000230869 001__ 230869
000230869 005__ 20180913064454.0
000230869 0247_ $$2doi$$a10.1137/16M1074977
000230869 022__ $$a0895-4798
000230869 02470 $$2ISI$$a000404766000005
000230869 037__ $$aARTICLE
000230869 245__ $$aA Novel Iterative Method To Approximate Structured Singular Values
000230869 260__ $$aPhiladelphia$$bSiam Publications$$c2017
000230869 269__ $$a2017
000230869 300__ $$a26
000230869 336__ $$aJournal Articles
000230869 520__ $$aA novel method for approximating structured singular values (also known as values) is proposed and investigated. These quantities constitute an important tool in the stability analysis of uncertain linear control systems as well as in structured eigenvalue perturbation theory. Our approach consists of an inner-outer iteration. In the outer iteration, a Newton method is used to adjust the perturbation level. The inner iteration solves a gradient system associated with an optimization problem on the manifold induced by the structure. Numerical results and comparison with the well-known MATLAB function mussv, implemented in the MATLAB Control Toolbox, illustrate the behavior of the method.
000230869 6531_ $$astructured singular value
000230869 6531_ $$amu-value
000230869 6531_ $$aspectral value set
000230869 6531_ $$ablock diagonal perturbations
000230869 6531_ $$astability radius
000230869 6531_ $$adifferential equation
000230869 6531_ $$alow-rank matrix manifold
000230869 700__ $$aGuglielmi, Nicola$$uUniv Aquila, DISIM, I-67010 Laquila, Italy
000230869 700__ $$aRehman, Mutti-Ur$$uGSSI, I-67010 Laquila, Italy
000230869 700__ $$0246441$$aKressner, Daniel$$g213191
000230869 773__ $$j38$$k2$$q361-386$$tSiam Journal On Matrix Analysis And Applications
000230869 909C0 $$0252494$$pANCHP$$xU12478
000230869 909CO $$ooai:infoscience.tind.io:230869$$pSB$$particle
000230869 917Z8 $$x213191
000230869 937__ $$aEPFL-ARTICLE-230869
000230869 973__ $$aEPFL$$rREVIEWED$$sPUBLISHED
000230869 980__ $$aARTICLE