapses, many of those can be grouped together. To a good approximation,

small dendritic branches act as single units, both in terms of short-term input integration

[Poirazi et al., 2003b, London and Häusser, 2005] as in terms of long-term plasticity related

processes [Govindarajan et al., 2011]. Thus, one could group all synapses in a small branch

together and then compute the Green’s function for that group of synapses as a hole. Such

a grouping would drastically reduce the number of Volterra equations to be integrated and

hence enhance performance accordingly.

We assumed that the PSP waveform is transformed only in a passive manner on its way to the

soma. In reality, this might sound like a drastic simplification as non-linearity is often cited as

a hallmark of neuronal computation, not in the least to generate output spikes. How can we

evaluate our synapse model in the light of non-linear computations?

Non-linearities in neural response can occur in two ways. First, at the synapse level a non-

linear response can be generated principally through the recruitment of NMDA receptors

during repetitive synaptic activation [Branco and Häusser, 2010]. As we assume the evolution

in time of the synaptic conductance to be of a known shape, we could -in principle- also

mimic a non-linear synaptic conductance by using a more specific description of the synaptic

conductance evolution.

Second, non-linearities can arise from voltage-gated conductances in neuronal membranes,

that are often distributed non-uniformly along the dendrite [Larkum et al., 1999, Angelo et al., 2007,

Mathews et al., 2010]. The distributed nature of voltage-gated conductances leads to the view

that dendritic processing is non-linear, and shaped by these conductances and their spatial

distributions. Recent work actually challenges this view as it is known that in some behavioral

regimes, dendrites act linearly [Ulrich, 2002, Schoen et al., 2012]. Since our Green’s function

approach relies only on the assumption of linearity, it is not intrinsically restricted to passive

dendrites. Ion channels distributed along a dendrite can be linearized [Mauro et al., 1970],

and thus yield a quasi-active cable [Koch, 1998]. We anticipate that such a linearization proce-

dure can be plugged into our synapse model, so that the linear (but active) properties of the

membrane are captured in the Green’s function, yielding accurate and efficient simulations

of dendrites that reside in their linear regime. Also, in some cases the actual distribution of

voltage-gated conductances along the dendrite does not seem to have any effect as long as the

time constant for activation is slower than the spread of voltage itself, which makes the actual

location of the voltage-gated conductance irrelevant [Angelo et al., 2007]. Thus, in those cases
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were the spread of voltage is faster than the activation of the conductance, dendrites can act in

a passive way, as long as the appropriate non-linearity is introduced at one or a few point-like

locations. This can be introduced easily in our synapse model (see Figure 2.1C, with the soma

as point-like location with active currents).

While dealing with neuronal non-linearities the focus is often on supra-linear responses to

inputs, despite the fact that sub-linear responses are also intrinsically non-linear. Moreover,

recently it has been shown both in theory and experiment that sub-linear response are used

by neurons [Vervaeke et al., 2012, Abrahamsson et al., 2012]. Even in passive dendrites, sub-

linear responses can be generated when the dendrite locally saturates: due to high input

resistance the local voltage response to an input can reach the reversal potential of the mem-

brane. At that moment the driving force disappears and a sub-linear response is generated

to inputs. This sort of sub-linear response can be generated in conductance-based models

with realistic morphologies. Because we implicitly model dendritic morphology, our synapse

model is capable of generating these sub-linear responses.

In conclusion, we presented a new synapse model that computes the PSP waveforms as if

they were subject to dendritic processing without the need to explicitly simulate the dendrites

themselves. With this synapse model comes the ability to simulate dendritic processing at a

low computational complexity, that allows it’s incorporation in large scale models of neural

networks. We thus made a first step to bridge single and multi-compartmental modeling.
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Abstract

We prove that when a class of partial differential equations, generalized from the cable equa-

tion, is defined on tree graphs, and when the inputs are restricted to a spatially discrete, well

chosen set of points, the Green’s function (GF) formalism can be rewritten to scale as O(n)

with the number n of input locations, contrary to the previously reported O(n2) scaling. We

show that the linear scaling can be combined with an expansion of the remaining kernels as

sums of exponentials, to allow efficient simulations of equations from the aforementioned

class. We furthermore validate this simulation paradigm on models of nerve cells and explore

its relation with more traditional finite difference approaches. Situations in which a gain in

computational performance is expected, are discussed.

3.1 Introduction

Neurons have extensive morphological ramifications, called dendrites, that receive and in-

tegrate inputs from other neurons, and then transmit the result of this integration to the

soma, or cell body, where an output in the form of action potentials is generated. Dendritic

integration is considered a hallmark of neuronal computation [London and Häusser, 2005,

Häusser and Mel, 2003, Silver, 2010] and parallels the dendritic morphology [Torben-Nielsen and Stiefel, 2010,

Agmon-Snir et al., 1998, Segev, 2000]. It is often studied using the cable equation — a one di-

mensional reaction-diffusion equation that governs the evolution of the membrane potential

V (x, t ), and is defined on a tree graph representing the dendritic arborization. Inputs, such as
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synaptic currents, are usually concentrated in a spatially discrete set of points and depend

on this potential through their driving force [Kuhn et al., 2004], and possibly through other

non-linear conductances such as NMDA [Jahr and Stevens, 1990].

Traditionally, this integration is modeled using compartmental simulations, where space

is discretized in a number of compartments of a certain length and a second order finite

difference approximation is used to model the longitudinal currents [Hines, 1984]. As the

error of this approximation depends on the distance step, complex neural structures require

many compartments and are computationally costly to simulate.

Often however, stretches of neural fiber behave approximately linear [Schoen et al., 2012], and

one is not interested in the explicit voltage at all locations, but only at a specific output location.

For this reason we proposed the idea of using the Green’s function formalism to simulate

neuron models that receive inputs at a limited number of locations [Wybo et al., 2013]. Given

a number of n inputs, the voltage at an output location xi can be written in this formalism as:

V (xi , t ) =
n∑

j=1

∫ t

0
g (xi , x j , t − s)I j (s)ds. (3.1)

Problems arise when these inputs depend on the local voltage. Since, in such a case, all local

voltages have to be known, a system of n Volterra integral equations has to be integrated:

V (xi , t ) =
n∑

j=1

∫ t

0
g (xi , x j , t − s)I j (s,V (x j , s))ds, i = 1, . . . ,n. (3.2)

It can be seen that this system contains n2 convolutions. This unfavorable scaling, along

with the fact that the convolutions themselves are costly to compute and the restriction to

point-source non-linearities, significantly impedes the computational efficiency of the GF

formalism, and restricts its usefulness to very small numbers of input locations [Koch, 1998,

page 59-60].

In this work, we are able to significantly improve computational efficiency compared to the

classic GF formalism by showing that all three perceived disadvantages can be overcome.

Using a transitivity property for the Green’s function [Koch, 1998] (see appendix §3.6.1), we

show that, when the input locations are well chosen, a transformation of the system (3.2)

exists so that only O(n) kernels are required. We term this the sparse Green’s function (SGF)

formalism. As an example of how an efficient integration algorithm can be designed for the

resulting system of Volterra integral equations, we show that the kernels can be expressed as

sums of exponentials using the vector fitting (VF) algorithm [Gustavsen and Semlyen, 1999]

(see appendix §3.6.2) and that consequently the convolutions can be computed recursively.

Finally, we show (in a simplified setting) that when the spacing between the input locations

becomes sufficiently small, the SGF formalism reduces to the second order finite difference

approximation (in the spatial component) of the original equation. As a consequence, the SGF

formalism can be seen as a ‘generalization’ of the second order finite difference approximation
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to arbitrary distance steps, as long as what lies in between the distance steps is approximately

linear.

We validate this novel SGF formalism by reproducing two canonical results in neuroscientific

modeling. First, we reproduce the result of [Moore et al., 1978] on axonal action potential

velocity. Second, we compare our SGF formalism with the de facto standard NEURON simula-

tor [Carnevale and Hines, 2006] in the case of dendritic integration with conductance based

synapses. In a final section, we discuss in which cases the SGF formalism may yield compu-

tational advantage over canonical second order finite difference approaches (of which the

NEURON simulator is an example).

3.1.1 The system of equations

Each edge of the tree graph represents a segment of the dendritic tree, for which the cable

equation has the following form:

2πacm
∂V

∂t
(x, t )+πa2

ra

∂2V

∂x2 (x, t )−2πagmV (x, t )+∑
c

Ic (x, t ) =
n∑

i=1
Ii (t ,V (xi , t ))δ(x−xi ), (3.3)

where cm , gm and ra denote, respectively, the membrane capacitance, the membrane conduc-

tance and the axial resistance, a denotes the radius of the dendritic branch, Ic the current

contribution of a channel type c and Ii the input current at location xi . The ion channel

current can depend non-linearly on the voltage and a number of state-variables:

Ic (x, t ) = fc (V (x, t ),yc (x, t )), (3.4)

where the state-variables yc (x, t ) evolve according to:

ẏc, j (x, t ) = yc, j ,inf(V (x, t ))− yc, j (x, t )

τc, j (V (x, t ))
, (3.5)

with τc, j and yc, j ,inf functions that depend on the channel type. Linearizing these currents

yields a quasi-active description [Koch, 1998] of the ion channels:

Ic,lin(x, t ) = ∂ fc

∂V
V (x, t )+∑

j

∂ fc

∂yc, j
yc, j (x, t ), (3.6)

with

ẏc, j (x, t ) = d

dV

(
yc, j ,inf

τc, j

)
V (x, t )− 1

τc, j
yc, j (x, t ), (3.7)

where all derivatives, as well as τc, j , are evaluated at the equilibrium values of the state

variables. If there are a total of K state-variables associated with ion channels, a system of

K +1 PDE’s of first degree in the temporal coordinate is obtained, which can be recast into a

single PDE of degree K +1.
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Consequently, we are interested in the GF of PDE’s of the following form:

L̂(x)V (x, t ) =
[

L̂0(x)
∂2

∂x2 + L̂1(x)
∂

∂x
+ L̂2(x)

]
V (x, t ) = L̂3(x)

n∑
i=1

Ii (t )δ(x −xi ), (3.8)

where L̂i (x), i = 0, . . . ,3 are operators of the form L̂i (x) = ∑K+1
k=0 Ck

∂k

∂t k , K ∈ N, and δ is the

Dirac-delta function. We assume:

(i) that an equation of the form (3.8) is defined on each edge of the tree graph (let E denote

the set of edges).

(ii) that on each leaf (let Λ denote the set of leafs) a boundary condition of the following

form holds:

L̂λ1
∂

∂x
V ελ(t )+ L̂λ2 V ελ(t ) = L̂λ3 Iλ(t ) ∀λ ∈Λ, (3.9)

where L̂λi are operators defined analogously to L̂i (x) and where V ελ is the field value on

the adjacent edge ελ in the limit of xελ approaching the leaf. Note that in this general

form, equation (3.9) can represent sealed end (L̂λ1 = 1, L̂λ2 = L̂λ3 = 0) or voltage clamp

(L̂λ1 = 0, L̂λ2 = L̂λ3 = 1 and I (t ) constant) boundary conditions or, when there is only one

neurite leaving the soma, a lumped soma boundary condition (see [Tuckwell, 1988],

and where the operators can possibly contain higher order derivatives if quasi-active

channels are present).

(iii) that at each node that is not a leaf (letΦ denote the set of nodes that are not leafs, and

let E(φ) denote the set of edges that join at node φ ∈Φ):

V ε(t ) =V ε′(t ), ∀ε,ε′ ∈ E(φ), ∀φ ∈Φ∑
ε∈E(φ)

L̂ε
∂

∂x
V ε(t ) = L̂φ1 V ε(t )+ L̂φ2 Iφ(t ), ∀φ ∈Φ,

(3.10)

where the operators L̂ε,φ are again defined as above and V ε denotes the voltage on

edge ε in the limit of xε approaching the node φ. The first condition then expresses the

continuity of the voltage at a node, whereas the second condition can signify the con-

servation of current flow (L̂ε = πa2
ε

/
r εa , L̂φ1 = L̂φ2 = 0) or a somatic boundary condition

when multiple neurites join at the soma (see again [Tuckwell, 1988]).

Algorithms to compute the GF of this system of PDE’s have been described extensively in

the neuroscientific literature: the algorithm by [Koch and Poggio, 1985] computes the Green’s

function exactly in the Fourier domain whereas the ‘sum-over-trips’ approach pioneered by

[Abbott et al., 1991] (see [Bressloff and Coombes, 1997] for another overview) and extended by

[Coombes et al., 2007, Caudron et al., 2012] uses a path integral formalism. We implemented

the algorithm given in [Koch and Poggio, 1985] as we are interested in the GF in the Fourier

domain.
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3.2 Methods

3.2.1 A sparse reformulation of the Green’s function formalism

In this section we prove formally that a sparse reformulation of equation (3.2) exists. Fourier

transforming this equation gives the GF formalism in the Fourier domain [Butz and Cowan, 1974,

Wybo et al., 2013], :


Ṽ1(ω)

...

Ṽn(ω)

=


g11(ω) · · · g1n(ω)

...
. . .

...

gn1(ω) · · · gnn(ω)




Ĩ1(ω)
...

Ĩn(ω)

 , (3.11)

where Ṽ1, . . . ,Ṽn denote the field values resulting from the inputs Ĩ1, . . . , Ĩn at locations 1, . . . ,n

(which may be arbitrarily distributed along the edges of the tree graph), and gi j denotes

the GF evaluated between points i and j (see [Koch and Poggio, 1985] for an example of an

algorithm to evaluate these functions). Note that for the GF, we dropped the ∼ that signifies the

Fourier transform for notational simplicity. Whenever the argument of a kernel is not explicitly

mentioned, it will be implied that it is the Fourier transform that is under consideration. Note

furthermore that the GF between points i and j is equal to the GF between points j and i , so

that the matrix in equation (3.11) is symmetric [Koch, 1998, page 63]. Note finally that while

the input current Ĩi may depend on the local voltage (cf. equation (3.3)), it is still possible to

take the Fourier transform by considering Ii (t ,V (xi , t)) as an a priori unknown function of

time (≡ Ii (t )).

We can rewrite the set of equations (3.11) so that the field at one location depends on the input

only at that location and the field at all other locations:

Ṽi (ω) = fi (ω)Ĩi (ω)+ ∑
j 6=i

hi j (ω)Ṽ j (ω), (3.12)

where (with G denoting the matrix for which Gi j = gi j and G−1 its matrix inverse and omitting

the argument ω for notational clarity)

fi = 1/(G−1)i i

hi j = −(G−1)i j /(G−1)i i . (3.13)

Intuitively, the field at any location can only depend on the local input and the fields at the

neighboring locations. After introducing the necessary definitions and notations, we will

prove this intuition formally.

Notation 1. Let A denote a matrix. A[ j ; i ] then denotes the same matrix with the j ’th row and

i ’th column deleted.
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This way, (−1) j+i det(A[ j ; i ]) gives the ( j , i )’th minor of A and the elements of the adjugate

matrix of A can be written as:

adj(A)i j = (−1) j+i det(A[ j ; i ]) (3.14)

Then, by using Cramer’s rule (see for instance [Horn and Johnson, 2012, pages 17-24]):

A−1 = adj(A)

det(A)
, (3.15)

equation (3.13) can be written by as:

fi = det(G)/det(G[i ; i ])

hi j = (−1)i+ j+1 det(G[ j ; i ])/det(G[i ; i ]). (3.16)

We specify the discrete set of input locations as follows:

Notation 2. P denotes a set of n points distributed on a tree graph.

The geometry of the tree graph will induce a nearest neighbor relation on P . We define this

relation in the following way:

Definition 1. Two points i , j ∈P are nearest neighbors if no other point lies on the shortest

path between them.

This allows for the definition of sets of nearest neighbors:

Definition 2. A set of nearest neighbors N is a subset of P in which each pair of points is a

pair of nearest neighbors, and for which no other point can be found in P that is not in N but

is still a nearest neighbor of every point in N .

In Fig 3.1A we show an illustration of these sets.

Notation 3. We use m to denote the number of sets of nearest neighbors which can be found in

a given P .

Definition 3. For any set of points P = {1, . . . ,n}, G(P ) is the matrix of transfer kernels:

G(P ) =


g11 g12 · · · g1n

...
...

. . .
...

gn1 gn2 · · · gnn

 , 1, . . . ,n ∈P (3.17)
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}
}

A B

Figure 3.1 – Schematic of the rationale behind the sparsification of the Green’s function
formalism for tree structures. A: Illustration of the sets of nearest neighbors Nq (q = 1,2)
induced by the tree structure. For any pair of points in Nq there is no other point on the
shortest path between them. B: Illustration of how the structure of the matrices A and A[ j , i ]
(here j < i ) gives rise to the sparseness of the SGF. These matrices can be written in ‘block
upper triangular form’ (white: zeros, black: blocks on the diagonal, grey: other non-zero
elements). The diagonal of A[ j , i ] (red) is shifted between the j ’th row and i ’th column (blue)
compared to the diagonal of A. When j and i do not belong to the same set of nearest
neighbors, there is always at least one zero on the diagonal of the resulting matrix (here, there
are two zeros — green circles).

However, when P denotes a set of input locations distributed on the tree graph, we will only

make the argument of G explicit when we consider a subset of P . Hence it is understood that

G ≡G(P ), as is the case in formulas (3.13) and (3.16).

Definition 4. An attenuation function ai j is defined by:

ai j = gi j /g j j . (3.18)

Note that trivially ai i = 1.

Definition 5. A(P ) is the matrix of attenuation functions ai j between any two points i , j ∈P

(analogous to definition 3).

The significance of these sets N (definition 2) is due to the the following lemma [Koch, 1998,

page 63]:

Lemma 1. Transitivity property. If i , j ∈P are not nearest neighbors, then for every point l on

the direct path between them it holds that:

gi j =
gi l gl j

gl l
, (3.19)

41



Chapter 3. A sparse reformulation of the Green’s function formalism allows efficient
simulations of morphological neuron models

Proof. See appendix §3.6.1.

This leads directly to a similar transitivity property for attenuations:

ai j = ai l al j . (3.20)

Note that we may obtain the matrix A (definition 5) from G by dividing, for all i = 1, . . . ,n, its

i ’th column by gi i , and that as a consequence
(∏

i gi i
)

det(A) = det(G). Hence (3.16) can be

written as:

fi = gi i det(A)/det(A[i ; i ])

hi j = (−1)i+ j+1 det(A[ j ; i ])/det(A[i ; i ]). (3.21)

Given these definitions and notation, we can capture the aforementioned intuition formally

as follows:

Theorem 1. Consider an arbitrary set of points P on a tree graph. Then

i) for a point i that is in exactly p sets N1, . . . ,Np ,

fi = gi i
det(A(N1)) · · ·det(A(Np ))

det(A(N1 ∪ . . .∪Np )[i ; i ])
(3.22)

ii) for a pair of points i , j that are nearest neighbors, and for which there consequently exists

a set N 3 i , j , and where there are exactly p other sets N1, . . . ,Np that contain i :

hi j = (−1)i+ j+1 det(A(N1)) . . .det(A(Np ))det(A(N )[ j ; i ])

det(A(N1 ∪ . . .∪Np ∪N )[i ; i ])
(3.23)

iii) for a pair of points i , j that are not nearest neighbors,

hi j = 0 and h j i = 0. (3.24)

Remark 1. To unclutter the notation, we use the indices i , j ∈N to refer to the actual points

in P , their corresponding positions in the full matrices A and in the restricted matrices A(N ).

This is justified, as it does not influence formulas (3.22) and (3.23). Permuting the numbering

of a pair of points amounts to permuting the corresponding rows and columns of the matrices,

and thus does not change the determinants. Restricting A to A(N ) amounts to deleting the

appropriate rows and corresponding columns from A, and thus does not change the factor

(−1)i+ j+1.
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Proof. For convenience, we introduce the following ordering scheme for the points: we choose

one point as the root of the tree and give it the lowest index, and then reorder the other points

such that within each set N , the point closest to the root has the lowest index, and the other

points in N are numbered consecutively. We then reorder the sets N so that the set with

highest index contains the point with highest index, and so on.

Let there be a total of m sets of nearest neighbors Nq , q = 1, . . . ,m in P . First, we show that

det(A) =
m∏

q=1
det(A(Nq )) (3.25)

by applying elementary row operations recursively set after set. Let’s start with Nm , the last

set of nearest neighbors, containing k elements. Our numbering scheme guarantees that the

last k −1 rows of A correspond to the k −1 elements in Nm that are not closest to the root. Let

us denote the point in Nm that is closest to the root by l . Between every d ∉Nm and every

e ∈Nm the transitivity property (3.20) holds, and thus aed = ael ald .

By applying row operations Re (A) → Re (A)−ael Rl (A), that do not change det(A) [Horn and Johnson, 2012,

pages 9-10], and using (3.20) along with the trivial identity ael = ael al l , the last k −1 rows of A

become:

R j (A) =(
0 . . . 0 ae,n−k+2 −ael al ,n−k+2 . . . aen −ael aln

)
. (3.26)

Thus, the determinant reduces to

det(A) = det

(
A′ A′′

0 B

)
= det(A′)det(B), (3.27)

where A′ and A′′ are the parts of A unchanged by the row operations, and B consists of the

non-zero elements of the part of A affected by the row operations. It holds that

det(B) = det(A(Nm)). (3.28)

Construct A(Nm) by taking the last k −1 rows and columns from A, and the attenuations

to (from) point l as the first row (column) of A(Nm). Then, by applying the row-operations

Re (A(Nm)) → Re (A(Nm))− ae1R1(A(Nm)), the matrix B will be found as the only non-zero

minor of the first row elements — the determinant of which is multiplied by 1 to give the

determinant of A(Nm). Thus we have factorized det(A) in det(A′)det(A(Nm)).

Our numbering scheme for the points guarantees that a similar reduction can be applied

to det(A′), as long as it contains distinct sets N , which by induction on m proves (3.25).

Note that we could have achieved the same reduction by applying the column operations

Ce (A) →Ce (A)−al eCl (A) in an analogous manner. Then the matrix in (3.27) would have its

zero part in the upper right corner.
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Next we compute the determinant of A[i ; i ]. By removing both the i ’th row and column, it is

as if i is removed from the set P completely. Consequently, N1 ∪ . . .∪Np \ {i } forms a new set

of nearest neighbors, leading to a factor det(A(N1 ∪ . . .∪Np \ {i })) = det(A(N1 ∪ . . .∪Np )[i ; i ])

instead of det(A(N1)) · · ·det(A(Np )) in the final product (3.25). This proves expression (3.22).

Now consider a pair of points i , j as in point ii) of the theorem. If either i or j is the point

closest in N to the root, we reorder the points in P as described above, but now with the extra

constraint that within the set N , all points are numbered consecutively. Note that it is always

possible to find such an ordering for any one set N (but not for all sets at the same time).

Assume furthermore that in the ordering of sets, N comes at the k’th place (k ≤ m). Again, we

start by factorizing out the determinant of A(Nm). If k < m and if l , the point in Nm closest

to the root, is not j , the factorization can be carried out as explained above by using the row

operations Re (A) → Re (A)−ael Rl (A) for e ∈ Nm . If l = j , the deletion of the corresponding

row prevents us from using it to execute these row operations, but the j ’th column can be used

instead: Ce (A) →Ce (A)−al eCl (A). Induction on m, until the set N is reached, then factors

out the determinants of the matrices A(Nq ), q > k. If k = m, the previous induction can be

skipped.

When i nor j are the point closest to the root in set N , further factorization can proceed

unhindered by using row operation, leading to a factorization similar to (3.25), except for the

replacement det(A(Nk )) → det(A(Nk )[ j ; i ]).

When i (resp. j ) is the point closest to the root, our special numbering scheme allows the

application of Rd → Rd −ddi Ri (resp. Cd → Cd −ai dCi ) for d ∈ N1 ∪ . . .∪Nk−1, resulting in

the matrix:

det(A(N1 ∪ . . .∪Nk )) = det

(
B 0

A′′ A(N )[ j ; i ]

)
= det(B)det(A(N )[ j ; i ]), (3.29)

resp.

det(A(N1 ∪ . . .∪Nk )) = det

(
B A′′

0 A(N )[ j ; i ]

)
= det(B)det(A(N )[ j ; i ]). (3.30)

It can be checked that in both cases det(B) = det(A(N1∪ . . .∪Nk−1)). Further factorization can

then proceed unhindered, leading again to (3.25) with det(A(Nk )) → det(A(Nk )[ j ; i ]). This

proves expression (3.23).

Finally, consider a pair of points i > j that are not nearest neighbors. We assure that the

points are numbered in such a way that all the sets N that contain j have points with indices

smaller than i (note that since i and j are not nearest neighbors, none of these sets contains

i ). The familiar reduction scheme for A[ j ; i ] by applying row operations can be thought of as

writing this matrix in ‘block-upper triangular’ form. Its determinant is then the product of all

determinants of the block-matrices on the diagonal. Between the j ’th row and i ’th column of

this matrix, the diagonal is shifted by 1 to a lower row compared to the diagonal of A. Since
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i does certainly not belong to the same ‘block’ as j , there is at least one 0 on this diagonal

(Fig 3.1B). This proves that hi j = 0. That h j i = 0, can be proved analogously, but now the

matrix is written in ‘block-lower triangular’ form by using column operations. As such, the

statement (3.24) is proven.

Corollary 1. Number of kernels. When a total of m sets of nearest neighbors N1, . . . ,Nm exists

within a set of n points P , the number of non-zero kernels M in equation (3.12) is:

M = n +
m∑

q=1

∣∣Nq
∣∣(∣∣Nq

∣∣−1
)

, (3.31)

with
∣∣Nq

∣∣ the cardinality of the set Nq .

Proof. First, we prove equation (3.31). For n points, there are n kernels fi . In every set Nq ,

there is kernels hi j between for every combination of points i , j ∈Nq , with i 6= j . Consequently,

within a set Nq , there are
∣∣Nq

∣∣ (
∣∣Nq

∣∣−1) kernels. Hence, in total, there are n+∑m
q=1

∣∣Nq
∣∣ (

∣∣Nq
∣∣−

1) kernels.

Corollary 2. Sparseness. For a given tree graph and a given positive number n, the configura-

tions of n points that minimize the number M of kernels in (3.12) have:

M = 3n −2. (3.32)

Proof. When n = 1 the statement is trivial. For an optimal configuration with n > 1,
∣∣Nq

∣∣= 2

for all m sets Nq , and m = n −1. Hence M = n +2(n −1) = 3n −2.

From the viewpoint of computational efficacy, corollaries 1 and 2 indicate that there are ‘well-

chosen’ and ‘badly-chosen’ ways for the input locations to be distributed on the tree graph.

For a ‘well-chosen’ configuration |N | = 2, or at least |N |¿ n, for all N , whereas in worst case

scenarios there is only a single set N .

3.2.2 An efficient method to integrate the system of Volterra integral equations

Transforming (3.12) to the time domain results in a system of Volterra integral equations:

Vi (t ) =
∫ t

0
fi (t − s)Ii (s,V (xi , s))ds + ∑

j 6=i

∫ t

0
hi j (t − s)V j (s)ds ∀i , (3.33)

where all kernels hi j between points i , j that are not nearest neighbors are zero due to theorem

1. In this form, the SGF-formalism is well-suited to simulate neuron models.

Let O(nk ) denote the number of operations required to compute a convolution each time-step.

If these convolutions were to be integrated naively, by evaluating the quadrature explicitly (the

Quad approach), nk would denote the number of time-steps after which the kernel can be
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truncated. However, the kernels are computed in the frequency domain, so if a partial fraction

decomposition in this domain can be found:

fi (ω) ≈
Li∑

l=1

γl
i

iω+αl
i

hi j (ω) ≈
Li j∑
l=1

γl
i j

iω+αl
i j

,

(3.34)

where ℜ(α) < 0, then in the time domain the kernels can be readily expressed as sums of one

sided exponentials:

fi (t ) ≈
Li∑

l=1
γl

i eα
l
i t

hi j (t ) ≈
Li j∑
l=1

γl
i j eα

l
i j t ,

(3.35)

when t ≥ 0, and fi (t ) = hi j (t ) = 0 otherwise. Such a decomposition can be derived accurately

by employing the vector fitting (VF) algorithm [Gustavsen and Semlyen, 1999] (see appendix

§3.6.2). Consequently, the convolutions with the kernels become sums of convolutions with

exponentials, which can be readily expressed as simple differential equation (see for instance

[Lubich and Schädle, 2002]). We call this the Exp approach and nk is the number of exponen-

tials per kernel in this case. Usually, for the Exp approach, nk is smaller than for the Quad

approach. Nevertheless, many of the exponentials of the VF algorithm are used to approximate

the small t behavior of the kernels, and hence have a very short time-scale. The large t be-

haviour is often described by one or a few exponentials. This suggest that a ‘mixed’ approach

could yield optimal performance, where for small t the quadrature is computed explicitly, and

for large t the convolution is computed as an ODE (or the sum of a few ODE’s). We now give a

detailed account of the mixed approach.

Let t = N h, with h the integration step and N a natural number, and let us assume that Vi (τ) is

known for all i and for τ ∈ {t −kh;k = 1, . . . , N }, and that we want to know Vi (t +h), with h > 0.

We split the convolutions in equation (3.33) into an quadrature term (
∫ t+h

t−K h) and a exponential

term (
∫ t−K h

0 ):

Vi (t +h) =
∫ t+h

t−K h
fi (t +h − s)Ii (s)ds + ∑

j 6=i

∫ t+h

t−K h
hi j (t +h − s)V j (s)ds+

∫ t−K h

0
fi (t +h − s)Ii (s)ds + ∑

j 6=i

∫ t−K h

0
hi j (t +h − s)V j (s)ds,

(3.36)

where K is a natural number that needs to be chosen. We assume that between the temporal
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grid points t −kh and t − (k +1)h, V j (t ) can be approximated by a linear interpolation:

V j (s) ≈V j (t−kh)+V j (t −kh)−V j (t − (k +1)h)

h
(s−t+kh), t−(k+1)h ≤ s ≤ t−kh. (3.37)

With this and the exponential approximation (3.35), the quadrature term for convolutions

with V j becomes:

∫ t+h

t−K h
hi j (t +h − s)V j (s)ds ≈

V j (t +h)
∑

l

[
−
γl

i j

αl
i j

+
γl

i j

αl 2
i j h

(
eα

l
i j h −1

)]

+
K−1∑
k=0

V j (t −kh)
∑

l

[
−
γl

i j

αl 2
i j h

(
eα

l
i j (k+1)h −2eα

l
i j kh +eα

l
i j (k−1)h

)]

+V j (t −K h)
∑

l

[
−
γl

i j

αl
i j

eα
l
i j K h +

γl
i j

αl 2
i j h

(
eα

l
i j K h −eα

l
i j (K−1)h

)]
,

(3.38)

and similarly for the convolutions with the input Ii . For the exponential term, we get the

following:∫ t−K h

0
hi j (t +h − s)V j (s)ds =∑

l
γl

i j eα
l
i j (K+1)h

∫ t−hK

0
eα

l
i j (t−K h−s)V j (s)ds, (3.39)

where ul
i j (t −K h) ≡ ∫ t−K h

0 γl
i j eα

l
i j (t−K h−s)V j (s)ds is the solution of an initial value problem:

u̇l
i j (t ) =αl

i j ul
i j (t )+γl

i j V j (t )

ul
i j (t = 0) = 0,

(3.40)

whose value can be computed recursively:

ul
i j (t −K h) = eα

l
i j hul

i j (t − (K +1)h)+
∫ t−K h

t−(K+1)h
eα

l
i j sV j (s)ds. (3.41)

Using again the linear approximation (3.37), this becomes:

ul
i j (t −K h) ≈ eα

l
i j hul

i j (t − (K +1)h)

+V j (t −K h)

[
−
γl

i j

αl
i j

+
γl

i j

αl 2
i j h

(
eα

l
i j h −1

)]

+V j (t − (K +1)h)

[
γl

i j

αl
i j

eα
l
i j h −

γl
i j

αl 2
i j h

(
eα

l
i j h −1

)]
.

(3.42)

Analogous considerations apply for the convolutions with the input Ii .
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Let us now define a matrix H0 by:

(H0)i j =
∑

l

[
−
γl

i j

αl
i j

+
γl

i j

αl 2
i j h

(
eα

l
i j h −1

)]
(3.43)

and a tensor H1 by:

(H1)k
i j =

∑
l

[
−
γl

i j

αl 2
i j h

(
eα

l
i j (k+1)h −2eα

l
i j kh +eα

l
i j (k−1)h

)]
for k = 0, . . . ,K −1

(H1)k
i j =

∑
l

[
−
γl

i j

αl
i j

eα
l
i j kh +

γl
i j

αl 2
i j h

(
eα

l
i j kh −eα

l
i j (K−1)h

)]
for k = K .

(3.44)

when i , j are nearest neighbors, and (H0)i j = (H1)k
i j = 0 otherwise. For the input kernels fi , we

define a vector F0 (with (F0)i an analogous to (3.43)) and a matrix F1 (with (F1)k
i analogous to

(3.44)). Using these definitions, we may write equation (3.36) as:

Vi (t +h) =
[

(F0)i Ii (t +h)+
K∑

k=0
(F1)k

i Ii (t −kh)

]

+ ∑
j 6=i

[
(H0)i j V j (t +h)+

K∑
k=0

(H1)k
i j V j (t −kh)

]

+∑
l

eα
l
i (K+1)hul

i (t −K h)+ ∑
j 6=i

∑
l

eα
l
i j (K+1)hul

i j (t −K h).

(3.45)

To simplify the notation, we group all terms that do not contain voltage or input at time t +h

in a vector k(t ), for which:

ki (t ) =
[

K∑
k=0

(F1)k
i Ii (t −kh)

]
+ ∑

j 6=i

[
K∑

k=0
(H1)k

i j V j (t −kh)

]

+∑
l

eα
l
i (K+1)hul

i (t −K h)+ ∑
j 6=i

∑
l

eα
l
i j (K+1)hul

i j (t −K h)

(3.46)

Consequently, equation (3.45) becomes in matrix form:

(I−H0)V(t +h) = diag(F0)I(t +h)+k(t ). (3.47)

Solving this matrix equation then gives V(t +h).

Note that when the input current Ii depends on the local voltage, equation (3.47) is only semi-

implicit, since the voltage at time t would be required to compute the current at time t +h.

This description may be unstable for certain ion channels. However, the direct dependence of

most currents on the voltage is linear (in the case of ion-channels for instance, non-linearities
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arise through the non-linear dependence of state variables on the voltage):

Ii (t ,V (xi , t )) = ci (t )+di (t )V (xi , t ). (3.48)

Using this, equation (3.47) can be modified in the following way:

(I−H0 −diag(F0 ¯d(t +h))V(t +h) = diag(F0)c(t +h)+k(t ). (3.49)

where ¯ denotes the element wise multiplication. This way of integration, while still being

semi-implicit (since the equations for state variables of ion channels (3.5) are still integrated

explicitly) is stable and standard in neuroscientific applications [Hines, 1984].

Note furthermore that the matrix (I−H0) resp. I−H0 −diag(F0 ¯d(t +h) is structurally sym-

metric: whenever an off-diagonal element is nonzero, its counterpart opposite to the diagonal

is nonzero as well. When |N | = 2 for all N , and when the input locations are ordered in the

right way, this matrix is a Hines matrix [Hines, 1984]. For such a matrix a linear system of

equations of the form (3.47) resp. (3.49) can be solved for V in O(n) steps instead of the usual

O(n3) steps.

Note also that we did not discuss the initialization steps of this algorithm explicitly. We omitted

this discussion since, in neuroscience, it usually is simply assumed that the neuron model

is at equilibrium at all times t < 0. Hence, the vectors k(t = 0),k(t = h),k(t = 2h), . . . can be

computed easily by assuming that V (−kh) = 0 for all required k’s.

Finally, we remark that K , the parameter in the algorithm which determines the limit K h

below which the quadrature is evaluated explicitly, can be chosen to minimize the number nk

of operations per kernel. In principle, K could be chosen separately for each kernel. In the

present derivation we however opted not to do so for simplicity.

3.2.3 Nonlinear terms and the small∆x limit of the SGF formalism

While a set of ion channels that behaves approximately linear may be incorporated directly in

the SGF formalism, the question what to do with channels that act truly non-linear remains.

Such channels can be moved from the left hand side of equation (3.3) to the right hand side,

and treated as an input current that depends on the local voltage. This current needs to be

‘compartmentalized’, i.e. expressed at a discrete number of input locations, with a certain

separation ∆x.

A ‘recompartmentalization’ of this type leads to the question of what the relation between the

SGF formalism and the canonical second order finite difference approximation is. In both

approaches, the input is compartmentalized. In the finite difference approximation however,

the entire cable (i.e. the longitudinal, capacitive and leak currents) is compartmentalized

as well, whereas in the SGF formalism, the cable is treated exactly. Consequently, in spatial

regions with truly non-linear ion channels, the accuracy of the SGF is equivalent to (or better
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than, since the linear currents are still treated exactly) the accuracy of the canonical second

order finite difference approximation.

The observation that the SGF formalism treats the cable exactly then leads to the question

whether the second order finite difference approximation can be derived from it, as both

approaches describe the voltage at a given location only as a function of the voltage at the

neighboring locations and the input at that location. We show in a simplified setting that,

when the distance ∆x between the input locations is sufficiently small, the formalism reduces

to the second order finite difference approximation of the original equation.

Although we expect that the reduction of the SGF formalism to the second order finite differ-

ence approximation is valid for all equations of the type (3.8) and for arbitrary tree graphs,

its derivation can become prohibitively complex. We therefore constrain ourselves to the

passive cable equation (3.3) and to the case where this equation is defined on a line of length

1, with a homogeneous boundary condition at each end. We suppose that there are n−1 input

locations, distributed evenly with spacing ∆x = 1/n .
∂V
∂t (x, t )+ ∂2V

∂x2 (x, t )−V (x, t ) =∑n−1
i=1 Ii (t )δ(x − i∆x).

∂V
∂x (0, t ) = L̂ AV (0, t )
∂V
∂x (1, t ) = L̂B V (1, t )

(3.50)

Note that the input currents Ii (t ) can depend on the local voltage V (xi , t ), as they can be the

result of a discretization of the ion channel currents.

Second order finite difference approximation To obtain the second order finite difference

approximation of equation (3.50), we replace

∂2V

∂x2 (xi , t ) → Vi+1(t )−2Vi (t )+Vi−1(t )

∆x2 (3.51)

and we average the inputs for each compartment:

1

∆x

∫ (i+1/2 )∆x

(i−1/2 )∆x
Ii (t )δ(x − i∆x)dx = Ii (t )

∆x
(3.52)

Consequently, we find for i = 1, . . . ,n −1:

Vi+1(t )−2Vi (t )+Vi−1(t )

∆x2 + V̇i (t )−Vi (t ) = Ii (t )

∆x
. (3.53)

The boundary condition at x = 0 becomes:

V1(t )−V0(t )

∆x
= L̂(t )

A V0(t ), (3.54)

and an analogous expression applies for the boundary condition at x = 1
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Reduction of the SGF formalism The Fourier transform of the problem (3.50) reads:
∂2Ṽ
∂x2 (x,ω)−γ(ω)2Ṽ (ω) =∑n

i=1 Ĩi (ω)δ(x −xi )
∂Ṽ
∂x (0,ω) = L̃ A(ω)Ṽ (0,ω)
∂Ṽ
∂x (1,ω) = L̃B (ω)Ṽ (1,ω),

(3.55)

where L̃ A and L̃B are polynomials in ω representing the respective Fourier transforms of L̂ A

and L̂B , and where γ2(ω) = iω−1. In the following the coordinate ω is dropped for notational

clarity. We define two linearly independent solutions to the homogeneous problem:

uA(x) = eγx +kAe−γx

uB (x) = eγx +kB e−γx
(3.56)

that satisfy the boundary conditions respectively in x = 0 (uA) and x = 1 (uB ). Then the Green’s

function of problem (3.55) is given by [Stakgold, 1967, page 66]:

gi j =


uA(xi )uB (x j )
−2γ(kB−kA ) if xi ≤ x j
uB (xi )uA (x j )
−2γ(kB−kA ) if xi ≥ x j .

(3.57)

Consequently, the attenuation functions are given by:

ai j =


uA(xi )
uA(x j ) if xi ≤ x j

uB (xi )
uB (x j ) if xi ≥ x j .

(3.58)

According to theorem 1, problem (3.55) is then fully defined by the following kernels:

• for i = 0, . . . ,n −2

hi+1,i =
ai+1,i −ai+1,i+2ai+2,i

1−ai ,i+2ai+2,i
= ai+1,i

1−ai+1,i+2ai+2,i+1

1−ai ,i+2ai+2,i
(3.59)

• for i = 2, . . . ,n −1

hi ,i+1 =
ai ,i+1 −ai ,i−1ai−1,i+1

1−ai+1,i−1ai−1,i+1
= ai ,i+1

1−ai ,i−1ai−1,i

1−ai+1,i−1ai−1,i+1
(3.60)

• h01 = a01

• hn,n−1 = an,n−1

• for i = 1, . . . ,n −1

fi = gi i
(1−ai ,i−1ai−1,i )(1−ai+1,i ai ,i+1)

1−ai+1,i−1ai−1,i+1
(3.61)

51



Chapter 3. A sparse reformulation of the Green’s function formalism allows efficient
simulations of morphological neuron models

Using equations (3.58) and (3.56), it can be checked that:

1−ai j a j i =


2(kB−kA )sinh(γ(x j−xi ))
uB (xi )uA (x j ) if xi ≤ x j

2(kB−kA )sinh(γ(xi−x j ))
uA(xi )uB (x j ) if xi ≥ x j .

(3.62)

Consequently, it follows that:

• for i = 0, . . . ,n −2

hi+1,i = sinh(γ∆x)

sinh(2γ∆x)
(3.63)

• for i = 2, . . . ,n −1

hi ,i+1 = sinh(γ∆x)

sinh(2γ∆x)
(3.64)

• for i = 1, . . . ,n −1

fi =−1

γ

(sinh(γ∆x))2

sinh(2γ∆x)
(3.65)

With these equations, equation (3.12) for i = 1, . . . ,n −1 becomes:

Ṽi =−1

γ

(sinh(γ∆x))2

sinh(2γ∆x)
Ĩi + sinh(γ∆x)

sinh(2γ∆x)

(
Ṽi−1 + Ṽi+1

)
. (3.66)

Since ∆x is small, the sinh-functions can be expanded. This gives:

Ṽi =− ∆x

2+ 8
6γ

2∆x2
Ĩi +

1+ 1
6γ

2∆x2

2+ 8
6γ

2∆x2

(
Ṽi−1 + Ṽi+1

)
. (3.67)

Multiplying both sides by the denominator 2+ 8
6γ

2∆x2, rearranging terms and dividing by ∆x2

then gives:

Ṽi−1 −2Ṽi + Ṽi+1

∆x2 − 8

6
γ2Ṽi + 1

6
γ2 (

Ṽi−1 + Ṽi+1
)= 1

∆x
Ĩi . (3.68)

Averaging Ṽi−1 + Ṽi+1 ≈ 2Ṽi and transforming the resulting equation back to the time domain

then results precisely in the finite difference approximation for i = 1, . . . ,n −1.

Let us now investigate equation (3.12) when i = 0. Here, it holds that:

Ṽ0 = a01Ṽ1. (3.69)
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Substituting the explicit form of a01 = uA(0)
/

uA(∆x) in this equation and expanding the

exponentials up to first order leads to:

Ṽ0 = 1

1+ 1−kA
1+kA

γ∆x
Ṽ1 (3.70)

Since uA satisfies the boundary condition at x = 0, it can be checked that γ (1−kA)
/

(1+kA) =
L̃ A , so that equation (3.70) can be rewritten as:

L̃ AṼ0 = Ṽ1 − Ṽ0

∆x
. (3.71)

Transforming this equation back to the time domain yields precisely the finite difference

approximation for V0. Analogous considerations apply for Vn .

3.2.4 Implementation

In this section we summarize the steps one has to undertake to implement the SGF formalism.

Such an implementation consists of two main parts: an initialization part and a simulation

part.

The initialization part consists of the following steps:

1. For any given set of input locations and a tree graph, a routine has to be implemented

that can identify the sets of nearest neighbors. Such a routine could for instance return

a list, where each element is a list in itself, containing the input locations that constitute

a set of nearest neighbors.

2. The GF’s gi j (ω) between every pair of elements in the sets of nearest neighbors have

to be computed. We implemented the algorithm of [Koch and Poggio, 1985] for this

purpose. Note that for a set N of cardinality |N |, only |N | (|N |+1)
/

2 function gi j

have to be computed, since gi j = g j i [Koch, 1998]. From these kernels, the attenuation

functions can be derived easily.

3. The kernels fi and hi j have to be computed. This can be done either by evaluating the

formulas (3.22) and (3.23) explicitly (when all matrices of which the determinants have

to be computed are small) or by the derived formulas:

fi = gi i
1

A(N1 ∪ . . .∪Np )−1

hi j =−
A(N1 ∪ . . .∪Np ∪N )−1

i j

A(N1 ∪ . . .∪Np ∪N )−1
i i

.

(3.72)

Note that in both cases, attenuation function are needed that are not directly computed

in the previous step, since attenuation matrices of unions of sets are considered. This
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is not a problem, as these attenuation functions can be easily reconstructed from the

transitivity property.

4. The partial fraction decomposition of each kernel has to be computed. The VF algorithm

[Gustavsen and Semlyen, 1999] (appendix §3.6.2) is well suited for this purpose. When

the parameters of the partial fraction decomposition are known, the vector F0, the

matrices F1 and H0 and the tensor H1 can be computed, as described in (3.43) and

(3.44). Since H0 resp. H1 are sparse in their indices i and j , they can be stored as

index-number resp. index-array pairs.

For the simulation part, two main routines have to be called each time step:

1. A routine that computes the vectors c(t) and d(t) (3.48). This routine also advances

synaptic conductances and ion channel state variables and its details are well established

in the neuroscientific literature (see [Rotter and Diesmann, 1999] and [Hines, 1984]).

2. A routine that first computes the vector k(t ) (3.46) and then solves equation (3.49).

We implemented a prototype of the above outlined initialization algorithm in Python. Tree

structures were implemented using the btmorph library [Torben-Nielsen, 2014]. The simula-

tion algorithm was implemented both in pure Python and in C++ with a Cython interface.

3.3 Validation

In myelinated axons, the approximation of grouping active currents at a discrete set of input

locations holds exactly, as the only spots where active currents are present are the nodes of

Ranvier. These nodes are separated by stretches of myelinated fiber of up to 2 mm in length,

which can be modeled by equation (3.3). We reproduce the model of [Moore et al., 1978],

where the soma, axon initial segment and nodes of Ranvier are equipped with Hodgkin-Huxley

[Hodgkin and Huxley, 1952] channels, so that the input current is of the form:

Ii (t ) =−ḡN ami (t )3hi (t )(V (xi , t )−EN a)+ ḡK ni (t )4(V (xi , t )−EK )− ḡL(V (xi , t )−EL). (3.73)

Consequently, ci (t ) and di (t ) in equation (3.48) are given by:

ci (t ) = ḡN ami (t )3hi (t )EN a + ḡK ni (t )4EK + ḡLEL

di (t ) =−ḡN ami (t )3hi (t )− ḡK ni (t )4 − ḡL ,
(3.74)
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A

B

D EC

SGF

F

NEURON

Figure 3.2 – Validation of the SGF formalism on axon (A-B) and dendrite models (C-F). We
implemented the axon model described in [Moore et al., 1978] in the SGF formalism. A: vali-
dation of the action potential (AP) shape by comparison with an equivalent NEURON model at
the axon initial segment (AIS) and the 10’th node of Ranvier (NoR). B: reproduction of Fig 2
in [Moore et al., 1978], where the dependence of AP velocity on different biophysical parame-
ters is studied. C: The dendritic morphology together with 50 synaptic input locations (the
morphology was retrieved from the NeuroMorpho.org repository [Ascoli, 2006] and originally
published in [Wang et al., 2002]). D: The number of kernels in the SGF formalism, compared
to the number of kernels that would have been required in the normal GF formalism. E: The
number of operation required per kernel to achieve similar levels of accuracy for 3 approaches:
Exp, where all the exponentials from the VF algorithm are integrated, Quad, where the quadra-
ture is computed explicitly and Mix, where we compute the quadrature for the first K (here 3)
steps, and use the ODEs to compute the rest of the convolution. F: Voltage trace at the soma
upon stimulation of the synapses with 5 Hz Poisson spike trains.
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and the variables mi (t ),hi (t ) and ni (t ) evolve according to the following equations:

ṁi (t ) = minf(V (xi , t ))−mi (t )

τm(V (xi , t ))

ḣi (t ) = hinf(V (xi , t ))−hi (t )

τh(V (xi , t ))

ṅi (t ) = ninf(V (xi , t ))−ni (t )

τn(V (xi , t ))
,

(3.75)

where minf,hinf,ninf,τm ,τh and τn are functions of the local voltage.

We implemented this model using the SGF formalism. In Fig 3.2A, we validate the action

potential (AP) shape at the axon initial segment and at the 10’th node of Ranvier by compari-

son with the NEURON simulator [Carnevale and Hines, 2006] – the gold standard in neuronal

modeling. In Fig 3.2B we reproduce Fig 2 in [Moore et al., 1978], where the dependence of the

AP velocity on various axonal parameters is investigated.

Finally, to show that the SGF formalism can also handle complex trees, we equipped a stellate

cell morphology, comprising an active soma and passive dendrites (Fig 3.2C) (modeled by

equation (3.3)), with 50 conductance based synapses, so that

Ii (t ) = ḡ (Ai (t )−Bi (t ))(V (xi , t )−Er )

Ȧi (t ) = −Ai (t )+ cA
∑

j δ(t − s( j )
i )

τA

Ḃi (t ) = −Bi (t )+ cB
∑

j δ(t − s( j )
i )

τB
,

(3.76)

where s( j )
i represents the j ’th spike time of the input spike train arriving at the i ’th synapse. In

this equation, the variables A and B are used to generate a double exponential profile (see for

instance [Rotter and Diesmann, 1999]). In this model, it holds that:

ci (t ) =−ḡ (Ai (t )−Bi (t ))Er

di (t ) = ḡ (Ai (t )−Bi (t )).
(3.77)

Excellent agreement with the NEURON simulator is achieved (Fig 3.2F). The amount of kernels

required is far lower than in the normal GF formalism (Fig 3.2D) and optimal performance

(for which we found nk ≈ 7) was achieved for K = 3 (Fig 3.2E).

3.3.1 Computational cost

It is immediately clear that the computational cost of the SGF formalism is far lower than

the computational cost of the GF formalism [Wybo et al., 2013] from the number of required

kernels alone (Fig 3.2D). However, the comparison of computational cost with the canonical

finite difference approaches requires a more careful discussion. For n input locations and
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A

B

C

D

Figure 3.3 – The execution time of the SGF formalism compared to a NEURON simulation.
A: The setup, showing the morphology and the maximal set of input locations N = 74 input
location. Note that this set was chosen so that |N | = 2 for all N . B: The somatic voltage
trace for the first second of a 10 s simulation, with a conductance based excitatory synapse at
each input location indicated in A. C: Execution times as a function of the number of input
locations. D: The average number of operations per kernel as a function of the number of
input locations.

nt time steps, an explicit solver would typically require O(nk nt n) steps, whereas a canonical

finite difference approach would require O(dt nt nx ) steps, with nx the number of spatial

locations at which the finite differences have to be evaluated and dt the maximal degree

of temporal differentiation in the operators L̂(t )
i (x). Thus, we expect the SGF formalism to

improve performance when cnk n < dt nx , where c is an a-priori unknown constant that may

depend on the specific implementation. When the system is stiff, an implicit solver is typically

needed to guarantee stability. Such solvers require a matrix of size n (resp. nx in the case

of finite differences) to be inverted each time step, normally an operation of complexity

O(n3
x ). However, for second order finite difference solvers, the tree graph introduces a special

structure in this matrix [Hines, 1984], so that it can be inverted in O(nx ) steps. In the SGF

formalism, this structure can be maintained if |N | = 2 for all N and in this case the same

performance criterion cnk n < dt nx applies as for explicit solvers. Note that for higher order

finite difference approaches the matrix inversion still requires O(n3
x ).

To test whether this constant c is not excessively large, so that it may impede the usefulness of

the SGF formalism, we compared the execution time of the SGF formalism with the execution

time of the NEURON simulator [Carnevale and Hines, 2006]. In order to obtain a ‘fair’ compari-

son, attention must be given to the exact type of implementation. For instance, comparing

an explicit simulation paradigm with NEURON makes little sense, as NEURON implements

a semi-implicit paradigm and would be severely at the disadvantage. On the other hand,

NEURON makes use of the Hines algorithm to invert the systems’ matrix [Hines, 1984], and dis-
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tributing input location completely at random in the SGF formalism (and using a semi-implicit

paradigm as well) would exclude the use of this algorithm, which would severely disadvantage

the SGF formalism. We therefor opted to implement a simulator in C++, that implements the

same semi-implicit method described in equations (3.49) and (3.47), but where the inversion

uses the Hines algorithm. This restricts the input locations to configurations where |N | = 2

for all N . We distributed 2 to 74 input locations in such a configuration (Fig 3.3A shows this

configuration for n = 74) on the same stellate cell morphology used in Fig 3.2 (panels C-E).

No active channels where added to the model. In NEURON, the cell model contained 299

compartments for a total dendritic length of approximately 4000 µm (∆x ≈ 13.5 µm). We

added one excitatory, conductance based synapse at each input location and gave it a Poisson

spike train of a certain rate, so that the total presynaptic rate at all synapses together was 1000

Hz. In Fig 3.3B we show the first second of a 10 s simulation where n = 74. It can be seen that

both traces agree impeccably. We then compared the execution times of both models for an

increasing number of input locations (Fig 3.3C) for a simulation time of 10 s at a time step

of 0.1 ms. It can be seen that the SGF implementation outperforms the NEURON model until

n ≈ 55 (on a machine equipped with an Intel Core i7-3770 CPU @ 3.4GHz and 16 GB of RAM,

running ubuntu 14.04 LTS). In Fig 3.3D, we plotted 〈nk〉, the average number of operations per

kernel and per time step. It can be seen that this number correlates with the execution time.

When there are few input locations, kernels are in general longer and hence this number is

higher. Then, when more kernels are added, this number drops quite rapidly. This explains

the small slope of the execution times in the SGF formalism until n ≈ 35, associated with the

rapid decrease of 〈nk〉. After that, 〈nk〉 decreases slower, and hence the slope of the execution

times becomes steeper.

3.4 Summarizing remarks

We have proven that on tree graphs, the GF formalism for linear, non-homogeneous, time-

invariant PDE’s with inputs at a discrete set of n well-chosen locations requires only O(n)

rather than n2 kernels, and termed this the SGF formalism. We discussed the meaning of

‘well-chosen’, namely that the sizes of the sets of nearest neighbors must be small (ideally

|N | = 2 for all N ). We have shown furthermore for equation (3.3) that in the limit of a small

distances between the input locations, the SGF formalism can be reduced to the second order

finite difference approximation. Thus, in some sense, the SGF formalism can be seen as

a generalization of the second order finite difference approximation to arbitrary distance

steps (as long as what lies between the input locations is approximately linear). We also

employed the VF algorithm [Gustavsen and Semlyen, 1999], that fits the kernels with sums of

exponentials, to design an efficient simulation algorithm.

We then validated our algorithm on two neuroscientific problems: the modeling of myelinated

axons and of dendritic integration. We showed that there was excellent agreement between

the SGF formalism and the de facto standard NEURON simulator. We found furthermore that,

even for complex, branched morphologies, excellent accuracy was achieved for nk . 15. We
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also discussed when an increase in computational performance is expected from the SGF

formalism, and furthered our findings by comparing an efficient C++ implementation of the

SGF formalism with the same model in NEURON. Finally, we discuss in a broader sense when

the SGF formalism is expected to provide advantage over other approaches.

3.5 Discussion

It can be seen that the question whether one should prefer the SGF formalism over second

order finite difference approaches depends on the values of nk and n, which are not necessarily

independent. Fig 3.3 illustrates this: for the same dendritic arborization, and using the passive

cable equation (dt = 1), nk ranges from ≈ 14 for n = 2 to ≈ 4 for n = 74. This leads to nk n ≈ 28

to 296 operations per time step. The dendritic arborization on the other hand has a total

length of approximately 4000 µm. According to the Lambda rule [Carnevale and Hines, 2006],

the canonically accepted method of calculating the distance step between compartments,

∆x ≈ 10−15 µm. Consequently, a second order finite difference approximation would use

approximately nx ≈ 300. Hence this estimate would indicate that performance can be gained

when n . 75. That we found this number to be slightly lower (n . 55) in the simulations we

conducted (Fig 3.3) may be due to implementation and optimization related factors. One

important remark is that for efficient semi-implicit simulations, the input locations must be

chosen so that |N | = 2 for all N to be able to use the Hines algorithm. The question may now

be asked whether this is overly restrictive. We believe that this is not the case: placing an input

location at the soma for instance separates all main dendrites. Bifurcations in the dendrites

may induce further sets of nearest neighbors of sizes slightly larger than 2. Whenever this

occurs however, an input location can be added at the bifurcation point, so that such a set is

split as well.

Thus the choice of the SGF formalism over the finite difference approximation depends on

the neural system at hand. In some systems, such as bipolar neurons used in auditory coinci-

dence detection [Agmon-Snir et al., 1998, Wybo et al., 2013], inputs occur only at a small set

of locations, and the cells’ computation is performed by linear membrane properties. Other

systems, such as myelinated axons, have non-linear membrane currents that are concentrated

at a discrete set of locations – the nodes of Ranvier, with stretches of myelinated fiber in

between that behave approximately linear. It is to be expected that in such systems, the SGF

formalism may significantly improve performance over the second order finite difference

approach. In other systems, such as cortical cells, inputs are distributed throughout the den-

dritic arborization in an almost continuous fashion. In these cells, the answer to the question

whether the SGF formalism yields computational advantage is negative, when one aims at

retaining all biophysical detail. Indeed, it is clear that when the number of input locations in

the SGF formalism approaches the number of compartments NEURON requires, there is no

computational gain in using the former. Nevertheless, computational neuroscientists have

been seeking ways of reducing the cost of simulating these cells to be able to use them in

large scale network simulations. Most often, they aim to achieve this by drastically reducing
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the number of compartments [Traub et al., 2005]. This approach however also changes the

spatio-temporal response properties of the nerve cells. With the SGF formalism, inputs that

would otherwise be grouped in a small number of compartments may now be grouped at

a small number of input locations, while the response properties induced by the neuronal

morphology would remain unchanged. Finally, in dendritic arborizations, a number of reso-

nance phenomena have been observed that can be modeled with linearized (quasi-active) ion

channels [Koch, 1984, Laudanski et al., 2014]. Since the transitivity property (see appendix

§3.6.2)) holds for equations of this type as well (of the general form (3.8)), such systems can

be modeled implicitly in the SGF formalism. Nevertheless, the validity of this linearization

depends on the size of the fluctuations around the operating point and the ion channel under

study and has to be checked.

In the SGF formalism there is a significant initialization phase before a neuron model can be

simulated (see Implementation). The computational cost of this phase is higher than the cost

of the initialization phase for finite difference approaches, and depends on the complexity

of the tree graph and the number of input locations. We thus expect that our SGF formalism

will be advantageous in use cases where frequent re-initialization of the model is not required.

This is typically the case for network simulations, where a limited number of prototypical

nerve cells may be initialized and used throughout the network.

Another important matter, next to computational cost, is the accuracy of the SGF formal-

ism. While the sparsification is exact, the transform back to the time-domain along with

the specific integration algorithm might introduce errors. The use of the approximate VF

algorithm however impedes a systematic analysis of these errors. Nevertheless, we found that

typically this error was very low (Fig 3.4B,C). Furthermore, after application of the integration

paradigm described in this work, where the convolutions with exponentials are integrated

analytically assuming that the voltage varies linearly in between grid points, we found that all

our numerical experiments agreed very well with equivalent NEURON simulations.
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3.6 Appendix

3.6.1 Proof of Lemma 1

Proof. The PDE defined on a line

Consider a line of length L (0 ≤ x ≤ L), which trivially has two leafs (Λ = {λ1,λ2}). Fourier

transforming a PDE such as (3.8) leads to a boundary value problem of the form:

L̃0(x,ω)
∂2

∂x2 Ṽ (x,ω)+ L̃1(x,ω)
∂

∂x
Ṽ (x,ω)+ L̃2(x,ω)Ṽ (x,ω) = Ĩ (x,ω), 0 < x < L (3.78)

B̂λ1Ṽ (0,ω) := L̃λ1
1 (ω)

∂

∂x
Ṽ (L,ω)+ L̃λ1

2 (ω)Ṽ (0,ω) = Ĩλ1 (ω)

B̂λ2Ṽ (0,ω) := L̃λ2
1 (ω)

∂

∂x
Ṽ (L,ω)+ L̃λ2

2 (ω)Ṽ (L,ω) = Ĩλ2 (ω),
(3.79)

The Green’s functions g (x, x0,ω) is obtained from solving this problem for Ĩ (x,ω) = δ(x −x0)

and Ĩλ1 (ω) = Ĩλ2 (ω) = 0, and is given in [Stakgold, 1967, page 66] :

g (x, x0) =


u1(x)u2(x0)
a0(x0)W (u1,u2;x0) , 0 ≤ x ≤ x0

u1(x0)u2(x)
a0(x0)W (u1,u2;x0) , x0 ≤ x ≤ L,

(3.80)

where u1(x) is a non-trivial solution of the homogeneous equation satisfying B̂λ1 u1 = 0 and

u2(x) a non-trivial solution satisfying B̂λ2 u2 = 0, where W (u1,u2; x) denotes the Wronskian

of both solutions evaluated at x and where we have omitted the dependence on ω for clarity.

From this equation, it can be checked that the transitivity property holds:

g (x1, x3) = g (x1, x2)g (x2, x3)

g (x2, x2)
(3.81)

when x1 ≤ x2 ≤ x3 or x3 ≤ x2 ≤ x1.

The generalization to a tree graph

Consider now the generalization of problem (3.78) to a tree graph. On each edge ε ∈ E , an

operator of the form:

L̂ε(x) := L̃ε0(x)
∂2

∂x2 + L̃ε1(x)
∂

∂x
+ L̃ε2(x) (3.82)

constrains the field V ε:

L̂ε(x)Ṽ ε(x) = Ĩ ε(x), (3.83)

where it is understood that x signifies the space coordinate on the edge under consideration.
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On each leaf λ ∈Λ a boundary condition of the form (3.79) holds:

B̂λṼ λ = Ĩλ (3.84)

and at each node that is not a leaf φ ∈Φ:

Ṽ ε = Ṽ ε′ , ∀ε,ε′ ∈ E(φ) (3.85)∑
ε∈E(φ) L̃ε ∂

∂x Ṽ ε = Ĩφ, (3.86)

Equation (3.85) assures continuity of the field and a condition of the form (3.86) is imposed in

many physical systems to assure the conservation of flow.

We wish to determine Green’s function g (x, x0) of this problem. When x0 is located on edge ε0,

we need to solve this problem for I ε(x) = δεε0δ(x − x0), Iλ = Iφ = 0. We will first show that at

each end of edge ε0 boundary conditions of the form (3.79) hold, by using (3.84), (3.85) and

(3.86).

To do so, we only need the following recursion rule: Consider a node φ, and suppose that all

but one of the edges in E(φ) satisfy a boundary condition B̂εṼ ε = 0 of the type (3.79) at the

opposite end of node φ. Within each edge, we chose the spatial coordinate xε to be Lε (i.e. the

edge’s length) at that far end and 0 at the node. Let us call the edge that does not satisfy the

boundary condition ε′. Thus we have:

B̂εṼ ε = L̃ε1
∂

∂x
Ṽ ε(Lε)+ L̃ε2Ṽ ε(Lε) = 0, ∀ε ∈ E(φ) \ε′, (3.87)

and from (3.85) and (3.86) if follows that:

Ṽ ε′(0) = Ṽ ε(0), ∀ε ∈ E(φ) (3.88)∑
ε∈E(φ)\ε′ L̃ε ∂

∂x Ṽ ε(0)+ L̃ε
′ ∂
∂x Ṽ ε′(0) = 0, (3.89)

We will show that from conditions (3.88) and (3.89) a boundary condition of the form (3.79) can

be derived for Ṽ ε′(0) (i.e. the field on edge ε′ at the location of nodeφ), as long as the differential

equations on edges ε ∈ E(φ) \ε′ are homogeneous. Let uε(x) be a non-trivial solution of the

homogeneous problem (3.83) on edge ε that satisfies condition (3.87). Every solution on that

edge is necessarily of the form Ṽ ε(x) = Aεuε(x). As a consequence of (3.88), Aε = Ṽ ε′ (0)
uε(0) , which

leads to a constraint on the derivative ∂
∂x Ṽ ε(0) = Ṽ ε′ (0)

uε(0)
∂
∂x uε(0). Thus, equation (3.89) becomes:

( ∑
ε∈E(φ)\ε′

L̃ε
∂
∂x uε(0)

uε(0)

)
Ṽ ε′(0)+ L̃ε

′ ∂

∂x
Ṽ ε′(0) = 0, (3.90)

precisely the boundary condition for Ṽ ε′ we were after.

62



3.6. Appendix

Applying this operation recursively throughout the tree, starting from the leafs until edge ε0,

assures that this edge has a boundary condition of the form (3.79) at both ends. Thus, on this

edge, g (x, x0) is of the form (3.80).

To prove the transitivity property (3.81) for two arbitrary points x1 and x3 on the tree graph,

and for a point x2 that is on the shortest path between x1 and x3, we distinguish four cases.

1. x1, x2, x3 are on the same edge. Since the segment has boundary conditions of the type

(3.79), the Green’s function may be constructed as in (3.80), and thus (3.81) holds.

2. x1 and x2 on the same edge, x3 is on a different edge. Let φ be the node adjacent to

the edge ε0 on which x1 and x2 are located and on the shortest path between x2 and x3.

Necessarily, the Green’s function at that point satisfies

g (φ, x1) = g (φ, x2)g (x2, x1)

g (x2, x2)
, (3.91)

which then determines the solution on the adjacent edges ε ∈ E(φ) \ ε0 (where we

choose the spatial coordinate xε to be 0 at φ and Lε at the opposite end). On either of

these edges, the solution is of the form Aεuε(xε), with uε(xε) a solution satisfying the

derived condition of type (3.79) at the opposite end. Condition (3.85) then imposes

Aε = g (φ,x1)
uε(0) = g (φ,x2)g (x2,x1)

g (x2,x2)uε(0) , and thus:

g (xε, x1) = g (φ, x1)

uε(0)
uε(xε) = g (φ, x2)g (x2, x1)

g (x2, x2)uε(0)
uε(xε)

=
g (φ,x2)uε(xε)

uε(0) g (x2, x1)

g (x2, x2)
= g (xε, x2)g (x2, x1)

g (x2, x2)
.

(3.92)

We may apply this consideration recursively through the tree graph, until we arrive at

the point x3, which proves relation (3.81) in this case.

3. x2 and x3 on the same edge, x1 is on a different edge. Let ε denote the edge on which

x2 and x3 are located, and let us denote the node adjacent to that edge at the side

of x1 by φ, and take the x-coordinate describing the position in that edge to be zero

there (xε = 0). Then Ṽ ε(0) = g (φ, x1). On the other side of the edge, at xε = Lε, the

derived condition of the form (3.79) holds, and thus the field in that edge satisfies

Ṽ ε(xε) = g (φ,x1)
uε(0) uε(xε)(= g (xε, x1)), where uε(xε) is a solution satisfying this boundary

condition. The Green’s functions g (x2, x2) and g (x3, x2) are still of the form (3.80), as in

this case the derived boundary conditions are valid on both ends of the edge. Let vε(xε)

be a solution that satisfies the homogeneous boundary condition at xε = 0. Then, using
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(3.80), the following holds:

g (x3, x2)
1

g (x2, x2)
g (x2, x1)

= vε(x2)uε(x3)

a0(x2)W (uε, vε, x2)

a0(x2)W (uε, vε, x2)

vε(x2)uε(x2)

g (φ, x1)uε(x2)

uε(0)

= g (φ, x1)uε(x3)

uε(0)

= g (x3, x1)

(3.93)

4. x1, x2, x3 are on different edges. This case is proved by combining the two previous

cases.

3.6.2 Vector fitting

Here we briefly explain the VF algorithm [Gustavsen and Semlyen, 1999] as we implemented

it. The version of this algorithm we needed approximates a complex function f (s), for which∣∣f (s)
∣∣→ 0 when |s|→∞ and

∣∣f (s)
∣∣> 0, as follows:

f (s) ≈
L∑

l=1

γl

αl + s
, (3.94)

where the parameter L is chosen. It does so in two steps: First the poles αl are identified and

then the residues γl are fitted.

Pole identification

First, a set of chosen starting poles ᾱl is specified, and an unknown auxiliary function σ(s)

with these poles is proposed, so that:

σ(s) =
L∑

l=1

γ̄l

ᾱl + s
+1 (3.95)

[
σ(s) f (s)

]
fit =

L∑
l=1

γ̄′l
ᾱl + s

. (3.96)

Multiplying equation (3.95) with f (s), and equating this with equation (3.96) gives:

L∑
l=1

1

ᾱl + s
γ̄′l −

L∑
l=1

f (s)

ᾱl + s
γ̄l = f (s). (3.97)

When f is evaluated at enough frequency points s (we found it sufficient to sample f (s) on

the imaginary axis s ≡ iω j ,ω j ∈ R, j = 1, . . . , N on an equidistant scale for small ω and on

a logarithmic scale for large ω), this gives an over-determined system that can be solved
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Figure 3.4 – Illustration of the VF algorithm. A: A typical kernel is accurately approximated
by the VF algorithm (here L = 10). B: The error E (ω) of this fit. C: The average error of the fit as
a function of L.

for γ̄l and γ̄′l by the least squares method. The poles of f (s) are then given by the zeros

of σ(s) since, as the parametrization for σ(s) satisfies equation (3.97), it holds that (see

[Gustavsen and Semlyen, 1999, Hendrickx and Dhaene, 2006] for further details):

f (s) =
[
σ(s) f (s)

]
fit

σ(s)
. (3.98)

These zeros can be found as the eigenvalues of the matrix:

H =


ᾱ1 − γ̄1 −γ̄2 . . . −γ̄L

−γ̄1 ᾱ2 − γ̄2 . . . −γ̄L
...

...
. . .

...

−γ̄1 −γ̄2 . . . ᾱL − γ̄L

 . (3.99)

Note that this procedure can be part of an iterative optimization, where the newly found poles

can be used as the starting poles for the next iteration.

Residue fitting

Once the poles αl are known, the residues can be determined by solving the over-determined

system:

L∑
l=1

1

αl + s
γl = f (s) (3.100)

for γl by the least squares method.
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Accuracy

The VF algorithm does not provide the number of poles for the fit, nor does it provide an

estimate for the accuracy of the fit with a given number of poles. We chose the number of

poles as the smallest number for which the approximation gave a sufficient accuracy, defined

as:

E(ω j ) ≡

∣∣∣f (iω j )−∑L
l=1

γl

αl+iω j

∣∣∣
max j

∣∣f (iω j )
∣∣ < ε, j = 1, . . . , N . (3.101)

For our nerve models, we found that ε = 10−8 was sufficient. Usually, this accuracy was

reached with 10 . L . 20. In Fig 3.4A, we show a typical example of a kernel from the SGF

formalism, together with its approximation with L = 10. In Fig 3.4B we show the error of this

approximation as a function of the frequency, whereas Fig 3.4C we show how the average error,

defined as:

〈E〉 = 1

N

N∑
j=1

E(ω j ), (3.102)

changes with L.
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4 Dynamic compartmentalization in
neurons enables branch-specific
learning
Willem A.M. Wybo, Benjamin Torben-Nielsen and Marc-Oliver Gewaltig, this manuscript is

submitted.

Abstract

The dendritic trees of neurons play an important role in the information processing in the

brain. Although it is widely accepted that dendrites require independent compartments to

perform most of their computational functions, it is still not understood how they compart-

mentalize into functional subunits. Here we show how these subunits can be deduced from

the structural and electrical properties of dendrites. We devised a mathematical formalism

that links the dendritic arborization to an impedance-based tree-graph and show how the

topology of this tree-graph reveals independent dendritic compartments. We find that bal-

anced inputs or shunting inhibition can modify this topology and hence reconfigure the

number and size of compartments in a context-dependent manner. We also find that dynamic

recompartmentalization can enable branch-specific learning of stimulus features.

4.1 Introduction

Brain function emerges from the collective behavior of billions of individual neurons that

transform electrical inputs into action potential (AP) output. This transformation starts on the

dendritic tree, where inputs are collected, and proceeds to the axon initial segment, where APs

are generated that are then transmitted to downstream neurons through the axonal arboriza-

tion. While axons appear to merely communicate the neuronal output downstream, dendrites

collect and non-linearly transform input. This phenomenon is referred to as dendritic compu-

tation, and recent experimental work not only demonstrated that it occurs in vivo, but also

that it is required for normal brain function [Grienberger et al., 2015, Takahashi et al., 2016,

Smith et al., 2013].
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Dendritic computations are plentiful [Rall et al., 1995, Segev, 2000, London and Häusser, 2005,

Torben-Nielsen and Stiefel, 2010, Silver, 2010] and almost always require the existence of sepa-

rate electrical compartments: regions on the dendritic tree that integrate inputs independently

from others. Indeed, independent compartments enable branch-specific control of AP back-

propagation [Müllner et al., 2015] as well as local N-methyl D-aspartate (NMDA), Ca2+ or Na+

spikes [Larkum et al., 2007, Wei et al., 2001]. They allow plasticity to operate on individual

synapses with [Sjöström et al., 2008] or without [Golding et al., 2002] back-propagating APs

and they allow individual neurons to function as multilayer neural networks [Poirazi et al., 2003b].

Moreover, they enable different input streams to be discriminated from each other [Johenning et al., 2009].

Thus, neurons require independent compartments to perform most of their theoretically pre-

dicted and experimentally demonstrated computational functions. Surprisingly, it is still

not understood how dendrites compartmentalize into functional subunits and how these

compartments can be deduced from the structural and electrical properties of dendrites.

4.2 Results

4.2.1 The neural evaluation tree

We investigate this compartmentalization using impedance-based tree-graphs. To obtain

these tree-graphs, we compute the Green’s function (GF) associated with a given morphology

[Wybo et al., 2015] using the separation of variables method ([Major et al., 1993a], § 4.3.5).

Then, by integrating over the temporal coordinate of the GF, we compute the impedance

matrix, which expresses the electrical connectedness of regions on the dendritic tree (Fig 4.1A-

B). On any neuron, all regions share at least some impedance, which will be associated with

the root node in our tree-like network. Electrically closer regions will share more impedance,

associated with an intermediate node. Finally, the leaf nodes represent impedance that is

unique to non-overlapping regions. We visualize the impedance associated with a node as

the length of the vertical line connecting it with its parent (Fig 4.1C). Importantly, we also

developed a procedure that associates a temporal kernel with each node (whose surface is the

nodal impedance, § 4.4.2), and an integration procedure that allows the computation of the

full spatio-temporal voltage response (§ 4.4.3). The tree obtained in this way yields the voltage

in all regions of interest (Fig 1D-E), and hence we term it the neural evaluation tree (NET).

Thus, unlike previous work [Poirazi et al., 2003b, Behabadi and Mel, 2014], our networks are

based on analytic calculations and time-resolved dynamics that capture both temporal and

spatial interactions between synaptic inputs.

4.2.2 The impedance-based independence index

The NET allows systematic evaluation of whether or not input sites can function indepen-

dently (§ 4.6). This is shown in Fig 4.1F-K, where we generated two NETs with different input

configurations: two synapses were either inserted on distinct branches (Fig 4.1F-H) or on
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Figure 4.1 – Constructing a neural evaluation tree (NET) allows for the systematic evalu-
ation of crosstalk between input sites. Panels A-E illustrate how the NET computes the
voltages and panels F-K show how the NET allows for evaluation of crosstalk between input
sites. A: Dendrite with three inputs regions (numbers 1-3) and somatic readout. B: Impedance
matrix calculated using the Green’s function formalism. Color encodes the impedance be-
tween each pair of points. Horizontal and vertical lines indicate the regions from (A). C: A NET
is extracted from the impedance matrix. Nodes contain voltages and edges are proportional
to the impedance between the nodes. D: Voltages at each node in the NET are computed.
Leaf nodes (N = 0,1,2,3) contain voltage components unique to the associated regions while
lower nodes (N = 12 and N = 0123) contain voltage components that are shared between
regions. Voltages contained in each node are shown after an input is presented in location
1 (left), 2 (middle) and 3 (right). Onset of the input is indicated with a vertical line in a color
matching with the inputs location in (A). E: Final voltages calculated for the soma and input
regions by summing the node voltages on the path from root to associated leaf. Dashed lines
are computed using the NET and solid lines are the voltages from simulating an equivalent
NEURON model. F, I: Two synapses are placed on the morphology, once on different branches
(F) and once on the same branch (I). G, J: The respective NETs associated with the synapse
configurations in F and I. H, K: On top, the two-dimensional response surface at synapse 1 as
a function of Rin,1, the input rate at synapse 1. At the bottom, the response surface at synapse
2 as a function of Rin,2, the input rate at synapse 2. The color-coding indicates the input rate
at the other synapse (2 on top and 1 at the bottom). For mutually independent synapses the
lines of different color would coincide as the response at synapse 1 would not be influenced
by the rate at synapse 2 and vice versa. Dashed lines are again NET simulations and solid lines
equivalent NEURON simulations.
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the same branch (Fig 4.1I-K). Then, we stimulated the synapses in both NETs with Poisson

spike trains of varying frequencies (see § 4.7 for the simulation parameters) and observed

the voltage response at each synapse (Fig 4.1H, K). When inputs are on distinct branches, the

average voltage in one location almost independent of the input rate at the other location

(Fig 4.1H). Contrastingly, if the two inputs are on the same branch, the average voltage at

either location is strongly modulated by the input frequency at the other location (Fig 4.1K).

This analysis illustrates that voltages in nearby regions depend on each other, while voltages

at distinct branches behave independently. The NETs formalize this notion: independent

regions are separated by large impedances (Fig 4.1G, long edges to leafs), whereas otherwise

much of the impedance is shared (Fig 4.1J, long edges between internal nodes). We quantify

this observation by introducing the impedance-based independence index IZ , a pairwise

ratio between local and shared impedances (§ 4.6.2). Higher values of IZ indicate less shared

voltage and thus more independent voltage dynamics between regions as compared to lower

values of IZ .

We now quantify at which value of IZ a pair of regions on the dendrite constitute independent

subunits. Intuitively, dendritic regions are electrically independent when (i) the voltage dynam-

ics between those regions have little correlation (“correlation criterion” [Rabinowitch and Segev, 2006]),

and (ii) local non-linear dynamics (such as regenerative currents or NMDA spikes) can be gen-

erated independently of global activity (“non-linearity criterion” [Behabadi and Mel, 2014]).

We test these criteria in a toy NET with two leafs and one root, representing, for instance, a

single trunk that bifurcates into two child branches (Fig 4.2A). In this toy NET we can vary

IZ at will. To assess the correlation criterion, we constructed a control model (independent

NET or iNET), where both leaf nodes are completely independent, by replacing the voltage

in the root node V R with a long-term average (§ 4.6.1). We drive both models with Poisson

spike-trains that result in supra-threshold NMDA-dynamics (Fig 4.3A). As expected, the nodal

voltage correlation in the model with disconnected branches is zero (Fig 4.2B, dots) and the

correlation in the other model decreases with increasing IZ (Fig 4.2B, rhombi). Correlations

become negligible when IZ ≥ 10, and the root mean square error (RMSE) between somatic

NET and iNET voltages also vanishes beyond that point (Fig 4.2B, red trace). To assess the

non-linearity criterion, we activate the first branch (§ 4.3.6) with a conductance above the

NMDA spike threshold (for which we can compute the steady-state depolarization using

Newton’s iteration, § 4.4.3), and the other branch with a conductance of increasing strength.

We first record the node voltage V 2 associated with the second branch (Fig 4.2C). At low

IZ (. 6), voltage spreads from the first branch to the second. As a result, only a small extra

depolarization can be detected in branch 2 upon activating synapse 2. However, we observe

no discontinuity in this branch which would indicate an NMDA spike [Major et al., 2008]. At

higher IZ , such a discontinuity appears (inset Fig 4.2C) and for IZ ≥ 10 it reaches over 80%

of the amplitude of an isolated NMDA spike (Fig 4.2C). The amplitude of the discontinuity

is furthermore principally determined by IZ , and not by the precise activation at synapse 1

(color coding in Fig 4.2C). When recording the root voltage V R , we expect NMDA events in

independent branches to sum perfectly. In other words, when synapse 1 and 2 are activated
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above the NMDA spike threshold the surplus ∆V R should be equal to the voltage V R when

only synapse 1 is activated (inset Fig 4.2D) and hence their ratio should be one. This ratio

indeed converges to one (Fig 4.2D) when IZ increases and reaches over 80% of its maximum

for IZ ≥ 10. As the local voltage is the sum of root and leaf voltages, combining V R and V 2

allows quantification of the influence both branches exert on each other during learning

(Fig 4.3D-E, where we used the plasticity model described in [Clopath et al., 2010]). When

branch 1 is active, less input conductance is needed in branch 2 to depolarize it above the

potentiation threshold. For IZ ≥ 10, this decrease is less than 20% of its maximal value.

Taken together, we conclude that for IZ ≥ 10 pairs of dendritic regions can be considered

independent. Moreover, while both structural and physiological properties determine IZ , it is

only IZ that determines independence (Fig 4.3F-H). This notion is further reinforced by the

observation that the membrane voltage correlation between different synapses decreases as a

function of independently of the morphology (Fig S2E, S2G).

4.2.3 Dendritic compartmentalization

Next, we asked how many such regions could maximally coexist along a dendritic tree, as

well as what their location would be. Using the NET, we constructed an algorithm that

divides the dendritic tree into independent regions given a minimal IZ (see § 4.6.3). The

resulting compartmentalization is shown in Fig 4.2E-G for a cortical stellate cell (Fig 4.2E), a

hippocampal granule cell (Fig 4.2F) and a cortical L5 pyramidal neuron (Fig 4.2G). For each

example, we show the impedance matrix (left), the associated NET with compartments for

IZ ≥ 10 colored (center left, see also Fig 4.4A-C for the NET impedance matrix approximations)

and the original dendrite structure with compartments (center right). We validated the NETs

equipped with somatic AP channels (see § 4.5) by comparing their respective somatic voltage

traces to traces computed with an equivalent NEURON [Carnevale and Hines, 2006] model

(Fig 4.2E-G, right panels). We observe a good correspondence between the voltage traces,

confirmed by a low error and high AP coincidence factor (Fig S2F).

Note that in the pyramidal cell, the number of compartments for IZ ≥ 10 was far less than the

number of dendritic terminals (Fig 4.2G), and in the stellate and granule cells we did not iden-

tify any compartments at all (Fig 4.2E-F, see also Fig 4.7). We thus arrive at a conundrum: why

would main dendrites bifurcate elaborately, if these branches cannot function independently?

And if they cannot be independent, how can learning and memory be compartmentalized at

the single branch level [Losonczy et al., 2008, Weber et al., 2016]?

4.2.4 Dynamic compartmentalization

As neurons perform different input-output transformations at different moments in time, such

as during up/down states [Wilson and Kawaguchi, 1996], we hypothesized that the number of

compartments in dendrites can be modified dynamically by spatio-temporal input patterns.
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Figure 4.2 – The impedance-based independence index IZ leads to a systematic characteri-
zation of independent compartments. A: Toy model dendrites and associated NET. B: The
correlation between voltages in the leafs of NET and iNET (black), and their somatic RMSE
(red), as a function of IZ . C: With synapse 1 on, the jump in voltage ∆V 2 at NET leaf 2, indicat-
ing an independent NMDA-spike in branch two, is plotted as a function of IZ . Color-coding
indicates the strength of synaptic activation, which is expressed as the product between local
input impedance and synaptic conductance (a dimensionless quantity, § 4.3.6). D: Similar
configuration as in C, but now the ratio is shown between surplus voltage at the root when
both synapses are on (∆V r ) and the voltage when only synapse 1 is on (V r ). E: Stellate cell. F:
granule cell. G: Layer 5 pyramidal cell. For each cell, we indicate the exact impedance matrix
(left), the NET with color coded independent regions at IZ = 10 (center left, see materials
and methods §4.3), the dendrite structure with color coded electrical compartments (center
right), and a comparison between the time-resolved voltages at the soma calculated with
the NET and with an equivalent compartmental model of the complete dendrite structure
(right). The NETs (extended with linear layers, Materials and Methods §3) thus also handle
supra-threshold responses.
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Figure 4.3 – Additional analysis for the two-branch toy model. A: Comparison between the
NET and the iNET. Two of the traces associated with Fig 4.2B are shown, for IZ = 1 (upper
row) and IZ = 10 (lower row). The left column shows the somatic voltage traces (in our simple
model this is simply the potential of the root node), the middle column the total potential at
one of input regions (r1) and the right column the voltage at node 1. The normal NET trace is
shown in blue and the iNET trace in red. For IZ = 1, the iNET is a poor approximation of the
real somatic potential, as most of the non-linear transformation happens in the root node. For
IZ = 10, most of the non-linear transformation happens in the leaf nodes and the iNET is a
good approximation. B: The toy model morphology with a parent branch that bifurcates into
two child branches. C: The NET associated with the morphology in B. D: Simulation of the
weight change after 300 ms at synapse 2 when synapse 1 was off (blue) and on (red) (IZ = 1).
The computed shift in threshold activation required for potentiation at synapse 2 (inset) is
indicated. E: The shift in threshold activation as a function of IZ . Perfect independence would
imply that there is no shift. The maximal shift is indicated in grey and indicates that if IZ

is very small, the voltage at synapse 2 will always be above the threshold for potentiation
when synapse 1 is on. F: We modify IZ by either adding a static shunt conductance to the
parent branch or by increasing its radius. The original NET is shown on the left, the NET for
an additional static shunt conductance in the middle and the NET for an increased radius
on the right. Note that modifying IZ by increasing the radius is not realistic in this case: to
obtain a sizable increase in IZ , the radius had to be multiplied by an unrealistically high factor.
G: The increase in IZ by the aforementioned manipulations is determined by the increase in
conductance in the parent branch. H: The correlation for both ways of increasing IZ . The
inputs were tuned to use the full range of the NMDA non-linearity.
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Figure 4.4 – Detailed analysis of the NET approximation for three cell morphologies. A,B,C:
The true impedance matrix Zexact versus the NET approximation ZNET for resp. the stellate
cell, the granule cell and the pyramidal cell. D: Analysis for the pyramidal cell of the change in
compartmentalization when the minimum required separation IZ between compartments is
altered. E: The same simulations as in Fig 4.2E-G (right panels) were run for 100 s. For any
pair of synapse locations the mutual voltage correlation CVm was computed and plotted as a
function of their respective IZ . A fit line was drawn using a kernel regression algorithm with
radial basis functions. Independent of the neuronal type, CVm decreases as a function of IZ . F:
The root mean square error of the somatic sub-threshold potential (blue) as well as the AP
coincidence factor for said simulation. G: The correlation of CVm with IZ , a symmetry index
SZ (see Materials and methods §4.2) and the transfer impedance Z12 was checked. As can be
seen, CVm is most correlated with IZ .

74



4.2. Results

To test this hypothesis, we first consider the high-conductance state [Destexhe et al., 2003];

a state occurring in vivo when many synapses are randomly activated, increasing the total

membrane conductance. Fig 4.5A illustrates the contrast between the original NET of the

neuron with input configuration depicted in Fig 4.1A (black) and the NET mimicking the

high-conductance state (blue). A drastic difference is visible: the impedance at the root is

strongly reduced. As a result, electrical separation becomes stronger between branches that

only have the root in common, and compartments emerge in the stellate cell (Fig 4.2C). The

high conductance NET is accurate in reproducing the average voltages: traces in Fig 4.2B (full

colored lines) agree very well with the average post-synaptic potentials computed during an

ongoing barrage of balanced excitation and inhibition (dashed colored lines).

Since both theory [Gidon and Segev, 2012] and connectivity data [Bloss et al., 2016] suggest

the importance of the precise location of synaptic inhibition, we investigated the influence of

few, precisely located inhibitory inputs on compartmentalization. In the apical tree of the L5

pyramidal neuron (Fig 4.2D) we noticed that the sibling branches in a particular apical fork did

not constitute separate compartments (locations 3 and 4 in Fig 4.2E). Upon inserting inhibitory

synapses near the branching point between the two terminal segments, they separate into

independent compartments (Fig 4.2E, bottom panel). The required inhibition (with a time-

averaged conductance of 15 nS) could easily be provided by one of the interneuron pathways

targeting the apical tuft, such as the Martinotti or the bitufted to pyramidal cell pathways

[Markram et al., 2015]. This change in compartmentalization can be quantified by the change

in IZ (Fig 4.2F). Note that the effect is location-specific: independence between locations 1

and 2 does not increase. In Fig 4.2G we verified these predictions by computing the correlation

between the membrane voltages at locations where a marked decrease can be observed upon

activation of the inhibitory synapse (3 and 4) and locations where this was not the case (1 and

2).

4.2.5 Branch-specific learning

Building on the ability of dendrites to dynamically rearrange independent subunits, we ask

whether a transient recompartmentalization could improve branch-specific learning. Before

learning, post-synaptic targeting is thought to be unspecific [Gerstner et al., 1996]. Hence,

inputs coding different stimulus features can arrive at the same branch, but with different

strengths. We ask whether sibling branches can learn to become selective only to the strongest

initial feature (Fig 4.6A), using only NMDA spikes and no APs [Hardie and Spruston, 2009]. We

tested this idea in two apical oblique sibling branches of the L5 pyramidal neuron (Fig 4.6A).

If two branches receive different synaptic activation, the voltage difference between these

branches will be larger when they are separated by a higher IZ (Fig 4.6C), and hence the prob-

ability to robustly potentiate the preferred branch increases while the non-preferred branch is

depressed. For the branches we choose (Fig 4.6A), IZ was too low and this computation was

not possible (Fig 4.6D, G) hence the evolution of synaptic weights in the preferred and non-

preferred branches was positively correlated (Fig 4.6F). Activation of inhibitory synapses near
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Figure 4.5 – Dynamic compartmentalization due to spatio-temporal input patterns. A:
same NET as in Fig 1A,C (black). To mimic the high-conductance state, 200 excitatory and
inhibitory synapses were distributed randomly on the neuron and activated with Poisson
spike-trains. The NET was recomputed with the time-averaged synaptic conductances as
static shunts (blue). B: At the three regions of interest, a strong excitatory synapse was inserted.
The average post-synaptic potential was computed over 100 trials (dashed line) and coincides
with the NET prediction (full line). The original responses are plotted in black for reference.
C: Compartmentalization for IZ ≥ 10 in the rest state (top) vs. the high conductance state
(bottom). D: The effect of inhibition on compartmentalization in the apical tuft of the L5
pyramidal cell was studied. E: NET associated with the apical tuft, without (top) and with
(bottom) inhibition (with an time-averaged conductance of 15 nS). F: IZ change when inhibi-
tion is turned on and G: associated change in membrane correlation when synapses in both
branches were stimulated with random Poisson trains.
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the bifurcation point increased IZ (Fig 4.6B, black tree vs light blue tree) and hence enabled

the branch-specific learning (Fig 4.6E, G), and the weight evolution became anti-correlated

(Fig 4.6F).

4.2.6 Conclusion

Taken together, these three observations solve our conundrum: First, input regimes that

increase membrane conductance, such as up states, result in the emergence of subunits

in cells that had none during down states (Fig 4.5A-C). Second, location specific inhibition

allows the precise tuning of compartmentalization (Fig 4.5D-G). Third, these factors enable

branch-specific learning of stimulus features (Fig 4.6).

How many branches on the dendritic tree lie within in the useful range for recompartmental-

ization? In pyramidal cells, compartments numbers double between IZ = 10 and IZ = 3 and in

smaller cells these numbers increase five-fold (Fig 4.7). This suggests that global conductance

input increases the number of compartments by a factor of two to five, depending on the cell

type. Inspecting pairwise independence, we determine that in pyramidal cells 5% to 10% of

terminal pairs are separated by IZ values between 1 and 10 (mainly terminals on the same

main branches). In smaller cells, up to 70% of pairs fall within these values. On average, these

pairs are made independent by time-averaged shunting conductances of 15 nS (Fig 4.7).

In this paper we recompartmentalized dendritic branches through shunting inputs with time-

averaged conductances of 15 nS and 31 nS during the relevant intervals. While these values

seem high compared to in-vivo data [Haider et al., 2013], in many situations the conductance

required for recompartmentalization is much lower. As a rule of the thumb, the impedance Z of

a node that receives a conductance g will be reduced by a factor 1+Z g . If the input impedance

of a parent branch is 500 MΩ, a conductance of 10 nS is required to increase IZ between all it’s

child branches by a factor of 6, whereas a conductance of 2 nS would already increase IZ by a

factor of 2. Furthermore, the shunting conductance would only have to be provided locally

and during the time-window of the excitatory input, as is commonly the case in balanced

networks [Vreeswijk and Sompolinsky, 1996, Vogels et al., 2011, Dehghani et al., 2016]. For a

root impedance of around 100 MΩ, which commonly occurs in smaller interneurons, a

conductance of 50 nS thus reduces the associated impedance by a factor of 6, and as a

consequence IZ between branches increases by the same factor. Such a conductance increase

is hypothesized to occur during the high conductance state [Rudolph and Destexhe, 2003].

Across the brain, neurons take on a wide variety of dendritic morphologies. We have shown

here for the first time how these dendritic trees compartmentalize at rest and during dynamic

input regimes. The behavioral relevance of up states (32) as well as the specificity of inhibitory

targeting (28) suggest that dynamic compartmentalization is ubiquitous in normal brain

function, with far-reaching consequences for memory formation [Kastellakis et al., 2016] and

capacity [Wu and Mel, 2009].
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Figure 4.6 – Tuning branch-specific learning with shunting conductances. A: Sketch of the
situation: before learning, two sibling branches are both targeted by synapses coding for
either an up stimulus S(↑) (purple) or a down stimulus S(↓) (blue). One branch B(↑) receives
more synapses of the former stimulus and the other branch B(↓) more of the latter stimulus.
The branches should learn to be sensitive only to the stimulus that was initially the most
prevalent (the ‘preferred’ stimulus). The shunting inhibition in the parent branch BP had a
time-averaged conductance of 31 nS when active. B: Schematic of the NET for the depicted
situation. C: The difference in voltage across sister branches ∆V increases as a function of
the difference in activation ∆A. For higher IZ , this increase is steeper. Consequently, a given
threshold ∆V (black dashed line) is reached for lower ∆A (colored vertical lines). D, E: The
learning task without (D, effective IZ = 1.6) or with (E, effective IZ = 10.5) shunting inhibition.
Each epoch, both stimuli are presented for 100 ms, with 150 ms intervals in between them,
for a total of 20 epochs. The initial and final epochs are shown. F: Correlation between the
average weights of the synapses in the preferred and non-preferred branches during stimulus
presentation, averaged over all epochs and 20 repetitions of the learning task. G: Bar plot
of the weight difference after the final epoch for all repetitions of the learning task. The bar
lengths denote the medians of the weight difference distributions and the error bars the 25-75
percentiles. With shunt, the neuron successfully learns the task.
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Figure 4.7 – Analysis of five classes of cortical cells. Five M-types from the BBP column were
selected and analyzed in detail. Three groups of properties were computed: morphometric,
electrical and NET-related properties. As morphometric properties we selected the number
of terminal branches, the number of main branches emanating from the soma and the total
dendritic length. As electrical properties we selected the somatic input impedance Zsoma,
the maximal input impedance Zin along the dendritic arborization and the minimal transfer
impedance Ztrans between any pair of locations. Regarding the NET-related properties, we
calculated the average number of compartments at different values of IZ (= 1,3,10,30). We
also computed the percentage of terminal pairs that are separated by an IZ between 1 and
10, the average IZ of these pairs and the time-averaged shunting conductance required to
increase the IZ of these pairs to 10. To check whether the NET approximation yielded accurate
results, we also computed the root mean square error RMSEZ of the approximated impedance
matrix with respect to the exact matrix. As can be seen, the error values we found are within
similar ranges as those found for our three prototype cells (materials and methods, section
2.2). For each quantity, its average value and standard deviation is shown.
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A

B

C Figure 4.8 – Cell morphologies. A: a corti-
cal layer 4 stellate cell (NeuroMorpho ID:
NMO_00274), B: a hippocampal granule
cell (NeuroMorpho ID: NMO_07645) and
C: a cortical layer 5 pyramidal cell (Mod-
elDB accession number: 139653). Note
that branch thickness is not to scale.

4.3 Biophysical modeling

4.3.1 Morpohologies

We centered our analysis around three morphologies: a cortical stellate cell (Fig 4.8A, [Wang et al., 2002]),

a hippocampal granule cell (Fig 4.8B, [Carim-Todd et al., 2009]) and a cortical pyramidal cell

(Fig 4.8C, [Hay et al., 2011]). These morphologies were retrieved from the NeuroMorpho.org

repository [Ascoli, 2006], except the pyramidal cell, which was retrieved from the ModelDB

repository [Hines et al., 2004]. Cell morphologies used in our wider cortical analysis were

retrieved from the Blue Brain Project database [Markram et al., 2015].

4.3.2 Physiological parameters

Physiological parameters for the morphologies were set according to [Major et al., 2008]: the

equilibrium potential was −75 mV, the membrane conductance 100µS/cm2, the capacitance

0.8µF/cm2 and the intracellular resistance 100Ω ·cm.

To generate somatic action potentials (AP), we used the fast inactivating Na+ current (INat) and

the fast, non-inactivating K+ current (IKv3.1) employed by [Hay et al., 2011]. Channel densities

were taken from one of their models on modelDB: g Nat = 1.71 S/cm2 and g Kv3.1 = 0.766 S/cm2.

The leak current was then fitted to yield a membrane time scale of 10 ms and an equilibrium

potential of −75 mV.

Alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and gamma-aminobutyric

acid (GABA) synaptic input currents were modeled as the product of a conductance pro-

file, given by a double exponential shape [Rotter and Diesmann, 1999], with a driving force

[Jack et al., 1975]:

Isyn(t ) = g (t ) · (Er −V (t )). (4.1)

For all synapses, time constants were chosen in accordance with canonically accepted values

[Roth and van Rossum, 2009]. For AMPA synapses, we used rise resp. decay times τr = 0.2 ms,
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τd = 3 ms for the conductance window and a reversal potential Er = 0 mV, while for GABA

synapses we used τr = 0.2 ms, τd = 10 ms and Er =−80 mV. For N-methyl-D-aspartate (NMDA)

channels [Jahr and Stevens, 1990], the synaptic current had the form

Isyn(t ) = g (t ) · (Er −V (t ))σ(V (t )) (4.2)

and the rise resp. decay time were τr = 0.2 ms, τd = 43 ms , and Er = 0 mV, while σ(V ) was the

sigmoidal function employed by [Behabadi and Mel, 2014] to model the channels’ magnesium

block:

σ(V ) = 1

1+0.3e−0.1V
. (4.3)

In the remainder of this work, we will refer to the voltage-dependent factors in the synaptic

input current as the ‘synaptic voltage dependence’ (SVD), denoted by f (V ). Hence, for AMPA

or GABA synsapses

f (V ) = Er −V (4.4)

and for NMDA synapses

f (V ) = (Er −V ) σ(V ). (4.5)

Note that when we refer to the conductance of a simple synapse, we mean the maximum value

gmax of its conductance window. For a synapse that has AMPA and NMDA components (to

which we will simply refer as an NMDA synapse), the conductance is the maximal value of the

AMPA conductance window, and the conductance of the NMDA component is determined

by multiplying the AMPA conductance value with an NMDA ratio RNMDA, that was set to be

either 2 or 3 [Behabadi and Mel, 2014]. Note that none of our results depend on the precise

NMDA/AMPA ratio.

4.3.3 Plasticity

In our simulations with plasticity, we use a voltage dependent spike timing dependent plas-

ticity rule [Clopath et al., 2010, Bono and Clopath, 2016] where the evolution of the weight

w(t) of a given synapse depends both on the post-synaptic voltage and the presynaptic

AP inputs. Next to modeling the dependence of the weight change on the pre and post

spike timings [Clopath et al., 2010], this rule also models dendritic plasticity in the absence

of back-propagating APs through its voltage dependence [Bono and Clopath, 2016]. In these

simulations, we conceptualize the weight as a factor that rescales the conductance profile,

leading to the following form for the synaptic current:

Isyn(t ) = g (t ) w(t ) f (V (t )). (4.6)
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In all our simulations the initial weight w(t = 0) was 1 and, during the simulation, the weight

could fluctuate in the interval [0,2] according to the rule:

d w(t )

d t
=−ALT D X (t ) (V LP

− (t )−θ−)+ + ALT P X LP (t ) (V (t )−θ+)+ (V LP
+ −θ−)+, (4.7)

where (·)+ is a rectifying function ((x)+ = x if x > 0 and otherwise (x)+ = 0) and V LP− (t) and

V LP+ (t ) are double low-pass filtered versions of the local voltage:

τ1
dV LP

1

d t
(t ) =−V LP

1 (t )+V (t )

τ+
dV LP+

d t
(t ) =−V LP

+ (t )+V LP
1 (t )

τ−
dV LP−

d t
(t ) =−V LP

− (t )+V LP
1 (t ).

(4.8)

Finally, X LP (t ) is a low-pass filtered version of the pre-synaptic spike train X (t ) =∑
ts
δ(t − ts):

τX
d X LP

d t
(t ) =−X LP (t )+X (t ). (4.9)

The constants in these equations are given by [Bono and Clopath, 2016]:

τ1 5 ms ALT P 3.5e −4

τ+ 15 ms ALT D 17.5e −4

τ− 45 ms θ+ -15 mV

τX 20 ms θ− -74.3 mV.

4.3.4 Compartmental models

To construct and simulate compartmental models of the cells, we used the NEURON simulator

[Carnevale and Hines, 2006]. Compartment sizes were set to be smaller than or equal to the

size given by the lambda rule at 100 Hz [Carnevale and Hines, 2006].

4.3.5 Green’s function and the separation of variables

To derive the neural evaluation tree (NET) approach that we will explain in the following

section, we relied on the Green’s function (GF) [Koch, 1998] Z (x, x ′, t). The GF is a function

of three variables: two locations x and x ′ along the dendritic arborization and a temporal

variable t . We computed the GF in an exponential basis:

Z (x, x ′, t ) =
∞∑

k=0
φk (x)φk (x ′)e

− t
τk (4.10)
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by using the separation of variables (SOV) method [Major et al., 1993a, Major and Evans, 1994].

Note that it is a property of the cable equation that the GF is symmetric in the spatial coor-

dinates [Koch, 1998], so that Z (x, x ′, t ) = Z (x ′, x, t ). Usually, a fixed set of discrete locations

relevant for the problem at hand is choosen on the neuron. Hence, the GF only needs to be

evaluated at these locations, and a discrete set of temporal functions, or ‘kernels’, is obtained.

A member of this set will be denoted as Zx,x ′(t ), to highlight the difference between the now

discrete indices x and x ′ and the continuous variable t .

To compute the output voltage Vx (t ) at location x for a given input current Ix ′(t ) at location x ′,
one needs to compute the convolution of the GF evaluated at x and x ′ with this input current

[Koch, 1998]:

Vx (t ) =
∫ ∞

0
ds Zx,x ′(s) Ix ′(t − s) (4.11)

for which we will use the shorthand

Vx (t ) = Zx,x ′(t )∗ Ix ′(t ). (4.12)

Since Zx,x ′(t) converts current into voltage, we will refer to it as an ‘impedance kernel.’ The

total surface under the impedance kernel is the steady state impedance:

Zx,x ′ =
∫ ∞

0
dt Zx,x ′(t ). (4.13)

In the rest of the text, it will be understood that Zx,x ′ without temporal coordinate refers to

the steady state impedance – which we will simply call ‘the impedance’ for brevity – while

Zx,x ′(t ) is the temporal impedance kernel. To unclutter the notations, we will not make this

distinction for other variables; the temporal dependence will be omitted by default. Following

this convention, equation (4.12) will be written as Vx = Zx,x ′(t)∗ Ix ′ , where it is implied that

both Ix ′ and Vx are time dependent quantities since Zx,x ′(t ) is the temporal impedance kernel.

Conversely, writing Vx = Zx,x ′ Ix ′ means that Zx,x ′ is the steady state impedance value, and

thus Ix ′ and Vx will be steady state values too. Note that currents in this text will be expressed

in nano ampere (nA) and voltages in milli volt (mV). Consequently, impedances will be in

mega ohm (MΩ).

4.3.6 Synaptic activation

The eventual steady state voltage Vx obtained after activating a synaptic conductance at

location x depends for a large part on the input impedance Zx,x . Following (4.11), it can be

obtained as a solution of the equation

Vx = Zx,x g f (Vx ). (4.14)
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This solution D is thus a function of the product of impedance and conductance for a given

combination of synapse types:

Vx = D(Zx,x g ). (4.15)

We refer to this product as the synaptic activation Ax = Zx,x g and note that it is a dimen-

sionless quantity. Consequently, it is a convenient quantity that does not depend on local

morphological constraints to determine whether an input will be strong enough to reach a

certain voltage threshold, for instance to elicit an NMDA spike or to potentiate a synapse.

4.4 Neural evaluation tree

4.4.1 Introduction: two input regions

To explain the idea behind our neural evaluation tree (NET) approach, we consider a neuron

with two regions receiving dendritic input. Using the GF, and following the notations described

in § 4.3, such a neuron can be modeled as [Wybo et al., 2013]:

V1 = Z11(t )∗ [
g1 f (V1)

]+Z12(t )∗ [
g2 f (V2)

]
V2 = Z21(t )∗ [

g1 f (V1)
]+Z22(t )∗ [

g2 f (V2)
]

V0 = Z01(t )∗ [
g1 f (V1)

]+Z02(t )∗ [
g2 f (V2)

]
,

(4.16)

where Vi (i = 1,2) signifies the membrane voltage in each input region and V0 the somatic

voltage. Voltage 1 and 2 are the sum of two terms: one being the synaptic input current

in that region convolved with an input impedance kernel Zi i (t) and the other the synaptic

input current in the other region convolved with a transfer impedance kernel Zi j (t), i 6= j .

The somatic voltage V0 is also the sum of the synaptic input currents, each convolved with a

transfer impedance kernel Z0i from input site to soma. The synaptic current is, as described

in § 4.3.2, the product of the synaptic conductance gi and the SVD f (V ).

Each voltage in equation (4.16) depends on both synaptic conductances. This is a general prop-

erty of the cable equation: the voltage in any region along a neuron depends a priori on all in-

put conductances, whether it is directly, as in the GF approach [Koch, 1998, Wybo et al., 2013],

or indirectly through the neighboring voltages, as in compartmental models [Hines, 1984]

or the sparse GF approach [Wybo et al., 2015]. Consequently, determining the electrical

compartments in neurons has proved to be a daunting task, where one had to resort to

extensive simulations and clustering algorithms that do not provide much biological insight

[Rabinowitch and Segev, 2006].

Building on a previous proposol that likened the dendritic trees of pyramidal cells to rate-based

two-layer neural networks [Poirazi et al., 2003b], we propose a tree graph based approach

where the closeness of inputs can immediately be inferred from the topology of the graph

(see § 4.4.2 for a full derivation). Hence, predictions can easily be made for any neuron and
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A B

Figure 4.9 – Neural evaluation tree. A: Impedances on a simple, bipolar neuron. Plotted at
position x along the x-axis is the input impedance Zxx in blue, the transfer impedance to
the soma Zx0 in red, for x < 0 the transfer impedance from the left branch to synapse 1 Zx1

and, for x > 0, the transfer impedance from the right branch to synapse 2 Zx2. B: The NET
associated with synapses 1 and 2.

any combination of input regions. This tree graph bears resemblance, but is not equivalent

to an artificial neural network. It is similar in the sense that, to solve for an output voltage,

conductance inputs are first integrated at the leafs of the tree (the first layer) and the solution

there is then transferred to their respective parent nodes, which can combine inputs from

different leafs. At the root node, an output voltage can be constructed (output layer). This

solution algorithm is described in § 4.4.3. When the SVD is simply the driving force, an analytic

solution can be derived that bears formal resemblance to artificial neural networks (see § 4.4.4).

We now derive this reformulation for the two-region system (4.16). We start by noting that in

many neurons

Z12 = Z21 ≈ Z01 ≈ Z02 (4.17)

is a reasonable approximation to compute the voltages used to evaluate the SVD’s f (V ) (note

that the equality is a consequence of the symmetry property of the GF). An example is shown

in Fig 4.9A: compared to the large input impedances, the transfer impedance to the soma is

quite similar to the transfer impedance between the left branch and synapse 1 and between

the right branch and synapse 2. Then, by defining a shared root impedance Z R = Z12 = Z21

and two single-site impedances Z i = Zi i −Z12 (i = 1,2), system (4.16) can be rewritten as:

V 1 = Z 1 ∗
[

g1 f (V R +V 1)
]

V 2 = Z 2 ∗
[

g2 f (V R +V 2)
]

V R = Z R ∗
[

g1 f (V R +V 1)+ g2 f (V R +V 2)
] (4.18)
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and the location voltage can be obtained as:

V1 =V R +V 1

V2 =V R +V 2

V0 ≈V R ,

(4.19)

where the approximation on the last line is a consequence of assumption (4.17). A schematic

of the tree graph associated with this system of equations is shown in Fig 4.9B. Note that the

vertical lengths of the branches are proportional to the impedances associated with the nodes.

For each input region, the tree has one leaf, representing respectively the variables V 1 and

V 2. The bottom node of the tree then represents the variable V R that combines both regions.

Note furthermore that we have used lines over variables to indicate that they are associated

with the NET tree. This is a convention that we will adopt in the rest of this work.

Examining equation (4.18) closely, it can be observed that we have introduced two voltage

variables V 1 and V 2 that feature no direct dependence on the synaptic conductance in the

other region. The only dependence on each other is through the root voltage V R in the SVD.

Consequently, determining whether regions 1 is independent from 2 becomes a matter only of

determining whether the fluctuations induced in V R by synapse 2 are small compared to the

fluctuations in V 1 induced by synapse 1 and vice verse. In § 4.6 we treat the precise conditions

under which a subgroup of input regions can be considered independent from the rest of the

input regions.

An added advantage is that the NET system (4.18) is easier to solve than the original system

(4.16): in the former there is one less convolution to integrate than in the latter. The reduction

in computational cost only increases when more input regions are added, as the number

of convolutions in the GF approach scales as the square of the number of input regions

[Koch, 1998, Wybo et al., 2013], but the number of nodes does not.

4.4.2 Full neurons: deriving the impedance tree

Due to the symmetry of the transfer impedances, the NET formulation in equation (4.18) is

always exact (the only approximation in equation (4.19) is equating the somatic voltage with

V R ). But how can one derive an approximate NET when there are more than two input regions

present on a neuron?

To solve this problem, we order all locations along a dendritic arborization in a depth-first

manner [Russell and Norvig, 2003]. Then, the associated impedance matrix becomes highly

organized (see as an example Fig 4.10B, where the impedance matrix associated with the

granule cell in Fig 4.10A is shown). Generally and with our colour coding, an even blue surface

covers most of the matrix. This represents transfer impedances between the main dendritic

branches. There are also smaller square regions of light blue or green closer to the diagonal.

These regions represent sibling branches, that are thus electrically closer to each other than to
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Figure 4.10 – Illustration of the first step of the recursive algorithm to derive an NET tree.
A: A granule cell morphology. B: The impedance matrix associated with this cell. C: Points
where the impedance is between Zmin,0(= 0MΩ) and Zmax,0(= 100MΩ) are colored blue. D:
The input impedance (diagonal of the impedance matrix). The connected domains with
input impedance larger than Zmax,0 are indicated on the x-axis and denoted by ci , as they
will constitute the child nodes of the root in the NET. E: The matrices within the red squares
correspond to these connected domains. F: The average impedance kernels for impedances
within the indicated ranges.

different main branches. Finally, the small squares along the diagonal coloured yellow and red

are the thin dendritic tips with high input impedances. Consequently, dendritic tips that lie

within the same light blue or green square are closer together electrotonically than tips within

different squares, as the transfer impedances connecting them are much higher. An NET

tree graph structure hence seems to impose itself naturally: the dendritic tips constitute the

leafs of the tree, their parent node combines multiple adjacent tips and the root node in turn

binds all these nodes together. Note that this impedance matrix is similar to the adjacency

matrix proposed in [Cuntz et al., 2010], and, following their conclusions, we hypothesized that

it would be sufficient to describe the electrical compartmentalization. Our approach however

is more powerful, as we have access to the full temporal profile of the impedance kernels

too. In the following we describe a heuristic algorithm to derive NET tree graphs from the

impedance matrix that retain all temporal dynamics within the original neuron.

Our algorithm does not assume a discretization in space, as classical compartmental models

do, but rather one in impedance. The ‘resolution’ of the NET tree is hence determined by a

parameter ∆Z . We employ a recursive algorithm, where each recursion step consist of three

phases:

1. Let k denote the step number in our recursive algorithm. We assume that a value Zmin,k

is at our disposition. In the first step this value is 0, in later steps it is given by the

previous steps. A value Zmax,k is also determined, in the first step as the somatic input
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impedance (Z00 with our depth-first ordering of the impedance matrix) and in later

steps by Zmax,k = Zmin,k +∆Z .

2. The kernel of the current node is constructed as the average of all impedance kernels as-

sociated with points in the impedance matrix for which Zmin,k ≤ Zi j < Zmax,k (coloured

blue in Fig 4.10C). This approach is justified, as impedance kernels of similar magnitude

have similar time scales (Fig 4.10F). Then, the kernels of all underlying nodes are sub-

tracted from this average kernel (analogous to how we subtracted Z12 from Zi i (i = 1,2)

to obtain equation (4.18)).

3. The next nodes are determined by looking at the input impedance, located on the

diagonal of the impedance matrix. Due to the depth-first ordering, new nodes can be

identified as uninterrupted intervals on this diagonal where Zi i > Zmax,k (Fig 4.10D).

For each of these intervals, a new child node is constructed by repeating step 1 with the

impedance matrix restricted to the interval (indicated in Fig 4.10E by the red squares)

and with Zmin,k+1 = Zmax,k .

Note that in the NET tree derived in this way, the root node groups all locations along the

dendritic arborization together, and, as one moves up through the tree, the nodes group

smaller and smaller areas until at the leaf nodes, only the distal tips are integrated.

Generally however, one is only interested in a subset of input regions on the dendrites. In

this case the tree can be pruned: leafs that do not integrate an input region of interest can

be removed, as can all nodes on the path to the root that do not feature in paths coming

from input regions of interest. If multiple nodes integrate the same input region, they can be

replaced by one node with an associated impedance kernel that is the sum of all impedance

kernels of the original nodes. Furthermore, for each input region on the tree, a leaf node can

be added whose impedance kernel fixes the sum of all underlying kernels to be the exact same

input impedance kernel as in the original tree.

This algorithm is very successful in constructing NET’s of reasonably homogeneous dendritic

arborizations. There is one pitfall: since there is only a single ‘global’ node that integrates all

dendritic branches, all transfer impedances across the main branches are the same. This be-

comes problematic in neurons that have one or multiple very large branches emanating from

their cell bodies, which in turn bifurcate more distally in further arborizations, as is for instance

the case in pyramidal cells. If all transfer impedances between proximal and distal regions in

these cells were the same, interactions between them would be overestimated. In Fig 4.11, it

can be seen that such large distal arborizations can be recognized from the histogram of all

somatic transfer impedances Z0x (contrast panels A,B in Fig 4.11 with panel C): since such a

distal arborization is only connected to the soma trough a single branch, there are many points

of low Z0x , many of high Z0x (the proximal arborizations), and relatively few of intermediate

Z0x . By consequence, the histogram has two main modes. The boundary between these two

modes, which we determine using the approach described by [Delon and Desolneux, 2007],

then indicates the impedance boundary between proximal and distal domains. Because of
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Figure 4.11 – Distinction be-
tween simple and complex den-
dritic arborizations in the first
step of the NET tree genera-
tion algorithm. For each row,
the morphology is shown on
the left, the bottom row of the
impedance matrix (i.e. the so-
matic transfer impedance Z0x ) in
the middle, and a histogram of
these impedance values on the
right. The x-axis of the middle
panel is coloured according to
the corresponding region on the
morphology. The background
coloring indicates the different
dendritic domains that will be-
come nodes ci in the NET tree,
as found from the histograms on
the right. A: stellate cell. B: gran-
ule cell. C: pyramidal cell.

the depth first ordering, any region with somatic transfer impedances above this boundary

will belong to the proximal domain (its associated node is denoted by c0 in Fig 4.11), whereas

connected regions below this boundary will constitute the distal domains (coloured red in

Fig 4.11C, and with c1 its associated node).

Algorithmically, our approach is thus the following: first, we determine the kernel of the root

node as the average of all transfer impedance kernels between proximal and distal branches.

Then, we start the recursive procedure as before, but with the impedance matrices restricted

to the different domains ci .

The final question left to ask is what an appropriate choice for ∆Z would be. As the NET tree

is an approximation, even an infinitesimally small ∆Z will not yield an error in the impedance

matrix of zero. Examining Fig 4.12, it can be observed that the decrease in error is negligible

once ∆Z drops below 10 to 20 MΩ. We consequently choose values within that range and

obtained accurate reproductions of voltage traces computed with the NEURON simulator

[Carnevale and Hines, 2006].

4.4.3 An efficient solution algorithm

On the one hand, the NET allows efficient simulation of the neuronal dynamics, and on the

other hand it can be used to compute attractor points of these dynamics. The latter yield

insight into the asymptotic behaviour of the neuron as a dynamical system and can be used
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to extract information about compartmentalization: for an instantaneous set of synaptic

conductances g1(t ), . . . , gn(t ), the instantaneous solution of the attractor point will be what the

full dynamical system is trying to reach. Hence, if components of the attractor point solution

behave independently from other components, the full dynamics will behave independently

too. Both the full simulation and attractor point solution involve solving linear systems by

matrix inversion. The NET tree graph structure allows this to be done in O(n) steps, as opposed

to O(n3) steps for arbitrary linear systems. We will first describe how the nonzero elements

in this matrix are constructed for each solution method. Then we will describe the solution

algorithm.
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Figure 4.12 – Error of the NET ap-
proximation. The root mean square
error of the impedance matrix approx-
imated by the NET tree compared to
the true impedance matrix, as a func-
tion of ∆Z .

We will order the node voltages in the NET tree in a

reversed depth-first manner (so that the root voltage

comes last) and group them in a vector V. Similarly,

the node impedances will be grouped in a vector Z.

With each node N we will associate the set RN con-

taining all input regions that a node integrates. Fur-

thermore, with each input region r we will associate

the set Sr of all synapse types present in the input

region and the set Nr of all nodes that integrate inputs

from that region. Although not strictly necessary, we

assume for simplicity that each leaf only integrates in-

puts from one region and that each input region is first

integrated by a leaf. With these assumptions, the sets

Nr always constitute paths from leaf to root, as is illus-

trated in Fig 4.13A. The general form of the synaptic

input current at node N (the factor in square brackets

in (4.18)) is then given by:

I N (t ,V(t )) = ∑
r∈RN

∑
s∈Sr

gs(t ) fs(
∑

M∈Nr

V M (t )). (4.20)

We thus sum over all regions integrated by node N and all synapse types in these input regions,

and the voltage in the SVD is given by the sum over all node voltages that integrate these input

regions. Note that besides V(t), the only other temporal dependence in I(t ,V(t)) is through

the synaptic conductances (gs(t ), grouped in a vector g). When convenient, we will therefor

sometimes write Ig(t )(V(t)). Finally, we remark that the set Nr always denotes a direct path

from leaf to root.

The full dynamical system. The full dynamical system associated with the NET can be

written in vector form as:

V(t ) =
∫ t

−∞
ds Z(t − s)¯ I(s,V(s)). (4.21)
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1
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Figure 4.13 – Schematic representation of the inversion algorithm. A: A schematic of a
simple NET with four nodes L1,L2, N and R, two input regions r1 and r2, and the two paths
Nr1 and Nr2 coloured red and blue respectively (mixed colour purple indicates that the two
paths overlap). B: The structure of the associated matrixA as obtained from equation (4.32).
C: By a recursive series of row operations the sub-diagonal elements ofA are set to zero, while
the diagonal elements are at the same time set to one. After the down sweep, the root voltage
can be computed directly. Other voltages are then computed during the up sweep.

where ¯ denotes element-wise multiplication. To solve a system of this form for V(t +h) when

I(t −kh,V(t −kh)) is known for k = 0,1,2, . . ., one can assume a linear interpolation between

the grid points. Since the impedances Z N (t) are known as sums of exponentials, they can

be integrated analytically in combination with the linear interpolation to obtain an accurate

quadrature rule (section 2.2 in [Wybo et al., 2015]). Grouping all terms that do not contain

V(t +h) in a term F(t ) , one obtains:

V(t +h) = Z
(0) ¯ I(t +h,V(t +h))+F(t ), (4.22)

where Z
(0)

is a vector based on the impedance kernels that follows from the quadrature rule.

Taylor expanding I N around V(t ) gives:

I N (t +h,V(t +h)) ≈ I(t +h,V(t ))+∑
M

∂I N

∂V M

∣∣∣
t+h,V(t )

[
V M (t +h)−V M (t )

]
. (4.23)

Moving all terms containing components of V(t +h) to the left hand side then gives a system

of the form

A(t +h)V(t +h) = B(t +h), (4.24)

which can be solved for the node voltage. In this system, the vector B(t +h) contains:

B N (t +h) = Z
(0)
N

[
I N (t +h,V(t ))−∑

M

∂I N

∂V M

∣∣∣
t+h,V(t )

V M (t )

]
+F N (t ) (4.25)
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and the elements of matrixA(t +h) are given by:

AN M (t +h) = δN M −Z
(0)
N

∂I N

∂V M

∣∣∣
t+h,V(t )

, (4.26)

with δN M the Kronecker delta.

The attractor points. The attractor points associated with (4.21) follow from the equality:

V = Z¯ Ig(V) (4.27)

or equivalently:

H(V) := V−Z¯ Ig(V) = 0 (4.28)

and can be found from the Newton iteration (with k the iteration index):

AH(Vk ) Vk+1 = Bk , (4.29)

withAH(·) the Jacobian of H(·) and the right-hand side of this equation given by:

Bk =−H(Vk )+AH(Vk ) Vk . (4.30)

The elements of the Jacobian are:

AN M = δN M −Z N
∂I g,N

∂V M
(Vk ). (4.31)

The matrix inversion. From (4.26) and (4.31) it can be seen that systems (4.24) and (4.29)

have the same structure, the only difference being that in (4.26) constants Z
(0)
N are employed

that follow from the quadrature rule whereas in (4.31) the node impedances Z N are used. The

NET tree now imposes a very special structure on the matrixA that allows it to be inverted in

O(n) steps. First, the algorithm performs a single down sweep that sets all elements under the

diagonal to zero. Then, a single up sweep is performed to set all elements above the diagonal

to zero. To constructA, we start from the identity matrix and then subtract

Z N
∂I g,N

∂V M
= Z N

∑
r∈RN

[ ∑
s∈Sr

(
gs f ′

s (
∑

K∈Nr

V K )

) ∑
K∈Nr

δK M

]
(4.32)

for all N , M . Here, f ′
s denotes the derivative of fs . Dissecting this, we see that for each path Nr ,

the rows corresponding to the nodes N ∈ Nr contain a term −Z N

[∑
s∈Sr

gs f ′
s (

∑
K∈Nr

V K )
]

at each column associated with a node in Nr . This leads to a structure that is depicted in
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Fig 4.13B. To simplify the notation, we will denote the term in square brackets by:

a(Nr ) := ∑
s∈Sr

gs f ′
s (

∑
K∈Nr

V K ). (4.33)

We will also group all terms in columns associated with Nr in row N of the matrix in a vector

R(N )
∣∣
Nr

, that thus contains(
R(N )

∣∣
Nr

)
K
= δN K −Z N a(Nr ), for K ∈Nr . (4.34)

For instance, in Fig 4.13B, R(L1)
∣∣
Nr1

is given by the red elements on the first line of the matrix,

and similarly for nodes N and R. In turn, rows R(·)∣∣Nr2
associated with Nr2 are coloured blue

for nodes L2, N and R.

Finally, we introduce for formal reasons a term b(Nr ) that is zero in the first step of the

algorithm, so that the elements of the vector B become:(
B

)
N = B N −Z N

∑
r∈RN

b(Nr ), (4.35)

and similarly to R(N )
∣∣
Nr

, we will take
(
B

∣∣
Nr

)
to signify the restriction of B to terms only in Nr :

(
B

∣∣
Nr

)
N
= B N −Z N b(Nr ). (4.36)

First, we describe the steps of the down sweep phase of the algorithm.

1. We take the leaf L of a path Nr , divide row L by its diagonal element and obtain:

(
R(L)

∣∣
Nr

)
K
=


−Z L a(Nr )
1−Z L a(Nr )

if K 6= L

1 if K = L,
(4.37)

Correspondingly,

(
B

)
L = B L −Z Lb(Nr )

1−Z L a(Nr )
. (4.38)

On all rows N ∈Nr \ {L} we effectuate the row operation

R(N ) → R(N )−
(
R(N )

∣∣
Nr

)
L

R(L)(
B

)
N → (

B
)

N −
(
R(N )

∣∣
Nr

)
L

(
B

)
L .

(4.39)

This operation sets sub-diagonal elements
(
R(N )

∣∣
Nr

)
L

to zero. For the non-zero ele-
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ments M 6= L we obtain:

(R(N )
∣∣
Nr

)M = δN M −Z N a(Nr )−
(
−Z N a(Nr )

) −Z L a(Nr )

1−Z L a(Nr )

= δN M −Z N
a(Nr )

1−Z L a(Nr )
,

(4.40)

while

(
B

∣∣
Nr

)
N
= B N −Z N b(Nr )−

(
−Z N a(Nr )

) B L −Z Lb(Nr )

1−Z L a(Nr )

= B N −Z N
b(Nr )−B L a(Nr )

1−Z L a(Nr )
.

(4.41)

Let P be the parent node of L in the path Nr . If all sub-diagonal elements for paths

associated with regions in RP have been set to zero, one can move on to step 2 with

node P . Otherwise repeat step 1 with a different leaf and path until such is the case.

2. Consider all r ∈RP . We will denote the restriction of the path Nr to nodes from P to

the root as N
P↓

r . The tree structure imposes that all these paths are the same:

N
P↓

r1
=N

P↓
r2

, ∀r1,r2 ∈RP . (4.42)

Hence we will use the shorthand:

NP :=N
P↓

r . (4.43)

As a consequence of step 1, it holds for all N ∈NP that:

(R(N )
∣∣
NP

)M = δN M −Z N
∑

r∈RP

a(Nr )

1−Z Lr a(Nr )
, (4.44)

where Lr signifies the leaf associated with the path Nr , and that:

(
B

∣∣
NP

)
N
= B N −Z N

∑
r∈RP

b(Nr )−B Lr a(Nr )

1−Z Lr a(Nr )
. (4.45)

We can now define

a(NP ) := ∑
r∈RP

a(Nr )

1−Z Lr a(Nr )
(4.46)

and

b(NP ) := ∑
r∈RP

b(Nr )−B Lr a(Nr )

1−Z Lr a(Nr )
. (4.47)

With these substitutions, we are now able to formally proceed with the algorithm as if P
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was a leaf and NP the path to it. We may thus return to step 1, unless P was the root of

the tree, in which case its associated voltage is known:

V p = B P −Z P b(NP )

1−Z P a(NP )
. (4.48)

The structure of the matrix after the down sweep is illustrated in Fig 4.13C.

Note that the efficiency of the algorithm lies in the fact that we do not have to do the row

operation (4.39) explicitly for each node N on the path to the root. It suffices to compute the

quantities a(NP ) and b(NP ) once for each node that is not a leaf.

For the up sweep of the algorithm, we assume that we have a node P for which the voltages as-

sociated with nodes in NP (i.e. the path from P down to the root) are known. Then performing,

for all nodes N in the sub-tree of P , the row operation:

R(N ) → R(N )− (R(N ))P R(P )(
B

)
N → (

B
)

N − (R(N ))P
(
B

)
P

(4.49)

sets the supra-diagonal elements
(
R(N )

∣∣
Nn

)
P

to zero. Repeating this operation with the child

nodes C of P sets their associated supra-diagonal elements
(
R(N )

∣∣
Nn

)
C

to zero, with N now in

the sub-tree of C . Continuing so until the leaves are reached diagonalizes the whole matrix.

Key here is that we do not have to do all the row operations explicitly either; from equation

(4.44) it follows that all supra-diagonal elements on a given row are the same. Hence, the

voltage associated with a node N with parent P is given by:

V N = B N −Z N b(Nn)

1−Z N a(Nn)
+ Z N a(Nn)

1−Z N a(Nn)

( ∑
K∈NP

V K

)
(4.50)

and recursion can proceed with the child nodes of N .

To conclude, we summarize the algorithm in the pseudocode in Fig 4.14.

4.4.4 Conductance-based synapses: analytic solutions

The terms in Ig(V) corresponding to AMPA and GABA synapses depend linearly on the voltage

through the driving force. When only such synapses are present, the Newton iteration (4.29)

yields the true node voltages in a single step, while at the same time providing insight in

the input/output relation of the neuron. We describe this input/output relation in the next

paragraph for the case where only a single synapse type is present, although the extension to

multiple synapse types is possible. Furthermore, we show that in certain cases, a shunting

input can be seen as reducing the impedance associated with specific nodes in the NET

tree. We also discuss the relation with the shunt level, a quantity used previously to quantify
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Procedure Down sweep(leaf L)
1 if L is true leaf then
2 compute a(Nl )
3 b(Nl ) ← 0

end
4 compute BL according to integration

paradigm
5 store BL , a(Nl ),b(Nl ) at node L
6 if L not root then
7 retrieve parent P

8 a(NP ) += a(Nl )
1−Z L a(Nl )

9 b(NP ) += b(Nl )−B L a(Nl )
1−Z l a(Nl )

end
10 if all children of P have been passed

then
11 if P is not root then
12 L ← P
13 Down sweep (L)

end
14 else
15 Stop recursion

end
end

16 else
17 L ← next leaf
18 Down sweep (L)

end

Input: leaf L
Down sweep(L)

Procedure Up sweep(node N , voltage
VP)

1 V N ← B N−Z N b(Nn )
1−Z N a(Nn )

+ Z N a(Nn )
1−Z N a(Nn )

VP

2 a(Nn) ← 0, b(Nn) ← 0, BN ← 0
3 for childnodes C of N do
4 Up sweep(C , VP +V N)

end

Input: root R
Up sweep(R, 0)

Figure 4.14 – Pseudocode for the up and down sweep phases of the matrix inversion algo-
rithm. During both phases, each node is passed exactly once.
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shunting interactions in dendritic trees [Gidon and Segev, 2012].

A simple input/output transformation. When a single synapse type with linear voltage

dependence is present on the dendritic tree, equation (4.20) becomes:

I N ,g(V) = ∑
r∈RN

gr

(
Er −Veq −

∑
K∈Nr

V K

)
, (4.51)

where Er denotes the synaptic reversal potential and Veq the equilibrium voltage. For the sake

of brevity, we will group these time-independent potentials in a single variable :

E := Er −Veq (4.52)

The elements of matrixA in (4.29) have the form:

AN M = δN M +Z N
∑

r∈RN

gr
∑

K∈Nr

δK M (4.53)

whereas for the contents of vector B (with V0 = 0) we find:

B N = ZN
∑

r∈RN

gr E . (4.54)

For the rows ofA, this means that:(
R(N )

∣∣
Nr

)
K
= δN K +Z N gr , for K ∈Nr . (4.55)

In step 2 of the down sweep algorithm, with these simplifications it holds that:

(R(N )
∣∣
NP

)M = δN M +ZN
∑

r∈Rp

gr

1+ZLr gr
(4.56)

and (
B

∣∣
Nr

)
N
= B N − ∑

r∈∇P

Z N gr
ZLr gr E

1+ZLr gr

= Z N
∑

r∈RP

gr E − ∑
r∈RP

Z N gr
ZLr gr E

1+ZLr gr

= Z N
∑

r∈RP

gr

1+Z Lr gr
E .

(4.57)

This suggest that instead of equation (4.46), we can now define:

gp := ∑
r∈RP

gr

1+Z Lr gr
, (4.58)
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A BDown sweep Up sweep

Figure 4.15 – Solution for a single synapse type. A: In the down sweep phase, the conduc-
tances are rescaled by a shunt factor. B: The up sweep sets all the node voltages.

and, since this factor occurs both in (4.56) and (4.57), we may consider it as a synaptic con-

ductance associated with node P . With respect to the downward recursion, P then formally

becomes a leaf of the tree. If P is the root of the tree, its voltage is given by:

V P = Z p
gP

1+Z P gP
E . (4.59)

The up sweep then proceeds as in the full algorithm, but instead of equation (4.50), we find:

V N = Z N
gN

1+Z N gN

(
E − ∑

K∈NP

V K

)
. (4.60)

This solution is depicted in Fig 4.15 for a simple NET tree. It can be seen that the conductance

associated with the root node is given by a combination of shunting non-linearities

FZ (g ) = g

1+Z g
(4.61)

and linear sums (Fig 4.15A), and that the root voltage can be computed directly from knowledge

of the associated conductance. This parallels the way the output is constructed in artificial

neural networks (ANN’s). The amount of shunting in a node is furthermore proportional to

the impedance in that node. If conductance and/or impedance are small, so that Z g ¿ 1 in

all nodes, the root voltage is simply a linear sum of all the inputs. If local voltages need to be

known, the up sweep is straightforward to compute, as depicted in Fig 4.15B.

Shunting. Shunting inhibition has proven to be a powerful tool to modulate the output of

regions in the dendritic arborization [Gidon and Segev, 2012]. The influence of this shunt on

other dendritic regions can be quantified by the shunt level SL, i.e. the relative reduction in
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Figure 4.16 – SL in a subtree of
a stellate cell. A: Schematic NET
with a region of excitation rE and
a region of shunting rS . The
shunt can be eliminated from
the NET by rescaling the conduc-
tance of the root R. B: The den-
dritic subtree. C: SL computed
according to the normal defini-
tion (labeled∆Zin/Zin), the exact
two location NET (labeled 2Loc)
and an approximate NET pruned
from the full NET tree (labeld
full). Colors correspond to the
colour code in B.

A

B

C

input impedance:

SL = ∆Zin

Zin
. (4.62)

It is instructive to understand the analytical NET formula for this shunt level. The original

NET system has the following form:

V E = Z E gE · f (V R +V E )

V S =−Z S gS · (V R +V S)

V R = Z R

[
gE · f (V R +V E )− gS · (V R +V S)

]
,

(4.63)

where the subscript E denotes a node associated with only excitation, S a node with only

shunting inhibition and R the root node that combines both synapses. Solving for shunt-

related terms gives:

V E = Z E gE · f (V R +V E )

V S =− Z S

1+Z S gS
gSV R

V R = Z R

1+Z R
gS

1+Z S gS

[
gE · f (V R +V E )

]
.

(4.64)

Formally, the first and last equations in this system can now be seen as an NET with a single

input region and a root impedance that is modified due to the shunt conductance gS , as is

illustrated in Fig 4.16A. From the original input impedance at the excitatory synapse Z E +Z R
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and the new input impedance Z E + Z R

1+Z R
gS

1+Z S gS

, the shunt level can be computed:

SL =

1︷ ︸︸ ︷
Z R gS(

1+ Z E

Z R

)
︸ ︷︷ ︸

2

(
1+ (Z R +Z S)gS

)
︸ ︷︷ ︸

3

. (4.65)

It can be seen from factor 1 in the above formula that SL is proportional to the impedance in the

common node as well as the shunt conductance. However, SL can not grow indeterminately,

due to the saturation factor 3. The maximal shunt level is thus inversely proportional to

the input impedance at the shunting synapse, Z R +Z S . Finally, due to factor 2, the amount

of shunting also depends on the ratio between impedance at the excitatory node versus

impedance at the root node. We computed SL for a subtree of a stellate cell (Fig 4.16B), once

using the definition (4.62), and once using the NET derived for two locations (‘NET 2loc’ in

Fig 4.16C). Since the NET for two locations is exact (see § 4.4.1), these two lines coincide

perfectly. We also computed SL once for an NET tree obtained from the algorithm described

in § 4.4.2 by pruning all unneeded regions. This approximate tree agrees very well with the

true SL, thus serving as a further validation that our full NET tree can capture the interactions

within a dendritic arborization accurately.

4.5 Predicting spikes: linear layers

While our NET approximation is sufficiently accurate in computing the voltages for the SVD’s,

the very sharp threshold for AP generation at the soma still requires a higher precision. This

precision is hard to achieve with the NET as it is, since the effective transfer impedance

between the soma and the dendritic loci is either the same everywhere, or can take on only a

proximal and distal value (see § 4.4.2). We mitigate this problem by introducing ‘linear layers’

(LinL’s).

In our NET implementation, there are no constraints on the channel types that can be included

in the AP current. Furthermore, the associated currents are modeled in the same way as

the synaptic current. AP channels contribute to the nodal input current only at nodes that

integrate the somatic region. Usually, there are two such nodes: the root of the NET tree R and

a leaf L0. The latter represents a component of the voltage only felt in and around the soma.

The AP current contribution at these nodes to I N (N = R,L0) can be written as I AP (VR +VL0 ).

The LinL’s now add an extra term Vlin to the voltage this current depends on. This term has the

form:

Vlin = ∑
l∈L

Z l (t )∗ ∑
r∈Rl

[ ∑
s∈Sr

gs f (
∑

M∈Nr

V M )

]
, (4.66)
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A B

C
NET

Exact

NET + LinL

Figure 4.17 – LinL’s to im-
prove dendrite to soma
transfer. A: Schematic of
the spatial extent of the
five different LinL’s. B: The
impedance kernels associ-
ated with each LinL (color
coding corresponds to A).
C: The transfer impedance
from input site to soma
(first column or bottom row
in the impedance matrix,
shown in Fig 4.11). Shown
is the exact value (black),
the NET value (red, full line)
and the NET + LinL value
(red, dashed line).

where L is the set of LinL’s, Rl is the set of regions a linear layer integrates and Z l (t) is the

impedance kernel associated with a layer l . Since this term is only felt by I AP , it does not

contribute to the SVD’s.

In Fig 4.17 the LinL’s are shown for the same granule cell as in Fig 4.10. The sets RL are

illustrated in Fig 4.17A. As can be seen from Fig 4.17B, the LinL with the largest spatial extent,

i.e. the one that integrates all regions, has the smallest kernel. LinL’s that only integrate

more proximal inputs then add shorter-time scale kernels to this. These LinL’s hence serve to

correctly approximate delay and attenuation of the dendritic inputs. In Fig 4.17C, the transfer

impedance to the soma (which corresponds to both the leftmost column and the bottom row

in the impedance martrix Zxx ′) is plotted. It can be seen that the NET in combination with

the LinL’s constitutes a much more faithful approximation than without. We also note that

the maximal impedance difference that is implemented by the LinL’s is around 20 MΩ. This is

small compared to the local impedance that rises to over 300 MΩ in this cell (Fig 4.10B). In

many cortical cells, this difference is even larger, as local impedances often go up to 1000 of

even 2000 MΩ, whereas the difference in somatic transfer impedance is also around 20 to 50

MΩ.

4.5.1 Matrix inversion with linear layers.

To extend the matrix inversion algorithm explained in § 4.4.3, we note that the rows in the

Jacobian associated with nodes that integrate the AP current receive extra terms. For each

region r , and for all nodes K on the path Nr , the following terms are added to rows associated
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with all nodes N integrating the AP current:(
R(N )

∣∣
Nr

)LinL

K
=−Z N I ′AP

∑
l∈Lr

Z l a(Nr ), (4.67)

where Lr = {l ∈ L |r ∈ l } is the set of all LinL’s that receive input from region r . For ease of

notation we will define a quantity αr :

αr =
∑

l∈Lr

Z l a(Nr ), (4.68)

as well as a term βr that is zero in the first step of the down sweep algorithm,(
B

∣∣
Nr

)LinL

N
=−Z N I ′APβr . (4.69)

The steps of the down sweep phase of the extended inversion algorithm proceed in the same

way as in the normal inversion algorithm, but with the following additional operations:

1. After dividing the row associated with the leaf l of the path Nr by its diagonal element,

as in (4.37), we effectuate a row operation similar to (4.39):

R(N ) → R(N )−
(
R(N )

∣∣
Nr

)LinL

L
R(L)(

B
)

N → (
B

)
N −

(
R(N )

∣∣
Nr

)LinL

L

(
B

)
L

(4.70)

which sets the term
(
R(N )

∣∣
Nr

)LinL

L
to zero. The remaining non-zero terms in row N are

then: (
R(N )

∣∣
Nr

)LinL

K
=−Z N I ′AP

αr

1−Z L a(Nr )
(4.71)

and

(
B

∣∣
Nr

)LinL

N
=−Z N I ′AP

(
βr − αr B L

1−Z L a(Nr )

)
. (4.72)

2. In step 2, we then define the following additional quantities associated with node P :

αp := ∑
r∈RP

αr

1−Z L a(Nr )
(4.73)

and

βp := ∑
r∈RP

(
βr − αr B L

1−Z L a(Nr )

)
. (4.74)

The up sweep phase of the algorithm then proceeds in the same way as before for the nodes
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that do not integrate the somatic region.

4.6 Independence and compartmentalization

4.6.1 True independence

The leafs of the NET form the substrate for independence, since in their associated voltage

variables there is no direct dependence on the other synaptic conductances. This nevertheless

does not mean that they will be independent per se: the SVD at any leaf L still depends on all

other nodal voltages on the path to the root:

I g,L(V) = ∑
s∈SL

gs fs(V L +
∑

N∈NL \{L}
V N ). (4.75)

Regarding short term fluctuations, this current will become truly independent from all other

synapse if

δV L >C
∑

N∈NL \{L}
δV N , (4.76)

with C a (large) number that has to be determined empirically and δV denoting the short

term fluctuations of V around a long term average 〈V 〉. Here, short term means the time-

scale on which neurons convert electrical inputs to output. As NMDA synapses have a decay

time constant of 20 to 50 ms [Roth and van Rossum, 2009], this time-scale should be at least

somewhat larger than the NMDA time constant. We hence take this time-scale to be . 100 ms.

Then (4.77) can be approximated as follows:

I gs ,L(V L) = ∑
s∈SL

gs fs(V L +〈 ∑
N∈NL \{L}

V N 〉). (4.77)

The long term average in this equation is only influenced very little by the instantaneous values

of the synaptic conductances and can hence be seen as a constant, i.e. a fixed parameter in

the equation:

V L = Z L(t )∗
[ ∑

s∈SL

gs fs(V L +〈 ∑
N∈NL \{L}

V N 〉)
]

. (4.78)

Consequently, the solution for V L will not depend on the instantaneous values of the synaptic

conductances at other locations.

4.6.2 Estimating independence

Whether condition (4.76) holds, depends on the structure of the NET tree as well as the relative

size of the synaptic inputs. Since we are chiefly interested in how compartmentalization is
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induced by the dendritic morphology, we make the rather crude assumption that fluctuations

in all synaptic input currents are of a similar size. When this is the case, condition (4.76)

becomes a condition on the impedances:

Z L >C
∑

N∈NL \{L}
Z N |RN | , (4.79)

where |RN | denotes the number of regions node N integrates. When we are interested in deter-

mining whether a pair of regions ri (integrated by the leafs Li , i = 1,2) can act independently,

we can consider a reduced tree with two leafs obtained by pruning all leafs associated with

other regions. The new tree then has leaf impedances Z i =∑
N∈NLi \(NL1∩NL2 ) Z N (i.e. a sum

over impedances of nodes that integrate one region but not the other) and a root impedance

Z 12 = ∑
N∈(NL1∩NL2 ) Z N (i.e. a sum over impedances of nodes that integrate both regions).

Then, whether one region ri is independent from the other will be given by

Z Li > 2 C Z 12. (4.80)

For mutual independence between r1 and r2, this equation has to hold for both i = 1 and i = 2.

To summarize these two conditions in a single expression, we defined the ‘impedance-inferred

independence index’ (IZ ):

IZ = Z 1 +Z 2

2 Z 12
. (4.81)

Then, if (4.80) holds for both regions, the following condition also holds:

IZ > 2 C . (4.82)

Note that this is a necessary, but not a sufficient condition for mutual independence. However,

as shown throughout the main manuscript, when asymmetry is not too high IZ is, despite its

simplicity, a surprisingly accurate measure. Note that we also checked the effect of asymmetry

by computing and ‘asymmetry index’ SZ :

SZ =

∣∣∣Z 1 −Z 2

∣∣∣
2 Z 12

. (4.83)

In the main text we also checked numerically what the value of C would be: we imposed

equation (4.78) on models of varying IZ and checked the error with respect to the full model.

We found that we can speak of independence when IZ & 10. This means that C ≈ 5 in

condition (4.76). To conclude, we remark that our discussion on shunting (§ 4.4.4) also holds

when multiple excitatory inputs are present on the neuron. Thus, as a shunting conductance

will reduce the impedance of the root node, it will also increase IZ .
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4.6.3 Compartmentalization

In § 4.6.1 we discussed the conditions under which a single input site can be considered

independent from the rest of the input sites. Nevertheless, when inputs are distributed in an

almost continuous fashion along the dendritic arborization, such sites may not exist. It can be

expected, however, that the structure of the dendritic tree favors a grouping of inputs, such

that inputs belonging to different groups are all mutually independent but inputs belonging to

the same group are not. A grouping of this type for homogeneously distributed inputs along

the dendritic arborization, and where inputs belonging to different groups have an IZ above a

certain threshold, will be called a compartmentalization of that dendritic tree for that given IZ .

Note that in such a compartmentalization, not all input sites can belong to a group, as there

will have to be at least some space between compartments if they are to be independent.

How can such a compartmentalization be found? First, we remark that there is no unique

answer to this question. Consider a forked dendritic tip. It may happen that inputs within

each sister branch are independent from the rest of the dendritic tree, but the branches are

not independent from each other. Furthermore, because of a steep impedance gradient

within the branch, inputs at the bifurcation point may not be independent from the rest of the

tree. Because of the first constraint, both tips can not form separate compartments, whereas

because of the second constraint, they can not be grouped into a single compartment either.

Hence only one branch can be chosen, and either choice forms a valid compartmentalization.

We implemented an algorithm that proposes, given an IZ , a compartmentalization that

maximizes the number of compartments. Our algorithm uses the NET tree to determine this

compartmentalization. We note that if a node N in the NET tree forms a valid compartment,

all nodes in the subtree of N are part of the same compartment, since their IZ to other

compartments will be higher than the IZ of N . Hence, our algorithm will simply return a set

of nodes, where it is understood that a compartment associated with a node from this set is its

whole subtree. Our algorithm proceeds in three steps:

1. We determine a ‘tentative’ compartmentalization. For each node N in the NET tree, we

examine the bifurcation nodes B on the path NN from N to the root. We check whether

the following condition holds

IZ <
∑

K∈NN \NB
Z K∑

K∈NB
Z K

, (4.84)

with Nb the path from B to the root. If this condition is true for two nodes N and M

that have B on their respective paths to the root, and where (NN \NB )∩ (NM \NB ) =;,

these nodes will be separated by at least the required IZ . Hence, we say that N is a

tentative compartment with respect to B .

2. In a second step, we remove all leafs from the tree that could not possibly be separate

compartments. To do so, we look at the highest order bifurcation B and its child leafs.
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Then, if at least two child leafs are tentative compartments with respect to B , the other

leafs who are not tentative compartments with respect to B are removed. Otherwise, all

child leafs but the one with largest impedance are removed. Note that in the latter case, B

is not a bifurcation anymore and consequently will not induce tentative compartments.

We continue to cycle through the bifurcation nodes of highest order until no more nodes

can be removed.

3. In a final step we assign the compartments. As we are now sure that every leaf is part of a

separate compartment, we start at the leaf, find the nearest bifurcation node in the NET

tree, and then recursively find the lowest order node that is still a tentative compartment

of B . This node will be a compartment node in the final compartmentalization.

4.7 Simulation-specific parameters

Figure 4.1. We evaluated the impedance matrix in panel B at 4 µm intervals. In the simu-

lation depicted in panels D and E, the synapses contained only an AMPA component with

gmax = 10 nS (representing a cluster of synapses). In the simulations in panels H and K, NMDA

synapses were used with gmax = 2 nS and RNMDA = 3. In either case, no active channels were

inserted in the soma.

Figure 4.2. For the simulations in panel B, NMDA synapses (RNMDA = 3) were used. Their

gmax and incoming Poisson rate were optimized to utilize the full range of the NMDA non-

linearity. For the simulations in the rightmost panels in E-G, 100 (gmax = 4 nS and RNMDA = 3)

NMDA and 100 GABA (gmax = 2 nS) synapses were inserted on the morphology and activated

with Poisson spike trains of 1 Hz.

Figure 4.3. Traces in panel A corresponded to the simulation parameters in Fig 2B. In panel

D, synapse 1 was a non-plastic NMDA synapse (gmax = 1 nS,RNMDA = 3) and synapse 2 a

plastic synapse with the same parameters. When on, synapse 1 received a tonic spike train

with a rate of 113 Hz (to yield a time-averaged activation A1 ' 15). Synapse 2 received rates

ranging from 0 to 113 Hz, corresponding to the data points at different activations in the figure

in the figure. For the simulations in panel H, we inserted NMDA synapses (RNMDA = 3) in both

branches and stimulated them with a rate of 200 Hz. Their maximal conductance gmax was

optimized to obtain an average depolarization of −40±2.5 mV in each branch.

Figure 4.4. The data analyzed in panels E-G was obtained from the simulations described

for Fig 2E-G, ran for 100 s.

Figure 4.5. For the simulations in panel B, the main synapses contained only an AMPA

component with gmax = 5 nS. To simulate the high-conductance state, 200 AMPA and 200
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GABA synapses (gmax = 0.5 nS) were distributed evenly across the neuron. Each AMPA synapse

was stimulated with a Poisson spike train of 5 Hz. The rate of stimulation for the GABA synapses

was tuned to achieve a balanced input. To recompute the tree structure for panels A and C,

the time-averaged conductances of all background synapses were inserted in the morphology

as static shunts.

The inhibitory synapse in panels D-G had gmax = 0.11 nS and was activated at a steady rate of

200 Hz, so that it’s total time-averaged conductance was around 15 nS. For the simulations in

panel G, we inserted NMDA synapses (RNMDA = 3) in both branches and stimulated them with

a rate of 200 Hz. Note that these inputs could come from multiple presynaptic cells. Due to

the linearity of the conductance dynamics however all spikes can be taken to add to the same

conductance and can hence be modeled as a single synapse. The maximal conductance gmax

of the NMDA synapse was optimized to obtain an average depolarization of −40±2.5 mV in

each branch, a target value which yields parameters that allow exploitation of the full range of

the NMDA non-linearity.

Figure 4.6. In both simulations with and without shunting inhibition, noise was imple-

mented at all three locations using AMPA (gmax = 0.1 nS) and GABA (gmax = 0.2 nS) synapses.

Both were stimulated with Poisson spike trains of resp. 63 Hz and 157 Hz (tuned to achieve

balance). The shunting inhibition in the parent branch was implemented by a GABA synapse

(gmax = 2 nS) receiving a Poisson train with a rate of 734 Hz (tuned to reach a time-averaged

conductance of 31 nS) during the 100 ms learning intervals. Note that this single conductance

could again could represent multiple synapses.

Stimulus-specific innervation patterns were: S(↑) to B(↑): 10 synapses, S(↑) to B(↓): 5 synapses,

S(↓) to B(↑): 4 synapses and S(↓) to B(↓): 9 synapses. These synapses were all NMDA synapses

(gmax = 1.5 nS,RNMDA = 2) that where activated in the learning intervals with Poisson trains

at a rate of 23 Hz without the shunting inhibition and 33 Hz with the shunting inhibition (to

compensate for the loss in input impedance in both branches).
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5 Conclusion

At the start of this thesis work, the GF formalism was largely abandoned as a tool to simulate

and understand dendritic computation. Koch identified three reasons for this [Koch, 1998]: (1)

the quadratic scaling with the number of input locations when local synaptic currents depend

on the voltage, (2) the cumbersome nature of the convolutions with GF kernels and (3) the

apparent inability to integrate non-linear currents. We nevertheless decided to give the GF

formalism a second chance, as it contains all the information on how a dendritic tree – no

matter how morphologically complex – converts input currents into output voltage. While

the GF can indeed only take linear currents into account, it still provides key insights into

how non-linear currents interact with the morphology [Segev, 2000]. For instance, Gidon

and Segev were able show to show that distal inhibition could effectively veto the generation

of more proximal dendritic spikes, simply by studying the ratio between transfer and input

impedances [Gidon and Segev, 2012].

We started our foray into the Green’s function (GF) formalism by studying whether any ad-

vantage could be gained by using it in it’s most naive form to simulate neuron models. While

we found that there was a slight computational advantage with very few synapses on a large

morphology [Wybo et al., 2013], the quadratic dependence and cumbersome nature of the

convolutions impeded any usefulness for real-world use-cases, where more than a few input

sites and possibly a number of non-linear ion channels need to be integrated. We nevertheless

noticed that because of the transitivity property of the GF [Koch, 1998], the system of GF inte-

gral equations can be rewritten in such a way that most kernels become zero, and the quadratic

dependence on the number of input sites becomes linear [Wybo et al., 2015]. To solve the

associated convolutions efficiently, we expressed the kernels as sums of exponentials using the

vector fitting algorithm [Gustavsen and Semlyen, 1998, Gustavsen and Semlyen, 1999]. These

two innovations allowed us to reach a level of computational performance that far exceeds

that of compartmental models when only few input locations are present, and can perform at

a computational cost that, while slightly higher, is in the same order of magnitude as compart-

mental models in most realistic use-cases [Wybo et al., 2015]. Nevertheless, our simulation

paradigm requires substantially more work to initialize than compartmental models, and
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there is no standard software available. These two factors impede its wide-spread adop-

tion. Indirectly though, this work has yielded (and may still yield) very useful results: in

[Rössert et al., 2016], the methods we employed in our GF work were used to efficiently extract

exponential kernels that take the linear effects of dendrites into account, a key step in the

reduction of morphological detailed networks to point neuron networks.

We found however that employing the GF formalism in this way did not improve our under-

standing of dendritic function, in particular with respect to the subunit hypothesis. For that

reason we turned our attention to the separation of variables (SOV) method. In this method,

the GF is expressed as an infinite sum of exponentials with a decreasing time-scale, each

weighted by a function with a given spatial scale (which also decreases for increasing term

numbers) [Major et al., 1993a]. It was our hope that this series could be truncated beyond a

specific temporal scale, and that hence the associated spatial functions would provide insight

into the spatial extent and location of independent dendritic subunits. This turned out to

be unfeasible, as there is a large grey zone between terms in this series that generate the

independent subunits and terms that fix the more detailed aspects of the dendritic dynamics.

Nevertheless, the SOV method provides a very convenient form to express the GF in, and, as it

is a sum of exponentials, convolutions are also reasonably easy to compute.

The first key observation that helped elucidate the subunit hypothesis was that the impedance

matrix, obtained by integrating over the temporal coordinate of the GF, is highly structured

when dendritic branches are ordered in a depth-first manner [Cuntz et al., 2010]. A second

key observation is that this structure is sufficient to derive a tree-like model that captures the

full, spatio-temporal dendritic dynamics. We termed this model the neural evaluation tree

(NET) and observed that if two regions are independent, this model contains state variables

that are truly independent, and thus model the input-output relation of the subunit. We used

this observation to derive a condition that determines at what separation on the dendritic

tree a pair of input regions can function as independent subunits. The NET also allowed

us to quantify how many independent subunits could maximally coexist on the dendritic

tree. Furthermore, we noticed that dynamic input regimes, such as the high conductance

state, modify the structure of the NET and thus the compartmentalization of the dendrite into

subunits. In the high conductance state, this modification is thought to be global, but we also

found that targeted shunting inputs can increase compartmentalization locally, in such a way

that sister branches that were tightly coupled, can become independent. Branches elsewhere

on the dendritic tree do barely feel any difference because of such localized shunting inputs.

We finally were able to show that, through this mechanism, branches that would otherwise

learn as a single unit, could become responsive to different stimulus features.

These findings are exciting since they could substantially enrich the computational reper-

toire of neurons. Before, subunits were seen as a static concepts [Häusser and Mel, 2003].

Our results indicate however that the subunits of neurons may be tuned dynamically to a

particular computation the network is engaging in. Furthermore, our results provide a pos-

sible explanation of recent observations that a large fraction of inhibitory synapses seems
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indeed to be targeting intermediate dendritic branches [Bloss et al., 2016], precisely the ones

that are optimal to make more distal branches independent. Finally, they also provide in-

sight into the change in input-output relation neurons undergo in-vivo in cortical up-states

[Destexhe et al., 2003] and in the high-conductance state [Rudolph and Destexhe, 2003].

Since the NET framework treats synaptic interactions in a comprehensive way, we expect that it

will aid in elucidating synaptic interactions that are not yet understood. For instance, the NET

could aid in searching the most favorable input patterns along a dendritic tree for eliciting APs

in a balanced input regime. That way, it could help elucidating whether it is more beneficial

for synaptic inputs of a certain orientation tuning to be spread throughout the dendritic tree

[Jia et al., 2010, Chen et al., 2013] or to cluster together [Wilson et al., 2016, Gökçe et al., 2016].

It could also aid in designing an experimental paradigm to directly construct electrical models

of neurons. In the past, constructing morphological neuron models was a tedious process,

where the full morphology had to be constructed and the parameters of a cable model had

to be fitted (see for instance [De Schutter and Bower, 1994a, De Schutter and Bower, 1994b,

Hay et al., 2011, Eyal et al., 2016]). Because the NET framework summarizes the electrical

structure of a neuron in a drastically simplified form, an approach based on 2-photon glu-

tamate uncaging [Pettit et al., 1997] could be conceived from which a NET model could be

derived directly. The NET framework may also help in understanding whether synapses

learn primarily through local, voltage-based interactions or rather through backpropagating

APs [Sjöström et al., 2008]. Presently, the NET framework only contains point source non-

linearities. While ion channels that are continuously distributed throughout the dendritic tree

can be modeled through a recompartmentalization procedure, not much insight is gained

in this way in their localized interactions with synaptic currents. To do so, a comprehensive

method that can estimate the ion channel current throughout a dendritic branch following a

synaptic input should complement the NET framework.

The NET framework is a promising candidate to enrich neural network models with dendrites

in general and dendritic subunits in particular. In its current form, the NET is not particularly

efficient to simulate since the kernels at each node are temporally complex. Likely however,

the temporal profile of these kernels can be simplified drastically; they could be replaced by

a single exponential with only a minor loss in precision. In this form, simulating dendrites

would become computationally very efficient. Another benefit of this model is that it would

be immediately apparent if the dendrite contained independent subunits or not. Conversely,

modelers could devise abstract models, where they choose the degree of independence be-

tween synapses as they desire, without having to go through the cumbersome process of

choosing the appropriate sites on the dendritic geometry. We aim to turn the tools that have

been developed during this thesis into a software toolbox that (1) implements code for the

main neural network simulators, such as NEST [Gewaltig and Diesmann, 2007] and BRIAN

[Goodman and Brette, 2008, Goodman and Brette, 2009], to simulate the NET efficiently and

that (2) provides modelers with the tools to analyse any dendritic tree and extract the NET

for any set of input regions. We believe that in light of the rising evidence of the importance

of dendritic dynamics in behaving animals [Grienberger et al., 2015, Takahashi et al., 2016,
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Smith et al., 2013, Moore et al., 2017], such a toolbox will be indispensable for modelers aim-

ing to study these phenomena from a computational point of view.

112



Bibliography

[Abbott et al., 1991] Abbott, L. F., Farhi, E., and Gutmann, S. (1991). The path integral for

dendritic trees. Biological Cybernetics, 66(1):49–60.

[Abrahamsson et al., 2012] Abrahamsson, T., Cathala, L., Matsui, K., Shigemoto, R., and Di-

gregorio, D. a. (2012). Thin dendrites of cerebellar interneurons confer sublinear synaptic

integration and a gradient of short-term plasticity. Neuron, 73(6):1159–72.

[Agmon-Snir et al., 1998] Agmon-Snir, H., Carr, C. E., and Rinzel, J. (1998). The role of den-

drites in auditory coincidence detection. Nature, 393(6682):268–272.

[Almog and Korngreen, 2014] Almog, M. and Korngreen, A. (2014). A quantitative description

of dendritic conductances and its application to dendritic excitation in layer 5 pyramidal

neurons. The Journal of neuroscience : the official journal of the Society for Neuroscience,

34(1):182–96.

[Angelo et al., 2007] Angelo, K., London, M., Christensen, S. R., and Häusser, M. (2007). Local

and global effects of I(h) distribution in dendrites of mammalian neurons. The Journal of

neuroscience : the official journal of the Society for Neuroscience, 27(32):8643–53.

[Antic et al., 2010] Antic, S. D., Zhou, W.-L., Moore, A. R., Short, S. M., and Ikonomu, K. D.

(2010). The decade of the dendritic NMDA spike. Journal of neuroscience research,

88(14):2991–3001.

[Archie and Mel, 2000] Archie, K. A. and Mel, B. W. (2000). A model for intradendritic compu-

tation of binocular disparity. Nature neuroscience, 3(1):54–63.

[Ascoli, 2006] Ascoli, G. A. (2006). Mobilizing the base of neuroscience data: the case of

neuronal morphologies. Nature reviews. Neuroscience, 7(4):318–24.

[Ascoli et al., 2007] Ascoli, G. A., Donohue, D. E., and Halavi, M. (2007). NeuroMorpho.Org: A

Central Resource for Neuronal Morphologies. Journal of Neuroscience, 27(35):9247–9251.

[Bayin, 2006] Bayin, S. (2006). Mathematical Methods in Science and Engineering. Wiley.

[Behabadi and Mel, 2014] Behabadi, B. F. and Mel, B. W. (2014). Mechanisms underlying

subunit independence in pyramidal neuron dendrites. Proceedings of the National Academy

of Sciences of the United States of America, 111(1):498–503.

113



Bibliography

[Blackman and Tukey, 1958] Blackman, R. and Tukey, J. (1958). The measurement of power

spectra. Dover publications.

[Bloss et al., 2016] Bloss, E. B., Cembrowski, M. S., Karsh, B., Colonell, J., Fetter, R. D., and

Spruston, N. (2016). Structured Dendritic Inhibition Supports Branch-Selective Integration

in CA1 Pyramidal Cells. Neuron, 89(5):1016–30.

[Bono and Clopath, 2016] Bono, J. and Clopath, C. (2016). Beyond spike-timing-dependent

plasticity: a computational study of plasticity gradients across basal dendrites . BioRXiv,

pages 1–26.

[Branco and Häusser, 2010] Branco, T. and Häusser, M. (2010). The single dendritic branch

as a fundamental functional unit in the nervous system. Current opinion in neurobiology,

20(4):494–502.

[Branco and Häusser, 2011] Branco, T. and Häusser, M. (2011). Synaptic integration gradients

in single cortical pyramidal cell dendrites. Neuron, 69(5):885–92.

[Bressloff and Coombes, 1997] Bressloff, P. C. and Coombes, S. (1997). Physics of the Extended

Neuron. International Journal of Modern Physics B, 11(20):2343–2392.

[Brette et al., 2007] Brette, R., Rudolph, M., Carnevale, T., Hines, M., Beeman, D., Bower,

J. M., Diesmann, M., Morrison, A., Goodman, P. H., Harris, F. C., Zirpe, M., Natschläger,

T., Pecevski, D., Ermentrout, B., Djurfeldt, M., Lansner, A., Rochel, O., Vieville, T., Muller,

E., Davison, A. P., El Boustani, S., and Destexhe, A. (2007). Simulation of networks of

spiking neurons: a review of tools and strategies. Journal of computational neuroscience,

23(3):349–98.

[Brunel, 2016] Brunel, N. (2016). Is cortical connectivity optimized for storing information?

Nature neuroscience, 19(5).

[Bullock and Horridge, 1965] Bullock, T. H. and Horridge, G. A. (1965). Structure and function

in the nervous systems of invertebrates / [by] Theodore Holmes Bullock and G. Adrian Horridge.

With chapters by Howard A. Bern, Irvine R. Hagadorn [and] J. E. Smith. W. H. Freeman San

Francisco.

[Bush and Sejnowski, 1993] Bush, P. C. and Sejnowski, T. J. (1993). Reduced compartmental

models of neocortical pyramidal cells. Journal of Neuroscience Methods, 46(2):159–166.

[Butts et al., 2007] Butts, D. a., Weng, C., Jin, J., Yeh, C.-I., Lesica, N. a., Alonso, J.-M., and

Stanley, G. B. (2007). Temporal precision in the neural code and the timescales of natural

vision. Nature, 449(7158):92–96.

[Butz and Cowan, 1974] Butz, E. G. and Cowan, J. D. (1974). Transient potentials in dendritic

systems of arbitrary geometry. Biophysical journal, 14:661–689.

114



Bibliography

[Carim-Todd et al., 2009] Carim-Todd, L., Bath, K. G., Fulgenzi, G., Yanpallewar, S., Jing, D.,

Barrick, C. a., Becker, J., Buckley, H., Dorsey, S. G., Lee, F. S., and Tessarollo, L. (2009).

Endogenous truncated TrkB.T1 receptor regulates neuronal complexity and TrkB kinase

receptor function in vivo. The Journal of neuroscience : the official journal of the Society for

Neuroscience, 29(3):678–85.

[Carnevale and Hines, 2006] Carnevale, N. T. and Hines, M. L. (2006). The NEURON Book.

Cambridge University Press, New York, NY, USA.

[Caudron et al., 2012] Caudron, Q., Donnelly, S. R., Brand, S. P., and Timofeeva, Y. (2012).

Computational convergence of the path integral for real dendritic morphologies. Journal of

mathematical neuroscience, 2(11):1–28.

[Chaudhuri and Fiete, 2016] Chaudhuri, R. and Fiete, I. (2016). Computational principles of

memory. Nature Neuroscience, 19(3):394–403.

[Chen et al., 2013] Chen, X. R., Heck, N., Lohof, A. M., Rochefort, C., Morel, M.-P., Wehrlé, R.,

Doulazmi, M., Marty, S., Cannaya, V., Avci, H. X., Mariani, J., Rondi-Reig, L., Vodjdani, G.,

Sherrard, R. M., Sotelo, C., and Dusart, I. (2013). Mature Purkinje cells require the retinoic

acid-related orphan receptor-α (RORα) to maintain climbing fiber mono-innervation and

other adult characteristics. The Journal of neuroscience : the official journal of the Society

for Neuroscience, 33(22):9546–62.

[Chua et al., 2015] Chua, Y., Morrison, A., and Helias, M. (2015). Modeling the calcium spike

as a threshold triggered fixed waveform for synchronous inputs in the fluctuation regime.

Frontiers in computational neuroscience, 9(July):91.

[Clopath et al., 2010] Clopath, C., Büsing, L., Vasilaki, E., and Gerstner, W. (2010). Connectivity

reflects coding: a model of voltage-based STDP with homeostasis. Nature neuroscience,

13(3):344–52.

[Clopath et al., 2007] Clopath, C., Jolivet, R., Rauch, A., Lüscher, H.-R., and Gerstner, W. (2007).

Predicting neuronal activity with simple models of the threshold type: Adaptive Exponential

Integrate-and-Fire model with two compartments. Neurocomputing, 70(10-12):1668–1673.

[Coombes et al., 2007] Coombes, A. S., Timofeeva, Y., Svensson, C., Lord, G. J., Josić, K., Cox,
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