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Introduction

I In tokamaks Scrape-Off Layer (SOL), magnetic
field lines intersect the walls of the fusion
device

I Heat and particles flow along magnetic field
lines and are exhausted to the vessel

I Turbulence amplitude and size comparable to
steady-state values

I Neutral particles interact with the plasma

I SOL plays a key role on determining the
refuelling of the plasma

The Global Braginskii Solver (GBS) code:
a 3D, flux-driven, global turbulence code in limited geometry

used to study plasma turbulence in the SOL

I GBS is a simulation code to evolve plasma turbulence in the edge of fusion devices.
[Halpern et al., JCP 2016], [Ricci et al., PPCF 2012]

I GBS solves 3D fluid equations for electrons and ions, Poisson’s and Ampere’s equations, and a
kinetic equation for neutral atoms.

The Global Braginskii Solver (GBS) code
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I Equations implemented in GBS, a flux-driven plasma turbulence code with limited geometry to study
SOL heat and particle transport

I System completed with first-principles boundary conditions applicable at the magnetic pre-sheath
entrance where the magnetic field lines intersect the limiter [Loizu et al., PoP 2012]

I Parallelized using domain decomposition, excellent parallel scalability up to ∼ 10000 cores
I Gradients and curvature discretized using finite differences, Poisson Brackets using Arakawa

scheme, integration in time using Runge Kutta method
I Code fully verified using method of manufactured solutions [Riva et al., PoP 2014]
I Note: L⊥→ ρs, L‖→ R0, t → R0/cs, ν = ne2R0/(miσ‖cs) normalization

The Poisson and Ampere equations
I Generalized Poisson equation, ∇ · (n∇⊥φ) = Ω− τ∇2

⊥pi

I Ampere’s equation from Ohm’s law,
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I Stencil based parallel multigrid implemented in GBS
I Elliptic equations separable in parallel direction allow for independent 2D solutions for each x-y plane

The kinetic neutral atoms equation
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I Method of characteristics to obtain the formal solution of fn [Wersal et al., NF 2015]
I Two assumptions, τneutral losses < τturbulence and λmfp, neutrals� L‖,plasma, leading to a 2D steady

state system for each x-y plane
I Linear integral equation for neutral density obtained by integrating fn over ~v
I Spatial discretization leading to a linear system of equations[
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I This system is solved for neutral density, nn, and neutral particle flux at the boundaries, Γout, with the
threaded LAPACK or MUMPS (serial or parallel) solvers.

Past achievements of GBS

I Characterization of non-linear turbulent
regimes in the SOL

I SOL width scaling as a function of
dimensionless / engineering plasma
parameters

I Origin and nature of intrinsic toroidal
plasma rotation in the SOL

I Mechanisms regulating the SOL
equilibrium electrostatic potential
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Moving towards a density-conserving model

I Current version of the GBS code does not conserve charged particle density since:
I the inverse aspect ratio ε = r

R0
is taken constant over the simulation domain, ε0 =

a0
R0

I parallel gradient components of Poisson brackets and curvature operators neglected

I Studying the plasma refuellling requires a density-conserving model to be implemented in GBS
I GBS must conserve the total sum of the ion+neutral density over the whole simulation domain
I This is important to address refuelling and Greenwald density limit physics
I Continuity equation must compute the exact variation of the ion density
I To make the model density-conserving, we implemented in GBS:

I Radially variable inverse aspect ratio ε = r
R0

to take into account curvilinear geometry
I Parallel gradient terms included in Poisson brackets and curvature operators
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Field-aligned right-handed coordinates set: (θ∗, r , ϕ)
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∗

(with q the safety factor) ci =
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Converts to (y , x , z) coordinates set with: y = aθ∗, x = r , z = R0ϕ

I Continuity equation is now density-conserving
I Gauss Theorem can be used when taking time and volume integration of the continuity equation,

expressing volume-integrated density variation in terms of the fluxes across the volume’s boundary.∫
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I Diffusion Dn(n) is neglected at this stage, as well as source terms Sn and nνrec

Numerical results

I GBS Simulations were run for 10 time
steps taking the following parameters:
I ε0 = 0.2546; R0 = 1500ρs; circular

centered magnetic flux surfaces
I Simulation of an annular domain with

Ly = 2πa0 = 2400ρs and Lx = 150ρs
(while Lz = 2πR0)

I Limited region at x = 75− 150ρs
I CG (coarse grid) with Ny = 495,

Nx = 191, Nz = 64 and time step
∆t = 3.75× 10−6s

I FG (fine grid) with Ny = 990, Nx = 382,
Nz = 128 and time step
∆t = 1.875× 10−6s

I First, each of the four terms on the right
hand side of (9) was taken separately in
the continuity equation in GBS; then, all
terms were taken into account

I GBS results were post-processed to obtain
∫

dt
∫ dn

dt dV for a space domain and the integral of the
right hand side of (9), the relative error between the two being computed.

I Results are presented for a domain inside the closed flux surfaces region defined by:
x = 25− 50 ρs, y = 97− 2300 ρs, z = 0.68− 5.48 R0

Terms considered
in the equation

Relative error (%)
for CG

Relative error (%)
for FG

n vde 0.80% 0.12%
n vE×B 0.020% 0.11%
n v‖e b 4.1% 6.0%

nn νiz 9.2× 10−6% 2.2× 10−6%
all terms 0.057% 0.010%

Discussion and conclusions

I Greatest contribution for particle transport in the closed flux surfaces region comes from
perpendicular E × B transport, while the ionization contribution is also important (∼10 times smaller)

I Non-converging relative error values are found for the n v‖e b and n vE×B terms due to the
numerical scheme used in GBS for the parallel gradient computation

I Since k2
⊥� k2

‖ holds, errors arising from the parallel gradient contributions are negligible when
taking the whole continuity equation

I The continuity equation in GBS is consistent with density conservation up to errors < 0.1%.
Next step: plasma + neutrals conservation
I Neutral density variation can be obtained from the integral form of the neutral continuity equation:∫
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I Ion flux obtained by taking the first order moments of fn considering the contributions from
charge-exchange in the plasma and electron-ion recycling at the limiter and walls
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