
A Deep Learning Approach to Ultrasound Image Recovery

Dimitris Perdios, Adrien Besson, Marcel Arditi, and Jean-Philippe Thiran

Signal Processing Laboratory (LTS5)
École Polytechnique Fédérale de Lausanne (EPFL)

2017 IEEE International Ultrasonics Symposium (IUS)
Washington, D.C., USA

September 9, 2017

2017 IEEE IUS, Washington, D.C., USA

1 / 14

mailto:dimitris.perdiosepfl.ch
https://lts5www.epfl.ch
https://www.epfl.ch/index.en.html


Outline

Introduction

Deep learning for ultrasound image recovery
Proposed approach
Proposed architectures
Training of the networks

Results
Experimental settings
Performance evaluation on the PICMUS dataset
Visual assessment

Conclusion

2017 IEEE IUS, Washington, D.C., USA

2 / 14

https://www.creatis.insa-lyon.fr/EvaluationPlatform/picmus/index.html


Introduction

Context
I Ultrasound (US) system design is pushing towards portability
I ADCs are incorporated in the probe head ú digital interface (e.g. wireless)

I o data transfer issues (esp. for ultrafast US imaging)
I � can “easily” add compression capability in the probe head

Objective
I Recovering US signals from undersampled measurements
I In real time (if possible �) ú fast compression and recovery

Great candidate ú compressed sensing (CS)
I Provides a way to exactly recover a signal from undersampled measurements,

under very specific assumptions (sparsity and RIP)1

I Main drawbacks:
I Sparsity of US signals is very hard to obtain (esp. inside speckle regions)
I Use of convex optimization algorithms (hundreds of iterations) ú slow

1http://statweb.stanford.edu/~markad/publications/ddek-chapter1-2011.pdf
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Deep learning for ultrasound image recovery
Proposed approach

Stacked Denoising Autoencoders (SDA)
I A DNN architecture successfully applied to structured signal recovery2

I Compression is considered as the first layer of the proposed architecture
I Recovery is performed by the hidden and output layers
I Two measurement cases are explored:

1. SDA–CNL: Linear measurement case where the compression is not learned
2. SDA–CL: Non-linear measurement case where the compression is learned

Imaging pipeline
I Once trained, the first layer is used to compress each of the element-raw-data

signals independently, the remaining layers are used for the recovery
I Both operations can be performed in parallel for all channels ú fast �
I The US image is then retrieved using any image reconstruction algorithm
2https://arxiv.org/abs/1508.04065
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Deep learning for ultrasound image recovery
Proposed architectures

SDA with 4 fully-connected layers

C (m) T (W1y + b1) T (W2mh1 + b2) T (W3mh2 + b3)

Compression layer Reconstruction layers

m ∈ RN

y ∈ RM

mh1 ∈ RN

mh2 ∈ RM

m̂ ∈ RN
Reconstruction layers
W1 ∈ RN×M

b1 ∈ RN

W2 ∈ RM×N

b2 ∈ RM

W3 ∈ RN×M

b3 ∈ RN

T ( . ) = tanh ( . )

Compression layer
I SDA–CNL: C (m) = Φm, where Φ ∈ RM×N is a random Gaussian matrix, not
learned during training

I SDA–CL: C (m) = T (Winm + bin), where T ( . ) = tanh ( . ), Win ∈ RM×N and
bin ∈ RM , learned during training
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Deep learning for ultrasound image recovery
Training of the networks

Acquisition configuration
I Plane-wave imaging challenge in medical ultrasound (PICMUS)3

Parameter L11-4v

Element number 128
Pitch 300 µm
Center frequency 5.133MHz
Bandwidth 67%
Element width 0.27 mm
Transmit frequency 5.208 MHz
Excitation 2.5 cycles
Sampling frequency 20.832MHz

I Sampling frequency extremely close to the Nyquist frequency of US signals
I The sample number N is fixed to 1024 to fit typical DNN sizes
3https://www.creatis.insa-lyon.fr/EvaluationPlatform/picmus/index.html
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Deep learning for ultrasound image recovery
Training of the networks

Training set
I Simulated using the open-source k-Wave toolbox4

I c0 = 1540m s−1, Z0 = 1.63× 106 kgm−2 s−1, α = 0.5 dBMHz−1 cm−1

I Simulation accounts for the element directivity
I Insonified medium is randomly generated from 3 main components:

1. A fully diffusive background (echogenicity reference)
2. 1 to 3 circular inclusions (random position) of variable radius and echogenicity:

I Radius: drawn between 5 and 50 wavelengths
I Echogenicity: anechoic (80 %) || −6 dB to 6 dB (15 %) || 10 dB to 20 dB (5 %)

3. 0 to 5 point reflectors (random position)
I Transmit scheme: single PW insonification
I Each simulated acquisition is composed of 128 raw-data
I 20 000 simulated acquisitions ú 2.5M element-raw-data signals
4http://www.k-wave.org
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Deep learning for ultrasound image recovery
Training of the networks

Training set-up
I Implementation5: TensorFlow
I TGC is applied to raw-data
I Data normalized between −1 and 1 to

fit the range of the non-linearity
I The training is performed on a

NVIDIA GeForce GTX 1080 Ti
I Learning rate: 0.001
I Epoch number: 20 epochs
I Mini-batch learning with a batch size

of 4096

Training set-up (cont.)
I Initialization:

I Weights ú Xavier
I Biases ú zero

I Optimizer: Adam
I Loss function: `2-loss
I Undersampling ratio M/N ranging

from 0.05 to 0.5

5https://github.com/dperdios/us-rawdata-sda
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Results
Experimental settings

Three approaches are compared
1. SDA–CNL: comp. Gaussian matrix, rec. 3 layers
2. SDA–CL: comp. learned, rec. 3 layers
3. A CS reconstruction based on a sparsity prior in a convolutional dictionary made

of shifted pulses: comp. Gaussian matrix, rec. PDFB (1000 iterations)
Test set ú PICMUS datasets

I 1 numerical image (PICMUS 2017)
I 3 in vitro images (PICMUS 2017)
I 2 in vivo images (PICMUS 2016)

Performance evaluation
I DAS (spline + elem. directivity) is performed on recovered signals ú RF image
I Envelope extraction ú normalization ú log-compression ú B-mode image
I PSNR on B-mode images (40 dB for in vivo, 60 dB for numerical and in vitro)

2017 IEEE IUS, Washington, D.C., USA

9 / 14

https://www.creatis.insa-lyon.fr/EvaluationPlatform/picmus/index.html
https://www.creatis.insa-lyon.fr/EvaluationPlatform/picmus/index.html
https://www.creatis.insa-lyon.fr/EvaluationPlatform/picmus/index.html
https://www.creatis.insa-lyon.fr/EvaluationPlatform/picmus/index.html


Results
Performance evaluation on the PICMUS dataset
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Results
Visual assessment – Carotid cross
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Results
Visual assessment – In vitro type 2
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Conclusion

Compression capability
I Reference data extremely close to the Nyquist frequency
I Good recovery with 30% of the data

Reconstruction complexity
I CS: ≥ 2× 1000×O (MN)
I SDA–CL: 3×O (MN)
I Almost 1000 times faster than CS

Quality
I SDA–CL outperforms CS at low undersampling ratios
I Quite robust to variable image regions (speckle, anechoic, etc.)

Current drawbacks and future work
I Low generalizability: trained for 1024 time samples
I Seems to suffer from oscillating artifacts around hyperechoic regions
I Side information across the transducer elements is not exploited
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