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Abstract—Based on the success of deep neural networks for
image recovery, we propose a new paradigm for the compression
and decompression of ultrasound (US) signals which relies on
stacked denoising autoencoders. The first layer of the network
is used to compress the signals and the remaining layers per-
form the reconstruction. We train the network on simulated
US signals and evaluate its quality on images of the publicly
available PICMUS dataset. We demonstrate that such a simple
architecture outperforms state-of-the art methods, based on the
compressed sensing framework, both in terms of image quality
and computational complexity.

Index Terms—Compressed sensing, deep learning, ultrafast
ultrasound imaging, stacked denoising autoencoders.

I. INTRODUCTION

N recent years, the problem of recovering ultrasound (US)

signals from undersampled measurements have raised a
growing interest due to the emergence of the compressed
sensing (CS) framework [1]. Formally, let us consider a US
signal as m € RY where N denotes the number of time
samples. US signal recovery amounts to retrieving m from
y € RM where M < N and y = C (m) with C : RY — RM
a compression operator.

In this context, the CS framework demonstrates that a
perfect reconstruction of m from y is possible, providing that
y is k-sparse, i.e. that ||y||, = k& where the /y-norm accounts
for the number of non-zero coefficients, and that C is a linear
operator C € RM*N which satisfies the restricted isometry
property (RIP) of order 2k [2]. CS also provides a way to
recover m by solving the following optimization problem:

%réiﬂgN [/, subject to [y — Cin|l, <e, (1)
where e € R;.

In the context of US imaging, Liebgott et al. [3] have shown
that the wave-atom frame is a sparsity model particularly
suited to US signal recovery. More recently, Besson et al. [4]
have explored sparsity of US signals in a convolutional dictio-
nary composed of shifted US pulses. Many researchers have
also used the CS framework in the image reconstruction pro-
cess exploiting structural properties of radio-frequency (RF)
images or tissue reflectivity functions while undersampling the
US signals directly [5], [6]. In a similar effort, researchers have
proposed methods where the RF images are undersampled.
Lorintiu ef al. [7] have used a line-wise undersampling and a
learned dictionary for the sparsity prior. Quinsac et al. [8] have
exploited a similar undersampling approach but with a sparsity

prior in the Fourier domain. Chen et al. [9] have exploited CS
for deconvolution purpose.

The CS framework suffers from several major drawbacks
that severely limit its applicability in US imaging. First, check-
ing that the matrix C satisfies the RIP is a NP-hard problem.
It has been demonstrated that random Gaussian or Bernoulli
matrices satisfy the RIP with high probability, providing that
M is sufficiently high. But constraints in the US signal
acquisition process make the design of such matrices rather
impossible in practice. Moreover, sparsity of US signals is
very hard to obtain due to statistical dependencies inside spe-
cific regions (speckle) and wide variability between different
regions inside an image. Finally, the resolution of Problem (1)
involves the use of convex optimization algorithms that require
hundreds of iterations to converge and a very precise fine-
tuning of hyper-parameters, which prevent their use in real-
time scenarios.

In this paper, we propose to exploit stacked denoising
autoencoders (SDA), successfully applied to recovery of struc-
tured signals [10], for the recovery of US images. To do
so, the compression is considered to be the first layer of the
proposed architecture. The hidden and output layers are used
for the reconstruction. We explore both a linear measurement
case where the compression matrix is not learned (SDA-CNL)
and a non-linear measurement case where the compression
is learned (SDA-CL). We show that a 4-layer SDA-CL
outperforms a state-of-the-art CS algorithm in terms of both
quality and reconstruction time, without the need to tune any
hyper-parameter.

The remainder of the paper is organized as follows. Sec-
tion II details the proposed networks, their trainings as well
as the synthetic training set generation. Section III describes
the experiments and performance of the networks. Concluding
remarks are given in Section IV.

II. STACKED DENOISING AUTOENCODERS FOR
ULTRASOUND IMAGE RECOVERY

A. Proposed Architectures

Both proposed architectures, i.e. SDA-CNL and SDA-
CL, are composed of 4 fully-connected layers as described
on Fig. 1. The compressed measurements y = C(m) are
the output of the first layer. In the case of SDA-CNL,
C(m) = ®m, where & € RM™*N js a random Gaussian
matrix, not learned during training. In the case of SDA-CL,
C(m) =T (Wi,m + b;,), where W;,, € RM*N 5 a weight
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Fig. 1. Proposed 4-layer architecture.

matrix, b;, € RM is a bias and 7 (.) is a non-linear function.
The reconstruction layers are composed of two hidden layers
mp, =T (Wyy + by) and mp, =T (Wamyp,, + bs), and an
output layer v = T (Wsmy,, + b3), where W; € RV*M
W, € RMXN, W;3 € RNXM, b, € RN, by, € RM and
bs € RY. Due to the zero-mean centering of US signals, we
choose the non-linearity function 7 (.) to be the hyperbolic
tangent function.

It is clear that 7 has a relatively high number of degrees of
freedom corresponding to the weight matrices and bias vectors,
which will be learned during the training phase.

Once trained, the first layer is used to compress each of
the element-raw-data signals independently and the remaining
layers are used for the recovery of these signals. Both the
compression and the recovery operations can therefore be
performed in parallel for a set of element-raw-data signals
acquired by a US probe. Following the decompression step,
the RF image is retrieved using any state-of-the-art US image
reconstruction algorithm.

B. Training of the Proposed Networks

We consider the configuration of the plane-wave imaging
challenge in medical ultrasound (PICMUS) [11], which is
summarized in Table I. It can be seen that the sampling
frequency of the element raw-data is around 4 times the center
frequency, hence extremely close to the Nyquist frequency
of the received US signals, considering the bandwidth of the
transducer elements. The number of measurement samples /N
is fixed to 1024 in order to fit to typical sizes of deep neural
networks.

TABLE I

PLANE WAVE IMAGING CONFIGURATION PARAMETERS
Parameter L11-4v
Element number 128
Pitch 300 um
Center frequency 5.133 MHz
Bandwidth 67 %
Element width 0.27 mm
Transmit frequency 5.208 MHz
Excitation 2.5 cycles
Sampling frequency 20.832 MHz
Sample number 1024

The training set is simulated using the open-source k-Wave
toolbox [12] on a configuration mimicking the acquisition

system described in Table I. The attenuation coefficient is
set to 0.5dBMHz ! cm™' and the simulation accounts for the
element directivity. The insonified medium is simulated from
a randomly generated phantom containing:

« a fully diffusive background which defines the echogenic-

ity reference;

e one to three circular inclusions of variable radius and

echogenicity;

« zero to five point reflectors.

The number of inclusions and point reflectors as well as their
positions within the field of view are randomly determined.
Each inclusion has a radius drawn between 5 and 50 wave-
lengths and is either anechoic (80 %), between —6dB and
6dB (15 %) or between 10dB and 20dB (5 %). The transmit
scheme used to insonify the phantom is plane wave with
normal incidence. Each synthetic acquisition is composed of
128 element-raw-data, mimicking the US signals received at
each transducer element of the probe described in Table I, for
the considered transmit scheme.

20000 synthetic acquisitions are generated using the above
procedure. This corresponds to 2.5 M element-raw-data signals
and enables us to handle 2.1 M parameters, i.e. the number of
weights of the SDA in the case of an undersampling ratio
M/N of 0.5.

The networks are implemented' using the Python API of
TensorFlow. Both networks are trained for each considered
undersampling ratio M /N, namely from 0.05 to 0.5. Time
gain compensation is applied to the element-raw-data to com-
pensate for the attenuation. Every acquisition is normalized
between —1 and 1 to fit the range of the non-linearity used in
both SDAs. The training is performed on a NVIDIA GeForce
GTX 1080 Ti with a learning rate of 0.001 over 20 epochs
using mini-batch learning and a batch size of 4096. The train-
able weights are initialized with the Xavier initialization [13]
and the biases to zero. We use Adam optimizer and the ¢5-loss
as the loss function.

III. RESULTS
A. Experimental Settings

The proposed architectures are tested on one numerical
image, three in vitro images and two in vivo images provided
by the PICMUS dataset? [11] acquired using the configuration
defined in Table L.

Three different approaches are compared, namely SDA-CL,
SDA-CNL, both described in Section II, and a standard CS
reconstruction based on a sparsity prior in a convolutional
dictionary made of shifted pulses [4]. The element raw-data
corresponding to 1 plane-wave insonification are compressed
with undersampling ratios (M/N) ranging between 0.05 and
0.5. For SDA—CNL and the CS reconstruction, an i.i.d. Gaus-
sian random matrix with zero mean and a variance equal to
1/M is used. For SDA-CL, the compression is performed

Uhttps://github.com/dperdios/us-rawdata-sda
Zhttps://www.creatis.insa-lyon.fr/EvaluationPlatform/picmus/index.html
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by the compression layer of the network, learned during the
training phase.

In the case of SDA-CNL and SDA-CL, the signal recovery
is achieved by the reconstruction layers. In the case of CS
reconstruction, the signal is retrieved by performing 1000
iterations of the primal-dual forward backward algorithm [14]
where the hyper-parameters are empirically tuned to obtain the
highest image quality. A standard delay-and-sum algorithm,
with spline interpolation for delay calculations and taking
into account element-directivity, is performed on the recovered
signals to obtain the RF image. The envelope is extracted
using the Hilbert transform, normalized and log-compressed
to obtain the final B-mode image. The considered dB ranges
are 60 dB for the numerical and the in vitro images and 40 dB
for the in vivo images.

The image quality is evaluated using the peak-signal-to-
noise ratio (PSNR), computed on the final B-mode image
against a reference B-mode image obtained from the element-
raw data without compression.

B. Performance Evaluation

The PSNR values, summarized in Table II, show that SDA—
CL outperforms both the CS reconstruction and SDA-CNL in
many cases considered in this study. Regarding the evolution
of the PSNR against the undersampling ratio, it is interesting to
note the difference in terms of behaviour between SDA-CL
and the CS reconstruction. For undersampling ratios below
0.30, the CS reconstruction tends to stagnate at a relatively
low PSNR while the PSNR of SDA-CL is increasing consid-
erably. This leads to a difference of 4.5dB to 5.5dB at an
undersampling ratio of 0.30. For higher undersampling ratios,
the CS reconstruction enters in its phase transition regime with
significant increase of the PSNR while the quality of SDA-CL
tends to stagnate. This leads to similar PSNR between the two
approaches at high undersampling ratios.

Fig. 2 displays the B-mode images of the cross-section of
the carotid and of an in vitro phantom for an undersampling
ratio of 0.30, reconstructed with SDA-CL on Fig. 2(b) and
Fig. 2(e) and with CS on Fig. 2(c) and Fig. 2(f). The difference
in terms of PSNR between SDA—-CL and the CS reconstruction
is confirmed by a visual assessment of the corresponding B-
mode images. Indeed, SDA-CL recovers a speckle patterns
close to the reference, whereas the CS reconstruction does
not. This comes from the fact that fully developed speckle
patterns are not sparse in the model considered for the CS
reconstruction method. However, SDA—CL seems to suffer
from oscillating artifacts around sharp hyperechoic regions.

In terms of computational complexity, the reconstruction
layers of SDA-CL involve 3 matrix-vector products, each
of which has a complexity of O (M N) which corresponds
to the minimal computational complexity of one iteration
of an optimization algorithm [10]. Thus the complexity of
the proposed SDA-CL architecture is two to three orders of
magnitude lower than iterative algorithms, which makes it
suitable for real-time imaging without the need to finely tune
hyper-parameters.

IV. CONCLUSION

In this work, we propose to use stacked denoising au-
toencoders, composed of four layers, for ultrasound image
compression and recovery. The first layer of the network is
used to compress the signal and the three remaining layers are
exploited during the reconstruction process. We suggest two
architectures, namely SDA-CNL where a linear compression
layer is not learned and SDA-CL where a non-linear com-
pression is learned during the training process. We describe an
imaging pipeline into which the proposed architectures may be
integrated. The proposed methods are evaluated on the PIC-
MUS dataset and we demonstrate that SDA—CL outperforms a
state-of-the-art compressed-sensing-based reconstruction both
in terms of quality and reconstruction time.

ACKNOWLEDGEMENTS

This work was supported in part by the UltrasoundToGo
RTD project (no. 20NA21_145911), evaluated by the Swiss
NSF and funded by Nano-Tera.ch with Swiss Confederation
financing.

REFERENCES

[1] E.J. Candes and M. Wakin, “An introduction to compressive sampling,”
IEEE Signal Process. Mag., vol. 25, no. 2, pp. 21-30, 2008.

[2] M. A. Davenport, M. F. Duarte, Y. C. Eldar, and G. Kutyniok, Intro-
duction to compressed sensing. Cambridge University Press, 2012, pp.
1-64.

[3] H. Liebgott, R. Prost, and D. Friboulet, “Pre-beamformed RF signal
reconstruction in medical ultrasound using compressive sensing,” Ultra-
sonics, vol. 53, no. 2, pp. 525-533, 2013.

[4] A. Besson, R. E. Carrillo, D. Perdios, M. Arditi, Y. Wiaux, and J.-
P. Thiran, “A compressed-sensing approach for ultrasound imaging,”
in Signal Processing with Adaptive Sparse Structured Representations
(SPARS) workshop, 2017.

[5] G. David, J.-L. Robert, B. Zhang, and A. F. Laine, “Time domain
compressive beam forming of ultrasound signals,” J. Acoust. Soc. Am.,
vol. 137, no. 5, pp. 2773-2784, 2015.

[6] A. Besson, R. E. Carrillo, O. Bernard, Y. Wiaux, and J.-P. Thiran, “Com-
pressed delay-and-sum beamforming for ultrafast ultrasound imaging,”
in IEEE Int. Conf. Image Process., 2016, pp. 2509-2513.

[7]1 O. Lorintiu, H. Liebgott, M. Alessandrini, O. Bernard, and D. Friboulet,
“Compressed sensing reconstruction of 3D ultrasound data using dictio-
nary learning and line-wise subsampling,” IEEE Trans. Med. Imaging,
vol. 34, no. 12, pp. 2467-2477, 2015.

[8] C. Quinsac, A. Basarab, and D. Kouamé, “Frequency domain compres-
sive sampling for ultrasound imaging,” Adv. Acoust. Vib., vol. 2012, pp.
1-16, 2012.

[9] Z. Chen, A. Basarab, and D. Kouamé, “Compressive deconvolution in

medical ultrasound imaging,” IEEE Trans. Med. Imaging, vol. 35, no. 3,

pp. 728-737, 2016.

A. Mousavi, A. B. Patel, and R. G. Baraniuk, “A deep learning approach

to structured signal recovery,” in 2015 53rd Annu. Allert. Conf. Commun.

Control. Comput., 2015, pp. 1336-1343.

H. Liebgott, A. Rodriguez-Molares, F. Cervenansky, J. Jensen, and

O. Bernard, “Plane-wave imaging challenge in medical ultrasound,” in

2016 IEEE Int. Ultrason. Symp., 2016, pp. 1-4.

B. E. Treeby and B. T. Cox, “k-Wave: MATLAB toolbox for the

simulation and reconstruction of photoacoustic wave fields,” J. Biomed.

Opt., vol. 15, no. 2, p. 021314, 2010.

X. Glorot and Y. Bengio, “Understanding the difficulty of training deep

feedforward neural networks,” Proc. 13th Int. Conf. Artif. Intell. Stat.,

vol. 9, pp. 249-256, 2010.

P. L. Combettes, L. Condat, J.-C. Pesquet, and B. C. Vu, “A forward-

backward view of some primal-dual optimization methods in image

recovery,” in IEEE Int. Conf. Image Process., 2014, pp. 4141-4145.

[10]

(11]

[12]

[13]

[14]



TABLE II
PEAK-SIGNAL-TO-NOISE RATIO COMPUTED ON THE IMAGES OF THE PICMUS DATASET FOR DIFFERENT UNDERSAMPLING RATIOS

Test case Algorithm Undersampling ratio

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

SDA-CNL 16.08 16.03 16.06 16.49 17.40 19.60 22.76 26.10 28.59 30.43

Carotid cross ~ SDA-CL 17.57 19.20 20.93 22.73 24.91 28.33 32.74 34.11 34.84 35.57
CS 15.70 16.27 16.64 17.74 19.64 22.98 27.13 31.73 36.08 39.24

SDA-CNL 13.87 14.07 14.27 14.60 15.41 17.05 19.88 22.77 24.92 26.53

Carotid long SDA-CL 15.43 17.03 18.47 20.09 22.18 25.33 29.03 30.54 31.38 32.07
CS 14.17 14.55 15.07 16.14 18.14 20.61 23.79 27.87 30.01 31.56

SDA-CNL 16.10 17.85 18.80 19.69 20.60 22.03 23.82 25.41 26.78 27.73

In vitro type 1 SDA-CL 14.48 18.21 20.17 22.38 24.92 28.15 30.79 31.83 32.44 33.25
CS 16.84 17.73 18.42 19.25 20.54 2242 24.88 27.51 30.50 33.12

SDA-CNL 16.91 17.66 17.80 18.11 18.62 19.87 21.38 23.24 24.74 25.93

In vitro type 2 SDA-CL 15.35 18.18 20.02 21.98 24.07 26.58 29.11 30.21 30.91 31.72
CS 17.37 17.65 18.03 18.67 19.76 21.71 24.00 26.94 30.29 33.30

SDA-CNL 16.90 17.86 18.39 19.02 19.85 21.14 22.55 24.25 25.46 26.59

In vitro type 3 SDA-CL 15.33 18.14 20.01 22.20 24.54 27.42 2991 31.02 31.79 32.47
CS 17.33 17.90 18.48 19.22 20.46 2221 24.44 27.27 30.31 33.38

SDA-CNL 13.96 13.61 13.98 14.82 16.30 19.14 22.58 26.06 27.82 28.78

Numerical SDA-CL 16.76 17.52 19.54 21.74 24.30 26.90 28.39 28.69 28.61 28.58
CS 13.83 14.83 16.39 17.93 20.07 22.51 25.26 28.21 30.94 33.21
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Fig. 2. B-mode images of the cross-section of the carotid ((a)-(c)) and of an in vitro phantom ((d)-(f)) obtained with 1 plane-wave insonification; (a)-(d)
Reference images obtained without compression; (b)-(e) Images obtained with an undersampling ratio of 0.30 and reconstructed with SDA-CL; (d)-(f) Image
obtained with an undersampling ratio of 0.30 and reconstructed with the CS algorithm.
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