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Abstract

The brain is a complex biological system composed of a multitude of microscopic processes,

which together give rise to computational abilities observed in everyday behavior. Neuronal

modeling, consisting of models of single neurons and neuronal networks at varying levels

of biological detail, can synthesize the gaps currently hard to constrain in experiments and

provide mechanistic explanations of how these computations might arise. In this thesis, I

present two parallel lines of research on neuronal modeling, situated at varying levels of

biological detail.

First, I assess the provenance of voltage-gated ion channel models in an integrative meta-

analysis that investigates a backlog of nearly 50 years of published research. To cope with the

ever-increasing volume of research produced in the field of neuroscience, we need to develop

methods for the systematic assessment and comparison of published work. As we demonstrate,

neuronal models offer the intriguing possibility of performing automated quantitative analyses

across studies, by standardized simulated experiments. We developed protocols for the

quantitative comparison of voltage-gated ion channels, and applied them to a large body of

published models, allowing us to assess the variety and temporal development of different

models for the same ion channels over the time scale of years of research. Beyond a systematic

classification of the existing body of research made available in an online platform, we show

that our approach extends to large-scale comparisons of ion channel models to experimental

data, thereby facilitating field-wide standardization of experimentally-constrained modeling.

Second, I investigate neuronal models of working memory (WM). How can cortical networks

bridge the short time scales of their microscopic components, which operate on the order of

milliseconds, to the behaviorally relevant time scales of seconds observed in WM experiments?

I consider here a candidate model: continuous attractor networks. These can implement

WM for a continuum of possible spatial locations over several seconds and have been pro-

posed for the organization of prefrontal cortical networks. I first present a novel method for

the efficient prediction of the network-wide steady states from the underlying microscopic

network properties. The method can be applied to predict and tune the “bump” shapes of

continuous attractors implemented in networks of spiking neuron models connected by non-

linear synapses, which we demonstrate for saturating synapses involving NMDA receptors.

In a second part, I investigate the computational role of short-term synaptic plasticity as a

synaptic nonlinearity. Continuous attractor models are sensitive to the inevitable variability of

biological neurons: variable neuronal firing and heterogeneous networks decrease the time

that memories are accurately retained, eventually leading to a loss of memory functionality on
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behaviorally relevant time scales. In theory and simulations, I show that short-term plasticity

can control the time scale of memory retention, with facilitation and depression playing

antagonistic roles in controlling the drift and diffusion of locations in memory. Finally, we

place quantitative constraints on the combination of synaptic and network parameters under

which continuous attractors networks can implement reliable WM in cortical settings.

Key words: voltage-gated ion channels, spiking neuron models, neuronal networks, working

memory, short-term plasticity, continuous attractors
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Zusammenfassung

Das Gehirn ist ein komplexes System vieler mikroskopischer Prozesse, die den rechnerischen

Fähigkeiten des Verhaltens unterliegen. Neuronale Modellierung, bestehend aus Modellen

einzelner Neuronen und neuronaler Netze unterschiedlicher Detailtreue, kann fehlende Daten

derzeit noch undurchführbarer Experimente künstlich überbrücken, um mechanistische Er-

klärungen für das Entstehen dieser rechnerischen Fähigkeiten zu finden. In dieser Dissertation

stelle ich zwei parallele Forschungsschwerpunkte der neuronalen Modellierung, situiert in

unterschiedlicher Detailtreue, vor.

Als Erstes untersuche ich die Herkunft von Ionenkanalmodellen in einer integrativen Meta-

analyse von in den letzten 50 Jahren publizierten Arbeiten. Um dem stetig zunehmenden

Volumen von Gehirnforschung gerecht zu werden, sollten Verfahren zur systematischen Aus-

wertung publizierter Arbeiten entwickelt werden. Wir zeigen, dass neuronale Modelle den

interessanten Ansatz bieten, studienübergreifende automatisierte und quantitative Analysen,

mittels simulierter Experimente, durchzuführen. Wir entwickelten Protokolle für den quanti-

tativen Vergleich spannungsabhängiger Ionenkanäle und wendeten diese auf einen Fundus

publizierter Modelle an, wodurch wir die Vielfalt und zeitliche Entwicklung verschiedener

Modelle der gleichen Ionenkanäle über Jahre der Forschung hinweg untersuchen konnten.

Unsere Klassifizierung der existierenden Forschung ist in einer Online-Plattform zugänglich

und eignet sich zum weitläufigen Vergleich experimenteller Daten mit Ionenkanalmodellen

– dies erleichtert die forschungsfeldweite Standardisierung von experimentell beschränkter

Modellierung.

Als Nächstes untersuche ich neuronale Modelle des Arbeitsgedächtnisses (AG). Auf welche

Weise überbrücken kortikale Netzwerke die millisekundenschnellen Zeitskalen ihrer mikro-

skopischen Bestandteile, um schließlich verhaltensrelevante Zeitskalen im Sekundenbereich

von AG-Experimenten zu erlangen? Wir betrachten ein mögliches Modell: Netzwerke mit

kontinuierlichen Attraktoren (KA). Diese können ein AG implementieren, das ein Kontinuum

räumlicher Lagen über mehrere Sekunden hinweg speichert und wurden als Organisations-

prinzip des Präfrontalen Cortex vorgeschlagen. Zunächst stelle ich eine neuartige Methode

zur effizienten Vorhersage der Netzwerkweiten stationären Zustände, als Funktion der mi-

kroskopischen Eigenschaften des Netzwerks, vor. Dies kann angewendet werden, um die

"BumpProfile von KA in Netzwerken von pulsbasierten Neuronen mit nichtlinearen Synapsen

(z.B. saturierende Synapsen mit NMDA-Rezeptoren) vorherzusagen und um Netzwerkparame-

ter einzustellen. In einem zweiten Teil untersuche ich die algorithmische Rolle einer weiteren

synaptischen Nichtlinearität, der Kurzzeitplastizität. KA-Modelle sind anfällig gegenüber der
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unvermeidlichen Variabilität kortikaler Neuronen: Variable Feuerraten und heterogene Netz-

werke verringern die Zeitspanne, über die hinweg Erinnerungen im Modell akkurat behalten

werden. In Theorie und Simulationen zeige ich, dass Kurzzeitplastizität die Zeitskala des

Gedächtniserhalts im Modell steuern kann, wobei Kurzzeit-Fazilitierung und -Depression

entgegengesetzten Einfluss auf die Drift und Diffusion der Erinnerungen im AG ausüben.

Schließlich setzen wir Grenzwerte für kombinierte Netzwerk- und Synapsenparameter, unter

denen diese Modelle zuverlässiges AG im kortikalen Umfeld realisieren könnten.

Stichwörter: Spannungsabhängige Ionenkanäle, Pulsbasierte Neuronenmodelle, Neuronale

Netze, Arbeitsgedächtnis, Kurzzeitplastizität, Kontinuierliche Attraktoren
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1 Introduction

The work presented here is split into research on two parallel lines of research on neuronal

modeling at different levels of biological detail. In a study presented in the first part of this

thesis (Chapter 2), we show the results of a meta-analysis of a large body of published voltage-

gated ion channel models. This study organizes existing knowledge and shows how models

of the same biological ion channels change as they are reused and adapted. I then present

two studies that investigate the long time scales of working memory, emerging through the

collective network dynamics of continuous attractor models. The first study, presented in

Chapter 3, demonstrates a method to predict the steady-state firing rate profiles of continuous

attractors implemented in networks of simplified spiking neuron models. In a second study,

in Chapter 4, we investigate the effects of short-term facilitation and depression on the slow

dynamics of drift and diffusion in continuous attractor models.

This introduction is divided into three sections that reflect the bipartite structure of the results

presented here. In Section 1.1 we begin by introducing fundamental concepts. I then present

an introduction to detailed models of single neurons in Section 1.2, including a review of ion

channel models to provide some background for the work presented in Chapter 2. After, I

introduce simplified models of neurons and neuronal networks, with a focus on the models

used in the remainder of the thesis. In Section 1.3 we turn to working memory models. To

provide some biological and experimental background, I start by reviewing literature on

working memory circuits in the prefrontal cortex. Then, in Section 1.3.2, I introduce attractor

models and discuss the feasibility of continuous attractor models in a cortical setting, which

motivates the work presented in Chapters 3 and 4.

Throughout this introduction, I will additionally place into context four additional studies to

which I contributed during my thesis. These are summarized in Section A of the Appendix.
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Chapter 1. Introduction

1.1 Basic concepts

In the following, I give a short introduction to the basic concepts of neuronal function, focusing

on a level of biological detail that is used by models introduced later in the introduction.

References in the following are mostly omitted, as this introduction is based on the textbook of

Kandel et al. (2000), as well as the textbooks by Wulfram Gerstner et al. (Gerstner and Kistler,

2002; Gerstner et al., 2014).

Neurons Nerve cells, or neurons, are one major class of cells found in the nervous system,

the second being glial cells, which classically have been thought to primarily provide structure

and support to neurons. In this work, I will consider exclusively neurons, and networks

formed by them, as the substrate of signal propagation and computation in the nervous

system, although recent research hints at more complex roles of glial cells (Perea et al., 2014).

Neurons are electrically excitable cells that receive and propagate signals in nervous tissue

by both electrical and chemical processes. As such, neurons typically possess a membrane

potential Vm , a voltage difference across the cellular membrane, which arises from concentra-

tion differences of ions, most prominently Na+ (sodium), K+ (potassium), and Cl− (chloride),

between the intra- and extracellular medium. For neurons at rest (not firing action potentials,

see below), a resting potential arises through the dynamical balance of ionic currents through

ion channels as well as active ion pumps in the cellular membrane. Typical values for the

resting potential of neurons are in the range of Vm =−60mV to Vm =−70mV . In the reduc-

tionist view, the spatial structure of neurons can roughly be partitioned into three functionally

different areas: dendrites, soma, and axon. Dendrites receive signals from other neurons, while

the soma integrates these signals and initiates signal propagation by generating an output

signal (action potential, see below), which travels through the axon to reach other neurons.

Simplified neuron models often neglect the spatial structure of neurons, considering neurons

to be point neurons (but see below).

Action potentials and synaptic connections The neurons I consider in this work (regardless

of the many possible sub-classifications of cell types; see Markram et al. (2015) for a recent

approach on cortical cells), can propagate signals by eliciting action potentials, also referred to

as spikes. Action potentials are characterized by a transient depolarization of the membrane

potential, actively generated by voltage-gated ion channels on the cell membrane of the axon

initial segment. These voltage-gated conductances will be introduced in more detail below,

as part of the Hodgkin-Huxley model. The action potential as an electrical signal can be

transmitted between neurons by means of chemical signaling through synaptic connections1

which are found along the axon. At synapses, the presynaptic axon and the postsynaptic

neuron are in close spatial proximity, allowing neurotransmitter (chemicals released at the

1Electrical synapses, which are bidirectional electrical couplings between neurons, are also found in the nervous
system.
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1.1. Basic concepts

synapse in response to presynaptic action potentials) to bridge the distance to the postsynaptic

membrane via the synaptic cleft. On the postsynaptic side, these neurotransmitters bind to

receptors on ligand-gated ion channels2 that permit the flow of ions through the membrane

and thus convert the chemical signal back into deflections of the membrane potential (post-

synaptic potentials, or PSP).

Action potentials serve as the basic unit of signal transmission and computation in the nervous

system. The flow of the signal transmitted by the action potential is typically directed: the

depolarization travels from the soma through the axon, where it, in turn, influences postsy-

naptic neurons through synaptic connections. The basic computation of a neuron lies in its

integration of presynaptic input, and the all-or-nothing response of the action potential: 1)

the joint presynaptic activity leads to the generation of an action potential only if the neuronal

membrane potential is depolarized sufficiently; 2) if a neuron generates an action potential, it

is a stereotypical response that will be transmitted to neurons that are synaptically connected

to this neuron.

Neurotransmitters and receptors The post-synaptic potentials elicited by a single action

potential are determined by several factors. Depending on the type of neurotransmitter that is

released, one can distinguish between two classes of synapses for the vertebrate central ner-

vous system: excitatory synapses, which cause depolarization of the postsynaptic membrane

potential (excitatory PSP, or EPSP) and inhibitory synapses that cause a hyperpolarization

(inhibitory PSP, or IPSP). In the setting of the cerebral cortex that I will consider in the context

of working memory networks, the majority of neurons with excitatory synaptic transmis-

sion are pyramidal neurons relying on glutamate as a neurotransmitter, while inhibitory

synaptic transmission relies on mainly GABA (γ-aminobutyric acid) which is released from

inhibitory interneurons (see Gupta (2000) and Markram et al. (2015) for classifications of types

of interneurons). Cortical presynaptic neurons can be classified as distinctly excitatory or

inhibitory, according to the type of neurotransmitter that their synapses onto postsynaptic

neurons use. It should be noted that this clear assignment of neuron types to single neuro-

transmitters does not hold generally throughout brain areas: there is evidence for co-release

of several types of neurotransmitters from the same synapses (Strata and Harvey, 1999), e.g.

GABA and dopamine in striatum (Tritsch et al., 2012).

The effect of any type of neurotransmitter is, in turn, determined by the postsynaptic compo-

sition of receptors to which it binds. In the central nervous system, glutamate elicits EPSPs

mainly by binding to receptors on two different types of ligand-gated ion channels, that are

both conductive to Na+ and K+ ions. First, AMPA (α-amino-3-hydroxy-5-methyl-4-isoxalone

propionic acid) glutamate receptors, which elicit ionic currents that have relatively fast rise

and decay times. Second, the class of NMDA (N-methyl-D-aspartate) glutamate receptors,

which elicit currents that decay on considerably slower time scales. The ionic current passing

2Next to these ionotropic receptors, there also exist metabotropic receptors that do not directly lead to ion
fluxes through the membrane, but instead rely on second messengers.
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through channels gated by NMDA receptors shows an additional voltage dependence, due to

an additional binding of extracellular Mg2+ (magnesium), which is cleared from the channel

as the cellular membrane is depolarized. Finally, NMDA channels are additionally permeable

to Ca2+ (calcium) ions, which has important implications in synaptic plasticity (see below).

Inhibitory IPSPs, on the other hand, are mediated in the central nervous system mainly by the

binding of GABA to ligand-gated Cl− permeable channels. Since the concentration of chloride

is higher in the extracellular medium, the opening of these channels leads to an influx of

chloride into the cell, which hyperpolarizes the membrane potential. It should be noted that,

for other types of neurotransmitter besides glutamate and GABA, the postsynaptic receptor

composition can reverse the response to a given neurotransmitter: e.g. acetylcholine can

produce both inhibitory and excitatory postsynaptic responses (Kandel et al., 2000, p. 184).

Finally, the synaptic efficacy (often measured by the amplitude or slope of single PSPs) can

be subject to changes over time, both on fast and slow time scales. Depending on mostly

the activity of presynaptic neurons, the synaptic efficacy can undergo short-term plasticity

on short time scales up to several seconds. Since it will be referred to below, I will provide

here a brief overview of the molecular basis of short-term plasticity (see Zucker and Regehr

2002 for a review) – its computational relevance will be discussed in Section 1.3.3. When

the action potential of a neuron reaches its presynaptic terminals, the opening of voltage-

gated calcium channels (see below, Section 1.2.2), which are abundant at the active zones

(sites of neurotransmitter release), will lead to a localized increase of intracellular calcium

concentration (Kandel et al., 2000). The increased calcium concentration, in turn, causes the

fusion of synaptic vesicles (the presynaptic “containers” of neurotransmitter) to the active

zones, and subsequent release of neurotransmitter into the synaptic cleft. Regulating this

release process are three factors: the probability of release p, the number of active zones n, and

the available pool of releasable synaptic vesicles, where p increases with increasing calcium

concentration. For each action potential, the amount of neurotransmitter released is random

and proportional to n ·p. As several spikes occur in short succession, short-term facilitation

will lead to a transient increase in the release probability p. The origin of this effect can be

traced (amongst others, see Zucker and Regehr (2002)) to residual calcium in the presynaptic

compartment, accumulated over several action potentials. Short-term depression, on the other

hand, is a decrease in synaptic strength under successive spikes, which is probably linked

to depletion of the pool of readily releasable synaptic vesicles (Zucker and Regehr, 2002).

Synapses can also undergo longer lasting changes, which is thought to be the substrate of

learning and memory. Here, the calcium permeability of NMDA receptors plays an important

role, which, through the activation of cellular processes, can cause long-lasting potentiation

or depression of synapses. For reviews on these long-term forms of synaptic plasticity see

(Abbott and Nelson, 2000; Sjöström and Nelson, 2002; Shouval et al., 2010; Zenke and Gerstner,

2017).
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1.2. Detailed and simplified neuronal models

1.2 Detailed and simplified neuronal models

The levels of description of neuronal models are as varied as the experimental data that is

collected in the greater field of neuroscience (Dayan, 2006; Sejnowski et al., 2014). Here, I set a

lower bound on granularity, in considering models that describe the dynamics of membrane

potentials of single neurons and ionic currents.

In the first part below, I introduce the basic differential equation for neuronal membranes,

and active generation of action potentials based on the work first put forward by Hodgkin and

Huxley (1952b). With this foundation, the second part focuses on voltage-gated ion channels

and their models in more detail, to provide the reader with some background for the work

presented in Chapter 2. In a final part of this section, I then review simpler models of neuronal

dynamics, which will be extensively used in Chapters 3 and 4.

1.2.1 Detailed models of single neurons

The resistor-capacitor (RC) circuit is a model of the dynamics of the neuronal membrane

potential (Koch, 2004; Gerstner and Kistler, 2002). The membrane isolates a charge Q between

the intra- and extracellular medium, thus acting as a capacitor with a membrane potential

Vm = Q/C , where C is the membrane capacitance (in units of farads). A change in voltage

corresponds to a capacitive current IC = C dVm
d t . We assume the membrane to be a perfect

insulator, thus currents can only flow through ion channels that are situated in the membrane

and allow ions to pass through them. The “resistor” in the RC circuit is introduced by a

constant leak current through ion channels in the membrane, which reverses at the resting

potential EL (modeled through Ohm’s law):

IL = gL(Vm −EL),

where gL is the leak conductance, usually given in units of siemens. Additionally, we include

dynamical currents through other ion channels, which will be introduced below. Kirchhoff’s

law of current conservation then states that (under the absence of external currents) the total

current must vanish, which yields a basic differential equation for the neuronal membrane:

C
dVm

d t
=−IL − IOther. (1.1)

Detailed models introduce other currents mediated by voltage-gated ion channels, that can

actively generate action potentials. While this complicates the analysis of the resulting dy-

namics considerably, it yields a biophysically accurate description of the membrane potential

dynamics. The basic formulation of this framework goes back to seminal work by Hodgkin

and Huxley (1952b). They introduced two currents mediated by voltage-gated ion channels,
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Chapter 1. Introduction

permeable to either sodium (Na+) or potassium (K +) ions:

IOther = gNam3h(Vm −ENa)+ gKn4(Vm −EK). (1.2)

Here, for each of the two currents, gNa and gK are the maximal conductances, and ENa and EK

are reversal potentials.

The effective conductance of each current is gated by the gating variables m, h and n. The

variables m and h model the activation of ion channels, while n models the inactivation of

sodium channels at high voltages. All three gating variables obey differential equations of the

form (for x ∈ {m,h,n}):

τx (Vm)
d x

d t
=− [x −x0(Vm)] . (1.3)

The functional dependence of the time constants τx as well as the steady-state values x0

(constrained between 0 and 1) on the potential Vm determines the dynamics of the currents

in response to the membrane potential and can be estimated from experiments Hodgkin

and Huxley (1952b). Without giving the detailed functions here, we will nevertheless shortly

describe how the interplay of gated sodium and potassium currents can generate action

potentials. Increasing the potential Vm sufficiently above the resting potential leads to a

fast increase of the variable m, thus allowing a transient strong current of positively charged

potassium ions to enter the neuron, which depolarizes the membrane. On slower timescales,

the high membrane potential leads to inactivation of the sodium current by a decrease of the

variable h, as well as activation of the potassium current by an increase of the variable n. The

outward directed potassium current quickly repolarizes the membrane and ends the action

potential – due to the delayed activation of the potassium current, this class of potassium

channel is commonly referred to as a delayed rectifier.

While the model proposed by Hodgkin and Huxley (1952b) was constrained by measurements

of the giant squid axon, the same mathematical framework of ion channel dynamics is still

in wide use today, mainly for simulation studies. Detailed models now often implement

several different types of voltage-gated ion channel models (e.g. Marder and Goaillard (2006);

Markram et al. (2015)). This has also produced a rich backlog of published voltage-gated ion

channel models, which we consider in the next section and in Chapter 2.

Although we do not consider such models here, it should be noted that the Hodgkin-Huxley

formalism of Eqs. (1.1)-(1.3) can be readily extended to incorporate the spatial geometry of

neurons. This can be achieved by discretizing the spatial extent of neurons into iso-potential

compartments which allow current to flow between them (see e.g. Koch (2004)). Such com-

partmental models can be simulated efficiently (Brette et al., 2007) (using for example the

popular NEURON simulation environment (Carnevale and Hines, 2006)), and have found

wide adoption in the field (Hines et al., 2004; Parekh and Ascoli, 2013; Markram et al., 2015).
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1.2. Detailed and simplified neuronal models

1.2.2 Voltage-gated ion channels

In this subsection we introduce some more detailed background on ion channels and their

models, focusing on the voltage-gated ion channels analyzed in Chapter 2. As we argue in

the introduction (Section 2.3), the presence of different ion channel models can crucially

affect single neuron dynamics, signal processing of neurons, and synaptic plasticity. Thus,

the particular types of ion channel models used in detailed neuronal models will impact the

interpretability of simulation results in light of biological fidelity. An increasingly large number

of ion channel models for the NEURON simulator (Carnevale and Hines, 2006) are being made

available through the public code repository ModelDB (Hines et al., 2004) (Fig. 1.1A). However,

the large numbers of different model implementations for similar ion channel types and

redundant nomenclature (see below) make this body of digital knowledge hard to navigate. In

the work presented in Chapter 2 we developed methods for the automated comparison and

classification of ion channel models, and applied them to 2378 published ion channel models

(since the time of publication, we have increased the number of channel models to 2952), that

fall into 5 major classes, depending on ions and gating mechanisms (Fig. 1.1A, inset). Here,

we provide the reader with some background on voltage-gated ion channel models and the 5

major classes of ion channel models that we analyzed.

The dynamics of single biological ion channels are inherently stochastic, with currents that

switch stochastically (in a voltage-dependent manner) between discrete conductive states

(Koch, 2004). Kinetic schemes can be used to model the voltage-dependent transition rates

between several conformational changes of subunits responsible for opening channels, usually

implemented as Markov models (Destexhe et al., 1994; Koch, 2004). In the macroscopic limit

(averaging over more than a few hundreds of channels (Koch, 2004)) the resulting compound

current Ik for a channel k of most types can be well approximated by generalized Hodgkin-

Huxley equations of the form:

Ik = gk mpk hqk (Vm −Vk ),

where gk is the maximal conductance and Vk the reversal potential. The channel activation

and inactivation are described by dynamical activation (m) and inactivation (h) variables,

which obey equations similar to Eq. (1.3). Different integer exponents pk and qk can be

fit to experimental data of the conductance in response to voltage steps. The decision of

which modeling approach to use depends on the desired level of accuracy, the speed of

implementations, and the experimental data available to fit models (Destexhe and Huguenard,

2000). Accordingly, the landscape of published models is also diverse: implementations

that we encountered in the study of Chapter 2 varied from stochastic Markov models with

multiple states of activation and inactivation to models implemented in the simpler Hodgkin-

Huxley formalism. To be able to accommodate all possible kinetics, the analysis performed in

Chapter 2 remains agnostic to the model implementations, analyzing only generated ionic

currents from models.
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Figure 1.1 – Ion channel models collected from ModelDB. A Cumulative number of single
channel models collected from ModelDB (Hines et al., 2004) (blue circles), together with
illustrative exponential fit (dashed gray line). Inset displays the number of total and unique
(light and solid, respectively) channel models in five main classes, as well as model files
catalogued that do not fall into the five classes (other). B Partition of the five classes of panel A
by the nomenclature (Subtype) provided by the channel model authors, ordered from left to
right according to size. Uncommon subtypes are grouped together (other).

Voltage-gated ion channels can in principle be classified by their genetic composition: e.g.

the voltage-gated sodium channels can be grouped into the 12 classes KV 1−KV 12 (and their

respective subclasses) (Gutman et al., 2005) (for other ion types references are given below). In

the biophysical literature, on the other hand, more descriptive naming schemes are common

(Hille, 2001), where currents are often denominated by their kinetic properties (e.g. “delayed-

rectifier” potassium currents, or “T type” (transient) calcium channels). These descriptive

denominations are quite loose and can correspond to several genetic subclasses, indicating

further diversity in each functional class. Nevertheless, in published ion channel models they

do occur frequently: in the assay of published models presented in Chapter 2 we found a

large diversity of legacy labeling, with both genetic and descriptive naming schemes (these

were more frequent) occurring (“Subtype” in Fig. 1.1B). Even for ion channel models labeled

by similar names, we were able to show a large diversity of model kinetics. Additionally,

many models of ion channels are labeled with ambiguous names, or did not have any names

indicating their function: e.g. the subtype “HH” in Fig. 1.1B is composed of channel models

with Hodgkin-Huxley type dynamics, that did not indicate any further denomination. One of

the results of the study in Chapter 2 is an automated sorting of the ambiguous “backlog” of

nomenclature of published ion channel models.

In the following, we introduce the 5 major classes of voltage-gated ion channels that occur in

Chapter 2, along with their general relevance and some of the established nomenclature in the

descriptive naming scheme (since channel models denominated by this scheme frequently

occur in the study).
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1.2. Detailed and simplified neuronal models

Voltage-gated sodium (NaV ) The opening of sodium channels contributes to the rapid rise

of the action potential in nerve cells (reversal potential around ENa = 50mV ), allowing for a

fast influx of sodium which depolarizes the membrane. Typically, sodium channels have fast

voltage-dependent inactivation (1−2ms) (Yu and Catterall, 2004). Next to these, persistent

sodium channels (NaP) are frequent, that do not show any (or very slow) inactivation (Koch,

2004). Genetically, 10 different voltage-gated sodium channels are reported, showing mostly

similar functional properties (Catterall et al., 2005a).

Voltage-gated potassium (KV ) The reversal potential of potassium currents is usually around

EK =−80mV , thus hyperpolarizing the membrane by an outward current of potassium ions,

for example in the falling phase of action potentials (Yu and Catterall, 2004). Next to the

delayed rectifier (dr) currents introduced in the Hodgkin-Huxley model above, which activate

slowly and do not (or very slowly) inactivate, there are several other common voltage-gated

potassium currents. A type (transient inactivating) currents activate fast and inactivate on fast

to intermediate timescales (∼ 10−100ms), which allows cells to generate action potentials at

low frequencies (Koch, 2004; Gutman et al., 2005). Slowly activating and inactivating K2 chan-

nels inactivate at longer time constants (0.2−2s) (Gerstner and Kistler, 2002). M (muscarinic)

type potassium currents are slowly activating and not inactivating channels influencing sub-

threshold excitability (Gutman et al., 2005). Genetically, 40 different voltage-gated potassium

channels across 12 subfamilies can be differentiated (Gutman et al., 2005).

In our study, we also included models of inward rectifier potassium channels in this class. Also

referred to as anomalous rectifiers, these channels permit potassium currents to flow only

into the cell. Since they are often activated by hyperpolarization of the membrane beyond the

resting potential, these currents can stabilize the resting potential without initiating action

potentials (Nichols and Lopatin, 1997). Genetically, there currently are 15 different inward

rectifying potassium currents across 7 subfamilies on record (Kubo et al., 2005).

Voltage-gated calcium (CaV ) The calcium flux through these channels is always directed

inward, due to the low intracellular concentration of Ca2+ ions, with a range of sensitivities

to voltage, and a range of inactivation time constants (Koch, 2004). CaV channels occur in

almost all types of nerve cells and are found mostly in dendrites, the soma, and presynaptic

compartments (Koch, 2004). Functionally, the influx of calcium in response to depolarization

is needed for the release of neurotransmitter from presynaptic terminals (Kandel et al., 2000)

and underlies several intracellular regulatory processes (Yu and Catterall, 2004), importantly

activating second messengers that underlie synaptic plasticity. Common subtypes include

(Koch, 2004): L type (long lasting) channels, activated at high voltages and inactivated by small

increases in the intracellular calcium levels; T type (transient) channels, that activate at lower

voltages than L-types and deactivate strongly; and N type (neither L nor T) that have properties

intermediate between L and T types. Due to almost vanishing intracellular concentration of

calcium ions, modeling these ionic currents involves the Hodgkin-Goldman-Katz equations,
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instead of Ohm’s law (see for example Gerstner and Kistler (2002); Koch (2004)). Genetically, 10

different voltage-gated calcium channels across 3 subfamilies have been identified (Catterall

et al., 2005b).

Calcium gated potassium (KCa) Potassium currents from these ion channels are, in addition

to being voltage-dependent, modulated by the intracellular calcium concentration. Simple

modeling schemes involve making the activation variable dependent on the intracellular cal-

cium concentration m(Vm , [Ca2+]intra), which implies that neuronal models must additionally

model the dynamics of the calcium concentration (see e.g. Koch (2004)). A common type

of KCa channel is the fast activating C type, which as an additional potassium current con-

tributes to repolarization of the membrane during action potentials. The calcium-dependent

afterhyperpolarization channel (AHP) is also of functional importance: this slowly inactivating

current depends only on the calcium concentration, and its buildup through the calcium influx

during successive spiking can lead to adaptation of neuronal firing. Commonly occurring

descriptive separations for human KCa channels are big conductance (BK); intermediate con-

ductance (IK); and small conductance (SK) (Vergara et al., 1998). Currently, one can separate 8

different KCa channels across 5 subfamilies by their genetic composition (Wei et al., 2005).

Hyperpolarization activated cation (Ih) Ih currents are mixed cation currents composed

of both K+ and Na+, with reversal potentials around −20mV (Biel et al., 2009). Similar to

inward rectifier potassium channels (above), the associated channels are activated by hyper-

polarization of the membrane beyond values close to the resting potential, leading to inward

directed currents. Thus, the current can lead to subthreshold adaptation (Gerstner et al.,

2014) and generally a stabilization of the membrane potential against both depolarizing and

hyperpolarizing currents, amongst a variety of other roles (Biel et al., 2009). The underlying

channel family is that of hyperpolarization-activated cyclic nucleotide-gated (HCN) channels,

which separates into 4 different members (Robinson and Siegelbaum, 2003). Importantly,

HCN channels are actively regulated by the binding of cyclic nucleotides, most prominently

cAMP – this makes Ih currents subject to neuromodulation by neurotransmitters that up- or

down-regulate cAMP levels (Robinson and Siegelbaum, 2003).

1.2.3 Simplified models of neuronal networks

The Hodgkin-Huxley type models that I introduced in the previous section are, as a coupled

system of 4 (or more) nonlinear differential equations, hard to analyze. One can approximate

the 4-dimensional Hodgkin-Huxley model with sodium and potassium channels by a two-

dimensional approximation (see e.g. Gerstner and Kistler (2002)) which actively generates

action potentials. Depending on the phenomena to be investigated, however, even this level of

description is often considered too detailed. Since action potentials are usually stereotypical

(for a given cell) events of very short duration, they can be approximated by discrete events

in time and the dynamics underlying their generation and time course skipped altogether.
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This class of neuron models, called integrate-and-fire neurons, can be seen as a consensus

between abstraction and biological detail (Dayan, 2006): they are both analyzable and efficient

to simulate in large numbers (Brette et al., 2007), while still retaining the event-based character

of neuronal transmission by action potentials. In Chapter 3 and Chapter 4 we simulate and

analyze networks that consist of connected models of leaky integrate-and-fire (LIF) neurons.

Here, I introduce the model and how networks of connected neurons can be modeled by

introducing synaptic interactions.

Leaky integrate-and-fire neurons (see e.g. Burkitt 2006a for a review) model the temporal

dynamics of a neuronal membrane V (t ) by a membrane equation similar to Eq. (1.1):

C
dV

d t
=−gL(V −EL)− ISyn, (1.4)

where I have included the leak current and a synaptic current ISyn that will be introduced

below. The generation of spikes from the model is abstracted by introducing a threshold

potential Vthr: if the membrane potential crosses the threshold Vthr at time t f from below, the

neuron is considered to elicit an action potential, and its membrane potential is immediately

reset to a subthreshold value Vreset. To capture the duration of spikes and refractoriness of

neurons3, LIF neurons often have a fixed refractory period τrefr, during which the voltage

remains clamped at Vreset.

While I only use simple LIF models in this thesis, it is noteworthy that several extensions to

the LIF model have been proposed, mainly to capture the more complex dynamics of the

Hodgkin-Huxley model with several voltage-gated ion channels. Voltage-dependent sub-

threshold nonlinearities (Fourcaud-Trocmé et al., 2003; Brette and Gerstner, 2005; Badel et al.,

2008; Hansel and Mato, 2001) can account for spike initiation dynamics, and simplified spike-

triggered and voltage-dependent currents can produce complex spiking dynamics (Rauch

et al., 2003; Brette and Gerstner, 2005; Mensi et al., 2016), for example spike-frequency adap-

tation or bursting. Importantly, parameters for such extended LIF models can be efficiently

estimated from experimental data, and can accurately predict the subthreshold membrane

potential (Pozzorini et al., 2015) as well as spike-times (Jolivet et al., 2008; Rossant et al., 2010)

of biological neurons. This compression of the detailed neuronal behavior into models with

few parameters has been used for classification of biological neuron types (Mensi et al., 2012),

as well as the approximation of detailed compartmental neuron models (Rossant et al., 2011;

Rössert et al., 2016).

In Chapter 3 and Chapter 4 we use LIF neurons to model networks of synaptically connected

excitatory and inhibitory neurons. Synaptic transmission is implemented by specifying the

dynamics of postsynaptic currents in response to presynaptic action potentials. Since these

dynamics can be different for varying types of ligand-gated ion channels (and associated

3After eliciting a spike, neurons can often not immediately fire an action potential due to sodium inactivation
and residual potassium activation – this is called the (absolute) refractory period.
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Chapter 1. Introduction

neurotransmitter), the total synaptic current ISyn above will be composed of individual cur-

rents Ik , each arising from a different class of ion channels k. A common conductance-based

description of synaptic transmission models these individual currents by Ohm’s law (Gerstner

and Kistler, 2002):

ISyn =∑
k

Ik =∑
k

ḡk (V −Ek )
∑

j
sk, j (t ), (1.5)

where ḡk is the maximal conductance for each synaptic connection and ion channel, and

Ek is the reversal potential which depends on the ions the channel k is permeable to (Koch,

2004). The synaptic gating variables sk, j model the fraction of open channels for the synaptic

connection from neuron j , which is increased by neurotransmitter released in response to

the presynaptic spike train. For currents through AMPA and NMDA receptor channels, Ek

is usually chosen to be 0mV , thus leading to a depolarization of the membrane potential.

For inhibitory currents mediated through GABA-gated channels Ek is chosen well below the

resting potential, around −75mV .

Next to the stochastic opening of ion channels (see the last section), the presynaptic release of

neurotransmitter from active zones is also subject to stochasticity (Zador, 1998; Koch, 2004). In

an additional study (summarized in the Appendix, in Section A.2) we investigated the interplay

between stochastic synaptic transmission and long-term synaptic plasticity in a network

model with multiple synaptic contacts. For stochastic models of synaptic transmission, see

Destexhe et al. (1998). In Chapter 3 and Chapter 4, we will instead rely on widely used (Burkitt,

2006a) simplified deterministic dynamics of the synaptic gating variables, which makes them

analytically tractable:

d sk, j (t )

d t
=− sk, j (t )

τk
+ ∑

t f ∈T j

δ(t − t f ). (1.6)

Here, τk is the decay time constant of the conductance through the channel k, and T j are

the times (≤ t) that the presynaptic neuron fired action potentials. Realistic and simulated

synapses will always experience a short transmission delay, which I neglect in this notation.

The parameters of Eq. (1.6) depend on the ion channel considered, in particular the time

constants τk are usually fast for AMPA channels (∼ 2ms), intermediate for GABA channels (∼
10ms) and long for NMDA (∼ 100ms) (Gerstner and Kistler, 2002). Additionally, as mentioned

in the introduction, NMDA receptor channels are voltage-dependent, which can be included in

Eq. (1.5) by adding a voltage-dependent term (Jahr and Stevens, 1990b). For NMDA the linear

differential equation Eq. (1.6) is often replaced by a non-linear relationship that saturates for

high presynaptic firing rates (Destexhe et al., 1994; Wang, 1999) – in Chapter 3 we analyze

networks with such non-linear synaptic transmission.

The simplest description of neuronal networks that still includes the activity of single neurons

it that of rate-based models. In these, the successive spikes generated by single neurons are

replaced by their firing rates ν. For single neurons, a common definition of the firing rate

12



1.3. Models of working memory in simplified neuronal networks

of neurons is the spike-count rate over a given interval T (see e.g. Dayan and Abbott (2001);

Gerstner and Kistler (2002)): ν = nspk/T . Here, nspk is the number of action potentials the

neuron emits during the interval T . For networks in a steady state, where the statistics of the

synaptic current I to neurons stay constant over time, we can replace the neuronal dynamics

by the steady state input-output relation (Dayan and Abbott, 2001):

ν= F (I ).

Importantly, the input-output relation can be measured from cortical neurons and allows

relating the steady-states of simplified neuronal networks to biology (La Camera et al., 2008).

The advantage of using LIF models is that one can calculate their input-output relation

(Burkitt, 2006a). Matching the irregular firing of cortical neurons (Softky and Koch, 1993;

Compte et al., 2003), networks of recurrently connected excitatory and inhibitory neurons

can display asynchronous and irregular firing (Amit and Brunel, 1997; Brunel, 2000a; Renart

et al., 2007), with spiking statistics close to that of Poisson processes4. For neurons that receive

input from many presynaptic neurons that fire uncorrelated and with these Poisson statistics,

the mean and fluctuations of synaptic inputs in Eq. (1.4) can be approximated, which, in

turn, allows derivation of the neuronal input-output relation (Brunel and Sergi, 1998; Brunel

and Wang, 2001b; Fourcaud and Brunel, 2002). This central analytical result will be used in

Chapter 3 and Chapter 4 to derive rate-based approximations for the steady-state spiking

activity of networks of excitatory and inhibitory LIF neurons which implement spatial working

memory (see below). Extended analytical methods can be used to calculate the response

of populations of neurons to time-dependent inputs (Fourcaud and Brunel, 2002; Burkitt,

2006b).

1.3 Models of working memory in simplified neuronal networks

Having introduced simplified models of single neurons and connected networks of neurons

in the last section, I now turn to neuronal models of working memory. Conceptual models of

working memory include separation of attentional mechanisms, episodic buffers, and mecha-

nisms tasked with integration of different modalities from visuospatial and verbal/auditory

origins (reviewed in Baddeley (2012)). Mechanistic computational models of working memory

have to provide the means to bridge the short time scales of their microscopic components to

the time scales of working memory on the order of seconds. I will focus here on one possible

solution: attractor networks, in particular networks with continuous attractors, which we will

investigate in detail in Chapters 3 and 4.

Why use simplified network models? Such models can help understand the circuit proper-

ties that can generate working memory function by exploring and predicting the aspects of

4The (homogeneous) Poisson process generates, independently and randomly, temporal events at a given rate
r , with a coefficient of variation of the distribution of waiting times CV = 1; see for example Dayan and Abbott
(2001).
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neuronal circuitry currently inaccessible in experiments (Amit, 1998; Sejnowski et al., 2014).

Experimentally, the properties of single neurons (Pozzorini et al., 2015) and synaptic connec-

tions (Wang et al., 2006) can be measured. In addition, the detailed activity (Constantinidis

et al., 2001; Compte et al., 2003) and connectivity (Goldman-Rakic, 1995; Wang et al., 2006)

of small subsets of neurons can be assessed, and macroscopic correlates of the activity of

populations of neurons can be recorded (Curtis and D’Esposito, 2003). However, linking

microscopic neuronal properties and the emergent circuit dynamics requires knowledge of

the full circuit structure. In simulations, connectivity can be synthesized, the emergent circuit

function predicted, and eventually compared to experiments (Dayan, 2006). The reductionist

approach of simplified models is by definition an approximation of the true cortical substrate,

as are more detailed simulation approaches (Koch and Buice, 2015). In contrast to detailed

simulations (Markram et al., 2015), however, the reductionist approach tries to identify, in anal-

ysis and simulation, the necessary conditions for the emergence of computational properties,

as for example, working memory.

In the first section below, I introduce the notion of working memory and provide some

biological and experimental background to the correlates of working memory, focusing on

visuospatial working memory in the prefrontal cortex. I then give an overview of classes

of working memory models in simplified neuronal networks and introduce the continuous

attractor models used in Chapters 3 and 4. In a third section, I will highlight the intrinsic

instability of continuous attractor models – this is the topic of Chapter 4, where we investigate

the effects of short-term synaptic plasticity on the stability and time scales of working memory

function in continuous attractor models.

1.3.1 Working memory in prefrontal cortex

Working memory (WM) is the computational ability to represent, transiently store, and recall

behaviorally relevant information, on time scales up to minutes (Goldman-Rakic, 1995).

Underlying the emergent computational ability of working memory is the concerted activity

of highly interconnected neuronal networks (Chaudhuri and Fiete, 2016). In contrast to

long-term (and short-term) memory, in which information is stored in the neural circuity

through structural modifications due to learning (Goldman-Rakic, 1991; Arnsten et al., 2012),

working memory processes have been compared to a “mental sketchpad” (Baddeley, 2012).

The involved neural circuitry is, through evolution (Arnsten et al., 2012; Duarte et al., 2017)

and prior structuring (Amit and Mongillo, 2003; Mongillo et al., 2003), specialized to readily

provide its function.

In primates, the prefrontal cortex (PFC) is an area crucial for working memory, as assessed in

experimental paradigms which require the storage of information in working memory circuits

over delay periods of several seconds. Across multiple different behavioral paradigms, the

delay-period activity of neurons in PFC seems to be the neural correlate of keeping information

in working memory (for reviews, see Goldman-Rakic (1995); Funahashi (2006); Compte (2006)).
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1.3. Models of working memory in simplified neuronal networks

In particular, many PFC neurons show elevated and persistent activity during these delay

periods – this is the basis for attractor models of working memory introduced in the next

section.

In Chapters 3 and 4 we investigate a class of models (continuous attractor models, see below)

that have been proposed as a model for working memory of locations in visual space. This

type of working memory can be assessed in the visuospatial oculomotor delayed response

(ODR) task (Fig. 1.2A) (Funahashi et al., 1989; Constantinidis et al., 2001). The ODR task

allowed experimenters to show that many PFC neurons with elevated activity during delay

periods have “memory fields” (Goldman-Rakic, 1995): the activity of neurons is selectively

tuned to increase with memories of specific locations in the visual field. In the following, I

introduce the ODR task in a little more detail, since its paradigm of cueing, maintenance and

readout of memories over delay periods is reflected in models used here. In ODR experiments

(Funahashi et al., 1989; Constantinidis et al., 2001; Compte et al., 2003), subjects are presented

with several possible target locations in the visual field (Fig. 1.2A, squares), arranged in a

(usually circular) fashion around a fixation point (Fig. 1.2A, circle). A cue signal is given by

illuminating a single, randomly chosen target (Fig. 1.2A, red square at 0◦) for a short duration

(0.5s in Funahashi et al., 1989). During a delay period of several seconds following the cue

signal, the subject has to maintain fixation and prepare a saccadic response to the previously

illuminated location upon a “go” signal (the disappearance of the fixation point). The task is

designed such that subjects need to internally maintain a working memory of the cue’s location

during the delay period, which is then used to effectuate the saccade. Electrophysiological

recordings of neurons in primate PFC during ODR tasks showed that many neurons show

persistent activity during the delay period: in the absence of external stimuli, these neurons

fire at elevated rates, with firing rates depending on the location of the previously shown cue.

Importantly, neurons represent in their activity several locations: firing rates of direction-

selective neurons during the delay period were found to be distributed around a preferred

direction in a bell-shaped manner (Fig. 1.2A, inset). This continuous mapping of neuronal

mnemonic responses to the memorized spatial locations (see also next section) was termed

“memory fields” (Goldman-Rakic, 1995).

How does the activity in PFC correlate with memory function? First, small lesions of PFC can

lead to degradation of behavioral performance in ODR tasks for restricted areas of the visual

field, implying an essential contribution of local circuitry to the mnemonic representation

of visual space (Funahashi, 2006). Second, a majority of persistent activity in PFC seems to

represent visual memory (retrospective memory), while internal representations of prepara-

tory motor signals (prospective memory) are less frequent (Takeda and Funahashi, 2002).

More generally, mixed selectivity of neuronal firing with respect to different tasks (Warden and

Miller, 2010) and stimulus dimensions (Rao, 1997; Rainer et al., 1998) is often observed (Fusi

et al., 2016), which one would expect if the neural substrate is to be used efficiently (Rigotti

et al., 2010). For example, PFC neurons also show sustained firing during delay periods of

auditory memory tasks (Constantinidis and Wang, 2004). Third, PFC is highly inter-connected

with other cortical areas, which also show delay activity during ODR tasks, e.g. the parietal
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cortex earlier in the dorsal visual stream (Chafee and Goldman-Rakic, 1998). Thus, PFC might

not be solely responsible for working memory function, with working memory representations

possibly distributed across several areas (Curtis and D’Esposito, 2003; Constantinidis and

Wang, 2004; Guo et al., 2017). More recent evidence collected from fMRI studies shows that

even early sensory areas maintain persistent activity during delay periods (Sreenivasan et al.,

2014). In this view, it has been hypothesized that PFC might play the role of a top-down

controller that maintains optimized sensory representations in earlier sensory regions (Curtis

and D’Esposito, 2003; Sreenivasan et al., 2014). Finally, next to persistent firing, heterogeneous

dynamical responses of neurons in PFC with temporal dynamics have been reported during

working memory activity: neurons have been shown to encode task-related activity (Stokes,

2015), for example the evolution of time during delay periods (Brody et al., 2003b; Machens

et al., 2010). A recent study by Murray et al. (2016) (see also Balaguer-Ballester et al. (2011), for

a similar approach across several frontal cortical areas) showed that, on a population level,

the joint activity of PFC neurons converges to subspaces of neuronal activity on which activity

remains stable during delay periods. This indicates that, despite possible dynamical encoding

of additional task dimensions, populations of PFC neurons act together as a neural substrate

that encodes working memory representations in a stable fashion.

In summary, the activity of neurons in PFC plays an integral role in working memory function,

which can be evaluated in delayed response tasks involving visuospatial working memory. The

bell shaped location-specific “mnemonic tuning” of neurons that show persistent firing during

the delay period naturally leads to a continuous representation of visual space in PFC. This is

the basis of continuous attractor models of visual working memory, which are introduced in

the next section.

1.3.2 Attractor models of working memory

Most microscopic constituents of cortical networks do not retain their state for more than

hundreds of milliseconds (Chaudhuri and Fiete, 2016). The ability of cortical circuits to retain

information in working memory over time scales of several seconds is therefore probably an

emergent property of networks of neurons (although cellular origins also exist; see Major and

Tank (2004)) . A widespread working hypothesis is that recurrently connected cortical networks

realize working memory function through attractor dynamics (Durstewitz et al., 2000b; Major

and Tank, 2004; Compte, 2006; Chaudhuri and Fiete, 2016). In this view, cortical working

memory networks are multi-stable: several states (neuronal activity across the network) are

stable under the recurrent network dynamics (stable fixed points), and thus can be used

as working memory representations that are self-sustained. To load sensory information

into working memory, feed-forward excitatory input from cortical areas that process sensory

signals leads to the elevated firing of a subgroup of neurons and sets the network state close to

one of the stable states. In the absence of sensory input, the network dynamics converge to the

closest stable state and remain there over delay periods. The elevated activity of some neurons

in the stable attractor state will be visible as persistent activity, which can be propagated
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Figure 1.2 – Attractor models for visuospatial working memory. A Experimental setup for
oculomotor delayed response tasks (ODR; adapted from Funahashi et al. (1989)). Subjects
are presented with a fixation point (FP) and are tasked to perform, after a delay period of
several seconds, a saccade to one randomly chosen location out of eight possible target
locations (white squares). At the start of the delay period, the target location is visually cued by
illuminating it for a short duration (500ms), here illustrated by the red square at 0◦ (Cue). Inset:
Bell-shaped firing rate tuning of a single PFC neuron during the delay period (illustration), as a
function of the cue position. B Discrete attractor model. Each possible location is represented
by a population of several neurons (3 circles represent one population). Due to excitatory
feedforward input from sensory areas encoding the cue signal (arrow to population at 0◦),
the associated population of neurons (red circles) starts firing at elevated rates (inset). The
elevated firing rates persist over delay periods: they are self-sustained by strong excitatory
feedback (+, red arrow), as well as inhibition of all populations (blue lines). C Continuous
(ring) attractor model. Each neuron in the network represents a specific preferred angular
position in visual space, approximating a continuum of possible cue locations. Sensory input
representing the cue signal (red arrows) arrives at all neurons close to the cue location. Self-
sustained activity is generated by strong excitatory feedback between neurons representing
similar angles (+, red arrows), together with global inhibition (blue lines). Inset: Self-sustained
activity takes the shape of a “bump” profile of elevated firing rates across all neurons (in
contrast to the inset in panel A, which shows the firing rate response of a single neuron for
varying cue positions), here centered at the neuron representing 0◦. For clarity, only outgoing
excitatory synaptic connections from neurons at 0◦ are shown in panels B and C.
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through feedforward connections to other cortical areas, in order to “read” from this working

memory implementation.

In network models of excitatory and inhibitory LIF neurons, attractors dynamics can be

realized through strong excitatory recurrent connections between subgroups of excitatory

neurons, combined with inhibitory feedback ((Amit and Brunel, 1997; Brunel and Wang, 2001b;

Curti and Amit, 2004; Romani et al., 2006); see Brunel (2003); Compte (2006) for reviews). In

these models, the recurrent excitatory connections will self-sustain the firing of excitatory

neurons in an attractor state. Inhibitory feedback, on the other hand, counterbalances the

excitatory input to neurons and limits the rate of excitatory firing and ensures the existence of

a stable, nonselective spontaneous state where all neurons fire equally at low rates (Amit and

Brunel, 1997). Low firing rates in attractor states can also be achieved by the nonlinearity of

saturating NMDA currents, or short-term synaptic depression Wang (1999). Many attractor

models rely on the asynchronous firing of neurons (Compte, 2006) (but see below), which

can stabilize attractor states by reducing the fluctuations of synaptic currents generated by

many such neurons. Long synaptic time constants further support this stabilizing effect. In

particular, NMDA receptor currents stabilize attractor states in models (Wang, 1999; Compte

et al., 2000; Brunel and Wang, 2001b), and have been shown to be crucial for working memory

performance in experiments (Arnsten et al., 2012; Wang et al., 2013).

Discrete attractor models How can external sensory information be represented in attrac-

tor networks? Some visual working memory paradigms present discrete items, e.g. faces

(Scalaidhe et al., 1997), or objects (Miller et al., 1996). For each of these stimuli, neurons in

PFC are found that are selectively responsive. Possibly, the discrete set of spatial locations

of the ODR task (Fig. 1.2A; see last section) could also be interpreted as such a set of discrete

items. A discrete attractor gives a possible model implementation for working memory of

such discrete items (illustrated in Fig. 1.2B; e.g. Brunel and Wang (2001b)). First, excitatory

neurons are grouped by the items they are selective to (with neurons responsive to several

items possibly assigned to several groups) – in Fig. 1.2B each stimulus location is represented

by a separate population of neurons. Strong excitatory feedback connections are introduced

between neurons of the same groups (red arrow in Fig. 1.2B), while inhibitory feedback is

realized through an intermediate population of inhibitory neurons (blue lines in Fig. 1.2B

illustrate the effectively resulting inhibition). After a cue signal activates a group of neurons

(location 0◦ in Fig. 1.2B), the network settles into an attractor state where only this population

fires at high rates and all other groups are inhibited (inset in Fig. 1.2B). Such a discrete attractor

structure can result from Hebbian learning, which strengthens neuronal connections for

neurons that are active together (Mongillo et al., 2003; Amit and Mongillo, 2003; Mongillo et al.,

2005; Zenke et al., 2015; Carrillo-Reid et al., 2016).

Continuous attractor models The discrete attractor paradigm does not reflect possible

“similarities” between stimuli. In the ODR task target locations are sampled from a continuum
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of possible locations. Beyond the experimental setup, cortical working memory networks

presumably have developed to store any continuously valued spatial location in working

memory, which could prove beneficial, for example, during everyday visual navigation. Indeed,

as noted above, in ODR experiments it has been found that many PFC neurons fire at elevated

rates for a range of angular positions of the visual space (Funahashi et al., 1989). Each neuron

responds for angular positions distributed around a preferred angle (highest response) in a bell-

shaped fashion (cf. Fig. 1.2A, inset). An attractor network structure that produces such tuning

curves and stores a continuum of items is the continuous attractor model (Fig. 1.2C). Using

this model for the ODR task (Compte et al., 2000), excitatory neurons are assigned a preferred

angle from a continuum of possible angles along a circle in the visual field5. Since this circular

layout of locations in the ODR task leads to a ring of angular positions, the resulting models

are often referred to as ring-attractor models. Recurrent excitatory feedback connections are

chosen such that neurons representing similar angles are more strongly connected, leading

to distance dependent connectivity (distances are in angular space) (Fig. 1.2C, red arrows

from neuron at 0◦). Again, inhibitory feedback is mediated by an intermediate population of

inhibitory neurons (blue lines in Fig. 1.2B illustrate the effectively resulting inhibition). After

the signal activates neurons around the presented cue location (location 0◦ in Fig. 1.2C), the

excitatory neurons settle into a self-sustained continuous “bump” shaped profile of firing

rates (Fig. 1.2C, inset) – this profile jointly represents the angular position currently in working

memory by its center6. Importantly, measuring the tuning of neuronal responses during delay

periods (memory fields, see the last section) for excitatory neurons will yield the bell-shaped

tuning also found in PFC neurons during the ODR task (Fig. 1.2A, inset). Although they will

not be used here, I want to point out that the principle of distance dependent connectivity can

be extended to models of other topologies, to yield continuous attractors on lines, toroids, and

spheres (reviewed in Knierim and Zhang (2012)), mixtures of several ring attractors (Romani

and Tsodyks, 2010), and mixtures of discrete and ring attractors (Roudi and Treves, 2008).

Mean-field analysis of attractor models It is noteworthy that attractor models mostly re-

quire that neuronal populations fire asynchronously (Compte, 2006), in agreement with exper-

imental recordings from PFC (Compte et al., 2003) (but see next below). The asynchronous

regime of firing is important theoretically since it makes network models amenable to analysis

by mean-field approaches (Brunel, 2003). In this regime, one can approximate the statistics

of neuronal firing by Poisson statistics. Neurons that fire at similar rates can be grouped into

sub-populations, which permits calculating the statistics of synaptic input to sub-population

as a function of the firing rates of all others. Using the input-output relation of neurons (see

the end of Section 1.2.3), one can then derive self-consistent equations for the firing rates

of each population, which can be (numerically) solved to predict the firing rates in attractor

states (Amit and Brunel, 1997; Brunel and Wang, 2001b). In discrete attractors (also with

5These angles can be randomly assigned: e.g. sampling from the uniform distribution over all circular angles,
see e.g. Romani and Tsodyks (2010). A simpler modeling choice is to cover the whole angular range by evenly
spacing all neurons, as illustrated in Fig. 1.2C.

6Similar to the population vector coding of motor cortex, see Georgopoulos et al. (1989).
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overlapping populations, see Curti and Amit (2004); Mongillo et al. (2005)), the grouping of

neurons into homogeneous sub-populations is given by the structure of the network – in the

above example, a possible split would consist of all inhibitory neurons, one group of “active”

excitatory neurons, and all other neurons. In continuous attractor models, no such intrinsic

separation is given since the network structure does not designate subgroups and attractor

states show heterogeneous profiles of firing rates in the excitatory population (Fig. 1.2C, inset).

In Chapter 3, we present a method that circumvents this problem by parametrizing the firing

rate profile: this allows deriving a set of self-consistent equations that constrain the firing

rate profile of continuous attractors. Importantly, our method relies only on the knowledge of

the input-output relation, and can be applied to networks of LIF neurons in the presence of

non-linear NMDA saturation (Chapter 3) and short-term plasticity (Chapter 4).

Alternatives to attractor models I would like to point out some alternative approaches to

equip recurrent neuronal networks with the long time scales useful for working memory

function (see Chaudhuri and Fiete (2016) for a recent overview). In a recently published review

(Duarte et al. (2017); summarized in the Appendix, Section A.1), we review the impact of local

and regional variations in synaptic composition and circuit structure on the emergence of

long time scales. The review includes a study that used derivative feedback control (Lim and

Goldman, 2013), relying on balanced excitation and inhibition (see the end of next section)

with fast inhibitory feedback, to achieve long retention times in recurrent networks. This

principle can also be used to stabilize continuous attractor structures (Lim and Goldman,

2014). A second recently emerging principle relies on the transient retention of network states

in slowly decaying activity traces left in synapses by short-term plasticity (Maass et al., 2002;

Mongillo et al., 2008; Stokes, 2015): the spontaneous reactivation of sub-populations with

facilitated recurrent synapses allows the efficient (since firing is not persistent) storage of

memories over long delay times (Mongillo et al., 2008). Different to asynchronously firing

attractor networks (see above), these networks show synchronous population activity during

the delay period (Lundqvist et al., 2011), which have been hypothesized to underlie bursts of

oscillatory activity observed in PFC during working memory (Lundqvist et al., 2016). Finally,

long short-term memory (LSTM) neurons used in machine learning approaches have working

memory by design (Hochreiter and Schmidhuber, 1997): changes to their internal states are

protected by “read” and “write” mechanisms, and can thus retain their state indefinitely. While

these models contain small recurrent circuits explicitly designed for this function, the useful

principle of write-protecting internal states could be approximated by neuronal circuitry

(O’Reilly and Frank, 2006; Marblestone et al., 2016). In the appendix, I present two studies

(Colombo et al. (2016, 2017), summarized in the Appendix, Section A.3 and Section A.4) in

which we used variants of these models to extract and reproduce the long time scale structure

of music.

To summarize, I have introduced discrete and continuous attractor models of working memory,

on the example of the ODR task. The continuous attractor model, which I focus on in this

work, can represent a continuum of possible spatial locations through a firing rate profile that
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is self-sustained and can be centered at any possible location. In the next section, I will review

evidence for whether the continuous attractor framework can be, and is, used in cortical

networks.

1.3.3 Are continuous attractors used in biological neuronal circuits?

While the continuous attractor model was developed from rather theoretical considerations, it

is a promising candidate computational principle for the how recurrently connected (Con-

stantinidis and Wang, 2004) cortical working memory circuits could implement the storage of

continuous-valued items. Models for the ODR task based on ring-attractors (Compte et al.,

2000) have been used to explain behavioral performance (Macoveanu et al., 2006, 2007; Rogge-

man et al., 2014; Almeida et al., 2015), predict the effects of neuromodulation (Cano-Colino

et al., 2013, 2014), or the implications of cognitive impairment (Murray et al., 2012; Cano-

Colino and Compte, 2012). Next to modeling working memory, continuous attractors have

also been applied to model head-direction cells, the oculomotor system, and hippocampal

spatial representations (see Knierim and Zhang (2012); Moser et al. (2014); Burak (2014); Wu

et al. (2016) for recent reviews, as well as the introduction of Chapter 4). Specific evidence for

continuous attractor-like dynamics of working memory in PFC has recently been put forward

by Wimmer et al. (2014). There, the authors show that the trial-to-trial variability in behavioral

reports during an ODR task is compatible with continuous shifts of the encoded working

memory – this would be expected from continuous attractors, but not from discrete attractors

representing the possible target locations. Experimental evidence for continuous attractor

dynamics also come from the limbic system (Knierim and Zhang, 2012; Yoon et al., 2013) and,

recently, circuits of Drosophila responsible for path integration and self-orientation (Seelig

and Jayaraman, 2015).

Stabilization of continuous attractors: short-term plasticity The capacity of continuous

attractor models to store a continuum of possible states relies crucially on a degree of perfect

symmetry only obtainable in a model system (Brody et al., 2003a; Barak and Tsodyks, 2014;

Chaudhuri and Fiete, 2016). As we review in Chapter 4 (Section 4.3 and Section 4.4.1), any

transient or permanent deviation from symmetry in models will lead to a degradation of

the stored information, which makes continuous attractors highly susceptible to noise. For

example, the spiking variability of neurons will introduce transient deviations from the mean

firing rates for each neuron and lead to an accumulation of random changes in the angles

maintained in working memory. More crucially, biological variability (e.g. heterogeneous

neuronal parameters, or random sparse network connectivity) will introduce permanent

deviations, that lead to systematic biases in the positions storable in such a network for

longer times. In cortical settings both sources of variability can be expected to be present and

continuous attractors will always be subject to degradation over time.

Does this exclude continuous attractors as candidate computational structures for cortical

working memory? On the timescale of hours to days, it has been shown that the degrading
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effects of systematic biases in continuous attractors implemented in networks of spiking neu-

rons could be reduced by homeostatic synaptic plasticity (Renart et al., 2003). A stabilization

mechanism that could be useful to counteract variability on shorter time scales is short-term

synaptic plasticity of recurrent synaptic connections. In simplified rate networks, short-term

facilitation has been shown to decrease the effect of systematic biases (Itskov et al., 2011b).

In spiking networks, studies have reported similar effects on both systematic (Hansel and

Mato, 2013) and random degradation of memories (Pereira and Wang, 2015). Neither of these

studies, however, investigated the functional dependence of these effects on the strength of

facilitation. Next to short-term facilitation, biological synapses commonly also show short-

term depression, where possible implications on biologically plausible implementations of

continuous attractor working memory remain unclear (see Section 4.3).

In Chapter 4 we quantify in detail the effects of short-term synaptic plasticity on both random

and systematic sources of variability, both by theory and simulation. In particular, we use

our theory to predict the performance of working memory systems with short-term plasticity,

depending on the underlying sources of variability. Thereby, we can place constraints on the

properties of networks that can implement working memory in continuous attractor structures.

Finally, I would like to point to Section 4.5, where we discuss other means of increasing the

robustness of continuous attractors to noise, which could be employed in concert with short-

term plasticity to stabilize biological implementations of continuous attractor memory.

Computational roles of short-term plasticity In Section 1.1 we have already introduced

the molecular basis of short-term plasticity (STP). To describe the dynamics of the release of

neurotransmitter under facilitation and depression in Chapter 4, we use a simplified deter-

ministic model (Markram et al., 1998; Tsodyks et al., 1998, 2000) that neglects the stochasticity

introduced by the probabilistic nature of neurotransmitter release (Pan and Zucker, 2009).

Such simplified models of STP (notably also Abbott (1997); Dittman et al. (2000); Lindner et al.

(2009)) have shown that STP plays a key role for dynamic gain control of neuronal information

transmission (Lindner et al., 2009; Pfister et al., 2010) (see Abbott and Regehr (2004); Anwar

et al. (2017) for reviews). In discrete attractor networks, STP has been shown to exert control

over the stability of attractor states (Mongillo et al., 2005; Sussillo et al., 2007; Rolls et al.,

2013) and noise-induced transitions between them (Bibitchkov et al., 2002; Mejias and Torres,

2009; Miller, 2013). In Chapter 4 we show that this principle extends to continuous attractors:

short-term depression and facilitation control the time scales of dynamics on the attractor

manifold in an antagonistic fashion, which includes noise induced movement.

Finally, a recently proposed role of short-term plasticity in the context of attractor models of

working memory is the variability of neuronal firing. Attractor models that rely on strong recur-

rent excitation show decreased variability in attractor states (Renart et al., 2007; Barbieri and

Brunel, 2007), contrary to what was observed in cortical networks (Compte et al., 2003; Renart

et al., 2010). This decrease in variability is also apparent in the models of continuous attractors

investigated in Chapter 3 and Chapter 4 (but see Barbieri and Brunel (2007)). A different
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mechanism of achieving attractor working memory in recurrently connected networks is by

mediating self-sustained firing not through increasing the mean of currents, but by increased

fluctuations (Renart et al., 2007), which is achieved by scaling the recurrent connectivity such

that excitation and inhibition are both strong and balance each other. Recent studies have

shown that the synaptic nonlinearities introduced by short-term plasticity can equip such

balanced networks with robust bi-stability, both in models implementing discrete (Mongillo

et al., 2012; Romani et al., 2006) and continuous (Hansel and Mato, 2013) attractors (see also

the studies of Rosenbaum and Doiron (2014); Lim and Goldman (2014) for balanced continu-

ous attractors without short-term plasticity). Since this leads beyond the scope considered

here, extensions of the results obtained in this thesis to balanced architectures of continuous

attractors will be left to future work.

1.4 Thesis contribution

This thesis compiles the results that I have obtained during my Ph.D. from 2012 to 2017 at the

EPFL under the supervision of Prof. Wulfram Gerstner. The primary goal of the thesis was to

investigate biologically plausible mechanisms of eliciting long time scales of activity in cortical

networks which could be applied for the implementation of working memory circuits in

cortical networks. To approach this question, I developed novel theoretical methods that allow

the prediction of the steady states and slow timescale dynamics of continuous attractor models

implemented in spiking neuronal networks with nonlinear synapses. A second significant

contribution developed in parallel, in a collaboration with the laboratory of Prof. Tim Vogels

at the University of Oxford, with the goal of developing methods for the automated evaluation

and comparison of published neuronal models.

The thesis is divided into three main chapters. My personal contribution to each of these

is provided at the beginning of each chapter in a section called Author contributions. Next

to these chapters, in Section A of the Appendix, I present four additional studies to which

I contributed during my Ph.D., together with a description of my contributions. As I have

already placed these studies into context in the introduction above, they will not be referred to

in the following.

In Chapter 2, I present the (published) results of the collaboration with the University of

Oxford, which document an online resource for published ion channel models (ICGenealogy,

2016b). A large and ever increasing number of published neuronal models is archived in an

online repository (Hines et al., 2004), including several thousand models of ion channels that

are currently not systematically labeled nor quantitatively compared. This is a problematic

state for the field of neuronal modeling since it is common practice for modelers to adapt

previously published ion channel models for use in their work. Without ongoing experimental

verification, this may introduce systematic changes or even errors into later generations

of models and may affect the biological interpretability of results. To improve this state

of affairs, we developed methods for the automated evaluation and classification of ion
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channels, allowing us to quantitatively assess and this large body of published ion channel

models. For the quantitative assessment of ion channel kinetics, we devised a standardized set

of voltage-clamp protocols that are commonly applied for the experimental characterization

of ion channels and the fitting of Hodgkin-Huxley models (Ranjan et al., 2011). These protocols

allow us to evaluate, in a model-free manner, the kinetics of ion channel models, regardless

of their underlying implementation. In a novel approach, the same protocols can be applied

in experiments to collect similar data from biological ion channels, which we use to analyze

both experimental and synthetic data by the same method. All published channels model

implementations were curated to be able to simulate them under the protocols – this dataset

has been made publicly available and presents a potential resource for further studies seeking

to perform large-scale simulation experiments across published channel models for any given

type of ion channel. A further significant contribution arises from a manual extraction of

previously not isolated metadata from all associated publications, thereby compiling a second

layer of categorical data that can help researchers assess models. Importantly, we record

whether a model implementation is based on an earlier published model, thereby establishing

a “genealogy” of ion channel models that can help trace systematic changes over generations of

model reuse. Using the dataset collected in this fashion, we show a high degree of variability in

the previously existing labeling of channel models and provide a new classification of models

based on a clustering of models into classes with similar kinetic responses. For most channel

types of the dataset, we were able to isolate several clusters of distinct kinetics, thereby sorting

several thousand published models into a few hundred different classes. All our results are

made available to the scientific community in an online resource (ICGenealogy, 2016b), which

constitutes one of the major contributions of this project. Extending the previously existing

archive of models (Hines et al., 2004), our project enables modelers looking for existing channel

models to browse all models on record sorted by quantitative or categorical data, and compare

response kinetics of any number of models. Further, our resource allows the quantitative

evaluation of user-uploaded models and experimental recordings against all other models in

the database. In our study, we demonstrate this by identifying a model that closely matches

recordings from Kenyon cells in Drosophila. In summary, this project contributed to the

field by creating a novel interactive resource for the categorization of new and existing ion

channel models as well as experimental recordings. In ongoing work, we are keeping the

resource updated to integrate newly published models and extend our data sources to integrate

additional repositories of published models. The methods and infrastructure developed in

this project provide, for the first time, the means to evaluate experimental recordings of ionic

currents against a large body of published ion channel models. As more experimental and

model data is added, we hope our resource can contribute to the field-wide standardization

of experimentally-constrained modeling by providing a platform for the automated and

continuous integration of ion channels in model and experiment.

In Chapters 3 and 4 I turn towards the dynamics of continuous attractor models. As explained

in the introduction above, continuous attractors can provide a neuronal substrate that retains

information about a given input stimulus over extended periods of time, in the context of
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cortical working memory. My aim was to analyze continuous attractor dynamics for varying

neuronal properties, in particular, nonlinear synapses. In Chapter 3 I present the first part

of the results of this investigation, in which we propose a novel and generalizable method

for the efficient approximation of the steady-state “bumps” of continuous attractor models.

To our knowledge, there currently exists no broadly applicable method to efficiently relate

the microscopic properties of the neuronal network to the emerging bump steady states of

continuous attractor models, which are their central feature. While simplified models admit

analytical solutions of the system dynamics, spiking neuronal dynamics and nonlinear synap-

tic transmission both complicate theoretical approaches. When these more complex models

are reduced to a firing rate description, the resulting high-dimensional coupled nonlinear

equations require iterative numerical solutions, which are possibly as costly as simulating the

full neuronal dynamics. In a semi-numerical approach to this problem, we present a novel

method for the prediction of self-consistent bump solutions applicable to a wide range of

neuronal networks. Our method relies on the optimization of a low-dimensional parametriza-

tion of the continuously varying firing rates of the bump state. For neurons that admit an

input-output relation in the steady state, the method allows us to use numerically efficient

optimization approaches to constrain the parametrization and predict the bump shape of

the full network dynamics. Importantly, since the dimensionality of the optimization target

is small (with respect to the network size), we can use this approach to optimize network

parameters for the emergence of particular bump shapes. We apply our method to a widely

used class of continuous attractor networks implemented in spiking networks with nonlinear

saturating NMDA synapses and show that we can programmatically tune these networks to dis-

play a variety of steady states. For spiking networks, the method incorporates the mean-field

theory of Brunel and Wang (2001b), and extends its applicability to the setting of continuous

attractors. The method can be of utility for modelers working on spiking continuous attractors

since it allows the efficient tuning of network parameters to match physiological quantities.

For example, we apply the method in the next part (Chapter 4) to networks with short-term

plasticity. There, we re-tune network parameters for a large set of plasticity parameters, in

order to make the bump states of networks with different short-term plasticity parameters

comparable. Additionally, the method can be used to efficiently predict the effects of varying

microscopic network properties on the emerging bump state, across ranges of parameters.

In the study we demonstrate this by predicting a widening of the bump shape under cortical

disinhibition in a spiking network, confirming previous simulation results that related these

effects to cognitive impairment in schizophrenia patients (Murray et al., 2012). In summary,

our method contributes a novel and generalizable approach for the theoretical analysis

and tuning of the steady states of neuronal systems with spatially varying firing rates.

In Chapter 4 we then investigate continuous attractor networks with short-term facilitation

and depression as synaptic nonlinearities. Continuous attractor models are known to be sus-

ceptible to the biological variability of cortical networks (see Section 1.3.3 of the Introduction),

which will lead to drift and diffusion along the attractor manifold. As earlier research in sim-

plified models showed (these were discussed in Section 1.3.3), short-term synaptic facilitation
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can slow drift. However, whether, and to which degree, this effect persists in spiking neuronal

networks that show diffusion remain unclear. Additionally, synapses rarely are only facilitating,

but also show short-term depression. The effects of short-term synaptic depression on the

time scales of dynamics along continuous attractor manifolds are scarcely investigated, as

are the combined effects of both facilitation and depression. The central question of this

research was whether, and to which degree, short-term facilitation and depression can act as a

biologically plausible mechanism to control the time scales of drift and diffusion in spiking

continuous attractor networks, and possibly lead to slow dynamics on long time scales. In

particular, we were interested whether short-term plasticity would allow such networks to

implement reliable working memory function under the presence of biological variability.

To answer this question, we developed a novel theory that predicts, quantitatively, the drift

and diffusion of the memories encoded in continuous attractors with short-term plasticity.

The theory presents a major extension to a previously published approach (Burak and Fiete,

2012): our novel contribution accounts for short-term synaptic plasticity in the prediction of

diffusion, and demonstrates the applicability of the approach to more complex neuron models.

In the limit of vanishing short-term plasticity, our theory recovers the results of Burak and

Fiete (2012) for the prediction of diffusion in simpler spiking neuron models. A further major

extension consists in the analytical prediction of the magnitude of directed drift on the attrac-

tor, which generalizes the rate-based approach of Itskov et al. (2011a) to continuous attractor

networks with neurons described by input-output relations and dynamic depressing synapses

(the authors assumed a fixed level of depression). We additionally extend the approach of

Renart et al. (2003), where the authors estimated drift fields numerically for spiking networks

without short-term plasticity. Together with the approach presented in Chapter 3, our the-

ory provides a theoretical toolset for the analysis of the steady states and quasi-stationary

slow time scale dynamics of continuous attractor networks implemented in spiking neuronal

networks with short-term synaptic plasticity. To validate our theory against simulations,

we implemented and compared a large set of spiking continuous attractor networks with

varying parameters of facilitation and depression. This study is, to our knowledge, the first

to do so systematically for biologically plausible spiking networks (with the partial exception

of Pereira and Wang, 2015, who investigated the effects of the facilitation time scale). We

required particular care in ensuring that networks retained nearly identical bump states as the

parameters of facilitation and depression were varied, to exclude possible secondary effects on

the slow network dynamics. Network parameters fulfilling this demand were obtained using

the theory presented in Chapter 4, for which we extended the mean-field theory of Brunel and

Wang (2001b) to include currents with short-term synaptic plasticity.

Assuming an underlying organization of cortical networks as continuous attractors, the

theory developed here can make general predictions about the dynamical properties of

such putative networks. As an original result, the theory we developed allows us to con-

strain the combinations of synaptic and network (mainly the network size) properties that

sufficiently slow drift and diffusion to allow continuous attractor models to perform working

memory function even under substantial cortical variability. The resulting network sizes for

experimentally constrained parameters of short-term plasticity are in anatomically reasonable
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ranges (Collins et al., 2016) between 104 −105 neurons. Our result is thus in support of the

feasibility of cortical networks implementing the continuous attractor paradigm, especially

since additional mechanisms can further increase the robustness of working memory imple-

mented in such networks (see Discussion in Chapter 4). We have performed these experiments

for integrate-and-fire neurons and one given shape of the bump state. The free parameters

of the theory, however, can be extracted from experimentally observable quantities of corti-

cal networks that implement working memory: these include the input-output relations of

neurons, and the putative shape of the bump state, which can be related to experimentally

measured memory fields of PFC neurons (see Section 1.3.2). A further original finding of our

study is that both drift and diffusion on continuous attractor networks will be affected in

an antagonistic fashion by short-term facilitation and depression, with facilitation being

able to strongly reduce both. This yields a novel implication for facilitation as a cortical stabi-

lization mechanism for continuous attractor working memory (see Discussion in Chapter 4):

strong facilitation will, especially in larger networks, remove most diffusive displacements.

This might be difficult to unify with behavioral reports during working memory experiments,

which show variable (diffusive) errors to be present. We propose one possible explanation with

interesting implications: facilitation and depression might be under neuromodulatory control,

which would render the working memory system more flexible and could allow diffusion to

reappear. In our study, we demonstrate that this principle of neuromodulatory control of

short-term plasticity could be used to represent uncertainty in working memory circuits.

27





2 ICGenealogy: Mapping the function
of neuronal ion channels in model
and experiment
William F Podlaski†, Alexander Seeholzer†, Lukas N Groschner, Rajnish Ranjan, Gero

Miesenböck and Tim P Vogels; †equal contribution

Published in: eLife 2017;6:e22152 (DOI: 10.7554/eLife.22152.001; Podlaski et al. (2017))

2.1 Author contributions

The idea for the study was conceived by TPV, WP, RR, and me.

WFP, RR, and TPV developed the voltage-clamp protocols and NEURON scripts to run

simulated experiments of ion channel models, collect the resulting current traces, and

preprocess them. Metadata was primarily collected by WFP, with support by RR and me. WFP

and I developed and performed the dimensional reduction (PCA) procedure, as well as the

cluster analysis. WFP analyzed the Drosophila data, which was collected by LG and GM.

I developed all web-application technology, except the graphical data browser (see below).

The graphical data browser was created by phyramid.com, in tight coordination me. My

contribution: devising and implementing the database structure; data import and curation;

creation and maintenance of the web-application; creation and maintenance of the

web-application stack and server. Additionally, I modified the NEURON scripts to be

executable in on the web-server environment. I developed and curated Python code to

generate the Github repository containing all modified channel models. This contribution is

additionally detailed in Section 2.7, where I included an extended summary of the

web-application technology. This summary was not part of the publication.

All authors wrote the original draft and revised version. WFP and I produced all figures, except

Fig. 1, which was produced by WFP. RR provided additional visualizations, which were not

included in the publication.
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2.2 Abstract

Ion channel models are the building blocks of computational neuron models. Their biological

fidelity is therefore crucial for the interpretation of simulations. However, the number of

published models, and the lack of standardization, make the comparison of ion channel

models with one another and with experimental data difficult. Here, we present a framework

for the automated large-scale classification of ion channel models. Using annotated metadata

and responses to a set of voltage-clamp protocols, we assigned 2378 models of voltage- and

calcium-gated ion channels coded in NEURON to 211 clusters. The IonChannelGenealogy

(ICGenealogy) web interface provides an interactive resource for the categorization of new

and existing models and experimental recordings. It enables quantitative comparisons of

simulated and/or measured ion channel kinetics, and facilitates field-wide standardization of

experimentally-constrained modeling.

2.3 Introduction

Ion channels play crucial roles in neuronal signal processing (Koch and Segev, 2000; Cai et al.,

2004; Goldberg et al., 2008) and plasticity (Sjöström and Nelson, 2002; Shah et al., 2010;

Debanne et al., 2003). Interactions among the many different ion channels expressed by a

single cell can lead to extraordinarily complex dynamics, whose dissection necessitates

computational modeling, as first demonstrated by Hodgkin and Huxley in 1952 for action

potential generation (Hodgkin and Huxley, 1952b). Simulation environments like NEURON

(Hines and Carnevale, 2001; Carnevale and Hines, 2006) can be used to create biophysical

neuron models with realistic morphologies, ionic currents, and channel densities (Figure

2.1A), facilitating the integration of experimental data into models (Mainen and Sejnowski,

1995; Stuart and Spruston, 1998; Migliore et al., 1999; Poirazi et al., 2003; Destexhe and Paré,

1999; Traub et al., 2003). More than a thousand neuronal models, and several thousand

individual ion channel models, are archived in the online database ModelDB (Hines and

Carnevale, 2004), which enables other researchers to verify original claims, and to reuse and

extend existing neuron models in the light of new results.

Matching model and experiment is essential for biophysical neuron models, in which many

components have a direct biological counterpart (Brette et al., 2007). For example, pyramidal

neuron models have been shown to reproduce the recorded spiking activity of these cells

accurately with a particular set of ion channels (Traub et al. (2003); Figure 2.1B, gray traces;

see Methods). However, the dynamics can change, sometimes dramatically, when one of the

modeled ion channel currents is exchanged for an identically-labeled model from a different

publication on ModelDB (Figure 2.1B, colored traces, Figure 2.1C). This example underscores

the importance of selecting ion channel models, yet there is currently no standardized

experimental dataset against which to validate them.

Furthermore, the increasingly large number of models on ModelDB (e.g., over 300 new ion
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channel models in 2014 alone; Shepherd Lab (2015)), with non-standardized labeling and a

high degree of redundancy, makes it difficult to understand how ion channel models relate to

each other and to biology. For example, a researcher looking to use an existing A-type

potassium channel model will find over 250 A-type models, spanning a range of behaviors

(Figure 2.1C, blue). Instead of a thorough and time-consuming fitting of appropriate ion

channel dynamics, it is common for modelers to adapt previously published ion channel

models for their own purposes. However, this may introduce experimentally unverified

systematic changes or even errors into later generations of models and may have dramatic

effects on the biological interpretation of the results.

To facilitate informed choices among this bewildering variety of ion channel models, we

categorized 2378 published voltage- and calcium-dependent ion channel models in NEURON

that are available on ModelDB. We cataloged all relevant information about each ion channel

model from the associated literature, including its pedigree relations: whether a given ion

channel model is based on previous models, and, if so, which ones. Additionally, we

compared the kinetics of each ion channel model in standardized voltage-clamp protocols.

The resulting maps of ion channel behavior show model variability and diversity, and point to

the computational and experimental sources that were used to fit each model. Our efforts

have grouped 2378 ion channel models into 211 clusters, dramatically simplifying the search

for an appropriate ion channel model.

We present our findings in an annotated, interactive web-interface with a short video manual

(ICGenealogy (2016b); http://icg.neurotheory.ox.ac.uk), that allows filtered search of

individual ion channel models by metadata and relational information, and the comparison

of channel model kinetics. The underlying database is freely and programmatically accessible

via a web application programming interface (API). In an effort to make our resource

compatible with experimental data and new ion channel models, we offer the possibility to

upload and assess the similarity of experimentally recorded current traces (as well as new

models and model traces) in the same topology. We show an example of the use of this

comparison through the analysis of an unclassified ion channel model, as well as an

experimentally recorded voltage-dependent potassium current from Drosophila

melanogaster. In summary, we provide a framework for the direct and automated comparison

of models and experiments to facilitate experimentally constrained modeling and

quantitative characterization of ion channel behavior.

2.4 Results

2.4.1 Categorizing ion channel models by metadata and ancestor-descendant re-
lationships

To build a map of ion channel model function, we categorized and analyzed a widely-used

subset of 2378 voltage- and calcium-dependent ion channel models (".mod" files) in the
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NEURON simulation environment (Hines and Carnevale, 2001; Carnevale and Hines, 2006). A

set of “metadata” was extracted manually from the associated journal articles for each ion

channel model file (Figure 2.2A, top): reference information (Ref. Info, including author(s) of

the model code), ion channel information (I.C. Info: ion selectivity, gating mode, subtype),

system information (Sys. Info: brain area, neuron type, neuron region, animal model), as well

as additional comments (Other: e.g. temperature constraints, see Methods).
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Figure 2.1 – The choice of ion channel model influences the behavior of a simulated neuron.
A: Biophysical neuron models are composed of a detailed multicompartmental morphology,
several active ion channel conductances, and a density of each conductance that depends
on the specific compartment. B: Simulation of a detailed layer 2/3 pyramidal neuron model,
adapted from Traub et al. (2003) (see Methods for details). The neuron model was stimulated
with a 1.5nA current step beginning at 50msec, while recording the membrane potential in
the apical dendrite (top) and soma (bottom). Simulations were first run using the original
conductances from Traub et al. (“default”, gray). Left: the default A-type potassium model
(gK A) was replaced with two other A-type models (gK A1: dark blue, Hay et al. (2011), ModelDB
ID no. 139653; gK A2: light blue, Traub et al. (2004), ModelDB ID no. 45539). Middle: the default
delayed rectifier potassium model (gK DR ) was replaced with two other delayed rectifier models
(gK DR 1: red, Zhou and Hablitz (1996), ModelDB ID no. 3660; gK DR 2: orange, Durstewitz et al.
(2000a), ModelDB ID no. 82849). Right: both A-type and delayed rectifier models were replaced
with other models (gK A1 + gK DR 1, purple; gK A1 + gK DR 2, magenta). C: Model from B was
simulated for 1000msec with a 1.5nA current step. Firstly, the default A-type current model
was replaced with each of the 243 A-type-labeled model on ModelDB (blue). Secondly, the
default delayed rectified current was replaced with each of the 188 delayed rectifier models on
ModelDB (red). Finally, the default A-type and delayed rectifier currents were replaced with
a random sample of approximately 1% of all possible combinations of A-type and delayed
rectifier models on ModelDB (purple). Summary measures are shown for total number of
spikes, total number of calcium spikes, mean inter-spike interval (ISI) and coefficient of
variation (CV) of ISI during the 1000msec period. Black arrows represent the simulation
results for the default model.
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Based on ion selectivity and gating mode, the majority of all ion channel models (~75%) fell

into five classes (Figure 2.2B): voltage-dependent potassium (Kv), voltage-dependent sodium

(Nav), voltage- dependent calcium (Cav), calcium-dependent potassium (KCa) and

hyperpolarization-activated cation (Ih) channel models. We recorded 74 different subtype

labels across all classes (Kv: 32, Nav: 19, Cav: 20, KCa: 11, Ih: 5; Figure 2.2B, cf. Figure

2.2–source data 1). Prominent modeled neuron types were pyramidal, interneuron, granule

cell, and basket cell (Figure 2.2C), and prominent brain areas included hippocampus, and

cortex (Figure 2.2D). Other metadata also showed a broad variety across ion channel models

(ICGenealogy, 2016b).

To denote family relations (Figure 2.2A, bottom), ion channel model A was labeled as a

“descendant” of an older “ancestor” ion channel model B if the publication reporting A cited

the publication for B as the source or starting-point of its channel dynamics, or if the code of

models A and B were sufficiently similar (Methods). By establishing a citation relationship

between different models, we effectively create a genealogy of neuronal ion channel models,

which describes their lineage (not to be confused with the actual genetic ancestry of different

types of ion channels). Visualizing family relationships makes it apparent that many ion

channel models form large families, often with a highly-cited hub model that has many

descendants (Figure 2.2E). On the other hand, there are a large number of small families and

model singletons that imply de novo ion channel model creation, lack of appropriate citations,

or translation from other simulators (noted in the metadatum comments). Subtype labeling

mapped well onto families, but family identity did not guarantee homogeneity of subtype or

vice versa – all individual subtypes were found across several families (see Figure 2.2E for Kv,

and Figure 2.4–Figure supplements 1 & 2A,F for other ion type classes).

Family relationships and metadata thus help to distinguish ion channel models, but the lack

of standardized annotations in a common nomenclature, as well as the sheer abundance of

models make it difficult to infer the degree of their functional diversity. Based on metadata

alone, it is thus difficult to choose an ion channel model for appropriation into one’s own

work.

2.4.2 Defining functional groups of models through voltage clamp protocols and
clustering

To quantify the functional relationships between ion channel models, we used a set of

voltage-clamp simulation protocols, in kind with those developed for the experimental

characterization of ion channels and model fitting (Hodgkin and Huxley, 1952a; Willms et al.,

1999; Ranjan et al., 2011). We chose this procedure to assess the spectrum of possible

dynamics in a model-free manner, i.e. without explicitly taking into account the underlying

equations. This allows for the comparison of ion channel models strictly based on their

behavior, and, as we discuss later, the direct comparison with experimental data.

Using the NEURON simulation environment (Hines and Carnevale, 2001; Carnevale and
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Figure 2.2 – Ion channel models can be categorized by metadata and ancestor-descendant
relationships. A: Metadata were manually extracted from ModelDB and associated journal
articles (top). Ancestor-descendant relationship (bottom) was established between different
models (see main text for description). B: Models were divided into five classes based on ion
type: voltage-dependent potassium (Kv), voltage-dependent sodium (Nav), voltage-dependent
calcium (Cav), calcium-dependent potassium (KCa), and hyperpolarization-activated cation
(Ih). Each class is divided into subtypes, ordered from left to right according to group size.
Uncommon subtypes are grouped together (other). C, D: Histogram of cell types and brain
areas for each ion type, ordered from top to bottom by the number of models. Colors as
in B. E: Pedigree graph displaying families of the Kv class, sorted by family size. Each node
represents one model, colored by subtype, and edges represent ancestral relations between
models (panel A, bottom). Note that unconnected models (181 total) are not shown. A: A-type,
dr: delayed rectifier, HH: Hodgkin-Huxley, m: m-type, n.s.: not specified, IR: inward rectifier,
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hilar mossy, IB: intrinsic bursting, hipp: hippocampus, bas. gan.: basal ganglia, cerebell.:
cerebellum, SCX: somatosensory cortex, DG: dentate gyrus, GC: granule cell.
Figure 2.2–Source data 1. Table of subtypes for each ion type class.
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Hines, 2006), each ion channel model was placed individually into a model soma and its

current responses to five voltage-clamp protocols were recorded (Figure 2.3A, left; see

Methods, Figure 2.3–Figure supplement 1 and Table 2.2 for full description). The protocols

were designed to probe the gating characteristics of ion channels, i.e. activation, deactivation

and inactivation, as well as temporal dynamics during voltage ramping and repeated action

potentials. Protocol parameters were adjusted for each of the five ion classes separately.

Current responses were normalized to remove the dependence on the maximum

conductance, and subsampled at particular regions of interest (Figure 2.3A, dashed areas) to

obtain a trace of characteristic data points for each protocol (Figure 2.3B, Figure 2.3–Figure

supplement 1F). Using principal component analysis (PCA) across all traces of a particular ion

channel type, we obtained a final D-dimensional score for each ion channel model,

accounting for at least 99% of the variance across all channel models in each class. The

dimensionality D varied between 16 and 29 dimensions for the five classes (Kv: 16, Nav: 21,

Cav: 29, KCa: 16, Ih: 16). The Euclidean distance between any two given model scores was

termed their “similarity” (Figure 2.3C, top). Finally, we used Ward’s clustering method (Ward,

1963) on the model scores to establish an agglomerative hierarchy of ion channel model

clusters (Figure 2.3C, bottom).

A suitable number of clusters was obtained through a variety of published cluster indexes (see

Methods, Figure 2.3–Figure supplements 4,5). For the Kv class, this resulted in 60 clusters with

distinct responses (Figure 2.4) and small intra-cluster variability (Figure 2.3–Figure

supplement 6). The other classes divided similarly into 38, 43, 44, and 26 clusters for Nav, Cav,

KCa, and Ih, respectively (see Figure 2.4–Figure supplements 1,2). We named clusters

according to the most common label of their members and we denoted the ion channel

model closest to the mean score coordinate of each cluster as its reference model. While many

clusters are relatively homogeneous in terms of subtype label, there are several that feature a

mix of different subtypes (see the section on variability below). Therefore, the subtype label of

clusters should be used as a guide for data exploration rather than as a strict classifier.

We found that most ancestor-descendant families fell within one cluster, indicating

consistency between the family relations collected from the papers and ion channel model

behavior (Figure 2.4A-B, Figure 2.4–Figure supplements 1,2B,C & G,H). However, a common

subtype label did not guarantee a common cluster identity (Figure 2.4B, Figure 2.4–Figure

supplements 1,2 C,H). Many models with the same subtype fell into different clusters. For

example, the ~250 A-type-labeled Kv ion channel models fell into 14 clusters (although only

five clusters comprised over 90% of them, Figure 2.4B). These clusters contained few other

subtype labels, suggesting that A-type is generally a consistent label for at least five similar, yet

distinct kinetic behaviors. Moreover, the similarity between these clusters was generally high

(and thus they were plotted within the same vicinity on the wheel of the ‘Circos’ plot, Figure

2.4D; see also Methods). Other subtype labels across all ion channel types showed similar

results (Figure 2.4–Figure supplements 1,2 C,H). Interestingly, for four of the five ion type

classes (KCa being the exception), most isolated single-model clusters corresponded to

genealogical singletons, supporting the idea that these ion channel models are indeed unique,
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Figure 2.3 – Voltage-clamp protocols for the quantitative analysis of ion channel models. A: Left:
five voltage clamp protocols were used to characterize ion channel responses recorded in single
compartment somata simulated in NEURON (see Figure 2.3–Figure supplement 1 and Tables
2.1, 2.2 for full description). Multiple lines indicate a series of increasing voltage steps with the
same time sequence. Right: current response traces are shown for an example model. Dashed
regions indicate response times used for data analysis. B: Current responses were subsampled
and appended, then dimensionality-reduced by principal component analysis (PCA) to form
a condition score vector for each protocol. These score vectors were further normalized and
dimensionality-reduced to form a total score vector. C: The first three principal components
of the score vector are shown for Kv ion channel models (top). Scores were clustered using an
agglomerative hierarchical clustering technique (bottom). Distinct clusters (noted by colors)
form when a cutoff (dashed line) is introduced in the distance between hierarchical groupings,
chosen based on several cluster indexes (see Figure 2.3–Figure supplements 2,3). Cluster
representative models (bold squares with arrows) are selected as reference models for each
cluster (see Methods).
Figure 2.3–Figure supplement 1. Graphical description of the five voltage-clamp protocols used for

ion channel model analysis.

Figure 2.3–Figure supplement 2. Cluster indexes for Kv and Nav classes.

Figure 2.3–Figure supplement 3. Cluster indexes for Cav, KCa and Ih classes.

Figure 2.3–Figure supplement 4. Comparison of intra- and inter-subtype variability with intra- and

inter-cluster variability.

Figure 2.3–Source data 1. Table of omitted files.

36



2.4. Results

and do not appear isolated simply due to missing ancestor-descendant links. However, this

was not true for all genealogical singletons, many of which were kinetically aligned to larger

families and consequently fell into the same clusters. In conclusion, clustering allowed us to

identify 211 distinct groups of ion channel models that share similar behavior, regardless of

publication context or subtype labeling.

2.4.3 Ion channel model groups defined by common metadata show variability
in behavior

The variability in behavior of identically-labeled ion channel models in different clusters may

stem from various sources. There is substantial evidence that individual neurons of any given

type display heterogeneity in ion channel expression and regulation (Marder and Goaillard,

2006; Schulz et al., 2008). Furthermore, characterizing an ionic current using the average

response across a population may not be sufficient to capture the appropriate behavior at the

neuronal level (Golowasch et al., 2002), as there may be several distinct “solutions” (Prinz

et al., 2004). Diversity and variation in ionic currents even within a single cell type may arise

from such mechanisms as splice variants, differential subunit combination, and

post-translational modification like phosphorylation (Schulz et al., 2008; Li et al., 2007;

Campiglio and Flucher, 2015; Levitan, 1994; Misonou et al., 2004).

This biologically variability may also contribute to the diversity in ion channel models that we

observe in our database. Consistent with this notion, the behavior of groups of ion channel

models defined by common subtype, neuron type and brain area (Figure 2.5A, plotted data

points) is often more diverse than that of models defined by a common cluster (Figure 2.5A,

dashed line). More specifically, we find no clear correspondence of any given cluster with

categories such as brain area and neuron type (Figure 2.5B). Nearly every cluster contains ion

channel models that have been used in pyramidal cells (Figure 5B, left, blue) of both cortex

and hippocampus (Figure 5B, right, blue & green). In the same vein, e.g., A-type-labeled

models that have been used in pyramidal cells of the hippocampus (117 models) are found in

9 clusters (cf. ICGenealogy (2016b)).

A portion of the variability may also stem from non-biological sources, such as differences in

experimental setup, as well as model fitting, and idiosyncratic changes to individual ion

channel model implementations. Consistently, we find that models defined by common

families (connected directly or indirectly through ancestor-descendant relationships) can

occasionally fall into different clusters (Figure 2.4A).

It is not possible to disentangle how much of the variability in ion channel kinetics is due to

each of these components. While our resource provides, for the first time, a catalogue of all

models created for each system, and how they relate to one another, we remain agnostic

about the sources of variability seen in the models that we analyze (cf. Discussion).
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Figure 2.4–Figure supplement 1. Nav and Cav class genealogy and clustering.

Figure 2.4–Figure supplement 2. KCa and Ih class genealogy and clustering.
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2.4.4 Automated comparison of new ion channel models and experimental data

Our analysis framework, accessible through the web interface, enables the automated analysis

of new ion channel models as well as experimental data (Figure 2.6A). To illustrate this

process, we uploaded and tested a previously uncatalogued Kv model from a hippocampus

CA1 pyramidal cell model (kad.mod from Hsu et al. (2015); ModelDB ID no. 184054). We

compared its scores and response traces to the presently available 931 Kv models (Figure 2.6B)

and determined its relation to previous ion channel implementations. We found that the ion

channel model fits well within a cluster of mostly pyramidal A-type-labeled ion channel

models used in simulations of rodent hippocampus, thereby verifying the assumed

characteristics of the model.

The framework can also be used for the comparison of experimental data and models. To

illustrate, we uploaded and tested an experimental dataset of recordings from Kenyon cells in

Drosophila melanogaster. Voltage-gated cationic currents across the membranes of these

neurons are thought to be dominated by A-type K+ channels, in particular Shal/Kv4 (Gasque

et al., 2005). This renders Kenyon cells a suitable neuronal cell type to test the biological

relevance of our voltage-clamp protocols in an in vivo setting. Current responses were

recorded in targeted whole-cell patch clamp experiments in vivo (see Methods). The

recordings were performed using our five standardized voltage-clamp protocols, allowing us

to transform and compare the experiments directly to ion channel models in the same ’score’

space (Figure 2.6C). The comparison revealed a close match to an existing model from our

resource, and thus characterizes the behavior of the ion channel as similar to a mammalian

Kv4 ion channel (Figure 2.6C; Fineberg et al. (2012); Kv4_csi, ModelDB ID no. 145672).

2.5 Discussion

Neuroinformatics has become an increasingly important part of neuroscience research, as

new technology and large-scale research projects push the field into the realm of big data

(Akil et al., 2011; Ferguson et al., 2014; Grillner, 2014; Tripathy et al., 2014). Importantly, the

need for assessment and aggregation of published knowledge extends beyond experimental

data, and has recently started encompassing computational models of neural function (Hines

and Carnevale, 2004; Gleeson et al., 2013). Here, we have performed a meta-analysis of

voltage- and calcium-dependent ion channel models coded in the NEURON programming

language available in the database ModelDB (Hines and Carnevale, 2004). Our approach of

combining metadata extracted from publications with a kinetics-based analysis allowed us to

provide detailed information regarding the identity of each ion channel model in the resource,

filling in missing or ambiguous data, and validating the functional properties of channel

models against their sometimes ambiguous nomenclature. Furthermore, we provide a

framework for the large-scale comparison of models, both with each other and with

experiments using the same standardized protocols, thus paving the way towards a unified

characterization of ion channel function.
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Figure 2.6 – Automated analysis of new models and experimental data. A: Flowchart of data
processing steps involved in automated comparison. Source code for model files written
in NEURON can be uploaded to the website, and current responses are automatically gen-
erated. Current traces are processed to compute scores, which are compared to all models
in the resource (illustrated in B). Additionally, raw current traces obtained experimentally
(or from models in other languages) can be uploaded and analyzed directly (illustrated in
C). B: Example analysis and comparison of a new ion channel model (kad.mod from Hsu
et al. (2015); ModelDB ID no. 184054). Top: Segments of the current response traces (red) for
activation (voltage steps 10 - 60mV) and ramp protocols (first half), along with the closest
four clusters (other colors: mean currents, grey lines: individual currents). Bottom: first two
principal components of score space for activation and ramp protocols, as well as total score.
C: Example analysis of in vivo recordings of a K+ current from Drosophila Kenyon cells (see
Methods for details and Figure 2.6–Figure supplement 1 for full traces) and comparison to
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channel models in the resource.
Figure 2.6–Figure supplement 1. K+ current recordings from Drosophila Kenyon cells.
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Figure 2.7 – The ICGenealogy website allows for the interactive visualization of all data and
analysis on the resource (ICGenealogy, 2016b) (http://icg.neurotheory.ox.ac.uk). A: Schematic
of similarity view on website. Channel models of the Kv family are displayed in the first two
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view: models are organized in a ring partitioned by clusters. C: The channel comparison
displays selected channels side-by-side with metadata (top) and current responses (bottom).

The voltage-clamp protocols used in this study were designed to efficiently probe the kinetics

of all ion channel types considered here (Hodgkin and Huxley, 1952a; Willms et al., 1999;

Ranjan et al., 2011). Measuring the kinetic responses of each channel model allowed us to

compare models regardless of their specific implementation. Notably, our method is

amenable to the addition of other protocols that may be better suited to separate certain

models. However, there is evidence that simple step and ramp current pulses are sufficient to

probe the underlying kinetics of neurons (Druckmann et al., 2011), similar to the

voltage-clamp protocols that we use here. Additionally, the simplicity of our protocols makes

experimental comparison easier.

Additionally, our study can be extended beyond the selection of ion channel models

considered here. We limited our analysis to voltage-dependent and calcium-dependent ion

channel models coded in the NEURON language, but, given the appropriate protocols, other

types of ion-channels can be included. The same protocols can also be used to integrate

models written for other simulators, or even simulator-independent formats, e.g., NeuroML

(Cannon et al., 2014). We have taken steps to integrate our resource and visualizations tightly

with existing online resources, notably ModelDB (Hines and Carnevale, 2004).

The end result of our work is a dramatically reduced group of candidate ion channel models

to test when looking for particular ion channel dynamics. Of the 2378 models in our resource,
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we could identify 1132 models as unique, and further reduced this to 211 groups with

substantially different kinetics. However, this does not eliminate the task of finding the most

appropriate ion channel model current, and we stress that the partition of channel models

into clusters of similar response properties does not imply that models in the same cluster are

necessarily redundant. Clustering is not trivial, and while we have used several measures to

determine an appropriate partition of models, we cannot escape a certain level of ambiguity.

Intra-cluster differences may still be important depending on the particular simulation at

hand. Since the responses of different channels vary slowly and continuously rather than in

discrete steps along the dimensions of the manifold of scores (see e.g. Figure 2.4B), the data

may also be amenable to more sophisticated clustering and machine-learning approaches. To

this end, the raw response data and scores have been made publicly available (ICGenealogy,

2016b).

Furthermore, the variability in behavior of ionic currents seen here and elsewhere (Marder

and Goaillard, 2006) suggests that there is no clear answer to the question of which ion

channel model (and parameters) to use for a given neuronal simulation at hand. However, for

modellers who would like to be more diligent about the sources of ion channel models and

the comparability across models of the same underlying biological phenomenon, our

resource takes a step in this direction.

On a larger scope, it has been suggested previously that neuron model parameters should be

viewed as regions, rather than as individual representative points in parameter space

(Goldman et al., 2001). It may be possible that the variability seen at the level of individual ion

channel models covers such regions, and organizes into a handful of distinct “solutions” to

particular model behaviors on the neuronal scale (Leary et al., 2014). In this sense, our

database would lend itself to systematic analyses of the co-variability of sets of published ion

channel models that are able to elicit desired behaviors in conductance-based neuron models

(see also Figure 2.1), in line with previous work (Prinz et al., 2003).

We provide an interactive browser (ICGenealogy, 2016b), which acts as a complement to

existing resources such as ModelDB. It allows the comparison of channel models in five views:

a similarity view focusing on the channel’s response kinetic scores (Figure 2.7A), a hierarchical

tree view focusing on genealogical data (Figure 2.7B, top), an XY view to sort data by a given

set of metadata dimensions (Figure 2.7B, middle), and a circular cluster view (Figure 2.7B,

bottom). All these views feed a central comparison tool (Figure 2.7C), in which the metadata

and traces for user-selected channel models can be viewed side-by-side. For specific

examples of how to utilize this browser and to search for specific ion channel models, please

refer to the instruction video (ICGenealogy, 2016b) and manual (Supplementary file 1).

Because our voltage-clamp protocols are inspired by experimental procedures, ion channel

models can be compared directly to experiments in an automated fashion. We have taken the

first steps in this direction by showing a comparison of both a new model and an

experimental dataset to the resource here (Figure 2.6). While it is beyond the scope of the
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current study to integrate ion channel information from IUPAR/BPS Guide to Pharmacology

(Pawson et al., 2014), Channelpedia (Ranjan et al., 2011) or other sources, these are important

future steps which would help standardize nomenclature. Beyond its usefulness for

cataloguing ion channel model behavior and pedigree, our resource will enable better

experimentally-constrained modeling, and presents a first step towards a unified functional

map of ion channel dynamics in model and experiment.

2.6 Methods and Materials

2.6.1 Pyramidal cell model (Figure 1)

A model of a layer 2/3 pyramidal cell was adapted from a previous study (Traub et al., 2003),

ModelDB ID no. 20756. It contained 68 soma-dendritic compartments and 6 axonal

compartments, with the following active conductances: leak (gL), transient (inactivating) Na+

(gN aF ), persistent (noninactivating) Na+ (gN aP ), delayed rectifier K+ (gK DR ), transient

inactivating K+ (gK A), slowly activating and inactivating K+ (gK 2), muscarinic

receptor-suppressed K+ (gK M ), fast voltage- and calcium-dependent K+ (gKC ), a slow

calcium-dependent K+ (gK AHP ), low-threshold inactivating Ca2+ (gC aT ), high-threshold

non-inactivating Ca2+ (gC aH ),

hyperpolarization-activating cation conductance (gI h). We refer the reader to Traub et al.

(2003) for channel kinetics, distribution and other details of the model.

The neuron model was simulated in the NEURON simulation environment (Hines and

Carnevale, 2001; Carnevale and Hines, 2006), with a current step input injected into the apical

dendrite, following Figure 2 of Traub et al. (2003). The protocol was as follows: 400 msec at

-0.15 nA, followed by 1000 msec at 1.5 nA. A subset of this trace is shown in Figure 2.1B,

comprising 50 msec at -0.15 nA and the first 200 msec at 1.5 nA. The gray traces in Figure 2.1B

show the default behavior of the neuron model in response to injected input. The following

four measures were computed for each spike train: total number of spikes, total number of

calcium spikes, mean inter-spike interval (ISI) and coefficient of variation of ISI.

The stimulation paradigm was repeated in the presence of alternate ion channel models for

gK A , taken from ModelDB (243 models total). All other ionic conductances, parameters and

distributions remained the same. This was further done with alternate ion channel models for

gK DR in a separate simulation (188 models total), with gK A set back to the original model.

Finally, this was done in the case of replacing both gK A and gK DR currents. A random subset

of approximately 1% (441 of the total 45684) of pairs of alternate ion channel models were run

together.
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2.6.2 The ModelDB database, NEURON language and nomenclature

The ModelDB database archives published neuron and network models (Hines and Carnevale,

2004). It contains over 1000 entries, with thousands of ion channel models. At the time of

analysis, 496 of the entries were implemented in the NEURON language (Carnevale and

Hines, 2006; Hines and Carnevale, 2001), making it the most used simulation environment on

the database. Customizable ion channel models are coded in NEURON in so-called .mod files

(with suffix “.mod”) (Hines and Carnevale, 2000). Mod files for all NEURON entries were

downloaded from the ModelDB website. Each mod file was renamed by adding the ModelDB

ID as a prefix to the file, in the following way: ID_name.mod, where ID is the ModelDB ID, and

name is the original name of the .mod file. 46 .mod files contained more than one current of

the same ion type, and were separated into distinct files for each one. The suffix “icgXY” was

appended to the name, where X was the ion type, and Y was the number of the current,

beginning with 1 (e.g., 1234_kv_icgK2.mod for the second Kv current in file 1234_kv.mod).

Furthermore, some ModelDB entries contained more than one file with the same name.

These files were added separately and given unique names by appending a version number to

the name – e.g. “_v2” for the second file. The total number of files collected from the database

was 3495.

2.6.3 Collection of metadata

Metadata information was collected using all information in journal articles and files

associated with each ModelDB entry of interest (SOM). Each field is listed below and defined.

Note that some channel models may have missing entries for information that was not stated

explicitly in the journal articles or ModelDB. Further, we stress that metadata items

corresponding to the intended neuron type, brain area and animal are strictly associated to

the modeling context, and are not necessarily representative of the experimental ion channels

found in that particular neuron, brain area or animal.

• ModelDB ID. Identification number associated with each entry on ModelDB. All

channels from the same entry have the same number.

• PubMed ID. PubMed citation ID of journal articles associated with this channel’s

ModelDB entry; may contain multiple elements, and can be empty for a select few

ModelDB entries for which no articles were found on PubMed.

• ion type. The ion type, or permeability, of the channel model, as listed in the journal

article and .mod file. The following ion types were analyzed: potassium (K), sodium

(Na), calcium (Ca), nonspecific (NS). If models contained more than one current, all ion

types were recorded separately. Other ion types were registered but not included in the

analysis.

• gating mode/mechanism. The dynamic simulation variable that modulates the

kinetics of the model, such as voltage (v), calcium (ca), voltage and calcium (v/ca),
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sodium (na), chloride (cl), light (o), and g-protein coupled (g). Only v channel models

were included in the analysis, with the exception of ca and v/ca models exclusively for

the K ion type.

• subtype. The listed ion channel type, as detailed in the journal article or the .mod file.

Subtypes were listed as mentioned without conformation to any naming convention,

e.g., (Ashburner et al., 2000; Yu and Catterall, 2004). If no subtype was given, then the

subtype was recorded as not specified. A full list of all recorded subtypes is found in

Figure 2.2–source data 1.

• author. Listed author(s) of the .mod file (programmers). If authors were not specified in

the .mod file or on ModelDB, we recorded the field as not specified.

• animal. The animal model (and age, if specified) emulated in simulations, either stated

explicitly, or inferred from the journal article.

• brain area/layer. The emulated brain area and layer of the simulation, as stated

explicitly, or inferred from the journal article.

• neuron type. The emulated neuron type of the simulation. May be several types, or

listed as general if no neuron type was specified.

• neuron region. The neuron region that the ion channel is found in, divided into

dendrites, soma, axon, axon hillock, or specific areas of dendrites or axon.

• comments. Comments from the .mod file itself and any other information about the

channel and model from the journal article, such as previous models or experimental

data that were used to constrain the model.

• runtime [ms]. Elapsed CPU time for running 10 repetitions of a single voltage-clamp

protocol (action-potential). In plots and on the web interface, we simplify model

runtimes by assignment to one of four quartiles of the distribution of runtimes of all

models in each class.

• temperature. Details about the model’s temperature dependence, and also the

temperature at which simulations and/or experiments were performed as described in

the journal article.

• citations. Estimated number of citations as available through Google Scholar, scraped

monthly to update the entries.

A total of 3495 .mod files were collected from ModelDB. 366 of these files were tools, full

neuron models, or other items that do not function as ion channel models. Out of the

remaining 3150 files, .mod files were placed into one of five groups: voltage-dependent

potassium (Kv), voltage-dependent sodium (Nav), voltage-dependent calcium (Cav),

calcium-dependent potassium (KCa), and hyperpolarization-activated cation (Ih). The
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calcium-dependent potassium group contained both ca and v/ca channel models without

any distinction. These five groups accounted for 2378 files, references for which are available

in Supplementary file 2. Mod files that did not fit this description were omitted from the

analysis. This included pumps and active dynamics (290), receptor models (370), and models

with other gating dependencies or ion types (68).

We note that the voltage-dependence of ion channels may stem from different underlying

mechanisms. This includes traditional voltage-gated ion channels that contain a

voltage-sensitive domain (Catterall, 1995), as well as dependence that occurs indirectly

through interaction with other molecules such as polyamines and magnesium (Nichols and

Lopatin, 1997), or intracellular signalling cascades (Kase and Imoto, 2012). The ion channel

models considered here are often agnostic to the biophysical mechanism, and different types

of models can be used to model an arbitrary voltage-conductance relationship (Destexhe and

Huguenard, 2000). Therefore, voltage-dependence as discussed in this work refers to the

functional relationship between voltage and channel conductance, and does not generally

depend on any particular biological mechanism.

2.6.4 Ancestor-descendant relationships

The genealogy of ion channel models was defined by an ancestor-descendant relationship.

Each channel model was linked to previous models if a relationship was listed in the journal

article. We denoted the groups of models connected by these relations as “families”. This

relation could be specific, along the lines of “the A channel model’s kinetics were adapted

from the B channel model in a previous journal article”. Other times, the description was

vague, e.g., stating that the neuron model was adapted from a previous one, with no explicit

reference to ion channel kinetics. When no information was listed about previous kinetics,

both in the journal article and model files themselves, the channels were assumed to have no

ancestors and to have been created de novo. However, in many situations obvious similarity

in .mod file code as verified by a diff command was sufficient to link models to previous

ones. In these cases, relations were established even when they were not stated in the journal

articles. This task was done by hand, and as such is prone to mistakes. We repeated the

collection of metadata, including ancestry relations, a second time in order to correct for

potential errors – we hope to correct any remaining missing or superfluous ancestral relations

with the help of user submissions (ICGenealogy, 2016b).

We note that the use of the word genealogy in this work is used exclusively to describe the

ancestry of ion channel models. It does not refer to the genetic lineage of ion channels as

found in biology. Furthermore, this genealogy does not necessarily conform to a pedigree as

defined by journal article reference information, as sometimes ion channel models are

combined from several papers, or references may be missing.
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Table 2.1 – Parameters for reversal potential and inside and outside concentrations used
in simulation protocols for five ion type classes. Ionic concentrations were not used for Ih
currents.

Er ev (mV) [i on]i n (mM) [i on]out (mM)

Kv -86.7 85.0 3.3152396
Nav 50.0 21.0 136.3753955
Cav 135.0 8.1929e-5 2.0
KCa -86.7 85.0 3.3152396
Ih -45.0 - -

2.6.5 Voltage-clamp protocol

Mod files were run individually in a NEURON simulation by generating a single soma

compartment of length and diameter equal to 20μm and cytoplasmic resistivity of 150Ωcm.

A passive conductance was set to 3.334 ·10−5S/cm2. The simulation temperature was set to

37◦C. Reversal potentials were specified separately for each ion type. Some models (172 files)

featured explicit calculation of the reversal potential, so internal and external concentration

values were added as extra variables to make these equivalent. Parameter values for reversal

potential and ion concentrations can be found in Table 2.1.

A particular model was placed in the soma and a series of five voltage clamp experiments were

run (Figure 2.3–Figure supplements 1 & 2), with the current output being recorded. Based on

the desired effect of each protocol, only particular sections of the protocols were used in

comparing the kinetics (Figure 2.3–Figure supplement 1, dashed lines; also noted in Table 2.2).

The activation protocol featured a single voltage step level, meant to capture the activation

kinetics of the model. The inactivation protocol featured a varying voltage step for a long

duration, followed by a second fixed voltage step, measuring the inactivation due to the first

step. The deactivation protocol featured a single voltage step at a high voltage, followed by a

second voltage step of varying amplitude, meant to measure the deactivation kinetics that

occur as the voltage is changed from one level to the other. The ramp protocol featured a

series of four up and down ramping voltages, at different slopes. Finally, the action potential

protocol features voltage deflections as recorded from the soma of a neuron exhibiting a

regular spiking pattern. This was recorded from a L2/3 pyramidal neuron of P14 rat

somatosensory cortex (R. Ranjan, unpublished). Each of the five ion type groups featured

different voltage values and durations based on differences in time constants, reversal

potentials, and voltage ranges at which each ion channel class is known to be active – no

quantitative comparisons were made between classes. Additionally, calcium gated channel

models were simulated at seven different calcium concentrations based on known

concentrations (Neher and Sakaba, 2008). Values were expressed in concentration as

10−x mM , with x taking the following values: 2.0,2.5,3.0,3.5,4.0,4.5,5.0. Voltage-clamp

protocols are available for download from the ICG website (ICGenealogy, 2016b).
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Table 2.2 – Voltage-clamp protocol parameters for the five ion type classes. Times are stated
in units of ms, voltages in units of mV. See Figure 2.3–Figure supplement 1 for graphical
description. Items T ∗

A and T ∗
B represent the starting and ending times, respectively, of the

regions used for analysis (dashed areas in Figure 2.3 of the main text, as well as Figure 2.3–
Figure supplement 1).

Act

Ion Type V0 V1 V2 ΔV T1 T2 T3 T ∗
A T ∗

B
Kv -80 -80 70 10 100 500 100 100 700
Nav -80 -80 70 10 20 50 30 18 100
Cav -80 -80 70 10 100 500 100 98 700
KCa -80 -80 70 10 100 500 100 95 605
Ih -40 -150 0 10 100 2000 100 95 2105

Inact

Ion Type V0 V1 V2 V3 ΔV T1 T2 T3 T4 T ∗
A T ∗

B
Kv -80 -40 70 30 10 100 1500 50 100 1600 1700
Nav -80 -40 70 30 10 100 1500 50 100 1580 1750
Cav -80 -40 70 30 10 100 1500 50 100 1580 1750
KCa -80 -40 70 30 10 100 1500 50 100 1595 1700
Ih -40 -150 -40 -120 10 100 1000 300 100 1095 1405

Deact

Ion Type V0 V1 V2 V3 ΔV T1 T2 T3 T4 T ∗
A T ∗

B
Kv -80 70 -100 40 10 100 300 200 100 400 600
Nav -80 70 -100 40 10 20 10 30 20 29 80
Cav -80 70 -100 40 10 100 300 200 100 380 700
KCa -80 70 -100 40 10 100 300 200 100 395 605
Ih -40 -140 -110 0 10 100 1500 500 400 1595 2105

Ramp

Ion Type V0 V1 T1 T2 T3 T4 T5 T6 T7 T8 T9 T ∗
A T ∗

B
Kv -80 70 100 800 400 400 400 200 400 100 100 100 2800
Nav -80 70 100 800 400 400 400 200 400 100 100 98 2800
Cav -80 70 100 800 400 400 400 200 400 100 100 98 2800
KCa -80 70 100 800 400 400 400 200 400 100 100 100 2800
Ih -80 70 100 800 400 400 400 200 400 100 100 100 2800

AP

Ion Type T1 T ∗
A T ∗

B
Kv 1800 100 1800
Nav 1800 98 1800
Cav 1800 98 1800
KCa 1800 95 1655
Ih 1800 95 1655

A substantial number of .mod files (952 files) had to be slightly modified to work with the

procedure, in one of the following ways: (1) reversal potential was renamed and made a global

variable to be accessed from .hoc file, (2) NONSPECIFIC CURRENT was changed to a USEION

statement with the correct ion type (3) extra functions and/or data were included through .inc

files, data tables or extra .mod files (4) max conductance was made nonzero (arbitrarily set to

1.0) (5) file was split into multiple files for each current present (6) POINTER variables were

removed (7) internal temperature initialization was removed, and temperature dependence

was set to use the global variable “celsius”. The changed files will be made available upon

publication.

All ion channel models were taken from the ModelDB repository, as published, with small

changes as noted above. This included the assumption that model parameters as chosen by
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the authors were set to reproduce a given, desired, dynamical behavior which matches

experimental data or other constraints. We did not consider changing the internal parameters

of given models – this would prevent any feasible comparison of the models, since most given

models would be able to generate a large variety of behaviors under changing parameter

settings (data not shown).

A small number of .mod files were omitted from the analysis due to problems with running the

simulation protocols (44 files, Figure 2.3–Supplementary data 1). These included files that did

not compile for unknown reasons, and files that produced abnormal oscillations, or extreme

values. The count of these files was 16 for Kv, 20 for Nav, 5 for Cav, 2 for KCa, and 1 for Ih.

2.6.6 Data extraction & processing

The most recent version at the time of writing, version 7.3, of the NEURON language

(Carnevale and Hines, 2014) was used to run the simulation protocols. All simulations were

run in Ubuntu 12.04.5 on a single core of a Intel Core i7 @ 2.67GHz with 24 Gigabytes of RAM.

NEURON models were injected with the five different voltage clamp protocols described

above and integrated at a timestep of d t = 5e−2ms. The resulting current traces were

processed in the following manner. First, inward currents (represented as negative deflections

from baseline) were flipped by multiplying the entire trace by −1. Next, all current traces were

normalized by dividing by the maximum trace value in order to make the result invariant to

the max conductance parameter (e.g., ḡ in Hodgkin-Huxley sodium current

IN a = ḡ m3h(Vm −EN a)). We reasoned that the maximum current amplitude depends on the

number of channel models in a particular area and was thus not related to the kinetic

behavior of the channels. The traces were then subsampled at a resolution of 512 data points

within the regions of interest stated above. Finally, for protocols containing graded steps

(activation, inactivation, deactivation) the subsampled responses across all c graded voltage

steps were appended into one representative vector of length L = 512∗c. For calcium gated

channels, we performed a similar procedure for each of the k calcium concentrations

separately, and then appended them into one representative vector of length L = 512∗k ∗ c.

See Figure 2.3–Figure supplement 1F for a schematic of this process.

2.6.7 Similarity measure

To remove the time dependence of current response waveforms, we performed discrete

principal component analysis (PCA)(Ramsay and Silverman, 2005) across the temporal

dimension, similar to approaches in spike sorting (Lewicki, 1998). To this end, the

subsampled and appended current responses for each protocol across all N channels in a

family yielded a N xL dimensional data matrix, in which we normalized each column by

Z-scoring: we subtracted its mean and then divided by its standard deviation. This matrix was

then dimensionality reduced by PCA across the L temporal entries, where we chose the

reduced dimensionality to capture 99% of the variability. To normalize the range of scores
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across conditions while keeping the covariance structure, we divided the score vector of each

protocol by the standard deviation of all score entries of this protocol. These normalized

scores (denoted by condition scores) were then combined into a final score vector. Further

correlations across protocols were removed by again dimensionality-reducing by PCA (99%

variance criterion) to yield a final score vector for each model. Since response traces were

relatively noise-free, a high PCA dimensionality can be chosen to capture current response

dimensions that are rare across the population of models. The precise value of the variance

criterion in both PCA steps, although slightly changing the resulting scores, did not affect the

clustering results reported above. Similarity between two channel models was then defined as

the Euclidean distance of their dimensionality reduced scores.

In summary, the principal components calculated in the first step represented response

curves along which the current traces were projected to yield intermediate scores. The second

transformation was a linear mixing matrix, which combined these intermediate scores. Final

scores had between 16 and 29 dimensions depending on the family analyzed, which

additionally allowed the efficient storage of the characteristics of the thus compressed

response properties in our resource. The linear PCA transformations, once calculated, can be

applied to additional channel models and their current responses and allow us to efficiently

score new channels and easily evaluate them against all other channels in the resource

(ICGenealogy, 2016b).

2.6.8 Clustering

For clustering of channel scores, we used Ward’s minimal variance linkage (Ward, 1963) for

hierarchical clustering, as implemented in the MATLAB Statistics Toolbox (R2015A, The

MathWorks Inc., Natick, MA). This method can be used to produce a division of the set of all

channel models into an arbitrary number of “similar” clusters, the number of which has to be

constrained by internal criteria (we assumed no a-priori existence of classes in this dataset)

(Halkidi et al., 2001). To this end we employed a range of internal clustering evaluation

measures, which indicate the emergence of an appropriate number of clusters. Although the

evaluation of these measures requires some heuristics, they have been well established and

can guide the decision as to which number of clusters to choose. Concretely, these are: the

Silhouette criterion (Rousseeuw, 1987), the Dunn index (Dunn, 1973), the Davies-Bouldin

index (Davies and Bouldin, 1979), and the Calinski-Harabasz measure (Caliński and Harabasz,

1974), also implemented in the MATLAB Statistics Toolbox (R2015A, The MathWorks Inc.,

Natick, MA). For the Dunn index, the Silhouette index and the Calinksi-Harabasz measure,

high values indicate mostly compact and well-separated clusters. The Davies-Bouldin index

also indicates compactness and separation, however for low values. For details and reviews on

these clustering indexes see e.g., Milligan and Cooper (1985) and Halkidi et al. (2001).

Values for the indexes and heuristics applied to arrive at the cluster numbers of the main text

are given in Figures 2.3–Figure supplement 4 & 5. Due to the natural partition of our dataset
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into five conditions used to calculate the final score, we also included a measure of

heterogeneity computed directly on the traces of each condition, which we termed the “Inner

distance”. For a given condition, let s j ∈R512∗c be the appended (over all possible voltage

steps c) subsampled current responses, where j ∈ {1, . . . ,nchannels} runs over all channels. Let

{Ck |k ∈ {1, . . . ,nclusters}} be a clustering of all channels – a collection of sets, such that each

channel index j is contained in a single set. Let ck = 1
|Ck |

∑
j∈Ck

s j be the mean response trace

of each cluster. The inner distance is then calculated as the scatter around the mean, averaged

over all clusters:

dinner = 1

nclusters

∑
k

1

|Ck |
∑

j∈Ck

‖s j −ck‖. (2.1)

To make the measure comparable across different conditions, which might have different

values of c (the number of voltage steps), we define the norm as ‖s j‖ = 1
c∗512

∑c∗512
i=1 |s j (i )|.

A number of additional linkage methods (complete, single, average) and metrics (cityblock,

squared euclidean) were also evaluated. While giving comparable performance on a synthetic

test set, they yield mostly inferior subsections of the full set of channels with very high

numbers of single elements being isolated as separate clusters.

2.6.9 Assessment of protocols

To qualitatively assess the necessity of the voltage-clamp protocols for separation of labeled

subtypes, the condition scores of all channel models of a particular subtype were compared

with those of other subtypes (Figure 2.3–Figure supplement 6). We show that certain protocols

are more important for differentiating particular subtypes: for example, Kv models of the

m-type show a large distinction from A-type, dr and HH subtypes in the condition scores of

the action potential protocol, whereas A-type channel models show distinct condition scores

in the activation, inactivation and deactivation protocols. The protocols chosen here thus

exploit a necessary range of response kinetics; the general method of deriving a final score

from each of the conditions, however, is amenable to straight-forward extension by further

protocols or second-order features extracted from the response traces, as for example peak

response values and time-scales (Lewicki, 1998; Druckmann and Chklovskii, 2012). Each of

these could be incorporated in the analysis as additional condition scores.

An alternative for the characterization of ion channel dynamics would be given by a

model-based approach: by fitting the parameters of a single super-model to closely

approximate the dynamics of all other channel models on hand, one could characterize

channel models by the resulting parameter values. However, we could not assume that such a

single super-model would capture the full dynamical diversity we were presented with in our

dataset. Similarly, the diverse kinetics of biological ion channels measured in experiments
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might not be captured adequately by a single super-model. We thus chose a standardized

“model-free” approach, which can be extended (see above) should the need for more detailed

discrimination of channel kinetics (from model and experiment alike) arise.

2.6.10 Generation of Circos plots

‘Circos’ plots displaying the clustering results together with genealogical links were generated

using the Circos visualization tool (Krzywinski et al., 2009), combined with TreeDyn

(Chevenet et al., 2006) to create circular dendrograms (Figure 2.4D).

The Circos plot is a visualization technique that enables the comparison of functional

similarity to metadata information for each cluster separately. All unique models of a given

class are arranged in a circle (numbers of duplicate models are shown in the gray histogram

along the circle). Plot rings: For each model, the following information is shown (from inside

to outside; refer to legend): clustering dendrogram, subtype label, histogram count of

duplicate models, model runtime information, number of citations of the accompanying

paper, and most common subtype label(s) of each cluster (all subtypes that contribute 30% or

more). Location along the circle corresponds to functional (clustering) information, whereas

color corresponds to metadata information, such as subtype label. Location: position along

the circle was established by the circular dendrogram at the center. This dendrogram was

created with an agglomerative hierarchical clustering algorithm as defined above, and

arranges models in such a way that similar models are in adjacency, and all models in the

same cluster appear in one continuous group. The outer ring of the plot denotes the extent of

each individual cluster. Groups of models defined by cluster were visually displaced from

others by adding a small white space between clusters. Color: Three color legends

accompanying the graph define the color relationships plotted. The two large rings on the

inside and outside are colored by subtype label (of individual models and of clusters,

respectively), of which the 11 most common are displayed, with all others in gray. Two smaller

rings just inside of the outer ring, denoting number of citations and runtime, are colored on a

red-blue scale.

2.6.11 Generation of genealogy figures

Pedigree plots were generated using Gephi (Bastian et al., 2009), and then manipulated and

ordered manually for visualization (Figure 2.2E, Figure 2.4A). Coloring was chosen according

to subtype label as well as cluster identity. ‘Sankey’ diagrams (Sankey, 1898; Schmidt, 2008)

were generated in Javascript and D3.js (Bostock et al., 2011) (Figure 2.4B, Figure 2.5B). Subtype

coloring was chosen as for the pedigree plots. Subtype labels, clusters and families were

arranged from top to bottom by size.

All other figures were generated using MATLAB (R2015A, The MathWorks Inc., Natick, MA)

and Python 2.7 with matplotlib 1.4.2.
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2.6.12 Relational database, API and web interface

All collected metadata, as well as final scores and clustering results were organized in a

relational MYSQL database, which is openly queryable through a web API. Details about

database structure and the implementations of the web-application and API will be made

available on the website (ICGenealogy, 2016b). The graphical channel browser frontend was

developed in Javascript and D3.js (Bostock et al., 2011) by Phyramid Ltd, Bucharest, Romania.

2.6.13 Code availability

Code for the generation of current response traces in NEURON as well as for the analysis of

current traces will be made available on the website (ICGenealogy, 2016b).

2.6.14 Electrophysiology

K+ currents were recorded from Drosophila Kenyon cells in targeted in vivo whole-cell voltage

clamp experiments as previously described (Murthy and Turner, 2013). Male

NP7175-GAL4;UAS-mCD8-GFP flies were immobilized and fixed to a perfusion chamber

using wax. Cuticle, adipose tissue, trachea and perineural sheath were removed in a window

large enough to expose the posterior brain. The preparation was continuously superfused

with extracellular solution containing (in mM) 103 NaCl, 3 KCl, 26 NaHCO3, 1 NaH2PO4, 1.5

CaCl2, 4 MgCl2, 5 TES, 8 trehalose, 10 glucose and 7 sucrose (pH 7.3 when equilibrated with

5% CO2 and 95% O2). Tetrodotoxin was added at a final concentration of 1μM . Borosilicate

glass electrodes (14-16 MΩ) were filled with pipette solution containing (in mM) 140

potassium aspartate, 1 KCl, 10 HEPES, 4 MgATP, 0.5 Na3GTP and 1 EGTA (pH 7.3). All

experiments were performed at room temperature (21−23◦C). Signals were recorded with a

MultiClamp 700B Microelectrode Amplifier, lowpass-filtered at 10 and digitized at 50 kHz

using a Digidata 1440A digitizer controlled via the pCLAMP 10 software (all Molecular

Devices). Capacitive transients and linear leak currents were subtracted using a P/4 protocol

and all traces were corrected for the liquid junction potential (Neher, 1992). Voltage pulse

protocols were applied as indicated for Kv (Figure 2.3–Figure supplements 1 & 2) and data

were analyzed in MATLAB. Resulting current traces were processed analogously to model

current traces, as specified in section Data extraction & processing.

2.7 ICGenealogy web application

In this section, I describe the structure and implementation of the components that form the

IonChannelGenealogy (ICG) web application (ICGenealogy, 2016b). This summary was not

part of the publication.

The ICG web application can be separated into three parts (see Fig. 2.8A). First, a SQL

database stores all ion channel models currently available on ICG, including metadata and
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quantitative data (traces) for each model. Second, a web application accesses this database,

constructs views from the data and delivers these to the website user through a web server –

the application also provides a web application programming interface (API). Finally, a

graphical browser accesses the ICG database through an and locally creates visualizations on

the device of the user. The graphical browser has been developed in collaboration with a third

party, and will only be discussed shortly below (in Section 2.7.1).

2.7.1 Software stack & web application

Here, I describe the software stack used to provide the ICG application to the public. The later

parts of this section are split by the specific functionality provided through the stack. See

Fig. 2.8B for an illustration of how the different parts interlink. Version numbers for the

software used are omitted from this text to prevent any possible security exploits, but are

available from the author upon request.

The ICGenealogy web application is built around the core of Django (Django, 2017), which is a

free and open-source Python based web framework. Django is extensively maintained, widely

used, and offers hands-on solutions for several tasks which would otherwise require extensive

additional work, e.g. the handling of user accounts and user access to the website. The

externally accessible functionality of the web application (Fig. 2.8A, right hand side) is

generated by application code written for Django, but has to be sent to the user securely and

efficiently. For this, Django lies embedded in a stack of additional free open-source software

(Fig. 2.8B).

All software is compiled and run on the Ubuntu Linux operating system (Ubuntu, 2017) using

the Supervisor (Supervisor, 2017) process controller for convenient monitoring and starting of

the application. External user requests are passed through the NGINX web-server, which

serves static files (e.g. cascading style-sheets, javascript files, images) directly and relays all

application requests further down the stack. Requests to the main site (not the graphical

browser) are received by uWSGI (uWSGI, 2017), an open-source application server

implementing the wsgi (Eby, 2003) specification, which allows it to communicate with the

Python interpreter. Finally, through Python the actual web application is served by Django,

which accesses and modifies the relational database running on the open-source MySQL

(MySQL, 2017) database server.

Most requests relayed to Python/Django depend on the current state of the database, which

in the current application changes on slow time scales compared to the user traffic. We thus

cache responses to many requests (especially to API calls, see below). For this, Django stores

request-response pairs in system memory (RAM) using the Memcached (Memcached, 2017)

caching backend.

Web API An application programming interface (API) is used make the ICGenealogy

database accessible by JSON encoded textual representations. The Django framework
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treats responses to user requests in conjunction with the Django-REST-framework

(Django-REST, 2017). This allows using the Python-internal objects that represent the

database contents to construct the responses. All request-response pairs to the API are

stateless, i.e. they depend only on the contents of the request, and not on earlier

requests of the same user. This enables us to cut down on the time required to compute

responses by using the Django caching backend (see above).

User submission The functionality of user submission of models and experimental traces

was written in Django. After files have been uploaded and locally stored, NEURON

(Hines and Carnevale, 2001) simulations, the analysis of data produced by NEURON,

and the generation of figures using the analysis results, have to be performed. To

prevent the Django application from blocking until these tasks are finished it is

desirable to provide this functionality running “in the background”. This is

implemented using the distributed task queue Celery (Celery, 2017) together with the

message broker RabbitMQ (RabbitMQ, 2017). In this setup, the Django web application

adds tasks to the Celery queue, which are then asynchronously executed when

resources become available. Messages about finished jobs and possible errors are

passed back to the web application front-end with asynchronous notifications,

implemented with Django-notifications (Django-Notifications, 2017). This setup allows

easily scaling the computational resources designated to running simulations and

analysis tasks in the background, since additional “worker” machines can be

dynamically added to the same task queue as the demand for computational resources

grows.

Graphical browser The channel browser front-end was developed by Phyramid

(www.phyramid.com) in close collaboration with the author. The browser is

implemented using Node.js to provide an asynchronous web server that communicates

internally with the API and is connected to user requests through the NGINX

web-server as a proxy (see Fig. 2.8B).

2.7.2 Database

The ICG database is a relational MySQL (MySQL, 2017) database that holds both metadata

extracted from the literature (see Section 2.6.3 for details), as well as quantitative data

extracted from simulations and the results of the analysis of these data quantitative. The

database structure is automatically generated from Python (Python, 2017) based definitions

of the data structure in the Django web framework (Django, 2017) (see Section 2.7.1 above).

Using Django to maintain the database structure has the advantage that migrations can be

generated programmatically, tested locally, and applied to the web application server during

only short downtimes. Further, designing the database structure in this way makes it

independent of the database backend used, facilitating later migrations of the database to

backends possibly different from MySQL.

56



2.7. ICGenealogy web application

Data views
Database

metadata

similarity
traces Upload &

evaluation

KCa

Kv Nav Ih

Cav
Comparison

API

Web app
ICG Server ICG Browser ICG Server Ubuntu

Memcached MySQL

caching of requests

NGINX

web-serverdatabase

RabbitMQ
message broker

Celery
async.tasks

Django

Python

web app web-server

uWSGI

app server

Node.js

User
A B

Figure 2.8 – The IonChannelGenealogy web application. A All data for ion channel models
in the five main classes (Kv=voltage gated potassium, Nav=voltage gated sodium, Ih=inward
rectifier potassium, KCa=calcium gated Potassium, Cav=voltage gated calcium) are stored in a
SQL database. A web application accesses this database, implements data views (including
the comparison of channel models), and allows access to the database by a web application
interface (API). The graphical browser (ICG browser) application was developed to use the
API endpoints to create graphical data visualizations on the device of the website’s user
(right dashed area). B Software stack used to run the ICG web application in the production
environment. See main text for details.

See Fig. 2.9 for a diagram of tables in the database, and the relations between them. Edges in

the diagram ending in a single black dot indicate directed “one to many” relationships – e.g.

each Channel can have several Metas related to it to it (while each Meta only has a single

channel assigned to it). Edges ending in double black dots represent bidirectional

associations between two tables – e.g. each Channel can have several References related to it,

while each Reference is associable to several Channels. Bidirectional relations are realized by

additional associative tables (omitted from the diagram), which contain two columns

representing the two ids that are associated by an entry in the table. The datatypes listed in

each column refer to the Django field type (which is mapped to MySQL built-in datatypes, see

https://docs.djangoproject.com/en/1.9/ref/models/fields).

In the following, I shortly elaborate on the role of each table in the database related to the ICG

web application. The listing below and Fig. 2.9 (except for “User”) contain only tables that are

exclusively used for ICG. Several Django components and add-ons used in the application

also require database storage, which brings the total count of tables currently used in the

production environment to 69. Some of the ICG related tables have been omitted from Fig. 2.9

for brevity and are marked by an asterisk (*) in the listing below.

Channel Contains one entry per channel model in the database. Channels are assigned a

single id_modeldb, which links our database to the corresponding channel models

entries on ModelDB (Hines and Carnevale, 2004). Other relations to several tables exist,

see below.

ChannelRelation Introduces annotated directed self-associations for Channel entries.

Parent Channels are linked to child Channels, while specifying a label and a type for

these relations (see below). The ancestor-descendant relationship (see Section 2.6.4) of
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    Channel    
id AutoField

owner ForeignKey (id)

status ForeignKey (id)

id_moddb PositiveIntegerField
name CharField

    ChannelState    
id AutoField

name CharField

status

    Reference    
id AutoField

authors CharField
citations PositiveIntegerField
citations_date DateField
id_pubmed PositiveIntegerField
journal CharField
location CharField
pub_date DateField
title CharField

references

channel

    Classmeta    
id AutoField

label ForeignKey (id)

name CharField

classmetas

classmetaUser

owner

    ChannelRelation    
id AutoField

child ForeignKey (id)

parent ForeignKey (id)

relation_label ForeignKey (id)

relation_type ForeignKey (id)
parent

child

    Meta    
id AutoField

channel ForeignKey (id)

label ForeignKey (id)

value TextField

channel

protocolrun_set

    Cluster    
id AutoField

clusterset ForeignKey (id)

mother ForeignKey (id)

matlab_id PositiveIntegerField
name CharField
sort_order PositiveIntegerField

mother

channels

    VisCoordinate    
id AutoField

channel ForeignKey (id)

coordinate_set ForeignKey (id)

data JSONField

channel

    ProtocolrunSet    
id AutoField

channel ForeignKey (id)

classmeta ForeignKey (id)

    Protocolrun    
id AutoField

protocolrun_condition ForeignKey (id)

protocolrun_set ForeignKey (id)

cstim FloatField
data JSONField
vstim FloatField

    VisCoordinateSet    
id AutoField
classmeta ForeignKey (id)
dimension PositiveIntegerField
name CharField

coordinate_setMetadata
Quantitative data
Application

Figure 2.9 – SQL database diagram and relational structure. Each colored square represents
a table in the database, with the table name displayed in bold large letters. Tables are colored by
the general class of data they store, partitioned in Metadata, Quantitative data, and Application
(data). Edges between table represent relations between tables, see main text for a detailed
description. The columns of each table are listed as rows below the header, with their datatype
displayed next to them. Columns in gray text link to tables that have been omitted from the
diagram for brevity.

Channels (which we extracted from publications) is implemented by this table. This

table contains many-to-one relations to ChannelRelationLabel and

ChannelRelationType, which have been omitted from the diagram.

ChannelRelationLabel* Allows specifying additional unique types for a ChannelRelation.

Examples are “Identical copy” or “Slightly modified” for the ancestor-descendant

relationship.

ChannelRelationType* Allows specifying several disjoint sets of channel relations. While

currently only the “Ancestry” type is used (for the “ancestor-descendant” relationship), I

chose to normalize the ChannelRelation functionality to a large degree, so as to be able

to easily add additional sets of relations later on.

ChannelState Defines several possible states that each Channel can have in the web

application (including “Public”, “Draft”, “Deleted”). This table is used as a coarse filter

for display of channels on the front-end and has been introduced in preparation for

user submission. It further allows the ICG editors to prepare new entries to the database

without displaying them on the front-end.

ClassMeta ClassMetas are metadata entries by which Channels can be sorted into classes.

These are stored in a normalized fashion to allow the storage of several categories of

String based metadata: each ClassMeta is assigned to a category designated by the

ClassMetaLabel. For example, metadata for channel subtypes are stored as separate

ClassMeta entries (with names e.g. “A”, “dr”, “HH”) that all have the same

ClassMetaLabel “Subtype”.
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ClassMetaLabel* Groups ClassMetas together into categories. Examples are “Class” (which

contains ClassMetas “Kv”, “Nav”, “Cav”, etc.), “Subtype” or “Animal model”.

Cluster Store the clustering result presented in the main text (a partition of all channels into

disjoint groups). Each separate cluster is one entry in this table, with an association

from it to all Channels that are contained in this cluster. Additionally, a sort order is

stored, that is used to store the sorting of clusters according to similarity, as obtained

from the hierarchical clustering. A second unidirectional association to Channels is

included, that designates the “mother” Channel of each cluster (named “representative

model” in Chapter 2). Clusters are grouped into ClusterSets by a relation which was

omitted from the diagram.

ClusterSet* Groups together several Clusters into clusterings of a full set of Channels. E.g. all

Clusters obtained from clustering Kv channels are contained linked to the same

ClusterSet (“Kv clustering”). This normalization has been chosen to allow the storage of

several different clusterings of the same set of Channels (e.g. as “Kv clustering 1”, “Kv

clustering 2”).

ICGSubmission Represents user submissions made through the web application. This table

mainly stores links to uploaded .mod files, time series, and generated figures. See also

below on how this is used by the web application.

Meta Metadata entries that are different for each Channel. These are stored in a normalized

fashion to allow the storage of several String based metadata: each Meta is assigned to a

category designated by the MetaLabel. For example, each comment added to a

Channels is stored in a separate Meta entry, that is linked to the MetaLabel “Comments”.

The difference to the ClassMeta table is in the relation of Channels to Metadata – each

Meta has only a single Channel assigned to it (e.g. each “Comment” is entered for a

single Channel), while ClassMetas can be assigned to several Channels (several

Channels can be assigned to the “A” subtype, which is a ClassMeta).

MetaLabel* Groups Metas together into categories. Examples are “Comments” or “Runtime”.

Protocolrun Stores the current time series obtained from voltage-clamp simulations (see

Section 2.6.5) as JSON encoded arrays in the data column. For each time series, we

store the index of the applied voltage protocol (e.g. the Kv “Activation” protocol consists

of 16 voltage steps) as vstim. Similarly, we store the index of the applied calcium

protocol – only KCa channels are simulated under 7 calcium concentrations.

Protocolruns are associated to Channels indirectly, by the relation to ProtocolrunSet.

ProtocolrunCondition* Groups Protocolruns into similar categories, which are referred to

as “conditions” – these represent the 5 different protocols currently used to measure

channel model kinetics (see Section 2.6.5), e.g. “Activation”.

ProtocolrunSet Groups together ProtocolrunSets and associates them to a Channel as well

as a ClassMeta. The link to ClassMeta is introduced to be able to separate
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ProtocolrunsSets for the channels that are contained in several ClassMetas: for example,

a channel can appear both in the “Kv” and “Nav” ClassMetas with different internal

conductances activated, which will result in different Protocolrun data depending on

active ClassMeta.

Reference Stores data for publications that are associated to ModelDB entries.

User This is the table storing user data from the django.contrib.auth.User model. This is used

to associate channels to the user accounts of logged in editors.

VisCoordinate Stores data for visualization on the graphical browser, which are usually the

scores calculated for channels (Section 2.6.7). Coordinates are stored as JSON encoded

arrays in the data column.

VisCoordinateSet Groups together VisCoordinates and associates them to a ClassMeta.

Similar to the ProtocolrunSets, the link to ClassMeta here is introduced to be able to

separate VisCoordinateSets for channels that are contained in several ClassMetas.

2.7.3 Conclusion

In summary, above we have sketched current architecture and structure of the ICG web

application and the database at the time of writing. It should be noted that, as a software

project, the ICG web application and database are subject to ongoing improvements and

changes.

The web application is formed by a set of interlinked open-source software components built

around a Django-based core. The architecture was devised in this way to ensure scalability

with the number of requests. By using the NGINX web-server as the public entry point to the

web application, it can act as a load-balancer that relays requests to more than one web server

serving the ICG application. Similarly, the Memcached caching backend can be shared

between several servers. As mentioned above, for asynchronous simulation and analysis,

additional Celery instances can be added to the pool of available computational resources,

should the need arise.

Scalability with respect to the storage and efficient retrieval of quantitative data (time series)

however, should be improved in the future. Currently, quantitative data are stored as JSON

encoded strings in the SQL database at a fixed subsampling rate of the original time series.

Already now, comparing and displaying 100s of channels (in the “Compare channels” section

of the web application) leads to combined latencies for database queries and transmission of

time series to the user on the order of seconds. For ICG to be able to act as a database not only

for simulated data but also experimental data, this minimum sampling rate should be

lowered, or better, arbitrary sampling rates should be allowed that are as low as the data

provided by the contributor. Databases specialized in storage time-series are abundant (see

e.g. (Merdanović, 2017)), and externalizing the storage of quantitative data to a carefully
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chosen candidate should be performed as the ICG project grows. For the display of data on

the front-end, several solutions already exist that combine time series databases with efficient

graphing on the front-end (e.g. (Grafana, 2017; OpenTSDB, 2017)).

The SQL database architecture was normalized to a large degree, by storing most metadata in

the Meta and ClassMeta structures. This prepares the database for the inclusion of additional

metadata categories as the need arises. In particular, changes already on the horizon include

preparing the database for the inclusion of models (and experimental data) linked to sources

(e.g. (Ranjan et al., 2011; Gleeson et al., 2013; NeuroML, 2017)) other than ModelDB (Hines

and Carnevale, 2004). Further, direct links from models to the ICG Github repository

containing the original and modified channel files (ICGenealogy, 2016a), as well as direct links

to ModelDB .mod files (instead of the general entry) will also be included. For a general

roadmap of upcoming changes, we refer the reader to the “Development” section on the ICG

website (ICGenealogy, 2016b).
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3 Continuous attractor networks: Effi-
cient low-dimensional approximation

Alexander Seeholzer, Moritz Deger and Wulfram Gerstner (in preparation)

3.1 Author contributions

I conceived the study, with support by MD. I wrote all simulation code and carried out all

experiments and analyses. The optimization approach was conceived by me and MD and

subsequently realized by me. I wrote the manuscript, with help from MD and WG.

3.2 Abstract

Continuous “bump” attractors are an established model of cortical working memory for

continuous variables and can be implemented using various neuron and network models.

Here, we develop a generalizable approach for the approximation of bump states of

continuous attractor networks implemented in networks of both rate-based and spiking

neurons. The method relies on a low-dimensional parametrization of the spatial shape of

firing rates, allowing to apply efficient numerical optimization methods. Using our theory, we

can establish a mapping between network structure and attractor properties that allows the

prediction of the effects of network parameters on the steady state firing rate profile and the

existence of bumps, and vice-versa, to fine-tune a network to produce bumps of a given

shape.

3.3 Introduction

Behaving animals commonly need to transiently memorize information about the

environment. For example, as an animal overlooks the visual scenery, locations of certain

salient stimuli need to be recorded and stored. Such information does not need to be stored in

long-term memories. Rather, working memory must provide a quickly accessible

computational substrate for storing information over short durations. While long-term
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memory is thought to be stored in the efficacy of synaptic connections in the brain (Hebb,

1949; Martin et al., 2000; Takeuchi et al., 2014), a possible substrate for working memory may

be transiently stable states of neuronal activity across cortical networks (Goldman-Rakic,

1995; Curtis and D’Esposito, 2003; Chaudhuri and Fiete, 2016).

As model implementations of this concept, localized spatial profiles of neural activity have

been proposed for the internal representation of sensory stimuli (Wilson and Cowan, 1973;

Amari, 1977; Ben-Yishai et al., 1995). First, neurons are associated to the presence of physical

quantities through elevated responses during and after the presentation of stimuli, akin to

receptive fields. For example, the presentation of stimuli at varying angular positions in the

visual field evokes persistent and elevated firing rates in selective groups of neurons of the

prefrontal cortex during delay periods (Funahashi et al., 1989). Choosing recurrent

connection weights (or connection probabilities) which are stronger between neurons that

are responsive to similar stimuli, together with feedback inhibition limiting the total firing

rates in a network, allows this class of models to display bumps of self-sustained activity:

neuronal activity that is localized in the space of possible stimuli. Since these states are stable

attractive states, and all possible such states form a continuum, these models are often

referred to as continuous attractors. The elevated firing of neurons responsive to similar

stimuli is then seen as the working memory representation of physical quanta stored in the

network, e.g. spatial orientations (Zhang, 1996), or angular positions in the visual field

(Compte et al., 2000). Similar computational circuits might also serve as the basis of persistent

internal representations in hippocampal areas (Itskov et al., 2011a; Yoon et al., 2013).

Continuous attractor models with simplified shapes of connectivity or neuronal input-output

relations can be analyzed and often exactly solved (Wilson and Cowan, 1973; Amari, 1977;

Ben-Yishai et al., 1995; Bressloff and Cowan, 2003; Fung et al., 2010; Itskov et al., 2011b; Laing,

2014), or may generally be approximated in the linear input-output regime of balanced

networks (Rosenbaum and Doiron, 2014). However, the inclusion of biologically plausible

nonlinearities, like nonlinear neuronal input-output relations (Compte et al., 2000; Renart

et al., 2003), neuronal adaptation (Brette and Gerstner, 2005; Roach et al., 2015), or synaptic

nonlinearities like short-term plasticity (Zucker and Regehr, 2002; Itskov et al., 2011b) and

saturating NMDA kinetics (Destexhe et al., 1994; Compte et al., 2000), complicate the

mathematical solution of these systems considerably and make a derivation of the stable

firing rate profile unfeasible. Therefore, such systems are usually studied by explicit

simulations of the underlying dynamics or by numerical optimization of approximated

equations for all neurons (Rosenbaum and Doiron, 2014; Spiridon and Gerstner, 2001). While

these procedures in principle allow the prediction of the network activity as a function of the

parameters, they involve computationally demanding numerical optimization of

high-dimensional systems of equations, possibly as costly as simulating the full neuronal

dynamics. Thus, currently, relating the microscopic network parameters to the resulting

emergent bump states involves repeated and possibly time consuming simulations. For

example, this makes the matching of the network steady states to physiologically constrained

features tedious.
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3.4. Results

Here, we present a generalizable approach for the approximation of the network-wide steady

states of continuous attractors. Our approach allows the prediction of the shape of

steady-state firing rate profiles, under nonlinear neuronal dynamics and varying

configurations of the underlying microscopic system, without having to solve the dynamics of

the full, high-dimensional system. Our novel method relies on a low-dimensional

parametrization of the network’s firing rate profile, which allows us to derive computationally

tractable systems of self-consistent equations describing the attractor steady-state, akin to

mean-field approaches for networks with discrete attractors (Brunel and Wang, 2001b). These

equations can be used to efficiently predict the dependence of the firing rate profile on

microscopic network parameters. Importantly, because the dimension of the

parameterization of the spatial activity profile is low, our approach makes optimization of the

microscopic network parameters for the appearance of desired bump profiles feasible. We

apply our method to both networks of simplified rate neurons, and networks of complex,

conductance-based integrate-and-fire neurons with saturating and voltage-dependent

nonlinear NMDA transmission.

3.4 Results

Mean-field approaches (see e.g. Amit and Brunel (1997); Brunel and Wang (2001b)) that

predict the steady states of recurrently connected neuronal networks usually rely on

dimensionality reduction. The number of equations describing the dynamics is reduced by

partitioning neurons into groups of “similar” neurons, and deriving expressions which

describe the average statistics for these coupled groups in the steady states. For example, the

simplest such partition consists in considering the mean firing rates of excitatory and

inhibitory neurons separately, e.g. all excitatory neurons fire with similar mean rates given the

same input:

νE = FE
(
inputE

)
.

If the groups of neurons are now homogeneously coupled, i.e. the connections between

neurons depend only on the groups of the neurons involved, one can derive the input to

neurons of each group in dependence of the firing rates of the groups only. This leads to a

closed system of self-consistency equations describing the coupled steady-state firing rates:

νE = FE
(
inputE [νE ,νI ]

)
,

νI = FI
(
inputI [νE ,νI ]

)
.

In the steady states of continuous attractor models (see Fig. 3.1), neurons fire at different rates,

making a clear partition into discrete groups of similarly firing neurons difficult. Therefore,

the solution of such systems usually relies on the explicit simulation of the neuronal dynamics

of all neurons along the spatial dimension, or a numerical solution of the coupled
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Figure 3.1 – Stable firing rate profiles in continuous attractors. A: Neurons (circles) are
assigned a position on a ring and connected with distance-dependent connection weights
to all other neurons: the firing of a neuron (red circle) inhibits all other neurons (global
inhibition, blue lines) and strongly excites neurons close it (local excitation, red lines). B:
Example simulations of a continuous attractor. At times t = 0,1,2s the system is reset to
localized activity centered at different positions. With time the activity bump broadens
towards a stable state. Colors indicate firing rates as in panel C. C: Firing rates of the network
shown in panel B, measured close to the stable states at t = 0.9,1.9,2.9s. Plots are generated
using the rate model introduced in Section 3.6.1.

self-consistency equations for all neurons.

Here, by using the continuity of the shape of the attractor states, we demonstrate that

continuous attractors are amenable to dimensional reduction, by parametrizing the attractor

state by a low-dimensional family of functions. In Section 3.4.2, we check our method on

networks of simple rate neurons, for which the method might not yield much improvement

over simulations or numerical solutions of the steady states. For the spiking networks

considered in Section 3.4.3, we show that our approach speeds up predictions of the steady

states considerably and further makes these networks amenable to the optimization of

network parameters.

3.4.1 General equations for the approximation of stable states in ring-attractors

As a concrete class of continuous attractors, we consider the ring-attractor model, in which

stable bumps of neuronal activity are freely translatable along all positions on a circle.

Ring-attractor models can be constructed by placing N neurons (rate-based or spiking) at

equally spaced angular positions θ along the ring (Fig. 3.1A) (Wilson and Cowan, 1973; Amari,

1977; Ben-Yishai et al., 1995). We choose the angular space to consist of positions θ ∈ [−π,π),

where we identify the ends of the interval: a neuron at position θ =π−ε is the neighbor of a

neuron at position θ =−π. At short angular distances, recurrent connections are chosen to be

strong and excitatory, while neurons further apart in angular space effectively inhibit each

other’s firing (Fig. 3.1A). Due to the symmetry in connectivity with respect to distance, these

networks can form a continuous manifold of stable states for sufficiently strong connections:

the network activity in response to external inputs converges to firing rate profiles centered
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around some angular position. The position can be, for example, controlled by providing an

external input to the network centered around any desired position (Fig. 3.1B). The

stereotypical shape of the resulting firing rate profiles (Fig. 3.1C) is invariant with respect to

translations in angular space.

The continuity of the firing rate profile allows us to parametrize the firing rates in the

population by a small number of parameters, and to derive equations from the underlying

model that constrain these parameters. Here, inspired by shapes observed in simulations, we

choose to parameterize the firing rate profile by a generalized Gaussian function, where we

assume without loss of generality that the distribution is centered at θ = 0 (cf. Fig. 3.2A):

g (θ) = g0 + g1 exp

(
−
[ |θ|

gσ

]gr
)

. (3.1)

Here, g0 controls the baseline firing rate and g0 + g1 will be the maximum firing rate of the

profile. The parameters gσ and gr control the width and steepness of the profile, respectively.

If we know the distance-dependent connectivity w between neurons and their input-output

relation F , we can predict the expected neuronal firing at any position θ in the population (cf.

Fig. 3.2B). Crucially, we want the firing rate profile g (θ) to be generated by the neuronal

dynamics – we thus identify g (θ) at the point θ with the firing rate ν(θ) of a neuron at position

θ. Finally, we replace the synaptic input to the neuron at position θ with the contributions

from all neurons firing at rates g along the ring. For any given position θi along the ring, this

yields a self-consistent equation in the function g :

g (θi ) = F (inputθi

[
g
]
)

= F

(∫π

−π
dϕw(ϕ−θi )g (ϕ)

)
, (3.2)

with the corresponding self-consistency error

Erri ≡ g (θi )−F (inputθi

[
g
]
). (3.3)

In principle, this procedure can yield up to N coupled error functions, one for each of the N

neurons. One could then minimize the quadratic error
∑

i Err2
i with respect to the parameters

{g0, g1, gσ, gr } to find an approximate solution of the system. However, since the evaluation of

each error function can be costly (e.g. in spiking networks, see Section 3.4.3.2), we propose a

low-dimensional approximation to constrain the set of 4 free parameters: we pick only 4

points θ1, . . . ,θ4, at which we evaluate the errors. This assumes that the shapes of firing rate

profiles maintained by the network are well approximated by the function g (θ), which we

found to be the case for all networks considered here. This leaves the choice of points θi to

evaluate. To ensure that errors are evaluated across different firing rates, we set the position of

these points to cover a range of function values hi = g (θi ): we choose the top of the

distribution θ1 = 0 with h1 = g1 + g0, as well as the lowest point θ4 =π with h4 = g0 (circles in

Fig. 3.2C). The remaining intermediate points (triangles in Fig. 3.2C) are dynamically
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Figure 3.2 – Approximation of bump shapes in attractor networks. A: Parametrization of
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rates, σr controls the width, and r controls the steepness. B: Assuming a spatial profile given
by the parametrization g , the input to any neuron can be calculated by summing all synaptic
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its input. This is illustrated for a neuron at 0 (circle). C: Self-consistency errors between the
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(dashed lines) for systems with three different connectivities (solutions of the full system are
plotted in color). E: Dependence of solution on intermediate point placement. Left points
are given by downward triangles, rightward points by upward triangles (compare to panel C).
Single optimization runs (light gray lines) together with median parameters (dashed lines,
same as in D) and full solutions (colored lines).
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positioned (see Section 3.6.3.1 in Methods): their position depends on the function g such

that they always sample intermediate function values hi .

3.4.2 Approximation of ring-attractor profiles in rate models

The proposed method is, in principle, applicable to any neuron model with a defined

input-output relation F . The shape of the stable attractor profiles will, however, depend on

the concrete choice of neuron model and the microscopic parameters, in particular the

parameters governing the connectivity between neurons. To test the ability of the

low-dimensional approximation proposed in the last section to correctly predict the shapes of

firing rate profiles, we implemented the ring-attractor model introduced above (see Fig. 3.1)

in a network of rate-based neurons with tanh input-output function and a generalized

Gaussian recurrent connectivity (see Section 3.6.1 in Methods). For the rate neuron models

chosen here, the self-consistency errors Eq. (3.3) are given by (see Section 3.6.3.2 in Methods):

Erri = g (θi )− νmax

2

[
1+ tanh

(
τs

s0

N

2π
inputθi

[
g
])]

,

= g (θi )− νmax

2

[
1+ tanh

(
τs

s0

N

2π

∫π

−π
dϕw(ϕ−θi )g (ϕ)

)]
, (3.4)

where τs is the time-constant of synaptic inputs, νmax is the maximal firing rate and s0 is an

input scale.

3.4.2.1 Prediction of stable firing rate profiles

To approximate the firing rate profiles that these networks admit as self-consistent solutions,

we minimize the error functions Eq. (3.4) with respect to the parameters {g0, g1, gσ, gr } as free

variables. We find that, for a range of connectivity parameters (see Table C.2), the predicted

shapes converge to unique solutions. This solution matches the steady state of the

microscopic network simulations accurately (Fig. 3.2D). This is the case both for attractor

states that lie in the linear regime of the neuronal input-output relations (Fig. 3.2D, red line)

as well as for highly nonlinear attractor dynamics in which neuronal firing reaches saturation

values, leading to plateau-shaped firing rate profiles (Fig. 3.2D, blue and green lines).

As discussed above, the placement of intermediate sampling points (Fig. 3.2C, triangles) is not

constrained by theory, but remains a free parameter of our approach. We chose these points

at positions θi such that they sample given function values hi = g (θi ). To investigate the

dependence of the prediction on the placement of intermediate sampling points, we

calculated several predictions while randomly varying the choices of hi (Fig. 3.2E, triangles).

We find that this hardly affects the converged solutions.
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Figure 3.3 – Application: Optimization of network connectivity. A: Stable network firing rate
profiles resulting from 10 optimization runs of the network local connectivity profiles. The
optimization target profiles are plotted in colors, together with single optimization runs (light
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result (dashed lines) each. Left optimization points are given by downward triangles, rightward
points by upward triangles (compare to Fig. 3.2C,E). B: Results of the 10 optimized connectivity
profiles (light gray lines) together with one example profile (colored lines). Solutions for System
2 are degenerate, while others are fairly unique.

3.4.2.2 Optimization of network parameters

While our low-dimensional system of self-consistent equations can be used for the prediction

of the steady-state firing rates, they can also be used in the inverse way, to optimize any of the

network parameters. We demonstrate this here, using the shape of the recurrent connectivity

as an example. However, such optimizations can include further parameters of the network

model (see Section 3.4.3.3).

To optimize the network connectivity parameters, we keep the parametrization parameters{
g0, g1, gσ, gr

}
fixed to the desired values of the shape of the firing rate profile. We then

optimize the self-consistent equations Eq. (3.2) for values of the recurrent connectivity

parameters {w0, w1, wσ, wr } which lead to solutions of the equations and produce the desired

bump profile. In Fig. 3.3 we show the results of this procedure for the three systems also

investigated in Fig. 3.2. The procedure yields network connectivities that fulfill the desired

properties (Fig. 3.3A), largely independently of the points θi chosen for the evaluation of the

errors. Importantly, for some shapes the solutions show a degeneracy (Fig. 3.3B, gray lines), in

the sense that several connectivity parameter sets are found that produce the same stable

firing rate profile.

3.4.3 Approximation of ring-attractor profiles in spiking networks

In complex spiking neuron models, the steady-state input-output relations often involve

integral functions (Brunel and Hakim, 1999; Brunel and Wang, 2001b) that are not amenable
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Figure 3.4 – Application: Prediction of firing rate profiles in spiking continuous attractor
networks. A: Recurrently connected spiking network of a population of excitatory (E, red
triangles) and inhibitory (I, blue circles) neurons. Networks are fully connected with uniform
weights, except for E-E connections (dashed red line), which are distance-dependent. All
neurons receive excitatory input with spikes generated by homogeneous Poisson processes.
B: Example simulation: E neurons fire asynchronously and irregularly until an external cue
is given (centered at 0 for 0.2s starting at t = 1.8s). After this stimulus, a bump of elevated
activity sustains itself around the point of stimulation (w+ = 2.0). C: Distance-dependent E-E
connectivity as a function of the parameter w+ (maximal strength or recurrent connections).
Values range between w+ = 1 (red) and w+ = 3 (blue). D: Appearance of the bump firing rate
profile as a function of the connectivity parameter w+. Theoretical predictions (lines) and
simulation results (maximum of fit of g to firing rates recorded over 1.5s of delay activity, mean
over 5 repetitions, errors show 95% CI) for maximal firing rates of E (colored) and I (gray)
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values of w+ in panel C and D (similar colors).
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to further theoretical analysis. Further, the introduction of nonlinear NMDA transmission at

excitatory synapses (Wang, 1999; Compte et al., 2000) complicates the analysis of such models

considerably: voltage-dependent gating of the maximal NMDA conductance (by the

voltage-dependence of the Mg2+ block) and saturation of the NMDA at high conductances

necessitates the numerical solution of a 4-dimensional system of self-consistent equations for

a relatively simple 2 population mean-field model (Brunel and Wang, 2001b) (see below).

Here, we demonstrate that firing rate profiles in a continuous attractor network of spiking

neurons with such nonlinear NMDA transmission are amenable to the same approach as

described above, which still involves evaluating comparatively few equations. The spiking

network we implement (similar to Compte et al. (2000) and used with variations in e.g. Renart

et al. (2003); Murray et al. (2012); Wei et al. (2012); Pereira and Wang (2015); Almeida et al.

(2015), see Section 3.6.2 in Methods) consists of two fully connected populations of

conductance-based integrate-and-fire neurons: a population of inhibitory neurons with

unstructured all-to-all connectivity, and a population of excitatory neurons, with

distance-dependent recurrent excitatory connections (Fig. 3.4A). In addition, all neurons

receive excitatory background input mediated by spikes generated by Poisson processes.

These network can be tuned such that they possess a bi-stability (Fig. 3.4B): a uniform state

with spontaneous spiking activity in the excitatory population (the inhibitory population is

always uniformly spiking) coexists with an “evoked” spatially inhomogeneous bump-state

that appears after an external cue input is given to a subgroup of excitatory neurons (stimulus

is present at t = 1.8−2.0s in Fig. 3.4B).

3.4.3.1 Self-consistent equations for networks of spiking neurons

For the excitatory population, we again parametrize the spatial profile of firing rates by

Eq. (3.1), which allows us to derive self-consistent equations for any neuron in the excitatory

population. We construct self-consistent equations for the excitatory firing rates at positions

θi as in Eq. (3.2). However, these now will depend additionally on the inhibitory firing rate νI .

Also, the voltage-dependence of the differential equations leads to an additional

self-consistent equation for the mean-voltage V̄ . For any position θ, the excitatory

self-consistent equations are of the form (see Section 3.6.3.3 in Methods for detailed

expressions):

g (θ) = F (inputθ
[
g
]

,νI ,V̄ (θ))

≡ F

(∫π

−π
dϕw(ϕ−θ)ψ

(
g (ϕ)

)
,νI ,V̄ (θ)

)
, (3.5)

V̄ (θ) =G
(
inputθ

[
g
]

,νI ,V̄ (θ)
)

. (3.6)

The function ψ(g ) expresses the mean synaptic activation under presynaptic Poisson spiking

at rate g . For accuracy, we chose to measure ψ numerically for the model of nonlinear NMDA

conductance of the recurrent excitatory synapses given in the network (see 3.6.3.3 in
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Methods).

To constrain the free parameters of g (θ), we again pick 4 points θi ∈ {θ1, . . . ,θ4}, each now

yielding 2-dimensional error functions

Er ri =
(

g (θi )−F
(
inputθi

[
g
]

,νI ,V̄ (θi )
)

V̄ (θi )−G
(
inputθi

[
g
]

,νI ,V̄ (θi )
)
)

. (3.7)

The resulting 8 equations are optimized for the 4 parameters of the parametrization g , as well

as the additional 4 variables V̄ (θi ). The inhibitory population, on the other hand, is assumed

to be homogeneous. Its activity can be described by a single mean firing rate νI and the

average voltage in the inhibitory population V̄I , resulting in a pair of additional

self-consistency errors that constrain these two variables:

Er rI =
(

νI −F (inputI ,νI ,V̄I )

V̄I −G(inputI ,νI ,V̄I )

)
, (3.8)

where inputI = 1
2π

∫π
−π dϕψ

(
g (ϕ)

)
is the mean recurrent excitatory input to inhibitory

neurons.

As mentioned above, in a certain range of parameters the spiking system possesses two

dynamically stable states (Fig. 3.4B): the uniform state and the “evoked” bump state. In this

bistable regime, the associated self-consistency Equations (3.5)-(3.6) must have an an

additional unstable solution (Strogatz, 2000). Even for parameters in which the bump-state is

the only stable state of the system, the uniform state will still be a (unstable) solution of the

self-consistent equations. Accordingly, numerical solutions of the errors Eqs. (3.7)-(3.8)

sometimes converge to the uniform state or an unstable intermediate solution, even if a stable

bump state at higher firing rates exists. In the following we consider only the solutions with

the highest spatial modulation found under repeated solutions (see Discussion).

3.4.3.2 Prediction of firing rate profiles from network properties

Above, we derived error functions constraining the parametrization of firing rate profiles for

spiking networks Eq. (3.7)-(3.8). Here, we use these to predict the dependence of the spatial

shape of the firing rate profile on of a bifurcation parameter w+, which is the maximal

strength of recurrent excitatory connections. At w+ = 1 the connection profile is

homogeneous, while at larger values local connections are stronger (Fig. 3.4C). The strength

of long range connections is calculated by a normalization condition (see Section 3.6.2.3 in

Methods).

As w+ is increased (Fig. 3.4C) above a critical value, a spatially inhomogeneous bump state

appears in simulations of the spiking network (Fig. 3.4E). Our theory predicts this dependence

of the network state on the bifurcation parameter, while approximating to a large degree the
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Figure 3.5 – Efficient optimization of self-consistency errors. A: Evaluations of self-
consistency errors until convergence for three different optimization methods (w+ = 2.5)
(10 repetitions, errors show 95% CI). L-BFGS-B and SLSQP both minimize the sum of squared
errors, Root minimizes the error vector directly. Right-hand axis shows wall-clock times of
optimization procedures. B: Averaged root mean square error (RMSE) between optimized
firing rate profiles and mean firing rates measured from simulations (w+ = 2.5, data from
Fig. 3.4C,D,E). RMSE was calculated for all (800) neurons (n = 10, as in panel A). C: Optimized
firing rate profiles, together with placement of sampling points for two combinations of opti-
mizers and points (Root on 4 points, SLSQP on 12 points). Gray line shows mean firing rate
measured from simulations (w+ = 2.5, as in Fig. 3.4C,D,E).

changing shape of the rate profile as the parameter is increased (Fig. 3.4D,E). The firing rates

of the inhibitory population and their increase with the parameter w+ are also well described

(Fig. 3.4D, black dots and lines).

As mentioned above, the error functions Eq. (3.7) could, in principle, be evaluated at an

arbitrary number of points. To constrain the 4 parameters of the parametrization g (θ), we

chose only the minimal number of points. This reduces the necessary number of evaluations

of the errors Erri (Fig. 3.5A). Further, since in this case the dimensions of the optimization

variables
{

g0, g1, gσ, gr
}

and the error vector coincide, application of a more efficient

numerical optimization method (Root, see Section 3.6.3.5) allows for faster optimization

(Fig. 3.5A, green bar), which reduces the needed time from ∼ 30s to close to 2s (Fig. 3.5A, right

hand axis). We observe, however, that adding additional points does slightly influence the

resulting prediction (Fig. 3.5B), where more sampling points placed in the flanks of the bump

tend to reduce slightly the predicted maximal firing rates (Fig. 3.5C, orange points).

In a second experiment, we show that the theory can be used to efficiently predict the effect

that changing network parameters have on the shape of the resulting firing rate profile.

Similar to the simulated experiment in Murray et al. (2012, Fig. 3), we systematically reduced

the strength of recurrent excitatory-to-excitatory (gEE) and inhibitory-to-excitatory (gEI)

conductances of the network from the baseline of the network presented in Fig. 3.4. Such

changes of the ratio of excitation to inhibition have been hypothesized to occur under cortical

disinhibition observed in schizophrenia (Marin, 2012; Murray et al., 2012). Recovering the

result presented in the study, we see that the width of the bump profile1 depends mostly on

1Note, that the network presented here has a wider profile at baseline than the one investigated in Murray et al.
(2012).
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Figure 3.6 – Applications: Shape prediction over parameter ranges / Optimization of net-
work parameters. All panels use the spiking network model of Fig. 3.4. A Theoretically
predicted width of the firing rate profiles (full width, as predicted by the parameter 2 · gσ)
under varying strengths of recurrent excitatory-to-excitatory (gEE) and inhibitory-to-excitatory
(gEI) synaptic connections. Compare to the similar experiment performed in spiking network
simulations in Murray et al. (2012, Fig. 3). The bifurcation parameter was kept fixed at w+ = 2.5.
B Network parameters optimized for 3 different shapes of the stable firing rate profile (see
Table C.3 for details). Solid dark lines are theoretical predictions using the same method as in
Section 3.4.3.2. Lighter lines and shaded areas are mean ±0.5STD of firing rates recorded over
3.5s of delay activity in 5 repetitions.

the ratio of recurrent conductances, and thus undergoes significant widening under

disinhibition. As we have shown in Fig. 3.5A, the optimization procedure for each datapoint is

fast and thus enables these type of parameter scans for wide ranges of values under many

parameters.

These results show that our approach can be used to accurately describe the firing rate

profiles of bump-attractor networks of recurrently connected spiking excitatory and

inhibitory neurons, across a range of parameters. While evaluating the error function at more

points can lead to slightly increased accuracy of the prediction, the impact on optimization

performance is significant, increasing the needed time by an order of magnitude.

3.4.3.3 Optimization of network parameters

As demonstrated above for a rate-based network, our low-dimensional approximation of

continuous attractors allows the optimization of network parameters. Here, we demonstrate

that this approach extends well to continuous attractors implemented in recurrently

connected spiking neural networks with nonlinear synaptic transmission. As in the case of the

rate network, this is achieved by fixing some desired properties of the firing rate profile, while

minimizing the error functions Eqs. (3.7)-(3.8) with respect to several network parameters.

Here, we included the shape parameters wσ and w+ of the distance-dependent connectivity,

as well as the strengths of all recurrent synaptic connections: gEE, gIE, gEI, gII (cf. Table C.3 for

details).
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To find networks that admit a given shape of the firing rate profile, we first fixed the firing rate

modulation g1 and width gσ, while optimizing the connectivity parameters w+, wσ as well as

the strength of all recurrent excitatory and inhibitory transmission. In total, there were 17

variables (see Table C.3 for listings and optimization results) which were optimized (see

Section 3.6.3.5 for details). Varying these free parameters allows us to optimize the remaining

parameters of the spiking networks through a range of shapes of the stable firing rate profile,

from rather thin bumps of high activity (Fig. 3.6, red) to wide bumps of low activity (Fig. 3.6,

blue). To check whether we could optimize the spiking network to show saturated flat-top

shapes at low firing rates, we fixed g1 = 25H z and the sharpness parameter to a high value

gr = 8, while optimizing the parameter gσ (Fig. 3.6, green).

Similar optimization results for all three bump shapes were achieved by imposing additionally

a low basal excitatory firing rate νbasal
E , which constrains firing rates in the uniform (spatially

homogeneous) state for w+ = 1. For the optimizations above, the basal rates were

unconstrained and varied between 1H z and 5H z. Thereby, the number of optimization

variables is increased to 20, since additionally a basal inhibitory firing rate and basal

inhibitory and excitatory mean voltages need to be introduced to calculate the

self-consistency error of the basal firing rate νbasal
E . It should be noted, that the value of this

constraint affects the possible bump shapes: for example, setting νbasal
E = 1H z did not yield a

converging optimization for the blue and green curves of Fig. 3.6 – this could be alleviated by

relaxing to the higher value νbasal
E = 3H z.

3.5 Discussion

We have presented a framework for the approximation of self-sustained firing-rate profiles in

continuous attractor neural networks. Analytical computation of the steady states of

continuous attractors is often not possible, since it involves the solution of high-dimensional

systems of nonlinear equations, making numerical solutions necessary. Moreover, the

spatially inhomogeneous firing rate profiles of these networks prohibit dimensional reduction

of these equations by separation of neurons into homogeneous populations, as is usually

done in mean-field approaches (Amit and Brunel, 1997; Brunel and Wang, 2001b). Here, we

propose a simple approach, consisting in approximating the continuous firing rate profiles by

a family of functions g with only 4 parameters. These parameters are constrained by

equations expressing the microscopic dynamics of the neurons and synapses involved in the

model, and can be optimized to find admissible solutions. As we have shown, this can be used

for the efficient mapping of the effects that different network parameters have on the bump

shape. Next to predicting the emergent steady states of attractors, the utility of the

low-dimensional approximation is that the derived self-consistent equations are efficiently

optimizable: we were able to use standard numerical methods to constrain the parameters of

spiking networks to show desired firing-rate profiles.

In the main text we have formulated our approach as generally as possible, to emphasize that
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the method does not rely on a specific neuronal (rate or spiking) model, as long as a

prediction of firing rates given the synaptic input can be derived. Therefore, the theory could

be extended easily to other neuron models, or connectivities where connection probabilities

are distance-dependent (e.g. Hansel and Mato (2013)). The approach presented here could

also be used to predict the activity of two-dimensional attractor models implemented in

“sheets” of neurons, that are often used in the context of hippocampal networks (Tsodyks,

1999; Samsonovich and McNaughton, 1997; Itskov et al., 2011a). Assuming isotropy of the

connectivity (if connection strengths depend only on the Euclidean distance between

neurons), a two-dimensional generalized Gaussian function with g0, g1, gr and a single

parameter gσ as before could be used to approximate activity states. For non-isotropic

networks, further width parameters could be introduced and constrained by sampling at

additional points.

We have shown that our approach is amenable to the inclusion of synaptic nonlinearities like

saturating NMDA transmission (which is captured by the synaptic activation function ψ, cf.

Eq. (3.5)). Other sources of nonlinear synaptic transmission, for example the

activity-dependent short-term plasticity of synapses (Zucker and Regehr, 2002) that is often

investigated in the context of working memory models (Mongillo et al., 2008; Itskov et al.,

2011b; Hansel and Mato, 2013), can be similarly incorporated: calculation (or numerical

estimation) of a compound function ψ that describes the steady-state values of synaptic

activation under all nonlinear processes affecting synaptic transmission would suffice to

adapt the theory (see Section 4.6.6, where we apply the same method to networks with

short-term synaptic plasticity). Similar to the estimation of the mean-voltage in spiking

networks demonstrated here, the theory could also be extended to incorporate adaptation

effects on the steady-state firing rates of neurons (Brette and Gerstner, 2005).

For the prediction of firing rates in spiking networks we have adapted a theory for the

description of mean-field firing rates of conductance based integrate-and-fire neurons

(Brunel and Wang, 2001b) to predict spatial firing rate profiles in recurrently connected

networks (Compte et al., 2000). Mean firing rates and mean voltages in this theory are

generally expectation values over ensembles of neurons that can be assumed to have

homogeneous activity. Strictly speaking, here we violate this assumption by taking the rate

prediction of theoretical ensembles as the prediction of the firing rates (and mean voltages) of

single neurons at given positions along the ring attractor. However, since we are investigating

the stationary state of networks, the mean firing rates calculated from this theory can also be

interpreted as the time averaged firing rate of single neurons (Brunel and Sergi, 1998). Further,

the approximation of the recurrent synaptic inputs in the steady state usually relies on the

averaging over presynaptic ensembles of homogeneously firing neurons. Nonetheless, the

theory still works quite well, which might be due to the fact that we are calculating the

synaptic drive as an integral over a continuum of presynaptic neurons, thereby effectively

averaging out deviations of the synaptic drive that are to be expected in single neuron

samples from such ensembles.
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Although bump attractor states are interesting from a functional point of view, they are not

the only solutions to ring-like networks. As we have seen, spiking networks can show

bi-stability, in which both a stable uniform state and a stable evoked bump-state co-exist.

Here, we have neglected solutions of our theory that converged to the uniform state (or

intermediate unstable solutions) if a bump-state at larger firing rates was also found as a

solution. While it goes beyond the scope of the current work, our theory could be extended to

also predict the dynamical stability of the states that are found: similar to approaches in

networks that admit a splitting into discrete populations (Amit and Brunel, 1997) one could

measure the magnitude of perturbations to the firing rates at the points θi resulting from

perturbations to the parametrization: the general perturbation

g (g0, g1, gσ, gr ) → g (g0 +δg0, g1 +δg1, gσ+δgσ, gr +δgr ) would translate into both

perturbations of the rates g (θi ) = ν0(θi )+δν(θi ) and the prediction

F (inputθi

[
g0

]
,V̄ (θi ))+δF (θi ). Stability can then be determined by comparing the scale of

the input perturbations δν(θi ) to the predicted output perturbations δF (θi ) (Amit and Brunel,

1997). It is worth noting, that calculating such linear perturbations will involve the derivative

of the synaptic activations ψ (cf. Eq. (3.5)), which will also have to be estimated numerically in

cases where no analytical formula for ψ can be found.

Our choice of parametrization of the firing rate profile was heuristic, guided by the shapes

observed in numerical simulations. The framework presented here, though, could be used

with any other family of functions parametrized by a small number of parameters, which

should be adapted to the shapes to be approximated. For example, multi-modal ring-attractor

profiles resulting from narrower connectivities (see e.g. Laing et al. (2002), or Wei et al. (2012)

for a spiking network similar to the one investigated here) can not be approximated by the

unimodal family chosen here. Since the topology of ring-attractors is periodic, a natural

candidate for such a generalization would be the family of finite Fourier series. However, the

nonzero frequency components necessary to faithfully approximate shapes that deviate far

from simple (e.g. cosine-shaped) unimodal distributions might require a large number of

Fourier coefficients for parametrization.

Throughout this report, we chose as many positions θi along the attractor manifold as there

are free parameters of the profile g to be constrained. In principle, the number of free

parameters can be chosen independently of the number of positions, by performing

numerical optimization on a dimension-agnostic sum of squared errors. We have shown that

matching the error dimension to the number of parameters permits using efficient

optimization methods that significantly speed up the optimization. However, we have also

investigated under-determined (see Fig. 3.6B) and over-determined (see Fig. 3.5A-C) systems,

which also converged to similar solutions. Finally, when optimizing the network parameters

for desired spatial profiles (Fig. 3.3 and Fig. 3.6), choosing optimization goals outside the

space of possible solutions of the network dynamics did not allow the procedure to converge.

Thus, our approach could be used to estimate the boundaries of the solution space for a given

neural network, by starting the optimization at a known solution and varying the shape

parameters until convergence fails.
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3.6 Methods

3.6.1 Rate network model

We study a network of N = 100 recurrently connected rate neurons indexed by i ∈ {0, ..., N −1},

where each neuron i is described by a single variable νi (t ) which denotes the firing rate of the

neuron (Miller and Fumarola, 2012).

The neuronal firing rate is given by a nonlinear input-output function F of a synaptic variable

si (assuming that the membrane time constant is considerably faster than the synaptic

variable):

νi (t ) = F (si (t )) = νmax

2

[
1+ tanh

(
si (t )

s0

)]
. (3.9)

Here, νmax = 50Hz sets the maximal firing frequency, and s0 = 1 is the (dimensionless) scale of

the synaptic input.

The input to neuron i is mediated through the synaptic variable si :

ṡi (t ) =− si (t )

τs
+

N−1∑
j=0

wi jν j (t ), (3.10)

where ṡ(t ) = d
d t s(t ) denotes the temporal derivative, τs = 100ms is the synaptic time constant,

and wi j are the recurrent connection weights (see below), and 0 ≤ i ≤ N −1.

Neurons are organized at circular positions θi = i · 2π
N −π ∈ [−π,π) with identified boundaries,

such that neuron 0 is the direct neighbor of neuron N −1. The recurrent connections depend

only on the distance between neurons in the resulting angular space: the connection wi j

from neuron j to neuron i is given by a generalized Gaussian function, with 4 free parameters

controlling its shape:

wi j = w(θi −θ j ) = 1

N

(
w0 +w1 exp

[
−
(∣∣min

(∣∣θi −θ j
∣∣ ,2π− ∣∣θi −θ j

∣∣)∣∣
wσ

)wr
])

. (3.11)

The parameters {w0, w1, wσ, wr } used for the networks of Fig. 3.2 and Fig. 3.3 are given in

Table C.2.

3.6.2 Spiking network model

Spiking simulations are based on a reimplementation of a popular ring-attractor model of

visuospatial working memory (Compte et al., 2000) (and used with variations in e.g. Renart

et al. (2003); Murray et al. (2012); Wei et al. (2012); Pereira and Wang (2015); Almeida et al.

(2015)) in the NEST simulator (Diesmann and Gewaltig, 2007). Parameters were modified
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from the original publication to produce the results shown in Fig. 3.4, Fig. 3.5, and Fig. 3.6 (see

Table C.1 for parameter values). For completeness we restate the definition of the model here.

3.6.2.1 Neuron model

Neurons are modeled by leaky integrate-and-fire dynamics with conductance based synaptic

transmission (Compte et al., 2000; Brunel and Wang, 2001b). The network consists of

recurrently connected populations of NE excitatory and NI inhibitory neurons, both

additionally receiving external spiking input with spike times generated by Next independent,

homogeneous Poisson processes, with mean rates νext . Following Compte et al. (2000), we

assume that external excitatory inputs are mediated by fast AMPA receptors, while recurrent

excitatory currents are mediated only by slower NMDA channels.

The neuronal dynamics for neurons in both excitatory and inhibitory populations are

governed by the following system of differential equations indexed by i ∈ {0, ..., NE/I −1} (with

different sets of parameters for each population):

CmV̇i (t ) = −I L
i (t )− I Ext

i (t )− I I
i (t )− I E

i (t ), (3.12)

I P
i = gP sP

i (Vi (t ), t ) (Vi (t )−VP ) ,

where P ∈ {L,Ext,I,E}. Here, Cm is the membrane capacitance and VL,VE,VI are the reversal

potentials for leak, excitatory currents, and inhibitory currents, respectively. The parameters

gP for P ∈ {L,Ext,I,E} are fixed scales for leak (L), external input (Ext) and recurrent excitatory

(E) and inhibitory (I) synaptic conductances, which are dynamically gated by the (possibly

voltage dependent) gating variables sP
i (V , t ). In the main text we refer to the conductance

scales of excitatory neurons by the “strength of synaptic connections” gEE = gE and gEI = gI.

Similarly, for inhibitory neurons we refer to the conductance scales by the “strengths” gIE = gE

and gII = gI. The gating variables sP
i are described in detail below, however we set the leak

conductance gating variable to sL
i = 1.

The model neuron dynamics (Eq. (3.12)) are integrated until their voltage reaches a threshold

Vthr. At any such time, the respective neuron emits a spike and its membrane potential is reset

to the value Vres. After each spike, voltages are clamped to Vres for a refractory period of τref

(see Table C.1 for parameter values).

3.6.2.2 Synaptic gating variables

The synaptic gating variables sP
i (t ) for P ∈ {Ext,I} for external and inhibitory currents are

exponential traces of the firing times t j of all presynaptic neurons j :

ṡP
i (t ) =− sP

i (t )

τP
+ ∑

j∈pre(P )

∑
t j

δ
(
t − t j

)
, (3.13)
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where the sum runs over all neurons presynaptic to the neuron i regarding the connection P .

For the recurrent excitatory gating variables sE
i a nonlinear NMDA model is used (Wang, 2001).

This model has second order kinetics for NMDA channel activation (Destexhe et al., 1994),

which result in a saturation of channels. Together with a voltage dependence Mg(Vi ) of the

conductance (due to the release of the Mg2+ block, see Jahr and Stevens (1990a)) this yields

the following dynamics:

sE
i (V , t ) = Mg(Vi )

NE∑
j=1

wE
i j y j (t ), (3.14)

ẏ j = − y j

τE
+αx j (t )

(
1− y j

)
, (3.15)

ẋ j = − x j

τE,rise
+∑

t j

δ
(
t − t j

)
, (3.16)

Mg(V ) = 1

1+γexp
(−βV

) . (3.17)

See Table C.1 for parameter values used in simulations.

3.6.2.3 Network connectivity

All connections except for the recurrent excitatory connections are all-to-all and uniform. The

recurrent excitatory connections are chosen to be distance-dependent. As in the rate model,

each neuron of the excitatory population with index i ∈ {0, ..., NE −1} is assigned an angular

position θi = i · 2π
NE

−π ∈ [−π,π). Recurrent excitatory NMDA connections w E
i j from neuron j

to neuron i are then given by the Gaussian function wE (θ):

wE
i j = w E (θi −θ j ) = w0 + (w+−w0)exp

(
−[

min
(∣∣θi −θ j

∣∣ ,2π− ∣∣θi −θ j
∣∣)]2 1

2σ2
w

)
.

Additionally, for each neuron we keep the integral over all recurrent connection weights

normalized, resulting in the normalization condition 1
2π

∫π
−π dϕw E (ϕ) = 1. This normalization

ensures that varying the maximum weight w+ will not change the total recurrent excitatory

input if all excitatory neurons fire at the same rate. Here, we choose w+ as a free parameter

and constrain the baseline connection weight to

w0 =
w+σw erf

(
π


2σw

)
−


2π

σw erf
(

π

2σw

)
−


2π
.
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3.6.3 Self-consistent equations

3.6.3.1 Placement of sampling points

Self consistent equations (Eq. (3.2)) are constructed for both rate-based and spiking neurons

by using the low-dimensional parametrization Eq. (3.1) described in the main text. As

mentioned there, we choose the top of the firing rate profile θ1 = 0, as well as the lowest point

θ4 =π. For the intermediate points 0 < θi <π for i ∈ {2,3}, we sample the firing rate profile by

inverting the function g to give a sample at a desired height hi = g0 +ai
(
g1 − g0

)
with

0 < ai < 1. This yields a relation for the position which depends on the shape parameters gr

and gσ:

θi =−gσ log(ai )
1

gr .

For all figures except for Fig. 3.5 and Fig. 3.6, the intermediate points were chosen by setting

a2 = 0.2 and a3 = 0.8, although we show (Fig. 3.2 and Fig. 3.3) that the exact choice of points

affects the solutions only slightly.

In Fig. 3.5 we iterate through even numbers p ≥ 4 of sampling points. As before, we choose

θ1 = 0, as well as the lowest point θp =π. Generalizing the placement of 4 points described

above, the remaining p −2 points were chosen as θk = 0.4/k for 1 < k ≤ p/2, and θk = 1− 0.4/k for
p/2 < k ≤ p. For the optimization of spiking network parameters shown in Fig. 3.6, we chose 7

sampling points: we first chose p = 6 points by the scheme just described, then added the

point θ7 = 0.5.

3.6.3.2 Derivation of input-output functions for the rate network

For the rate network, we set Eq. (3.10) to zero and solve for the steady-state input si , which

yields

si = τs

N−1∑
j=0

wi jν j = τs

N−1∑
j=0

wi j g (θ j )

≈ τs N

2π

∫π

−π
dϕw(θi −ϕ)g (ϕ).

Here, we have replaced the activity of neurons in the network by our parametrization g . In the

second line we approximated the summation 1
N

∑N−1
j=0 by the integral 1

2π

∫π
−π dϕ and exploited

that the connectivity w is only dependent on the angular distance between the neuron i (at

position θi ) and neurons j (at varying positions θ j =ϕ), to replace wi j → w(θi −ϕ). We use

this steady state input in Eq. (3.9) to arrive at Eq. (3.4).

82



3.6. Methods

3.6.3.3 Derivation of input-output functions for the spiking network

In the rate model presented in Section 3.6.1 the firing rates are given by Eq. (3.9). In the

spiking network, we have to approximate the expected firing rates of neurons. To this end, we

first replace the synaptic activation variables sP (V , t ) for P ∈ {I ,E ,ext} by their expectation

values under Poisson input. For the linear synapses this yields

〈
sext(t )

〉
Poisson =τextνpre,〈

sI(t )
〉

Poisson =τIνI .

The nonlinear synaptic activation of NMDA synapses under stimulation with Poisson

processes at rates ν j was estimated by simulating Eqs. (3.15)-(3.16) under varying presynaptic

firing rates and fitting an interpolating function to the temporal means of the synaptic

activation ψ(ν j ) ≡ 〈y j 〉t . An analytical approximation of the function ψ(ν j ) was stated in

Brunel and Wang (2001b, p. 80) (see Fig. D.1 in Section D.1 for a comparison to simulations).

We instead chose to numerically fit this function to simulated data, since for higher firing

rates the analytical approximation tended to over-estimate the synaptic activations.

We then define the expected recurrent excitatory input, assuming presynaptic Poisson firing,

by

Ji ≡ 1

NE

NE−1∑
i=0

wE
i jψ(ν j ). (3.18)

Following Brunel and Wang (2001b), we linearize the voltage dependence Eq. (3.17) at the

mean voltage 〈V 〉 and reduce the differential equations of Eq. (3.12) to dimensionless form.

The resulting expressions depend only on the mean firing rates and mean voltages of

excitatory and inhibitory neurons (see Section 3.6.3.4 for the detailed expressions and

derivations):

τi V̇i = − (Vi −VL)+μi +σi


τiηi (t ) (3.19)

μi = μi (Ji ,νI ,νext,〈Vi 〉)
σi = gext

Cm
(〈V 〉−VE )τext

√
τi Nextνext.

τi = τi (Ji ,νI ,νext,〈Vi 〉)〈
ηi (t )

〉 = 0〈
ηi (t )ηi (t ′)

〉 = 1

τext
exp(−

∣∣t − t ′
∣∣

τext
)

Here, μi is the bias of the membrane potential due to synaptic inputs, and σi measures the

scale of fluctuations in the membrane potential due to random spike arrival approximated by
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the Gaussian process ηi . Due to active synaptic conductances, the effective membrane time

constant τi is decreased from the intrinsic membrane time-constant Cm/gL – its value thus

depends on all presynaptic firing rates (and the mean voltage, see Section 3.6.3.4).

The prediction F of the mean firing rates and 〈Vi 〉 of mean voltages of populations of neurons

governed by this type of differential equation can be well approximated by (Brunel and Wang,

2001b) (see also the published corrections in Brunel and Wang (2001a)):

φ
[
μi ,σi ,τi

] =
(
τref +



πτi

∫α(μi ,σi )

β(μi ,σi )
du exp(u2) [1+erf(u)]

)−1

, (3.20)

α(μi ,σi ) = Vreset −VL −μi

σi

(
1+ τext

2τi

)
+1.03

√
τext

τi
− τext

τi
, (3.21)

β(μi ,σi ) = Vreset −VL −μi

σi
, (3.22)

〈Vi 〉 = μi +VL − (Vthr −Vreset)φ
[
μi ,σi ,τi

]
τi . (3.23)

As in the rate model, we first replace the network activity ν j on the right hand side of

Eq. (3.18) by our parametrization g (θ j ). We then approximate the summation 1
NE

∑NE−1
j=0 with

an integral 1
2π

∫π
−π dϕ, and replace the connectivity by its continuous equivalent

wi j → w(θi −ϕ) to arrive at:

Ji ≈ 1

2π

∫π

−π
dϕw E (

θi −ϕ
)
ψ(g

(
ϕ
)
)

≡ 1

2π
inputθi

[
g
]

.

We then substitute this relation in Eqs. (3.20) and (3.23) to arrive at

μi =μi
(
inputθi

[
g
]

,νI ,νext,〈Vi 〉
)

,

τi = τi
(
inputθi

[
g
]

,νI ,νext,〈Vi 〉
)

,

F (inputθi

[
g
]

,νI ,〈Vi 〉) ≡φ
[
μi ,σi ,τi

]
,

G(inputθi

[
g
]

,νI ,〈Vi 〉) ≡μi +VL − (Vthr −Vreset) gi (θi )τi , (3.24)

which defines Eqs. (3.5) and (3.6) of the main text.

3.6.3.4 Detailed derivation of dimensionless voltage equations

In this section we give details on the derivation of Eq. (3.19) as well as the resulting full

expressions. This closely follows Brunel and Wang (2001b, pp. 79–81), while keeping a slightly

simplified notation.

We first replace all synaptic activations in Eq. (3.12) by their expected values under Poisson
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input, which also introduces the expected recurrent excitatory input Ji (cf. Eq. (3.18)):

sext
i (t ) → Nextτextνpre +ΔS,ext ,

sI
i (t ) → NIτIνI ,

sE
i (t ) → Mg(Vi )

NE−1∑
i=0

wE
i jψ(ν j ) = Mg(Vi )NE Ji .

Here, ΔS,ext represents fluctuations of around the mean of sext
i due to random spike arrival at

fast AMPA synapses. Since the synaptic timescales (GABA, NMDA) of the other synaptic

activations are much longer, these fluctuations can be neglected. We then rearrange Eq. (3.12)

to dimensionless form, which yields:

Cm

gL
V̇i = − (Vi −VL)

[
1+TIνI +Textνext + gE

gL
Mg(Vi )NE Ji

]

+ (VI −VL)TIνI + (VE −VL)

[
Textνext + gE

gL
Mg(Vi )NE Ji

]
+gext

gL
(Vi −VE )ΔS,ext,

where Text = Nextτext
gext

gL
, TI = NIτI

gI

gL
are effective timescales of external and inhibitory input.

To get rid of the nonlinear voltage dependence of the right hand side through Mg(Vi ), we

linearize this function (cf. Eq. (3.17)) around the mean voltage 〈Vi 〉:

Vi −VE

1+γexp(−βVi )
= 〈Vi 〉−VE

ρ
+ (V −〈V 〉) ρ+β (〈Vi 〉−VE )

(
ρ−1

)
ρ2 ,

where ρ = 1+γexp
(−β〈Vi 〉

)
.

After replacing the voltage dependence in the fluctuation term by the mean voltage, we arrive

at

Cm

gL
V̇i = − (Vi −VL)

[
1+TIνI +Textνext +

(
ρ1 +ρ2

)
Ji
]

+ (VI −VL)TIνI + (VE −VL)
[
Textνext +ρ1 Ji

]
+ρ2 (〈Vi 〉−VL) Ji + gext

gL
(〈Vi 〉−VE )ΔS,ext.

ρ1 = gENE

gLρ

ρ2 = β
gENE (〈Vi 〉−VE )

(
ρ−1

)
gLρ2

ρ = 1+γexp
(−β〈Vi 〉

)
. (3.25)
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Finally, we replace the fluctuations ΔS,ext by independent Gaussian noise processes with zero

mean
〈
ηi (t )

〉= 0 and simpler autocorrelation
〈
ηi (t )η j (t ′)

〉= 1
τext

exp(−|t−t ′|
τext

)δi j , to arrive at

the full form of Eq. (3.19) in the main text:

τi V̇i = − (Vi −VL)+μi +σi


τiηi (t ) (3.26)

Si = 1+TIνI +Textνext +
(
ρ1 +ρ2

)
Ji

μi Si = (VI −VL)TIνI + (VE −VL)Textνext +[
ρ1 (VE −VL)+ρ2 (〈V 〉−VL)

]
Ji

σi = gext

Cm
(〈V 〉−VE )τext

√
τi Nextνext.

τi = Cm

gLSi

Reducing the conductance based differential equation Eq. (3.12) of the main text to the

simplified form Eq. (3.26), now allows us to compute the mean firing rate as a functions of the

(input-like) bias μi and fluctuation term σi , according to Eq. (3.20) of the last section.

3.6.3.5 Optimization of self-consistent equations

For each point θi that we choose to sample from the excitatory population, the theory of

Section 3.6.3.3 yields 2 constraining Equations (3.20) and (3.23). The inhibitory population,

being homogeneous and unstructured, yields 2 equations, for the 2 free variables νI and 〈Vi 〉.
Since we choose a low-dimensional parametrization for the excitatory population, the

number of free variables increases only by 1 (the mean voltage 〈Vi 〉) for each point θi that we

choose to evaluate, while yielding the same 2 constraining equations. This allows us to choose

at minimum 4 evaluation points to constrain the 4 free parameters of the parametrization (see

Table C.3 for a listing).

The errors Erri (and ErrI , for spiking networks) between firing rate predictions and the firing

rate parametrization are numerically minimized using methods provided in the Scipy package

(Oliphant, 2007). In particular, if the dimension of the error function matches the number of

parameters, we are able to use the efficient optimize.root solver (Root in the main text), which

applies a modified version of the Powell hybrid method (Powell, 1970), but does not provide

constraints on valid parameter regions. Here, we implemented artificial constraints by

returning a high error for dimensions that leave the bounded region. The same optimization

results were achieved by using the slower optimize.minimize method, which allows

optimization (of the sum of squared errors SSE =∑
i Err2

i , or SSE =∑
i Err2

i +Err2
I for spiking

networks) in constrained parameter regions via the L-BFGS-B (Byrd et al., 1995) and SLSQP

(Kraft, 1988). For spiking networks, we normalized firing rate errors by the firing rate

νmax = 100H z and voltage differences by the voltage range Vthres −Vreset, to ensure

comparable contributions to the SSE for variables with different dimensions.
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For the optimization results of Fig. 3.6 we chose 7 sampling points (see Section 3.6.3.1 for

details), which yielded 16 errors, including those of the inhibitory population. These were

used to optimize 17 free parameters using the SLSQP algorithm (see Table C.3 for a listing).

We also tried using 8 sampling points, which brings both the number of equations and free

parameters up to 20 – this yielded similar results at increased processing time (the possibly

faster Root solver failed to converge most of the time).

Wall clock times for error functions in Fig. 3.5A were measured on a single core of a MacBook

Pro with 2,6 GHz Intel Core i5 processor, using the Python benchmark timeit.timeit

(minimum wall clock time of 100 repetitions). We first measured average time for evaluation

of a single error Erri of Eq. (3.7), which evaluated to tE = 4.59ms (100 repetitions of 10

executions). For a single evaluation of the inhibitory error ErrI of Eq. (3.8) we found

tI = 0.98ms (the numerical integration performed in the calculation of

inputI = 1
2π

∫
dϕψ

(
g
(
ϕ
))

is faster). The wall clock time T (see Fig. 3.5A, right axis) for a given

number n of error vector evaluations on p points was then calculated by T = n
(
p · tE + tI

)
.

3.6.4 Spiking simulations

All network simulations where performed in the NEST simulator (Diesmann and Gewaltig,

2007) using fourth-order Runge-Kutta integration as implemented in the GSL package

(Galassi et al., 2009). For the simulation results shown in Fig. 3.4 and Fig. 3.6B, networks

underwent a transient initial period of tinitial. Neurons centered at a position of θ = 0 then

received a short and strong excitatory input mediated by additional Poisson firing onto AMPA

receptors (500ms,2kHz) with connections scaled down by a factor of gsignal = 0.5. The

external input ceased at t = toff.

Simulations were run until t = tmax and spikes were recorded and converted to firing rates by

spike counts in a 75ms window shifted at a time resolution of 1ms. For every time step, the

firing rates across the whole population were then rectified (by measuring the phase of the

first spatial Fourier coefficient and setting it to θ = 0 by rotation of the angular space) to center

the bump of activity around the position ϕ= 0. The resulting centered firing rates were then

sampled at an interval of 60ms in the interval [toff +500ms, tmax] for 5 repetitions of the

network simulation with the same microscopic parameters. In Fig. 3.4B times were:

tinitial = 1.8s, toff = 2s, tmax = 5s. In Fig. 3.4D,E we chose: tinitial = 0.5s, toff = 1s, tmax = 3s. For

Fig. 3.6B: tinitial = 0.5s, toff = 1s, tmax = 5s.
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and diffusion
Alexander Seeholzer, Moritz Deger and Wulfram Gerstner (in preparation)

4.1 Author contributions

I conceived the study, wrote all simulation code and carried out all experiments and analyses.

The theory was developed by me, with support by MD. I wrote the manuscript, with help from

MD and WG.

4.2 Abstract

Continuous attractor neuronal networks are frequently used to model cortical short-term

memory of continuous-valued sensory information in the brain. However, these models have

been shown to be highly sensitive to the inevitable variability of biological neurons: variable

neuronal spike timing, sparse synaptic connectivity and heterogeneous neuronal populations

decrease the time that memories can be accurately retained, eventually leading to a loss of

memory functionality on behaviorally relevant time scales. Short-term plasticity of recurrent

synapses has previously been shown to be able to exert influence on the dynamics of

continuous attractor models. As a candidate mechanism for stabilization of working memory

activity, short-term facilitation can stabilize the retention of memories. Short-term synaptic

depression, on the other hand, can make continuous attractors more volatile. However, it

remains unclear to which degree these two short-term plasticity mechanisms influence the

dynamics of continuous attractor networks together, and whether they can provide a

biologically plausible stabilizing mechanism for working memory systems.

Here, we present a comprehensive analysis of the effects of short-term facilitation and

depression on the dynamics of memories encoded in continuous attractor models. We derive

a general theoretical description of the slow dynamics of the center position, which represents

the encoded memory, by drift and diffusion depending on the parameters of short-term
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plasticity. The theory predicts quantitatively the effects of short-term plasticity when applied

to a ring-attractor implemented in a spiking network: we find that facilitation can decrease

both random displacement due to spiking variability, as well as directed drifts due to sparse

connectivity and neuronal heterogeneity, while short-term depression tends to increase both.

Using the theory, we are able to place constraints on the combinations of network and

synapse properties that enable a stable retention of memories under the presence of

biological variability. Finally, we apply the theory to derive continuous attractor networks

with facilitation and depression that maintain a given steady-state distribution of memories,

and show that short-term facilitation can provide a mechanism to both represent and control

uncertainty of memorized information.

4.3 Introduction

As confirmed in behavioral tasks involving working memory, information about past

environmental stimuli can be stored in the primate brain and be retrieved seconds later

(Goldman-Rakic, 1995; Constantinidis and Wang, 2004). Strikingly, this transient storage for

several seconds is achieved using ingredients operating mostly on time scales of tens of

milliseconds and shorter (Chaudhuri and Fiete, 2016). A working hypothesis of neuroscience

is that this function emerges from cortical neuronal network dynamics: memories are

retained by self-generating cortical activity through positive feedback (Curtis and D’Esposito,

2003; Durstewitz et al., 2000b; Barak and Tsodyks, 2014), where the echoes of past stimuli

reverberate over time in the network activity and thereby bridge the time scales from

milliseconds (neuronal dynamics) to seconds (behavior) (Duarte et al., 2017).

Analog sensory stimuli present in the environment often are continuously structured: for

example, positions of objects in the visual field, frequencies of auditory stimuli, or the

intensity and position of sensory stimuli on the body, all have continuously varying values.

The organization of cortical working memory circuits could reflect this continuous nature of

sensory information, thereby allowing storage of all possible values and a conservation of the

metric relations between stimuli (Chaudhuri and Fiete, 2016). This idea is supported by the

finding that, although behavioral experiments often sample continuously structured stimuli

at discrete spacings, the firing rates of neurons involved in working memory vary

continuously with the presented stimuli (Goldman-Rakic, 1995; Romo et al., 1999). For

example, firing rates of neurons encoding object locations during delay periods in prefrontal

cortex are found to be distributed around a preferred location in a bell-shaped manner

(Funahashi et al., 1989). A much researched class of cortical working memory models able to

store continuously structured information is that of continuous attractors. Symmetries in

synaptic connections mediating the self-generated reverberations allow these models to have

a continuum of meta-stable states, which can be used to retain memories over time scales

(delay periods) much longer than those of the single network constituents. While continuous

attractor models arose primarily from theoretical considerations (Wilson and Cowan, 1973;

Amari, 1977), they were soon proposed as models for cortical working memory (Camperi and
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Wang, 1998; Hansel and Sompolinsky, 1998; Compte et al., 2000), path integration

(Samsonovich and McNaughton, 1997; Stringer et al., 2002; Burak and Fiete, 2009), and other

cortical functions (Ben-Yishai et al., 1995; Zhang, 1996; Seung, 1998) (see e.g. Knierim and

Zhang (2012); Moser et al. (2014); Burak (2014); Wu et al. (2016); Chaudhuri and Fiete (2016)

for recent reviews). Recently, supporting experimental evidence for continuous attractor

dynamics in cortical networks (Wimmer et al., 2014) and the limbic system (Knierim and

Zhang, 2012; Yoon et al., 2013) has been reported, alongside evidence for the existence of

continuously structured population activity in the fly that is responsible for path integration

and self-orientation (Seelig and Jayaraman, 2015) (although the circuit mechanisms

responsible for its generation have yet to be identified).

Cortical working memory with a continuum of memory states might be very useful in theory.

However, the meta-stability of memory states in continuous attractors leaves the encoded

memories vulnerable to noisy processes that break, transiently or permanently, the crucial

symmetry underlying the attractor dynamics (Chaudhuri and Fiete, 2016). For example, the

fast variability of neuronal spiking leads to transient asymmetries that randomly displace

encoded memories along the continuum of states (Hansel and Sompolinsky, 1998; Compte

et al., 2000; Wu et al., 2008; Kilpatrick and Ermentrout, 2012), leading to diffusion of encoded

variables. Introducing fixed (on the time scale of working memory tasks) asymmetries has

more drastic effects: they introduce “frozen” biases in neuronal activity leading to directed

drift of memories and a collapse of the continuum of attractive states to a set of discrete states.

Examples of such frozen noise include the heterogeneity of neuronal parameters (Renart et al.,

2003), the sparsity of recurrent connections (Stringer et al., 2002; Renart et al., 2003), or

adding fixed noise to the recurrent weights (Tsodyks and Sejnowski, 1995; Zhang, 1996; Itskov

et al., 2011b). Since both fast and frozen biological variabilities are to be expected in cortical

settings, the feasibility of continuous attractors being implemented as computational systems

of the brain is called into question.

Recently, short-term plasticity of recurrent synaptic connections has been shown to influence

the susceptibility of continuous attractor networks to both fast and frozen noise. Short-term

depression (Zucker and Regehr, 2002) – the use-dependent depletion of available synaptic

resources – has been claimed to not have an effect on diffusion in spiking networks (Barbieri

and Brunel, 2007), but has also been shown to induce directed displacement on continuous

attractors in rate models (York and van Rossum, 2009; Romani and Tsodyks, 2015). Short-term

facilitation (Zucker and Regehr, 2002) – the use-dependent increase of utilization of synaptic

resources – has been proposed as a stabilizing mechanisms that could increase the retention

time of memories in continuous attractor networks. In networks of simplified rate neurons

without fast noise (Itskov et al., 2011b), this has been shown to significantly decrease the

amount of drift that can be expected. In simulations of a continuous attractor implemented

with spiking neurons, facilitation was reported to underlie the observed slow drift (Hansel and

Mato, 2013) and was shown to reduce the amount of diffusion for a single value of facilitation

strength (Pereira and Wang, 2015) (see Discussion). However, several general questions

previously remained unaddressed. What are the quantitative effects of short-term facilitation
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in more complex neuronal models and across facilitation parameters? Can short-term

depression also influence the strength of directed drift, as well as diffusion? More generally, it

is currently still unclear how facilitation and depression interplay in these dynamical roles.

Finally, can theory be used to predict all of these effects?

Here we present a comprehensive description of the effects of short-term facilitation and

depression on one-dimensional continuous attractor models. First, we introduce the general

framework and the concepts of drift and diffusion in one-dimensional ring-attractor models

(Section 4.4.1). To demonstrate the application of these concepts, we then describe a spiking

network implementation of a ring-attractor model (Section 4.4.2) with short-term facilitation

and depression. In Section 4.4.3, we derive theoretical predictions of the amount of diffusion

and drift in continuous attractor models implemented in networks of neurons with arbitrary

input-output relations. These theoretical predictions are then compared with simulations of

the spiking network in Section 4.4.4 and Section 4.4.5. We find that facilitation and depression

play an antagonistic role in making continuous attractors robust against noise, where

facilitation (depression) can decrease (increase) both diffusion and drift. The theory allows us

to make predictions on the expected amount of displacement along continuous attractors, as

a function of facilitation, depression, and system size. In Section 4.4.6 we apply this to

measure the performance of working memory systems and to place memory-reliability

constraints on the microscopic parameters of networks supposed to implement continuous

attractors, even under the influence of strong biological variability. Exploring the possibilities

of the theoretical framework further, we demonstrate (Section 4.4.7) that it may be used to

calculate neuronal heterogeneities necessary to implement a given steady-state distribution

in the memory positions, by effectively implementing a Fokker-Planck equation on the

continuum of positions. Finally, in Section 4.4.8, we show that short-term facilitation can

provide a mechanism to represent and control uncertainty in the retention of memories.

4.4 Results

4.4.1 Drift and diffusion in continuous attractor models

In this section we introduce the general framework for continuous attractor models used

throughout this work. We consider these to be implemented in recurrently connected

neuronal networks of N neurons. The firing rate φi (in units of Hz) for each neuron i for

0 ≤ i < N −1 is given as a function of the neuronal input:

φi (t ) = F (Ji (t )) (4.1)

The input-output relation F relates the input Ji to neuron i to its firing rate. This represents a

rate-based simplification of the possibly complex underlying neuronal dynamics (Gerstner

and Kistler, 2002). Neurons are recurrently connected and receive input from all other
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Figure 4.1 – Continuous attractor models are susceptible to diffusion and drift (illustra-
tion). A: Construction of a ring-attractor attractor network. Neurons (circles) are distributed
along positions on a ring with circular boundary conditions. Excitatory connections between
neurons are local, such that nearby neighbors are excited more strongly (red lines). Inhibitory
connections are global (blue lines). Only outgoing connections from the neuron at position 0
(red circle) are displayed. B: The network dynamics converge to a unimodal firing rate profile
(“bump”) �φ0(ϕ) whose center ϕ can be shifted to any position on the ring. Two bumps local-
ized at different positions ϕ1 (black line) and ϕ2 (dashed gray line) are shown. C: Illustration
of the system dynamics of a 1-dimensional continuous attractor model. A one-dimensional
manifold of meta-stable states exists, that correspond to the ring of possible center positions
of the bump of activity (“Attractor manifold”, blue line). The remaining dimensions are stable,
and perturbations from the attractor manifold along these dimensions will decay (“Stable
dynamics”, black curves). Along the attractor manifold, no dynamics constrain the system, and
all states have the same energy (lower plot). Small displacements are introduced through the
fluctuations of neuronal firing rates (“spiking noise”) and lead to diffusion along the manifold
(lower left). Fixed deviations from perfect symmetry in the system (“frozen noise”) will perturb
the energy landscape (lower right, red curve) and lead to systematic drift along the attractor
(lower right, red arrows).

neurons. Thus, we assume that the input Ji (t ) to neuron i at time t is given by the sum

Ji (t ) =
N−1∑
j=0

wi j s j (t ), (4.2)

where wi j is the connection weight for the synaptic connection from neuron j to neuron i .

The variables s j (t ) are the synaptic activation of connections outgoing from the presynaptic

neuron j , which depend on the firing rates of the neurons j .

Without providing the details of the implementation (we give a concrete implementation in

the next section), we assume that this network of neurons implements a ring-attractor (for a

formal definition see Section 4.6.1.1), realized by some choice of neuronal model (Eq. (4.1)),

recurrent connectivity (Eq. (4.2)) and dynamics of the synaptic activation variables s j . A

common way of implementing a ring-attractor in networks of neurons is by

distance-dependent local excitation and global inhibition (Fig. 4.1A). A distance can be

defined by assigning to each neuron a position θi = 2π
N i −π ∈ [−π,π) (for 0 ≤ i < N ), where we

identify the edges of the interval to form a ring. The recurrent connectivity between neurons

is then chosen to be dependent only on the distance (along the ring of positions) between
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neurons Fig. 4.1, such that neurons excite their local “neighbors” and inhibit neurons that are

far away (Fig. 4.1A). The resulting connectivity will have an intrinsic symmetry that gives rise

to the desired dynamical properties of the system: when tuned appropriately, the network

dynamics lead to the formation of a localized and symmetric firing rate profile (“bump”)

φ0,i (ϕk ) (for 0 ≤ i ,k < N ), that can be centered at any given position ϕk along the ring without

changing its shape (Fig. 4.1B). The network activity converges to a 1-dimensional manifold of

possible center positions, which we term the “attractor manifold” (Fig. 4.1C, blue line

represents a local linearization of the manifold). Linearizing the dynamical system on any

point of the attractor manifold will yield N −1 dimensions that are constrained by the

network-internal dynamics (Fig. 4.1C, black curves). These are “stable” in the sense that any

deviation from the attractor manifold along these dimensions will decay (Fig. 4.1C, arrows).

The computational advantage of continuous attractors is that, along the attractor manifold,

all states are dynamically equal. For the purpose of illustration, let us assume that the network

dynamics are such that they minimize an energy-like function1. Then, the energy of all

possible states along the attractor is flat (Fig. 4.1C, bottom, blue line). This metastability

allows these networks to retain an approximated continuum (N different states, see

Section 4.6.1.1) of stable states, realized by positioning the center of the bump of activity at

any given neuron. Identifying the center with a continuous quantity (e.g. angular positions in

space) allows these systems to encode and retain the quantity in principle indefinitely.

However, the continuity of the stable states comes at a cost: since no dynamics constrain

movement along the attractor manifold, the state encoded in the continuous attractor is

vulnerable to displacement. In this work we will investigate two different types of

displacement. First, fast fluctuations in the firing of single neurons transiently break the

perfect symmetry of the system and introduce small random displacements along the

attractor manifold, which become apparent as diffusion of the center position (Fig. 4.1C,

lower left). Second, persistent deviations from perfect symmetry will lead to systematic drift

along the attractor manifold, appearing as new local maxima and minima in the formerly flat

energy landscape (Fig. 4.1C, lower right). As explained in the introduction, such drift can

result, for example, from random changes of the recurrent weights (Zhang, 1996; Itskov et al.,

2011b), sparse recurrent connectivity (Renart et al., 2003), or heterogeneity of the single

neuron properties across the population (Renart et al., 2003). Since these random deviations

are assumed to stay fixed (or change only very slowly) with respect to the time scale of

working memory we will refer to them as “frozen” noise.

4.4.2 Ring-attractor in spiking networks with short-term plasticity

As a concrete example, we implemented a continuous ring-attractor model in a network of

excitatory and inhibitory leaky integrate-and-fire models with conductance-based synaptic

transmission (Fig. 4.2A, see Section 4.6.3 for details). Excitatory neurons were connected to

1For linear synapses, e.g. with ṡ j =− s j
τs

+φ j , this Ljapunov function exists if the connectivity wi j is symmetric
and F is a monotonic increasing function (Hopfield, 1984).
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other excitatory neurons with connection strengths depending on the distance between

neurons (Fig. 4.2A, red lines). Global inhibition was implemented by inhibitory feedback from

a homogeneous population of inhibitory neurons, which connect from and to all excitatory

neurons uniformly (Fig. 4.2A, blue circles and lines). Additionally, all neurons receive external

excitatory input with Poisson statistics. For such networks of spiking neurons, assuming that

neurons fire with Poisson statistics and the network is in a stationary state, the input-output

relation F can be calculated (Brunel and Wang, 2001b) (see 4.6.4), which allows us to map the

network into the general framework of Eqs. (4.1)-(4.2).

In addition to the bump state, the spiking ring-attractor also displays a uniform state in which

all excitatory neurons fire asynchronously and irregularly at low firing rates (Fig. 4.2B, left of

dotted line). Activity on the attractor manifold can then be evoked by stimulating excitatory

neurons localized around a given position by additional external input (Fig. 4.2B, red dots).

After offset of this external cue, a self-sustained firing rate profile (“bump”) emerges (Fig. 4.2B,

right of dashed line, and inset) that persists until the network state is again changed by

external input. For example, a short and strong uniform excitatory input to all excitatory

neurons will cause a transient increase in inhibitory feedback that is strong enough to return

the network to the uniform state (Compte et al., 2000).

To investigate the effects of short-term plasticity (STP) (Zucker and Regehr, 2002) on

dynamics along the attractor manifold, recurrent excitatory-to-excitatory connections were

subject to short-term facilitation (STF) and depression (STD) implemented by a widely used

model (Tsodyks and Markram, 1997; Tsodyks et al., 1998; Mongillo et al., 2008) (see

Section 4.6.3.2). Short-term plasticity modulates the effect a single spike has in

excitatory-to-excitatory connections depending on the history of spikes: facilitating synapses

increase their strength transiently under continued stimulation, while depressing synapses

effectively weaken. Throughout this study, we varied all parameters of the short-term

plasticity model (see next section). For any setting of short-term facilitation and depression

parameters, networks were re-tuned (by adjusting recurrent conductance parameters and the

width of distance-dependent connections, see Section 4.6.6) to display nearly identical bump

shapes (similar to Fig. 4.2B, inset; see Fig. 4.4). It should be noted that synaptic depression

was always present in order to saturate synaptic conductances as firing rates increase. This

nonlinear behavior enables spiking networks to implement bistable attractor dynamics with

relatively low firing rates (Wang, 1999; Hansel and Mato, 2013) similar to the saturating NMDA

synapses used in the previous part (Section 3.6.2.2). See Section D.1 in the Appendix for a

comparison of both.

In repeated simulations with initial cues provided at 20 uniformly spaced locations

(Fig. 4.2C-D) we measured the trajectories of the spatial center of bump states estimated from

the momentary firing rates of the excitatory population (Fig. 4.2B, turquoise line; see

Section 4.6.7.1). In fully connected networks with synaptic depression and no facilitation

(Fig. 4.2C, left), we find noisy displacement of the bump centers. The variance of these

displacements increases linearly in time (inset in Fig. 4.2C), showing these dynamics to be
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Figure 4.2 – Drift and diffusion in a spiking ring-attractor model with short-term plasticity.
A: Excitatory (E) neurons (red circles) are distributed along positions on a ring with circular
boundaries. Excitatory-to-excitatory (E-E) connections (red lines) are distance dependent and
are subject to short-term plasticity (facilitation and depression, see Eq. (4.4)). Inhibitory (I)
neurons (blue circles) project to all E and I neurons (blue lines) and receive connection from
all E neurons (gray lines). Only outgoing connections from shaded circles are displayed. All
neurons receive excitatory input with spikes generated by homogeneous Poisson processes.
B: Example simulation: E neurons fire asynchronously and irregularly at low rates until a
subgroup of E neurons is stimulated (external cue), causing them to spike at elevated rates
(red dots, input was centered at 0, starting at t = 2s lasting 1s). During and after the stimulus
(dashed line) a bump state of elevated activity forms and sustains itself after offset of the
external cue. The spatial center of the population activity is estimated from the momentary
firing rate (turquoise line, plotted from t = 2.5s onwards). Inset: Averaged centered mean firing
rates in the bump state. C-D: Center positions of 20 repeated simulations for 10 different initial
cue positions each. Insets: Estimated variance of deviations of center positions from positions
at t = 0.5s (purple) as a function of time (〈[ϕ(t )−ϕ(0.5)

]2〉), together with linear fit (dashed
line). Note the changed scale of insets in C and D. C: A fully connected network with short-term
depression (U = 1,τx = 150ms) shows diffusive dynamics of centers (left). Sparsifying the
E-E connections (with connection probability p = 0.5) evokes directed drift in addition to
diffusion (right). D: Adding short-term facilitation (U = 0.2,τu = 650ms,τx = 150ms) reduces
the diffusion of center positions in the fully connected network (left), and slows drift and
diffusion in the sparsely connected network (right).
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diffusive (Compte et al., 2000; Wu et al., 2002; Burak and Fiete, 2012; Hansel and Mato, 2013).

Making excitatory-to-excitatory connections sparse (decreasing the probability of a given

recurrent excitatory connection to p = 0.5; see Section 4.6.5) leads to fixed asymmetries that

bias the center positions of bumps systematically (Fig. 4.2C, right): in addition to diffusive

displacement of center positions, we observe systematic drift towards a few specific stable

fixed points along the ring, designated by the realization of random connectivity. Increasing

the strength of facilitation (Fig. 4.2D) leads to reduction of the magnitude of diffusion of

bump centers (Fig. 4.2D, left and inset). As our theory developed in the next sections will

show, facilitation also slows the directed drift of bump centers (Fig. 4.2D, right).

In summary, we introduced an implementation of a ring-attractor model in a network of

leaky-integrate and fire neurons with short-term plasticity. We have seen that, in

agreement with an earlier study (Pereira and Wang, 2015), short-term facilitation can reduce

the diffusion along the attractor manifold. In the next section, we develop a theoretical

framework that is able to quantitatively predict the effects of short-term plasticity (both

depression and facilitation) on both drift and diffusion along the attractor manifold for any

neuronal network given by Eqs. (4.1)-(4.2). The spiking network introduced here will be used

for comparison of the theory to simulations.

4.4.3 Theoretical description of drift and diffusion in the presence of short-term
plasticity

In this section we present the central theoretical result of this chapter: a description of the

effects of short-term plasticity on drift and diffusion of the bump center on continuous

attractor manifolds. The theory yields the coefficients of a one-dimensional drift-diffusion

equation, that depend on short-term plasticity parameters, the shape of the metastable firing

rates, as well as the neuron model chosen to implement the attractor. In the final part of this

section we explain how we map the spiking network dynamics into this framework.

Under some assumptions (see below), we are able to reduce the microscopic dynamics of the

continuous attractor network to a one-dimensional Langevin equation, describing the drift

and diffusion dynamics of the center ϕ(t ) of the firing rate profile (see Section 4.6.1 and

Section 4.6.2 in Methods):

ϕ̇= A(ϕ)+



Bη(t ). (4.3)

Here, η(t ) is white Gaussian noise with zero mean and correlation function〈
η(t ),η(t ′)

〉= δ(t − t ′). For a given neuronal implementation of the continuous attractor, we

show in the Methods (Section 4.6.2) how both the drift field A(ϕ) and the diffusion strength

B can be explicitly calculated. Both of these depend mainly on the firing rates of the bump

state maintained in the ring-attractor, the recurrent inputs to neurons in this state, the

derivative of the input-output relation of neurons, and, importantly, the parameters of

synaptic short-term plasticity.
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Figure 4.3 – Calculation of diffusion and drift on the ring-attractor (illustration). Curves
are scaled and plotted together with firing rates of the bump for illustration. A Static quantities
used in calculations. Neurons in the bump fire at rates φ0,i (dashed black line) due to the
steady-state synaptic input J0,i (gray line). Movement of the bump center causes a change

of the synaptic input d J0,i

dϕ (orange line). B Short-term plasticity dependent factors Ci
S used in

calculations. Top: factors decrease with stronger facilitation, illustrated by decreasing U from
U = 1 (dark blue) to U = 0.1 (light blue) for fixed τx = 150ms. Curves are normalized to U = 1.
Bottom: factors increase with stronger depression, illustrated by increasing τx from τx =
120ms (light blue) to τx = 200ms (dark blue) at fixed U = 0.8. Curves are normalized to τx =
200ms. C The diffusion along the attractor manifold is calculated (see Eq. (4.5)) as a weighted
sum of the neuronal firing rates in the bump state (dashed black line). Spiking noise (red line)
is added as a random deviation from the mean rate (with standard deviation proportional

to



r ate) for illustration. The symmetric weighting factors (blue lines show
C 2

i

S2

(
d J0,i

dϕ

)2
for

varying U as in panel B, top) are non-zero at the flanks of the firing rate profile. Stronger
(weaker) short-term depression and weaker (stronger) facilitation increases (decreases) the
magnitude of weighting factors. D Deterministic drift is calculated as a weighted sum (see
Eq. (4.7)) over systematic deviations of the neuronal firing rates from the bump state, which
are introduced by frozen noise. Here, this is illustrated by a large positive firing rate deviation
in the left flank (red line), which could be achieved by making these few neurons highly

excitable. Since the weighting factors (blue lines show Ci
S

d J0,i

dϕ for varying U as in panel B,
top) are asymmetric, this deviation would cause the sum to be negative in total, resulting in
movement of the center position to the left (red arrow). The weighting factors depend on
short-term plasticity parameters similar to the case of diffusion (panel C).

98



4.4. Results

We briefly discuss the assumptions underlying this central result, before we discuss both the

drift and diffusion term in more detail below. To model synaptic transmission with short-term

plasticity, we assume that the dynamics of outgoing synaptic activations si of neuron i are

modeled by the following three dimensional system of ordinary differential equations:

ṡi = − si

τs
+ui xiφi ,

u̇i = −ui −U

τu
+U (1−ui )φi ,

ẋi = −xi −1

τx
−ui xiφi . (4.4)

Synaptic activations are given by a linear filter of the neuronal firing rates φi (t ) multiplied by

scaling factors ui (t )xi (t ). These factors modulate the synaptic transmission in an

activity-dependent manner according to a rate-based version (Barak and Tsodyks, 2007;

Mongillo et al., 2008; Itskov et al., 2011b) of the short-term plasticity model introduced in the

spiking network (Markram et al., 1998; Tsodyks et al., 1998; Mongillo et al., 2008). It is

composed of two processes. Facilitation represents the use-dependent increased utilization

(ui ) of synaptic resources. As neurons fire at higher rates, more synaptic resources are utilized

by the synapse which expressed as an increase of ui from its baseline U . Depression, on the

other hand, depletes the available synaptic resources (xi ), with decrease proportional to the

current utilization ui (t ). We further assume that the system of Eqs. (4.4) together with the

network Eqs. (4.1)-(4.2) has a 1-dimensional manifold of meta-stable states, i.e. the network is

a ring-attractor network. This is characterized by the existence of a symmetric self-sustained

bump of firing rates φ0,i = F
(

J0,i
)

with steady-state inputs J0,i (for 0 ≤ i < N ), that can be

freely centered at any arbitrary position ϕ ∈
{

j
N 2π−π

∣∣∣0 ≤ j < N
}

under the network

dynamics (see Section 4.4.1). This is illustrated in Fig. 4.3A for a bump centered at ϕ= 0. Our

final assumption is that neuronal firing is noisy, with spike counts distributed as Poisson

processes, and that we are able to replace the shot-noise of Poisson spiking by white Gaussian

noise with the same mean and autocorrelation (see Section 4.6.1, and Discussion).

4.4.3.1 Diffusion strength B

We turn first to the coefficient B of Eq. (4.3), which we call the diffusion strength2. It describes

the diffusive displacement of bump positions due to fluctuations in neuronal firing. In

absence of A(ϕ) this term causes diffusive displacement of the center ϕ from its initial

position: the mean (over realizations) squared displacement of positions increases linearly as〈[
ϕ(t )−ϕ(t0)

]2
〉
= B · (t − t0) (van Kampen, 1992; Gardiner, 2009; Burak and Fiete, 2009). Our

theory predicts that the coefficient B of diffusion can be calculated (see Section 4.6.2.1) as a

2We chose this nomenclature, since Brownian motion usually defines the diffusion constant to be D = B/2.
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weighted sum over the neuronal firing rates (Fig. 4.3B)

B = 1

S2

∑
i

C 2
i

(
d J0,i

dϕ

)2

φ0,i , (4.5)

where d J0,i

dϕ is the change of the input to neuron i under shifts of the center position (Fig. 4.3A,

orange line), and S is a normalizing factor that depends on short-term plasticity parameters

and additionally on the derivatives φ′
0,i = dF

d J

∣∣∣
J0,i

of the neuronal input-output relation at the

steady-state input J0,i of the bump state (cf. Eq. (4.50)). The factors Ci express the spatial

dependence of the diffusion coefficient on the short-term plasticity parameters through

Ci =
U

(
1+2τuφ0,i +Uτ2

uφ
2
0,i

)
(
1+Uφ0,i (τu +τx )+Uτuτxφ

2
0,i

)
2

. (4.6)

Equation (4.5) shows that B is a weighted sum of the firing rates φ0,i in the bump state, with

weighting factors
(

Ci/S
d J0,i

dϕ

)2
that depend on the parameters of the synaptic dynamics ( see

Fig. 4.3B for an illustration). We note that the normalization factor S scales linearly with U (cf.

Eq. (4.50)) and thus the linear dependences on U in Ci/S cancel. The remaining scaling is

visualized in Fig. 4.3C, where we see that a) due to the squared spatial derivative d J0,i

dϕ of the

bump shape and the squared factors Ci/S, the nonzero contributions of the sum arise

primarily from the flanks of the bump; b) the weighing factors increase with stronger

short-term depression (larger τx ) and decrease with stronger short-term facilitation (smaller

U , larger τu); cf. Fig. 4.3B. In the next sections, we analyze and compare these predictions to

simulations.

Therefore, we have found an analytical expression relating the microscopic configuration

of the continuous attractor network to the emerging diffusion of memory states. Our

theory is based on an approach similar to Burak and Fiete (2012), where the diffusion strength

B was predicted for simple synaptic dynamics in the absence of short-term plasticity. We

recover the result stated there (Burak and Fiete, 2012, Eq. S18) by taking the limiting case of no

facilitation (setting U = 1) and infinitely fast recovery from depression (setting τx = 0ms). This

simplifies the normalization factor S considerably, leaves Ci = 1, and yields the following

simple expression for the diffusion magnitude: B =
(∑

i
d J0,i

dϕ

2
φ0,i

)
/
(
τs

∑
i

d J0,i

dϕ

2
φ′

0,i

)2
.

4.4.3.2 Drift field A(ϕ)

The other term in Eq. (4.3) is the field A(ϕ), which describes a deterministic drift depending

on the current position. As discussed in the last section, these drifts appear in ring-attractor

networks under the presence of systematic asymmetries (frozen noise). We derive this
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function to be (see Section 4.6.2.2)

A(ϕ) = 1

S

∑
i

Ci
d J0,i

dϕ
Δφi (ϕ), (4.7)

where the terms Δφi (ϕ) are systematic firing rate deviations from the steady-state bump

shape that can be calculated for a given source of frozen variability, and depend on the

current position ϕ of the bump center. The drift field A(ϕ) is calculated by equation Eq. (4.7)

as a weighted sum over the firing rate deviations, with weighing factors depending on the

spatial derivative of the bump shape d J0,i

dϕ and the parameters of the synaptic dynamics

through the same factors Ci/S as for the case of diffusion. This is illustrated in Fig. 4.3D, where

we see that the summands are now asymmetric with respect to the bump center, since the

spatial derivative is not squared, in contrast to Eq. (4.5). The resulting field A(ϕ) predicts the

directed drift of the macroscopic bump state as a function of the microscopic firing-rate

perturbations introduced by frozen variability. We find that: a) the weighting factors are

again constrained to the flanks of the bump; b) the factors are scaled up and down by

short-term facilitation and depression, respectively, similarly to the case of diffusion. This

dependence will be analyzed and compared to simulations in Section 4.4.5.

4.4.3.3 Comparison to spiking simulations

In the previous section we introduced a spiking network implementation of a ring-attractor

model, against which we will validate the theoretical predictions. This requires computing the

quantities necessary to evaluate the above Eqs. (4.5) and (4.7). For the spiking network we

only consider excitatory neurons that maintain the bump state in their spatial distribution of

firing rates. The inhibitory population is uniformly firing and is crucial to maintain the bump

state by inhibitory feedback. However, the steady-state inhibitory input to excitatory cells

remains constant under shifts of the center position (since excitatory neurons are uniformly

connected to all inhibitory neurons) and inhibition can thus be seen as a constant parameter.

Since the resulting shape of the bump state enters our theory through the steady-state rates

φi ,0, the inhibitory firing rate is only needed to calculate the operating point of the

input-output relation F of excitatory neurons (see below).

The steady-state excitatory firing rates φ0,i can be estimated in two ways. First, for a given

bump-attractor network they can be measured from the spiking activity (see Section 4.6.7.1).

The results presented in the next sections rely on this numerical estimation of mean firing

rates, unless mentioned otherwise. On the other hand, we have presented a method for the

prediction of steady-state firing rate distributions for bump-attractor networks with

non-linear synaptic transmission in the previous chapter (see Section 3.4.1). The same

method can be applied to networks with short-term plasticity to predict the firing rates φ0,i

entirely from the microscopic configuration (see Section 4.6.6). This method also yields

predictions for the firing rates of inhibitory neurons. Since the theoretical predictions are very

close to the numerically estimated mean-firing rates, this changes the following results only
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Figure 4.4 – Stability of stable firing rate profiles across parameters. A Averaged mean firing
rates in bump state, measured from ∼ 1000 simulations of networks tuned to display closely
resembling firing rates across different values of the facilitation parameter U and the facil-
itation time-scale τu . Parameters in panels A2-A4 are estimated by fitting the generalized

Gaussian ν (θ) = g0 + g1 exp
(
−
[ |θ|

gσ

]gr
)

to the measured firing rate profiles. A1 Top firing rate

g1. A2 Half-width parameter gσ. A3 Sharpness parameter gr . B Same as in A for firing rates
across different values of the depression time-scale τx and the facilitation time-scale τu .
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minimally. For some figures in the following sections we will nevertheless point to

Supplementary Figures that use the theoretical method of rate prediction instead of the

numerical variant.

For the steady-state input J0,i we only consider the excitatory-to-excitatory input, which

dictates the shape of the bump and changes as the center of the bump moves. The input J0,i is

calculated by Eq. (4.2) from the recurrent connectivity wi j , the steady-state firing rates φ0,i ,

and the steady state of the synaptic dynamical variables in Eq. (4.4) (see Section 4.6.4 for

details). It should be noted, that J0,i can also be estimated from the steady-state firing rates

φ0,i , if the input-output relation F is invertible, such that it allows an inversion of its mapping

from inputs to firing rates. Thus, knowing the detailed connectivity for a neuronal network is

not generally necessary to evaluate quantities predicting the amount of drift and diffusion,

which could be useful for experimental applications of the theory.

The derivatives φ′
0,i = dF

d J

∣∣∣
J0,i

of the input-output relation at steady-state input appear in the

normalization factor S in Eqs. (4.5) and (4.7). Given a steady-state recurrent excitatory input

J0,i for each unit, as well as the firing rate of the inhibitory population, the theory of (Brunel

and Wang, 2001b) can be used to derive an input-output relation F and the associated

derivative – again, the details are provided in Section 4.6.4. The firing rate perturbations Δφ0,i

can be calculated for a given instantiation of frozen noise, and will be used here as a input

perturbation to the input-output relation F . This is described in more detail in Section 4.4.5,

as well as Section 4.6.5 in the Methods.

In summary, all quantities needed to evaluate the theoretical predictions of Eqs. (4.5) and

(4.7) can be calculated, and allow us to predict the dynamics of drift and diffusion for the

spiking network model. To investigate the effects of short-term plasticity on drift and

diffusion on the attractor manifold, while excluding effects introduced by changing the bump

shape, we tuned networks to display comparable firing rates for varying STP parameters. This

was performed by an optimization procedure (see Section 4.6.6). All networks we investigated

are tuned to display firing rates close to a generalized Gaussian of the shape

ν (θ) = g0 + g1 exp
(
−
[ |θ|

gσ

]gr
)

with g0 = 0, g1 ≈ 40H z, gσ ≈ 0.5, gr ≈ 2.5. The stability of firing

rates across STP parameters was confirmed by comparing mean firing rates for all networks

(Fig. 4.4). Throughout the next sections, we additionally validate this tuning by extrapolating

the theory: using coefficients in our theory that are extracted from a “control network”

without facilitation (U = 1,τx = 150ms) and changing only the short-term plasticity

parameters yields consistent predictions of drift and diffusion across all other networks.

4.4.4 Effects of short-term plasticity on diffusion

To investigate the effects that short-term plasticity (STP) has on diffusion, we simulated a

ring-attractor implemented in a spiking network (see Section 4.4.2) with varying STP

parameters. For each combination of parameters, we simulated 1000 repetitions of 13.5s

delay activity (after cue offset) distributed across 20 uniformly spaced initial cue positions.
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Figure 4.5 – Effects of short-term plasticity on diffusion. Diffusion strengths estimated from
simulations (dots, error bars show 95% confidence interval, estimated by bootstrapping)
compared to those predicted by theory with firing rates measured from simulations (crosses).
Dashed lines show theoretical prediction using only firing rates measured from the baseline
network (U = 1,τx = 150ms). Results for two different facilitation time constants τu = 650ms
(blue) and τu = 1s (orange) are displayed. A: Diffusion strength as a function of facilitation
parameter U . Inset shows zoom of region indicated in the dashed area in the lower left.
Depression time constant is τx = 150ms. B: Diffusion strength as a function of depression
time constant τx . Results for three different values of U are shown, note the change in scale.

From these simulations, the magnitude of diffusion was estimated by measuring the growth of

variance (over repetitions) of the distance of the center position from its initial position as a

function of time (see Section 4.6.7.1). For all parameters considered, this growth was well fit

by a linear function (e.g. Fig. 4.2C,D, insets), the slope of which we compare to the theoretical

prediction obtained from the diffusion strength B (Eq. (4.5)).

We find that both facilitation and depression can significantly influence the amount of

diffusion along the attractor manifold (see Fig. 4.5), in an antagonistic fashion. First,

decreasing the facilitation parameter U from its baseline U = 1 (no facilitation) towards the

minimal value U = 0 , while keeping the depression time constant τx = 150ms fixed, the

measured diffusion strength decreases over an order of magnitude (Fig. 4.5A, dots). On the

other hand, increasing the facilitation time constant τu from τu = 650ms to τu = 1000ms

(Fig. 4.5A, orange and blue dots, respectively) only slightly reduces diffusion. Second, we find

that increasing the depression time constant τx for fixed U , which increases the amount of

depression, leads to an increase of the measured diffusion (Fig. 4.5B). Depending on the level

of facilitation, increasing the depression time constant from τx = 120ms to τx = 200ms leads

only to slight increases in diffusion for strong facilitation (U = 0.1), and up to an increase of

factor 10 for weak facilitation (U = 0.8).

Our theory is able to closely predict this result, which we confirm in a twofold way. First, we

estimate the diffusion strength by using the shape of the stable firing rate profile extracted

separately for each network with different sets of parameters (Fig. 4.5, crosses). This confirms

that the theory closely describes the dependence of diffusion on short-term plasticity for each
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Figure 4.6 – Diffusion magnitude as function of facilitation and depression parameters.
All color values display diffusion magnitude estimated from B in Eq. (4.3) with bump shape

estimated from simulations. Units of color values are idx2

s . A Diffusion as function of facilitation
U and depression time constant τx . Facilitation time constant was τu = 650ms. B Diffusion
as function of facilitation U and facilitation time constant τu . Depression time constant was
τx = 150ms. C Diffusion as function of depression time constant τx and facilitation time
constant τu . Facilitation U was U = 0.5.

parameter set, while effects of possibly changed steady-state firing rates (albeit small) can not

be excluded. To control for this, we confirmed this result by using the measured bump shape

of the “control network” (U = 1, τx = 150ms) in Eq. (4.5), then extrapolating by changing the

parameters of short-term plasticity. This leads to very similar predictions (Fig. 4.5, dashed

lines), and validates our results: a) the diffusion to be expected in attractor networks with

similar observable quantities (mainly, the bump shape) depends only on the short-term

plasticity parameters; b) the family of networks we have investigated are sufficiently similar in

these quantities to be accurately predicted by the control network only.

In summary, the strength of diffusion that a ring-attractor model experiences can be

controlled by facilitation and depression in an antagonistic fashion, where increased

synaptic facilitation parameters U decrease the diffusion strength, and increased

synaptic depression time constants τx increase the diffusion strength. In the region of

parameters that we compared to simulation results, the facilitation time constant τu had only

a minimal effect on the amount of diffusion expected in the system. In Fig. 4.6 we show plots

exploring theoretical predictions for a larger range of parameters for τu – the analysis there

predicts that increasing the facilitation time constants above τu = 1s will not lead to large

reductions in the magnitude of diffusion. It should be noted that the theory tends to slightly

over-estimate the diffusion (see Discussion). However, given the simplifying assumptions

needed to derive the theory, the quantitative match to the spiking network is surprisingly

accurate.
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4.4.5 Effects of short-term plasticity on drift

Next to random diffusion of bump centers due to the variability of neuronal spiking,

systematic drifts will appear in continuous attractor networks due to frozen variability. As we

have argued (Section 4.4.1) and demonstrated (Section 4.4.2), frozen variability will cause

fixed deviations from the perfect symmetry required to keep a manifold of possible bump

center positions meta-stable. In this section, we will introduce frozen noise of varying

magnitude from two different sources of variability into spiking networks, while varying

short-term plasticity parameters. As in the previous sections, we will compare these to

theoretical predictions obtained from Eq. (4.7) in Section 4.4.3.

In cortical networks, neurons are rarely connected to all other neurons (Braitenberg and

Schütz, 1991; Wang et al., 2006). As a first source of variability we thus consider random and

sparse connectivity. We realize this by randomly removing a certain percentage of

excitatory-to-excitatory (EE) connections, while rescaling recurrent conductances to keep the

same mean input (see Section 4.6.5). In the resulting networks, excitatory neurons are

connected on average to a fraction p of all other neurons in the excitatory population, where

0 < p ≤ 1 is the connection probability. The remaining uniform connections (involving

inhibitory neurons) are left unmodified, since the effects of making these sparse would have

no immediate effect on the dynamics of the bump center positions.

A second source of frozen variability we consider is heterogeneity of the neuronal parameters

in the excitatory population. Electrophysiological assays of principal cells in prefrontal cortex

show considerable variability of the leak reversal potential VL (Renart et al., 2003): standard

deviations for regular spiking cells have been reported to 1.7mV in-vitro (Yang et al., 1996),

and between 2.4mV and 5.3mV, depending on cell type, in a more recent in-vivo study

(Dégenètais et al., 2002). We realize this biological variability in our model by making the

leak-reversal potentials of the excitatory population randomly distributed: leak reversal

potentials of excitatory neurons are given by VL +ΔL , where ΔL is normally distributed with

zero mean and standard deviation σL .

The theory we have derived in Section 4.4.3 allows predicting the drift-fields A(ϕ), given

perturbations to firing rates Δφi (ϕ) induced by frozen noise. Briefly, we treat each realization

of an arbitrary heterogeneity as small perturbations Δi around the perfectly symmetric

system, and use an expansion to first order of the input-output relation F to calculate the

resulting changes in firing rates (see Section 4.6.5 for details):

Δφi (ϕ) = dF

dΔi
Δi .

The resulting terms are used in Eq. (4.7) to predict the magnitude of the drift field A(ϕ) for any

center position ϕ.

In the following we focus on the short-term plasticity parameters U and τx when comparing

our theoretical results to simulations. However, the facilitation time scale τu also affects the
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Figure 4.7 – Prediction of drift-field in spiking network without facilitation. The network
considered has sparse connections with p = 0.5. A Centers of excitatory population activity for
50 repetitions of 13.5s delay activity, over 20 different positions of initial cues (cue offset is at
time t = 0) colored by position of the cues. B Drift field as a function of the bump position.
The theoretical prediction (blue line, see Eq. (4.7)) of the drift field is compared to velocity
estimations along the trajectories shown in A, colored by the line they were estimated from.
The thick black line shows the binned mean of data points in 60 bins. For comparison, the
predicted drift field for U = 0.1 is plotted (thin dashed line). C The same trajectories, obtained
by forward-integrating the one-dimensional Langevin equation Eq. (4.3). D Histograms of
final positions at time t = 13.5 for data from spiking simulations (gray areas, data from A) and
forward solutions of the Langevin equations (blue areas, data from B). Histograms (200 bins)
are normalized to probability distributions over [−π,π). STP parameters were U = 1,τu =
650ms,τx = 150ms.
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Figure 4.8 – Prediction of drift-field in spiking network with facilitation. Same realization
of the sparse network (p = 0.5) as in Fig. 4.7 with strong facilitation (U = 0.1). Other STP
parameters were τu = 650ms,τx = 150ms. See Fig. 4.7 for legend.

drift-fields. While we did not perform extensive comparisons of the effects of τu to

simulations, we give examples and discuss these briefly at the end of the next section.

Furthermore, in Section 4.4.6, we analyze theoretically the effects of all short-term plasticity

parameters on the combined effects of drift and diffusion.

In the following sections, we will compare simulations of the spiking network with these two

types of heterogeneities to theoretical predictions. First, we will provide an illustrative

example of this comparison for a single realization of sparse connectivity (Section 4.4.5.1). We

then develop the theory further, allowing us to predict the expected magnitude of the

resulting drift fields directly from the noise parameters, and compare this result to simulations

(Section 4.4.5.2). Finally, we evaluate the accuracy of theoretical predictions of single drift

fields, under varying facilitation parameters and parameters of frozen noise (Section 4.4.5.1).

4.4.5.1 Example: Prediction of drift by theory

To illustrate the approach, we simulated spiking networks with one fixed instantiation of

sparse connectivity (p = 0.5), while varying the facilitation parameter U . In a network without

short-term facilitation (Fig. 4.7A) the missing connections introduce non-negligible

systematic displacements of the center positions. Numerically extracting the magnitude of
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Figure 4.9 – Prediction of drift in spiking network with varying STP parameters. Sparse
network (p = 0.5) with noise as in Fig. 4.7 (see panels B,D there for legends). A Drift field
(top) and distribution of final positions (bottom) for network with increased depression
time constant (U = 0.8,τx = 200ms,τu = 650ms). Dashed line (top plot) indicates drift-field
prediction for τx = 150ms. B Same as in panel A, for network with increased facilitation time
constant (U = 0.1,τx = 150ms,τu = 1s). Dashed line (top plot) indicates drift-field prediction
for τu = 650ms.

displacements (see Section 4.6.7.1 for details) yields a drift-field in good agreement with the

theoretical prediction (Fig. 4.7B). At points where the drift field prediction crosses from

positive to negative values we expect stable fixed points of the center position dynamics –

these are always in close match with simulation results, where we see trajectories converging

to these points. Similarly, unstable fixed points (negative-to-positive crossings) can be seen to

lead to a diffusive separation of trajectories converging to either side (e.g. Fig. 4.7A, around

ϕ=−π
2 ). In regions where the positional drifts are predicted to lie close to zero (e.g. Fig. 4.7A,

around ϕ= 0) the effects of diffusive dynamics are more pronounced. Since both drift and

diffusion in this system are closely predicted by our theory, we proceed by simplifying the full

network dynamics to only the 1-dimensional Langevin equation Eq. (4.3) with coefficients

predicted by theory, and sampled trajectories by forward integration (see Section 4.6.7.3 for

details). As expected, this yields quite very comparable dynamics (Fig. 4.7C). Finally, when

comparing the center positions after 13.5s of delay activity between the full spiking simulation

and the simple 1-dimensional Langevin system, we find similar distributions (Fig. 4.7D).

Including strong short-term facilitation (U = 0.1) reduces the measured as well as the

predicted drift fields by nearly an order of magnitude (Fig. 4.8A,B). The resulting drift-field

resembles a scaled-down version of the drift-field for the unfacilitated case (Fig. 4.8B, dashed

line). As before, forward integrating the associated Langevin-dynamics yields trajectories

similar to those of the full spiking network (Fig. 4.8C). Analogously, distributions of final

positions are in close match (Fig. 4.8D).
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In summary, for a single network with sparse connectivity (p = 0.5) we found our

theoretical predictions to be in close agreement with simulation results obtained from a

spiking network of neurons. Trajectories obtained from the Langevin-equations resemble

closely those of the spiking network. Thus, reducing the full system to a position-dependent

drift and a general diffusion coefficient seems to capture the most prominent system

dynamics. Both theory and simulation show that introducing facilitation reduces the

magnitude of the drift-field significantly (in agreement with Itskov et al. (2011b)).

As noted above, the other short-term plasticity parameters also have effects on the drift-field.

We simulated the same network for varying time constants of short-term depression τx and

facilitation τu . As was the case for diffusion, increasing (decreasing) τx yielded increased

(decreased) drift fields, which also matched well with simulation results (see Fig. 4.9A, for

U = 0.8). Similar to the diffusion case, this effect vanished as U was decreased. Increasing the

facilitation time constant τu from 650ms to 1s did yield a very small decrease in predicted and

measured drift field magnitude (see Fig. 4.9B, for U = 0.1). In the next section we investigate

the effect of the time scale τx on drift fields more closely. For further results see Section 4.4.6,

where we report the effects of all short-term plasticity parameters on drift and diffusion.

4.4.5.2 Drift as a function of noise parameters

The theory developed so far allows us to predict drift-fields from given realizations of frozen

noise, which are controlled by parameters p (for sparse connectivity) and σL (for

heterogeneous leak reversal-potentials). Here, we generalize this approach by calculating the

expected magnitude of drift fields under the distributions of these parameters and compare

the resulting theory to simulations.

When averaged over the distributions that govern the random variables of both frozen noise

sources (connections and reversal potential), the mean drift fields for any given center

position vanish (see Section 4.6.5). However, the squared drift field magnitude does not

vanish when averaged over the distributions of the frozen noises, and evaluates to (see

Section 4.6.5.3 for the derivation):

〈
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⎞
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where s0, j is the steady-state synaptic activation. Additionally, we have introduced the

derivatives of the input-output relation with respect to the noise sources: φ′
0,i = dF

d J (J0,i (ϕ)) is

the derivative with respect to the steady state synaptic input, and dφ0,i

dΔL
i

is the derivative with

respect to the perturbation in the leak potential. In Section 4.6.5.3 we additionally show that

Eq. (4.8) is independent of the center position ϕ, and thus equally describes the expected

squared drift field for all center positions. Using this, we estimate this quantity from

simulations as the variance of the drift field across positions, which then averaged over the
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Figure 4.10 – Prediction of expected magnitude of drift fields from noise parameters. A
Expected magnitude of drift fields as a function of the sparsity parameter p of recurrent
excitatory-to-excitatory connections. Dots are the standard deviation of fields estimated
from 400 trajectories (see main text) of each network, averaged over 18−20 realizations for
each noise parameter and facilitation setting (error bars show 95% confidence of the mean).
Theoretical predictions (dashed lines) are given by Eq. (4.9) extrapolated from the unfacilitated
network ( U = 1,τu = 650,τx = 150). For validation, we also estimated Eq. (4.9) with coefficients
measured from each simulated network separately (plus signs). B Same as in panel A, with
heterogeneous leak-reversal potentials as the source of frozen noise. Validation predictions
are plotted as crosses. C Same as in panels A,B but varying the depression time constant τx for
a fixed level of frozen noise (sparse connectivity, p = 0.6).

ensemble of instantiations (see Section 4.6.5.3).

In the following we will often use the root of the expected squared magnitude of Eq. (4.8):

√
〈A2〉frozen, (4.9)

which we term the expected field magnitude. This theoretical quantity predicts the magnitude

of the deviations of drift-fields from zero that are expected from the parameters that control

the frozen noise – in analogy to the standard deviation for random variables, this quantity

predicts the standard deviation of the fields.

We proceeded to check the theoretical result, Eq. (4.9), against simulations. For sparse

connectivity we varied the sparseness parameter p between 0.25 and 1. For heterogeneities in

the leak reversal-potentials, we chose values for the standard deviation σL of leak-reversal

potentials between 0mV and 1.5mV , which lead to a similar range of drift magnitudes as the

sparse networks. For simulations varying the facilitation parameter U only, we chose 3

networks with different levels of facilitation: an unfacilitated network (U = 1), a network with

intermediate levels of facilitation (U = 0.4) and a strongly facilitating network (U = 0.1). For

each combination of noise and network parameters (networks had either sparse connections

or heterogeneous leaks) we realized 18−20 networks, and simulated for each of these 400

repetitions of 6.5s of delay activity, which were split across 20 uniformly spaced positions of

the initial cue. We additionally investigated the effect of the depression time constant τx for
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Figure 4.11 – Self-consistency of squared magnitude predictions. Expected magnitude of
drift fields (Eq. (4.9), coefficients estimated for each simulated network separately, x-axis)
plotted against averaged (18-20 repetitions, error bars are omitted to reduce visual clutter)
standard deviation of fields, calculated from either: a) fields predicted by Eq. (4.7) (plus signs
for sparse connectivity, crosses for variable leak-reversal potentials); b) fields estimated from
simulations (dots). A Same data as in Fig. 4.10A and B. B Same data as in Fig. 4.10C.

sparse networks with p = 0.6, by simulating networks with combinations of short-term

plasticity parameters from U ∈ {0.1,0.4,0.8} and τx ∈ {120ms,160ms,200ms}. This large set of

simulated data is analyzed in the following.

For each set of repetitions, we estimated the drift-field numerically by recording

displacements of bump centers along their trajectories (as in Fig. 4.7B and Fig. 4.8B, see

Section 4.6.7.1 for details) and measuring the standard deviation of the resulting fields across

all positions. These data are plotted as circles in Fig. 4.10A for sparse connectivity, and

Fig. 4.10B for heterogeneous leak potentials. We then used Eq. (4.9) to predict the same

quantity by theory. First, we used Eq. (4.9) with all parameters and coefficients estimated from

each spiking simulation separately (Fig. 4.10A,B, crosses and plus signs). For validation, we

then extrapolated the theoretical prediction by using coefficients in Eq. (4.8) measured from

the unfacilitated network only (U = 1,τu = 650ms,τx = 150ms), then changing the facilitation

and noise parameters (Fig. 4.10A,B, dashed lines).

We observe that the two theoretical predictions (crosses and plus signs, dashed lines) coincide

well across all levels of frozen noise and networks. Similar to the comparison in Section 4.4.4,

this shows that our network tuning across facilitation parameters is consistent. Only for U < 1

and sparse networks are theoretical predictions obtained from single networks slightly below

the extrapolated theory, which we found resulted from the fact that bump shapes for these

networks tended to be slightly reduced under sparse connectivity (e.g. the top firing rate is

reduced to ∼ 35H z for U = 0.1, p = 0.25). When compared to the simulation results

(Fig. 4.10A,B, circles), the predictions are generally in good agreement. For both sources of

frozen noise, increasing the strength of short-term facilitation (by decreasing U ) has the effect

of scaling down the magnitude of drift fields. As noise levels increase, the theory tends to

over-estimate the squared magnitude of fields. Our theory relies on a linear expansion of

perturbations to the firing rates (see Section 4.6.5) resulting from frozen noise, which are then
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scaled by the effects of short-term plasticity. Thus, we expect these over-estimations to

become apparent across facilitation parameters, which is in agreement with the deviations

observed here. Comparing the same data for a fixed noise level (p = 0.6) while varying the

depression time constant τx (Fig. 4.10C), we observe that increasing (decreasing) the

depression time constant also leads to an increase (decrease) in drift magnitude, especially for

values of U � 0.

As a final self-consistency check (Fig. 4.11), we calculated the standard deviation of fields

estimated by Eq. (4.7), where coefficients were obtained for each simulation separately. In

Fig. 4.11 we compare these data (crosses and plus signs) to the expected field magnitude

obtained from Eq. (4.9) with the same coefficients (x-axis). In addition, we plot the standard

deviation of fields estimated from simulations against the same x-axis (dots). This analysis

shows that for small noise parameters (point to the left in each color), the cases where the

simulations deviate from the theoretical predictions of Eq. (4.9) (off-diagonal dots) are still

well predicted by the theory of Eq. (4.7) (since crosses and dots coincide). Thus, deviations

could stem from the small sample size (n = 18−20). On the other hand, for larger noise

amplitudes (points to the right for each color) theoretical predictions again lie systematically

above the simulation results.

In summary, we have derived theoretical predictions for the expected magnitude of drift

fields depending only on the parameters of the underlying distributions of frozen noise

Eq. (4.9). We have compared these predictions against simulation results and found them

to be in good agreement. Across both sources of frozen noise and the short-term depression

parameters investigated here, we have seen that short-term facilitation can significantly

reduce the magnitude of drift fields, leading to slower drift dynamics. Increased depression,

on the other hand, leads to an increase in the magnitude of drift fields. The theoretical

prediction Eq. (4.9) can, in principle, also be used to describe the effects of the remaining

parameter of short-term facilitation: the facilitation time constant τu . While we have not

extensively validated the results against simulations, an example for the small effect of τu was

given above, in Fig. 4.9. In Section 4.4.6 we additionally report the effects of all short-term

plasticity parameters on drift and diffusion.

4.4.5.3 Evaluation of single predictions

In the last section, we confirmed that the generalized approach of Eq. (4.9) can successfully

predict the expected magnitude of fields as a function of parameters of the frozen noise

distributions. Here, stepping down one level of detail, we compared how well single drift fields

were predicted by the theory of Eq. (4.7). The results shown here are based on the simulated

data set of the previous section for varying facilitation (Fig. 4.10A, B).

First, we compared each drift field extracted from simulations (see Section 4.6.7.1 for details)

to the corresponding field predicted by Eq. (4.7), by measuring the root mean square error

(RMSE) of the prediction to the 100 bins estimated from simulations (Fig. 4.12A). This shows
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Figure 4.12 – Comparison of theoretically predicted fields to simulations. A Averaged root
mean square error (RMSE) between predicted fields (Eq. (4.7)) and fields extracted from
simulations (mean over 18-20 networks, error bars show 95% confidence of the mean). Both
frozen noise parameters (σL and 1−p) are plotted on the same x-axis. B Normalized RMSE:
each RMSE is normalized by the range (max−min) of the joint data of simulated and predicted
fields it is calculated on. Colors as in A. C Average RMSE (same data as in A) plotted as a
function of the mean expected field magnitude (estimated separately for each network, then
averaged). Colors as in A. D Worst (top) and best (bottom) match between predicted field
(blue line) and field extracted from simulations (black line) of the group with the largest mean
RMSE in panels A, C (U = 1,1−p = 0.75). Shaded areas show 1 standard deviation of points
included in the binned mean estimate (100 bins) of the extracted field.
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Figure 4.13 – Comparison of theoretical predictions and simulations for distributions of
final positions. A Averaged root mean square error (RMSE) between histograms of final
positions (100 bins) estimated from simulations (20 repetitions for 20 initial cue positions
each) and those predicted from theory (200 repetitions for 20 initial cue positions each). Dots
show mean over 20 networks, error bars show 95% confidence of the mean. Both frozen noise
parameters (σL and 1−p) are plotted on the same x-axis. B Average RMSE (same data as in
A) plotted as a function of the mean expected field magnitude (estimated separately for each
network, then averaged). Colors as in A. C Worst matches (largest RMSE) between predicted
distribution of final positions (blue) and simulated distribution of final positions (black) in
the two groups with the largest mean RMSE: top shows U = 0.1,1−p = 0.75; bottom shows
U = 1,1−p = 0.75.

that, as heterogeneity parameters increase, predicted drift fields tend to deviate from those

estimated from simulations. This is in agreement with the more general analysis of Fig. 4.10,

where we showed that fields tend to be over-predicted as the expected magnitude increases.

Here, we find that this error is proportional to the magnitude of drift fields: the normalized

RMSE (each RMSE is normalized by the range (max−min) of the data it is calculated on) stays

fairly constant across networks (Fig. 4.12B). This also becomes obvious when plotting the

RMSE against the theoretically predicted expected field magnitude (Eq. (4.9)), which collapses

all data onto a single, nearly linear relation (Fig. 4.12C). We stress that, even if the fields tend

to be less well estimated as their magnitude increases, the theory still manages to predict

fields well. Examples are given in Fig. 4.12D, where we plot the worst (top) and best (bottom)

matches (as measured by the RMSE) between predictions and simulations in the group with

the highest average RMSE (U = 1,1−p = 0.75). In both cases, stable fixed points are well

captured, although the worst match produces more zero crossings than simulated data. Again,

since our theory is linear in the perturbations caused by frozen noise, we do expect such

deviations to appear as the magnitude of perturbations increases. Finally, we note that these

results are stable under changes of bin numbers used to estimate and compare the drift fields

(data not shown).

As a second check, we investigated how well the combined prediction of drift fields and

diffusion strengths was able to describe the evolution of trajectories in the spiking network.

For this, we compared the distributions of final positions after 6.5s of delay period between
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theory and simulations. For each network considered, we recorded the final positions from

simulations, calculated the coefficients of the Langevin equation Eq. (4.3), and used these to

generate 10 trajectories for each simulated one, over the same delay time. We then calculated

the RMSE between normalized histograms of both sets of final positions (100 bins,

normalized to probability distributions on [−π,π)) (as in Fig. 4.7D). As both heterogeneity

parameters increase, the distance between both distributions increases (Fig. 4.13A) quite

similarly for all 3 networks, regardless of the values of short-term facilitation. For

completeness, we also plotted the dependence of the RMSE on the expected magnitude of the

drift-fields (Fig. 4.13B), which collapses both sources of heterogeneity onto single curves for

each facilitation parameter U . Again, we note that even for the larger RMSE values, the

predicted distributions of positions match quite well. Examples are given in Fig. 4.13C for the

worst matches (as measured by the RMSE) in the two groups with the highest average RMSE

(U = 0.1,1−p = 0.75 and U = 1,1−p = 0.75). Again, the choice of bin numbers did not

influence this result. The number of trajectories generated from the Langevin equations for

comparison does influence the absolute values of the RMSE, however, the general properties

described here are robust. Finally, we would like to note estimating the distance between the

two distributions by a second measure commonly used for distances between distributions

(Bhattacharyya coefficient, Bhattacharyya (1943)) yielded different absolute values, but

similar dependencies on facilitation and noise parameters.
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4.4.6 Application: Effects of short-term plasticity on working memory function

Continuous attractor models have been proposed as models for visuospatial short-term

memory in pre-frontal cortex (Compte et al., 2000; Constantinidis and Wang, 2004; Compte,

2006; Wimmer et al., 2014). In this context, the continuous attractor network is interpreted as

a (noisy) cortical “storage device”: a visual cue located at some angle in the visual field evokes

a properly located input in pre-frontal cortex, that encodes the position which is maintained

by the network during the delay period. After the delay, a go signal is given, upon which the

position is read out from the storage device and propagated to motor areas that effectuate a

saccade of the eye to this position. In the previous sections, we have developed theory that

allows the prediction of diffusion (Section 4.4.4) and directed drift (Section 4.4.5) of

continuous attractor networks in dependence of short-term plasticity parameters and

parameters of the frozen noise. So far we have mostly considered both of these separately. The

ability of continuous attractor networks to reliably store continuous quantities over delay

periods will, however, be influenced by both random diffusion and directed drift of center

positions. Diffusion degrades the memories over time, in that center positions deviate from

their initially cued positions with variance of deviations growing linear in time. Directed drift,

on the other hand, leads to collapse of the continuum of fixed points to a few stable fixed

points.

In this section, we will present approaches to measuring the combined effects of drift,

diffusion and short-term plasticity on the working memory function of continuous attractor

networks. First, we introduce mutual information as an abstract measure for the ability of

such networks to store information about initial positions over time, and the effect of different

sources of frozen variability and facilitation parameters. We show that mutual information

can be increased and maintained by facilitation, and we demonstrate that this strongly

depends on the combined effects of diffusion and drift. In the second part, we introduce

system size scaling into our theory. This yields theoretical predictions on classes of working

memory systems that are expected to be subjected to the same magnitude of displacements

through both drift and diffusion. Thereby, we derive bounds on network sizes and facilitation

parameters that will allow continuous attractors to perform accurate working memory

function in the presence of frozen noise and spiking variability.

4.4.6.1 Effects of short-term facilitation on mutual information

To measure the combined effects of random diffusion and directed drift in working memory

systems, we measure the mutual information (MI) of memories encoded in spiking

continuous attractor networks over a delay period of 6.5s. In this setting, we interpret the

neuronal network as a noisy communication channel (Latham and Roudi, 2009) that maps a

set of initial positions ϕ(t = 0s) (time of the cue offset in the attractor network) to the

associated final positions ϕ(t = 6.5s), which are read out of the system after the delay period.

Mutual information then provides a measure of the amount of information contained in the

readout position about the initially encoded position (Cover and Thomas, 2012; Kilpatrick
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Figure 4.14 – Effects of short-term facilitation on mutual information. All panels show
normalized mutual information (MI) of distributions of initial and final bump center positions
in working memory networks. MI is calculated from 20 repetitions of 20 equally spaced initial
cueing positions, with final positions after 6.5s of delay activity. Dots are average MI (18−20
realizations, error bars show 95% confidence of the mean) obtained from spiking network
simulations. Lines show average MI calculated from Langevin dynamics for the same networks,
repetitions and realizations (see main text). Sparse connectivity is plotted as 1−p. A MI as
function of network heterogeneity parameters: sparse networks (1−p) and leak heterogeneity
(σL). MI values are normalized to the average MI of the spiking network without facilitation
(U = 1) and no heterogeneities (purple left-most dot). B Same as A, but MI normalized to
the average MI of each spiking network without heterogeneities (leftmost dot for each blue,
green, purple). Dashed lines connect the means, for visual guidance. C Same as in A, with
x-axis given by the expected field magnitude, Eq. (4.9). D Same as in A, with x-axis given by the
expected displacement Δϕ(1s), Eq. (4.10).
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et al., 2013). Here, we investigated how the MI of initial and final positions in a continuous

attractor working memory system changes as a function of short-term facilitation and the

amount of frozen noise the neuronal system is subject to.

To measure MI from simulations, we simulated 30 networks with different short-term

facilitation parameters and magnitudes of frozen noise. These networks were simulated for 20

repetitions of 20 initial cue positions, and 18-20 realizations of frozen noise each (same

dataset as in Section 4.4.5). We recorded the center positions encoded in the network at the

time of cue-offset (t = 0) and after 6.5s of delay activity, and used binned histograms (100

bins) to calculate discrete probability distributions of initial (t = 0) and final positions (t = 6.5).

These probability distributions are used to calculate the MI across all repetitions and cues for

each network realization (see Section 4.6.7.2). For each trajectory simulated in spiking

networks, we then generated a trajectory starting at the same initial position by using the

Langevin equation Eq. (4.3) that describes the drift and diffusion dynamics of center positions

(see Section 4.4.3 for details). The resulting distributions of final positions (again at t = 6.5) for

each network serve as our theoretical prediction of the mutual information for each network.

Finally, we designated the network without facilitation (U = 1,τu = 650ms,τx = 150ms) and

no frozen noises (p = 1, σL = 0mV ) as the “control network”. The average MI measured from

the control network was used to normalize all other measured values of mutual information

(both for spiking simulations and theoretical predictions). In the following, MI will thus always

be given relative to that measured in the control network (except for Fig. 4.14B, see below).

We find that the average relative MI decreases from the level of the control network as network

heterogeneities are introduced (Fig. 4.14A, purple and brown dots). This is not surprising,

since the MI of the control network is set by its level of diffusion, and directed drift leads to an

additional loss of information about initial positions, since trajectories tend to converge

towards the stable fixed points. The effects of short-term facilitation (by decreasing the

parameter U ) on drift and diffusion are neatly summarized by their effect on the MI. First,

diffusion is slowed, which is visible in higher offsets of the relative MI for facilitated networks

(Fig. 4.14A, other dots at 0 heterogeneity). Second, the effects of frozen noise are decreased for

increased facilitation. This is visualized in Fig. 4.14B, where we plot the MI relative to that of

each network without frozen noise (effectively removing the offsets of facilitated networks):

the slopes of the decrease of MI become less steep as facilitation is increased. The MI

obtained by integration of the Langevin equations (see above) matches those of the

simulations well (Fig. 4.14A, lines). From earlier results, we expected the drift-fields to be

slightly over-estimated by the theory as the heterogeneity parameters increase (Fig. 4.10),

which would lead to a general under-estimation of MI. We do observe this here, although for

U = 1 the effect is slightly counter-balanced by the under-estimated level of diffusion (cf.

Fig. 4.5A, right), which we expect to increase the MI. For networks with stronger facilitation

(U = 0.1) the level of MI under-estimation is increased, since we additionally systematically

over-estimate diffusion (cf. Fig. 4.5, left).

Finally, we sought to find a quantity that reduced the functional dependence between MI and
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the varying levels of facilitation and frozen noise. As a first candidate, we investigated the

expected field magnitude (Eq. (4.9)): plotting the MI data in dependence of
√

〈A2〉frozen

(Fig. 4.14C) shows that the MI curves collapse onto single curves for each facilitation

parameter, thereby isolating the effects that facilitation has on diffusion. To include

additionally these effects, we turned to the combined dynamics of Eq. (4.3). Replacing the

field A(ϕ) by
√
〈A2〉frozen and forward integrating the differential equation in time for an

interval Δt = 1s, we arrive at the expected displacement in 1s:

Δϕ(1s) =
√

〈A2〉frozen ·1s +



B ·1s. (4.10)

This quantity describes the total expected displacement of the center variable in 1s due to drift

(as a function of the frozen noise distribution parameters) and diffusion. Finally, plotting the

MI data against Δϕ(1s) we find that all data collapse on to nearly a single curve (Fig. 4.14D).

In summary, we have analyzed the MI of working memory systems with varying frozen

noises and facilitation parameters. We have shown that facilitation increases the

information retained in a working memory system by both decreasing diffusion and

slowing drift. By using our theoretical predictions of drift and diffusion we were able to

derive the expected displacement Δϕ which depends only on the parameters of frozen noise

and the network. We have shown that this quantity describes the combined effects of drift and

diffusion on working memory function as measured by the MI.

We briefly discuss these results here. First, the choice of 1s of forward integrated time for the

expected displacement of Eq. (4.10) is arbitrary. While a choice of ∼ 2s lets the curves in

Fig. 4.14D collapse slightly better, we chose 1s to avoid further heuristics. Second, we

investigated only relative changes of MI in working memory systems. The absolute values of

MI do depend on the amount of different initial cue positions that one imposes, since the

entropy of the distribution of initial positions is an upper bound for the MI (Cover and

Thomas, 2012). In our comparisons, the absolute value of MI for the control network was 3.54

bit, while the maximal measured MI was 4.45bit (U = 0.1, no frozen noise). The mean entropy

of initial positions (this varies slightly for each realization) was 5.00bit. Thus, in our setup, the

maximal achievable relative MI would be 1.41 in Fig. 4.14A,C,D, which was not achieved even

under strong facilitation. Third, we expect values of MI to decrease as the length of the delay

period is increased. Our choice of 6.5s lies at the upper bounds of the delay periods often

considered in behavioral experiments (usually 3-6s) (Funahashi et al., 1989; White et al., 1994;

Chafee and Goldman-Rakic, 1998). However, a more rigorous link between the MI measure

and the underlying attractor dynamics would be desirable. Indeed, for noisy channel systems

governed by Fokker-Planck equations, this might be feasible (Wibisono et al., 2017). While this

goes beyond the scope of this work, in deriving a general Langevin description (which is

equivalent to a Fokker-Planck equation; van Kampen (1992)) for continuous attractor working

memory networks with short-term plasticity we have provided an initial link that could be

used to derive a more comprehensive theory in the future.
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4.4.6.2 Theoretical bounds on working memory function

Up to this point, we have developed a theory that can predict the magnitude of diffusion and

drift in working memory systems with short-term plasticity. In addition, we have only

investigated the predictions for one single size of neuronal network: that of the spiking

network of NE = 800 excitatory neurons. In this section we extend our theory by including the

effects of the system size of the excitatory population. With this tool in hand, we demonstrate

that the theory can be used to make general predictions for the expected displacements in

networks, and thereby place architectural bounds on working memory systems.

To include system size dependence in our theory, we re-scaled all sums appearing in Eq. (4.3),

thereby exposing the system size as an explicit parameter (see Section 4.6.5.4 for details). We

find (see Eq. (4.84)) that the expected field magnitude
√

〈A2〉frozen (cf. Eq. (4.9)) scales with

the sparse connectivity parameter p and the system size N to leading order as 1/
pN , whereas

the perturbations due to single unit heterogeneity scale as 1/



N , both in accordance with

earlier results (Zhang, 1996; Renart et al., 2003; Itskov et al., 2011b; Hansel and Mato, 2013).

For the diffusion scale



B (cf. Eq. (4.5)) we find a scaling as as 1/



N , also in agreement with

earlier work (for example Compte et al. (2000); Renart et al. (2003); Hansel and Mato (2013)).

In the following we use these rescaled drift and diffusion strengths to estimate the interaction

of system size with short-term plasticity in the effective stabilization of the ring-attractor

working memory.

To measure the stability of working memories, we turn again to the measure of expected

displacement during 1s of delay activity Δϕ(1s), which was derived in the last section

(Eq. (4.10)). There, we have shown that the expected displacement can be related to working

memory function via the measure of mutual information. Using our theory, we map out the

stability of networks for given magnitudes of frozen noises, as the system size and all

short-term plasticity parameters are varied. We systematically varied all possible parameters,

including the system size N , while recording the expected deviation Δϕ(1s). We calculated

this by using numerical coefficients in Eq. (4.3) that are measured from the spiking networks

investigated here with U = 1,τu = 650,τx = 150 and NE = 800, and extrapolating from there by

changing N and short-term plasticity parameters.

It should be noted, that the expected displacement only reflects the displacement due to drift

and diffusion with drift contributions averaged over all possible instantiations of frozen noise.

However, since drift fields will, as we have seen in Section 4.4.5, have several local minima, the

position-dependent dynamics of each realization can be quite different from the averaged

case. For example, large drift fields still can contain regions that are locally dominated by

diffusion (cf. Fig. 4.7). Nevertheless, this simplification allows us to make theoretical

predictions for network properties, given displacement constraints that should hold across

the whole attractor manifold. Further, we have seen previously that for large magnitudes of

frozen noise our theory tends to over-estimate the expected magnitude of drift-fields slightly

(cf. Fig. 4.10). Thus, we expect the predictions made here to be upper bounds on network
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Figure 4.15 – Stability of memory function depends on network parameters. Colors display
expected displacements Δϕ(1s) over 1s of delay activity, cf. Eq. (4.10). White lines display
displacement contours for 1,2 and 5deg. A1-2 Displacement as a function of system size and
facilitation U , for a small depression time constant τx = 80ms (A1) and τx = 150ms (A2). In
both panels τu = 650ms. B1-2 Displacement as a function of depression time constant τx

and facilitation U for N = 5000 (B1) and N = 20000 (B2). In both panels τu = 650ms. C1-2
Displacement as a function of facilitation time constant τu and facilitation U for N = 5000
(C1) and N = 20000 (C2). In both panels τx = 150ms.
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STP parameters Δϕ(1s) p σL Network size N

U = 0.17 1.5deg 0.12 1.7mV (Yang et al., 1996, RS) 36’047
τu = 563ms (Ploner et al., 1998) (Wang et al., 2006) 2.4mV (Dégenètais et al., 2002, fa-RS) 57’063
τx = 242ms 0.1728 1.7mV 35’610

(Wang et al., 2006, E1b) (Wang et al., 2006) 2.4mV 56’809
1.0deg 0.12 2.4mV 127’465

U = 0.35 1.5deg 0.12 1.7mV 46’176
τu = 482ms 2.4mV 73’252
τx = 163ms 0.1728 1.7mV 45’738

(Wang et al., 2006, E1a) 2.4mV 72’999
1.0deg 0.12 2.4mV 163’896

Table 4.1 – Upper bounds on system-sizes for stable continuous attractor memory in pre-
frontal cortex. Theoretical predictions of Eq. (4.10) optimized for the number of excitatory
neurons N that are needed to achieve a given level of expected displacement Δϕ(1s) under
given parameters of short-term plasticity and frozen noises. RS: regular spiking pyramidal
cells, fa-RS: fast-adapting regular spiking pyramidal cells.

parameters needed to achieve a certain expected displacement. This holds even more in light

of the fact that facilitation is not the only process able to stabilize continuous attractor

working memory (see Discussion).

In Fig. 4.15 we demonstrate how this procedure leads to theoretical predictions for the levels

of expected deviation, in dependence of network parameters. To approximate the levels of

frozen noise we expect in cortical networks, we fix the level of frozen noise by imposing sparse

connectivity (p = 0.12; Wang et al. (2006)) and a conservative level of leak heterogeneity

(σL = 1.7mV ; Yang et al. (1996)). For example, increasing the network size to 30,000 excitatory

neurons would give expected deviations of between 1−2deg for U < 0.4 (Fig. 4.15A2), which

is not an unrealistic setting for recurrent short-term facilitation at recurrent excitatory

synapses found in pyramidal networks of pre-frontal cortex (Wang et al., 2006). Similarly, we

find that, while increased depression time constants τx lead to larger displacements

(Fig. 4.15A1, B1), these can also be counter-balanced by increasing the system size

(Fig. 4.15A2, B2). We also find that, across system sizes, increasing the facilitation time

constant τu beyond 1s affects the expected displacements only slightly (Fig. 4.15C1-2).

Finally, we optimized the theoretical result to give upper bounds on network sizes N to be

expected in networks of excitatory neurons in pre-frontal cortex, that implement putative

continuous attractors (see Table 4.1) (Funahashi et al., 1989; Compte et al., 2000;

Constantinidis and Wang, 2004; Wimmer et al., 2014). The expected displacement is set to a

value of Δϕ(1s) = 1.5deg (Ploner et al., 1998)3. Facilitation parameters were based on

facilitation settings of two groups of strongly facilitating synapses found in a study of

mammalian (ferret) prefrontal cortex (Wang et al., 2006). The same study reported a general

probability p = 0.12 of pyramidal cells to be connected. However, for pairs of pyramidal cells

that were connected by a facilitating synapse, the study found a high probability of reciprocal

connections (pr ec = 0.44): thus if neuron A was connected to neuron B (at p), neuron B was

3Linear fit to data approximated from Fig. 3B in Ploner et al. (1998) gives a gain variability slope of ∼ 0.01, which
evaluates to expected deviations between 1deg (10deg target eccentricity) and 2deg (20deg target eccentricity).
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connected to neuron A with high probability (pr ec ), resulting in a non-random connection

topology. To approximate this, we evaluated a second, slightly elevated, level of random

connectivity, that included reciprocal connections: p +p ·pr ec = 0.1728. For the more critical

leak reversal-potential standard deviations we compared values measured in two studies

(Yang et al., 1996; Dégenètais et al., 2002). The maximum network sizes we find necessary (see

Table 4.1, NE ) are mostly smaller than 105 neurons, with values depending most strongly on

the value of the facilitation baseline U , and the magnitude of the leak reversal-potential

heterogeneities σL . Since the expected field magnitude scales weakly (1/
p) with the recurrent

connectivity p, increasing p lead only to comparatively small decreases in the predicted

network sizes. Finally, we see that the increasing the reliability of networks further comes at a

cost: decreasing the expected displacement to Δϕ(1s) = 1deg more than doubles the required

neurons for both facilitation settings. Nevertheless, these network sizes lie within

anatomically reasonable ranges (Collins et al., 2016). In summary, these results predict that

cortical continuous attractor networks with realistic values for the strength of facilitation

and depression of recurrent connections can achieve sufficient stability, even under the

presence of realistic biological variability and absence of further stabilization

mechanisms (see Discussion).
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4.4.7 Application: Construction of attractors

In the earlier sections we have developed a theory that allows us to derive the expected

amounts of drift and diffusion on continuous attractors. In this section, we will invert the

problem: using our theory, and given the magnitude of diffusion, we derive heterogeneities in

the leak reversal-potentials of excitatory neurons necessary to stabilize a given steady-state

distribution of positions on the continuous attractor. More generally, since we can control

both the diffusion (by short-term plasticity parameters, see Section 4.4.4) and the field

implemented on the attractor, this allows us to implement systems where any trajectory of the

continuous attractor system is a sample trajectory of a given Langevin equation. In the

following, we first develop the necessary theory, and show that the space of drift-fields that

can be created by heterogeneities of the leak-potential is limited. We then show how the drift

fields can be inferred from steady-state distributions of the drift-diffusion dynamics on the

attractor, and validate the theoretical considerations by calculating heterogeneities that

implement a simple unimodal distribution in a network of spiking neurons.

4.4.7.1 General considerations for drift fields caused by leak heterogeneities

Here, we show that the drift-fields caused by heterogeneities in the leak reversal-potentials

will always be a superposition of Fourier modes, that are determined only by the neural

system the continuous attractor is implemented in. As usual, we assume all indices to be

circular (taken modulo N ) in the following.

In Eq. (4.7) we assumed that the bump shape �φ0 and other spatially inhomogeneous

quantities stay centered at ϕ0 = 0, while the firing rate perturbations Δ�φ(ϕ) depend on the

center position ϕ. In the following, we will use that the single leak heterogeneities ΔL
i are

independent of the bump center position, and rewrite the equation for the drift-field

(Eq. (4.7)) to shift the dependence on the center position into the bump shape. Starting from

Eq. (4.7), it then holds that

A(ϕ j ) = 1

S

N−1∑
i=0

Ci
d J0,i

dϕ
Δφi (ϕ)

= 1

S

N−1∑
i=0

Ci (ϕ j )
d J0,i

dϕ
(ϕ j )

dφ0,i

dΔL
i

(ϕ j ) ·ΔL
i ,

= 1

S

N−1∑
i=0

Ci− j
d J0,i− j

dϕ

dφ0,i− j

dΔL
i− j

·ΔL
i .

In the first equality we used Eq. (4.80). The second equality holds, since we can rewrite a shift

in bump center as a shift in index of each vector quantity (see Section 4.6.1.1). This relation

can be rewritten as a matrix multiplication with a circulant matrix M (each consecutive row
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consists of the same vector shifted to the right):

A = MqL , (4.11)

Mi j ≡ 1

S
C j−i

d J0, j−i

dϕ

dφ0, j−i

dΔL
j−i

,

qL
i =ΔL

i

Here, Ak = A(ϕk ) is the vectorized drift field, qL
i is the vectors of leak perturbations, and

0 ≤ i , j < N .

Circulant matrices have the useful property of being diagonalized by the discrete Fourier

matrix F̃ j k = exp
(−2πi j k/N

)
(Golub and Loan, 1996), where i is the imaginary unit and

0 ≤ j ,k < N . The eigenvalues of the circulant matrix M are the Fourier coefficients F̃ m, where

m is the first row vector of M with entries mi ≡ M0,i . We use this to transform Eq. (4.11) into

Fourier-space and obtain a vector equation:

F̃ A = F̃ MF̃−1F̃ qL = F̃ m · F̃ qL , (4.12)

where · stands for element-wise multiplication. A second way of seeing this, is by noticing that

A = MqL = m�qL , where � is the circular convolution and again m is the first row of M. Thus,

taking the discrete Fourier transform on both sides, by the circular convolution theorem

(Golub and Loan, 1996) we get the same equation.

If all components of F m are nonzero, it is straightforward to solve Eq. (4.12) by calculating the

element-wise solution:

qL = F̃−1
(

(F A)i

(F m)i

)
0≤i<N

. (4.13)

However, in general this might not be well defined, or lead to very large Fourier coefficients of

qL for those modes where
(
F̃ m

)
i has close to zero power. To circumvent this, we calculate the

Fourier coefficients for qL by Eq. (4.13), setting all coefficients to zero where
∣∣(F̃ m

)
i

∣∣< c for a

certain (small) cutoff value c. Effectively, we approximate A by low-pass filtering it to the

nonzero frequencies of m.

Therefore, by the considerations above (Eq. (4.12)), we see that the space of possible

drift-fields that can be implemented by heterogeneous leaks is entirely determined by the

Fourier spectrum of the vector mi = 1
S Ci

d J0,i

dϕ
dφ0,i

dΔL
i

: any drift field will be entirely

decomposable into the nonzero Fourier modes of m. In turn, the spatial shape of m is

determined by the facilitation and depression parameters (primarily through Ci ) as well as

the other microscopic parameters of the system. Finally, it should be noted that for

perturbations created by recurrently mediated heterogeneities (as for example sparse

connectivity), these considerations become more complicated since the resulting firing rate

perturbations depend on the position of the bump through the recurrent connectivity, and
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thus can not be decoupled from the position of the bump as simply as here.

4.4.7.2 Calculation of leak heterogeneities for given steady-state distributions

We now apply the above to calculate the leak heterogeneities required to realize a given

steady-state probability distribution of center positions P (ϕ) with ϕ ∈ [−π,π). Assuming that

P (ϕ) is the steady-state solution of the Langevin-equation Eq. (4.3), one can show that

(Gardiner, 2009, p. 124)4:

P (ϕ) =N exp

(
2

∫ϕ
−π A(ϕ′)dϕ′

B

)
≡N exp

(
−U (ϕ)

D

)
, (4.14)

where N normalizes
∫π
−π P (ϕ)dϕ= 1, and we have defined the potential U (ϕ) as well as the

diffusion constant D = B/2. Here, B is given by the theory of Eq. (4.5).

By taking the logarithm of Eq. (4.14) and differentiating with respect to ϕ, we can solve for the

field A(ϕ) that will implement the desired steady-state distribution P (ϕ):

lnP = lnN − U

D
,

A =− d

dϕ
U = D

d

dϕ
lnP. (4.15)

Applying Eq. (4.13) of the last section, we can then derive leak heterogeneities that will

approximate the field A. As we have seen there, how well a specific continuous attractor can

implement this field will depend on the Fourier spectrum of A and the microscopic details of

the neural system.

4.4.7.3 Example: Gaussian distribution

To validate this approach and see how well it performs in a network of spiking neurons, we

now turn to implementing a simple Gaussian distribution (Fig. 4.16). In particular, we choose

P (ϕ) =N exp(− ϕ2

2σ2 ) (4.16)

with σ=π/20. We proceed by calculating Eq. (4.15) for this distribution, which yields

A(ϕ) =−Dϕ/σ2.

To approximate this function by heterogeneities of the leak-reversal potentials, we solved

Eq. (4.13) by keeping only modes with up to 12cycles spatial frequency, which resulted in a

4For the sake of simplicity, we assume here the distribution P to be contained well within the boundaries, which
are assumed to be absorbing; the extension to periodic solutions is described in Gardiner (2009, p. 125).
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Figure 4.16 – Design of an attractor network with unimodal steady-state distribution. A
Center positions of bumps in spiking network simulations with heterogeneities of leak reversal-
potentials of excitatory neurons derived to approximate a unimodal steady-state distribution
(see main text for details). Shown are 50 repetitions for 20 uniformly spaced initial cues,
each simulated for 13.5s delay time after cue offset. Short-term plasticity parameters were
U = 0.8,τu = 650ms,τx = 150ms. B Drift-field ϕ̇ depending on the bump center ϕ. The
target drift field (orange line) is approximated by the field predicted from theory (blue line).
Colored dots are estimated from trajectories shown in A, alongside binned mean (black
line). C Histograms (100 bins) of final positions of simulated trajectories shown in panel A
(gray), and 500 realizations of the Langevin equation of the system predicted by theory (blue).
Histograms are normalized to probability distributions on [−π,π). Both approximate the
target distribution (orange line).
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solution for the vector of heterogeneities qL with standard deviation 0.89mV 5. In Fig. 4.16B

we have plotted the field A(ϕ) (orange line, “target”) alongside the approximation (blue line,

“predicted”). Note, that the non-periodic discontinuity of the target field is interpolated and

results in an unstable fixed point at the boundary ϕ=−π. The probability distribution

implemented by the combination of the approximated drift field and the predicted diffusion

coefficient approximates well the target distribution Eq. (4.16) (Fig. 4.16C, orange line,

“target”). We confirmed this by measuring a histogram of positions at t = 15s of 500

realizations of the corresponding stochastic differential equation (cf. Fig. 4.16C, blue,

“predicted”). To compare this to the spiking simulation, we added the vector of perturbations

to the leak potentials, by setting VL →−70mV +qL
i for excitatory neurons 0 ≤ i < N and

simulating the resulting spiking attractor network (Fig. 4.16A).

We find that the simulations match the predicted result to a large degree: the width of the

measured distribution of final positions (Fig. 4.16C, gray area) corresponds well to both the

target and predicted distributions. The drift field is well reproduced by the spiking system

(Fig. 4.16B), although a few additional local minima as well as points with slow dynamics

appear in regions where the field is of low magnitude (see Fig. 4.16A, B, C). It should be noted

that our theory is only linear in the perturbations of the leak potentials, and thus deviations

from the predicted results for larger perturbations are to be expected. Due to the very strong

field at the boundaries, we also noted that trajectories sometimes did not directly form stable

bump profiles, and after cue-offset centered around the minimum of the field instead

(Fig. 4.16A, e.g. red lines).

In summary, we designed and implemented a unimodal attractor of a given shape in the

spiking network. Although the resulting drift field was not perfect, we were nevertheless

able to demonstrate the applicability of the theory to derive the needed perturbations.

4.4.8 Application: Control of uncertainty by short-term plasticity

A central prediction of our theory is that short-term plasticity can control the effects of noise

on the states encoded in continuous attractor models: mainly the depression time constant

τx as well as the facilitation parameter U can influence diffusion from spiking noise, as well as

drift fields that are created by frozen heterogeneities in neural networks. In this section we

show that for neural networks with fixed connectivity, changing the parameters of short-term

plasticity can result in transitions between different regimes of certainty of memory retention.

To demonstrate this, we designed a continuous attractor with two stable fixed points

separated by an unstable fixed point at ϕ= 0, implemented by perturbations in the leak

reversal-potentials of excitatory neurons (Fig. 4.17). Akin to model circuits for

decision-making that are designed to integrate sensory evidence (Wang, 2002; Wong and

Wang, 2006; Curtis and Lee, 2010), we interpret the center position as a proxy for the internal

5We note this value for comparison with the earlier sections – the heterogeneities here are, however, not
normally distributed.
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Figure 4.17 – Short-term plasticity modulates uncertainty in bistable attractor networks. A
Top: Center positions of bumps in a spiking network with a bistable state-space (see main
text for details). Shown are 8.5s after stimulus offset, for 50 repetitions of 20 initial positions
each. The position ϕ= 0, which serves as a separatrix between the two states, is highlighted
by a dashed line. Bottom: Positional drift field ϕ̇ depending on the bump center ϕ, as pre-
dicted from theory. Inset shows leak reversal potentials that create the drift field (x-axis shows
neurons, the plateau near ϕ= 0 is slightly lowered for visibility). Short-term plasticity parame-
ters are U = 0.8,τu = 650ms,τx = 200ms. B Similar to panel A, but for a strongly facilitating
network with U = 0.1. C Theoretical predictions for steady-state probability distributions of
bump-centers (dashed) together with normalized histograms of the final positions after 13.5s
of delay activity for the networks in A (pink) and B (gray). D Mean first-passage-times (MFPT)
between the positions indicated by black horizontal lines in panel C. Lines are theoretical
predictions, dots are the average of first-passage times recorded from 2000 realizations of the
corresponding Langevin equations.
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representation of a two-state variable, divided by ϕ= 0. In the absence of external input, the

system dynamics lead to convergence of center positions to regions around either of the two

attractive states. Switching between these states can then happen either spontaneously due to

intrinsic noise in the system (diffusion) (Moreno-Bote et al., 2007), or can be externally forced

by providing input to either side of the network. In the following, we show that changing the

parameters of recurrent short-term plasticity on excitatory connections can significantly

influence the amount of uncertainty that the network displays in its encoded positions, and in

its transition between the two states. By this mechanism the network can continuously

interpolate its computational mode between a “certain” mode, where the states are kept at

high fidelity in a sharply constrained region of the attractor, and an “uncertain” mode, where

the regions that each state occupies become less sharp, and switching between states

becomes very probable.

4.4.8.1 Perturbed continuous attractor model for decision making

Starting from a continuous attractor network with strong diffusion (U = 0.8,τx = 200ms, cf.

Fig. 4.5) we created two local fixed points by systematically adding small perturbations to the

leak reversal potentials of excitatory neurons (Fig. 4.17A,B insets in lower plots). While in

Section 4.4.7 we introduced a framework to calculate leak perturbations, we chose to design

the drift field here by hand to evade the appearance of non-predicted local minima for small

fields.

For 400 excitatory neurons centered around ϕ=−π, we decreased the leak reversal potential

by 1mV . This makes these neurons less likely to fire, leaves this area strongly repelling, and

thereby constrains trajectories to an area towards the middle of the attractor manifold (ϕ= 0).

To introduce a dynamical separation of this central region into two separate basins of

attraction, we decreased the leak potential of 160 neurons centered around ϕ= 0 by 0.04mV .

This perturbation was intentionally chosen to be small, such that displacement of trajectories

elicited by strong diffusive noise could overcome it with high probability.

Confirming our design decisions, across short-term plasticity parameters, the predicted drift

fields (see Fig. 4.17A,B lower plots) are strongly directed towards the center (ϕ= 0) for the

region outside of ∼ (−π
4 , π4 ). At the boundaries of this region we find two stable fixed points

that are separated by an unstable fixed point at the separatrix ϕ= 0 (Fig. 4.17A,B, dashed

vertical lines). In absence of diffusion, this system thus would act as a bistable “decision

making” circuit that will have trajectories converge, after they are cued by an external input at

a given position, to either the left or the right of the separatrix. Throughout the remainder of

this section we will not apply any additional external inputs to the system after the initial cue

(but see below).
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4.4.8.2 Short-term facilitation interpolates between “certain” and “uncertain” regimes

We simulated the network introduced above for two different settings of short-term

facilitation. For a weakly facilitating network U = 0.8 (Fig. 4.17A) the network is strongly

diffusive and the encoded states readily transit from either side of the separatrix to the other.

We call this the “uncertain” regime. On the contrary, for U = 0.1 (Fig. 4.17B) most of the

diffusion is removed and trajectories very rarely cross the separatrix spontaneously (see

below), making this the “certain” regime. While the drift field elicited in these networks by

heterogeneities is reduced by a factor of five by facilitation (see Fig. 4.17A,B, lower plots) for

U = 0.1, it still seems large enough to constrain trajectories to well defined regions to either

side of the separatrix.

To check this, we calculated the theoretically predicted steady-state distributions for both

networks, by using the predicted drift field and diffusion strength in Eq. (4.14). In both cases

the theoretical predictions (Fig. 4.17C, dashed lines) and histograms of final positions of the

spiking simulations (Fig. 4.17C, shaded areas) are in close agreement. For U = 1, diffusion is

strong enough to extend the distribution of expected positions across the separatrix, with a

nonzero probability density of momentary positions on the separatrix itself (Fig. 4.17C, pink).

In contrast, for U = 0.1 (Fig. 4.17C, gray) the low diffusion and residual drift field lead to a

strongly separated bimodal equilibrium distribution. It should be noted, that in the case of

U = 0.1 the experimentally measured histogram of final positions depends more closely on

the initial positions, which we limited to either side of the separatrix.

4.4.8.3 Waiting times for state transitions are modulated by STP

To study the dependence of spontaneous transitions between the states on the parameters of

short-term plasticity, we turned to the theory we developed earlier. In the earlier sections

(Section 4.4.4 and Section 4.4.5) we have shown that the theoretical predictions for diffusion

and drift are in good agreement with simulations. Using these theoretical results, we

calculated the expected average time it takes for a bump centered close to the left fixed point

to move, across the separatrix, into to the right basin of attraction (Fig. 4.17C, arrow and black

vertical lines). In the simplified description of this system by the Langevin equation Eq. (4.3),

this is commonly referred to as the mean first-passage-time (MFPT) and can be calculated by

standard methods (Gardiner, 2009, p. 136), given the diffusion B and the drift field A(ϕ).

We find that the MFPT predicted from theory crosses several orders of magnitude as the

parameters of facilitation and depression are varied (Fig. 4.17D). For strong diffusion

(τx = 200ms; Fig. 4.17D, yellow line) unfacilitated networks can display short waiting times on

the order of several seconds (as in Fig. 4.17A). However, decreasing the facilitation parameter

as low as U = 0.5 yields waiting times above 103s, making spontaneous transitions very

unlikely. Generally, decreasing the depression time constant τx decreases the expected level

of diffusion, and thereby increases the MFPT even for unfacilitated systems.
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In summary, we have shown that short-term depression and facilitation can influence the

amount of uncertainty that the network displays in its encoded positions, and can elicit

control over waiting times for transitions between the two states. In this network, the

waiting times for transitions achievable in facilitated networks can be quite long, quickly

approaching values larger than 103s. We chose a starting point for trajectories to the left that

is far from the separatrix, so the predictions above serve as lower bounds of transitions

between both basins representing either state. More importantly, the tendency of trajectories

to drift to either basin of attraction of the two fixed points can be drastically influenced by

providing external inputs to the network, thereby representing the effect of external evidence

on the internal representation of the system state. We checked this by adding a small tonic

current to all neurons to the right of the separatrix (with positions ϕ> 0), for which we

predicted a maximal increase of firing of 4.5H z across all neurons in the bump state. This

decreased the mean first passage times predicted from the drift-diffusion model down to a

minimum of 419ms for U = 1 (and 9.2s for U = 0.1).

4.5 Discussion

In this article we presented a theoretical approach for the analysis of drift and diffusion in

continuous attractor models, exemplified by a one-dimensional ring attractor model. Our

framework extends earlier approaches calculating the effects of noise by projection on to the

attractor manifold (Wu et al., 2008; Kilpatrick and Ermentrout, 2012; Itskov et al., 2011b; Burak

and Fiete, 2012) by including the dynamical effects of short-term plasticity. The theory

predicts that facilitation and depression play antagonistic roles in making continuous

attractors robust against the influences of both dynamic noise (introduced by spiking

variability) and frozen noise (introduced by biological variability). We have confirmed the

quantitative predictions of our theory in simulations of a ring-attractor implemented in a

spiking network model with synaptic facilitation and depression, and found theory and

simulation to be quantitatively in good agreement.

Facilitation slows down both directed drift and diffusion along the attractor manifold. Similar

to an earlier theoretical approach using a simplified rate model (Itskov et al., 2011b), we find

that the slowing of drift depends mainly on the facilitation parameter U , while the time

constant τu has a less pronounced effect. While the approach of Itskov et al. (2011b) relied on

the projection of frozen noise onto the derivative of the first spatial Fourier mode of the bump

shape along the ring, here we reproduce and extend this result (1) for arbitrary neuronal

input-output relations and (2) a more detailed spatial projection that involves the synaptic

dynamics and the resulting shape of the steady state (see Section D.2 for a more detailed

comparison). While we mainly focused on connectivity heterogeneities induced by

sparseness, we have also investigated the case of noisy recurrent connection weights as in

Itskov et al. (2011b) (see Section 4.6.5). However, the drifts generated by these heterogeneities

were generally small compared to diffusion and the other sources of heterogeneity, and lead

to a loss of the continuous attractor state when increased too much.
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A second previous study investigated short-term facilitation and showed that it reduces drift

and diffusion in a spiking network, for a fixed setting of U (although the model of short-term

facilitation differs slightly from the one employed here) (Pereira and Wang, 2015). Contrary to

what we find here, these authors find that an increase in τu leads to increased diffusion, while

we find that an increase over the range they investigated (∼ 0.5s −4s) would halve the

diffusion. More precisely, for our shape of the bump state (which we keep fixed) we predict a

reduction from ∼ 26 to ∼ 16 deg 2/s for a similar setting of facilitation U . The difference to our

prediction may arise from an effectively increased width of the bump attractor profile for large

depression time constants in Pereira and Wang (2015), which would lead to increased

diffusion in our model (see below). Whether this effect persists under the two-equation model

of saturating NMDA synapses used there remains to be investigated – see Section D.1 of the

Appendix, where we present a possible approach using the theoretical framework presented

here. Finally, increasing the time constant of recurrent NMDA conductances has been shown

to also reduce diffusion (Pereira and Wang, 2015), in agreement with our theory, according to

which the normalization constant S increases with τs (similar to the result of Burak and Fiete

(2012) without short-term plasticity).

Previously, it was claimed that the presence of short-term depression does not affect the

stability of the bump (Barbieri and Brunel, 2008), but in that study only a single parameter for

depression (τx = 160ms) was investigated. In contrast, we find that stronger short-term

depression will increase the diffusion and directed drift along the attractor. This result seems

to qualitatively agree with earlier studies in rate models which showed that synaptic

depression can induce movement of bump attractors (York and van Rossum, 2009; Romani

and Tsodyks, 2015; Wang et al., 2015; Mi et al., 2016), similar to neuronal adaptation (Hansel

and Sompolinsky, 1998; Laing and Longtin, 2001). In particular, the study of York and van

Rossum (2009) showed that for simpler rate models a regime exists where the bump state

moves with constant speed along the attractor manifold. We did not find any such directed

movement in our spiking networks (e.g. Fig. 4.17 shows trajectories for τx = 200ms), and we

checked that even for very large τx the observed dynamics of the centers are indeed diffusive

as opposed to drift-dominated. We expect directed movement to be obtainable in our theory

by initializing depression with asymmetry, which would result in an effective drift-term that

can again be calculated as a deviation from perfect symmetry. Finally, we note that the fast

spiking noise component in our networks could be stabilizing the directed movement of

bumps observed in noise-free rate models, as shown in Laing and Longtin (2001): there,

additive fast noise was able to cancel directed bump movement caused by single neuron

adaptation.

Although we did not thoroughly investigate this here, the coefficients of Eq. (4.3) give clear

predictions as to how drift and diffusion will depend on the shape of the bump state and the

neural transfer function F . The relation is not trivial, since the pre-factors Ci and the

normalization constant S also depend on the bump shape. For the diffusion strength Eq. (4.5),

we explored this relation numerically, by artificially varying the shape of the firing rate profile

(while extrapolating other quantities). Although a more thorough analysis remains to be
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Figure 4.18 – Dependence of diffusion strength B on shape parameters. Diffusion was cal-

culated from Eq. (4.5) with bump solutions φ0 = g1 exp(−
∣∣∣ x

gσ

∣∣∣gr
). The values of d J0

dϕ and φ′
0

were calculated by fitting and extrapolating (linearly, for φ0 > 40.31Hz) curves φ0 →φ′
0 and

φ0 → J0 that were obtained from the numerical values extracted for g1 = 40.31Hz, gσ = 0.51 by
theory (Section 4.6.4). Thus, any nonlinearity or saturation of the inputs and input-output
relation for φ0 > 40.31Hz was not included. This approximate analysis shows that the major
dependence of the diffusion expected in the system is on the bump width gσ, although a
minor dependence on g1 is seen.

performed, our preliminary analysis shows (see Fig. 4.18) that the diffusion increases both

with bump width and top firing rate, consistent with earlier findings (Compte et al., 2000;

Murray et al., 2012). Additionally, our theory predicts the shape of the drift field that is

generated by a local perturbation (cf. Section 4.4.7). This can be extended to the scenario of

external inputs: any external input (excitatory or inhibitory) will cause a deviation Δφi from

the steady-state firing rates, which, in turn, generates a drift field by Eq. (4.7). This could be

used to predict the strength and location of external inputs that are needed to induce

continuous shifts of the bump center at given speeds, for example when these attractor

networks are designed to track external inputs (see e.g. Hansel and Sompolinsky (1998); Fung

et al. (2010)).

The spiking networks we analyzed here are tuned to display balanced inhibition and

excitation in the inhibition dominated uniform state (Brunel, 2000b; Wang, 2001), while the

bump state relies on positive currents, mediated through strong recurrent excitatory

connections (cf. Barbieri and Brunel (2007) for an analysis). Similar to other spiking network

models of this class, this mean–driven bump state shows relatively low variability of neuronal

inter-spike-intervals, because near the bump center the mean input is close to (or even above)

the firing threshold (Renart et al., 2007; Barbieri and Brunel, 2008) (see also next paragraph).

While the decreased variability appears for neurons in the center of the firing rate profile, we

found that neurons at its flanks still display variable firing, with statistics close to that

expected of spike trains with Poisson statistics (see Section D.3 and Fig. D.3 in the Appendix),

which may be because the flank’s position slightly jitters and so firing irregularity at the flank

is again increased. Since the non-zero contributions to the diffusion strength are constrained
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to these flanks (cf. Fig. 4.3), the simple theoretical assumption of Poisson statistics of neuronal

firing still matches the spiking network quite well. However, we observe that for very low

diffusion (small facilitation U ) our theory consistently over-estimates the expected amount of

diffusion in the network (see Fig. 4.19A, B left). This may be because the slower the bump

moves, the more also the firing irregularity of flank neurons decreases. Since this is

inconsistent with the Poisson firing assumption of our theory, our approximations do not

yield as accurate predictions in this case.

More recent bump attractor approaches allow networks to perform working memory function

with a high firing variability also during the delay period (Chaudhuri and Fiete, 2016), in

better agreement with experimental evidence (Compte et al., 2003). These networks show

bi-stability, where both stable states show balanced excitation and inhibition (Renart et al.,

2007) and the higher self-sustained activity in the delay activity is evoked by an increase in

fluctuations of the input currents (noise-driven) rather than an increase in the mean input

(Mongillo et al., 2012). This was also reported for a ring-attractor network (with distance

dependent connections between all populations), where facilitation and depression are

crucial for irregularity of neuronal activity in the self-sustained state (Hansel and Mato, 2013).

To which degree our approach can be applied to these setups remains an open question.

Linearizing the synaptic dynamics around a steady-state spatial profile of firing rates (or

spatial profile of variances) might still be a feasible approach, although the significantly

higher variability of spiking might require including the higher moments of the steady-state

synaptic variables in the theory. For example, in Romani et al. (2006) the higher moments of

the steady-state for a population of neurons with synaptic depression were calculated. See

also the study of Mongillo et al. (2012) for a similar (albeit probabilistic) model of facilitation

and depression.

We have shown that short-term plasticity offers direct and variable control over the sensitivity

of attractor networks to both frozen and dynamic noise. For example, as demonstrated in

Section 4.4.8, increasing facilitation of recurrent excitatory synapses (and similarly decreasing

the depression time-constant, although to a lesser degree, cf. Fig. 4.15B) can reduce

noise-induced state transitions. Control of short-term plasticity would represent an efficient

“crank” for modulation of the timescale of computations of such networks. Indeed, evidence

for neuromodulation of short-term plasticity is ubiquitous (Nadim and Bucher, 2014). By

changing the properties of presynaptic calcium entry (Oh et al., 2012), inhibitory modulation

mediated via GABAB and adenosine A1 receptors can lead to increased facilitatory

components in rodent cerebellar (Kreitzer and Regehr, 2000) and avian auditory synapses

(Brenowitz et al., 1998). Dopamine, serotonin and noradrenaline have all been shown to

differentially modulate short-term depression (and facilitation when blocking GABA

receptors) at sensorimotor synapses (Barrière et al., 2008). Finally, changing the amount of

background input or neuronal excitability (Nadim and Bucher, 2014) will modulate the shape

of the bump state, leading to changed properties of diffusion and drift (Roach et al., 2015).

Importantly, introducing long time constants of facilitation as a stabilization mechanism for
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continuous attractors has been shown to make it hard to return the bump state back to

uniform activity (which is usually done by providing strong inhibition to all excitatory cells)

(Pereira and Wang, 2015). We have also observed that longer (or stronger) initial cues (stimuli)

were needed as the strength of facilitation increased, to facilitate recurrent connections

enough to stabilize the bump state. Generally, this apparent tradeoff between stability of

encoded memories and the flexibility of the working memory systems could be affected by

short-term depression (Mi et al., 2016) – after a strong excitatory drive to all neurons (leading

to strong inhibitory feedback) residual depression could occlude the facilitation state of

recurrent connections and allow for an easier reset.

In Section 4.4.6 we compared working memory systems with short-term plasticity, and

derived bounds on network parameters that lead to “tolerable” levels of drift and diffusion. It

should be noted, that in cortical settings we do expect only short-term facilitation to be solely

responsible for the stabilization of putative continuous attractor networks. Several dynamical

mechanisms other than short-term facilitation have been proposed for stabilization. The

authors of Pereira and Wang (2015) investigated two further mechanisms that can make

bump-attractors robust: activity dependent disinhibition of excitatory neurons (DSI, see also

Carter and Wang 2007) and a cation current leading to activity-dependent increase in

excitability for excitatory neurons (ICAN, see also Tegnér et al. (2002)) – both are found to

affect diffusion of bump positions. Fast corrective inhibitory feedback has also been shown to

stabilize spatial working memory systems (in balanced networks) (Lim and Goldman, 2014). A

different study has shown that dynamical control of neuronal adaptation by acetylcholine

neuromodulation can be used to control the stability properties of continuous attractors

(Roach et al., 2015). Next to dynamical mechanisms for stabilization, also the recurrent

connectivity can affect the stability of continuous attractors (Burak and Fiete, 2009). It has

been shown that, on the timescale of hours to days, homeostatic processes can be used to

counteract the effects of frozen noise (Renart et al., 2003). Purposefully breaking the

continuous attractor into several smaller fixed points can be achieved by introducing

structured heterogeneity, and has been shown to decrease diffusion along the attractor

(Kilpatrick et al., 2013). Nevertheless, our theoretical results could be used, given estimates of

the “size” of bumps maintained in cortical working memory networks (Wimmer et al., 2014)

and short-term plasticity parameters (Wang et al., 2006), to place upper bounds on the size of

the recurrent networks involved in generating working memory function (see Section 4.4.6.2).

One would not imagine cortical networks to ever be tuned to display the perfect symmetry of

continuous attractor networks, and we have confirmed (as others have before) that these

circuits are intrinsically susceptible to both dynamical and frozen noise. However, continuous

attractor models that are fully connected and have no heterogeneity have been successfully

employed in the context of visuospatial working memory to explain behavioral performance

(Macoveanu et al., 2006; Wei et al., 2012; Roggeman et al., 2014; Almeida et al., 2015), to

predict the effects of neuromodulation (Cano-Colino et al., 2013, 2014), or the implications of

cognitive impairment (Murray et al., 2012; Cano-Colino and Compte, 2012). Furthermore,

recent evidence shows that cortical activity converges to rather low-dimensional subspaces
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(Balaguer-Ballester et al., 2011; Murray et al., 2016) that might indeed implement the

theoretical concept of a continuous attractor (Yoon et al., 2013; Wimmer et al., 2014). While

major imperfections in biological continuous attractors could be recovered by learning

processes on the time scale of hours to days (see above), we expect circuits also to be subject

to ongoing but slow imperfections, requiring dynamical processes for additional stabilization

from drift. We have shown that short-term plasticity is such a dynamical mechanism, able to

control the reliability of attractor dynamics. Our theory can be used to make general

predictions about working memory systems (Section 4.4.6), using only experimentally

constrained parameters of short-term plasticity (Wang et al., 2006), the size of the cortical

networks involved (Markram et al., 2015), and the shape of putative self-sustained bumps of

activity in cortex. We have seen that imperfections will necessarily introduce local fixed points

in the attractor (see also Kilpatrick et al. (2013)), but short-term plasticity can slow down the

resulting transient dynamics, or enable spontaneous transitions between them by increasing

diffusion (see Section 4.4.8).

Our results have novel implications for short-term plasticity as a stabilizing mechanism for

working memory. We have shown, to our knowledge for the first time, that strong facilitation

(small values of U ) as a stabilizing mechanism does not only slow directed drift, but also is

very efficient at removing diffusion. However, in delayed response tasks involving saccades,

that presumably involve continuous attractors in the prefrontal cortex (Compte et al., 2000;

Wimmer et al., 2014), one does observe an increase of variability in time (Funahashi et al.,

1989): both quickly accumulating systematic errors (alike drift) (White et al., 1994) and longer

increasing variable errors (with variability growing linear in time, alike diffusion) (Ploner et al.,

1998) appear. Pyramidal networks of the prefrontal cortex have been reported to be highly

reciprocally connected, often with strongly facilitating synapses (Wang et al., 2006). Thus, if

biological circuits use mainly facilitation to stabilize continuous attractor dynamics, either a)

variable errors are introduced elsewhere in the pathway between visual input and motor

output (but see (Brunton et al., 2013)) or by input from of other noisy local circuits during the

delay period (Selemon and Goldman-Rakic, 1988); b) intermediate fixed values of U are used,

which slow diffusion and drift only slightly, and networks employ other methods of

stabilization that do not affect diffusion; c) the higher variability of neuronal firing of

continuous attractors in balanced networks (see above) might lead to increased and

persistent diffusion, even under stronger facilitation; d) short-term plasticity is under cortical

neuromodulatory control (see above), such that for less “certain” situations, as delay time

progresses, diffusion can re-appear when facilitation is reduced or depression is increased.

Neuromodulation could also generally provide higher flexibility (see above) to a

facilitation-stabilized working memory system, by allowing for more dynamical control of the

rigidity of memory representations. Interestingly, next to short-term facilitation on the

timescale of seconds, other dynamic processes up-regulate recurrent excitatory synaptic

connections in prefrontal cortex (Wang et al., 2006): synaptic augmentation and post-tetanic

potentiation operate on longer time-scales (up to tens of seconds), and might be able to

support working memory function (Hempel et al., 2000). While the long time scales of these
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processes might again render putative short-term memory networks inflexible, there is

evidence that they might also be under tight neuromodulatory control (Sakurai and Katz,

2009).

4.6 Methods

4.6.1 Projection of dynamics onto the attractor manifold

In this section, we present the theoretical toolset needed to derive the central result presented

in Section 4.4.3 of the main text – a one-dimensional Langevin equation for the dynamics of

the center position of the bump profile (Eq. (4.3)). First, we formalize networks implementing

ring-attractors in Section 4.6.1.1. In the following subsections, we then calculate the

projection of the linearized synaptic dynamics, including facilitation and depression, onto the

tangential space of the attractor manifold. We show that this yields a differential equation for

the temporal dynamics of the center position. This projection will then be used in the next

section (Section 4.6.2) to calculate expressions for the two different parts of the Langevin

equation: diffusion (Section 4.6.2.1) and drift (Section 4.6.2.2).

To begin, we briefly restate some basic definitions, which are repeated from Section 4.4.1 of

the Results. We consider recurrently connected neuronal networks of N neurons. The firing

rate φi (in units of Hz) for each neuron i for 0 ≤ i < N −1 is given as a function F

(input-output relation) of the neuronal input Ji (t ):

φi (t ) = F (Ji (t )). (4.17)

We further assume the input Ji (t ) to neuron i at time t to be given by the sum

Ji (t ) =
N−1∑
j=0

wi j s j (t ), (4.18)

where wi j is the connection weight for the synaptic connection from neuron j to neuron i .

The variables s j (t ) are synaptic activations of connections outgoing from the presynaptic

neurons j , which depend on the firing rates of the neurons j .

To each neuron we assign an angular position θi = 2π
N i −π ∈ [−π,π) (for 0 ≤ i < N ), where we

identify the edges of the interval to form a ring. Throughout this section, we assume that

indices are taken modulo N . As introduced in detail in the first section below, we consider

networks that maintain a family of steady-state firing rate profiles φ0,i (ϕk ) (“bumps”) that are

centered at positions ϕk = 2π
N k −π ∈ [−π,π) (for 0 ≤ k < N ). Unless stated explicitly,

derivations are performed for a bump centered at the left edge of the interval ϕ0 =−π. If

needed, we adopt the following notation to introduce the dependence on the center position:

for vector quantities � we will write �(ϕk ) to indicate that the vector is shifted to be centered

at ϕk .
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4.6.1.1 General definition of a one-dimensional ring-attractor

Starting from the definitions above, we here formalize the notion of a 1-dimensional

continuous attractor manifold implemented in a neuronal network on the discretized ring of

positions θi = 2π
N i −π ∈ [−π,π) (for 0 ≤ i < N ) with periodic boundaries. The central

assumption made below is that there exists a 0 eigenvalue of the system dynamics, with an

eigenvector corresponding to translation of the center of the firing rate profile. Similar to the

approach in Burak and Fiete (2009), this is used in the following sections for dimensional

reduction of the system dynamics.

A network implements a ring-attractor, if there exists a set C , which is a family of firing rate

profiles φi (ϕk ) for neuron positions i and center positions ϕk :

C = {
φi (ϕk ) = F

(
Ji (ϕk )

) |0 ≤ i ,k < N
}

,

with the following properties. First, for each center position ϕk it holds that

φk+i (ϕk ) =φk−i (ϕk ) for 0 ≤ i < N . Thus, firing rate profiles centered at position ϕk are

symmetric around ϕk . Second, we assume that φi (ϕk ) =φi−k (ϕ0) ≡φ0,i−k . Thus, all

members of C are center-shifted versions of the same firing rate profile �φ0, which is centered

at index 0. Further, we will denote the vector of steady-state inputs associated to this firing

rate profile by �φ0 = F (�J0). Note that for members of C with φi (ϕk ) = F (Ji (ϕk )) it holds that

Ji (ϕk ) = J0,i−k . Second, all members of C are fixed points under the synaptic (and neuronal)

dynamics. Third, when linearizing these dynamics around any member �φ(ϕk ) of C , we

assume the Jacobian to have one single eigenvalue with value 0, with corresponding

eigenvector proportional to �φ(ϕk )−�φ(ϕk−1), corresponding to a shift of the bump along the

manifold (Burak and Fiete, 2009). All other eigenvalues are assumed to have negative real part,

thus making C a family of meta-stable fixed points.

A “continuous” attractor on a discretized ring is defined by the above three assumptions: the

family C consists of fixed points that are stable under the dynamics at hand, except for a

change of center position by which the network state remains in the family C . Heuristically

speaking, any change of the center position will not be subject to any network-internal

dynamics. Thus, in the limit of infinite network size, C is a 1-dimensional continuous

center-manifold of the system (see e.g. Guckenheimer and Holmes (2013)). In the following,

we will refer to the family C as a continuous manifold, even in the case of finite system size N .

4.6.1.2 Synaptic dynamics and variability of neural firing

To model synaptic dynamics with short-term plasticity, we assume that the dynamics of

outgoing synaptic activations si of neuron i are modeled by the following three dimensional

system of ordinary differential equations (Barak and Tsodyks, 2007; Mongillo et al., 2008;
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Itskov et al., 2011b):

ṡi = − si

τs
+ui xiφi ,

u̇i = −ui −U

τu
+U (1−ui )φi ,

ẋi = −xi −1

τx
−ui xiφi . (4.19)

Synaptic activations si are given by a linear filter of the neuronal firing rates φi (t ) multiplied

by scaling factors ui (t ) (facilitation) and xi (t ) (depression), which modulate the synaptic

transmission according to a rate-based variant of a widely used model of synaptic short-term

plasticity (Markram et al., 1998; Tsodyks et al., 1998; Mongillo et al., 2008). See Section 4.4.3 in

the Results for the biological interpretation of the scaling factors.

To be able to describe diffusion on the continuous attractor, we need to extend the model by a

treatment of the noise induced into the system through the variable process of neuronal spike

emission. Starting from Eq. (4.19), we assume that neurons i fire according to independent

Poisson processes ξi (t ) =∑
k δ(t − ti ,k ), where ti ,k is a Poisson point process with

time-dependent rate φi . The variability of the point process ξi (t ) introduces noise in the

synaptic variables. By neglecting the shot-noise (jump-like) nature of this process, we can

capture the neurally induced variability simply as white noise with variance proportional to

the incoming firing rates (Gerstner and Kistler, 2002), ξi (t ) =φi +
√

φi ·ηi (t ), where ηi are

white Gaussian noise processes with mean
〈
ηi

〉= 0, and correlation function〈
ηi (t )η j (t ′)

〉= δ(t − t ′)δi j . This model of ξi (t ) preserves the mean and the auto-correlation

function of the original Poisson processes. Here, we introduce diffusive noise for each

synaptic variable separately, but later average their linear contributions over the large

population, when projecting onto movement along the continuous manifold (see also Burak

and Fiete (2012, Supplementary Material) for a discussion).

Substituting the noisy processes ξi (t ) for φi (t ) in Eq. (4.19) results in the following system of

3 ·N coupled Ito-SDEs:

ṡi = − si

τs
+ui xi

(
φi +ηi

√
φi

)
,

u̇i = −ui −U

τu
+U (1−ui )

(
φi +ηi

√
φi

)
,

ẋi = −xi −1

τx
−ui xi

(
φi +ηi

√
φi

)
. (4.20)

Note that the noise inputs ηi to the synaptic variables for neuron i are all identical, since they

result from the same presynaptic spike train.
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4.6.1.3 Linearized System

We start analyzing the system by defining a concatenated 3 ·N dimensional column vector of

state variables y = (
sT ,uT ,xT

)T
. Given a solution of the stable firing rate profile �φ0 we can

calculate the deterministic stable fixed point of this system by setting the l.h.s. of Eq. (4.20) to

zero and setting ηi ≡ 0. This yields steady-state solutions for the synaptic activations,

facilitation and depression variables y0 = (s0,u0,x0):

s0,i = τsu0,i x0,iφ0,i

u0,i =U
1+τuφ0,i

1+Uτuφ0,i
(4.21)

x0,i =
1+Uτuφ0,i

1+U
(
τuφ0,i +τuτxφ

2
0,i +τxφ0,i

) (4.22)

We continue by linearizing the system Eq. (4.20) at the fixed point y0 by a change of variables

consisting of perturbations around the fixed point: y = y0 +δy = y0 +
(
δsT ,δuT ,δxT

)
and

φi =φ0,i +δφi . To reach a self-consistent linear system, we further assume a separation of

time scales between the neuronal dynamics and the synaptic conductances, in that the

neuronal firing rates change as an immediate function of their input. This allows replacing

δφi = dφi

d Ji

∣∣∣
J0,i

∑
j

d Ji
d s j

δs j =φ′
0,i

∑
j wi jδs j , where we introduce the shorthand φ′

0,i ≡
dφi

d Ji

∣∣∣
J0,i

.

Finally, keeping only linear orders in all perturbations and considering only the unperturbed

noise (we neglect multiplicative noise terms by replacing the terms
√

φi →
√

φ0,i ), we arrive

at the linearized system equivalent of Eq. (4.20):

δ̇y =

⎛
⎜⎝ − 1

τs
I+D

(
u0 ·x0 ·�φ′

0

)
W D

(
�φ0 ·x0

)
D

(
�φ0 ·u0

)
U D

(
(1−u0) ·�φ′

0

)
W − 1

τu
I−U D

(
�φ0

)
0

−D
(
u0 ·x0 ·�φ′

0

)
W −D(x0 ·�φ0) − 1

τx
I−D

(
�φ0 ·u0

)
⎞
⎟⎠δy

+

⎛
⎜⎜⎜⎝

�ηu0x0

√
�φ0

�ηU (1−u0)
√

�φ0

−�ηu0x0

√
�φ0

⎞
⎟⎟⎟⎠

≡Kδy+L (4.23)

Here, dots between vectors indicate element-wise multiplication, the operator D : Rn →Rn×n

creates diagonal matrices from vectors, and W = (wi j ) is the synaptic weight matrix of the

network. Note that the same vector of white noises�η≡ (
η1, . . . ,ηn

)T appears three times.

4.6.1.4 Projection onto the center manifold

Let the current center position of the firing rate profile be ϕ=ϕ0 =−π. We will now project

the dynamical system Eq. (4.23) onto movement of the center position ϕ of the firing rate

profile. For this, we assume that N is large enough to treat the center position ϕ as a
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continuous variable. We also use the earlier assumption (see Section 4.6.1.1) that the network

has a one dimensional center-manifold of metastable fixed points – this allows unconstrained

displacement only of the center position ϕ, while all other possible directions of change are

constrained by the system dynamics. In the system at hand, this implies that the matrix K of

Eq. (4.23), which captures the linearized dynamics around any of these fixed points, will have

a zero eigenvalue corresponding to the eigenvector of a change of the dynamical variables

under a change of position ϕ.

Formally, let er be the vector of changes in the state variables as the steady-state center ϕ is

translated along the manifold, given by:

er = dy0

dϕ
=
(

ds0

dϕ

T

,
du0

dϕ

T

,
dx0

dϕ

T
)T

. (4.24)

Let the full diagonalization6 of the matrix K be K̄ = T −1K T . W.l.o.g. let er be the first column

of the transformation matrix T , and let el be the first row vector of T −1, with el ·er = 1. Now,

the projection of the perturbation δy onto contributions along er isolates displacements of

the center position: the perturbation δy = erδϕ corresponds to a shift ϕ+δϕ in the center

position (by definition, see Eq. (4.24)). We left multiply this relation with el to see that

elδy = el erδϕ= δϕ. Finally, we take the time derivative, which yields:

δ̇ϕ= el δ̇y. (4.25)

Thus, to find an equation for the temporal dynamics of changes in the center positions, we

project the system Eq. (4.23) onto contributions along the er eigenspace by left multiplying by

el . In the full matrix equations, this corresponds to rewriting the system Eq. (4.23) as

T −1δ̇y = K̄ T −1δy+T −1L.

Restricting this onto only the first dimension (the er eigenspace) and using Eq. (4.25), we find

that the linear dynamics vanish (since the first entry in K̄ is zero) and we are left with:

ϕ̇= δ̇ϕ= el δ̇y = 0 ·elδy+el L, (4.26)

where we have assumed that ϕ(t ) =ϕ(t = 0)+δϕ(t ).

Thus, left-multiplying the linearized equations Eq. (4.23) by el yields a differential equation

for the changes δϕ of the center position, leaving in this case only the contributions of the

noisy input L. In the following two sections, we will compute the analytical form of the left

eigenvector el .

6Or Jordan normal form, if K is not fully diagonalizable. Since we know there exists a zero eigenvalue with
one dimensional Eigenspace, the corresponding normal form will have a diagonal 0 entry with er being the
corresponding eigenvector.
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4.6.1.5 Derivation of the left eigenvector

It holds that el er = 1 (since T −1T = I ), and also that eT
l is an eigenvector of K T with

eigenvalue 0: since it holds that T −1K = K̄ T −1, we can project this relation on to the first

dimension to get el K = 0, and equivalently K T eT
l = 0. If the matrix K is symmetric, the left

and right eigenvectors el and er for the same eigenvalue 0 are the transpose of each other.

Unfortunately, here this is not the case (see Eq. (4.23)), and we need to compute the unknown

vector el , which will depend on the known vector er .

In the following we will find a parametrized vector y′(y) = (
tT (y),vT (y),zT (y)

)T
that for y = er

fulfills the eigenvalue equation of the left eigenvector:

K T y′(er ) = 0. (4.27)

As we show below, we can find variables y′ that fulfill the transposed dynamics ẏ′ = K T y′ and

for which it holds that ẏ′(er ) = 0, thus fulfilling the condition Eq. (4.27). In this case we know

that (due to uniqueness of the 1-dimensional eigenspace associated to the 0 eigenvalue) the

vector y′T is proportional to el .

The system of equations resulting from ẏ′ = K T y′ reads (cf. Eq. (4.23)):

ṫi = − ti

τs
+∑

j
w j i u0, j x0, jφ

′
j t j +U

∑
j

w j i (1−u0, j )φ
′
j v j −

∑
j

w j i u0, j x0, jφ
′
j z j (4.28)

v̇i = − vi

τu
+φ0,i x0,i (ti − zi )−Uφ0,i vi (4.29)

żi = − zi

τx
+u0,iφ0,i (ti − zi ) (4.30)

Let us first consider the system without facilitation or depression. The linearized dynamics of

δs are given by the upper left N ×N block Ks of Eq. (4.23), with U → 1, u0 → 1, x0 → 1 (which

recovers the case of Burak and Fiete (2012)):

δṡi =− 1

τs
δsi +φ′

0,i

∑
j

wi jδs j (4.31)

≡ Ksδs (4.32)

We assume that w j i = wi j , which in general holds for the symmetric synaptic connectivity of

common models of continuous attractor networks (see below a concrete spiking model). The

transposed block K T
s then describes the linear dynamics of perturbations to the input

variables Ji =∑
j wi j s j (Burak and Fiete, 2012). To see this, we differentiate δJi =∑

j wi jδs j
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with respect to time, use Eq. (4.31), and use the symmetric connectivity, to arrive at:

δ J̇i =
∑

j
wi jδṡ j =

∑
j

wi j

(
− 1

τs
δs j +φ′

0, jδJ j

)

=
(
− 1

τs
+∑

j
w j iφ

′
0, j

)
δJ j

= (
K T

s δJ
)

i . (4.33)

If ˙δsi = 0 for all i , which is the case if δsi = er restricted to the first N entries, we know that
˙δJi =∑

j wi j
˙δs j = 0. Thus, in this restricted case, the left eigenvector proportional to ti = δJi

since it fulfills Eq. (4.27) restricted to the first N ×N block.

We now consider again the full system (with facilitation and depression), where we start with

the same Ansatz for parametrization of the variables ti
7:

ti ≡
∑

j
wi jδs j , (4.34)

and continue to find variables vi and zi that satisfy the full equations Eq. (4.27).

First, we differentiate Eq. (4.34) with respect to time and use the linear response Eq. (4.23) to

obtain

ṫi = ∑
j

wi j δ̇s j =
∑

j
wi j

(
−δs j

τs
+φ

′
j u0, j x0, j

∑
k

w j kδsk +φ0, j x0, jδu j +φ0, j u0, jδx j

)

= − ti

τs
+∑

j
wi j u0, j x0, jφ

′
j t j +

∑
j

wi jφ0, j x0, jδu j +
∑

j
wi jφ0, j u0, jδx j . (4.35)

We then equate Eqs. (4.28) and (4.35), which yields the following identity:

∑
j

wi jφ0, j
(
x0, jδu j +u0, jδx j

) = ∑
j

w j iφ
′
j

(
U (1−u0, j )v j −u0, j x0, j z j

)
. (4.36)

To relate the remaining variables δui and δxi to the new variables vi and zi , we make a linear

Ansatz:

vi =α1δui +α2δxi , (4.37)

zi =β1δui +β2δxi . (4.38)

By differentiating these equations with respect to time and equating the result to Eqs. (4.29)

7This was motivated by numerical evaluations of the left eigenvector el of the full system, which showed that
here also ti = δJi .

145



Chapter 4. Continuous attractor networks: Effects of short-term plasticity on drift and
diffusion

and (4.30), respectively, we find the following equations

− vi

τu
+φ0,i x0,i (ti − zi )−Uφ0,i vi =α1δu̇i +α2δẋi (4.39)

− zi

τx
+u0,iφ0,i (ti − zi ) =β1δu̇i +β2δẋi (4.40)

The linear response for u̇i and ẋi can be obtained from Eq. (4.23) (substituting

ti =∑
j wi jδs j ):

δu̇i =−δui

(
1

τu
−Uφ0,i

)
+U (1−u0,i )φ′

i ti ,

δẋi =−δxi

(
1

τx
−φ0,i

)
−x0,iφ0,iδui −u0x0φ

′
i ti .

By inserting these two equations and Eqs. (4.37) and (4.38) into Eqs. (4.39) and (4.40), we

obtain two closed equations in δui ,δxi , ti . By equating coefficients for δui ,δxi , ti
8, we obtain

solutions for the coefficients α1,α2,β1,β2 that fulfill these equations:

α1 =
x0,iφ0,i

[
Uτuτxφ0,i +u0,i (τx −τu)

]
U

(
1−u0,i

)
φ′

i

[
τuτxφ0,i

(
U −u2

0,i

)
+u0,i (τx −τu)

]
α2 =−

τuτx u0,iφ
2
0,i

φ′
i

[
τuτxφ0,i

(
u2

0,i −U
)
+u0,i (τu −τx )

]
β1 =−

τuτx u0,iφ
2
0,i

φ′
i

(
τuτxφ0,i

(
u2

0,i −U
)
+u0,i (τu −τx )

)
β2 =

u0,iφ0,i
[
τu

(
τxφ0,i

(
U −u0,i

)−1
)+τx

]
x0,iφ

′
i

[
τuτxφ0,i

(
u2

0,i −U
)
+u0,i (τu −τx )

] . (4.41)

A little bit of further algebra shows that these coefficients together with Eqs. (4.37) and (4.38)

also satisfy Eq. (4.36), as for every j it holds that

φ
′
j

(
U (1−u0, j )v j −u0, j x0, j z j

)=φ0, j
(
x0, jδu j +u0, jδx j

)
.

Thus, we have found a linear parametrization

y′(y)T =
(
(W δs)T ,

(
α1δu+β1δx

)T ,
(
α2δu+β2δx

)T
)

, (4.42)

which fulfills ẏ′ = K T y′. In addition, we know that if y = er , then the original system dynamics

vanish since ẏ = K y = 0. Thus, since the parametrization is linear in the original variables, it

also holds that ẏ′ = 0, and the parametrization satisfies Eq. (4.27). This makes y′(er )T

proportional to the (unique) left eigenvector el of the 0-eigenvalue.

8Comparing coefficients of any two of the three variables yields 4 equations, which give the same solution and
satisfy the equations posed by the remaining variable.
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Finally, we can evaluate the vector y′(er ) by using Eq. (4.24) in Eq. (4.42):

y′(er )T =
(

dJ0

dϕ

T

,

(
α1

du0

dϕ
+α2

dx0

dϕ

)T

,

(
β1

du0

dϕ
+β2

dx0

dϕ

)T
)

. (4.43)

Note, that in the first component we used that d J0,i

dϕ =∑
j wi j

d s0, j

dϕ .

4.6.1.6 Normalization of the left eigenvector

In the last section we have found a vector y′T proportional to the left eigenvector el . Since it

holds that el er = 1, it remains to calculate the normalization constant S such this

normalization condition is fulfilled by

el =
1

S
y′(er )T . (4.44)

First, we calculate the components of the vector er , Eq. (4.24), using the steady-state values of

Eq. (4.21) and Eq. (4.22):

d s0,i

dϕ
= τs

(
u0,i x0,iφ

′
0,i

d J0,i

dϕ
+x0,iφ0,i

du0,i

dϕ
+u0,iφ0,i

d x0,i

dϕ

)
, (4.45)

du0,i

dϕ
= u′

0,iφ
′
0,i

d J0,i

dϕ
= (1−U )Uτu(

Uφ0,iτu +1
)

2
φ′

0,i

d J0,i

dϕ
, (4.46)

d x0,i

dϕ
= x ′

0,iφ
′
0,i

d J0,i

dϕ
=− Uτx

(
φ0,iτu

(
Uφ0,iτu +2

)+1
)(

Uφ0,i
(
τu +φ0,iτuτx +τx

)+1
)

2
φ′

0,i

d J0,i

dϕ
, (4.47)

where we introduced the shorthand notations u′
0,i =

du0,i

dφ0,i
, x ′

0,i =
d x0,i

dφ0,i
and φ′

0,i =
dφi

d Ji

∣∣∣
J0,i

. We

have also used the steady-state values of Eq. (4.21) and Eq. (4.22) to calculate the values of u′
0,i

and x ′
0,i by differentiating with respect to φ0,i .
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Now, using Eq. (4.44) in el ·er = 1, and plugging in Eqs. (4.24) and (4.43), we find that:

S =y′(er )T ·er

=τs
∑

i

d J0,i

dϕ

(
u0,i x0,iφ

′
0,i

d J0,i

dϕ
+x0,iφ0,i

du0,i

dϕ
+u0,iφ0,i

d x0,i

dϕ

)
(4.48)

+∑
i

du0,i

dϕ

(
α1

du0,i

dϕ
+α2

d x0,i

dϕ

)
+∑

i

d x0,i

dϕ

(
β1

du0,i

dϕ
+β2

d x0,i

dϕ

)

=τs
∑

i

(
d J0,i

dϕ

)2

φ′
0,i

(
u0,i x0,i +x0,iφ0,i u′

0,i +u0,iφ0,i x ′
0,i

)

+∑
i

(
d J0,i

dϕ

)2

φ′2
0,i

[
α1u′2

0,i +β2x ′2
0,i +2α2u′

0,i x ′
0,i

]

=U
∑

i

(
d J0,i

dϕ

)2
φ′

i[
Uφ0,i

(
τu

(
τxφ0,i +1

)+τx
)+1

]
3[

τs
[
τuφ0,i

(
Uτuφ0,i +2

)+1
][

Uφ0,i
(
τu

(
τxφ0,i +1

)+τx
)+1

]
−φ0,i

[
(U −1)τ2

u +Uτ2
x

(
τuφ0,i +1

)(
τuφ0,i

(
Uτuφ0,i +2

)+1
)]

(4.49)

− (U −1)Uτ2
uτxφ0,i

(
τuφ0,i +1

)(
Uτuφ0,i +1

)
]

, (4.50)

which defines the normalization constant S. In the last equation we used the steady-state

values of Eq. (4.21) and Eq. (4.22) to calculate the values of u′
0,i and x ′

0,i by differentiating with

respect to φ0,i . Additionally, the coefficients of Eq. (4.41) were used.

4.6.2 Drift and diffusion in presence of short-term plasticity

In the last section, we have derived a vector (Eq. (4.44)) which projects the synaptic dynamics

Eq. (4.19) onto movement along the attractor manifold, according to Eq. (4.26). Here, will

apply this projection vector to calculate the central result presented in Section 4.4.3 of the

main text – a reduction of the microscopic dynamics of continuous attractor networks to a

one-dimensional Langevin equation for the center position of the bump profile (Eq. (4.3)).

First, we calculate the diffusion term (characterized by a diffusion strength B), by projecting

the diffusive noise resulting from variable spike emission (introduced in Section 4.6.1.2) onto

the attractor manifold. Second, we project fixed deviations from the steady-state firing rate

profiles onto the attractor manifold, which results in an additional position-dependent drift

field A(ϕ). The results of this section thereby provide a link from the full synaptic dynamics

with short-term plasticity to the emerging one-dimensional dynamics of the bump center.
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4.6.2.1 Diffusion strength

We use the expression for the left eigenvector Eq. (4.44) to project the individual noise

contributions in Eq. (4.23) onto movement along the attractor manifold. Restating Eq. (4.26),

we know that ϕ̇= el L =∑
k el ,k Lk . Through the normalization by S, which sums over all

neurons, the individual contributions el ,k become small as the number of neurons N

increases (this scaling is made explicit in Section 4.6.5.4). Thus, for large networks we average

the small contributions of many single noise sources, which validates the diffusion

approximation of Section 4.6.1.2.

Further, we can rewrite Eq. (4.26) by introducing a single Gaussian white noise process with

intensity B , that matches the correlation function of the summed noises:

ϕ̇=



Bη. (4.51)

Here, η is a white Gaussian noise process with
〈
η
〉= 0 and

〈
η(t )η(t ′)

〉= δ(t − t ′). To calculate

the correlation function of Eq. (4.26), we first note that only terms
〈
ηi (t )ηi (t +τ)

〉= δ(τ)

remain in expectation. Thus, we arrive at an expression for B in Eq. (4.5) of the Results section:

〈
ϕ̇(t )ϕ̇(t +τ)

〉=〈el L(t )el L(t +τ)〉

=
n∑

i=1

(
e2

l ,i u2
0,i x2

0,i +e2
l ,n+iU 2(1−u0,i )2 +e2

l ,2n+i u2
0,i x2

0,i

)
φ0,iδ(τ)

+2
n∑

i=1

[(
el ,i el ,n+i −el ,n+i el ,2n+i

)
U (1−u0,i )−el ,i el ,2n+i u0,i x0,i

]
u0,i x0,iφ0,iδ(τ)

= 1

S2

∑
i

(
d J0,i

dϕ

)2

φ0,i

[
u2

0,i x2
0,i +U 2(1−u0,i )2φ

′2
0,i

(
α1u′

0,i +α2x ′
0,i

)2

+u2
0,i x2

0,iφ
′2
0,i

(
β1u′

0,i +β2x ′
0,i

)2
]
δ(τ)

+ 2

S2

∑
i

(
d J0,i

dϕ

)2

φ0,i u0,i x0,iU (1−u0,i )

[
φ′

0,i

(
α1u′

0,i +α2x ′
0,i

)
−φ

′2
0,i

(
α1u′

0,i +α2x ′
0,i

)(
β1u′

0,i +β2x ′
0,i

)]
δ(τ)

− 2

S2

∑
i

(
d J0,i

dϕ

)2

φ0,i u2
0,i x2

0,iφ
′
0,i

(
β1u′

0,i +β2x ′
0,i

)
δ(τ)

=U 2

S2

∑
i

(
d J0,i

dϕ

)2
φ0,i

(
1+2τuφ0,i +Uτ2

uφ
2
0,i

)
2(

Uφ0,i
(
τu

(
τxφ0,i +1

)+τx
)+1

)
4

δ(τ)

≡Bδ(τ). (4.52)

In the last equation we again have used the steady-state values of Eq. (4.21) and Eq. (4.22) to

calculate the values of u′
0,i and x ′

0,i by differentiating with respect to φ0,i . Additionally, the

coefficients of Eq. (4.41) were used.
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Figure 4.19 – Numerical evaluation of diffusion strength. All plots show quantities related to
Eq. (4.52) for varying facilitation U and depression time constant τx (color legend on the right

hand side shows values of τx in units of ms). Other coefficients φ0,i , d J0,i

dϕ ,φ′
0,i are estimated

from a network with U = 1,τx = 150ms,τu = 650ms. A Normalization term S2 (“Normalizer”)
of Eq. (4.52). B Diffusion strength B of Eq. (4.52) without the normalization term (equal to
B ·S2). C Full diffusion strength B of Eq. (4.52). Color legend on the right hand side shows
values of τx in units of ms.

Here, the value of B is computed for ϕ=ϕ0, but holds generally: for any other center position

all vectors appearing in Eq. (4.52) are symmetrically index-shifted versions of the vectors for

ϕ=ϕ0, thus leaving the sum invariant.

Analysis of diffusion strength In Fig. 4.19 we plot the diffusion strength Eq. (4.52) and the

value of the normalization term S2 for varying τx and U . For a numerical evaluation including

the facilitation time constant τu , we refer to Fig. 4.6. We observe that for τx → 0 diffusion is

reduced to a large degree (Fig. 4.19C). Thus, decreasing the depression time constant is one

method of reducing the diffusivity of these attractor networks, assuming that the same bump

firing rates can be kept as a stable state of the network dynamics as depression is removed.

Since some saturating nonlinearity of the excitatory feedback will be needed for the network

to display stable persistent firing at low rates (Wang, 1999), this limit is probably hard to

achieve. It should be noted, that using the same methods used to tune all spiking networks

(see Section 4.6.6), we were able to find parameters that reliably lead to bistable bump states

with U = 1, τu = 650ms, τx = 15ms and bump shape similar to the other networks presented

here (parameters were gEE = 9.975pS, gI E = 6.724pS, gE I = 2.213nS, gI I = 1.670nS, as well as

wσ = 0.425, w+ = 2.95).

We also find (see also Fig. 4.5C of the Results) that diffusion increases quickly as τx moves

towards τx = 200ms. In the remainder of this section we will show that this behavior is a

general feature of the theory, and is due to the normalization constant S tending to become

small for U → 1 and large τx (see Fig. 4.19A).

To analyze this behavior further, we set U = 1 in the normalization constant S (Eq. (4.50)),
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Figure 4.20 – Pre-factor of normalizer for vanishing facilitation. Pre-factor
d J0,i

dϕ

2
φ′

0,i
1

(1+φ0,iτx )3 for varying firing rates φ0,i and depression time constant τx . Color

legend on the right hand side shows values of τx in units of ms.

which yields:

S =∑
i

d J0,i

dϕ

2

φ′
0,i

(
φ0,iτsτx −φ0,iτ

2
x +τs

)
(1+φ0,iτx )3 . (4.53)

Inspecting Eq. (4.53), we find that S will be close to zero if φ0,iτsτx −φ0,iτ
2
x +τs ≈ 0 for all

summands. Solving this equation for τx yields a single positive solution

τx,c = 1

2

(
τs +

√
τs(φ0,iτs +4)

φ0,i

)
, (4.54)

which approaches τx,c → τs for φ0,i →∞. Thus, summands of Eq. (4.53) with large firing rates

will vanish for τx > τs . In addition, the range of firing rates that will result in nonzero

summands in Eq. (4.53) is limited: the pre-factors d J0,i

dϕ

2
φ′

0,i in Eq. (4.53) will vanish for

φ0,i → 0 and φ0,i → maxi φ0,i , since in both cases d J0,i

dϕ = 0. Plotting the pre-factor
d J0,i

dϕ

2
φ′

0,i
1

(1+φ0,iτx )3 against the firing rate φ0,i for varying τx (see Fig. 4.20), we see that as τx

increases beyond 50ms, the range of firing rates with positive contributions to the sum

quickly decays to between 0 and 15Hz, with maxima between 2Hz and 5.5Hz.

Evaluating Eq. (4.54) for τs = 100ms at these firing rates, the corresponding values of τx,c are

279.1ms (for 2Hz) and 193.8ms (for 5.5Hz). This illustrates that, as τx approaches 200ms, the

normalization term S is closer to zero as more summands vanish, which leads to diverging

diffusion strengths B by Eq. (4.52). While the values at which an increase of τx leads to this

behavior depend on the coefficients φ0 and d J0,i

dϕ , the existence of such a divergence is a

general feature of this system due to the structure of Eq. (4.53), and will be present for any

stable distribution of firing rates. Thus, any bump attractor will observe escalating diffusion

as τx is increased.
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4.6.2.2 Drift field

Let the current center position of the bump be ϕk (for 0 ≤ k < N ), with the index shifted firing

rate profile �φ0(ϕk ). To calculate the effect of frozen variability, for now we assume that the

effect of all sources of frozen variability can be expressed by a vector of small firing rate

perturbations Δφ(ϕk ) to the firing rate profile: �φ0(ϕk ) → �φ0(ϕk )+Δ�φ(ϕk ). These firing rate

perturbations stem from any deviation of the neural system from the “baseline” case: in

Section 4.6.5 we calculate the perturbations induced by sparse connectivity as well as

heterogeneous leak reversal-potentials in excitatory neurons of the spiking network.

The perturbations will change with the center position ϕk of the bump, and the resulting drift

field will depend on the center position around which we linearize the dynamics. For

simplicity of notation, we let the steady-state quantities remain centered at ϕ=ϕ0 =−π (e.g.

we consider the firing rate profile �φ0 centered at ϕ0), and absorb the dependence on the

position ϕk into the perturbations:

φ0,i →φ0,i +Δφi (ϕk ).

For simplicity, we will neglect the index k for the position in the following.

The firing rate perturbations add an additional term in the linearized equations Eq. (4.23),

where we again neglect the influence of the perturbation on the noise term L:

δy = Kδy+

⎛
⎜⎝ x0u0Δ�φ(ϕ)

U (1−u0)Δ�φ(ϕ)

−x0u0Δ�φ(ϕ)

⎞
⎟⎠+L. (4.55)

Again, we left-multiply by the left eigenvector el , which eliminates the linear response kernel

K and yields a drift-term in the formerly purely diffusive SDE Eq. (4.51):

ϕ̇= el

⎛
⎜⎝ x0u0Δ�φ(ϕ)

U (1−u0)Δ�φ(ϕ)

−x0u0Δ�φ(ϕ)

⎞
⎟⎠+


Bη

= 1

S

∑
i

[
d J0,i

dϕ
x0,i u0,i +

(
α1

dui

dϕ
+α2

d xi

dϕ

)
U

(
1−u0,i

)
−
(
β1

dui

dϕ
+β2

d xi

dϕ

)
x0,i u0,i

]
Δφi (ϕ)+



Bη

= U

S

∑
i

d J0,i

dϕ

1+τuφ0,i
(
Uτuφ0,i +2

)(
Uφ0,i

(
τuτxφ0,i +τu +τx

)+1
)

2
Δφi (ϕ)+



Bη (4.56)

≡ A(ϕ)+



Bη,

which defines the drift field A(ϕ) of Eq. (4.7). In the last equation we have used Eqs. (4.46) and

(4.47), as well as Eq. (4.41).
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Figure 4.21 – Numerical evaluation of drift field. All plots show quantities related to Eq. (4.56)
for varying facilitation U and depression time constant τx (color legend on the right hand
side shows values of τx in units of ms). The firing rate perturbation was fixed to Δφi = 0.1φ0,i

for neurons in the right half of the bump (leading to a positive drift) and 0 otherwise. Other

coefficients φ0,i , d J0,i

dϕ ,φ′
0,i are estimated from a network with U = 1,τx = 150ms,τu = 650ms.

A Normalization constant (“Normalizer”) S of Eq. (4.56). B Drift field A of Eq. (4.56) without
the normalization constant (equal to A ·S). C Full drift term A of Eq. (4.56). Color legend on
the right hand side shows values of τx in units of ms.

Analysis of drift field In the limit of vanishing short-term plasticity (U → 1,τx → 0) the drift

term of Eq. (4.56) reduces to A =
(∑

i
d J0,i

dϕ Δφi (ϕ)
)

/
(
τs

∑
i

d J0,i

dϕ

2
φ′

0,i

)
, which extends the

framework of Burak and Fiete (2012) to frozen perturbations. For general parameters of

short-term plasticity, we plot in Fig. 4.21 the drift term Eq. (4.56) and the value of the

normalization constant S in Fig. 4.21 for a fixed perturbation. For evaluations including the

facilitation time constant τu see Section 4.4.6.2.

As before for the diffusion strength (see Section 4.6.2.1), we find that increasing the diffusion

time constant τx leads to increased drifts (Fig. 4.21). Although the rest of the non-normalized

summands become small (Fig. 4.21B), vanishing values of the normalization constant S lead

to this behavior (Fig. 4.21A). A similar argument as in Section 4.6.2.1 shows that this is a

general feature of the normalization constant S, which becomes small as τx approaches a

critical, firing rate dependent, value τx,c (cf. Eq. (4.54)).
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4.6.3 Spiking network model

Spiking simulations are based on a variation of a popular ring-attractor model of visuospatial

working memory (Compte et al., 2000) (and used with variations in Renart et al. (2003);

Murray et al. (2012); Wei et al. (2012); Pereira and Wang (2015); Almeida et al. (2015); see also

Section 3.6.2 in the previous chapter). The recurrent excitatory connections of the original

network model have been simplified, to allow for faster simulation as well as analytical

derivations of the recurrent synaptic activation. The implementation details are given below,

however the major changes are: 1) all recurrent excitatory conductances are voltage

independent; 2) a popular model of synaptic short-term plasticity via facilitation and

depression (Markram et al., 1998; Tsodyks et al., 1998; Mongillo et al., 2008) is used to

dynamically regulate the weights of the incoming spike-trains 3) recurrent excitatory

conductances are computed as linear filters of the weighted incoming spike trains instead of

the second-order kinetics for NMDA saturation used in Compte et al. (2000). The inclusion of

short-term depression effectively leads to a saturation of the recurrent excitatory transmission

at high firing rates (see below).

4.6.3.1 Neuron model

Neurons are modeled by leaky integrate-and-fire dynamics with conductance based synaptic

transmission (Compte et al., 2000; Brunel and Wang, 2001b). The network consists of

recurrently connected populations of NE excitatory and NI inhibitory neurons, both

additionally receiving external spiking input with spike times generated by Next independent,

homogeneous Poisson processes, with rates νext . We assume that external excitatory inputs

are mediated by fast AMPA receptors, while, for simplicity, recurrent excitatory currents are

mediated only by slower NMDA channels. While some of the definitions below are similar to

those of Section 3.6.2, they are restated here for completeness.

The dynamics of neurons in both excitatory and inhibitory populations are governed by the

following system of differential equations indexed by i ∈ {0, ..., NE/I −1}:

CmV̇i (t ) = −I L
i (t )− I Ext

i (t )− I I
i (t )− I E

i (t ), (4.57)

I P
i = gP sP

i (t ) (Vi (t )−VP ) ,

where P ∈ {L,Ext,I,E}, V denotes voltages (membrane potential) and I denotes currents. Here,

Cm is the membrane capacitance and VL,VE,VI are the reversal potentials for leak, excitatory

currents, and inhibitory currents, respectively. The parameters gP for P ∈ {L,Ext,I,E} are fixed

scales for leak (L), external input (Ext) and recurrent excitatory (E) and inhibitory (I) synaptic

conductances, which are dynamically gated by the unit-less gating variables sP
i (t ). These

gating variables are described in detail below, however we set the leak conductance gating

variable to sL
i = 1. For excitatory neurons, we refer to the excitatory and inhibitory

conductance scales by gEE ≡ gE and gEI ≡ gI, respectively. Similarly, for inhibitory neurons, we
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refer to the excitatory and inhibitory conductance scales by gIE ≡ gE and gII ≡ gI, respectively.

The model neuron dynamics (Eq. 4.57) are integrated until their voltage reaches a threshold

Vthr. At any such time, the respective neuron emits a spike and its membrane potential is reset

to the value Vres. After each spike, voltages are clamped to Vres for a refractory period of τref.

See Table D.1 for parameter values used in simulations.

4.6.3.2 Synaptic gating variables and short-term plasticity

The unit-less synaptic gating variables sP
i (t ) for P ∈ {Ext,I} (external and inhibitory currents)

are exponential traces of the spike trains of all presynaptic neurons j with firing times t j :

ṡP
i (t ) =− sP

i (t )

τP
+ ∑

j∈pre(P )
wP

i j

∑
t j

δ
(
t − t j

)
, (4.58)

where pre(P) indicates all neurons presynaptic to the neuron i for the the connection type P .

The factors wP
i j are unit-less synaptic efficacies for the connection from neuron j to neuron i .

For the excitatory gating variables of inhibitory neurons sIE
i ( IE denotes connections from E to

I neurons) we also use the linear model of Eq. (4.58) with time constant τI E = τE .

For excitatory to excitatory conductances, we use a well established model of synaptic

short-term plasticity (STP) (Tsodyks et al., 1998; Markram et al., 1998; Mongillo et al., 2008)

which provides dynamic scaling of synaptic efficacies depending on presynaptic firing. This

yields two additional dynamical variables, the facilitating synaptic efficacy u j (t ), as well as the

fraction of available synaptic resources x j (t ) of the outgoing connections of a presynaptic

neuron j , which are implemented according to the following differential equation:

u̇ j = − 1

τu

(
u j −U

)+U
(
1−u−

j

)∑
t j

δ(t − t j ),

ẋ j = − 1

τx

(
x j −1

)−x−
j u−

j

∑
t j

δ(t − t j ). (4.59)

Here, the indices u−
j and x−

j indicate that for the incremental update of the variables upon

spike arrival, the values of the respective variables immediately before the spike arrival are

used (Mongillo et al., 2008). The dynamics of recurrent excitatory-to-excitatory transmission

with STP are then given by gating variables that linearly filter the incoming spikes, which are

scaled by facilitation and depression:

sEE
i (t ) = ∑

j∈pre(EE)
wEE

i j s j (4.60)

ṡ j = − s j

τE
+∑

t j

δ
(
t − t j

)
u−

j (t )x−
j (t ). (4.61)

155



Chapter 4. Continuous attractor networks: Effects of short-term plasticity on drift and
diffusion

Here, pre(EE) indicates all excitatory neurons that make synaptic connections to the neuron i .

This makes the system Eqs. (4.59) and (4.61) a spiking variant of the rate-based dynamics of

Eq. (4.19), and sEE
i a variable related to the input Ji (cf. Eq. (4.18)). In Section 4.6.4 we will

make this link explicit.

4.6.3.3 Network connectivity

All connections except for the recurrent excitatory connections are all-to-all and uniform,

with unit-less connection strengths set to w I
i j = w ext

i j = 1 and for inhibitory neurons

additionally wE
i j = 1. The recurrent excitatory connections are distance dependent. Each

neuron of the excitatory population with index i ∈ {0, ..., NE −1} is assigned an angular

position θi = i · 2π
NE

∈ [0,2π). Recurrent excitatory connection weights w EE
i j from neuron j to

neuron i are then given by the Gaussian function wEE(θ) as

w EE
i j = w EE(θi −θ j ) = w0 + (w+−w0)exp

(
−[

min
(∣∣θi −θ j

∣∣ ,2π− ∣∣θi −θ j
∣∣)]2 1

2σ2
w

)
.

Additionally, for each neuron we keep the integral over all recurrent connection weights

normalized, resulting in the normalization condition 1
2π

∫π
−π dϕw EE(ϕ) = 1. This

normalization ensures that varying the maximum weight w+ will not change the total

recurrent excitatory input if all excitatory neurons fire at the same rate. Here, we choose w+ as

a free parameter constraining the baseline connection weight to:

w0 =
w+σw erf

(
π


2σw

)
−


2π

σw erf
(

π

2σw

)
−


2π
.

4.6.4 Firing rate approximation of the spiking network

In this section we perform a firing rate approximation for spiking neurons, similar to that of

Section 3.6.3 in the last chapter, allowing us to relate the theory of Section 4.6.1 to the spiking

network. The spiking dynamics here are simpler, since we do not have saturating

second-order NMDA kinetics and all conductances are voltage independent. Nevertheless,

the calculation of the mean steady-state input Ji will require the approximation of the steady

states of short-term plasticity, in dependence on the mean firing rate of neurons

(Section 4.6.4.1). This allows us to calculate the prediction of mean firing rates F

(Section 4.6.4.2) in dependence of the steady-state input Ji , as well as derivatives of firing

rates with respect to perturbations (Section 4.6.4.3), which appear in Eq. (4.50), Eq. (4.56) and

related terms.
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Figure 4.22 – Steady-state approximation of short-term plasticity. Analytical predictions
〈u j x j 〉 as functions of the presynaptic firing rate ν j (cf. Eq. (4.66)) compared to simulations by

the temporal average of synaptic activation
〈s j 〉t

τEν j
. Presynaptic neurons fire with spike spike

counts distributed as Poisson processes with mean rates ν j . After an initial transient of 2s,
which was discarded, the temporal mean 〈s j 〉t averaged over 3s simulation time was recorded.

Dots and error bars are mean and 95% confidence of the mean of
〈s j 〉t

τEν j
recorded over 300

realizations of presynaptic Poisson spike trains.

4.6.4.1 Mean synaptic activations

Here we calculate mean synaptic activations, which will be used in Section 4.6.6 to

approximate the bump shapes in networks of spiking neurons. We first replace the synaptic

activation variables sP (V , t ) for P ∈ {I,ext} by their expectation values under input with

Poisson statistics. We assume that the inhibitory population fires at rates νI . For the linear

synapses this yields

〈
sext〉=τextNextνext, (4.62)〈

sI〉=τINIνI. (4.63)

For the recurrent excitatory-to-excitatory synapses with short-term plasticity, we set the

differential equations (4.59) to zero, and also average them over the Poisson statistics. Akin to

the “mean-field” model of Tsodyks et al. (1998), we average the steady-state values of
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facilitation and depression separately over the Poisson statistics. This implicitly assumes that

facilitation and depression are statistically independent, with respect to the distributions of

spike times – while this is not strictly true, the approximations work well, as has been

previously reported (Tsodyks et al., 1998). This allows a fairly straightforward evaluation of the

mean steady-state value of the combined facilitation and depression variables 〈u j x j 〉, under

the assumption that the neuron j fires at a mean rate ν j with Poisson statistics. This yields

rate approximations of the steady-state values similar to those obtained in Eq. (4.21) and

Eq. (4.22):

〈u j 〉 =
U

(
τuν j +1

)
Uτuν j +1

(4.64)

〈x j 〉 =
Uτuν j +1

Uν j (τu +τx +ν jτuτx )+1
(4.65)

〈u j x j 〉 = 〈u j 〉〈x j 〉 =
U

(
ν jτu +1

)
Uν j (τu +τx +ν jτuτx )+1

. (4.66)

We now assume that the excitatory population of NE neurons fires at the steady-state rates φi

(0 ≤ i < N ). To calculate the synaptic activation of excitatory-to-excitatory connections 〈sEE
i 〉,

we set Eq. (4.60) to zero, and average over Poisson statistics (again neglecting correlations),

which yields

〈s j 〉 = τE 〈u j x j 〉φ j

and 〈sEE
i 〉 =∑

j wEE
i j τE 〈u j x j 〉φ j . In Fig. 4.22 we evaluated the analytical approximation 〈s j 〉

against simulations, by comparing it to the temporal average 〈s〉t recorded from spiking

simulations under homogeneous Poisson input with different firing rates.

We then define the normalized steady-state input Ji by:

Ji ≡ 1

NE
〈sEE

i 〉 = 1

NE

∑
j

wEE
i j 〈s j 〉. (4.67)

This form of the steady-state input Eq. (4.67) will be used to relate the theory of Section 4.6.1

to the spiking network. The additional factor 1/NE is introduced to make the scaling of the

excitatory-to-excitatory conductance with the size of the excitatory population NE explicit,

which will be used in Section 4.6.5.4. To see this, we assume that the excitatory conductance

scale of excitatory neurons gEE is scaled such that the total conductance is invariant under

changes of NE (Gerstner et al., 2014): gEE = g̃EE/NE , for some fixed value g̃EE. This yields the

total excitatory-to-excitatory conductance gEEsEE
i = g̃EE Ji with Ji as introduced above, where

the scaling with NE is now shifted to the input variable Ji .

Finally, for the synaptic activation of excitatory to inhibitory connections, we get the mean
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activations:

〈
sIE〉= τE

∑
j
φ j . (4.68)

4.6.4.2 Firing rate prediction

In this section, we reiterate the approach of calculating the mean firing rates of neurons in

dependence of the mean synaptic activations calculated in the last section. The resulting

expressions are very similar to Section 3.6.3.3, and follow Brunel and Wang (2001b) to reduce

the differential equations of Eq. (4.57) to a dimensionless form. Since the main difference

consists in the absence of the voltage dependent NMDA conductance, we can set the two

associated parameters β→ 0,γ→ 0 in Eq. (3.25), to arrive at:

τi V̇i = − (Vi −VL)+μi +σi


τiηi (t )

Si = 1+TIνI +Textνext +TE Ji (4.69)

μi Si = (VI −VL)TIνI + (VE −VL)Textνext + (VE −VL)TE Ji (4.70)

σi = gext

Cm
(〈V 〉−VE )τext

√
τi Nextνext. (4.71)

τi = Cm

gLSi〈
ηi (t )

〉 = 0〈
ηi (t )ηi (t ′)

〉 = 1

τext
exp(−

∣∣t − t ′
∣∣

τext
) (4.72)

where Text = Nextτext
gext

gL
, TI = NIτI

gI

gL
are effective timescales of external and inhibitory

inputs, and TE = NE
gE

gL
is a dimensionless scale for the excitatory conductance. As in

Section 3.6.3.3, μi is the bias of the membrane potential due to synaptic inputs, and σi

measures the scale of fluctuations in the membrane potential due to random spike arrival

approximated by the Gaussian process ηi .

Again, the mean firing rates F and mean voltages 〈Vi 〉 of populations of neurons governed by

this type of differential equation can be approximated by (Brunel and Wang, 2001b) (we

restate here only the central result, see Section 3.6.3.3 for the full expressions):

F
[
μi ,σi ,τi

] =
(
τref +



πτi

∫α(μi ,σi )

β(μi ,σi )
du exp(u2) [1+erf(u)]

)−1

, (4.73)

〈Vi 〉 = μi +VL − (Vthr −Vreset)φiτi . (4.74)
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4.6.4.3 Derivatives of the rate prediction

Here we calculate derivatives of the input-output relation (Eq. (4.73)) that will be used below

in Section 4.6.5.

The expressions for drift and diffusion (see Section 4.4.3) contain the derivative φ′
i = dF

d J

∣∣∣
Ji

of

the input-output relation (Eq. (4.73)) with respect to the recurrent excitatory input Ji . Note,

that F depends on Ji through all three arguments μi ,σi and τi . First, we define

X (u) ≡ exp(u2) [1+erf(u)], and the shorthand Fi = F
[
μi ,σi ,τi

]
. The derivative can then be

readily evaluated as (to shorten the notation in the following, we skip noting the evaluation

points for derivatives in the following):

dF

d Ji
=−Fi

TE

Si
(Fiτref −1)+


πF 2
i τi

[
X (β)

dβ

d Ji
−X (α)

dα

d Ji

]
, (4.75)

dα/β

d Ji
=
(
∂α/β

∂μi
+ ∂α/β

∂σi

∂σi

∂〈Vi 〉
)

TE

Si

(−μi + (VE −VL)
)

−
(
∂α/β

∂σi

[
∂σi

∂τi
− ∂σi

∂〈Vi 〉 (Vthr −Vreset)φi

]
+ ∂α/β

∂τi

)
TE

Si
τi .

where α/β stands as a placeholder for either function, and the expressions for α and β are

given in Eq. (3.21) and Eq. (3.22), respectively.

A second expression involving the derivative of Eq. (4.73) is dφ0,i

dΔL
i

which appears in the theory

when estimating firing rate perturbations caused by frozen heterogeneities in the leak

potentials of excitatory neurons (see Eq. (4.80)). The resulting derivatives are almost similar,

which can be seen by the fact that replacing VL →VL +ΔL
i in Eq. (4.57) only leads to an

additional term ΔL
i in Eq. (4.70). Thus, for neuron i the derivative can be evaluated to

dF

dΔL
i

=

πF 2

i τi

[
X (β)

∂β

∂ΔL
i

−X (α)
∂α

∂ΔL
i

]
, (4.76)

dα/β

dΔL
i

=
(
∂α/β

∂μi
+ ∂α/β

∂σi

∂σi

∂〈Vi 〉
)

1

Si
.

In practice, given a vector φi ,0 of firing rates in the attractor state, as well as the mean firing

rate of inhibitory neurons νI , we evaluate the right hand side of Eq. (4.75) and Eq. (4.76) by

replacing Fi →φi ,0. This allows efficiently calculating the derivatives without having to

perform any numerical integration. The two terms will be exactly equal if φ0,i is a

self-consistent solution of Eq. (4.73) for firing rates of the excitatory neurons across the

network. For the theoretical estimate of φ0,i (see Section 4.6.6), which is found by minimizing

this self-consistency at a few points along the ring, this will be exactly satisfied at these few

points only, and approximatively at all others. In the Results part of the study, we used

numerical estimates of φi ,0 and νI that were directly measured from simulations. Since these

were very close to the theoretical predictions for all networks we investigated, the

replacement Fi →φi ,0 above yields similar results.
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4.6.5 Frozen noise and expected squared field magnitude

In this section we describe two sources of frozen noise that introduce drift into the system by

Eq. (4.56): sparse connectivity and heterogeneous leak potentials. Additionally, we derive the

expected squared magnitude for the drift fields for both of these sources. While the

derivations are generally valid under the framework introduced in Section 4.6.1, we introduce

frozen noise in the setting of the spiking network of Section 4.6.3, which contains excitatory

and inhibitory neurons. We will also use the normalized input defined above (Eq. (4.67)),

which ensures proper scaling of the system size in Section 4.6.5.4.

4.6.5.1 Sparse and heterogeneous connectivity

Introducing sparse connectivity, we replace the recurrent weights in Eq. (4.67) by:

wEE
i j →

[
wEE

i j +Δw
i j

] pi j

p
. (4.77)

Here, pi j ∈ {0,1} are Bernoulli variables, with P (pi j = 1) = p, where the connectivity

parameter p ∈ (0,1] controls the overall sparsity of recurrent excitatory connections. For p = 1

the entire network is all-to-all connected. Additionally, we have studied noisy synaptic

heterogeneities Δw
i j = ηi jσw added to the recurrent weights (as in Itskov et al. (2011b)), where{

ηi j |1 ≤ i , j ≤ NE
}

are independent, normally distributed random variables with zero mean

and unit variance. We did not investigate this type of heterogeneity in the main text, since

increasing σw lead to a loss of the attractor state before creating large enough directed drifts

to be comparable to the other sources of frozen noise considered here – most of the small

effects were “hidden” behind diffusive displacement (Laing and Longtin, 2001). Nevertheless,

we included this case in the analysis here for completeness.

Let the center position of the bump be ϕk = k 2π
N −π (for 0 ≤ k < N ). Subject to the perturbed

weights, the recurrent steady-state excitatory input Ji (ϕk ) Eq. (4.67) to any excitatory neuron

can be written as the unperturbed input J0,i (ϕk ) plus an additional input J struct
i (ϕk ) arising

from the perturbed connectivity. Note that the synaptic steady-state activations s0, j (ϕk )
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change with varying bump centers – in the following, we denote sk
0, j ≡ s0, j (ϕk ):

Ji (ϕk ) = 1

NE

∑
j

[
wEE

i j +Δw
i j

] pi j

p
sk

0, j

= 1

NE

1

p

[∑
j

[
wEE

i j +Δw
i j

]
sk

0, j −
∑

j

[
wEE

i j +Δw
i j

](
1−pi j

)
sk

0, j

]

= 1

NE

∑
j

wEE
i j sk

0, j +
1

NE

1

p

[(
1−p

)∑
j

wEE
i j sk

0, j +
∑

j
Δw

i j sk
0, j −

∑
j

[
wEE

i j +Δw
i j

](
1−pi j

)
sk

0, j

]

= 1

NE

∑
j

wEE
i j sk

0, j︸ ︷︷ ︸
J0,i (ϕk )

+ 1

NE

1

p

[∑
j

[
wEE

i j +Δw
i j

]
pi j sk

0, j −p
∑

j
wEE

i j sk
0, j

]
︸ ︷︷ ︸

J struct
i (ϕk )

.

Note that J0,i (ϕk ) is an index-shifted version of the steady-state input: J0,i (ϕk ) = J0,i−k .

However, such a relation does not hold for J struct
i (ϕk ), since the random numbers pi j will

change the resulting value for varying center positions.

We calculate the firing rate perturbations δφi (ϕk ) resulting from the additional input by a

linear expansion around the steady-state firing rates φ0,i (ϕk ) →φ0,i (ϕk )+δφi (ϕk ). These

evaluate to:

δφi (ϕk ) = dF

d J

∣∣∣∣
J0,i

(ϕk ) · J struct
i (ϕk )

=φ′
i ,0(ϕk ) · J struct

i (ϕk ). (4.78)

See Section 4.6.4.3 for the derivation of the function dF
d J (J0,i ) for the spiking network used in

the main text.

In the sum of Eq. (4.56), we used the firing rate profile �φ0 centered at ϕ0 to calculate the drift

for varying center positions. To accommodate the shifted indices resulting from moving

center positions, we re-index the summands to yields the perturbations φ0,i →φ0,i +Δφi (ϕk )

used there:

Δφi (ϕk ) =φ′
i ,0 · J struct

i+k (ϕk ).

4.6.5.2 Heterogeneous leak reversal potentials

We further investigated random distributions of the leak reversal potential VL. These are

implemented by the substitution

VL → VL +ΔL
i , (4.79)
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where the ΔL
i are independent normally distributed variables with zero mean, i.e.〈

ΔL
i

〉= 0mV ,
〈
ΔL

i Δ
L
j

〉
=σ2

Lδi j . The parameter σL controls the standard deviation of these

random variables, and thus the noise level of the leak heterogeneities.

Let ϕk = k 2π
N −π for 0 ≤ k < N be the center position of the bump. First, note that the

heterogeneities ΔL
i do not depend on the center position ϕk , since they are single neuron

properties. As in the last section, we calculate the firing rate perturbations δφi (ϕk ) resulting

from the additional input by a linear expansion around the steady-state firing rates

φ0,i (ϕk ) →φ0,i (ϕk )+δφi (ϕk ):

δφi (ϕk ) = dFi

dΔL
i

(Ji (ϕk )) ·ΔL
i

≡ dφ0,i

dΔL
i

(ϕk ) ·ΔL
i . (4.80)

Here, dFi

dΔL
i

(Ji (ϕk )) is the derivative of the input-output relation of neuron i in a bump centered

at ϕk , with respect to the leak perturbation. We introduced dφ0,i

dΔL (ϕk ) as a shorthand notation

for this derivative, since it is evaluated at the steady-state input Ji ,0(ϕk ). For the spiking

network of the main text, this is derived in Section 4.6.4.3.

In the sum of Eq. (4.56), we keep the firing rate profile �φ0 centered at ϕ0 while calculating the

drift for varying center positions. As in the last section, we re-index the sum to yield the

perturbations φ0,i →φ0,i +Δφi (ϕk ) used there:

Δφi (ϕk ) = dφ0,i

dΔL
i

·ΔL
i+k .

4.6.5.3 Squared field magnitude

Using the equation of the drift field in Eq. (4.56), and the firing rate perturbations above

(Eq. (4.78) and Eq. (4.80)) it is easy to see that for any center position ϕ the expected drift field

averaged over the noise parameters is 0, since all single firing rate perturbations vanish in

expectation. In the following we calculate the variance of the drift field averaged over noise

realizations, which turns out to be additive with respect to the two noise sources.

We begin by calculating the correlations between frozen noises caused by sparse connectivity

and leak heterogeneities. For the Bernoulli distributed variables pi j it holds that〈
pi j

〉= p,
〈

pi j plk
〉= δi lδ j k p + (1−δi lδ j k )p2. For the other independent random variables it

holds that
〈
ΔL

i

〉= 0mV ,
〈(
ΔL

i

)2
〉
=σ2

L ,
〈
Δw

i j

〉
= 0,

〈(
Δw

i j

)2
〉
=σ2

w . Again, the weight

heterogeneities Δw
i j are only included for completeness – all analyses of the main text assume

that σw = 0.

For the correlations between the perturbations we then know that (for brevity, we omit the
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dependence on the center position ϕ):

〈
J struct

i ΔL
i

〉 = 0

〈
J struct

i J struct
l

〉 = 1

N 2
E

〈(∑
k

s0,k wEE
l k

(
plk

p
−1

)
+ 1

p

∑
k

s0,kΔ
w
lk pl k

)
(∑

k
s0,k wEE

lk

(
pl k

p
−1

)
+ 1

p

∑
k

s0,kΔ
w
l k plk

)〉

= 1

N 2
E

(∑
j ,k

s0, j wEE
i j s0,k wEE

l k

〈(
pi j

p
−1

)(
plk

p
−1

)〉
+ 1

p2

∑
j ,k

s0, j s0,k

〈
Δw

i jΔ
w
lk

〉〈
pi j pl k

〉)

= 1

N 2
E

(∑
j ,k

s0, j wEE
i j s0,k wEE

l k

(
1

p2

〈
pi j plk

〉−1

)
+ 1

p

∑
j

s2
0, jσ

2
wδi l

)

= 1

N 2
E

(∑
j

s2
0, j

(
wEE

i j

)2
(

1

p
−1

)
+ 1

p

∑
j

s2
0, jσ

2
w

)
δi l .

Starting from Eq. (4.56), we now use as a firing rate perturbation the sum of firing rate

perturbations from both Eq. (4.78) and Eq. (4.80). We further denote the pre-factor

Ci = d J0,i

dϕ

1+τuφ0,i (Uτuφ0,i+2)
(Uφ0,i (τuτxφ0,i+τu+τx )+1)2 , and explicitly state the dependence on the bump center

position ϕ. The expected squared field averaged over ensemble of frozen noises is then:

〈
A(ϕ)2〉

frozen = 1

S2

∑
i , j

Ci (ϕ)C j (ϕ)·
〈(

φ′
0,i (ϕ)J struct

i (ϕ)+ dφ0,i

dΔL
(ϕ)ΔL

i

)(
φ′

0, j (ϕ)J struct
j (ϕ)+ dφ j

dΔL
(ϕ)ΔL

j

)〉
frozen

= 1

S2

∑
i , j

Ci (ϕ)C j (ϕ)·
(〈

φ′
0,i (ϕ)J struct

i (ϕ)φ′
0, j (ϕ)J struct

j (ϕ)
〉

frozen
+
〈

dφ0,i

dΔL
(ϕ)ΔL

i

dφ0, j

dΔL
(ϕ)ΔL

j

〉
frozen

)

= 1

S2

∑
i

C 2
i (ϕ)·

⎛
⎜⎝
(
φ′

0,i (ϕ)
)2

N 2
E

[(
1

p
−1

)∑
j

(
s0, j (ϕ)

)2
(
wEE

i j

)2 + 1

p

∑
j

s2
0, j (ϕ)σ2

w

]
+
(

dφ0,i

dΔL
(ϕ)

)2

σ2
L

⎞
⎟⎠ .

(4.81)

One can see directly that the two last terms are invariant under shifts of the bump center ϕ,

since these introduce symmetric shifts of the indexes i . Similarly, it is easy to see that the first
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term is also invariant. Let ϕ′ be shifted to the right by one index from ϕ . It then holds that:

∑
i

C 2
i (ϕ′)

⎛
⎜⎝
(
φ′

0,i (ϕ′)
)2

N 2
E

(
1

p
−1

)∑
j

(
s0, j (ϕ′)

)2
(
wEE

i j

)2

⎞
⎟⎠

=∑
i

C 2
i−1

⎛
⎜⎝
(
φ′

0,i−1(ϕ)
)2

N 2
E

(
1

p
−1

)∑
j

(
s0, j−1(ϕ)

)2
(
wEE

i j

)2

⎞
⎟⎠

=∑
i

C 2
i−1

⎛
⎜⎝
(
φ′

0,i−1(ϕ)
)2

N 2
E

(
1

p
−1

)∑
j

(
s0, j (ϕ)

)2
(
wEE

i−1, j

)2

⎞
⎟⎠ .

The final equation holds since wEE
i j consists of index-shifted rows of the same vector (see

generally Section 4.4.1 and Section 4.6.3.3 for the spiking network weights).

In summary,
〈

A(ϕ)2
〉

frozen will evaluate to the same quantity
〈

A2
〉

frozen for all center positions

ϕ. In the main text, we use this fact to estimate
〈

A2
〉

frozen from simulations, by additionally

averaging over the all center positions and interchanging the ensemble and positional

averages:

〈
A2〉

frozen = 1

NE

∑
k

〈
A(ϕk )2〉

frozen =
〈

1

NE

∑
k

A(ϕk )2

〉
frozen

.

Thus, we can compare the value of
〈

A2
〉

frozen to the mean squared drift field over all center

positions, averaged over instantiations of noises.

4.6.5.4 System size scaling

To make explicit the scaling with system size, we argue as follows. Generally, sums over the

discretized intervals [−π,π) as they appear in Eqs. (4.52) and (4.56) will scale with the number

N chosen for the discretization of the positions on the continuous ring ϕ(i ) = i
N 2π−π.

Consider two discretizations of the ring, partitioned into N1 and N2 uniformly spaced bins of

width 2π
N1

and 2π
N2

. We can then approximate integrals over any continuous (Riemann

integrable) function f on the ring by the two Riemann sums:

2π

N1

N1−1∑
i=0

f (ϕ1,i ) ≈
∫π

−π
f (ϕ)dϕ≈ 2π

N2

N2−1∑
i=0

f (ϕ2,i ), (4.82)

where, i 2π
N1

≤ϕ1,i < (i +1) 2π
N1

(for N2 and ϕ2,i analogously) are points in the bins (Forster,

2016).

Numerical quantities for the results of the main text have been calculated for NE = 800. In the

following we denote all of these quantities with an asterisk (∗). To generalize these results to

arbitrary system size N , we replace sums over N bins in Eqs. (4.52) and (4.56) by scaled sums
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over NE bins using the relation Eq. (4.82):

N−1∑
i=0

→ N

NE

NE−1∑
i=0

.

First, we find that the normalization constant scales as S = N
NE

S∗, and thus (dots indicate the

summands, which are omitted for clarity) for the diffusion strength B (cf. Eq. (4.52)):

B = 1

S2

N−1∑
i=0

· · ·

= N

NE

1

S2

NE−1∑
i=0

· · ·

= NE

N

1

(S∗)2

NE−1∑
i=0

· · ·

= NE

N
B∗. (4.83)

For the drift magnitude we turn to the expected squared drift magnitude calculated earlier (cf.

Eq. (4.81)), for which we find that

〈
A2〉

frozen =
(

NE

N

)2 1

(S∗)2

N

NE

NE−1∑
i=0

C 2
i

((
φ′

i

)2

N 2

(
1

p
−1

)
N

NE

NE−1∑
j=0

s2
j w2

i j +
(

dφi

dEL

)2

σ2
L

)

= 1

(S∗)2

NE−1∑
i=0

C 2
i

(
1

N 2

(
φ′

i

)2
(

1

p
−1

)NE−1∑
j=0

s2
j w2

i j +
NE

N

(
dφi

dEL

)2

σ2
L

)
. (4.84)

Note, that we could not resolve this scaling in dependence of
〈

A2
〉∗

frozen, since the two sources

of frozen noise (connectivity and leak heterogeneity) show different scaling with N .

4.6.6 Steady-state approximation and parameter optimization

In this section we sketch the self-consistent prediction of steady-state firing rate profiles

(presented in the previous chapter, Chapter 3) to the networks with facilitation and

depression investigated here. The main theoretical handiwork has already been performed in

Section 4.6.4.1 and Section 4.6.4.2. Here we follow the approach of Section 3.4.3, to constrain

Eq. (4.73) to a low-dimensional set of self-consistent equations. This will also be used to

optimize network parameters below. Following Section 3.6.3.3, we replace the network activity

φ j in the total input Eq. (4.67) by a parametrization

g (θ j ) = g0 + g1 exp

(
−
[∣∣θ j

∣∣
gσ

]gr
)

. (4.85)
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Figure 4.23 – Prediction of bump shapes for spiking networks with short-term plasticity. A
Theoretical prediction (lines) of maximal firing rate of firing rate profile (blue, g0 + g1) and
inhibitory firing rate (red) for varying parameter w+. Dots show averaged (10 repetitions,
error bars show 95% confidence of the mean) maximal mean firing rates estimated on 7s of
delay activity, 1s after offset of the initial cue. Crosses show the maximal firing rates if no
initial cue was given (mean of maximal rate of fit to g over 10 repetitions, error bars show 95%
confidence of the mean) estimated on 4.5s of simulation time, with theoretical predictions
(dashed lines, by setting w+ = 1 in the theory). A, right: Raster plots of excitatory population
for two example simulations at values of w+ indicated by lines. B Shape of the optimized firing
rates profiles (thick colored lines) compared to mean firing rate of spiking simulations (thin
colored lines) (firing rates recorded from 1s of delay activity and 10 repetitions, we show mean
±0.5ST D). Short-term plasticity parameters were U = 0.05,τu = 650ms,τx = 150ms. Other
network parameters were gEE = 0.0322nS, gEI = 2.062nS, gIE = 2.567pS, gII = 1.5911nS, and
wσ = 0.45.

Approximating sums 1
NE

∑NE−1
j=0 with integrals 1

2π

∫π
−π dϕ we arrive at:

Ji ≈ 1

2π

∫π

−π
dϕw EE (θi −ϕ

)〈s j 〉(g
(
ϕ
)
) = 1

2π
inputθi

[
g
]

.

We then substitute this relation in Eq. (4.73) and Eq. (4.74) to arrive at:

μi =μi
(
inputθi

[
g
]

,νI ,νext
)

,

τi = τi
(
inputθi

[
g
]

,νI ,νext
)

,

F (inputθi

[
g
]

,νI ,〈Vi 〉) ≡φ
[
μi ,σi ,τi

]
. (4.86)

Comparing Eq. (4.86) to the earlier form Eq. (3.24), we see that the equations for the voltage

bias term μi , the effective membrane time constants τi , as well as the total conductance Si

(Eq. (4.69)) are all independent of the mean voltage, since here we have no voltage

dependence of the NMDA conductance. This makes the equation for the mean voltage

Eq. (4.74) an explicit equation, which can be used in the fluctuation scale Eq. (4.71), leaving us

with only a single self-consistent equation Eq. (4.86).

167



Chapter 4. Continuous attractor networks: Effects of short-term plasticity on drift and
diffusion

4.6.6.1 Optimization for steady-state firing rates

To approximate the steady-state firing rates, we again seek to contain the parameters of the

parametrization Eq. (4.85). For each point θi that we choose to sample from the excitatory

population, the theory now yields one constraining equation Eq. (4.73). The inhibitory

population, again also yields a single equation, for the free variable νI . This again allows us to

choose 4 evaluation points to constrain the 4 free parameters of the parametrization. These

are chosen as described in Section 3.6.3.1. Errors were optimized using the optimize.root

solver described in Section 3.6.3.5.

An example for optimization results is shown in Fig. 4.23, where we predicted the bump shape

under the changing parameter w+ (compare to Section 3.4.3.2 and Fig. 3.4 in the last chapter).

4.6.6.2 Optimization for network parameters

Here, we describe the optimization procedure performed to produce approximately similar

bump shapes as the parameters of short-term plasticity are varied. It should be noted that the

parameters presented here were optimized at an earlier stage of this work than the results

presented in Section 3.4.3.3. In particular, the optimization targets should have contained the

parameter gσ, and the state gr should have been optimized for. The resulting procedure

unfortunately required some hand-tuning (see below).

In hindsight, these oversights could have been improved. However, we stress that we have

shown (see Fig. 4.4) that the parameters achieved in this way yield a set of spiking attractor

networks with very similar firing rates. Further, we have validated our results in the main text

by extrapolating theoretical predictions for drift and diffusion from a single bump attractor

shape (U = 1,τx = 150ms) by changing the short-term plasticity parameters. This

demonstrated that the effects of short-term plasticity on drift and diffusion were due to

changes in the plasticity parameters, and not due to possible differences in the shapes of the

attractor states of the networks that were simulated for each of these parameters.

We optimize networks by imposing the following targets for parameters:

g0 = 0.1Hz, g1 = 40Hz, νE ,basal = 0.5Hz, νI ,basal = 3Hz. For all networks we chose

w+ = 4.0, gr = 2.5. The following parameters were then optimized: νI , gσ, gEE (excitatory

conductance gE on excitatory neurons); gIE (excitatory conductance gE on inhibitory

neurons); gEI (inhibitory conductance gI on excitatory neurons); gII (inhibitory conductance

gI on inhibitory neurons). The basal firing rates (firing rates in the uniform state of the

network, prior to being cued) yielded two equations from Eq. (4.86) by setting w+ = 1. This

left 4 free parameters, again requiring evaluating Eq. (4.86) at 4 points as described in

Section 3.6.3.1. Errors were optimized using the optimize.root solver described in

Section 3.6.3.5. The basal firing rates were chosen to be fairly low to make the uniform state

more stable (as in Barbieri and Brunel (2008)).

This procedure does not yield a fixed value for gσ, since gσ is optimized for and is not set as a
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target value. We thus iterated the following until a solution was found with gσ ≈ 0.5: a) change

the width of the recurrent weights wσ; b) optimize network parameters as described here; c)

optimize the expected bump shape for the new network parameters to predict gσ. The

resulting parameter values are given in Table D.2.

4.6.7 Numerical methods

4.6.7.1 Spiking simulations

All network simulations and models were implemented in the NEST simulator (Bos et al.,

2015). Neuronal dynamics are integrated by fourth-order Runge-Kutta as implemented in the

GSL package (Galassi et al., 2009). The short-term plasticity model is integrated exactly, based

on inter-spike intervals.

Simulation protocol In all experiments (except those involving bi-stability, see below)

spiking networks were simulated for a transient initial period of tinitial = 500ms. To center the

network in an attractor state at a given angle −π≤ϕ<π, we gave an initial cue signal by

stimulating 0.1 ·NE neurons centered at ϕ by strong excitatory input mediated by additional

Poisson firing onto AMPA receptors (1s, 2kHz) with connections scaled down by a factor of

gsignal = 0.5. The external input ceased at t = toff = 1.5s. For simulations to estimate the

diffusion we simulated until tmax = 15s, yielding 13.5s of delay activity after the cue offset. For

simulations to estimate drift we set tmax = 8s, yielding 6.5s of delay activity after the cue offset.

For simulations exploring the bi-stability between the uniform state and a bump state

(Fig. 4.2B and Fig. 4.23), we added an additionaly input prior to the spontaneous state. We

stimulated simultaneously 20 excitatory neurons around 4 equally spaced cue points each (80

neurons in total, 500ms, 1.5kHz, AMPA connections scaled by a factor gsignal = 2). This was

applied to settle networks into the uniform state more stably – without this perturbation,

networks sometimes approached the bump state after being uniformly initialized. In both

figures, we show population activity only after this initial stimulus was applied. For Fig. 4.23,

firing rates of the uniform state were measured after offset of this stimulus.

Estimation of centers and mean bump shapes To estimate centers of bump states,

simulations were run until t = tmax and spikes were recorded from the excitatory population

and converted to firing rates by convolving them with an exponential kernel (τ= 100ms)

(Nawrot et al., 1999) and then sampled at resolution 1ms. This results in vectors of firing rates

ν j (t ),0 ≤ j ≤ NE −1 for every time t . We calculated the population center ϕ(t ) for time t by

measuring the phase of the first spatial Fourier coefficient of the firing rates. This is given by

ϕ(t ) = arg
(∑

j exp(i 2π
NE

j )ν j (t )
)
−π. For all analyses below, we identify t = 0 to be the time

t = toff of the initial cue.

To measure the mean bump shapes, we first rectified the vectors ν j (t ) for every t by rotating
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the vector until ϕ(t ) = 0. We then sampled the rectified firing rates starting from 1s after cue

offset at intervals of 20ms, which were used to calculate the mean firing rates. In Fig. 4.23 we

display the mean of sampled firing rates from all 10 repetitions. Fig. 4.4 shows mean rates for

each simulation averaged over the ∼ 1000 repetitions performed in the diffusion estimation

(below).

Exclusion of bump trajectories Sometimes bump trajectories would leave the attractor

state and return to the uniform state. We identified these trajectories in all experiments by

identifying maximal firing rates across the population that dropped below 10Hz during the

delay period. The such identified repetitions were excluded from the analyses, which occurred

mostly in networks with no facilitation for τx = 150ms,τu = 650ms: at U = 1, we excluded

222/1000 repetitions from the diffusion estimation, while for all other U ≤ 0.8 at most 15/1000

were excluded. Increasing the depression time constant also lead to less stable attractor states:

for τx = 200ms,τu = 650ms and U = 0.8, we had to exclude 250/1000 repetitions. During the

simulations for drift estimation, we observed that frozen noise also leads to less stable bumps

under weak facilitation for sparse connectivity (p � 1) and high leak variability (σL � 0).

Diffusion estimation Diffusion was estimated for each combination of network parameters

by simulating 1000 repetitions (10 initial cue positions, 100 repetitions each) of 13.5s of delay

activity. Center positions ϕk (t ) were estimated for each repetition k as described above. We

then calculated for each repetition the offset relative to the position at 500ms by

Δϕk (t ) =ϕk (t −500ms)−ϕk (500ms), effectively discarding the first 500ms after cue-offset.

The time-dependent variance of K repetitions (excluding those repetitions in which the bump

state was lost, see above) was then calculated as V (t ) = 1
K

∑
k Δϕ

2
k (t ). The diffusion strnegth

can then be estimated from the slope of a linear least-squares regression (using the Scipy

method scipy.stats.linregress (Jones et al., 2017)) to the variance as a function of time:

V (t ) ≈ D0 +D · t , where the intercept D0 is included to account for initial transients. We

estimated confidence intervals by bootstrapping (Efron and Tibshirani, 1994): sampling K

elements out of the K repetitions with replacement (5000 samples) and estimating the

confidence level of 0.95 by the bias corrected and accelerated bootstrap implemented in

scikits-bootstrap (Evans, 2017). As a control, we calculated confidence intervals for D

additionally by Jackknifing: after building a distribution of estimates of D on K one-left-out

samples of all repetitions, the standard error of the mean can be calculated and is multiplied

by 1.96 to obtain the 95% confidence interval (Abdi and Williams, 2010) – confidence intervals

obtained by this method were almost indistinguishable from confidence intervals obtained by

bootstrapping.

Drift estimation Drift was estimated numerically for each combination of network and

frozen noise parameters by simulating 400 repetitions (20 initial cue positions, 20 repetitions

each) of 6.5s of delay activity. Centers positions ϕk (t ) were estimated for all K repetitions
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(excluding those repetitions in which the bump state was lost, see above) as explained above.

We then computed displacements in time by computing a set of discrete differences

Δϕk = {(
ϕk

[
t0 + ( j +1)d t

]−ϕ
[
t0 + j ·d t

])
/d t

∣∣∀ j ∈N0 : t0 + ( j +1)d t ≤ tmax
}

,

where we chose d t = 1.5s and t0 ∈ {500ms,700ms,900ms, . . . ,1900ms}. All differences are

calculated with periodic boundary conditions on the circle [−π,π), i.e. the maximal difference

was π/d t . We then calculated a binned mean (100 bins on the ring, unless mentioned

otherwise) of differences calculated for all K trajectories, to approximate the drift-fields as a

function of positions on the ring.

4.6.7.2 Mutual information measure

We are estimating the mutual information between a set of initial positions x ∈ [0,2π) and

associated final positions y(x) ∈ [0,2π) of the trajectories of a continuous attractor network

over a fixed delay period of T . For our results, we take T = 6.5s. We constructed binned and

normalized histograms (with bin size n = 100, but see below) as approximate probability

distributions of initial positions pi = p([i −1] 2π
n ≤ x < i 2π

n ) and all final positions

qi = p([i −1] 2π
n ≤ y < i 2π

n ) (with bins indexed by 1 ≤ i ≤ n), as well as the bivariate probability

distribution ri j = p([i −1] 2π
n ≤ x < i 2π

n ,
[

j −1
] 2π

n ≤ y(x) < j 2π
n ).

Using these, we can calculate the mutual information as (Latham and Roudi, 2009; Cover and

Thomas, 2012) M I =∑n
i=1

∑n
j=1 ri j log2

(
ri j

pi q j

)
. Note, that the sum effectively counts only

nonzero entries of ri j (trajectories that started in bin i and ended in bin j ): these imply that

pi �= 0 (a trajectory started in bin i ) and q j �= 0 (a trajectory ended in bin j ), which makes the

sum well defined. Although the value of M I depends on the number of bins n, in Fig. 4.14 we

always normalize M I to that of the control network (U = 1, no frozen noise, see

Section 4.4.6.1), which leaves the resulting plot nearly invariant under a change of bin

numbers.

4.6.7.3 Numerical integration of Langevin equations

Numerically integration of the homogeneous Langevin equations (Eq. (4.3)) describing drift

and diffusion of bump positions ϕ ∈ [−π,π) (with circular boundary conditions) has been

implemented as a C extension in Cython (Behnel et al., 2011) to the Python language

(Oliphant, 2007). Since the drift fields A(ϕ) are estimated on a discretization of the interval

[−π,π) into N bins, we first interpolate drift fields A given as N discretized values to obtain

continuous fields – interpolations are obtained using cubic splines on periodic boundary

conditions using the class gsl_interp_cspline_periodic of the Gnu Scientific Library (Galassi

et al., 2009).

For forward integration of the Langevin equation Eq. (4.3) from time t = 0, we start from an

initial position ϕ0 =ϕ(t = 0). Given a time resolution d t (unless otherwise stated we use
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d t = 0.1s) and a maximal time tmax we repeat the following operations until we reach t = tmax:

t → t +d t ,

ϕ→ϕ+d t · A(ϕ)+



d tB · r,

ϕ→ ((ϕ+π) mod 2π)−π.

Here, for each iteration r is a random number drawn from a normal distribution with zero

mean and unit variance (〈r 〉 = 0 and 〈r 2〉 = 1). The last step is performed to implement the

circular boundary conditions on [−π,π).
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A Secondary publications

This chapter contains additional publications that were completed during the time of my

doctoral thesis, to which I did not contribute in the role of a first author. For each publication,

a short summary is given, and the author contributions are provided in detail.

A.1 Synaptic patterning and the timescales of cortical dynamics

Renato Duarte, Alexander Seeholzer, Karl Zilles and Abigail Morrison

Published in: Current Opinion in Neurobiology, 43:156-165 (DOI: 10.1016/j.conb.2017.02.007;

Duarte et al. (2017))

Summary

Neocortical circuits, as large heterogeneous recurrent networks, can potentially operate and

process signals at multiple time scales, but appear to be differentially tuned to operate within

certain temporal receptive windows. The modular and hierarchical organization of this

selectivity mirrors anatomical and physiological relations throughout the cortex and is likely

determined by the regional electrochemical composition. Being consistently patterned and

actively regulated, the expression of molecules involved in synaptic transmission constitutes

the most significant source of laminar and regional variability. Due to their complex kinetics

and adaptability, synapses form a natural primary candidate underlying this regional

temporal selectivity. The ability of cortical networks to reflect the temporal structure of the

sensory environment can thus be regulated by evolutionary and experience-dependent

processes.

In this review, we compile evidence suggesting that the most significant source of both

laminar and regional variability in the adult cortex is the patterning of the synaptic machinery.

This patterning is highly conserved across individuals, and reflects the prevalence of innate

constraints. We then examine how the properties of synaptic composition and local
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connectivity are reflected in the emergent dynamics of large recurrent networks, their

characteristic time scales, and their complex spatiotemporal activity patterns. Finally, we

discuss how activity-dependent modifications, acting across multiple time scales, have the

potential to tune temporal receptive fields by locally stabilizing the circuit’s state space.

Author contributions

R.D., K.Z., A.M., and I wrote the review together. I contributed particularly to the section

focusing on emergent dynamics and temporal receptivity of cortical circuits (“Temporal

receptivity in cortical circuits”). In addition, I collaborated with R.D. on conception and layout

of Figure 2.

A.2 Multi-contact cooperativity in spike-timing dependent structural

plasticity stabilizes networks

Moritz Deger, Alexander Seeholzer and Wulfram Gerstner

Submitted (preprint published at arXiv:1609.05730 [q-bio.NC]; Deger et al. (2016))

Summary

Excitatory synaptic connections in the adult neocortex consist of multiple synaptic contacts,

almost exclusively formed on dendritic spines. Changes of spine shape and volume, a

correlate of synaptic strength, can be tracked in vivo for weeks. The number of potential

synaptic contacts between pairs of neurons is always uni-modally distributed, with an

estimated mean value significantly greater than the mean number of actual contacts observed

in experiments.

By unifying STDP and dendritic spine formation and removal, we show here that STDP of

single excitatory synaptic contacts provides a crucial cooperative mechanism regulating

structural plasticity. A novel Hebbian mechanism that limits correlations keeps networks

stable and enables us to study the cooperative network effects of structural plasticity. In a

network model with our correlation-stabilizing plasticity rule, many presynaptic neurons

compete to make strong synaptic connections onto a postsynaptic neuron, while the synaptic

contacts comprising each connection cooperate via postsynaptic firing.

We demonstrate that this local spike-timing dependent learning rule is sufficient to explain

the multi-contact configuration of synapses in adult neocortical networks, both under

steady-state and lesion-induced conditions. In simulations of a simplified network model of

barrel cortex, our plasticity rule reproduces whisker-trimming induced rewiring of

thalamo-cortical and recurrent synaptic connectivity on realistic time scales.
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Author contributions

M.D. and W.G. conceived and designed the study. M.D. conducted the simulation

experiments and analyses. M.D. approached me during the project for advice on the

implementability of the structural plasticity model used in the study in a parallelizable

fashion as part of the NEST simulator (Bos et al., 2015). After I implemented a fully tested and

working version of the plasticity rule, M.D. and I collaborated to improve it in over several

iterations, increasing the speed at which simulations were able to run. I then provided

additional testing to ensure proper function of the code. After large network simulations

became possible using this new implementation of the model, I contributed in an advisory

fashion to the design and analysis of the recurrent network simulations (Fig. 6). M.D., W.G.

and I wrote and finalized the manuscript together.

A.3 Algorithmic Composition of Melodies with Deep Recurrent Neu-

ral Networks

Florian Colombo, Samuel P Muscinelli, Alexander Seeholzer, Johanni Brea and Wulfram

Gerstner

Published in: Proceeding of the 1st Conference on Computer Simulation of Musical Creativity,

Huddersfield University (DOI: 10.13140/RG.2.1.2436.5683; Colombo et al. (2016))

Summary

Algorithmic composition of music is challenging, since algorithms have to be able both

extract and reproduce the long-range temporal dependencies inherent to musical pieces.

Recent advances in deep recurrent neural networks show these models might be able to

overcome these challenges, with the further advantage that they can be trained on any given

large dataset.

Here show that multi-layer neural networks trained on a large corpus of monophonic

melodies can be used as automated music composers, that are able to generate new melodies

coherent with the style they have been trained on. To facilitate stable representations of

long-range temporal dependencies, we use gated recurrent units which are architecturally

related to long short-term memory (LSTM) neurons. Both have been shown to be particularly

efficient in neuronal networks when tasked with learning time series with long-range

dependencies. Our network architecture processes duration and pitch in parallel, while

modeling the relation between these two properties.

After training our model to predict upcoming notes of melodies taken from a corpus of Irish

folk songs, we are able to operate the network in two modes. First, the network is able to

generate song continuations, when provided with the beginning of a given song, while
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retaining melodic and harmonic features of the initially provided song fragment in the

continuation. Second, we can use the network to generate whole songs, providing it only with

two initial notes as “inspiration”. While we did not extensively analyze these autonomously

produced songs, they differ from songs in the training set, have coherent metrical structure,

and are generally pleasant to listen to.

We have thus shown that multi-layer LSTM networks can be used to extract and reproduce the

musical rules of a given body of music. In a follow-up study (see Section A.4 ) we investigated

the ability of a variant of these networks to learn different corpora, and assessed the generated

music in more detail.

Author contributions

The model was conceived by F.C., S.P.M., J.B. and me. An earlier version of the model using

LSTM neurons and a joint representation of rhythm and melody was investigated by F.C.

under my supervision during his Master’s thesis. The model using gated recurrent units and

separation of rhythm and melody was implemented by F.C. and J.B. All authors conceived the

experiments and wrote the publication.

A.4 Deep Artificial Composer: A Creative Neural Network Model for

Automated Melody Generation

Florian Colombo, Alexander Seeholzer and Wulfram Gerstner

Published in: Computational Intelligence in Music, Sound, Art and Design: 6th International

Conference, EvoMUSART 2017, Amsterdam, The Netherlands, April 19–21, 2017, Proceedings

(DOI: 10.1007/978-3-319-55750-2_6; Colombo et al. (2017))

Summary

Inherent complexity and structure on long time scales make the automated composition of

music a challenging problem. Here we present an extension to the model presented in the

previous publication (Section A.3), which we termed the Deep Artificial Composer (DAC). This

study focuses on training the model to learn distinct styles of music and an assessment of the

novelty of generated songs.

Similar to the previous model, we employ multi-layer networks of gated recurrent units to

learn and produce monophonic melodies. In the present study we extend the model to be

trainable on more general corpora (using the MIDI format) and use deeper (4 recurrent layers)

architecture. We show that this enables us to train the model simultaneously on two large

corpora, with two distinct musical styles (Klezmer and Irish folk).
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We analyze the DAC generated melodies with a “novelty” measure, based on similarity of

motifs in musical sequences. This shows that melodies “imagined” by the DAC are as novel as

melodies produced by human composers. We further use the novelty measure to show that

the DAC creates melodies musically consistent with either of the musical styles it was trained

on. This study shows that multi-layer LSTM networks (as used in the DAC) are promising

candidates for the automated composition of convincing musical pieces of any provided style.

Author contributions

Extensions to the original model were conceived, implemented and simulated by F.C.

Experiments and analyses were conceived by F.C. and A.S. All authors wrote the publication.
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Subtype Count

Kv

A 238

delayed rectifier (dr) 187

Hodgkin-Huxley (HH) 155

m 105

not specified 63

slow 32

fast 23

inward rectifier (IR, IR2, IRK) 17

D 15

2 14

leak 11

4 10

1 8

RP 7

low threshold 6

high threshold 6

3 5

3.1 5

anomalous rectifier (AR) 4

x 4

1.2 3

persistent 2

ito 2

other 1

transient 1

2.1 1

KCNQ 1

7 1

HVA 1

udr 1

LVA 1

x1 1

Total Models 931

KCa

not specified 99

AHP 58

BK 34

SK 32

C 20

2 8

CT 6

HH 5

fast 3

slow 2

mAHP 2

Total Models 269

Subtype Count

Nav

not specified 235

Hodgkin-Huxley (HH) 115

fast 82

persistent 78

resurgent 8

leak 6

1 4

1.6 4

slow 4

transient 3

1.7 3

1.9 3

1.2 2

T-type 1

1.3 1

P-type 1

2 1

low threshold 1

1.8 1

Total Models 553

Cav

T-type 109

L-type 99

HVA 58

N-type 33

R-type 33

not specified 25

P-type 15

low threshold 12

LVA 10

high threshold 9

HH 6

TNL 5

E 4

Q 4

NPQ 3

leak 2

active flux 1

2.1 1

P/N 1

slow 1

Total Models 431

Ih

h 171

HCN 13

anomalous rectifier (AR) 7

TNC 2

HH 1

Total Models 194

Table B.1 – Figure 2.2–Source data 1: Table of subtypes for each ion type class. Subtypes of
each of the five classes currently available in the resource (Kv, Nav, Cav, KCa, Ih), sorted by the
frequency of their occurrence.
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Figure B.1 – Figure 2.3–Figure supplement 1: Graphical description of the five voltage-
clamp protocols used for ion channel model analysis. Activation (A), inactivation (B), de-
activation (C), ramp (D), action potential (E). See Table 2.2 for values of variables used in
simulations. Dashed lines represent the approximate regions used for analysis. F Preprocess-
ing stage of analysis – example shown for Kv activation protocol. Raw current response traces
are cut to include only the region inside the dashed lines (as in panels A-E) for each of the
(sixteen, for activation) voltage steps of the protocol. Then, each of the resulting traces is
separately subsampled to obtain 512 data points. Finally, the subsampled traces are appended
to form a final vector of size 512∗16 = 8192. Other protocols for Kv and the other four classes
are processed similarly, with the following two comments: (1) ramp and action potential
protocols do not feature multiple voltage steps, and so only contain 512 datapoints total; (2)
KCa current traces are run at seven different calcium concentrations, which are processed
separately for each concentration as shown here, and then appended together – e.g., KCa
activation will contain 512∗16∗7 = 57344 data points.
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Figure B.2 – Figure 2.3–Figure supplement 2: Cluster indexes for Kv and Nav classes. See
Methods for description. “Singletons” refers to the number of single-element clusters. A
Cluster indexes of the Kv class. The cluster number 60 was chosen since Dunn and Silhouette
indexes display a large value, Calinski-Harabasz displays a “knee” (decrease in steepness)
while the Davies-Bouldin is close to a local minimum. Candidate numbers 55 (Davies-Bouldin
minimum) and 59 (local maximum of Silhouette, decrease in inner distance of all conditions)
were disregarded due to the lower Silhouette index, and since a splitting of a major A-type
cluster into two distinct clusters was observed at 60. B Cluster indexes of the Nav class.
The cluster number 38 was chosen since Calinski-Harabasz displays a “knee” (decrease in
steepness), the Dunn index displays a sharp increase, the Silhouette index a sharp decrease for
higher numbers, and the inner distance displays a slight decrease in all conditions. Chosen
cluster number is indicated by a red box.
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Figure B.3 – Figure 2.3–Figure supplement 3: Cluster indexes for Cav, KCa and Ih classes.
Cluster indexes, see Methods for description. “Singletons” refers to the number of single-
element clusters. A Cluster indexes of the Cav class. The candidate cluster number 30 (peak of
Dunn-index & Silhouette, local minimum of Davies-Bouldin) was disregarded since clusters
were too heterogeneous (large inner distance). The next candidate cluster number 43 was
chosen instead (Dunn & Silhouette display a local increase), Calinski-Harabasz displays a
slight “knee” (decrease in steepness) and Davies-Bouldin displays a sharp drop. Also, a sharp
decrease in “action potential” (ap) inner distance is visible at cluster number 43. B Cluster
indexes of the KCa class. The cluster number 44 was chosen since Calinski-Harabasz displays a
slight “knee” (decrease in steepness), the Dunn index displays an increase before a sharp drop
while the Silhouette increases over the candidate number of 41. Also, Davies-Bouldin, stops
decreasing and the inner distance displays a decrease in all conditions. C Cluster indexes of
the Ih class. The cluster number 26 was chosen since the Dunn index displays a clear local
maximum, as does the Silhouette, while Davies-Bouldin stops decreasing. The candidate
number 27 (Calinski-Harabasz displays a clear “knee”) was disregarded, since the other indexes
all show unfavorable changes. Chosen cluster number is indicated by a red box.
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Figure B.4 – Figure 2.3–Figure supplement 4: Comparison of intra- and inter-subtype vari-
ability with intra- and inter-cluster variability. A Median pairwise distance between all
channels of a given subtype, calculated either with the final score (“total”), or only each of the
intermediate condition scores (here abbreviated, cf. Figure 2.3). Distance is given with respect
to subtype given in each column, i.e. the first column displays the distance of channels of all
other subtypes to the A subtype. Black circles display the median pairwise distance between
those channels of a given subtype that are in the same clusters. All distances are normalized by
the pairwise median distance averaged over all displayed subtypes. This shows that, e.g., A dif-
fers from other subtypes in all but the action potential protocol, while for example the m-type
label differs from all other subtypes mostly in the action potential protocol. The clustering
reduces the median variability to much lower levels than just the subtype partition, as visible
in the black dots of each plot. Numbers in parentheses show the number of channels in the
given subtype. B Same as in A, however pairwise distances are calculated for channels in the
given clusters. Distance is given with respect to the cluster in each column, i.e. the first column
displays the distance of channels in all clusters to channels in cluster 33. The first two clusters
consist mostly of A-type channels (33: 80%,1: 91%), the middle two clusters comprise primarily
of HH/dr channels (20: 36% HH/55% dr, 10: 39% HH/55% dr), and the right two clusters
consist mostly of m-type channels (47: 73%,48: 73%). Numbers in parentheses correspond
to the number of unique channels in the given cluster. C Mean current response traces of
the clusters in panel B. The insets marked by a, b, c are zooms of parts of the response traces,
enlarged to clarify regions of distinct current responses.
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ModelDB ID mod name Issue

Kv

127992 HHcn.mod Produces abnormal oscillations for all protocols

127992 HHcnf.mod Produces abnormal oscillations for all protocols

141272 hh58F1.mod Produces abnormal current trace responses

141272 hh58F1ss.mod Produces abnormal current trace responses

155601 markov.mod Produces abnormal oscillations for all protocols

155602 markov.mod Produces abnormal oscillations for all protocols

135838 GK.mod Tab data insufficient for simulation protocol

114637 iA.mod Unknown Error during run(): Segmentation Violation

140828 kir.mod Table not specified in hoc func table - no table provided

Nav

114637 iap.mod Produces abnormal oscillations in AP protocol

151443 Naf_No.mod Produces abnormal oscillations for all protocols

153280 ch_NavPVBC.mod Produces abnormal oscillations for all protocols

84589 naf.mod Produces abnormal oscillations in AP protocol

3263 nahh.mod Produces abnormal oscillations for all protocols

150446 NafTraub1994sd.mod Produces abnormal oscillations for all protocols

127351 nax.mod Produces abnormal oscillations for all protocols

147867 nahh.mod Produces abnormal oscillations for all protocols

150239 nax.mod Produces abnormal oscillations for all protocols

141272 hh58F1.mod Produces abnormal current trace responses

141272 hh58F1ss.mod Produces abnormal current trace responses

155601 markov.mod Current traces are mostly zero, does not seem to work

155602 markov.mod Current traces are mostly zero, does not seem to work

127992 HHcn.mod Current traces are mostly zero, does not seem to work

127992 HHcnf.mod Current traces are mostly zero, does not seem to work

135838 GNa.mod Tab data insufficient for simulation protocol

Cav 135838 GCa.mod Tab data insufficient for simulation protocol

KCa
139654 kca.mod Skipped due to mod file format (point process)

20007 KctBG99.mod Produces extreme large current values, unknown reason

IH 144520 isi.mod Unknown error during run()

Table B.2 – Figure 2.3–Source data 1: Table of omitted files. List of omitted files for each of
the five ion type classes, with a brief description of the reason for omission.
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Figure B.5 – Figure 2.4–Figure supplement 1: Nav and Cav class genealogy and clustering.
A: Families of the Nav class, ordered from left to right by family size. Each dot represents an ion
channel model and edges represent family relationships. Colors indicate the 11 most prevalent
subtypes in the class, with other subtypes colored in grey. B Families of the Nav class, as in
panel A. Colors indicate membership in one of the 11 largest clusters in the class (named by
most prevalent subtype, right hand side), with membership to other clusters colored in grey.
Cluster ID is given for easy comparison with website. C ‘Sankey’ diagram for the Nav ion type
class, showing the relation between subtype, cluster identification and family identification,
each ordered from top to bottom by increasing size. The 11 most common subtypes are shown,
with others being grouped together (grey). Small families (size 1 to 5 members) are grouped
together. D: Plot of Nav models in the first two principal components of score space. Colors
indicate membership in one of the 11 largest clusters in the class, with membership to other
clusters colored in grey. Legend indicates the most common subtype in each cluster, and
the proportion of models with that subtype. Points lying very close to each other have been
distributed around the original coordinate for visualization purposes. E:‘Circos’ diagram of
the Nav ion type class. All unique ion channel models are displayed on a ring, organized by
cluster identification. From outside to inside, each segment specifies: cluster reference model
(only displayed for large clusters), cluster subtype, number of citations, runtime, number of
duplicates, model subtype, as well as a dendrogram of cluster connections (black) and family
relations (grey). n.s.: not specified, HH: Hodgkin-Huxley, per./pers.: persistent, res.: resurgent.
F-J: Cav family, similar to panels A-E. T: T-type, L: L-type, HVA: high-voltage activated, N:
N-type, R: R-type, n.s.: not specified, P: P-type, l.t.: low threshold, LVA: low-voltage activated,
h.t.: high threshold.
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Figure B.6 – Figure 2.4–Figure supplement 2: KCa and Ih class genealogy and clustering. A:
Families of the KCa class, ordered from left to right by family size. Each dot represents an ion
channel model and edges represent family relationships. Colors indicate the 11 subtypes in
the class. B Families of the KCa class, as in panel A. Colors indicate membership in one of
the 11 largest clusters in the class (named by most prevalent subtype, right hand side), with
membership to other clusters colored in grey. Cluster ID is given for easy comparison with
website. C ‘Sankey’ diagram for the KCa ion type class, showing the relation between subtype,
cluster identification and family identification, each ordered from top to bottom by increasing
size. Small families (size 1 to 2 members) are grouped together. D: Plot of KCa models in the
first two principal components of score space. Colors indicate membership in one of the
11 largest clusters in the class, with membership to other clusters colored in grey. Legend
indicates the most common subtype in each cluster, and the proportion of models with that
subtype. Points lying very close to each other have been distributed around the original
coordinate for visualization purposes. E: ‘Circos’ diagram of the KCa ion type class. All unique
ion channel models are displayed on a ring, organized by cluster identification. From outside
to inside, each segment specifies: cluster reference model (only displayed for large clusters),
cluster subtype, number of citations, runtime, number of duplicates, model subtype, as well
as a dendrogram of cluster connections (black) and family relations (grey). n.s.: not specified,
AHP: after-hyperpolarization, BK: big conductance, SK: small conductance, HH: Hodgkin-
Huxley, mAHP: medium AHP. F-J: Ih family, similar to panels A-E. h: hyperpolarization-
activated, HCN: hyperpolarization-activated cyclic nucleotide-gated, AR: anomalous rectifier,
TNC: tonic nonspecific current.
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Figure B.7 – Figure 2.6–Figure supplement 1: K+ current recordings from Drosophila
Kenyon cells. Recordings from 8 example traces of K+ current from Drosophila Kenyon
cells (grey), with average (black). See Methods for a description of experiments. Response
traces are arranged as detailed in Figure 2.3–Figure supplements 1 & 2.
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Parameter name Parameter Symbol Units Excitatory neurons Inhibitory neurons

Neuron number N• 1 NE = 800 NI = 200
Poisson neuron number Next 1 1000 1000
Membrane capacitance Cm pF 500 200
Exc. reversal potential VE mV 0 0
Inh. reversal potential VI mV −70 −70
Leak reversal potential VL mV −70 −70
After spike reset potential Vres mV −60 −60
Spiking threshold Vthr mV −50 −50
NMDA parameter 1 β 1 0.062 0.062
NMDA parameter 2 γ 1 1/3.57 1/3.57
NMDA rise parameter α s 0.5 0.5
External conductance gext nS 2.08 1.62
Recurr. inh. conductance gI nS 1.336 1.024
Recurr. exc. conductance gE nS 0.381 0.292
Leak conductance gL nS 25 20
External synaptic timescale τext ms 2 2
Recurr. inh. timescale τI ms 10 10
Recurr. exc. timescale τE ms 100 100
Recurr. exc. rise timescale τE,rise ms 2 2

Membrane time constant Cm
gL

τm ms 20 10

Refractory period τref ms 2 1

Width of distance dep. weights σw rad 18deg
360deg ·2π≈ 0.31 -

Frequency of Poisson neurons νext Hz 2.4H z 2.4H z

Table C.1 – Parameters for spiking simulations. Parameter values are modified from (Compte
et al., 2000) and Brunel and Wang (2001b).

System w0 w1 wσ wr

Sys. 0 −0.8 2.3 0.9 2.0

Sys. 1 −1.0 10. 0.2 2.0

Sys. 2 −3.0 15.0 0.5 2.0

Table C.2 – Connectivity parameters of rate models.
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Figure Fixed Optimized # Optimized Points / Errors

Fig. 3.4 w+, wσ

gEE, gIE, gEI, gII

g0, g1, gσ, gr

〈V 〉θ1 , . . . ,〈V 〉θ4

νI ,〈V 〉I

10 4 / 10

Fig. 3.6 red g1 = 50H z
gσ = 0.6

g0, gr

w+ = 4.100, wσ = 0.1899
gEE = 0.3923, gIE = 0.3958
gEI = 1.1611, gII = 0.9570

〈V 〉θ1 , . . . ,〈V 〉θ7

νI ,〈V 〉I

17 7 / 16

Fig. 3.6 blue g1 = 20H z
gσ = 1.2

g0, gr

w+ = 2.423, wσ = 0.4750
gEE = 0.1798, gIE = 0.1858
gEI = 0.7882, gII = 0.7632

〈V 〉θ1 , . . . ,〈V 〉θ7

νI ,〈V 〉I

17 7 / 16

Fig. 3.6 green g1 = 25H z
gr = 8

g0, gσ

w+ = 4.4917, wσ = 0.0909
gEE = 0.4397, gIE = 0.4742
gEI = 1.1933, gII = 1.1948

〈V 〉θ1 , . . . ,〈V 〉θ7

νI ,〈V 〉I

17 7 / 16

Table C.3 – Parameters optimized in spiking networks. For constraints in Fig. 3.4 see the
parameter values in Table C.1. For network parameters in Fig. 3.6, we additionally give the
values obtained by optimization. Points is the number of sampling points. Errors is the number
errors used for optimization, this includes 2 errors for the inhibitory population, in addition
to 2 errors per sampling point.
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D Supplementary Material: Effects of
short-term plasticity on drift and
diffusion

D.1 Extension: Synaptic connections with saturating NMDA con-

ductance

In the theory we developed above, we have assumed the dynamics of synaptic activation

variables s to be linear. According to Eq. (4.4), incoming spikes are dynamically scaled by

short-term facilitation and depression, while the variable s can, in principle, increase without

bounds. In the networks considered so far, short-term depression took over the role of

saturating the maximally achievable synaptic activations at high firing rates. For example, in a

purely depressing system (set U → 1) the steady-state synaptic activations s0,i of Eq. (4.21) are

upper bounded by τs
τx

since then:

s0,i =
τsφ0,i

1+τxφ0,i
(D.1)

A different method of achieving this dynamical upper bounding is by including nonlinear

saturation of NMDA conductances (see e.g. Wang (1999); Compte et al. (2000)), as already

introduced in Section 3.6.2.2 (Eqs. (3.15)-(3.15)). We introduce here a rate based version of

these dynamics:

ṡsat
i =− ssat

i

τs
+αri

(
1− ssat

i

)
, (D.2)

ṙi =− ri

τrise
+φi ,

Ji =
∑

j
wi j ssat

j .

Here ssat
j is the synaptic activation, r j acts as a filter on the firing rates φ0,i , and α is a

constant with units of 1
s . We call this “logistic”, since the term (1− ssat

i ) on the right hand in

Eq. (D.2) is reminiscent of the upper bound of a logistic differential equation (see e.g. Strogatz

(2000)). It is this term that causes the upper bounding of synaptic activations at high rates. In
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fact, the steady-state of the synaptic dynamics of Eq. (D.2) can be shown to be almost

equivalent to that of Eq. (D.1) with depressive synapses only. Solving the dynamics of Eq. (D.2)

for 0, we arrive at

ssat
0,i =

ατsτriseφ0,i

1+ατsτriseφ0,i
.

Thus, if we identify α= 1
τrise

, we arrive at a saturation behavior similar to Eq. (D.1) (with

τs = τx ).

We were interested in the effects that including logistic saturation of NMDA conductances had

on drift and diffusion, especially in interplay with short-term plasticity. To approach this, we

included short-term plasticity according to Eq. (4.4) in the equations of Eq. (D.2), by scaling

the firing rates by the short-term plasticity variables (all other equations stay the same).

ṙi =− ri

τrise
+φi ui xi .

Similar to our approach in the system with only facilitation and depression, we linearize these

dynamics including the logistic NMDA saturation (cf. Eq. (4.23)). This yields the following

linear stochastic differential equation:

⎛
⎜⎜⎜⎜⎝

δ̇r

δ̇s

δ̇u

δ̇x

⎞
⎟⎟⎟⎟⎠=

⎛
⎜⎜⎜⎜⎝

− 1
τrise

I D
(
u0 ·x0 ·φ′

0

)
W D

(
φ0 ·x0

)
D

(
φ0 ·u0

)
D(1−s0)α − 1

τs
−D(r0)α 0 0

0 U D
(
(1−u0) ·φ′

0

)
W − 1

τu
I−U D

(
φ0

)
0

0 −D
(
u0 ·x0 ·φ′

0

)
W −D(x0 ·φ0) − 1

τx
I−D

(
φ0 ·u0

)

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

δr

δs

δu

δx

⎞
⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎝

ηu0x0
√

φ0

0

ηU (1−u0)
√

φ0

−ηu0x0
√

φ0

⎞
⎟⎟⎟⎟⎠ (D.3)

Similar to Section 4.6.1.4, we can calculate the right eigenvector of this linear kernel for

movement along the attractor manifold under the assumption that the system has a

one-dimensional continuous manifold of steady states. Unfortunately, we have not managed

to derive the corresponding left eigenvector for this system. Mainly, the Ansatz
d

d t ti = d
d t

∑
j wi j s j , which we used to derive the left eigenvector (cf. Section 4.6.1.5) does not

produce a differential equation that we are able to identify with the original system. However.

numerical evaluation of the left eigenspace of Eq. (D.3) for a given implementation is indeed

possible, and would allow numerical predictions of the amount of drift and diffusion expected

in this system.

We should remark that the steady state of the simple rate model proposed in Eq. (D.2) does

not faithfully approximate the steady state of the spiking network implementation given in

Eqs. (3.15)-(3.15) (see Fig. D.1, dashed red line). However, a better approximation under the
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Figure D.1 – Steady state of synaptic activation with logistic NMDA saturation. Temporal
mean of synaptic activations with logistic saturation ssat

j (Eq. (3.15)), stimulated by spike trains
with spike counts distributed as homogeneous Poisson processes (blue dots). The steady state
of the naive rate approximation (dashed read line, Eq. (D.2)) is compared to the approximation
of Brunel and Wang (2001b, p. 80) (dashed black line). Temporal means are averaged over
100 repetitions of 2s recorded time after allowing 1s for equilibration. Error bars display 1
standard deviation of the temporal means across repetitions.

assumption of Poisson statistics has been stated in Brunel and Wang (2001b, p. 80) (Fig. D.1,

dashed black line; the infinite sum of Brunel and Wang (2001b, p. 80) was truncated at 10

summands), which could serve to predict the steady-state s0, given the stable firing rates φ0,

more accurately. When linearized at the resulting steady-state prediction, the naive rate

approximation of Eq. (D.3) could still give reasonable numerical results.

At the time of writing, it remains an open question whether the additional introduction of

logistic NMDA saturation has any significant impact on the emergent diffusion and drift

dynamics. We have sketched here a first starting point to incorporate these models into the

frame of our theory. Preliminary simulations with facilitation and logistic NMDA saturation

had indicated that the stabilizing effects of facilitation might be even more pronounced than

in the case of short-term facilitation and depression considered in the earlier sections.

According to the results of the main text, this is in principle to be expected, since synaptic

depression increases the strength of drift and diffusion (see main text). However, we can not

exclude a dynamical impact of logistic NMDA saturation on drift and diffusion along the

attractor manifold, which remains to be investigated and quantified. By the considerations

above, including both depression and logistic NMDA saturation introduces doubly saturating

synaptic conductances – incoming spikes are scaled down at high rates, and their effect on the

synaptic conductances is logistically bounded. Nevertheless, this could be a redundancy only

at first glance: it could indeed be possible that NMDA saturation reduces the tendency of

short-term depression to increase drift and diffusion on continuous attractor networks.
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D.2 Extension: Simplified theory by projection onto Fourier modes

In Itskov et al. (2011b) a slightly simpler approach is taken to calculating the effects of

short-term facilitation (for fixed depression) on a rate-based ring-attractor model. Instead of

calculating the exact projection eigenvectors for the shape of the firing rate profile as we have

done above, the authors approximate the drift terms by projecting a combined variable

φ ·u · x onto the dynamics of its first Fourier coefficient, and calculating the change of this

Fourier coefficient under the system dynamics. In this section we perform a similar

calculation for the drift and diffusion strengths, with the auxiliary variable s ·u · x, for which

we have calculated the linearized dynamics above in Eq. (4.23). This approach yields

approximative equations that seem to capture the limit of large diffusion less well than the

approach demonstrated in the main text.

Let m(θ,ϕ) = s(θ,ϕ)u(θ,ϕ)x(θ,ϕ) be the auxiliary variable composed of synaptic activations s,

facilitation u, and depression x, for a firing rate profile φ(θ,ϕ) centered at an angle ϕ. Here,

−π≤ θ <π are possible positions of neurons arranged on a ring. As in Itskov et al. (2011b) we

identify now the first Fourier component of the auxiliary variable m with the position of the

rate profile ϕ – both m and φ are unimodal shapes centered at ϕ . We can calculate the first

Fourier coefficient as a complex number

x(t ) ≡ r (t )exp(iϕ(t )) = 1

2π

∫π

−π
dθexp(iθ)m(θ,ϕ) (D.4)

and take the derivative with respect to time, to arrive at a differential equation of the position

ϕ:

ẋ = ṙ exp(iϕ)+ i r ϕ̇exp(iϕ) = 1

2π

∫π

−π
dθexp(iθ)ṁ(θ,ϕ)

ṙ + i r ϕ̇= 1

2π

∫π

−π
dθ

[
cos(θ−ϕ)ṁ(θ,ϕ, t )+ i sin(θ−ϕ)ṁ(θ,ϕ, t )

]
.

We now assume for simplicity that the distribution is located at the center ϕ= 0 and drop this

explicit index. This immediately implies (cf. Eq. (D.4) for ϕ= 0) that

r = 1

2π

∫π

−π
dθcos(θ)m(θ).

Further, we also assume that ṙ = 0, since the distribution of rates only shifts its phase along

the attractor manifold while keeping its shape stable. Then, by comparing complex and real

parts, we see that:

ϕ̇ = 1

2πr

∫π

−π
dθ sin(θ)ṁ(θ, t )

= 1

2πr

∫π

−π
dθsi n(θ) [ṡux + su̇x + suẋ] . (D.5)
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Now, inserting the linearized dynamics of Eq. (4.23) (we replace all variables with their

perturbations around the steady state, keeping only linear orders) we arrive at

ϕ̇= 1

2πr

∫π

−π
dθ sin(θ)

[(
· · ·+u0x0

√
φ0η(θ)

)
u0x0 +

s0

(
· · ·+U (1−u0)

√
φ0η(θ)

)
x0 + s0u0

(
· · ·−u0x0

√
φ0η(θ)

)]
(D.6)

Here,
〈
η(θ)

〉= 0 and
〈
η(θ, t )η(θ′, t )

〉= δ(t − t ′)δ(θ−θ′), and the dots indicate the linear parts

of the linearization in Eq. (4.23). We assume that the deterministic part of the linearized

system has no dynamics acting on the phase ϕ. This allows calculating the diffusion strength

of Eq. (D.6) by evaluating

〈
ϕ̇(t )ϕ̇(t +τ)

〉= 1

4π2r 2

∫π

−π
dθ sin2(θ)δ(τ)

[
u4

0x4
0φ0 + s2

0 x2
0U 2 (1−u0)2φ0 + s2

0u4
0x2

0φ0 +2(crossterms)
]

= U 4

4π2r 2

∫π

−π
dθ sin2(θ)δ(τ)φ0

(
φ0τu +1

)2·[(
φ0τu +1

)(
Uφ0τu +1

)−τsφ0
(
U 2φ0τu +U

(
φ2

0τ
2
u +φ0τu +2

)−1
)]

2(
Uφ0τu +1

)
2
(
Uφ0

(
τu +φ0τuτx +τx

)+1
)

4

(D.7)

For the second equation we have substituted s0 → τsu0x0φ0 and inserted the steady-state

values Eq. (4.21) for u0 and x0. The same substitutions can be used to evaluate the

normalization constant r as

r = U 2

2π

∫π

−π
dθcos(θ)

φ0τs
(
φ0τu +1

)
2(

Uφ0
(
τu +φ0τuτx +τx

)+1
)

2
. (D.8)

Calculating a drift-field is possible by replacing the terms in the integrand of Eq. (D.6) by those

obtained by introducing fixed small perturbations in the input φ0 →φ0 +δφ (cf. 4.55):

ϕ̇= 1

2πr

∫π

−π
dθ sin(θ)

[(
u0x0δφ

)
u0x0 + s0

(
U (1−u0)δφ

)
x0 + s0u0

(−u0x0δφ
)]

= U 2

2πr

∫π

−π
dθ sin(θ)δφ(

φ0τu +1
)(
φ0τs

(
U

(
φ0τu

(
φ0τu +U +1

)+2
)−1

)− (
φ0τu +1

)(
Uφ0τu +1

))(
Uφ0τu +1

)(
Uφ0

(
τu +φ0τuτx +τx

)+1
)

2
(D.9)

We compared the solutions for diffusion Eq. (D.7) and drift Eq. (D.9) to those obtained from

our theory in Eq. (4.3) (see Fig. D.2). To compare the diffusion coefficients, we normalized the

coefficient obtained from Eq. (D.7) for U = 1,τx = 150ms to that obtained from our theory for

the same parameters (blue line in Fig. 4.7) and varied the parameter U . We find that the

dependence of the diffusion coefficient on the parameter U is similar, (Fig. D.2A), although
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the approximated solution consistently lies above the full theory (and simulations, Fig. 4.7A).

Varying the parameter τx around 150ms for a fixed value of U = 0.8 (same experiment as in

Fig. 4.7B), shows that the dependence on τx is not well captured by the approximation.

Comparing the drift-field obtained by the theory in Eq. (D.9) to that obtained by Eq. (4.3) for

the same parameter settings, coefficients, and perturbations δφ, we find that the predicted

fields are somewhat similar in magnitude (standard deviations: 10.2deg 2/s for the full theory,

9.6deg 2/s for the approximation), with most zero crossings closely related (Fig. D.2C, black

lines). Decreasing the facilitation parameter to U = 0.1 for the same perturbations, we also

find that the resulting fields are of reduced magnitude with respect to U = 1 (Fig. D.2C, blue

lines), although the full theory predicts a larger decrease (standard deviations: 2.4deg 2/s for

the full theory, 5.0deg 2/s for the approximation).

While these observations are preliminary, they show that the full theory predicts the

magnitude of diffusive dynamics along the attractor manifold more accurately, while in

general the approximate approach presented here bears some similarities to the result of the

full theory. Some deviations are to be expected, since a “projection” is performed here onto a

simplified approximation of the change of inputs to the system under movement along the

attractor manifold: the terms d J
dϕ of the full theory Eq. (D.7) correspond to the terms sin(θ)

here. Further, the first order scaling with respect to U is similar, since the U 2 scaling of the

normalization constant r Eq. (D.8) cancels with that of the integrands, as before (Eq. (D.7)).

Further investigation is needed to uncover the differences observed in the limit of large τx .

Indeed, we have seen earlier (section Section 4.6.2.1) that the diffusion strength grows large

mainly due to the normalization constant S, which becomes small – in Eq. (D.8) we find no

such τs-dependent root for the integrand of the normalization Eq. (D.8).

It should be noted, that we have also tried performing this calculation on the auxiliary

variable φ ·u · x, following the approach of Itskov et al. (2011b) (they take φ ·u, for only

facilitation). This was not pursued further, however: this rearrangement yields non-trivial

correlations when calculating the diffusion strength, since all variables φi correlate. For

example, the following terms appear:

φ̇i =φ′
i

∑
j

wi jδṡ j =φ′
i

∑
j

wi j

(
linear terms+u0, j x0, j

√
φ0, jη j

)
,

〈
φ̇i φ̇k

〉=φ′
iφ

′
k

∑
j

wi j wk j u2
0, j x2

0, jφ0, j .

Thus, the double integral in Eq. (D.7) does not collapse to the single integral we observed here,

which complicates the evaluation of the diffusion strength considerably.

D.3 Analysis of CVs in the attractor state

A previous study by Barbieri and Brunel (2007) has found that short-term depression together

with a high reset of the membrane potential after spikes can lead to a high variability of
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Figure D.2 – Comparison of full theory to approximation by projection onto Fourier coeffi-
cients. A Diffusion strength as a function of the facilitation variable U . Full line is from full
theory (compare to Fig. 4.7A), dashed black line is from the approximation Eq. (D.7) normal-
ized to coincide at U = 1. B Dependence of the diffusion on the depression time constant τx

for U = 0.8. Full line is from full theory (compare to Fig. 4.7B), dashed black line is from the
approximation Eq. (D.7) normalized by the same value as in panel A. C Drift fields extracted
by the full theory (full lines) and approximation Eq. (D.9) (dashed lines) for U = 1 (black)
and U = 0.1 (blue). The perturbation used to generate the field was a perturbation in the
membrane leak potentials with σL = 1mV .

neuronal spiking in the class of spiking attractor network models that we are using (see the

discussion). To investigate whether varying the parameters of short-term plasticity in our

network has any implications for the spiking statistics of the network model, we measured the

mean rates and CVs of excitatory neurons during the attractor state for different networks

(Fig. D.3). We find similar a dependence of the CV to the mean firing rate (Fig. D.3A) as

reported previously (Compte et al., 2000; Barbieri and Brunel, 2007): across all parameter

settings networks display similarly reduced CVs for increased mean firing rates, leading to

large CVs for neurons located in the flanks of the firing rate profile and low CVs for neurons

located near the center.

However, attention should be payed when measuring the CV in the attractor network with

large diffusion coefficients. Since firing rates are non-stationary in these networks, a moving

center of the firing rate profile can lead to increased CVs in single units, especially at the

flanks of the profile. In Fig. D.3A we show mean firing rates and CVs for excitatory neurons in

a network with large diffusion coefficient (τx = 200ms), which displayed a shift of the center

towards an increased angular position during the recording period. This is visible in a reduced

mean firing rate, slightly increased width, and shifted center of the mean firing rates. The

non-stationarity is also visible in the measured CVs, which are elevated especially at

intermediate rates (Fig. D.3A, bottom). Mistaking this non-stationarity for a high CV can be

evaded by measuring the CV2 (Compte et al., 2003), a localized version of the CV. The CV2

measure consistently reports values similar to stationary firing (blue dots in Fig. D.3), even in

networks with high diffusion coefficients. Unsurprisingly, for strong facilitation (U � 1) the

CV and CV2 measures coincide (blue dots in Fig. D.3B).
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Figure D.3 – Short-term plasticity does not affect spiking statistics. Mean firing rate, coeffi-
cient of variation of the inter-spike interval distribution (CV), and local CV (CV2, see main
text) for two attractor networks. All measures were computed on spike-trains measured over a
period of 4s, recorded 500ms after offset of the external input which was centered at angle 0.
A Networks with large diffusion coefficient (U = 0.8, τu = 650ms, τx = 200ms) that underwent
non-stationary diffusion during the recording of spikes: the measured mean firing rates (gray
line) differ visibly from the firing rates estimated after centering the firing rate distribution
at each point in time. Due to this non-stationarity, CVs at intermediate firing rates appear
elevated, while the local CV (CV2) shows values close to stationary networks (see B). B The
same network as in A, with strong facilitation (U = 0.1). Reduced diffusion leads to a nearly
stationary firing rate profile, and coincident CV and CV2 measures.

Parameter name Parameter Symbol Units Excitatory neurons Inhibitory neurons

NMDA parameter 1 β 1 0 0
NMDA parameter 2 γ 1 0 0
Synaptic timescale τs ms 100 100
Frequency of Poisson neurons νext Hz 2.6H z 2.6H z

Table D.1 – Parameters for spiking simulations. All parameters are similar to Table C.1 except
for those noted above and in Table D.2, where the values of recurrent conductances depending
on the settings of facilitation and depression are listed.
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STP U [1] STP τu [ms] STP τx [ms] gEE [nS] gIE[nS] gEI[nS] gII[nS] wσ[nS]
1 650 150 0.03489 0.004975 2.639 1.637 0.38

0.8 650 150 0.03421 0.005167 2.537 1.641 0.38
0.6 650 150 0.0328 0.005485 2.418 1.647 0.4
0.4 650 150 0.0315 0.00529 2.295 1.643 0.4
0.2 650 150 0.03356 0.005349 2.18 1.644 0.35
0.1 650 150 0.03393 0.005906 2.107 1.655 0.4

0.08 650 150 0.03441 0.005746 2.092 1.652 0.4
0.06 650 150 0.03646 0.006018 2.079 1.657 0.4
0.04 650 150 0.03771 0.005764 2.062 1.652 0.42
0.1 650 140 0.03243 0.004679 2.103 1.632 0.33
0.1 650 120 0.02972 0.004423 2.097 1.627 0.3
0.1 650 160 0.03606 0.006294 2.112 1.662 0.41
0.1 650 180 0.04054 0.005043 2.123 1.639 0.32
0.1 650 200 0.04547 0.005479 2.134 1.647 0.32
0.4 650 140 0.03094 0.005342 2.291 1.644 0.37
0.4 650 160 0.03557 0.005666 2.33 1.65 0.37
0.4 650 120 0.02882 0.005507 2.274 1.647 0.34
0.4 650 180 0.03841 0.005654 2.352 1.65 0.39
0.4 650 200 0.04315 0.005914 2.391 1.655 0.39
0.8 650 120 0.02738 0.004926 2.44 1.636 0.38
0.8 650 140 0.03171 0.005033 2.502 1.638 0.38
0.8 650 160 0.03682 0.005294 2.574 1.643 0.38
0.8 650 180 0.03829 0.005065 2.591 1.639 0.415
0.8 650 200 0.0419 0.005046 2.64 1.639 0.425
0.8 1000 150 0.03433 0.005176 2.548 1.641 0.38
0.6 1000 150 0.03371 0.005401 2.445 1.645 0.38
0.4 1000 150 0.03273 0.005514 2.324 1.647 0.38
0.2 1000 150 0.03346 0.006019 2.195 1.657 0.37
0.1 1000 150 0.03295 0.006211 2.113 1.66 0.41

0.08 1000 150 0.03292 0.006113 2.097 1.659 0.42
0.06 1000 150 0.03353 0.006124 2.08 1.659 0.43
0.04 1000 150 0.03517 0.006177 2.064 1.66 0.44

Table D.2 – Network parameters for spiking simulations. For all networks w+ = 4.0. Recur-
rent conductance parameters are given for combinations of short-term plasticity parameters
according to the following notation. gEE: excitatory conductance gE on excitatory neurons;
gIE: excitatory conductance gE on inhibitory neurons; gEI: inhibitory conductance gI on
excitatory neurons; gII: inhibitory conductance gI on inhibitory neurons.
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Figure D.4 – Diffusion estimated by theory only. Compare with Fig. 4.5 of the main text. All
theoretical predictions (crosses, dashed lines) are computed by predictions of the firing rate
profile using the mean-field theory presented in Section 4.6.6.
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