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Abstract—Crowdsourcing has been widely established as a means to enable human computation at large-scale, in particular for tasks that require
manual labelling of large sets of data items. Answers obtained from heterogeneous crowd workers are aggregated to obtain a robust result. However,
existing methods for answer aggregation are designed for discrete tasks, where answers are given as a single label per item. In this paper, we consider
partial-agreement tasks that are common in many applications such as image tagging and document annotation, where items are assigned sets of
labels. Common approaches for the aggregation of partial-agreement answers either (i) reduce the problem to several instances of an aggregation
problem for discrete tasks or (ii) consider each label independently. Going beyond the state-of-the-art, we propose a novel Bayesian nonparametric
model to aggregate the partial-agreement answers in a generic way. This model enables us to compute the consensus of partially-sound and partially-
complete worker answers, while taking into account mutual relationships in labels and different answer sets. We also show how this model is instantiated
for incremental learning, incorporating new answers from crowd workers as they arrive. An evaluation of our method using real-world datasets reveals
that it consistently outperforms the state-of-the-art in terms of precision, recall, and robustness against faulty workers and data sparsity.

Index Terms—Crowdsourcing, Nonparametric Models, Bayesian Models, Answer Aggregation.

1 INTRODUCTION

Fuelled by the massive availability of Internet users, crowdsourc-
ing has been widely established as a means for human computation
at large-scale [1l]. Tasks that are rather trivial for humans, but
computationally expensive or even unsolvable for machines can
be efficiently addressed by crowdsourcing. Specifically, crowd-
sourcing has been applied for such diverse applications as data
acquisition, data integration, data mining, information extraction,
and information retrieval [2], [3], [4], [S]. Today, a large number
of platforms, such as Amazon Mechanical Turk and CrowdFlower,
facilitate the development of crowdsourcing applications.

Aggregation of Crowd Answers. Most crowdsourcing setups
are based on questions (aka tasks) that, once posted to a crowd-
sourcing platform, are answered by users (aka crowd workers)
for financial rewards. Yet, each task is answered by multiple
workers to accommodate for their different levels of expertise and
motivation. Aggregation of answers shall complement individual
errors, thereby exploiting the ‘wisdom of the crowd’.

Answer aggregation is challenging for several reasons. The
worker population may contain faulty workers (e.g., spammers)
that give random answers, but are hard to identify before-hand in
the absence of detailed worker information. Furthermore, workers
may be unintentionally biased by personal interest or systematic
misunderstanding of the tasks [6]. Aggregation of answers is also
complicated by limited mutual information between workers and
tasks, e.g., some workers are assigned with too few tasks and
vice-versa [6]. To overcome these challenges, various methods for
automatic answer aggregation have been proposed in the literature
(see [7ll, [8] for a survey), including (i) non-iterative techniques
which compute the aggregated answer as a linear combination
of votes, and (ii) iterative techniques which leverage mutual
reinforcing relations between workers and answers.

Aggregation with Partial Agreement. Depending on the type
of questions, different types of crowdsourcing tasks are distin-
guished: In continuous tasks, objects are assigned real values (e.g.,
scores) [9]. In partial-agreement tasks, which define objects as
rules [2] or evaluate matches/orderings between entities [10]], [11].

In this paper, we focus on a special type of partial-agreement
tasks, where workers shall provide a set of labels per item.
Such tasks, also known as multi-label tasks, received much at-
tention recently in many crowdsourcing applications, such as text
categorization, image classification, and medical diagnosis [12],
[13], [14]. We use the term partial-agreement to distinguish the
respective tasks from multi-class, single-label tasks [15]], [16], in
which tasks offer multiple choices/labels, but workers only give a
single answer/label. Rather, the partial-agreement tasks considered
in this work are a generalization of multi-label tasks [17]], [18]],
[19], which usually decompose a multi-label problem into several
instances of a single-label problem, having each worker giving a
Boolean answer for each possible label.

The aforementioned aggregation methods have been developed
for single-label tasks only [7], [8], [20] and are often extended to
solve the single-label instances of multi-label tasks. Only a few
methods truly target the multi-label setting, typically based on
some form of majority voting [17]], [18] or by reusing worker in-
formation across several instances of an aggregation problem [19].
Yet, these methods still consider each label separately.

Due to the freedom to choose multiple labels per item, partial-
agreement tasks allow a more fine-grained level of aggregation.
Worker answers are now partially-sound (some given labels are
incorrect) and partially-complete (some correct labels are miss-
ing). This is in contrast to the single-label setting, where answers
are either correct or incorrect. It also goes beyond the predominant
approach to trace back answer aggregation for multi-label tasks to
several instances of single-label aggregation, since, in these cases,
not providing a label is implicitly taken as a negative answer. By
exploiting the partial agreement of answers, however, correctness
and completeness of answer aggregation can be improved.

Beside the general challenges of answer aggregation, comput-
ing crowd consensus with partial-agreement is inherently complex.
The labels obtained as part of different answers are often corre-
lated. For example, in movie classification, movies about a super-
hero are often associated with the genre action [21]. Identifying
the correct set of labels needs to deal with the exponential growth
of combinations of labels and dependencies between them. Also,



workers no longer either agree or disagree on an answer to
a question, but consensus becomes partial. Hence, it becomes
difficult to assess the reliability of workers since they may provide
supposedly correct and incorrect labels at the same time.

Approach. In this paper, we propose a Bayesian nonparamet-
ric model in order to capture the distinct properties of partial-
agreement answer aggregation. That is, co-occurrence depen-
dencies between labels are represented by the notion of latent
label clusters. This notion is motivated by the observation that
items can often be grouped together, if they share similar labels.
Furthermore, partial consensus between workers is modelled by
grouping together workers with similar answers. This enables us to
construct an aggregated answer based on the consensus of groups
of workers instead of consensus among individuals. The resulting
model generalises the multi-label setting of answer aggregation
and enables incremental learning using the principles of stochastic
variational inference.

Contribution and Structure. Our contributions along with the

structure of the paper can be summarized as follows:

Problem Setting We motivate the need for partial-agreement
answer aggregation and elaborate on types of crowd work-
ers. We further formalize the problem setting, and outline
requirements for partial-agreement answer aggregation.

Novel Model for Partial-Agreement Answer Aggregation (§3)

We present a generative model for partial-agreement
answer aggregation, referred to as Generic Crowdsourcing
Consensus with Partial Agreement (CPA). Specifically,
we show how to perform model inference (finding
the probability distribution of model parameters given
information on worker answers or true labels) and model
instantiation (estimating item labels based on the given
information and the inferred parameter distributions).

Scalable Model Inference and Prediction (§4) Even a linear
model inference algorithm becomes intractable for very large
datasets. Therefore, we propose (i) to exploit incremental
computation, so that model parameters are updated based
on new data instead of inferring a model from scratch; (ii)
to leverage parallelisation to scale-out and scale-up model
inference and prediction.

Evaluation (§5) Experiments with real-world datasets highlight
the effectiveness of the proposed CPA model. It outperforms
baseline methods by up to 134% in precision and recall. Also,
when using our methods for scalable model inference, we
observe speed-ups of up to 32x in runtime.

Finally, [§6] reviews related work, before [§7] concludes the paper.

2 PROBLEM SETTING

We first introduce a motivating example for partial-agreement an-
swer aggregation and elaborate on challenges induced by different
types of crowd workers. Then, we present a problem statement
and discuss requirements for potential solutions.

2.1 Motivating Example

We consider an image tagging task, in which workers assign
one or more labels to a picture. For simplicity, these labels are
encoded by numbers from 1 to 5. illustrates an exemplary
crowdsourcing result, in which five workers (u; - us) provided
their answers to four pictures (i; - is). The correct, yet generally
unknown, label assignment is shown in a separate column.
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TABLE 1: Answers provided by five workers for four pictures.

I > U3 m us | Correct | Majority [17], (18]
i {45} {45} {4} {1} {5} {5} {45}
o {23} {14} {4} {2} {34} | {34} {4}
i {12} {4} {4} {3} {45} | {45} {4}
D02 Ry W @ (23 | (03 1)

1: sky, 2: plane, 3: sun, 4: water, 5: tree

Answer aggregation calculates a joint answer for each item
based on the input provided by workers. A common method to
derive an aggregated answer is majority voting [17], [18], which
considers all labels separately. If the ratio of ‘votes’ from workers
for a label is larger than 0.5, the respective label is included in the
aggregation result. Compared to the actually correct assignment,
the result obtained in this case has two issues, though: (i) it is
partially incorrect (label 4 is not correct for i), and (ii) partially
incomplete (labels 1 and 3 shall also be assigned to is).

These issues have two main causes. First, workers are con-
sidered equally, whereas it is known that there are different
types of crowd workers [22], [7]: (1) Reliable workers have deep
knowledge about specific domains and provide correct answers;
(2) Normal workers tend to give correct answers, but make mis-
takes occasionally; (3) Sloppy workers have little knowledge and
often give wrong answers unintentionally; (4) Uniform spammers
intentionally answer all question the same; (5) Random spammers
give random answers. In our example, u3 is a uniform spammer,
assigning one label to all pictures. Yet, these answers are reflected
in aggregated result, while removing u3 yields the correct result for
picture i;. Worker uy is a random spammer, whereas the remaining
workers can be classified as reliable (#5) or normal (1; and u3).

However, existing worker models [22], [23]], [24]], [25] cannot
be applied directly in partial-agreement answer aggregation, since
worker answers may be partially overlapping. Moreover, interpret-
ing a missing label as a negative answer is not always correct and
thus shall be cross-checked by answers from other workers.

A second cause for the issues observed in the example is the
neglect of dependencies between labels. For instance, label 2 often
co-occurs with labels 3 and 1. Such correlation can be useful in
the aggregation. If we also include label 1 and label 3 whenever
label 2 has been assigned, for instance, the obtained result would
be correct for picture iy when using majority voting.

2.2 Problem Statement

We capture the setting of partial-agreement answer aggregation by
a set of workers 7, identified by their indices, U = {1,...,U}
that provide answers for a set of items A/, also identified by their
indices, AL 2 {1,...,I}. Z2 {1,...,C} is the set of all possible
labels for these items. Each answer by a crowd worker is a subset
of Z. Formally, answers are modelled as an I x U answer matrix:

where x;, C Z is the set of labels assigned to item i by worker u,
or x;, = 0 if worker u has not provided an answer for item i.

Problem 1 (Partial-Agreement Answer Aggregation). Given a set
of items A/, a set of workers U, a set of labels Z, and an
answer matrix M, the problem of partial-agreement answer
aggregation is the construction of a deterministic assignment
d : T — 27 assigning a set of labels to each item.



A baseline solution to the above problem is to construct
the assignment d by majority voting, as illustrated above. Yet,
observing the issues that stem from the application of majority
voting, we derive requirements to be met by answer aggregation
in order to be useful for answers of partial-agreement tasks.

(R1) Consideration of worker communities. In practice, there
is little control over the selection of crowd workers. Answer
aggregation, thus, shall capture worker characteristics, to assess
the likelihood of them providing correct answers and to justify
their effects in the aggregated result. The existence of different
worker types, as illustrated above, has been verified in various
studies [26]], [27] as well as in our experimental evaluation.

(R2) Support for partial answer validity. Against the back-
ground of diverse worker types and their distribution in practice,
see [28]], the correctness of answers shall be assessed in a fine-
granular manner, i.e., at the level of individual labels. This is a
prerequisite to make efficient use of normal and sloppy workers in
particular. In the above example (Table I)), #, may be an expert for
label 4 (two out of three assignments are correct), but potentially
lacks knowledge related to label 1 (one incorrect and one missing
assignment). The existence of worker communities for different
labels can indeed be observed in practice (see[§5.3).

(R3) Exploitation of label dependencies. In many multi-label
settings, similar items are assigned overlapping sets of labels.
Such dependencies between labels, e.g., their co-occurrence in the
answers provided by crowd workers, shall be exploited to improve
the soundness and completeness of answer aggregation. As an
example, illustrates five representative labels of a multi-
label dataset (discussed in detail in our experimental evaluation)
along with their co-occurrence dependencies. We observe two
clusters of labels, {sky, birds, cloud} and {flower, road}. Such
relations between labels represent domain knowledge that can be
explored to characterize workers on a fine-granular level. More-
over, for automatic classification it is well-known that the neglect
of label dependencies—treating a multi-label problem as several
instances of a single-label problem—yields weak results [29],
[30]. Moreover, asking workers to confirm each label separately
would incur higher time and cost. While there are other types of
label dependencies, such as hierarchies [18]], those require domain-
specific knowledge to be configured appropriately. Clusters can be
considered as the most generic form of label dependencies, since
workers may still use the raw labels, rather than abstract labels
that represent a group of raw labels [31], [[12].

Fig. 1: Co-occurrence of labels in the NUS-WIDE dataset [12];
vertex sizes represent the occurrence cardinality and edge
weights represent the strength of the co-occurrence dependency.

(R4) Adaptivity of aggregation model. The characteristics of a
crowdsourcing application (e.g., the number of worker commu-
nities) may vary across different domains or over time, upon the
arrival of new data. This requires dynamic adaptation of the model
to reflect the evolving relations between the obtained answers.
Again, the practical relevance of this requirement is illustrated by
our experiments in which illustrate the diversity of worker
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communities across real-world datasets. Dynamic adaptation of
the aggregation model is needed to cope with such diversity.

3 PARTIAL-AGREEMENT ANSWER
AGGREGATION IN CROWDSOURCING

This section introduces our novel model for partial-agreement
answer aggregation, referred to as Generic Crowdsourcing Con-
sensus with Partial Agreement (CPA). We first give an intuitive
overview of the model, before we turn to its formalisation. Then,
we outline the application of CPA for answer aggregation: we
derive a scalable inference method with variational Bayes and
show how to predict the labels of non-grounded items.

3.1 Overview of the Approach

We approach answer aggregation by considering each element of
the given answer matrix as an observed random variable. The true
labels of items are also modelled as a random variable. While a
few of them may be observed (e.g., due to test questions [32]),
the vast majority of these variables are unobserved. To predict
the value of unobserved variables, i.e., to estimate the labels for
an item for which the true labels are not available, we rely on
a generative process based on a Bayesian network. All random
variables are generated from parametrised probability distributions
and the respective parameters are inferred from the observed vari-
ables. Here, worker communities are represented by a clustering
of workers, modelled nonparametrically by a Chinese Restaurant
Process. Then, values of the unobserved variables are predicted.

We address the outlined requirements regarding the consider-
ation of worker communities (R1) by a notion of worker clusters
that group together workers based on their trustworthiness and
domain knowledge. In contrast to methods that evaluate individual
workers, e.g., by means of confusion matrices [33], models that
rely on clusters of workers are less prone to errors when data
is sparse. This makes them particularly suited for crowdsourcing
where each item is processed only by a fraction of the worker
population due to budget constraints.

Since our approach is grounded in a nonparametric model, the
number of parameters is adjusted to the data, thereby enabling
adaptive aggregation (R4). The Bayesian property of the model
helps to reduce over-fitting by inferring probability distribution
over random variables instead of singleton values. In addition,
Bayesian models are well suited to cope with online settings—
new information can be encoded into posterior distributions used
in the inference and prediction process.

The specific challenges of answer aggregation for partial-
agreement tasks are addressed as follows. Dependencies between
labels (R3) are incorporated by clustering items in the answer
aggregation process. Items in a cluster are assumed to be similar
and, thus, be assigned the same set of labels. The latter implicitly
encodes dependencies between labels in terms of co-occurrence.

To support partial answer validity (R2), we follow the intuition
that obtaining a label for an item can be seen as randomly selecting
labels of the respective item cluster, given a worker community.
Hence, we model the labels as being generated from a multinomial
distribution over the item clusters and worker communities. Since
this is a random process, workers in a community may still provide
different labels for items of the same cluster.



3.2 The Model of CPA

The input of partial-agreement answer aggregation (Problem [T is
a set of items AL = {1,...,I}, a set of workers U = {1,...,U},
a set of labels Z = {1,...,C}, all identified by the indices of
their elements, and an answer matrix /. We define the model of
Generic Crowdsourcing Consensus with Partial Agreement (CPA)
as follows (notations are summarised in [Table 2). All non-empty
answers in M are modelled as observed variables = € (22)/*V,
where x;, denotes the set of labels assigned to item i by worker
u. Further, y € (2%)! are random variables modelling the true
labels of all items. True labels may be known for some items,
which is captured by a set of observed variables y C y (y may be
empty). The values of variables  and y can be represented as a
C-dimensional vector, such that each of its components is set to
one, if the respective label is present. Thus, observed values of @
and y can be seen as samples from a multinomial distribution.

Worker communities, item clusters, and label selection are
modelled as follows shows a graphical representation):

Worker Communities. There is a finite set of worker commu-
nities 7, identified by indices, ©T £ {1,...,M}, that partition the
set of workers and are not known in advance. The (unknown)
assignment of workers to communities is captured by a set of
random variables z € n¥, such that z, denotes the community
of worker u. We generate T nonparametrically using a Chinese
Restaurant Process (CRP), which can be interpreted as the induced
distribution over the partition space by a Dirichlet Process [34],
[25]. Technically, if 7 follows a CRP distribution, T ~ CRP (at),
the samples from this prior follow the following distributions:

—u
m

n ifdzy €z y:zp=m

w=m|z_,,T,0) o<
P |20 @) {OL otherwise

where z_, = z\ {z,} and n," is the number of elements in z_,
with community m. Generatively, T can be constructed using
a stick-breaking process as follows. Let m,,, m = 1,2,3,... be

sampled from a Beta distribution Beta (1, ). Then, the community
proportion T, is calculated using the above sticks 7, such that

m—1
=", [T (1—7),- (1)
J=1

When conducting inference, we will only estimate the stick dis-
tribution 7, since the original distribution T is calculated directly
from 7' as above. Note that the nonparametric approach gener-
alises the extreme cases. If M tends to infinity, each worker is a
single community (e.g., no two workers provide similar answers).
If M tends to zero, all workers form a single community (e.g., only
expert workers) and the result is similar to majority voting.

/
T =T, ...

TABLE 2: Overview of notations.

A Set of I items, identified by indices, \[ £ {1,...,1}
U Set of U workers, identified by indices, U £ {1,...,U}

Z Set of C possible labels, identified by indices, Z £ {1,...,C}
M Ix U Answer matrix

T Set of M worker communities, identified by indices, T = {1,...,M}
©  Setof T item clusters, identified by indices, T S {1,....,T}

2, Community of worker u
x;; Labels assigned to item i by worker u
v, Label assignment probabilities of workers in community m for items in cluster

I; Cluster of item i
y; True labels assigned to item i
¢, Label assignment probabilities for items in cluster ¢

(0% €
™ T

Qzu
Vo Q L ,
@ ©
M ; Lin Yi ! r

T U

Worker label-assignment generation
Item label-assignment generation

Fig. 2: Graphical representation of the CPA model.

Item Clusters. To model clusters of similar items, which tend
to get assigned the same sets of labels, we follow the approach
introduced for worker communities. There is a finite set T of
clusters, identified by indices, T = {1,...,T}, that partition the
set of items and are not known in advance. The (unknown)
assignment of items to these clustered is captured by random
variables ! € ©/, such that /; denotes the cluster of item i. Again,
T is generated nonparametrically by a CRP, i.e., T ~ CRP(g).
This avoids additional efforts to ask for expert knowledge on the
label information [35], [36]]. Although it is beyond the scope of
this paper, our model can be extended by expressing the prior
knowledge as conditional probabilities and integrating them into
the generative label selection of our model.

The assignment of sets of labels to item clusters is modelled
as a generation from a multinomial distribution. For cluster ¢, this
distribution is parameterised by ¢, = {0r.1,. .., c}, where ¢, . is
the probability that a given item in cluster ¢ will have the label c.
Items in a cluster may have different true labels as a result of the
generating random process—yet, being in the same cluster, they
are similar and thus share the labelling probabilities.

Label Selection. We model the labels obtained from workers
as being generated from a multinomial distribution over the labels
of an item cluster, given a worker community. Each worker is
characterised by a C x T confusion matrix V,,, where m is the
community that the worker belongs to. We denote by ¥, a column
vector of C-dimensions, which contains the probabilities that a
worker in community m assigns the respective labels given an
item of cluster z. This model has the advantage that, instead of
considering exponentially many subsets of labels, it is based on the
number of all possible item clusters, which is tractable in practice.

Consider a setting with four labels {1: girl, 2: boy, 3: dog, 4:
cat}, two item clusters {1: people, 2: animal}, and two worker
communities {1: trustworthy, 2: problematic}. Then, a confusion
matrix column vector Y = [0.5,0.5,0,0] means that workers of
community 1 (trustworthy) assign an item of cluster 1 (people)
the labels 1 (girl), 2 (boy), 3 (dog), or 4 (cat) with probabilities
0.5, 0.5, 0, or 0, respectively.

Generative Process. Let Cat and Multi be categorical and multi-
nomial distributions, respectively. Then, the generative process for
the CPA model is defined as follows:
(1) For each item in Al (right-hand side of :
a) Generate the cluster for each item:
I; | T~ Cat(7)
b) Generate the labels for each item from the cluster:
yi | i ¢ ~ Mult(¢y,)
(2) For each worker in U (left-hand side of [Fig. 2):
a) Generate the community for each worker:
Zu | ®~ Cat(m)
b) Generate the set of assigned labels for each worker and



item from the labels of the item cluster and the confusion

matrix of the worker’s community:

Xiu | Zu,y li, \lf ~ Mult (\Pé’“)
Model Parameters. The CPA model is nonparametric since the
number of worker communities in © and the number of item
clusters in T are not known in advance—they change with more
observations (z and y) becoming available. In particular, they
grow when more and more different workers and items are
processed, avoiding any bias potentially introduced by fixing these
parameters before-hand.

In a Bayesian setting, we use the following priors for the

parameters related to the worker communities and item clustering
(Dir being a Dirichlet distribution):

7 ~ CRP (o)
7~ CRP (¢)

¥, ~ Dir(v,)
¢: ~ Dir(n,)

with 1 <t <T and 1 <m <M. Here, T and M are the maximal
number of worker communities and item clusters for numerical
purposes in later model inference, which can safely be set to large
values, e.g., 1000. Both T and 7 are unknown.

3.3 Inference

Inferring the parameters of the CPA model is, in fact, the estima-
tion of values of the above priors (,€,y,m). This is equivalent
to inferring the posterior distribution of the unobserved vari-
ables (7, 7,z,/,y,0) under the observed variables (x,vy), which is
p(m,t,z,0, 9,0 | x,y), or p(n',7,z,,¥,0| ,y) using the stick-
breaking representation for 7 and T (see [Eq. I).

Approaches for (approximate) inference for statistical models
can be classified into simulation methods and deterministic vari-
ational methods. The use of simulation such as Markov Chain
Monte Carlo algorithms (such as Gibbs sampling and random
walk) is problematic when applied to large-scale data sets since
convergence is often slow and unpredictable [37]], [38]. Thus, we
resort to variational inference and propose a novel scalable method
that follows the principles of variational Bayesian inference.

In variational inference, instead of computing the posterior
distribution directly, we infer an approximation ¢ (%', ',z,1,¥,9),
referred to as variational distributions:

q(m',v,z,1,y,0) =
U
q('[p)g(t'|v) H

1 M T T

ZM‘KM)H ay UI:[ q(W 1 A) H (0 18)

where ¢ (z, | K,) and ¢ (l; | @,) are M-dimensional and T-dimen-
sional Multinomial distributions; and ¢ (!, | A!,) and ¢ (¢, | ;) are
C-dimensional Dirichlet distributions.

For the variational distributions g (m' | p) and ¢ (7' |v), we
rely on a stick-breaking truncation representation for a Chinese
Restaurant Process similar to those in [38]], which are truncated to
M and T, respectively. The variational distributions are:

M—1

q(n'[p) =[] Beta(r, | pm1,Pm2)
m=1
T-1

q(t'|v) = HBeta (T, | V1,02)

t=1
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To approximate the posterior distributions p by variational distri-
butions ¢, we use the KL-divergence between them, KL(q | p).
With © 2 {',7,z,1,y,0}, it is defined as:

KL<q|p>é_/q(@)m%
:—/q(@)m

p(@®,z,y)
> _/q(@)lnwd@é

doe
d© +1np(z.y)

4(0)
—L£(©)

4(©)

L(©) is called evidence lower bound (ELBO) and denotes the

variational objective function. Using variational theory [37], tak-

ing derivatives of this lower bound with respect to each variational

parameter, we derive the following coordinate ascent updates [38].

Local Updates. We first update local variables (connected to a
single data point), i.e., z and / in our model. We update the
respective distributions g (z, | k,) and g (/; | @;) as follows (details
on the computation of these equations are given in the appendix):

Kum o< €Xp <Z Y @iE[np (xi, | )] +E[In Jtm]) 2

i=1t=1

@i o< exp (E[lnp (y; | ¢:)] + E[InT,]) 3

Global Updates. Next, we consider the updates for global (or
outer) variables (connected to multiple data points), i.e., T, T,V,
and ¢ in our model. We update g (7’ | p) and ¢ (7' | v) as follows:

U U M
Pm1 = I+ Z Kum Pm2 =0+ Z Z Kur 4
u=1 u=1 l=m+1
1 1 T "
Va=14+Y 0  Vvo=ge+), Y o (5)
i=1

i=1 I=1+1

Here, a,€ > 0 are ‘prior beliefs’ on the maximum number of
worker communities and item clusters. Yet, their effects are
marginal, as the updates are dominated by the observed infor-
mation (k and @), so that o, € can safely be set to large values.
Distributions ¢ (¢, | A!,,) and ¢ (0, | {;) are update by means of:

H’IL - )\‘t 'm0 + Z Pir Z KumXiu (6)

e =G+ Z Piryi (N
i=1

We summarise our inference algorithm to learn the model param-
eters in It iteratively updates local parameters (K, @)
and global parameters (p,v,A,(). The observed data (x,y) is
used in the updates of these parameters whenever their associated
variables are connected to the observed variables. Note that many
updates of variables are independent, which can be exploited to
scale up the performance. For instance, the individual updates of k¥
parameters and ¢ parameters can be parallelised. The convergence
of variational inference is proved in [39].

Time Complexity. Our inference algorithm scales linearly in
terms of the size of data, i.e., the number of answers (worker-
item pairs that are answered). In each iteration, the membership of
each worker in worker communities and the membership
of each item in clusters (Eq. 3) are updated, which is linear in
the number of worker communities M and the number of item
clusters T, respectively. Next, we update the worker distribution
and confusion matrix of each worker community. Again, given



Algorithm 1 Variational Inference for the CPA Model

Input : Worker answers @ and known true labels y
Output: Estimated model parameters A, , p, 0, K, ¢

Random initialisation of A,,p,v,%,®

while not converged do

// Update the local variables

foru«1,...,Uandm« 1,...,M do Update K,,, using[Eq. 2;
fori«1,....landt<1,...,T do Update ¢; using|Eq. 3[;

// Update the global variables

form«1,...,M do

Update p,,; and p2 using
L fort«+1,...,T and c < 1,...,C do Update Al using;

fort < 1,...,T do

Update v;; and v, using[Eq. 3]
forc<+1,..., C do Update ;. using|Eq. 7|;

return A, ,p,0, %,

the bounded numbers of worker communities M, item clusters
T, and possible labels C, [Eq. 4] and are updated in linear
time w.r.t. the number of workers and the number of answers,
respectively. Finally, the item distribution and label assignment of
each item cluster is updated. Since the number of item clusters T
and possible labels C is bounded, updating [Eq. 5] and takes
linear time w.r.t. the number of items.

From the above, it follows that the overall complexity is linear
w.r.t the number of answers scaled by the number of iterations.
Since variational methods require a small number of iterations
(£ 10 for 98% accuracy) [37], [38], our inference algorithm scales
with the number of actual data points, which significantly saves
computation cost due to the sparseness of crowdsourcing.

3.4 Prediction

To solve the partial-agreement answer aggregation problem, we
construct a deterministic assignment d : I — 2€ using the max-
imum likelihood principle (MAP) [40]. After approximating the
values of model parameters P = {a,€,y,1}, we predict the labels
of non-grounded items. Technically, given an item i, we denote
by xy, £ {x,; | v € U;} the labels assigned by the workers U; who
provided answers for this item. Further, D £ {x,y} denotes the
assigned labels as well as known labels as used in the inference.
We now compute y; using MAP estimation of the probability
p(yi | Zy;, @7fl));

yi = argmax p (y; | Zy,, D, P) = argmax p (yi, Ty,

D,P) (8)
since p (yi | v, D,P) = p (yi,zv, | D,P) /p(xy, | D, P), there is
no direct dependency between y; and &y, in the graphical represen-
tation, and the divisor does not depend on y;. The above formula-
tion of the conditional probability of y;, i.e. p (yi | Zy,, D, P), has
the advantage that it covers diverse crowdsourcing settings. For
instance, the absence of known true labels (y =0 in D = {x,y})
or a separation of training data and testing data (xy, SZ x) can be
directly encoded in this formulation.

To compute p (y;,xy, | D,P), we factorise over all probabilis-
tic dependencies in the graphical model representation. Using the
derivation outlined in the appendix, we arrive at:

pOi,zy, | D, P)
S < MAP MAP
=Y 0 TT [ X somp (i |W¥47) ) p (31 61147
=1 uclU; \m=1
(t)yMAP MAP . .. .
where and ¢;"" are maximum a posteriori (MAP) esti

mates (aka modes) of the inferred distributions of W, and ¢;.
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However, the maximization problem in is a zero-one
integer problem, which is known to be NP-hard—the exhaustive
search needs to explore 2€ — 1 combinations of labels. Against this
background, we may use a greedy search algorithm to approximate
the mode y; of the above distribution. Initially, all elements y;.
of the vector y; are set as zeros. Then, we proceed iteratively
and, in each iteration, set to one the element y;.+ that leads to the
largest increase of p (yf,xy, | D,P). This procedure terminates
once p (¥, xy, | D,P) can not be further increased. The final con-
figuration of y; will be the instantiation value for the deterministic
assignment. Note that this instantiation can be done independently
for all items, so that this step can be parallelised.

4 SCALABLE MODEL INFERENCE AND PREDICTION

Today’s crowdsourcing datasets are very large [27], [41]], so
that answer aggregation becomes impractical even with a linear
inference algorithm. Interactive crowdsourcing applications [42]]
might require very fast response time. However, simple divide-
and-conquer methods such as matrix partitioning [43] are not ap-
plicable, since a split-up of the answer matrix causes information
loss on worker communities and item clusters.

This section proposes two levels of scaling model inference
and prediction as introduced in First, we exploit incremental
computation in the model inference to achieve online learning,
i.e., we avoid recomputation of the whole model when new data
arrives. Second, we leverage parallelisation to scale-out and scale-
up inference and prediction. Finally, we discuss to which extent
these techniques reduce the runtime of answer aggregation.

4.1 Online Learning

The inference and prediction methods introduced above for the
CPA model solve the partial-agreement answer aggregation prob-
lem in a static setting. However, in many cases, tasks are not
answered immediately when posted on a crowdsourcing platform.
Rather, the set of worker answers is gradually building up over
time and intermediate aggregation results are valuable from an
application point of view [42]. For instance, intermediate results
may indicate that a task is too difficult for workers, so that it shall
be re-designed. Also, if intermediate results are of high quality,
the crowdsourcing process can be terminated early to save cost.

We cater for such an online setting by means of incremental
computation for the CPA model. We present an inference algo-
rithm that incrementally updates the model parameters based on
new data, which are then used for predicting the true labels of all
items. In each learning iteration, we maintain only the most recent
parameter values, thereby avoiding the cost of repeatedly building
the model from the complete set of answers. While this approach
comes with a modest reduction in aggregation quality (explored in
our experiments), it greatly improves aggregation efficiency.

Stochastic Variational Inference (SVI). The deterministic varia-
tional inference (VI) presented in the previous section for the static
setting maximises the EBLO function £ (®) using coordinate-
ascent for each of the parameters of variational distributions. To
realise incremental learning, we rely on stochastic variational
inference [39] and apply stochastic optimization to the EBLO
function based on newly received data. By relying on stochastic
gradient descent (SGD) in we do not need all avail-
able data, but only a small subset of it, to update the parameters
in each iteration. More precisely, while VI needs many epochs



to converge (each epoch corresponds to an iteration scanning the
entire datasets), SVI is designed to converge in one epoch, which
is why it is favoured in an online setting where each answer is
used once. The convergence of stochastic variational inference is
proved in [39].

Technically, data is received as a series of batches b=1,2,....
Each batch b contains the answers of a fixed number of work-
ers U, (with Uy, being the cardinality of 71,) for a set of items Aj.
We consider new answers as a subsample and, based thereon, de-
rive a stochastic gradient. Specifically, we compute the difference
V between old and new values of each parameter. Following [39],
[44], we classify variational distributions as being global or
local. In our setting, g (I; | ¢;), ¢(T' | p), ¢ (T | v), g (¥, | A,,,), and
q(9; | G;) are global, whereas ¢ (z, | k) is local (¢ now becomes
global as we consider multiple items in one update).

Natural Gradients. For the local distribution, we reuse the update
formulation given for VB inference (i.e., [Eq. 2). The respective
distribution is connected to a single data point, which can be
computed directly from the new data. In contrast, for the global
distributions, natural gradients are obtained for each variable over
all u € U, as follows (see the appendix for a detailed derivation):

_}\’in + 'Yrm + UZiEM Oir KumXiu

Vil U 9)
Ve Ly = —G&+m JrUZieM, Qiryi 10
VouLu = w an
Vo Ly = —Pm2+0c+ll]JZ§‘1mHKum "
Vo, Ly = _Dt1+1;Zi€M Qir -
Vo, Lo = —vt2+s+):5:,+l Yicng @i ”

The natural gradient for ¢ (/; | @;) is difficult to compute since
the mean-parameterisation requires the constraints LT:l(p,-, =1
and 0 < @; <1 to be satisfied. Hence, we prefer to work with
a minimal canonical parameterisation in exponential family form,
parametrising the distribution by u instead of ¢:

q (L | i) = exp (i, S (1)) — B (ui)) -

In the above distribution, u; = [,u,-l, .. .,u,-(T,I)JT is aT-—1-
dimensional vector parameter, B(u;) = 1+ Y/ 'exp (u) is a
normalisation function, and S(I) = [I(I—1),.... 1(I—=T+1)]" is
a sufficient statistic function. The idea of sufficient statistics is
to only maintain the minimal/sufficient information instead of all
data points to compute the probability distribution. In our case,
the sufficient function is defined as a 7 — 1-dimensional binary
vector, containing a value of one only at position /. That is, I(x) is
an indicator function, I(x) = 1 if x = 0; and I(x) = 0, otherwise.
The natural gradient for parameter u is:
Y, L= —i +El&] —Eler] + U (ay —arr)
U
where a; = YM_ «,E[Inp (xi, | ¢,)] for t = 1,...,T. To derive
¢ from p, we use the following transformation:

15)

(pit:#("”) fort=1,..T—1 (16)
T+ X, exp (ui)
1
Qir 17)

Y exp (ui)
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Learning Rate. In incremental learning, a learning rate ®;, needs
to be specified as a function of the batch index b. To ensure the
convergence of the gradients, ®, shall satisfy two conditions:

s

W, =c0 and Z(x),%<o<>.
b b=1

1

The learning rate depends on r, aka the forgetting rate. If r is large,
, becomes small, and the old parameter values are only slightly
changed. Finding a good value for r is specific to a dataset. Yet,
any value of r € (0.5,1] leads to convergence [39]]. Larger values
of r often lead to higher learning quality and faster convergence
(but not monotonically). We varied r in our experiments and found
out that fixing r to [0.85,0.9] achieves good results.

Online Updates. Using the above gradients, the updates of all
necessary parameters in the online setting become:

U U
b ue, b ued,
U U
P%P+wbi Z VpLu 'U(*’U%”(Dbi Z VvLu 19)
b ucUy, b ueU,
U
B 0 — Z V;LLLI (20)

b ueu,

The algorithm for incremental learning for the CPA model is
illustrated in Algorithm [2| In each iteration, a pre-defined number
of answers are collected from the crowd. Based on the new
data, we compute the natural gradients and update the model
parameters.

Algorithm 2 Stochastic Variational Inference for the CPA model

Input : Continuously updated worker answers & and known true labels y
Output: Estimated model parameters A, {,p,v,%, @

Random initialisation of A, p,v,%,®
b<1// The batch index
while more answers are available do
Fetch the b-th batch of answers of users Uy, for items A}, and set b < b+ 1
// Update the local variables
for u e U, and m + 1,...,M do Update k,, using[Eq. 2| ;
// Update the global variables
Compute the natural gradients using[Eq. 9to[T3]

Set learning rate @, = (1+5)""
Update A.C.p. v using[Eq_TS| 1050}
Compute ¢ using[Eq. 16|to

return ,5,p,0, %,

Online Prediction. Online prediction enables us to perform the
instantiation of labels incrementally, upon the arrival of new
answers. Different from the inference procedure for incremen-
tal learning, online prediction does not compute the difference
between the old and new labels assignments. The reason is
that the most recent parameter values constitute the probability
distributions of all data obtained so far. Each time new answers
are obtained, the parameter values are updated and their values
can be used to generate the corresponding approximated posterior
distributions of model variables required for instantiation, i.e.,
q” (1| 9i), 4" (2l %), ¢ (W [ 1), ¢ (001 Go), ¢ (' | p)
and ¢® (7' |v), where b = 1,2,... is the batch index. These
posteriors are approximations of their offline counterparts and,
thus, are used as input of the instantiation procedure in [§3.4]

4.2 Parallelisation

As a second angle for achieving scalability of model inference, we
incorporate parallelisation of stochastic inference (Algorithm 2J)



following the MapReduce principle [45]. The general idea can be
summarised as follows: When the global variables are given, the
updates to local variables become independent and can thus be
computed concurrently.

[Algorithm 3]outlines how to parallelise model inference using
MapReduce primitives. It achieves scale-out by distributing the
calculation of local variables ¥, and a; for pairs of workers and
items (MAP phase). Subsequently, the global variables A, £, p, %, u
and ¢ are calculated in a centralised manner (REDUCE phase).
In each iteration, the observed data is partitioned for parallel
processing. In our case, each user u represents a suitable key for
such partitioning.

Algorithm 3 MapReduce for Stochastic Variational Inference

Input : Continuously updated worker answers & and known true labels y
Output: Estimated model parameters A,{,p,v,%, @

Random initialisation of A, p,v,%,®
b<1// The batch index
while more answers are available do
Fetch the b-th batch of answers of users U, for items A}, and set b < b+ 1
begin MAP ({x,; },{A,C,p,0,0}):
for m+<1,...,M do Update ¥, using
for < 1,....landt<1,...,T do
Compute a; in
emit {Kym, ai }
Set learning rate @, = (1+5)"
begin REDUCE (0, {Kym,ai}):
Accumulate ; for all u € U,

Compute the natural gradients usin to[T3]

Update A, C,p,v,u using to
Compute ¢ using[Eq. 16|to|17]
broadcast globals {,{,p,v, ¢}

return A, p,v, K, @

Further, the prediction procedure is also parallelised in a trivial
manner: the instantiation of labels is independent for all items and
therefore can be done in parallel.

4.3 Scalability Analysis

We now assess the influence of online learning and parallelisation
on the time complexity of model inference. Denote by 7} and 75 re-
spectively the runtime for local updates and global updates in each
iteration of Then, the total runtime is (T} + T») - Cy
where C; is the number of iterations to reach the convergence. For
the algorithm that exploits incremental computation to support
online learning , the total runtime is (% +70) -G
where B is the number of batches and C; is the number of iterations
to reach the convergence. In large-scale datasets, we commonly
have C; < C; and, in practice, this difference is about two orders
of magnitude [44]. This is also reflected in our experiments as the
accumulated runtime of the incremental approach is significantly
faster than the non-incremental procedure. For the algorithm that
also parallelises the calculation in each iteration, the total runtime
would ideally be (;—‘P + 1) - C; where P is the number of parallel
processors (i.e., cores of a single machine or machines in a clus-
ter). In practice, parallelisation still induces a certain overhead due
to the synchronisation in the REDUCE phase, see also Amdahl’s
law [45].Accumulating the runtime for the complete data, we
arrive at a total runtime of (75 +7)-C, - B.

Online learning and parallelisation also speed-up the pre-
diction, with the speed-up ratio being # since prediction is
scaled by batches (online learning) and items (parallelisation). The

accumulated total runtime for prediction is # -B.

5 [EVALUATION

We evaluated our approach to partial-agreement answer aggrega-
tion along several dimensions. We first elaborate on our experi-
mental setup (§5.1)), before evaluating the following aspects:
« The effectiveness of our CPA model for answer aggregation
in crowdsourcing (§5.2).
o The effectiveness and efficiency of CPA when using online
learning and parallelisation (§5.3).
« The importance of representing worker communities and item
clusters in the CPA model (§5.4).
As mentioned in we further verify the existence of worker
communities in real-world datasets. However, this is not the focus
of our work, so that these results can be found in

5.1 Experimental Setup

Task Design. Aiming at a realistic evaluation setup, we follow
best practices on task design for crowdsourcing:

Batch processing: Each task consists of multiple items that are
to be labelled by a single user. To mediate the trade-off between
the overhead of switching tasks and the cognitive load of a single
task, we follow recent studies on crowdsourcing effectiveness [46],
suggesting a task size of 10 items.

Pricing: We vary the price for a task over the datasets based on
the difficulty of the respective tasks. Considering that a simple task
would take five minutes to complete and that the average wage of
workers is around 2.00$/h [47], we set the task price to 0.1$, 0.28,
and 0.3$ for simple, medium, and difficult tasks, respectively.

Datasets. Our experiments have been conducted using five real-
world datasets, spanning diverse application scenarios:

(1) Image annotation: From the NUS-WIDE set of tagged web
images [12], we randomly selected 2000 images, such that tags are
uniformly distributed. Each image has up to 10 tags, which serve
as ground truth in our experiments. Workers were asked to assign a
subset of around 30 possible tags to each image (the total number
of labels in the taxonomy is 81).

(2) Topic annotation: We relied on a random sample of 2000
Twitter messages from the collection that was used in the TREC
2011 Microblog track [13]. This dataset assigns up to five topics
(from a set of 49 topics) to each tweet and, again, we ensured a
uniform distribution of topic labels in our sample.

(3) Aspect extraction: This dataset is about assigning evalua-
tion aspects (e.g., price or menu) to restaurant reviews [48]. The
ground truth, provided by [48]], assigns up to five aspects (out of
262) to 3710 reviews. We designed crowdsourcing tasks that asked
workers to assign a subset of 20 possible labels to each review. The
set of possible labels contains the true labels and is filled up with
the labels that have the highest co-occurrences with the true labels.

(4) Entity extraction: The T-NER dataset [49] contains 2400
tweets, to which entities (of ten categories such as products or
facilities) shall be assigned. It also includes the ground truth for all
tweets. We asked workers to tag each word of a tweet as being an
entity or non-entity, so that any tweet is assigned a set of entities.

(5) Movie tagging: This dataset has been created by crawling
the IMDB website, randomly selecting 500 movies from a total of
22 genres. Thus, the ground truth stems from the IMDB website.
Workers have been asked to assign genres to the movies.

We employed workers to perform item labelling using the
CrowdFlower platformﬂ In total, we spent a budget of 8772 tasks

Uhttp://www.crowdflower.com/!


http://www.crowdflower.com/

TABLE 3: Statistics for the real-world datasets

Quantity Dataset

(1) image (2) topic (3) aspect (4) entity (5) movie
# Items 269,648 16M 3710 2400 500
# Labels 81 49 262 1450 22
# Questions 2000 2000 3710 2400 500
# Workers 416 313 482 517 936
# Answers 22920 15080 19780 15510 14430
Unit Price ($) 0.01 0.02 0.03 0.02 0.01

for all datasets and ended up having a repository of 87720 label
annotations for 10610 items from 2664 users, see [Table 3}

The resulting datasets cover diverse crowdsourcing scenarios:
the distribution of worker answers is skewed in datasets (1) and
(5), whereas it is normal in (3); tasks in datasets (2), (3), and (4)
require understanding of unstructured text, which is more difficult
than the tasks in (1) and (5); labels in (1), (2), and (4) are strongly
correlated, whereas there is little correlation between labels in (5).

Large-Scale Simulation. To evaluate the scalability of our ap-
proach in the context of very large crowdsourcing datasets as
described in [27], [41]], [SO], we rely on simulation. To this end,
we adapt existing tools [7] for the multi-label setting. When
simulating large crowds, we vary several parameters in the data
generation to obtain datasets that exhibit similar characteristics
as real-world data: (i) the number of objects, (ii) the number
of workers, and (iii) the number of labels. Moreover, we follow
the guidelines described in [7] to simulate worker characteristics.
Specially, we distribute the worker population into 0% reliable
workers, % sloppy workers and Y% spammers (y/2% random
spammers and Y/2% uniform spammers). For example, random
spammers and uniform spammers are simulated by setting their
confusion matrix column vector to the same value for all labels
or to 1 for one random label, respectively. Based on insights in
worker populations of real-world crowdsourcing services [22], we
select the following default parameters: oo = 43, B =32 and y= 25.
In the simulation experiments, the ground truth is generated based
on a multinomial distribution.

Metrics. In partial-agreement answer aggregation, results can be
partially correct. We therefore rely on the set-based definition of
precision and recall to evaluate the individual correctness of each
item. Per item i, individual precision P; is the ratio of correctly
predicted labels and the total number of predicted labels, whereas
individual recall R; is the ratio of correctly predicted labels and
the total number of true labels. For a complete dataset, precision
P and recall R are the respective averages over all items. With
Y2 Ujeali | iy = 1} and ¥ 2 Uy 50/ | = 1}, the measures
are defined as:
AR A RN sl A
Y7 ol <

l
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Baselines. We compare CPA against several state-of-the-art an-
swer aggregation methods. Unlike our approach, most existing
methods target single-label tasks. For a comparative analysis,
therefore, we regard the multi-label problem as several instances of
a single-label problem (each worker giving a Boolean answer for
a given label) when applying the respective methods. In the end,
each item is assigned with a probability of accepting or rejecting
a given label. If this probability is larger than 0.5, the respective
label is included in the aggregation result. All experiments work
without knowledge on true labels (y = 0).
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o Majority voting (MV) is the most applicable aggregation
method for multi-label tasks [17], [18], even though it still
considers all labels separately. The probability to accept a
label for an item is computed as the ratio of ‘votes’ from
workers who provided an answer for an item.

o Expectation Maximization (EM) is an answer aggregation
model that implicitly captures worker communities in the
joint estimation of the items’ true labels and the workers’
reliability [40]. This model is further refined by penalising
each worker with an extra mislabelling cost [[15].

o Community-based Bayesian Classifier Combination (cBCC)
is a recently proposed extension of Bayesian Classifier Com-
bination (BCC), the latter being the nonparametric version
of the EM model [51]. cBCC extends BCC by explicitly
modelling worker communities [24]], [25]. Recent studies
illustrate that cBCC outperforms BCC in general, providing
promising results in particular for sparse data [24]], [25].

The above baselines enable us to perform a generic comparison.
While there are further aggregation methods for single-label tasks,
they are either subeffective or require domain-specific knowl-
edge [7], [8]. Other methods for multi-label tasks, e.g., [19], [52],
[53], are not directly comparable, since they either consider labels
independently (similar to MV), utilize content-based features of
items, consider only 2-subsets of labels (which is biased), or
consider all subsets of possible labels (which is intractable).

Experimental Environment. Most experimental results have
been obtained on an Intel Core i7 system (3.4GHz, 12GB RAM).
To mitigate the effect of randomness on model inference, we take
the average result of 10 runs, in which the dataset is shuffled
randomly. For the scalability experiments, we relied on an imple-
mentation of our approach in Apache Spark running on Intel Xeon
2.6GHz system (16 cores, 16GB RAM).

5.2 Effectiveness of CPA

Accuracy. We first evaluate the accuracy of our approach based
on the CPA model against the baseline methods in a static setting.
That is, we measure precision and recall of the aforementioned
five datasets. shows precision and recall obtained by our
CPA with the three baseline methods (MV, EM, ¢cBCC).

TABLE 4: Overall accuracy

Precision Recall

Dataset

MV EM ¢BCC CPA \ MV EM ¢BCC CPA
image 0.65 0.66 0.7 0.81 0.57 0.62 0.63 0.74
topic 0.57  0.60 0.62 079 | 054 0.54 0.55 0.70
aspect 0.52  0.61 0.65 074 | 053 0.56 0.6 0.64
entity 0.63  0.57 0.60 079 | 055 0.50 0.53 0.70
movie 0.61 0.74 0.78 080 | 056 0.68 0.7 0.73

An interesting finding is that for the datasets with strong label
correlations (image, topic, entity), the accuracy of complex meth-
ods (EM, cBCC) is similar to majority voting (MV). Specifically
for entity dataset, the EM and cBCC methods are even worse
than MV (0.57 and 0.60 compared to 0.63 at precision, 0.50 and
0.53 compared to 0.55 at recall). For these datasets, our CPA
model, significantly outperforms all baseline methods. This is
because these methods neglect the dependencies between labels.
For example, the correctness probability of two correlated labels
might be larger than the individual probability of each label when
considered separately; thus the existing models might predict only
one of the two labels or none as the correct answer.



For datasets with little label correlations (aspect, movie), our
CPA model still consistently outperforms the baseline methods.
Taking the movie dataset as an example, cBCC achieves precision
and recall values of 0.78 and 0.68, respectively, whereas CPA
yields 0.80 precision and 0.73 recall. This difference can be
attributed to the fact that an instance of a multi-label problem
is not equivalent to the union of several instances of a single-
label problem. A single worker in the multi-label setting will
be considered as different entities in single-label settings, which
could lead to misclassification of worker types across different
labels even if the labels are not correlated.

image dataset image dataset
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Fig. 3: Effects of sparsity

Robustness against Sparsity. In crowdsourcing scenarios, the
answer matrix is typically sparse: most workers process only a
few of the items of a particular application. We investigate the
effect of sparsity on aggregation accuracy by randomly removing
a certain share of the answers, in the step of leaving 10% of the
data per dataset (i.e. the sparsity level increases from 0% to 100%).
We then measure precision and recall, averaged over 100 runs.

As illustrated in[Fig. 3] precision and recall decrease if answers
are removed (sparsity is visualised in decreasing order). However,
answer aggregation based on our CPA model is affected less by
data sparsity compared to the baseline methods. For instance, for
image tasks, when removing half of the input data (sparsity level
50%), the precision of our method is already 86% of the precision
obtained using all answers. The baselines achieve at most 78% of
the precision obtained using all answers in this case. This effect
is due to the notion of worker communities in the CPA model
that helps to identify consistent answers for an item even if it was
processed only by a few workers.

Robustness to Spammers. As discussed in [§2] crowdsourcing
applications suffer from faulty workers, such as random and
uniform spammers, which can account for up to 40% of the worker
population [23]. Even though we may be able to detect different
types of workers (based on their characteristics), the predicted
labels may be incorrect, since faulty answers can be dominating.
We investigate this aspect by adding answers of spammers to the
datasets, such that they account for 20% or 40% of the data. The
¢BCC method turns out to yield the best results of all baselines,
so that report it as the baseline for comparison.

As expected, the results in show that precision and recall
decrease when spammers are included. However, our approach is
less affected by spammers as is the baseline method, in particular
for large amounts of spammers (40%). For example, for the aspect
dataset, the precision ratio of the baseline method decreases from
0.65 to 0.51, whereas it stays nearly constant with our approach,
achieving 0.81 and 0.80, respectively. This highlights that our
approach can not only detect communities of spammers, but also
limits their influence on the aggregation result. Although ¢cBCC
has been designed to capture worker communities [24], [25], it
does not perform well in a multi-label setting, which needs a more
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fine-grained level of assessing worker types. There may be cases
in which the baseline wrongly classifies workers. For example, if
a spammer gives only a single label as an answer, they may be
considered reliability if the label appears in the correct answer.

Effects of Label Dependencies. Next, we study the effects
of label dependencies in partial-agreement answer aggregation.
Since baseline methods solve the multi-label problem as several
instances of a single-label problem, they often treat missing correct
labels in worker answers incorrectly. We study whether adding
these missing correct labels into worker answers will improve
their performance. If so, this is equivalent to the information loss
when considering each label separately. For this experiment, we
use the entity dataset as it shows the strongest correlations between
labels. We simulate the effects of label dependencies in worker
answers by randomly adding missing labels from the ground truth
to worker answers that contain at least one correct label, varying
from the amount of total missing labels between 10% and 30%.
Again, we consider report solely on cBCC as the baseline since it
yielded the best results over all baseline methods.

The result is depicted in where precision and recall are
reported in reverse ratios compared to the original performance of
each method. Here, the baseline incurs a lot of information loss
when ignoring the label dependencies, whereas our CPA model
preserves such dependencies. For example, at dependency level
30%, the baseline loses nearly a half of precision and more than
a half of recall. This result verifies that existing methods for the
single-label problem cannot directly be used for the multi-label
problem, as the information about label dependencies will be lost.
As a result, these methods commonly do not predict the full set of
labels for each item.

5.3 Scalable Model Inference and Prediction

Accuracy. Incremental computation for the CPA model as intro-
duced in aims at increasing the efficiency of computation.
Yet, it may come at the expense of decreased effectiveness, i.e.,
lower accuracy in terms of precision and recall. We therefore
compare the accuracy of the CPA model, once with the inference
mechanisms for a static setting (offline) and once with the ap-
proach with incremental learning (online). Since both algorithms
are approximation methods that might converge to local optima,
we follow an empirical approach [39] to evaluate the performance
boundaries between them. We simulate an online setting by ran-
domly selecting new worker answers to represent newly arriving
data, in steps of 10% of the dataset size. The forgetting rate of
incremental learning r is varied in (0.5,1], with the best values
observed for r falling into [0.85,0.9]. For the non-incremental
setting, this setup corresponds to a step-wise increase of the
sparsity level from 90% to 0% and the prediction is always based
on the complete set of answers received so far.

The result for the image dataset is shown in [Fig. 6 We
notice that indeed, precision and recall are worse when using
incremental computation for the CPA model. Yet, even with
incremental computation, the results are significantly better than
those of the baselines (see previous experiments). This underlines
that the summarised information about item clusters and worker
communities maintained by our incremental inference method still
enables competitively accurate aggregation.

The result for the image dataset in [Fig. 0] is representative
for all datasets. shows precision and recall obtained after
all answers have been processed, including the deviation when
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TABLE 5: Effects of data arrival (at 100%)

Dataset Precision Recall

online offline online offline
image 0.76 £0.02 0.81 0.70 £0.02 0.74
topic 0.71 £0.03 0.79  0.65 +£0.01 0.70
aspect 0.67 £0.01 0.74  0.59 +£0.03 0.64
entity 0.70 £0.02 0.79  0.64 £0.01 0.70
movie 0.74 £0.03 0.80  0.68 +£0.02 0.73

shuffling data and varying the forgetting rate. The incremental
computation based on the CPA model incurs a competitive accu-
racy compared to the non-incremental approach.

Efficiency. Turning to the efficiency of our methods for scalable
model inference and prediction, we measure the runtime for the
static setting (offline) and of the incremental inference, without
parallelization (online) or with parallelization using 4 or 16 cores
(online-4 and online-16), respectively, in relation to the size of
the input data. We also include the runtime of baseline methods
for comparison purposes. Since they run on multiple instances of
single-label problem, we normalize all runtime measurements by
the number of labels.
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Fig. 7: Runtime of CPA inference and prediction mechanisms
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Using the setup for large-scale simulation described in
we generate a synthetic dataset, comprising 10* items and 10*
workers and 10 labels per item. Taking this worker pool, we vary
the number of workers per item from 10 to 100 to randomly
generate the answer matrix as input. Non-incremental inference
is said to converge, if all model parameter differences in two
consecutive inference iterations are below 1073, For incremental
inference, we set the batch size to 100 answers and the forget rate
to 0.875. We average results of 100 experiment runs.

As shown in the scalable model inference and pre-
diction is indeed much more efficient than the offline version,
up to 32x faster. This speed-up is achieved mainly by scalable
inference, which is performed on a fixed number of newly received
answers as well as parallelisation over the number of answers.
Moreover, our methods outperform other baselines except MV,
which is also efficient since it maintains only the number of
positive and negative answers to decide the majority for each label.

5.4 Importance of Model Requirements

Finally, we assess the importance of explicitly capturing worker
communities (R1) and item clusters (R3) by comparing the ac-
curacy of our CPA model with two simplified versions: No_Z
removes the community structure (variable z) from the model, i.e.,
each worker is a singleton community; No_L removes the item
cluster structure (variable /), i.e., each item represents a singleton
cluster. Note that No_L solves the same problem as CPA, yet
needs to compute the probability for all 2¢ possible subsets of
labels to then return the most probable subset. However, the No_L
model turned out to be intractable for all except the movie dataset,
which has a total of 22 possible labels.
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Fig. 8: Effects of model aspects

shows that the CPA model consistently achieves the
highest precision and recall. Improvements over the No_Z model
are particularly large for the more difficult datasets (topic and
aspect), since differentiation of workers is effective in these cases.

We further note that the No_L model achieves higher preci-
sion, but lower recall than the No_Z model. This highlights that
worker communities help to improve correctness by identifying
faulty workers, whereas item clusters improve completeness by
exploiting label co-occurrence dependencies.



5.5 Experiments on Community Detection

Using the setup outlined in this section reports on exper-
iments to verify the existence of worker communities in real-
world datasets, especially in the setting of multi-label answer
aggregation. We will show that a worker may belong to different
communities for different labels they provide. To this end, we
compare the worker answers against the ground truth and visualise
the differences between workers at the label level.
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Fig. 9: Worker communities in real datasets

shows the worker communities that our method infers
for the image dataset and the entity dataset, for different degrees
of task difficulty and label correlation. Each data point is a
worker with their sensitivity (true positives) and specificity (true
negatives) for each label. For example, if a worker provides the
label sky in their answer and this label is contained in the ground
truth, their answer is counted as one true positive for the label.

An important finding is that different communities build up
for various labels. For example, there are 2 communities for label
sky whereas there are 3 communities for label birds. Moreover, in
the specificity range [0,4,0.6] and the sensitivity range [0.4,0.6],
there is one sky community close to a birds community, hinting
at a correlation between these two labels. From that it can be
concluded that answer aggregation shall be based on worker
communities that are characterised not only by different labels, but
also the correlation between them. Another interesting observation
is that the above characteristics is different for the entity dataset
in terms of the sensitivity and specificity ranges as well as the
number of communities. This calls for a nonparametric approach,
which enables adaptation to particular domains and datasets.

6 RELATED WORK

Having discussed the context of answer aggregation in crowd-
sourcing in [§1] and [§2] below, we now review the state-of-the art
techniques and discuss further related areas.

State-of-the-Art in Answer Aggregation. Taking the require-
ments outlined for partial-agreement answer aggregation outlined
in[§2.2)as a starting point, it turns out that most existing algorithms
for aggregating crowd answers are inapplicable, see [7]], [6]] for
a comprehensive evaluation. The vast majority of aggregation
methods do not collectively incorporate diverse characteristics
of workers and their implications for answer correctness, and
thus fail to address requirement (R1). For example, the two-
coin model [54] captures the sensitivity (true positive rate) and
specificity (true negative rate) of the worker, which is applicable
for binary answers only. EM-based models [15], [40] associate
each worker with a confusion matrix; however, they are error
prone to user-chosen initialization and data sparsity. One of the
latest optimization-based methods is the one presented by Das
Sarma et al. [55], which achieves a global optimum rather than
a local optimum by reducing the item-label configuration space.
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Yet, the method assumes uniform quality of workers (which is
problematic especially when the number of workers per item is
high). More severely, the method clusters items with the same
answers, which makes the method inapplicable for the multi-label
problem where different items can have overlapping but different
answers.

A notable extension of the EM model has been proposed by
Kim et al. [S1]]. Based thereon, the models in [24]], [25]] incorporate
worker communities. As our CPA model, these approaches are
based on a Bayesian nonparametric generative model [34]. Yet,
they have been developed for a single-label problem and thus
neither support partial answer validity (R2) nor exploit label
dependencies (R3). As shown in our experimental evaluation that
considered this line of work as one of the baselines, addressing
these requirements is crucial to obtain accurate results. We further
note that our problem setting is different from the one of top-k
algorithms for crowdsourcing tasks [[11], as each item may have a
different number of labels.

Scalable Crowdsourcing. Most answer aggregation algorithms
operate in batch mode; hence, the aggregated answers would
be recomputed from scratch every time a new worker answer
arrives. There are only a few approaches on incremental answer
aggregation, such as online EM [S6]-which targets incremental
updates when a new answer arrives and i-EM [43]], [S7]-which
targets incremental updates whenever the ground truth is extended.
However, tailoring such incremental methods for our setting is
non-trivial due to the dependency between labels and the commu-
nity modelling of workers and items; e.g. a single new answer can
be propagated to change the whole model, resulting in inefficient
execution. Matrix partitioning [43] may also be used to reduce
the computational effort, yet this incurs the loss of information
about the dependencies between workers, which is essential for
modelling the worker community. CPA provides a first method for
answer aggregation for multi-label tasks, which scales not only in
the number of possible labels, but also in the number of possible
answers (subsets of possible labels).

Worker Modeling. The existence of workers with different char-
acteristics calls for models that capture these characteristics in
crowdsourcing. Traditional techniques model worker types im-
plicitly as a part of answer aggregation, via prior-knowledge, via
known difficulty of questions, or textual analysis of crowd ques-
tions [S8], 1591, [7], [32]]. However, these approaches are domain-
specific, sensitive to data and do not provide a meaningful de-
scription of the worker population. Recent work tackles this issue
by explicitly introducing the concept of worker community [22],
[23]. However, defining a fixed number of worker communities is
error-prone since different domains exhibit different numbers and
distributions of worker communities. Our work follows a nonpara-
metric approach that allows the formation of worker communities
to be adaptive to the considered data. Dynamically modelling of
worker communities was also considered in [24], [25]. However,
these approaches are tailored to a single-label problem, where each
worker belongs to a single community. Our CPA model supports
workers being in different communities per label and also enables
propagation of community information across different labels via
the dependencies between labels.

Multi-label Problems. Multi-label problems have been solved
in related research fields, such as multi-label classification [[60],
ordinal classification [61]], and data streams classification [62].
Multi-label classification aims at learning classifiers to associate



each item with a set of labels. Yet, different from the crowdsourc-
ing setting, it is based on the features of the data itself, such
as image pixels or textual indicators [60]]. Ordinal classification
studies a similar setting, but assumes a natural ordering among
labels. It can be traced back to multi-label classification through
membership functions [61]. Our work considers a more generic
relation between labels in terms of co-occurrence dependencies.
Data streams classification aims at multi-label classification in an
online setting, processing data in real-time [62]. Despite the differ-
ences in the underlying classification problem (answer aggregation
is not based on features of the items to be labelled), this setting is
similar to the online setting in crowdsourcing.

Multi-label problems have been studied in the context of
crowdsourcing before, yet the focus has been primarily on mini-
mizing cost when posting tasks, see [63]. Another example is work
on optimising the cost of hiring workers when generating training
data for classifiers [52]. However, these approaches assume labels
to be independent and consider all workers equally—adopting
some form of majority voting to aggregate answers or unifying all
single-label aggregation results [[17], [18], [S2]]. Other techniques
utilize the content-based features of each item [[19], which is not
generally available; consider only 2-subsets of labels [52], which
is biased; or consider all subsets of possible labels, which is
intractable in practice [53]. Answer aggregation for multi-label
crowdsourcing that takes into account the worker communities,
partial answer validity, label dependencies, and adaptivity of the
aggregation model, in turn, has not been addressed before.

Bayesian Models. Graphical probabilistic models have been suc-
cessfully applied in various domains, such as image processing,
video encoding, and machine learning [64], [65]. Their main
benefit is the ability to explicitly capture dependencies between
random variables, e.g., in terms of factor graphs. While graphical
models have been applied in crowdsourcing with similar tools
(e.g. probabilistic distributions, generative functions), their cus-
tomizations to specific requirements and applications often lead
to significant difference [S1], [24], [25]. Most attempts to use
graphical models for multi-label answer aggregation, e.g., [53],
[19], [52], show three major limitations: (1) the models are
parametric or use external knowledge, which enforces assumptions
on the true distribution of crowdsourcing data and is domain-
dependent, even though ground truth is commonly not available;
(2) they ignore worker communities, even though spammers may
have a huge impact on the aggregation result, see [28]; (3) they
neglect or are limited to simple (e.g. pair-wise) or intractable (all
possible subsets) dependencies between labels. Our CPA model
overcomes these limitations by capturing worker communities and
item clusters explicitly in a Bayesian nonparametric model.
Relations between labels may stem from external expert
knowledge [35], instead being learned from the data itself, as done
with our approach in a domain-independent manner. However,
such expert knowledge is orthogonal, meaning that it could be
incorporated in our approach. Prior knowledge could be expressed
as conditional probabilities, which are then integrated in the label
selection, i.e., step 2b of the generative process of the CPA model.

7 CONCLUSION

In this paper, we presented a novel Bayesian nonparametric
approach to aggregate partial-agreement crowdsourcing answers.
The key features of the proposed CPA model are its ability to
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capture worker characteristics (by worker communities) and de-
pendencies between the labels assigned to items (by item clusters).
The former improves precision by separating answers of faulty
workers from those of reliable workers; the latter improves recall
by exploiting co-occurrence dependencies to complete results.
We further presented inference and prediction mechanisms for
the CPA model. In particular, aiming at answer aggregation for
very large datasets, we proposed scalable model inference and
prediction based on incremental computation and parallelisation.
Our experimental results showed that answer aggregation based on
the CPA model outperforms state-of-the-art methods for answer
aggregation by up to 134% in precision and recall, while being
robust against spammers and answer sparsity. In future work, we
intend to lift our model to other types of crowdsourcing tasks (e.g.,
assignment of continuous labels), and incorporate domain-specific
information, such as question difficulty and label hierarchies.
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APPENDIX A
THE NECESSITY OF MODELING WORKER COMMUNITIES

In practice, different worker types are frequently encountered.
A recent study [28] reported on a population consisting of 38%
spammers, 18% sloppy, 16% normal, and 27% reliable workers.
For binary single-label tasks, these types can be described by the
two-coin model [28]], [[7].

1
- Uniform Reliablg
£0.8 \Spammer, Workey
g Normal
30.6 b Worker
2
04
=
s Slo|
£02 Wo?EZr Uniform
o Spammey
0 ;
0 0.2 0.4 0.6 0.8 1

Specificity (true negative)

Fig. 10: Characterisation of worker types.

As illustrated in [Fig. 10} it assesses worker quality in terms of

sensitivity (the proportion of positives that are correctly classified)
and specificity (the proportion of negatives that are correctly
classified). Using this general idea, several worker models have
been developed for multi-class single-label tasks [24], [25] but
still they cannot be applied directly into the multi-label setting as
now worker answers can be partially overlapping.
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