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MULTILEVEL MONTE CARLO APPROXIMATION OF FUNCTIONS

S. KRUMSCHEID AND F. NOBILE

Abstract. Many applications across sciences and technologies require a careful quantification
of non-deterministic effects to a system output, for example when evaluating the system’s re-
liability or when gearing it towards more robust operation conditions. At the heart of these
considerations lies an accurate characterization of uncertain system outputs. In this work we
introduce and analyze novel multilevel Monte Carlo techniques for an efficient characterization
of an uncertain system output’s distribution. These techniques rely on accurately approximat-
ing general parametric expectations, i.e. expectations that depend on a parameter, uniformly
on an interval. Applications of interest include, for example, the approximation of the char-
acteristic function and of the cumulative distribution function of an uncertain system output.
A further important consequence of the introduced approximation techniques for parametric
expectations (i.e. for functions) is that they allow to construct multilevel Monte Carlo estima-
tors for various robustness indicators, such as for a quantile (also known as value-at-risk) and
for the conditional value-at-risk. These robustness indicators cannot be expressed as moments
and are thus not easily accessible usually. In fact, here we provide a framework that allows
to simultaneously estimate a cumulative distribution function, a quantile, and the associated
conditional value-at-risk of an uncertain system output at the cost of a single multilevel Monte
Carlo simulation, while each estimated quantity satisfies a prescribed tolerance goal.

Keywords. multilevel Monte Carlo, parametric expectation, distribution function, quantiles,
conditional value-at-risk, characteristic function, moments
AMS subject classifications. 65C05, 60H35, 65C20, 65Y20, 60E10

1. Introduction

Parametric expectations, such as Φ(ϑ) = E
(
φ(ϑ,Q)

)
for some random variable Q, are com-

monly used in a wide range of applications. For example, when characterizing the distribu-
tion of an uncertain system output Q, say. Here, perhaps most notably are applications in
which the cumulative distribution function FQ(ϑ) = E

(
I(Q ≤ ϑ)

)
or the characteristic function

ϕQ(ϑ) = E
(
exp(iϑQ)

)
of the random variable Q are sought-after on some interval Θ. But also

many problems arising in the field of stochastic optimization, such as

min
ϑ∈Θ

(
E
(
φ(ϑ,Q)

)
+ c

√
E
(
φ(ϑ,Q)2

)
− E

(
φ(ϑ,Q)

)2)
,

rely heavily on accurate and computationally affordable approximations of these parametric
expectations. Consequently, an efficient approximation of parametric expectations, such as
Φ(ϑ) = E

(
φ(ϑ,Q)

)
with ϑ ∈ Θ, uniformly on the interval Θ is of fundamental interest.

In many situations sampling Q requires the solution of a complex problem (e.g. stochastic
differential equation, stochastic/random partial differential equation, etc.), which inevitably
involves a discretization step and can only be done up to a prescribed tolerance level. For the
approximation of moments of a random variable Q based on such approximate samples, the
multilevel Monte Carlo method [11,17,18,32] has been established as a computationally efficient
sampling method that is applicable to a wide range of applications. However, its applicability
for general parametric expectations and quantities that cannot be expressed as moments is not
straightforward and requires a special treatment. For example, recently multilevel Monte Carlo
techniques have been incorporated into stochastic approximation algorithms used for stochastic
optimization in the context of diffusion processes [16]. In this work, we present a multilevel Monte
Carlo methodology that provides a uniform approximation of general parametric expectations,
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in other words of a function. Moreover, we carefully analyze the proposed methodology and
provide a full complexity analysis.

Somewhat related topics have already been addressed in [23, 24], which initiated the general
multilevel Monte Carlo research. One of the main differences compared to the present work
is that the work in [24], in particular, considers the case where exact sampling from the law
of Q is possible and that the construction of the multilevel hierarchy is based on different
interpolation grids. Conversely, in this work we do not assume that sampling from the law of
Q is possible and we construct the multilevel hierarchy based on different approximations to
the law of Q combined with different interpolation grids instead. In fact, the present work is
somewhat closer to the work presented in [19], where the authors discuss multilevel Monte Carlo
ideas for the uniform approximation of a random variable’s cumulative distribution function
(CDF) using a single interpolation grid. Here, we build upon ideas presented in that work,
but extend and generalize these further to approximate general parametric expectations and
exploit a suitably chosen hierarchy of interpolation grids. A direct implication of the greater
generality of our work is, for example, that it enables us to derive novel multilevel Monte Carlo
estimators for the characteristic function in addition to CDF approximations. This is particularly
useful when characterizing a random variable’s distribution in the presence of atoms (i.e. for
mixed distribution) or in cases when not all moments exist (e.g. Lévy distribution). A further
important consequence of the results presented here is that they provide multilevel Monte Carlo
estimators for derived quantities, such as for quantiles (also known as values-at-risk) or for the
conditional value-at-risk. It is noteworthy that these quantities cannot be expressed as moments.
Consequently, they had been out of reach for an efficient treatment via standard multilevel Monte
Carlo methods until recently. In fact, first results in this direction, at least for quantiles, are
available through the recent works on multilevel stochastic approximation algorithms [13, 16].
Although these first results are certainly insightful, this research direction is still in its infancy,
so that efficient multilevel Monte Carlo quantile estimators applicable to a wide class of problems
are still of major interest. Moreover, to the best of our knowledge the conditional value-at-risk
has still been inaccessible for an efficient treatment using multilevel Monte Carlo techniques so
far.

The rest of the paper is organized as follows. In Section 2 we present the multilevel Monte
Carlo estimator for parametric expectations in a general setting and provide the corresponding
complexity analysis. In the following Sections 3–4 we apply these abstract results to two different
scenarios and illustrate the theoretical findings with numerical examples. Specifically, in Section
3 we present a novel multilevel Monte Carlo estimator for the characteristic function of a random
variable, while we present and analyze an approximation to a random variable’s CDF in Section
4. Moreover, in Section 4 we also present multilevel Monte Carlo estimators for various derived
estimators, such as a quantile and a conditional value-at-risk. Finally, Section 5 offers a summary
and a discussion of our results.

2. Approximation of parametric expectations on compact intervals

Throughout this work, we consider a real-valued random variable Q defined on a probability
space (Ω,F ,P). As anticipated in the introduction, we assume that it is not possible to sample
from the distribution of Q exactly. Instead, we assume that one can only draw samples Q(i)

` from
a random variable Q`, which is a suitable approximation to Q and which is defined on the same
probability space. Specifically, we consider a hierarchy of approximations on different levels ` =
0, 1, . . . , in the sense that the level ` approximation Q` of Q corresponds to some discretization
parameter h` and the different approximation levels are related by h`−1 = sh` for some s > 1, so
that h` = s−`h0 for ` ≥ 0 and Q` → Q in an appropriate sense (specified below) as `→∞. For
example, Q` could be derived from an approximate solution to a stochastic/random (partial)
differential equation that is obtained via a numerical scheme with discretization parameter h`.
Based on this multilevel hierarchy we aim at approximating

Φ(ϑ) := E
(
φ(ϑ,Q)

)
2



uniformly on some compact interval Θ ⊂ R for a given function φ : Θ× R→ R. The multilevel
Monte Carlo approximation of Φ on Θ is obtained by first evaluating φ in a set of nodes in Θ by
a standard multilevel Monte Carlo estimator and then appropriately interpolating the collected
values to obtain a function on Θ. More precisely, let

θ := (θ1, θ2, . . . , θn)T ∈ Θn ,

denote the set of n ∈ N deterministic nodes. With a slight abuse of notation, we denote by f(θ)
the vector with components f(θj), j = 1, . . . , n, for any function f : R → R. Furthermore, let
L ∈ N0 and N := (N0, N1, . . . , NL)T ∈ NL+1. The collection of the pointwise multilevel Monte
Carlo estimators is then denoted by Φ̄N

L : Rn → Rn, which is given by

Φ̄N
L (θ) :=

[
1

N0

N0∑
i=1

φ
(
θj , Q

(i,0)
0

)
+

L∑
`=1

1

N`

N∑̀
i=1

φ
(
θj , Q

(i,`)
`

)
− φ

(
θj , Q

(i,`)
`−1

)]
1≤j≤n

=

[
L∑
`=0

1

N`

N∑̀
i=1

φ
(
θj , Q

(i,`)
`

)
− φ

(
θj , Q

(i,`)
`−1

)]
1≤j≤n

,

upon setting φ(·, Q−1) ≡ 0. Here,
(
Q

(i,`)
` , Q

(i,`)
`−1

)
, i = 1, . . . , N`, denote the independently and

identically distributed (i.i.d.) samples from (Q`, Q`−1) that are also mutually independent across
levels. The extension (e.g. by means of interpolation) of this collection of pointwise estimators
to a function on Θ is eventually achieved by

(1) Φ̂N,n
L := In

(
Φ̄N
L (θ)

)
,

where In denotes an appropriate extension operator. The accuracy of this extension depends, of
course, on the regularity of Φ. In this work we will consider two different scenarios: Φ ∈ Ck+1(Θ)
for some k ∈ N0 or Φ being analytic. In the first case we will consider extension operators that
satisfy the following assumptions.

Assumption A1 (Extension operator). Let k ∈ N0 be given. The sequence of linear extension
operators In : Rn → L∞(Θ) based on the set of nodes θ ∈ Θn, satisfies

(i) ‖f − In
(
f(θ)

)
‖
L∞(Θ)

≤ c1n
−(k+1) for any f ∈ Ck+1(Θ), with c1 ≡ c1(f),

(ii) ‖In(x)‖L∞(Θ) ≤ c2‖x‖`∞ for any x ∈ Rn,
(iii) the cost for computing In(x) based on n fixed nodes is uniformly bounded by c3n,

for all n ∈ N. Here, the constants c1, c2, c3 > 0 are independent of n.

For an appropriate analytic function Φ, we will consider extension operators with the following
properties.

Assumption A2 (Extension operator for analytic functions). The sequence of linear extension
operators In : Rn → L∞(Θ) based on the set of nodes θ ∈ Θn, satisfies

(i) ‖f − In
(
f(θ)

)
‖
L∞(Θ)

≤ c1ρ
−n for any suitable function f that is analytic in Θ and for

which ρ > 1, and c1 ≡ c1(f),
(ii) ‖In(x)‖L∞(Θ) ≤ c2 ln(n)‖x‖`∞ for any x ∈ Rn,
(iii) the cost for computing In(x) based on n fixed nodes is uniformly bounded by c3n ln(n),

for all n ∈ N, with constants c1, c2, c3 > 0 independent of n.

Remark 2.1. Assumption A1 is, for example, satisfied for an interpolation with piecewise polyno-
mials (i.e. splines) of degree k on a uniform grid [12, Ch. XII]. An example for which Assumption
A2 holds true is that of polynomial interpolation in Chebyshev points on Θ = [−1, 1], say, of
a function f that is analytic on Θ and analytically continuable to the closed Bernstein ellipse
with elliptical radius ρ > 1 [33, Ch. 8].

The error of the multilevel approximation Φ̂N,n
L is quantified through the mean squared error

MSE
(
Φ̂N,n
L

)
:= E

(∥∥Φ̂N,n
L − Φ

∥∥2

L∞(Θ)

)
.

3



The asymptotic analysis that will follow is partly based on considering an increasing number
of nodes in Θ, in the sense that θ ∈ Rn with n → ∞ as the prescribed mean squared error
tolerance tends to zero. It is therefore necessary (and natural) to consider elements of Rn as
elements of an appropriate sequence space, which we will then use to investigate the statistical
properties. Specifically, it is convenient to work in the Banach space `∞. For a random variable
ξ with values in `∞ and finite second moment the variance is defined as

Var (ξ) := E
(
‖ξ − E(ξ)‖2`∞

)
.

It follows that

(2) E
(
‖x− ξ‖2`∞

)
≤ 2‖x− E(ξ)‖2`∞ + 2 Var (ξ) ,

for any deterministic x ∈ Rn and random variable ξ ∈ Rn. Moreover, it holds that Var (ξ) ≤
4E
(
‖ξ‖2`∞

)
. In this Banach space setting, the formula for the variance of a sum of real-valued

independent random variables becomes an inequality. In fact, for a sequence
(
ξi
)

1≤i≤N of
mutually independent Rn-valued random variables it holds that

(3) Var
( N∑
i=1

ξi

)
≤ c ln(n)

N∑
i=1

Var (ξi) ,

where c > 0 is a generic constant [28] (alternatively [27, Ch. 3–4& 9]). See also [23, Lemma 1],
where this inequality has been used in the context of a multilevel method.

Before we can characterize the computational complexity of the multilevel Monte Carlo ap-
proximation Φ̂N,n

L , we need to specify the cost model for evaluating the function φ. Throughout
this work we assume that the computational cost of evaluating φ(ϑ, q) is bounded by a constant
for any (ϑ, q) ∈ Θ × R. Moreover, we denote by c` the computational cost for generating a
sample (Q`, Q`−1), on level ` ∈ N0. Finally, throughout this work we will use the notation a . b,
if there exists a constant c so that a ≤ cb (analogously for &). Then the following result holds.

Theorem 2.1. Let Φ(ϑ) = E
(
φ(ϑ,Q)

)
. Suppose there exist constants α, β, γ > 0 such that

2α ≥ min(β, γ) and
(i) supϑ∈Θ

∣∣E(φ(ϑ,Q)− φ(ϑ,Q`)
)∣∣ ≤ c1h`

α,

(ii) E
(

supϑ∈Θ

∣∣φ(ϑ,Q`)− φ(ϑ,Q`−1)
∣∣2)≤ c2h`

β,

(iii) c` ≤ c3h`
−γ,

for all ` ∈ N0 with positive constants c1, c2, c3 independent of `.
If Φ ∈ Ck+1(Θ) for some k ∈ N0 and if Assumption A1 is satisfied for that k, then for any

ε > 0 there exist parameters L ∈ N0, n ∈ N and N ∈ NL+1 such that the corresponding multilevel
Monte-Carlo estimator Φ̂N,n

L satisfies

(4) E
(∥∥Φ̂N,n

L − Φ
∥∥2

L∞(Θ)

)
= O(ε2) .

Furthermore, for any 0 < ε < e−1 the associated computational cost C
(
Φ̂N,n
L

)
is bounded by

C
(
Φ̂N,n
L

)
. ε−(2+ 1

k+1) ln
(
ε−1
)

+ ln
(
ε−1
)

ε−2ln(ε−1)
2
, if β = γ ,

ε−(2+ γ−β
α ) , if β < γ ,

ε−2 , if β > γ .

If Φ: Θ → R is analytic in Θ and if Assumption A2 holds for Φ with ρ > 1, then for any
ε > 0 there exist parameters L ∈ N0, n ∈ N and N ∈ NL+1 such that the corresponding estimator
Φ̂N,n
L satisfies (4). Moreover, for any 0 < ε < min(ρ−1, ln(2)) the required computational cost is

bounded by

C
(
Φ̂N,n
L

)
. ε−2ln

(
ε−1
)4

+ ln
(
ε−1
)3

ε−2ln(ε−1)
2
, if β = γ ,

ε−(2+ γ−β
α )ln(ε−1)

γ−β
α , if β < γ ,

ε−2 , if β > γ .
4



Proof. The mean squared error can be bounded by

(5)
MSE

(
Φ̂N,n
L

)
≡ E

(∥∥Φ− In
(
Φ(θ)

)
+ In

(
Φ(θ)− Φ̄N

L (θ)
)∥∥2

L∞(Θ)

)
≤ 2

(∥∥Φ− In
(
Φ(θ)

)∥∥2

L∞(Θ)
+ E

(∥∥In(Φ(θ)− Φ̄N
L (θ)

)∥∥2

L∞(Θ)

))
.

To bound the right-hand side of (5) further, we will treat the two regularity classes for Φ
separately.

We begin with the finite regularity case, that is Φ ∈ Ck+1(Θ) for some k ∈ N0. As a
consequence of the properties of the extension operator In satisfying Assumption A1, it follows
that

MSE
(
Φ̂N,n
L

)
≤ 2c

(
n−2(k+1) + E

(
‖Φ(θ)− Φ̄N

L (θ)‖2`∞
))

≤ 2c
(
n−2(k+1) + 2

∥∥Φ(θ)− E
(
Φ̄N
L (θ)

)∥∥2

`∞
+ 2 Var

(
Φ̄N
L (θ)

))
,

where we have used inequality (2). That is, the mean squared error can be decomposed into
three terms: one controlling the interpolation error, one the bias, and one the variance. From
hypothesis (i), we find that the bias is bounded by∥∥Φ(θ)− E

(
Φ̄N
L (θ)

)∥∥
`∞

= max
1≤j≤n

∣∣E(φ(θj , Q)− φ(θj , QL)
)∣∣

≤ sup
ϑ∈Θ

∣∣E(φ(ϑ,Q)− φ(ϑ,QL)
)∣∣ ≤ c1h0

αs−αL .

Similarly, for the variance term we find that

Var
(
Φ̄N
L (θ)

)
≤ c ln(n)

L∑
`=0

Var
(
φ(θ,Q`)− φ(θ,Q`−1)

)
N`

≤ 4c ln(n)
L∑
`=0

E
(

supϑ∈Θ

∣∣φ(ϑ,Q`)− φ(ϑ,Q`−1)
∣∣2)

N`
≤ 4cc2h0

β ln(n)
L∑
`=0

s−β`

N`
,

where we have used inequality (3), the fact that Var (ξ) ≤ 4E
(
‖ξ‖2`∞

)
, and hypothesis (ii).

Combining these bounds, we eventually obtain

(6) MSE
(
Φ̂N,n
L

)
. n−2(k+1) + s−2αL + ln(n)

L∑
`=0

s−β`

N`
.

In view of this bound, we choose

n =
⌈
ε−

1
k+1

⌉
and L =

⌈
α−1 logs

(
ε−1
)⌉

,

to obtain a contribution of O(ε2) originating from the first and the second term in (6), respec-
tively. Notice that n ≥ 2 and L ≥ 1, since ε < 1. Moreover, it holds that

(7) ε−
µ
α ≤ sµL < sµε−

µ
α ,

for any µ > 0. The computational cost C
(
Φ̂N,n
L

)
of constructing the estimator Φ̂N,n

L is given
by the sum of the cost for computing all pointwise estimators and the cost for computing the
extension to a function. That is, for a generic constant c, the cost is bounded by

C
(
Φ̂N,n
L

)
≤ c
( L∑
`=0

N`(c` + n) + n

)
. n+

L∑
`=0

N`

(
s`γ + n

)
.

5



Treating the variables N = (N0, N1, . . . , NL) as continuous and minimizing the cost C
(
Φ̂N,n
L

)
with respect to N , subject to the constraint

∑L
`=0

s−β`

N`
= ε2ln(n)−1, eventually implies

(8) Nl =

ε−2ln(n)

√
s−lβ

slγ + n

L∑
`=0

√
s−`β

(
s`γ + n

) , 0 ≤ l ≤ L .

Consequently, the mean squared error is O(ε2) as asserted. Bounding the number of samples

per level by N` ≤ 1 + ε−2ln(n)

√
s−lβ(slγ + n)

−1∑L
`=0

√
s−`β

(
s`γ + n

)
, which is a consequence

of (8), the corresponding computational cost is bounded by

C
(
Φ̂N,n
L

)
. n(L+ 2) +

L∑
`=0

s`γ + ε−2ln(n)

(
L∑
`=0

√
s−`β

(
s`γ + n

))2

. n(L+ 2) +
sγL

1− s−γ
+ ε−2 ln(n)

(
L∑
`=0

√
s−`β

(
s`γ + n

))2

. ε−
1
k+1 ln

(
ε−1
)

+ ε−
γ
α + ε−2 ln

(
ε−1
)( L∑

`=0

√
s−`β

(
s`γ + n

))2

,

where we have also used the bound in (7). To quantify the sum, we introduce L∗ =
⌈
γ−1 logs(n)

⌉
−

1 ≥ 0, which implies that s`γ < n for all ` ≤ L∗. Now, we distinguish two cases. Firstly, we
consider L ≤ L∗, which, in the absence of rounding errors, implies α > γ(k+ 1). In that case it
holds that

L∑
`=0

√
s−`β

(
s`γ + n

)
≤
√

2n
L∑
`=0

s−`
β
2 =
√

2n
s
β
2 − s−L

β
2

s
β
2 − 1

.
√
n .

Secondly, for L > L∗ we find that

L∑
`=0

√
s−`β

(
s`γ + n

)
≤ c
(√

n+
L∑

`=L∗+1

s`
γ−β
2

)
.
√
n+


L+ 1 , β = γ ,

s
γ−β
2
L , β < γ ,

s
γ−β
2
L∗ , β > γ .

Notice that the right-hand side above is also dominating the sum in the case L ≤ L∗. Collecting
all the parts together, we eventually find

C
(
Φ̂N,n
L

)
. ε−

1
k+1 ln

(
ε−1
)

+ ε−
γ
α + ε−(2+ 1

k+1) ln
(
ε−1
)

+ ε−2 ln
(
ε−1
)

ln
(
ε−1
)2
, β = γ ,

ε−
γ−β
α , β < γ ,

ε
β−γ
γ(k+1) , β > γ .

Using the hypothesis 2α ≥ min(β, γ), the claim follows and the proof for Φ ∈ Ck+1(Θ) is
complete.

Consider now Φ: Θ→ R analytic in Θ and such that Assumption A2 holds for Φ with ρ > 1.
The proof of the claim in this case is very similar to the previous one. Indeed, starting from
inequality (5), the mean squared error can now be bounded by

MSE
(
Φ̂N,n
L

)
≤ c
(
ρ−2n + ln(n)2

∥∥Φ(θ)− E
(
Φ̄N
L (θ)

)∥∥2

`∞
+ ln(n)2 Var

(
Φ̄N
L (θ)

))
. ρ−2n + ln(n)2s−2αL + ln(n)3

L∑
`=0

s−β`

N`
,

where we have used the same steps that led to (6) before. Now, choosing

n =
⌈
logρ

(
ε−1
)⌉

and L =
⌈
α−1 logs

(
ε−1 ln(n)

)⌉
,

6



and then minimizing the cost bound

C
(
Φ̂N,n
L

)
.

L∑
`=0

N`(c` + n) + n log(n)

subject to the constraint
∑L

`=0
s−β`

N`
= ε2ln(n)−3 yields

Nl =

ε−2ln(n)3

√
s−lβ

slγ + n

L∑
`=0

√
s−`β

(
s`γ + n

) , 0 ≤ l ≤ L .

Therefore, the mean squared error is of order O(ε2) and the corresponding cost is bounded by

C
(
Φ̂N,n
L

)
. n log(n)+n(L+1)+ε−

γ
α ln(n)

γ
α +ε−2ln(n)3n+ε−2ln(n)3


L2 , β = γ ,

ε−
γ−β
α ln(n)

γ−β
α , β < γ ,

n
−β−γ

γ , β > γ .

Noticing that 2 ≤ n . ln
(
ε−1
)
, 0 < ln(2) ≤ ln(n) . ln

(
ln(ε−1)

)
≤ ln

(
ε−1
)
, and 1 ≤ L . ln

(
ε−1
)

for 0 < ε < min(ρ−1, ln(2)), completes the proof. �

Remark 2.2. The condition 2α ≥ min(β, γ) in the statement of Thm. 2.1 above is satisfied in
many applications. It is nonetheless noteworthy that this condition is not essential for the proof
of the complexity result. In fact, omitting this condition will not change the analysis, it will
merely add an extra ε−γ/α ln(ε−1) term to the complexity. This term originates from the

∑L
`=0 c`

contribution to the cost, which may no longer be dominated by the other terms in absence of
the 2α ≥ min(β, γ) condition. A similar observation for the complexity analysis of the standard
multilevel Monte Carlo method has also been made in [6].

It is noteworthy that the results above illustrate that the multilevel Monte Carlo estimator
may offer a worse complexity for the case of an analytic function Φ than for Φ ∈ Ck+1(Θ) in
some cases, for example if γ−βα > 1

k+1 . This is due to the worse Lebesgue constant (cf. condition
(ii) in Assumption A2), which is necessary for global Chebyshev polynomial interpolation for
example. The benefit of an analytic function Φ will, however, become apparent in Sect. 2.2
below, where we will derive multilevel Monte Carlo approximations for derivatives of Φ.

2.1. A refined estimator. The proof of Theorem 2.1 reveals that the first term in the bound
for the multilevel Monte Carlo cost C

(
Φ̂N,n
L

)
is due to levels ` ∈ {0, . . . , L}, for which the cost

c` for generating one sample (Q`, Q`−1) is cheaper than n evaluations of the function φ. In
applications where the generation of accurate samples is rather expensive (such as, e.g., for
models involving partial differential equations), no such levels ` ∈ {0, . . . , L} may actually exist
for a given mean squared error tolerance ε2. In these cases, the bound stated in Theorem 2.1
for the computational cost corresponding to this tolerance does not have the first term and
reduces to (ignoring logarithmic factors) the standard multilevel Monte Carlo cost bound for
the expectation.

We emphasize that the practically driven motivation above is merely a fixed tolerance heuris-
tic, since asymptotically as ε → 0 there will always be levels ` ∈ {0, . . . , L}, for which the cost
of the n function evaluations is more costly than generating one sample of (Q`, Q`−1). How-
ever, the underlying principle of this heuristic can nonetheless be used to systematically derive
a multilevel Monte Carlo estimator for functions that does not feature the first cost term and
thus provides an improved computational complexity in many cases. Specifically, let cφ denote
the constant that bounds the cost of evaluating φ(ϑ, q) for any (ϑ, q) ∈ Θ×R. The first term in
the complexity bound of Theorem 2.1 is then due to levels ` ∈ {0, . . . , L}, for which c` ≤ ncφ.
The number of such levels could thus be decreased if n was not fixed across levels, but varied
instead. The idea is to use a functional extension where the set of nodes varies across levels,
since it may pay off to use the functional extension with only a few number of nodes on coarser
levels.
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To make this idea concrete, let n` ∈ N denote the number of nodes in Θ used for the function
extension on level ` ∈ N0. We will use the usual extension operator In` in these n` nodes
on level `. For the sake of notation however, we associate the nodes in Θ directly with the
operator and view it as a map from continuous functions to some finite dimensional function
space V`. Specifically, for ` ∈ N0 we consider the sequence (i.e. hierarchy) of extension operators
I` : C(θ)→ V` ⊂ L∞(Θ) as a shorthand notation for

I`(f) := In`
[
f
(
θ`
)]
, with θ` =

(
θ`1, . . . , θ

`
n`

)
∈ Θn` ,

where θ` denotes the deterministic nodes used on level ` ∈ N0. For example, V` is the space of
piecewise polynomials of a certain degree for a spline interpolation or the space of polynomials
of degree n` for a (global) polynomial interpolation. Notice that Assumption A1 still holds for
I` for any `, provided that In` satisfies it (analogously for Assumption A2). With slight abuse of
notation, viewing n as the vector n = (n0, n1, . . . , nL), we then introduce the refined multilevel
Monte Carlo estimator as

(9) Φ̂N,n
L :=

L∑
`=0

1

N`

N∑̀
i=1

(
I`

[
φ
(
·, Q(i,`)

`

)]
− I`−1

[
φ
(
·, Q(i,`)

`−1

)])
,

with the additional convention that I−1(·) ≡ 0. Notice that the definition of the refined estimator
above contains the special case of using just one (global) extension operator, namely if n` = n and
θ` =

(
θ1, . . . , θn

)
for all levels ` ∈ N0. The estimator’s computational complexity for increasing

sequences of nodes is summarized in the following result.

Theorem 2.2. Let Φ(ϑ) = E
(
φ(ϑ,Q)

)
. Suppose that the hypotheses (i) – (iii) of Thm. 2.1

are satisfied for φ. Furthermore, suppose that the sequences of finite dimensional spaces V` and
extension operators I` : C(θ)→ V` ⊂ L∞(Θ) satisfy

(iv) ‖g‖L∞(Θ) ≤ c4n`
ν1‖g‖L2(Θ) , ∀ g ∈ V`, for some ν1 ≥ 0,

(v)
∫

Θ

(
(I`−I`−1)⊗(I`−I`−1)[Covψ`−1

]
)
(ϑ, ϑ) dϑ ≤ c5n`

−ν2 for some ν2 > 0 where ψ`−1(ϑ) =

E
(
φ(ϑ,Q`−1)

)
− φ(ϑ,Q`−1) and c5 ≡ c5(ψ`−1) <∞,

for all ` ∈ N, where c4, c5 are positive constants independent of n`.
If Φ ∈ Ck+1(Θ) for some k ∈ N0 and if Assumption A1 is satisfied for that k, then for any

ε > 0 there exist parameters L ∈ N0, n ∈ NL+1, and N ∈ NL+1 such that the corresponding
multilevel Monte-Carlo estimator Φ̂N,n

L satisfies

(10) E
(∥∥Φ̂N,n

L − Φ
∥∥2

L∞(Θ)

)
= O(ε2) .

Furthermore, for any 0 < ε < e−1 the associated computational cost C
(
Φ̂N,n
L

)
is bounded by

C
(
Φ̂N,n
L

)
. ε−p1 + max

{
1, ε

β
αν
− 1
k+1

}
ε−(2+p2)ln(ε−1)

2+p3 + ln
(
ε−1
)2

ε−2ln(ε−1)
2
, if β = γ ,

ε−(2+ γ−β
α ) , if β < γ ,

ε−2 , if β > γ ,

with ν := ν2 − 2ν1 > 0 as well as

p1 =

{
0 , ν ≥ 1 ,
β
αν , ν < 1 ,

p2 =

{
0 , ν ≥ 1 ,
β
αν (1− ν) , ν < 1 ,

and p3 =

{
0 , ν 6= 1 ,

2 , ν = 1 .

If Φ: Θ→ R is analytic in Θ and if Assumption A2 holds for Φ with ρ > 1, then for any ε > 0

there exist parameters such that the corresponding estimator Φ̂N,n
L satisfies (10). Moreover, for

any 0 < ε < min(ρ−1, ln(2)/2) the required computational cost is bounded by

C
(
Φ̂N,n
L

)
.
(
ε−1 ln

(
ε−1
))p1

+ε−(2+p2)ln
(
ε−1
)4+p3+ln

(
ε−1
)4

ε−2ln(ε−1)
2
, if β = γ ,

ε−(2+ γ−β
α )ln(ε−1)

γ−β
α , if β < γ ,

ε−2 , if β > γ ,

with p1, p2, and p3 as before.
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Proof. As in the proof of Thm. 2.1, we begin by decomposing the mean squared error:

(11)
MSE

(
Φ̂N,n
L

)
≡ E

(∥∥Φ− IL(Φ) + IL(Φ)− Φ̂N,n
L

∥∥2

L∞(Θ)

)
≤ 2

(∥∥Φ− IL(Φ)
∥∥2

L∞(Θ)
+ E

(∥∥IL(Φ)− Φ̂N,n
L

∥∥2

L∞(Θ)

))
.

First, we consider Φ ∈ Ck+1(Θ). It follows from Assumption A1 that

MSE
(
Φ̂N,n
L

)
. 2c

(
nL
−2(k+1) + 2

∥∥Φ(θL)− ΦL(θL)
∥∥2

`∞
+ 2E

(∥∥IL(ΦL)− Φ̂N,n
L

∥∥2

L∞(Θ)

))
,

where ΦL(ϑ) = E
(
φ(ϑ,QL)

)
. As in Thm. 2.1, the second term on the right-hand side above (i.e.

the squared bias) is bounded as a consequence of the hypothesis:∥∥Φ(θL)− ΦL(θL)
∥∥
`∞

= max
1≤j≤nL

∣∣E[φ(θLj , Q)− φ(θLj , QL)]∣∣ ≤ c1h0
αs−αL .

The remaining term in the mean squared error bound accounts for both the variance decay across
the levels and the fact that the functional extensions use a different number of nodes on each level.
To quantify this term, we first introduce the notation ∆`f ≡ ∆`f(ϑ) := f(ϑ,Q`) − f(ϑ,Q`−1)

for any suitable function f : Θ × R → R, as well as the sample average E`(ξ) := 1
N`

∑N`
i=1 ξ

(i,`)

for any random variable ξ. We then have

IL(ΦL)− Φ̂N,n
L =

L∑
`=0

(
I`
[
∆`Φ− E`(∆`φ)

]
+ (I` − I`−1)

[
Φ`−1 − E`(φ`−1)

])
,

where ∆`Φ = E(∆`φ) and φ`−1(ϑ) := φ(ϑ,Q`−1). Consequently, we find that

E
(∥∥IL(ΦL)− Φ̂N,n

L

∥∥2

L∞(Θ)

)
≤ 2(L+ 1)

L∑
`=0

(
T1,` + T2,`

)
,

where

T1,` = E
(∥∥I`[∆`Φ− E`(∆`φ)]

∥∥2

L∞(Θ)

)
, T2,` = E

(∥∥(I` − I`−1)[Φ`−1 − E`(φ`−1)]
∥∥2

L∞(Θ)

)
.

The term T1,` can be bounded as in the proof of Thm. 2.1, yielding

T1,` ≤ c ln (n`)
E
(∥∥∆`φ(θ`)

∥∥2

`∞

)
N`

≤ cc2h0
β ln (n`)

s−β`

N`
.

To derive a bound for the term T2,`, let ψ`−1(ϑ) = Φ`−1(ϑ) − φ`−1(ϑ). It then follows from
hypothesis (iv) that

T2,` ≤ c4n`
2ν1E

(∥∥(I` − I`−1)[E`(ψ`−1)]
∥∥2

L2(Θ)

)
=
c4n`

2ν1

N`

∫
Θ

(
(I` − I`−1)⊗ (I` − I`−1) Covψ`−1

)
(ϑ, ϑ) dϑ ,

where Covψ`−1
(ϑ1, ϑ2) = E

(
ψ`−1(ϑ1)ψ`−1(ϑ2)

)
. In view of hypothesis (v), we eventually find

MSE
(
Φ̂N,n
L

)
. nL

−2(k+1) + s−2αL + (L+ 1)
L∑
`=0

1

N`

(
ln(n`)s

−β` + n`
−ν) .

To guarantee a mean squared error of order O(ε2), this bound implies choosing

L =
⌈
α−1 logs

(
ε−1
)⌉

,

as well as nL & ε−
1
k+1 . Furthermore, the last term of the mean squared error bound suggests

to balance the variance term and the interpolation term so that n`−ν . ln(n`)s
−β`, which is

implied by n`−ν . s−β`, if n` ≥ 3 for all ` ∈ N0. We thus choose

n` =
⌈
nLs

−β
ν

(L−`)
⌉
, with nL =

⌈
max

{
cε−

β
αν , ε−

1
k+1

}⌉
,
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with a generic positive constant c independent of ε > 0 ensuring that n0 ≥ 3. The number
of samples N` on each level is again obtained by minimizing the computational cost subject to
variance constraint. Here, the computational cost C

(
Φ̂N,n
L

)
of constructing the estimator Φ̂N,n

L
is bounded by

C
(
Φ̂N,n
L

)
≤ c

L∑
`=0

(
N`(c` + n`) + n`

)
.

L∑
`=0

N`

(
s`γ + n`

)
+

L∑
`=0

n` .

Treating the variables N = (N0, N1, . . . , NL) as continuous and minimizing the cost C
(
Φ̂N,n
L

)
with respect to (N0, . . . , NL), subject to the constraint

∑L
`=0

s−β` ln(n`)
N`

= ε2L−1, eventually
yields

Nl =

ε−2L

√
s−lβ ln(nl)

slγ + nl

L∑
`=0

√
s−`β ln(n`)

(
s`γ + n`

) , 0 ≤ l ≤ L ,

so that the mean squared error is O(ε2) as required. The corresponding computational cost is
bounded by

C
(
Φ̂N,n
L

)
.

L∑
`=0

sγ` + 2

L∑
`=0

n` + ε−2L

(
L∑
`=0

√
s−`β ln(n`)

(
s`γ + n`

))2

. ε−
γ
α + nL + ε−2L

(
L∑
`=0

√
s−`β ln(n`)

(
s`γ + n`

))2

.

To quantify the sum in the cost bound above, we distinguish the levels for which the cost c` is
cheaper than the n` evaluations of the function φ. Therefore, we introduce

L∗ :=

{
min

(⌈
ν

νγ−β logs(n0)
⌉
− 1, L

)
, γ

β >
1
ν ,

L , otherwise,

so that s`(γ−
β
ν ) < nLs

−β
ν
L = n0 for all 0 < ` ≤ L∗, which implies c` . n` for these levels. We

can thus decompose the remaining sum as

L∑
`=0

√
s−`β ln(n`)

(
s`γ + n`

)
=

L∗∑
`=0

√
s−`β ln(n`)

(
s`γ + n`

)
+

L∑
`=L∗+1

√
s−`β ln(n`)

(
s`γ + n`

)
=: S1 + S2 .

For S1 we know that s`γ . n`, so that

S1 . s
− β

2ν
L√nL

L∗∑
`=0

√
s−`β(1− 1

ν ) ln(n`) . s
− β

2ν
L
√
nL ln(nL)

L∗∑
`=0

s−
`β
2ν

(ν−1) ,

where the last bound follows from the monotonic growth of n` across levels, which shows that

S1 .

√
ε
β
ναnL ln(nL)


1 , ν > 1 ,

L∗ + 1 , ν = 1 ,

s
β
2ν

(1−ν)L∗ ν < 1 ,

and therefore yields

S2
1 . ln(ε−1) max

{
1, ε

β
να
− 1
k+1

}
1 , ν > 1 ,

ln(ε−1)
2
, ν = 1 ,

ε−
β
αν

(1−ν) ν < 1 .
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Similarly, for S2 we find

S2 .
√

ln(nL)

L∑
`=L∗+1

s−`
β−γ
2 .

√
ln(ε−1)


L+ 1 , β = γ ,

s
γ−β
2
L , β < γ ,

s
γ−β
2
L∗ , β > γ ,

from which the claim follows.
For Φ: Θ→ R analytic, the proof is very similar. In fact, it follows from Assumption A2 that

the mean squared error can be bounded by

MSE
(
Φ̂N,n
L

)
. ρ−2nL + ln(nL)2s−2αL + (L+ 1)

L∑
`=0

1

N`

(
ln(n`)

3s−β` + n`
−ν) ,

using the hypotheses and the same steps as before. Consequently, we chose

L =
⌈
α−1 logs

(
ε−1 ln(nL)

)⌉
and n` =

⌈
nLs

−β
ν

(L−`)
⌉
,

with
nL =

⌈
max

{
logρ

(
ε−1
)
, cρ
(
ε−1 ln

(
ε−1
)) β

αν

}⌉
,

where the generic constant cρ is independent of ε < ln(2)/2 ensuring that n0 ≥ 3. Moreover
minimizing the cost bound

C
(
Φ̂N,n
L

)
≤ c

L∑
`=0

(
N`(c` + n`) + n` ln(n`)

)
.

L∑
`=0

N`

(
s`γ + n`

)
+

L∑
`=0

ln(n`)n` ,

subject to the constraint
∑L

`=0
s−β`ln(n`)

3

N`
= ε2L−1 yields

Nl =

ε−2L

√
s−lβln(nl)

3

slγ + nl

L∑
`=0

√
s−`βln(n`)

3(s`γ + n`
) , 0 ≤ l ≤ L ,

so that the mean squared error is O(ε2). Moreover, we find that

C
(
Φ̂N,n
L

)
. ε−

γ
α + nL ln(nL) + ε−2L

(
L∑
`=0

√
s−`βln(n`)

3(s`γ + n`
))2

.

Using L∗ as above, only accounting for the modified value of n0, as well as S1 and S2 as defined
before, we have that

∑L
`=0

√
s−`βln(n`)

3(s`γ + n`
)

= S1 + S2, which can be bounded by

S1 .

√
s−

β
ν
LnLln(nL)3


1 , ν > 1 ,

L∗ + 1 , ν = 1 ,

s
β
2ν

(1−ν)L∗ ν < 1 ,

and S2 .
√

ln(nL)3


L+ 1 , β = γ ,

s
γ−β
2
L , β < γ ,

s
γ−β
2
L∗ , β > γ ,

so that the claim eventually follows. �

Remark 2.3. Hypothesis (iv) in Thm. 2.2 is a special case of what is known as an inverse
inequality (or inverse estimate) in polynomial approximation theory. For example, hypothesis
(iv) is satisfied with ν1 = 1

2 for an interpolation with piecewise polynomials (i.e. splines) on a
uniform grid [9, Thm. 4.5.11] and with ν1 = 1 for a global polynomial interpolation [10, Ch. 5].
Hypothesis (v), on the other hand, encodes a regularity condition for the covariance Covψ` . A
sufficient condition for hypothesis (v) to be satisfied is Covψ` ∈ Cr,r(Θ) for any ` ∈ N0, where

Cr,r(Θ) =

{
f : Θ×Θ→ R

∣∣∣∣ ∂α1+α2

∂ϑα1
1 ∂ϑα2

2

f continuous in Θ×Θ for all α1, α2 ∈ {0, 1, . . . , r}
}
,

for some r ∈ N, which is equipped with the norm

‖f‖Cr,r(Θ) = max
α1,α2∈{0,1,...,r}

sup
ϑ1,ϑ2∈Θ

∣∣∣∣ ∂α1+α2

∂ϑα1
1 ∂ϑα2

2

f(ϑ1, ϑ2)

∣∣∣∣ ,
11



see, e.g., [5]. Notice that Cr,r(Θ) contains, in particular, functions of class C2r(Θ). For example,
for a spline interpolation of degree k we then find∫

Θ

(
(I` − I`−1)⊗ (I` − I`−1)[Covψ`−1

]
)
(ϑ, ϑ) dϑ ≤ cn`−2s

∥∥Covψ`−1

∥∥
Cs,s(Θ)

,

with s = min{r, k + 1} and for a generic positive constant c < ∞. Consequently, we have
ν2 = 2s in that case. A similar results holds for the case of a (global) polynomial interpolation.
Finally, we recall that φ(·, Q`−1) ∈ Cr(Θ) with uniformly bounded derivatives with respect to
the expectation E is a sufficient condition for Φ`−1 ∈ Cr(Θ) and Covψ`−1

∈ Cr,r(Θ).

The complexity results obtained in Thm. 2.2 confirm that a hierarchy of extension operators
I` does indeed provide means of eliminating the first term in the cost bound found in Thm. 2.1.
Moreover, it shows that the refined estimator (9) is more advantageous Φ ∈ Ck+1(Θ) than for Φ
analytic and can offer the standard multilevel Monte Carlo complexity result up to a logarithmic
factor in that case.

Corollary 2.1. Suppose that the Assumptions of Theorem 2.2 are satisfied and that Φ ∈
Ck+1(Θ). Let Φ̂N,n

L be the refined multilevel Monte Carlo estimator (9) that is identified in
Theorem 2.2. If 1 < ν ≤ (k + 1)βα , then the computational cost C

(
Φ̂N,n
L

)
is bounded by

C
(
Φ̂N,n
L

)
. ln

(
ε−1
)2

ε−2ln(ε−1)
2
, if β = γ ,

ε−(2+ γ−β
α ) , if β < γ ,

ε−2 , if β > γ ,

for any 0 < ε < e−1.

Further inspection of the general complexity results in Thm. 2.2 reveals that the complexity
of the multilevel Monte Carlo estimator for Φ ∈ Ck+1(Θ) is actually improved for any ν > 1
compared to the estimator analyzed in Thm. 2.1, which relies on the same function extension
on every level. However, these gains are getting smaller as ν increases, unless ν ≤ (k + 1)βα . As
one may expect that the function Φ ∈ Ck+1(Θ) is also very smooth (i.e. k � 1) whenever the
covariances are (i.e. ν � 1), the loss of effectiveness is due to the fact that the complexity of
the multilevel Monte Carlo estimator for very smooth functions is already almost optimal (i.e.
close to the standard multilevel Monte Carlo complexity result).

Related to this is the observation that the complexity result obtained in Thm. 2.2 for Φ
analytic is actually worse than the one found in Thm. 2.1, which is already close the the standard
multilevel Monte Carlo complexity. This is due to the fact that eliminating the first term in the
cost bound in Thm. 2.1 comes at the cost of an extra logarithmic factor, which may originate
from a non-optimal choice for the sequence n` and a possibly pessimistic complexity analysis.
In fact, we suspect that this can be improved, in the sense that the actual complexity may be
better, but we have not been able to prove it. We will leave this further complexity investigation
for future work.

As the refined multilevel Monte Carlo estimator (9), which uses a hierarchy of extension
operators, is most effective for Φ ∈ Ck+1(Θ) (and ν > 1), in what follows we will only use the
refined estimator (9) in that case. Conversely, we will use the multilevel Monte Carlo estimator
with one (global) extension operator studied in Thm. 2.1 when estimating Φ analytic. For
notational convenience, we will denote the multilevel Monte Carlo estimator by Φ̂N,n

L in both
cases, with the understanding that if n = (n0, . . . nL) ∈ NL+1, then the estimator is defined
using a hierarchy of extension operators as in (9), while if n ∈ N, then estimator is constructed
using one (global) extension operator as in (1), which we recall is a special case of (9) though.
Finally, we emphasize that the results we present in the following sections can be derived also
for the other versions of the presented estimators.

2.2. Approximation of derivatives. In view of the construction of the basic multilevel Monte
Carlo estimator in (1), one may think that an alternative extension of the pointwise estimates to a
function is possible, provided the samples on all levels are saved. Specifically, it may be tempting

12



to simply consider the mapping Θ 3 ϑ 7→ Φ̄N
L (ϑ) instead of the function Φ̂N,n

L = In
(
Φ̄N
L (θ)

)
for n ∈ N. However, this naive approach is not guaranteed to be accurate between the nodes
θ, so that the uniform error criterion may not be met. Moreover, considering an appropriate
extension operator (or a hierarchy thereof) is crucial when also approximations to derivatives
of Φ are sought after. As a matter of fact, this is desirable in many applications including
the stochastic optimization problem mentioned in the introduction, but it is also essential in
scenarios related to the characteristic function and the CDF as we will discuss in the following
sections.

The advantage of extending the pointwise estimate to a function Φ̂N,n
L via an appropriate

extension operator In, or a hierarchy of extension operators In` , is that it provides a natural and
efficient way of computing derivatives of the estimated function. Notice that this is not possible
without the extension operator in general. To see this, consider the CDF Φ(ϑ) = E

(
I(Q ≤ ϑ)

)
for

example. Any finite sample size (single- or multilevel) Monte Carlo approximation Φ̄N
L (ϑ) will,

as a function of ϑ, only provide a piecewise constant approximation, regardless of the regularity
of Φ. Consequently, derivatives of the estimated function will vanish almost everywhere, so that
no further information concerning the derivatives of Φ can be gained. Conversely, by taking
advantage of the extension operators it is possible to overcome this shortcoming.

To characterize the accuracy of derivative approximations, we have to strengthen the assump-
tions on the extension operators.

Assumption A3 (Derivatives of the extension operator). For k,m ∈ N0 given so that m < k+1,
let the sequence of extension operators In : Rn → Cm(Θ) based on the set of nodes θ ∈ Θn satisfy
Assumption A1. Furthermore, for all n ∈ N the operators In satisfy

(iv) ‖f (m) − dm

dϑmIn
(
f(θ)

)
‖
L∞(Θ)

≤ c4n
−(k+1−m) for any f ∈ Ck+1(Θ),

(v) ‖ dmdϑmIn(x)‖
L∞(Θ)

≤ c5n
m‖In(x)‖L∞(Θ) for any x ∈ Rn,

(vi) the cost for computing dm

dϑmIn(x) is proportional to the cost of computing In(x).
Here, the constants c4, c5 > 0 are independent of n but may depend on m.

Similarly, for analytic functions we will assume the following.

Assumption A4 (Derivatives of the extension operator for analytic functions). Let f ∈ C∞(Θ)
and the sequence of extension operators In : Rn → C∞(Θ) based on the set of nodes θ ∈ Θn be
such that Assumption A2 holds with ρ > 1. Moreover, for any m ∈ N0 it holds that

(iv) ‖f (m) − dm

dϑmIn
(
f(θ)

)
‖
L∞(Θ)

≤ c4ρ
−n,

(v) ‖ dmdϑmIn(x)‖
L∞(Θ)

≤ c5n
2m‖In(x)‖L∞(Θ) for any x ∈ Rn,

(vi) the cost for computing dm

dϑmIn(x) is proportional to the cost of computing In(x),
for all n ∈ N with the constants c4, c5 > 0 being independent of n but possibly depending on m.

Remark 2.4. Assumption A3 holds true for example for Cm continuous piecewise polynomials
(i.e. splines) of degree k on a uniform grid, provided that k + 1 is even (so-called odd degree
polynomials) [22]. As for Assumption A2, Assumption A4 is satisfied for polynomial interpola-
tion on Chebyshev nodes as a result of the spectral convergence [33, Ch. 21] and the Markov
brothers’ inequality [21].

Now we are in the position to address the complexity result for the approximation of deriva-
tives. It is noteworthy that the following result concerning derivatives of Φ is essentially based
on identical hypotheses on the function φ as is Thm. 2.1 for the approximation of Φ itself.

Theorem 2.3. Let Φ(ϑ) = E
(
φ(ϑ,Q)

)
and m ∈ N. Suppose that the hypotheses (i) – (iii) of

Thm. 2.1 are satisfied for φ.
For Φ ∈ Ck+1(Θ) with m ≤ k ∈ N0 such that Assumption A3 is satisfied for that k, suppose

that hypotheses (iv) and (v) of Thm. 2.2 are satisfied with ν := ν2 − 2ν1 > 2m. Then for any
0 < ε there exist parameters L ∈ N0, n = (n0, . . . , nL) ∈ NL+1, and N ∈ NL+1 such that the
m-th derivative of corresponding refined multilevel Monte Carlo estimator Φ̂N,n

L defined in (9)
13



satisfies

(12) E

(∥∥∥∥Φ(m) − dm

dϑm
Φ̂N,n
L

∥∥∥∥2

L∞(Θ)

)
= O(ε2) .

Furthermore, for any 0 < ε < e−1 the associated computational cost C
(
dm

dϑm Φ̂N,n
L

)
is bounded by

C

(
dm

dϑm
Φ̂N,n
L

)
. ε−

γ
α
p0 + ε−p1 + max

{
1, ε

(2m+1)
β(k+1)−αν
αν(k+1−m)

}
ε−(2+p2)ln(ε−1)

2+p3

+ max
{

1, ε
2m

β(k+1)−αν
αν(k+1−m)

}
ln
(
ε−1
)2
ε−2


ln
(
ε−1
)2
, β

(
1− 2m

ν

)
= γ ,

ε−( γ−βα + 2βm
αν )p0 , β

(
1− 2m

ν

)
< γ ,

1 , β
(
1− 2m

ν

)
> γ ,

where p0 = max
{

αν
αν−βm ,

k+1
k+1−m

}
, p1 = max

{
β

αν−βm ,
1

k+1−m

}
, as well as

p2 =

{
0 , ν ≥ 2m+ 1 ,

max
{
β(2m+1−ν)
αν−βm , β(2m+1−ν)(k+1)

αν(k+1−m)

}
, ν < 2m+ 1 ,

and p3 =

{
0 , ν 6= 2m+ 1 ,

2 , ν = 2m+ 1 .

If Φ: Θ → R is analytic in Θ and if Assumption A4 holds for Φ with ρ > 1, then for any
0 < ε there exist parameters L ∈ N0, n ∈ N, and N ∈ NL+1 such that the m-th derivative of the
corresponding multilevel Monte Carlo estimator Φ̂N,n

L defined by (1) satisfies (12). Moreover,
for any 0 < ε < min(ρ−1, ln(2)) the required computational cost is bounded by

C

(
dm

dϑm
Φ̂N,n
L

)
. ε−2ln

(
ε−1
)4(1+m)

+ ε−2ln
(
ε−1
)3+4m


ln
(
ε−1
)2
, β = γ ,

ε−
γ−β
α ln

(
ε−1
) γ−β

α
(1+2m)

, β < γ ,

1 , β > γ .

Proof. The mean squared error can be decomposed into two terms,

MSE

(
dm

dϑm
Φ̂N,n
L

)
≡ E

(∥∥∥Φ(m) − dm

dϑm
Φ̂N,n
L

∥∥∥2

L∞(Θ)

)
≤ 2
∥∥∥Φ(m) − dm

dϑm
IL(Φ)

∥∥∥2

L∞(Θ)
+ 2E

(∥∥∥ dm
dϑm

(
IL(Φ)− Φ̂N,n

L

)∥∥∥2

L∞(Θ)

)
,

with the understanding that IL(Φ) ≡ InL
(
Φ(θ)

)
= In

(
Φ(θ)

)
for Φ analytic, since n` = n and

θ` = (θ1, . . . , θn) for all ` ∈ N0 in that case; cf. (9).
For Φ ∈ Ck+1(Θ) we proceed as in the proof of Thm. 2.2. In fact, using Assumption A3 and

the hypotheses we find that

(13) MSE

(
dm

dϑm
Φ̂N,n
L

)
. nL

−2(k+1−m) + nL
2ms−2αL + L

L∑
`=1

n`
2m

N`

(
ln(n`)s

−β` + n`
−ν) .

Following the same strategy as in the proof of Thm. 2.2, we choose

L =
⌈
α−1 logs

(
ε−1nL

m
)⌉

, n` =
⌈
nLs

−β
ν

(L−`)
⌉
, nL =

⌈
max

{
cε
− β
αν−βm , ε−

1
k+1−m

}⌉
,

with a generic positive constant c independent of ε such that n0 ≥ 3, as well as

Nl =

ε−2L

√
s−lβnl2m ln(nl)

slγ + nl

L∑
`=0

√
s−`βn`2m ln(n`)

(
s`γ + n`

) , 0 ≤ l ≤ L ,

to guarantee that the mean squared error is of order O(ε2) at minimal cost. In fact, the
corresponding computational cost C

(
Φ̂N,n
L

)
.
∑L

`=0

(
N`(c` + n`) + n`

)
is bounded by

C
(
Φ̂N,n
L

)
. ε−

γ
αnL

γm
α + nL + ε−2L

(
L∑
`=0

√
s−`βn`2m ln(n`)

(
s`γ + n`

))2

.
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With L∗ as in the proof of Thm. 2.2, only accounting for the modified value of nL (and thus of
n0), we have

L∑
`=0

√
s−`βn`2m ln(n`)

(
s`γ + n`

)
=: S1 + S2 ,

with

S1 =
L∗∑
`=0

√
s−`βn`2m ln(n`)

(
s`γ + n`

)
.

L∗∑
`=0

√
s−`βn`2m+1 ln(n`)

.

√
(nLs

−β
ν
L)

2m+1
ln(nL∗)


1 , ν > 2m+ 1 ,

L∗ + 1 , ν = 2m+ 1 ,

s
β
2ν

(2m+1−ν)L∗ , ν < 2m+ 1 ,

as well as

S2 =
L∑

`=L∗+1

√
s−`βn`2m ln(n`)

(
s`γ + n`

)
.

L∑
`=L∗+1

√
s−`(β−γ)n`2m ln(n`)

.

√
(nLs

−β
ν
L)

2m
ln(nL)


L+ 1 , β

(
1− 2m

ν

)
= γ ,

sL
γ−β(1− 2m

ν )

2 , β
(
1− 2m

ν

)
< γ ,

s−L
∗ β(1−

2m
ν )−γ
2 , β

(
1− 2m

ν

)
> γ ,

since ν > 2m. Collecting all error bounds, the claim eventually follows.
The complexity analysis of the multilevel Monte Carlo estimator with one extension operator

(i.e. n ∈ N) for the case Φ: Θ→ R analytic is similar to the proof of Thm. 2.1. From Assumption
A4 it follows that the mean squared error is bounded by

(14) MSE

(
dm

dϑm
Φ̂N,n
L

)
. ρ−2n + n4mln(n)2s−2αL + n4mln(n)3

L∑
`=0

s−β`

N`
.

Therefore, we chose n =
⌈
logρ

(
ε−1
)⌉
, L =

⌈
α−1 logs

(
ε−1 ln(n)n2m

)⌉
, and

Nl =

ε−2ln(n)3n4m

√
s−lβ

slγ + n

L∑
`=0

√
s−`β

(
s`γ + n

) , 0 ≤ l ≤ L ,

which is obtained by minimizing the cost bound C
(
dm

dϑm Φ̂N,n
L

)
.
∑L

`=0N`(c` + n) + n ln(n),
subject to the constraint s−β`

N`
= ε2n−4mln(n)−3. These choices result in the asserted mean

squared error of O(ε2) and also provide the cost bound

C

(
dm

dϑm
Φ̂N,n
L

)
. n

(
L+ ln(n)

)
+ sγL + ε−2ln(n)3n4m

(
L∑
`=0

√
s−`β

(
s`γ + n

))2

. ε−2ln
(
ε−1
)4(1+m)

+ ε−2ln
(
ε−1
)3+4m


ln
(
ε−1
)2
, β = γ ,

ε−
γ−β
α ln

(
ε−1
) γ−β

α
(1+2m)

, β < γ ,

ε
β−γ
α ln

(
ε−1
)−β−γ

α
(1+2m)

, β > γ ,

which yields the claim.
�

The complexity results obtained in Thm. 2.3 are a direct extension of the results obtained in
Thm. 2.1 and Thm. 2.2, respectively, in the sense that Thm. 2.3 with m = 0 yields the same
complexity results that we already obtained previously. We reiterate that Thm. 2.3 above is
stated under weak assumptions on the function φ. Specifically, we only assume that hypotheses
(i) – (iii) of Thm. 2.1 are satisfied for φ, but we do not make such assumptions for the derivatives
of φ.
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Remark 2.5. Although the complexity result for the case Φ ∈ Ck+1(Θ) appears quite involved,
it significantly simplifies for 2m + 1 < ν ≤ β

α(k + 1), which straightforwardly generalizes the
condition 1 < ν ≤ β

α(k + 1) for which the refined function estimator is most effective (see
Cor. 2.1). In fact, then the computational cost is bounded by

C

(
dm

dϑm
Φ̂N,n
L

)
. ε−

γ
α
p0 + ln

(
ε−1
)2
ε−2


ln
(
ε−1
)2
, β

(
1− 2m

ν

)
= γ ,

ε−( γ−βα + 2βm
αν )p0 , β

(
1− 2m

ν

)
< γ ,

1 , β
(
1− 2m

ν

)
> γ ,

with p0 = 1 + βm
αν−βm . Since p0 ≤ 1 + 2m

ν−2m , the refined multilevel Monte Carlo estimator for
the m-th derivatives will be most effective for ν � m, providing the standard multilevel Monte
Carlo complexity (up to logarithmic factors) in that case. As a matter of fact, the term ε−

γ
α
p0

may only contribute to the β(1− 2m
ν ) ≥ γ cases, since the term ε−

γ
α
p0 is dominated by the other

term in the case β(1 − 2m
ν ) ≤ γ already. For β ≥ β(1 − 2m

ν ) ≥ γ we have 2α ≥ min(γ, β) = γ.
However, if 2α > γ, then ε−

γ
α
p0 = O

(
ε−2
)
, provided that ν ≥ 2βm

2α−γ . Consequently, the refined
estimator is most effective for ν > 2m + 1 such that 2βm

2α−γ ≤ ν ≤ β
α(k + 1). Such a ν exists,

if and only if k and m are such that 1 ≤ (1 − γ
2α)k+1

m , which confirms the heuristic mentioned
above, since we expect k to be large whenever ν is.

The observations made in the previous remark yield the following complexity result for Φ ∈
Ck+1(Θ) under suitable conditions.

Corollary 2.2. Suppose that the Assumptions of Theorem 2.3 are satisfied and that Φ ∈
Ck+1(Θ). Let Φ̂N,n

L be the refined multilevel Monte Carlo estimator (9) that is identified in
Theorem 2.3. If 2m+ 1 < ν ≤ (k + 1)βα , then the computational cost is bounded by

C

(
dm

dϑm
Φ̂N,n
L

)
. ε−

γ
α
p0 + ln

(
ε−1
)2
ε−2


ln
(
ε−1
)2
, β

(
1− 2m

ν

)
= γ ,

ε−( γ−βα + 2βm
αν )p0 , β

(
1− 2m

ν

)
< γ ,

1 , β
(
1− 2m

ν

)
> γ ,

for any 0 < ε < e−1 with p0 as in Thm. 2.3. If, moreover, 2α > γ and max{2m + 2, 2βm
2α−γ } ≤

ν ≤ (k + 1)βα , then the cost satisfies

C

(
dm

dϑm
Φ̂N,n
L

)
. ln

(
ε−1
)2
ε−2


ln
(
ε−1
)2
, β

(
1− 2m

ν

)
= γ ,

ε
−( γ−βα + 2βm

αν ) αν
αν−βm , β

(
1− 2m

ν

)
< γ ,

1 , β
(
1− 2m

ν

)
> γ .

3. Approximation of the characteristic function

The characteristic function ϕQ : R→ C of a random variable Q is given by

ϕQ(ϑ) := E
(
exp(iϑQ)

)
,

and it completely defines the random variable’s probability distribution. The characteristic
function is thus a convenient and alternative tool to (analytically) characterize the distribution of
the random variable Q compared to an approach based on the cumulative distribution function,
which may be cumbersome, for example in the presence of atoms (i.e. for a mixed distribution).
Notice that the characteristic function always exists, since exp(itQ) is bounded. Finally, it
is noteworthy that the characteristic function can also be defined for vector-valued random
variables.

3.1. The multilevel estimator. In view of Euler’s formula, the characteristic function of Q
can be written as

ϕQ(ϑ) = E
(
cos(ϑQ)

)
+ iE

(
sin(ϑQ)

)
≡ Φ1(ϑ) + iΦ2(ϑ) ,
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with Φr(ϑ) := E
(
φr(ϑ,Q)

)
for r ∈ {1, 2}, where φ1(ϑ,Q) = cos(ϑQ) and φ2(ϑ,Q) = sin(ϑQ). A

natural approximation of the characteristic function ϕQ on the interval Θ ⊂ R is therefore to use
the results from Sect. 2 by simultaneously constructing multilevel Monte Carlo approximations
to both Φ1 and Φ2. That is, we consider an approximation of the form

(15) ϕ̂N,nL :=

L∑
`=0

1

N`

N∑̀
i=1

(
I`

[
ϕ
(
·, Q(i,`)

`

)]
− I`−1

[
ϕ
(
·, Q(i,`)

`−1

)])
,

where ϕ(ϑ,Q) = φ1(ϑ,Q) + iφ2(ϑ,Q). Recall that this representation contains the basic multi-
level Monte Carlo estimator of the form (1) (i.e. n ∈ N) when n` = n and θ` =

(
θ1, . . . , θn

)
for

all levels ` ∈ N0. Alternatively, one could, of course, directly approximate ϑ 7→ E
(
exp(iϑQ)

)
.

This would, however, require to extend the framework presented in Sect. 2 to complex-valued
functions. It is moreover noteworthy that the functions φr, r ∈ {1, 2}, are evaluated in the same
random samples for both values of r. Consequently, the additional effort for approximating two
functions instead of one is negligible. As before, the accuracy of such an approximation to the
characteristic function ϕQ is quantified through the mean squared error, viz.

MSE
(
ϕ̂N,nL

)
:= E

(∥∥ϕ̂N,nL − ϕQ
∥∥2

L∞(Θ,C)

)
.

The following result, which is essentially a special case of Theorems 2.1 and 2.2, then character-
izes the computational complexity of the multilevel Monte Carlo approximation to ϕQ.

Corollary 3.1. Let ϕQ = Φ1 + iΦ2 with Φr(ϑ) := E
(
φr(ϑ,Q)

)
for r ∈ {1, 2}, where φ1(ϑ,Q) =

cos(ϑQ) and φ2(ϑ,Q) = sin(ϑQ). Suppose that the hypotheses (i) – (iii) of Thm. 2.1 are satisfied
for both φ1 and φ2.

For Φ1,Φ2 ∈ Ck+1(Θ) with k ∈ N0 such that Assumption A1 is satisfied for that k, suppose
that hypotheses (iv) and (v) of Thm. 2.2 are satisfied with ν := ν2 − 2ν1 > 0. Then for any
0 < ε there exist parameters L ∈ N0, n = (n0, . . . , nL) ∈ NL+1, and N ∈ NL+1 such that the
corresponding refined multilevel Monte Carlo estimator ϕ̂N,nL (15) satisfies

(16) E
(∥∥ϕ̂N,nL − ϕQ

∥∥2

L∞(Θ,C)

)
= O(ε2) .

Furthermore, for any 0 < ε < e−1 the associated computational cost C
(
ϕ̂N,nL

)
is bounded by

C
(
Φ̂N,n
L

)
. ε−p1 + max

{
1, ε

β
αν
− 1
k+1

}
ε−(2+p2)ln(ε−1)

2+p3 + ln
(
ε−1
)2

ε−2ln(ε−1)
2
, if β = γ ,

ε−(2+ γ−β
α ) , if β < γ ,

ε−2 , if β > γ ,

where p1, p2, and p3 are as in Theorem 2.2.
If Φ1,Φ2 : Θ → R are analytic in Θ and if Assumption A2 holds for Φ1,Φ2 with ρ > 1,

then for any ε > 0 there exist parameters L ∈ N0, n ∈ N, and N ∈ NL+1 such that the
corresponding estimator ϕ̂N,nL (15) with n` = n for all ` ∈ N0 satisfies (16). Moreover, for any
0 < ε < min(ρ−1, ln(2)) the required computational cost is bounded by

C
(
ϕ̂N,nL

)
. ε−2ln

(
ε−1
)4

+ ln
(
ε−1
)3

ε−2ln(ε−1)
2
, if β = γ ,

ε−(2+ γ−β
α )ln(ε−1)

γ−β
α , if β < γ ,

ε−2 , if β > γ .

Proof. For r ∈ {1, 2}, let Φ̂N,n
r|L be the multilevel Monte Carlo estimator of Φr so that ϕ̂N,nL =

Φ̂N,n
1|L + iΦ̂N,n

2|L in view of the linearity of the extension operator; cf. (9). The mean squared error

of ϕ̂N,nL can thus be decomposed as

E
(∥∥ϕ̂N,nL − ϕQ

∥∥2

L∞(Θ,C)

)
≤ E

(∥∥Φ1 − Φ̂N,n
1|L
∥∥2

L∞(Θ)

)
+ E

(∥∥Φ2 − Φ̂N,n
2|L
∥∥2

L∞(Θ)

)
.

As the terms on the right-hand side are nothing else but the mean squared errors corresponding
to a multilevel Monte Carlo approximation of Φ1 and Φ2, respectively, the claims follow directly
from Thm. 2.1 and Thm. 2.2, respectively. �
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3.2. Moment estimation. As mentioned above, the characteristic function ϕQ of a random
variable Q completely characterizes its probability distribution. As a consequence, moments of
Q can be directly derived from ϕQ. In fact, if a random variable Q has moments up to M -th
order, then ϕQ ∈ CM (R) and it holds that

E
(
Qm
)

= (−i)mϕ
(m)
Q (0) , 0 ≤ m ≤M .

In view of this identity, it appears natural to use an approximation to ϕQ to derive approxi-
mations to the first M ∈ N moments simultaneously. This task can be approached from two
different perspectives. The first one is to tune the general multilevel formulation to the construc-
tion of moments, that is to minimize the computational cost for constructing a multilevel Monte
Carlo estimator for ϕQ subject to the constraint that the maximum mean squared moment error
is of order O(ε2). The second perspective is to view the computation of moments simply as a
pure post-processing step. That is, assuming one has access to an approximation to the charac-
teristic function ϕQ with (uniform) mean squared error of order O(ε2), it remains to quantify
how big the corresponding maximum mean squared moment error is, if moment estimates are
computed from said approximation.

First, we present the result based on the classic multilevel Monte Carlo perspective, i.e. using
the constraint minimization approach for the maximum mean squared moment error.

Corollary 3.2. Let M ∈ N0 and ϕQ = Φ1 + iΦ2 with Φr(ϑ) := E
(
φr(ϑ,Q)

)
for r ∈ {1, 2},

where φ1(ϑ,Q) = cos(ϑQ) and φ2(ϑ,Q) = sin(ϑQ). Furthermore, let the interval Θ ⊂ R be such
that 0 ∈ Θ̊. Suppose that the hypotheses (i) – (iii) of Thm. 2.1 are satisfied for both φ1 and φ2.

For Φ ∈ Ck+1(Θ) with M ≤ k ∈ N such that Assumption A3 is satisfied for that k, suppose
that hypotheses (iv) and (v) of Thm. 2.2 are satisfied with ν := ν2 − 2ν1 > 2M . Then for any
0 < ε there exist parameters L ∈ N0, n = (n0, . . . , nL) ∈ NL+1, and N ∈ NL+1 such that the
m-th derivative of corresponding refined multilevel Monte Carlo estimator ϕ̂N,nL (15) satisfies

(17) max
0≤m≤M

E
(∣∣∣E(Qm)− (−i)m

(
ϕ̂N,nL

)(m)
(0)
∣∣∣2) = O(ε2) .

Furthermore, for any 0 < ε < e−1 the associated computational cost CM is bounded by

CM . ε
− γ
α
p0 + ε−p1 + max

{
1, ε

(2M+1)
β(k+1)−αν
αν(k+1−M)

}
ε−(2+p2)ln(ε−1)

2+p3

+ max
{

1, ε
2M

β(k+1)−αν
αν(k+1−M)

}
ln
(
ε−1
)2
ε−2


ln
(
ε−1
)2
, β

(
1− 2M

ν

)
= γ ,

ε−( γ−βα + 2βM
αν )p0 , β

(
1− 2M

ν

)
< γ ,

1 , β
(
1− 2M

ν

)
> γ ,

where p0, p1, p2, and p3 are as in Theorem 2.3 upon replacing m by M .
If Φ1,Φ2 : Θ → R are analytic in Θ and if Assumption A4 holds for Φ1,Φ2 with ρ > 1, then

for any 0 < ε there exist parameters L ∈ N0, n ∈ N, and N ∈ NL+1 such that the multilevel
Monte Carlo estimator ϕ̂N,nL (15) with n` = n for all ` ∈ N0 satisfies (17). Moreover, for any
0 < ε < min(ρ−1, ln(2)) the required computational cost CM is bounded by

CM . ε
−2ln

(
ε−1
)4(1+M)

+ ε−2ln
(
ε−1
)3+4M


ln
(
ε−1
)2
, β = γ ,

ε−
γ−β
α ln

(
ε−1
) γ−β

α
(1+2M)

, β < γ ,

1 , β > γ .

Proof. The mean squared error of the estimated m-th moment, 0 ≤ m ≤ M , based on the
characteristic function approximation is bounded by

E
(∣∣∣ϕ(m)

Q (0)−
(
ϕ̂N,nL

)(m)
(0)
∣∣∣2) ≤ E

(
sup
ϑ∈Θ

∣∣∣ϕ(m)
Q (ϑ)−

(
ϕ̂N,nL

)(m)
(ϑ)
∣∣∣2)

≤
2∑
r=1

E
(∥∥∥Φ(m)

r − dm

dϑm
Φ̂N,n
r|L

∥∥∥2

L∞(Θ)

)
,
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where Φ̂N,n
r|L denotes the multilevel Monte Carlo estimator of Φr. Each term of the sum above is

a mean squared error of a multilevel Monte Carlo derivative estimator as it has been analyzed in
the proof of Thm. 2.3. There, it was also shown that these errors increase monotonically as m
increases (ignoring constants), see relations (13) and (14), resp., so that the claims follow. �

Remark 3.1. We emphasize that although we present here only the general, rather involved,
complexity result for the case Φ ∈ Ck+1(Θ), an improved complexity result closer to the usual
multilevel Monte Carlo complexity can be derived under certain conditions. In fact, since the
Corollary above is a direct consequence of Theorem 2.3, replacingm byM in Corollary 2.2 shows
that a complexity of O

(
ε−2ln(ε−1)

2) is possible. We do not state the complete specialized result
here for the sake of minimizing repetitions.

Next, we address the post-processing scenario, i.e. the case when moment approximations are
computed by differentiating a previously obtained multilevel Monte Carlo approximation of ϕQ.
Given this function estimator (e.g. in terms of a spline or a global polynomial), derivatives are
straightforwardly available and the computational cost to obtain them is negligible compared to
the cost of constructing the functional multilevel estimator, i.e. moment approximations come
for (almost) free. However, as the function estimator has not been tuned for the estimation of
moments, these approximations may not satisfy the same tolerance request. The result below
quantifies the loss of accuracy of this post-processing approach.

Corollary 3.3. Let ϕ̂N,nL be the approximation of ϕQ with (uniform) mean squared error O(ε2)

that is identified in Cor. 3.1. Furthermore, let the interval Θ ⊂ R be such that 0 ∈ Θ̊. Then for
any m ∈ N0 it holds that

E
(∣∣∣E(Qm)− (−i)m

(
ϕ̂N,nL

)(m)
(0)
∣∣∣2) . ε2

{
ε−max{ β

αν
, 1
k+1}2m , Φ1,Φ2 ∈ Ck+1(Θ) ,m ≤ k ,

ln
(
ε−1
)4m

, Φ1,Φ2 analytic .

Proof. For m ∈ N0, denote by MSEm the mean squared error of the m-th moment, that is

MSEm := E
(∣∣∣E(Qm)− (−i)m

(
ϕ̂N,nL

)(m)
(0)
∣∣∣2) .

This error can be bounded by

MSEm ≤ 2
2∑
r=1

E
(∥∥∥Φ(m)

r − dm

dϑm
IL(Φr)

∥∥∥2

L∞(Θ)
+
∥∥∥ dm
dϑm

(
IL(Φr)− Φ̂N,n

r|L
)∥∥∥2

L∞(Θ)

)
,

with Φ̂N,n
r|L being the multilevel Monte Carlo estimator of Φr. As ϕ̂

N,n
L is the O(ε2) mean squared

error approximation of ϕQ identified in Cor. 3.1, we have in particular that E
(∥∥IL(Φr)− Φ̂N,n

r|L
∥∥2

L∞(Θ)

)
=

O(ε2) for r ∈ {1, 2}. In view of Assumption A3 and Assumption A4, respectively, we thus find

E
(∣∣∣E(Qm)− (−i)m

(
ϕ̂N,nL

)(m)
(0)
∣∣∣2) . ε2

{
nL

2m , Φ1,Φ2 ∈ Ck+1(Θ) ,m ≤ k ,
n4m , Φ1,Φ2 analytic ,

from which the claim follows. �

Related work on multilevel Monte Carlo estimators for higher order moments has recently
been presented in [8, 29]. There, the authors study multilevel estimators for central moments,
in contrast to the novel results for (raw) moments above. Further conceptual differences include
the fact that the main underlying assumptions for our framework (i.e. hypotheses (i) – (iii)
of Thm. 2.1) are independent of M , while the settings in [8, 29] require uniformity of related
assumptions with respect to the central moment order smaller or equal to M . This uniformity
assumption implies the need for considering the worst case scenarios. On the other hand, the
computational complexity of the moment estimators presented here (Cor. 3.2) depends on M ,
while the complexity result in the aforementioned works do not and offer the standard multilevel
Monte Carlo complexity. We also note that the simultaneous moment estimators presented here
are a byproduct of the function estimators, while references [8, 29] focus on the estimation of
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central moments. Finally, we reiterate that the assumptions of Corollary 3.2 are conceptually
different than the ones used in [8,29] as they are independent of M , which makes Corollary 3.2
more amenable for some applications, such as for those where no theoretical results for the
underlying rate assumptions are available. It is worthwhile pointing out however, that one could,
of course, strengthen the assumptions of our framework to be comparable to settings of [8, 29]
by imposing corresponding hypothesis on the firstM derivatives of φ1 and φ2, respectively. As a
consequence of Thm. 2.2 one would then also obtain standard multilevel Monte Carlo complexity
results (up to logarithmic factors) that are independent of M .

3.3. Numerical example. To illustrate the performance of the multilevel Monte Carlo esti-
mators presented above, we consider a stochastic differential equation (SDE) model that is used
to describe a financial (European) call option. Specifically, we consider one asset that follows a
geometric Brownian motion

(18) dS = rS dt+ σS dW , S(0) = S0 ,

and the quantity of interest Q is the corresponding discounted “payoff”, which is given by

Q := e−rT max
(
S(T )−K, 0

)
, T > 0 ,

where K > 0 denotes the strike price. It is interesting to note that the random variable Q
does not have a continuous distribution. In fact, it has an atom at the origin, in the sense that
P(Q = 0) = P

(
S(T ) ≤ K

)
> 0, since S(T ) is log-normally distributed with mean S0e

rT and
variance S0

2e2rT
(
eσ

2T − 1
)
for any T > 0.

The characteristic function of a log-normally distributed random variable is not analytic in
the origin [25]. Consequently, the characteristic function of the derived quantity Q is also not
analytic in the origin. In what follows, we will therefore focus only on the finite regularity versions
of the presented approximation techniques. Furthermore, no closed-form expression for the
characteristic function of a log-normally distributed random variable is known. However, various
approximating formulas, mainly based on an asymptotic expansion, exist in the literature; see,
e.g., [2]. In any case, we are not aware of a closed form expression for the characteristic function
of the derived quantity Q = e−rT max

(
S(T ) − K, 0

)
. To compute a reference solution for the

numerical experiments that follow, we proceed as follows. Let fS(T ) denote the probability
density function of the asset S(T ), then the characteristic function of Q can be expressed as

ϕQ(ϑ) =
1

2
− 1

2
erf

((
r − σ2

2

)
T + ln

(
S0
K

)
√

2Tσ

)
+ erT

∫ ∞
0

fS(T )

(
K + qerT

)
eiϑq dq ,

where erf(z) = 2√
π

∫ z
0 e
−s2 ds. A highly accurate numerical reference solution can then be

obtained by using a symbolic software package such as Maple.
For the numerical experiment, we discretize the SDE (18) via the Milstein scheme with uniform

time step [26, Ch. 10.3], which reads

S̄m+1 = S̄m

(
1 + rh+ σ

√
hξm +

σ2

2
h
(
ξm

2 − 1
))

, S̄0 = S0 ,

so that S̄m ≈ S(mh) for h = T/mT and 0 ≤ m ≤ mT . Here,
(
ξm
)
m≥0

denotes a sequence of i.i.d.
standard normally distributed random variables. The hierarchy of approximations is constructed
based on using a time step h` = T2−` on level `. Figure 1 illustrates the results corresponding
to the parameter values r = 1

20 , σ = 1
5 , T = 1, K = 10, and S0 = 10. Specifically, the multilevel

Monte Carlo estimator is constructed to approximate the characteristic function ϕQ uniformly
on the interval Θ = [−1, 1], using the parameters L, n = (n0, . . . , nL), and N = (N0, . . . , NL)
as identified in Thm. 2.2 with a spline interpolation of degree k in uniform nodes. Fig. 1(A)
then shows the accuracy of the multilevel Monte Carlo estimator of ϕQ for various values of
k, where we have used ν = 2(k + 1) − 1 in view of Remark 2.3. Recall that the parameter
k corresponds to the regularity of the real and imaginary parts of the characteristic function.
In practice this value is usually unknown. On the one hand, as long as the used value of k
does not overestimate the true regularity, Corollary 3.1 still holds. On the other, a very small
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Figure 1. Performance of the multilevel Monte Carlo approximation of the
characteristic function ϕQ of Q = e−rT max

(
S(T )−K, 0

)
for various values of k.

value of k may result in a poorer computational complexity in general (depending on α, β,
and ν), which is, however, not the case here as we will see below. For the current example we
know that the real and imaginary parts of ϕQ are smooth and we use k ∈ {0, 1, 2, 3, 5, 7} to
illustrate the performance of the multilevel Monte Carlo estimator with respect to the regularity
parameter k. In fact, in Fig. 1(A) the mean squared error of each estimator (denoted by MSE
in the figure and it is approximated by repeating the experiment 100 times) is compared to the
squared tolerance demand ε2. We observe that the MSE is clearly in the range of O(ε2) for
all cases of k. Moreover, Fig. 1(A) also indicates that the implementation based on L, n`, and
N` as in the proof of Thm. 2.2 is actually conservative for this example, in the sense that it
produces estimates that are more accurate than required, since the true regularity is drastically
underestimated for small values of k. Fig. 1(B) illustrates the computational complexity for the
same values of k. For this example, one finds that the rates characterizing the hypotheses (i) –
(iii) of Thm. 2.1 are α = 1, β = 2, and γ = 1. Corollary 3.1 thus states that the computational
complexity of computing the multilevel Monte Carlo estimator ϕ̂N,nL of ϕQ is bounded by

C
(
ϕ̂N,nL

)
. ε−2ln

(
ε−1
)2{ln

(
ε−1
)2
, k = 0 ,

1 , k ≥ 1 ,

since ν = 2k + 1. This is confirmed by the results shown in Fig. 1(B). In fact, for k = 0

we observe a computational complexity of order O
(
ε−2ln(ε−1)

4), while the curves for k ≥ 1

follow the O
(
ε−2ln(ε−1)

2) order line. As a matter of fact, the computational complexities for
the values of k ≥ 1 considered here seem to approximately collapse to the same line, indicating
that proportionality constant may not depend on k, or that the dependence is only very mild
at least.

4. Approximation of the cumulative distribution function

One of the most commonly used way to characterize the distribution of a random variable Q
is via its cumulative distribution function (CDF) FQ : R→ [0, 1], which is given by

FQ(ϑ) := P(Q ≤ ϑ) ,

In view of the identity P(Q ≤ ϑ) = E
(
I(Q ≤ ϑ)

)
it may appear that the CDF FQ is straight-

forwardly amenable to a multilevel Monte Carlo approximation via the techniques developed in
Sect. 2. This is, however, not the case. In fact, a naive approach based on FQ(ϑ) = E

(
φ(ϑ,Q)

)
with φ(ϑ,Q) = I(Q − ϑ ≤ 0) will suffer due to the discontinuity of the function φ(ϑ, ·), in the
sense that the rate β characterizing the hypothesis (ii) in Thm. 2.1 will deteriorate. Furthermore,
the discontinuity also means that a numerical estimation (so-called screening procedure) of both
rates α (characterizing the hypothesis (i)) and β will become prohibitive, because many samples
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on fine levels may be required to adequately resolve the effects of the discontinuity. Although
it is possible, e.g. using the results in [4], to derive sufficient conditions for the hypotheses that
are also amenable for a numerical treatment, the resulting rates are, however, not optimal and
deteriorate in fact, making this approach disadvantageous.

The issues related to using the discontinuous function I(· ≤ 0) when approximating the CDF
have also been noted in [19]. There, the authors remedy this defect by introducing a carefully
constructed regularized version gδ, say, of I(· ≤ 0), where the tuning of the regularization
parameter δ is part of the presented complexity analysis. Consequently, the regularization
parameter δ ≡ δ(ε) depends on the tolerance requirement ε. However, as the method presented
in [19] relies on rates α and β that depend on said regularization parameter, this means that the
hypotheses on the rates are ε dependent. This is not problematic when theoretical results for
the rates are available, as it is the case for the SDE based examples the authors considered in
[19]. But this ε dependency gets critical when the rates need to be estimated numerically (e.g.
in an offline screening step). In fact, the hypotheses’ dependency on the tolerance parameter ε
may turn screening the rates into a prohibitive task, as the screening would have to be carried
out for every tolerance demand of interest if the user is not yet certain which tolerance will be
most appropriate for the problem at hand. However, it is noteworthy that the authors of [19]
have recently presented an adaptive algorithm to overcome this shortcoming in the context of
SDE based examples [20]. Finally, we mention that this tolerance dependence can be removed
by, e.g., taking advantage of the Lipschitz property of the regularized function gδ, which would,
however, also result in a deterioration of the rates, as a weak error condition was replaced by a
strong error condition.

Here, we introduce an alternative approach that does not explicitly require a regularization
of the indicator function. Moreover, it relies on easily verifiable rate hypotheses, making this
strategy amenable for a wide range of applications. Instead of seeking a CDF approximation
directly, our approach is based on finding an appropriate function Φ: Θ→ R such that

(19) Φ′ = FQ .

One candidate to satisfy this identity is

Φ(ϑ) = E
(
φ(Q− ϑ)

)
, with φ(z) = |z|I(z ≤ 0) ,

provided that FQ ∈ C1(Θ), so that there are no atoms present in Θ. We reiterate that even
in the presence of atoms (i.e. if FQ 6∈ C1(Θ)) a characterization of the quantity of interest
Q is nonetheless possible using the techniques developed in this work, for example via the
characteristic function (cf. Sect. 3). Notice that the presented antiderivative based approach
yields a function φ that is continuous (and even Lipschitz continuous), in contrast to the indicator
function. Furthermore, as a consequence of identity (19), it follows that the function Φ is even
more regular than the CDF FQ. Consequently, the idea is to use the results presented in Sect. 2
to construct a multilevel Monte Carlo approximation of the CDF with rate hypotheses that are
amenable for both theoretical and numerical verification. Specifically, we will first construct an
approximation of the form (9) for the function Φ such that also Φ′ is approximated accurately
with respect to a tolerance demand. We then define the multilevel CDF estimator mimicking
identity (19). Its computational complexity is therefore a direct consequence of Thm. 2.3 with
m = 1.

Corollary 4.1. Suppose that the hypotheses (i) – (iii) of Thm. 2.1 are satisfied for φ(ϑ,Q) =
|Q− ϑ|I(Q ≤ ϑ).

For FQ ∈ Ck+1(Θ) with k ∈ N0 such that Assumption A3 is satisfied for k + 1, suppose that
hypotheses (iv) and (v) of Thm. 2.2 are satisfied with ν := ν2−2ν1 > 2. Then for any 0 < ε there
exist parameters L ∈ N0, n = (n0, . . . , nL) ∈ NL+1, and N ∈ NL+1 such that the corresponding
multilevel Monte Carlo CDF estimator F̂N,nL := d

dϑ Φ̂N,n
L satisfies

(20) E
(∥∥∥FQ − F̂N,nL

∥∥∥2

L∞(Θ)

)
= O(ε2) .
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Furthermore, for any 0 < ε < e−1 the associated computational cost C
(
F̂N,nL

)
is bounded by

C
(
F̂N,nL

)
. ε−

γ
α
p0 + ε−p1 + max

{
1, ε

3
β(k+2)−αν
αν(k+1)

}
ε−(2+p2)ln(ε−1)

2+p3

+ max
{

1, ε
2
β(k+2)−αν
αν(k+1)

}
ln
(
ε−1
)2
ε−2


ln
(
ε−1
)2
, β

(
1− 2

ν

)
= γ ,

ε−( γ−βα + 2β
αν )p0 , β

(
1− 2

ν

)
< γ ,

1 , β
(
1− 2

ν

)
> γ ,

where p0 = max
{

αν
αν−β ,

k+2
k+1

}
, p1 = max

{
β

αν−β ,
1

k+1

}
, as well as

p2 =

{
0 , ν ≥ 3 ,

max
{
β(3−ν)
αν−β ,

β(3−ν)(k+2)
αν(k+1)

}
, ν < 3 ,

and p3 =

{
0 , ν 6= 3 ,

2 , ν = 3 .

If FQ : Θ → R is analytic in Θ and if Assumption A4 holds for FQ with ρ > 1, then for any
0 < ε there exist parameters L ∈ N0, n ∈ N, and N ∈ NL+1 such that the corresponding multilevel
Monte Carlo CDF estimator F̂N,nL satisfies (20). Moreover, for any 0 < ε < min(ρ−1, ln(2)) the
required computational cost is bounded by

C
(
F̂N,nL

)
. ε−2ln

(
ε−1
)8

+ ε−2ln
(
ε−1
)7

ln
(
ε−1
)2
, β = γ ,

ε−
γ−β
α ln

(
ε−1
) 3(γ−β)

α , β < γ ,

1 , β > γ .

It is noteworthy that the complexity results for the multilevel CDF approximation obtained in
Corollary 4.1 may be superior to complexities previously reported in the literature in some cases.
For example, in view of Corollary 2.2 (see also Rem. 2.5) it is possible to obtain a computational
complexity of order O

(
ε−2ln(ε−1)

2) for FQ ∈ Ck+1(Θ) under certain conditions. We emphasize
that these conditions are not overly restrictive and are, for example, satisfied for the geometric
Brownian motion problem considered in Sect. 3.3. As we will see below, these conditions are
also met for the example involving a random partial differential equation considered here.

One can, of course, approximate even higher order derivatives of Φ the same way it was done
for Φ′ above. In fact, using Thm. 2.3 with m = 2 yields the computational complexity for
an approximation of the probability density function F ′Q. Related results regarding multilevel
Monte Carlo approximations to probability density functions have also been presented in [19],
again making use of an explicit regularization procedure. We also mention the work in [7],
where the authors construct a multilevel Monte Carlo approximation of the probability density
function based on an appropriate moment matching procedure within the maximum entropy
framework.

Finally, we remark that the multilevel Monte Carlo CDF approximation F̂N,nL constructed
above, may not be a monotonically increasing function on Θ. This can, however, simply be
achieved by as a post-processing step when replacing the estimated function F̂N,nL by the function
Θ 3 t 7→ supϑ∈[min(Θ),t] F̂

N,n
L (ϑ), since this replacement does not increase the uniform mean

squared error (20).

4.1. Estimating quantiles. In addition to characterizing a random variable’s distribution via
its CDF, another class of important statistical quantities are quantiles. In fact, quantiles are
commonly used in various applications, ranging from financial mathematics (often called “value-
at-risk”) to robust design optimization, for example when specifying failure probabilities or when
constructing hypothesis tests. However, quantiles, such as the median, can in general not be
expressed in terms of moments of the random variable Q. In fact, the τ -quantile q ≡ qτ , say, is
given by

qτ = F−1
Q (τ) ≡ inf

{
ϑ ∈ R : FQ(ϑ) ≥ τ

}
, τ ∈ (0, 1) .

Consequently, an efficient quantile estimation using standard multilevel Monte Carlo techniques
had been hampered thus far. As mentioned in the Sect. 1 already, first advances have been
made in the context of multilevel stochastic approximation algorithms [13,16]. We also mention
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the work [14] that addresses the computational complexity of quantile estimation based on the
empirical single level CDF estimator, as well as an approximation scheme, in the context of
physical models with uncertain inputs. Unlike the aforementioned works, here we will use an
available multilevel Monte Carlo CDF approximation to estimate quantiles as a post-processing
step and assess their accuracy.

We do not treat the problem of non-unique quantile estimation, i.e. the case when the CDF
is constant in a region of support. This is a non trivial problem even in the classic Monte Carlo
setting; see [15]. That is, here we only consider the case that there exists a unique root of the
function ϑ → FQ(ϑ) − τ , for τ ∈ (0, 1) given, so that FQ(q) = τ . As anticipated above, we
therefore define the quantile estimator q̂ as any value (if not unique) q̂, such that

F̂N,nL (q̂) = τ ,

with F̂N,nL being a multilevel Monte Carlo CDF estimator. Notice that the fact that FQ is
(locally) invertible does not imply that the multilevel Monte Carlo approximation F̂N,nL is so as
well. However, this is not a problem, since any q̂ satisfying the identity above will be a sufficiently
accurate approximation of q. In fact, the result below shows that this post-processed quantile
estimator satisfies the same prescribed tolerance goal as the corresponding CDF estimator.

Proposition 4.1. Let F̂N,nL be the approximation of the (strictly monotone) CDF FQ ∈ C1(Θ)
with mean squared error O(ε2) that is identified in Cor. 4.1. For τ ∈ (0, 1), let q be the τ -quantile,
in the sense that q ∈ F−1(τ), and let q̂ be any approximate τ -quantile satisfying F̂N,nL (q̂) = τ .
Furthermore, suppose that the interval Θ ⊂ R is such that q, q̂ ∈ Θ. If infϑ∈Θ F

′
Q(ϑ) > 0, then

E
((
q − q̂

)2)
= O(ε2) .

Proof. Set F̂ := F̂N,nL . It then follows from the hypotheses and Taylor’s theorem that

|q − q̂|F ′Q(ξ) = |FQ(q)− FQ(q̂)| =
∣∣F̂ (q̂)− FQ(q̂)

∣∣ ,
for some ξ between q̂ and q. We thus find that

(21) |q − q̂| ≤ 1

infϑ∈Θ F
′
Q(ϑ)

sup
ϑ∈Θ
|F̂ (ϑ)− F (ϑ)| ,

from which the claim follows. �

In view of inequality (21), the proof above also reveals that estimating “rare” quantiles, i.e.
quantiles for which infϑ∈Θ F

′
Q(ϑ) is small, may not be very accurate. In order to use the de-

veloped multilevel Monte Carlo techniques to estimate such quantiles effectively, one will thus
have to combine them with specialized techniques, such as rare-event simulation techniques
[1, Ch. VI]. We will leave this aspect for future work. It is noteworthy, however, that this is
not just a shortcoming of the techniques presented here, but is rather a principle one for gen-
eral purpose sampling techniques. In fact, a factor of the form F ′Q(q)−2 is also affecting the
(asymptotic) mean squared error results for the classic Monte Carlo based quantile estimators;
cf. [35, Ch. 21].

4.2. Simultaneous approximation the CDF, quantiles, and the conditional value-at-
risk. While the previous section assesses the accuracy of a multilevel Monte Carlo quantile
estimator via post-processing a CDF estimator, here we will describe an approach that enables
us to extract even more characteristic information about a random variable’s distribution via
appropriate post-processing steps. The approach is motivated by the remedy that we already
used above to overcome the lack of regularity of the indicator function when constructing a CDF
approximation. Specifically, mimicking (19), we can consider a function Ψ: Θ→ R, such that

(22) Ψ′ = FQ − τ ,
for some value τ ∈ (0, 1) given. A natural candidate is

Ψ(ϑ) = E
(
ψ(Q− ϑ)

)
, with ψ(z) = τz + |z|I(z ≤ 0) ,
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which also has all the advantageous properties (increased regularity, Lipschitz continuous ψ,
etc.) that the function ϑ→ E

(
|Q− ϑ|I(Q ≤ ϑ)

)
offered for the CDF estimation. Furthermore,

by construction, the function Ψ has the property that if q ∈ Θ is such that FQ(q) = τ , then
q ∈ arg minϑ∈Θ Ψ(ϑ). However, using this minimization approach to approximate the τ -quantile
directly based on an order O(ε2) mean squared error approximation of Ψ may not be advis-
able, due to the minimizer’s sensitivity with respect to perturbations of the objective function.
Specifically, an order O(ε2) mean squared error approximation of Ψ may only yield an order O(ε)
mean squared error approximation of the minimizer (i.e. of the quantile), unlike the approach
in Prop. 4.1, for which we ensured that the derivative approximation is sufficiently accurate as
well. Despite the fact that an approach based on Ψ directly is not advisable in general, the
function Ψ nonetheless enables us to derive an effective estimator, for which identity (22) will
be essential. In fact, upon noticing that

ψ(z) = τz + |z|I(z ≤ 0) = τz+ + (1− τ)z− = z+ − (1− τ)z ,

we find that

(23) Ψ(ϑ) = (1− τ)
(
ϑ+

1

1− τ
E
(
(Q− ϑ)+)− E(Q)

)
≡ (1− τ)

(
Φ(ϑ)− E(Q)

)
,

where
Φ(ϑ) = E

(
φ(ϑ,Q)

)
, with φ(ϑ,Q) = ϑ+

1

1− τ
(Q− ϑ)+ .

The function Φ is such that its minimum value is the so-called conditional value-at-risk [31],
which is an important robustness indicator in various applications, ranging from robust design
optimization to mathematical finance. By definition, equation (23) shows that

(24) Ψ′(ϑ) = (1− τ)Φ′(ϑ) ,

implying that both Φ and Ψ have the same minimizer, namely the τ -quantile q, say. This
motivates to use an appropriate multilevel Monte Carlo approximation to the function Φ with
τ ∈ (0, 1) given, which will then provide approximations to the CDF FQ, the τ -quantile, and
the conditional value-at-risk, respectively, each via appropriate post-processing steps. In other
words, the following procedure offers a simultaneous approximation of these quantities, all of
which characterize the distribution of a random variable Q provided that q ∈ Θ:

1. Use Thm. 2.3 withm = 1 to construct a multilevel Monte Carlo approximation Φ̂N,n
L ≡ Φ̂

of Φ that provides a (uniform) mean squared error of order O(ε2) for both the function
and its derivative, that is MSE

(
Φ̂
)

+ MSE
(
Φ̂′
)

= O(ε2).
2. Construct a CDF approximation F̂N,nL ≡ F̂ of FQ via post-processing. In view of equa-

tions (22) and (24) it is natural to use FQ ≈ F̂ := (1 − τ)Φ̂′ + τ , whose mean-squared
error is guaranteed to be of order O(ε2) due to

‖FQ − F̂‖L∞(Θ) = (1− τ)‖Φ′ − Φ̂′‖L∞(Θ) < ‖Φ
′ − Φ̂′‖L∞(Θ) .

3. An approximation of the τ -quantile q = arg minϑ∈Θ Φ(ϑ) is then available via minimiza-
tion of Φ̂ (or equivalently via root finding of ϑ→ F̂ (ϑ)− τ), whose mean-squared error
is also guaranteed to be of order O(ε2) by Prop. 4.1.

4. An approximation to the conditional value-at-risk minϑ∈Θ Φ(ϑ) = Φ(q) can be obtained
via post-processing through the approximation Φ̂(q̂) ≈ Φ(q), which is also accurate with
respect to the required O(ε2) tolerance in view of∣∣Φ(q)− Φ̂(q̂)

∣∣ ≤ ∣∣Φ(q)− Φ(q̂)
∣∣+
∣∣Φ(q̂)− Φ̂(q̂)

∣∣
≤ 1 + τ

(1− τ) infϑ∈Θ F
′
Q(ϑ)

‖FQ − F̂‖L∞(Θ) + ‖Φ− Φ̂‖L∞(Θ)

=
1 + τ

infϑ∈Θ F
′
Q(ϑ)

‖Φ′ − Φ̂′‖L∞(Θ) + ‖Φ− Φ̂‖L∞(Θ) ,

where we have used inequality (21) again, as well as ‖FQ − τ‖L∞(Θ) ≤ 1 + τ .
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Figure 2. Performance of the multilevel Monte Carlo approximation of the CDF
of the quantity of interest Q for various values of k.

Since the quantities in steps 2.–4. are obtained via appropriate post-processing, the compu-
tational complexity of this simultaneous estimation procedure is given by the complexity of
constructing the function estimator Φ̂N,n

L in step 1., which is quantified in Theorem 2.3 (see also
Cor. 2.2).

4.3. Numerical Example. As a numerical illustration of the multilevel techniques developed
above, we consider the random partial differential equation

(25) −∆u = f , in D = (0, 1)2 ,

with homogeneous Dirichlet boundary conditions and as quantity of interest Q the solution’s
spatial average. Specifically, we consider the random forcing term f given by

f(x) = −72ξ(x1
2 + x2

2 − x1 − x2) ,

so that the exact solution is u(x) = 36ξx1(1− x1)x2(1− x2) and the quantity of interest reads

Q :=

∫
D
u dx = ξ .

Here, ξ is a random variable that represents the model uncertainty. Specifically, we consider the
case where ξ follows a chi-squared distribution with one degree of freedom, so that quantity of
interest’s CDF is

FQ(ϑ) =

erf
(√

ϑ
2

)
, ϑ ≥ 0 ,

0 , else,

where erf(z) = 2√
π

∫ z
0 e
−s2 ds as before. The boundary value problem (25) is solved numerically

via a second order finite difference scheme with a hierarchy of uniform square meshes of D =
(0, 1)2 corresponding to the mesh-sizes h` = 2−(`+1). Figure 2 showcases the results of the
developed multilevel Monte Carlo method on the interval Θ = [0, 10] using the parameters L,
n = (n0, . . . , nL), and N = (N0, . . . , NL) as identified in Thm. 2.3 with a spline interpolation
of degree k + 1 in uniform nodes. Specifically, Figure 2(A) shows the accuracy of the multilevel
Monte Carlo CDF approximation for various values of the regularity parameter k ∈ {2, 4, 6, 8},
where we have used ν = 2(k+ 2)−1 in view of Remark 2.3. Here, the mean squared error of the
estimator is approximated by repeating the experiment 40 times. The accuracy results presented
in Figure 2(A) verify that the MSE is clearly in the range of O(ε2) for all cases of k. Figure 2(B)
illustrates the computational complexity of the multilevel Monte Carlo CDF approximation for
these values of k. For this example, we find that the rates characterizing the hypotheses (i) –
(iii) of Thm. 2.1 are α = 2, β = 4, and γ ≈ 2.4, so that we expect a computational complexity
of O

(
ln
(
ε−1
)2
ε−2
)
in view of Corollaries 4.1 and 2.2 since ν = 2k+ 3. This complexity behavior

is confirmed by the results illustrated in Fig. 2(B).
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Figure 3. Performance of the simultaneous multilevel Monte Carlo approxi-
mation (k = 6) for the CDF, the quantile, and the conditional value-at-risk
associated with the quantity of interest Q for two probability levels τ = 0.9 and
τ = 0.95.

Next, we consider the procedure described in Sect. 4.2 to simultaneously approximate the
CDF, a quantile, and the corresponding conditional value-at-risk. As described above, the pro-
cedure’s starting point is an appropriate multilevel Monte Carlo approximation of the function
Φ(ϑ) = E

(
φ(ϑ,Q)

)
, where φ(ϑ,Q) = ϑ + 1

1−τ (Q− ϑ)+. For the current example it is straight-
forward to compute the exact function Φ, namely

Φ(ϑ) =
1

(1− τ)
√
π

{(
(ϑ− 1) erf

(√
ϑ/2

)√
π + (1− ϑτ)

√
π + e−ϑ/2

√
2ϑ
)
, ϑ ≥ 0 ,

(1− τϑ)
√
π , ϑ < 0 ,

which is used to verify the accuracy of the numerical experiments below. The performance of
this simultaneous multilevel Monte Carlo estimation procedure is showcased in Figure 3 for two
probability levels, where we have fixed the regularity parameter to be k = 6 (i.e. FQ ∈ C7(Θ); cf.
also Fig. 2). Specifically, Figures 3(A) and 3(B) show the accuracy of the estimated quantities
for τ = 0.9 and τ = 0.95, respectively. We observe that the mean squared error (MSE) is clearly
in the range of O(ε2) for both values of τ . Here, the MSE is with respect to the uniform norm
for both Φ̂ and F̂ , and with respect to the absolute value for the quantile estimator q̂ and the
estimated conditional value-at-risk Φ̂(q̂). An interesting feature for both values of τ is that the
CDF estimator F̂ appears to be significantly more accurate (about two orders of magnitude)
than the estimator Φ̂. However, this is simply a consequence of the fact that the mean squared
error tolerance ε2 is an absolute error criterion. In fact, the suprema of the CDF FQ and of the
function Φ are also different by one order of magnitude, in the sense that ‖FQ‖L∞(Θ) ≈ 1, while
‖Φ‖L∞(Θ) ≈ 10 for τ = 0.9 and ‖Φ‖L∞(Θ) ≈ 20 for τ = 0.95. A noticeable difference between
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the quantile and conditional value-at-risk results for τ = 0.9 and the corresponding results for
τ = 0.95 is that the error constants are bigger in the τ = 0.95 case. Essentially, the bigger
constant is due to the fact that the τ = 0.95 case corresponds to a more extreme quantile (same
for the conditional value-at-risk), which may be estimated less accurately in view of (21).

As discussed in Sect. 4.2, the computational cost for the simultaneous estimation procedure
is given by the cost of computing one multilevel Monte Carlo approximation of Φ that satisfies
a (uniform) mean squared error of order O(ε2) for its derivative, because the other quantities
are simply derived from this approximation during post-processing steps. A direct consequence
of Thm. 2.3 and Cor. 2.2 with m = 1 thus is that the simultaneous multilevel Monte Carlo
procedure has a computational complexity of O

(
ε−2ln(ε−1)

2), which is of course identical to the
multilevel Monte Carlo CDF estimator discussed above. This complexity result is confirmed by
the results shown in Fig. 3(C). In fact, we observe that the computational complexity is almost
identical for both values of τ .

5. Conclusion

In this work, we have introduced and analyzed a multilevel Monte Carlo framework for the
estimation of parametric expectations, that is of functions, uniformly on an interval. Specifi-
cally, we have constructed estimators based on appropriately interpolating pointwise estimators
on a collection of points to derive function estimators. Direct applications of this framework
include the estimation of a random variable’s characteristic function and of its CDF. Further-
more, we have presented an antiderivative based formulation that allows to construct accurate
estimators for both the quantile and the conditional value-at-risk by post-processing suitable
multilevel Monte Carlo function approximations. In fact, the procedure introduced here allows
to simultaneously estimate the CDF, the quantile, and the conditional value-at-risk subject to
a prescribed mean squared error tolerance. These theoretical findings are illustrated by means
of numerical examples.

There are still many interesting questions and extensions left open. One extension of practical
importance is to tune the method to provide a mean squared error that does not exceed ε2,
instead of only guaranteeing the error to be of order O

(
ε2
)
. Since some of the constants affecting

the mean squared error depend on the unknown function that we want to estimate, a method
that will meet this strict error criterion is not immediate and will require some new approaches.
As matter of fact, such a fully practical algorithm, based on the theoretical framework provided
here, is currently work in progress [30] and will be presented elsewhere. Related ideas for an
adaptive multilevel Monte Carlo algorithm for estimating the CDF have recently also been
presented in [20].

An example of a conceptual extension of the results presented in this work is the case of a
vector-valued quantity of interest. This will require constructing a function (e.g. via appropriate
multivariate polynomials) based on pointwise estimates distributed in a multidimensional set Θ.
In order to not dominate the overall complexity in high dimension (cf. “curse of dimensional-
ity”), this function extension has to be tuned carefully. Another important direction will be to
incorporate specialized methods for estimating a quantile (also for the conditional value-at-risk)
when infϑ∈Θ F

′
Q(ϑ) is very small; cf. (21). This may happen, for example, when estimating

“rare” quantiles that are located in the tails of a probability distribution. Here, recent works on
(multilevel) subset simulation techniques, see e.g. [3,34], appear promising. Another interesting
aspect that will require specialized methods is when the CDF FQ is not very regular, say only
continuous. The interpolation based results presented here are then no longer applicable. These
and related topics are part of ongoing work.
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