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Abstract—This paper presents the integration of an acquisition
and computing unit capable of acquiring and processing fast
magnetic signals in real-time in the control system of the TCV
tokamak. All aspects of system integration and testing are re-
ported, leading to testing of the system on plasma discharges. An
example of a real-time analysis algorithm designed for detecting
and classifying NTM plasma instabilities is also described.

Index Terms—Automatic detection of tearing modes in fusion
plasmas, real-time Tokamak control systems, real-time signal
analysis systems.

I. INTRODUCTION

HE analysis of fast magnetic signals measured by mag-

netic probes installed on a tokamak vessel has been
widely employed to detect and analyze a number of plasma in-
stabilities, notably rotating tearing modes. The high frequency
components of the measured signals contain information di-
rectly related to rapid changes within the plasma, for instance
those generated by tearing mode magnetic islands rotating in
the torus. Off-line analysis of these signals employs powerful
mathematical tools such as spectrograms, principal component
analysis and amplitude-phase fitting algorithms [1] [2] [3]
[4]. These provide copious information on magnetic islands
topology, size and evolution.

In this paper we describe the integration of these techniques
into the TCV digital real time control system to execute
advanced magnetic analysis codes during the tokamak dis-
charge. The final goal is to provide plasma health status
information to decision making algorithms that can initiate
actuator reactions. Severe design constraints, posed by TCV’s
real-time environment, had to be addressed. TCV presently
employs a distributed real time control system capable of
controlling the entire plant during a discharge, consisting of
commercial PCs interconnected with a self controlled high
speed fiber optic digital link [5] [6] [7]. Each node of the
system can house ADC and DAC boards that interact with the
plant.

This paper describes the integration of a supplementary real-
time magnetic coil analysis node into this system, taking into
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consideration the restrictions posed by the demanding real-
time environment whilst respecting all the pre-existent features
of the control system. It is organized as follows: section II
introduces the TCV distributed control system, section III
describes the integration of the new node and finally section
IV presents system tests during TCV operation.

II. THE TCV DISTRIBUTED DIGITAL CONTROL SYSTEM

The TCV tokamak has a fully functional digital real time
control system capable of controlling almost all aspects of a
plasma discharge. The system is based on a real-time sharing
data network (reflective memory) of modular computer nodes,
each an embedded or desktop PC which may include local
ADC and/or DAC cards. Owing to the restricted resources,
particularly in terms of manpower, available to the TCV team,
design choices were made favoring simplicity, flexibility and
maintainability. The main requirements and resulting design
choices are listed in Table I. From the top level, the system is
a distributed acquisition and processing real-time system build
on top of standard COTS PCs augmented with ADC and DAC
boards and high speed dedicated communication links. Hence
its French name: Systeéme de Contrdle Distribué (or SCD),
which translates into Distributed Control System.

A. Real-time computer nodes

Figure 1 shows the SCD control system layout with the
connectivity to the diagnostics and actuators. Some nodes are
connected to a compact-PCI (cPCI) crate hosting one or more
D-tacq ACQ-196 acquisition cards with 96 ADCs, and output
cards housing 16 or 32 DACs. Some nodes are only connected
via the reflective memory network and act as computational
nodes. At present there are seven nodes, the seventh is the one
described in this work.

All the nodes exchange data with all the others exploiting
the reflective memory link, (RFM in brief) an industry standard
high-speed digital communication system that transparently
synchronizes a shared memory to all nodes [8]. The synchro-
nization is performed without user and/or kernel intervention
but it has the drawback that no data handshaking is performed
so the user is responsible of preventing read-write race con-
ditions. In SCD this is accomplished by using a node as a
RFM master which synchronizes all operations on the RFM
of all others nodes w.r.t. a common timebase. On each clock of
the RFM master node (this is assigned by the SCD operator),
to prevent read/write collisions, we alternate a read or write



TABLE 1

REQUIREMENTS AND RESULTING DESIGN CHOICES FOR THE TCV DISTRIBUTED DIGITAL REAL TIME CONTROL SYSTEM

Aspect Requirement Design choice
Minimise learning curve for new hardware, minimise Base system on same ADC modules (D-tacq ACQ-196,
Hardware spares. cost & ’ cPCI form factor) already used for many TCV
pares, diagnostics. Use COTS Linux PCs.
Sampling 1 kHz (shape control) to 250 kHz (MHD mode Use d1ffer§ nt node.s.tha.t can run at dlffer.ent sampling
. . e rates, vertical stabilisation (1 channel) still handled by
rate detection), 100 kHz (vertical stabilisation)
the analog system.
Standard Linux OS with interrupt masking during
Real-time . . real-time code execution, progressive migration to
performance Hard real-time performance on COTS Linux PC multi-core processors and SMP kernels capable of
reserving cores for real-time processes.
. . > 200 d1agnostlc channels (100+ m.a gqencs, 64 soft ACQ-196 ADC front-ends with 96 channels each,
Diagnostics X-ray, 14 interferometer...) plus flexibility to add more :
: maximum of 3 cards per node used so far.
in the future.
Control all TCV actuators m(':ludmg 16 PF c01ls,' 7EC DAC modules with up to 32 channels each, possibility
Actuators launchers, 6 EC power supplies, 4 gas valves, with . .
. . to connect different nodes to different actuators.
possibility for expansion.
Inter-nod.e Transpar_ent,_ low overhead. and kernel-independent Reflective memory system (from General Electric) with
communica- communication between different nodes of the control
. reserved memory space for each node.
tion system.
. . . . . Real-time programming entirely with Simulink
Algorithms Rapid algorithm development, debugging, simulation, block-programming language, automatic conversion to

Data storage

sharing, archiving and tuning during operations

Algorithms and data must be stored for later analysis,
troubleshooting

C.

Real-time input-output data stored to MDSplus
database, operative code folder under SVN version
control and committed at every shot.

TCV
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from/to the RFM using DMA (i.e. write on odd cycle and then
read on even cycle). All nodes must be synchronized with the
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write and read cycle, and all the nodes write (or read) at the

The nodes with ADCs and DACs are interfaced to machine’s

TCV diagnostics
Node 1: 64 DMPX Soft X-Ray channels
Soft X-ray & density 4 X Te channels

Typical rate 20kHz

/l/ 14 FIR (density) channels
TCV actuators

14 ECRH signals
1 gas valve cmd
1 diagnostic trigger

2.1 GHz CPU

(Intel core 2 duo)

Node 2:
Central Magnetics
Typical rate 10kHz

TCV diagnostics

134 Magnetics
/I/ 2 density (central FIR)
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.0 GHz CPU .
3.0 GHz 21 coil currents

(Intel core 2 duo)
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3.0 GHz CPU

(Intel i7 4 cores)

same time, although nodes may skip cycles depending on their
control rates [7].



diagnostics systems and to machine’s actuators. Node 1 is
interfaced to 2 soft-X diagnostics (DMPX, or Duplex Mul-
tiwire Proportional soft X-ray counter, a pinhole type soft-
X camera and X-Te, a four filter soft-X spectrometer that
provides central electron temperature using the differential
filter method). It is also interfaced to the 14 vertical chords of
the Far InfraRed (or FIR) interferometer providing the electron
density profile information. Node 2 acquires all magnetics
measurements from the tokamak and is thus responsible for
plasma shape and position control; it also acquires the central
FIR channel for real-time control of the density. This node
is used routinely as the main plasma position and density
controller and it is almost always the RFM master node. Node
3 is a computational node that computes plasma magnetic
equilibrium in real-time. Node 4 is a replacement node for
node 2, while node 5 is an acquisition and processing node
connected to the 200 channel soft x-ray tomographic system.
Node 6 is a very recently installed multicore computational
node that has been used to run multicore complex control
codes (a faster real time equilibrium reconstruction replica and
RAPTOR based advanced plasma performances controllers).
Finally, node 7 is devoted to real-time analysis of fast magnetic
perturbations in the plasma.

B. Software organisation

Fig. 2 presents the modular, portable software organization
of the SCD control system. The SCD code is divided into two
main sections:

1) Hardware interface code written in C/C++ language
by the system developers, it provides the input/output
interface to the control algorithm code. Once compiled,
the executable is uploaded to real-time computer nodes,
where it is considered fixed and unchanging between
plasma shots. However, the hardware code can change
its functional behaviour depending on external configu-
ration parameters, such as a varying operational mode
with or without suspending interrupts, the number of
ADC/DAC cards, number of cores to be used (for
multicores nodes), the data shared via RFM memory,
etc.

2) Control algorithm code realised in MathWorks-
Simulink [9] block programming language by the con-
trol algorithm author(s), using Simulink templates given
by the system developers. It performs signal processing
and computational actions to provide output signals
consisting of new values for the actuators, the reflective
memory and other signals (probe signals) used for
post-shot analyses. This algorithm is in user-friendly
Simulink block format and is automatically converted
into target code that is a dynamically linked shared
object library by MathWorks Simulink Embedded Coder
(SEC) [10].

This modular architecture offers great advantages. The
abstraction from the hardware specific code makes the control
algorithm code portable, i.e. control algorithms tested on TCV
could be readily reused in other fusion facilities with minor
adaptations. Another salient advantage of this modularity is its

flexibility, i.e. the control algorithm can be developed on any
computer equipped with Matlab-Simulink without requiring
the Simulink Embedded Coder (SEC) package installed, and
then simulated for debugging using the real diagnostic signals
of past shots. This feature has already been exploited by
external collaborators from several institutions across Europe
and beyond to test their control algorithms on TCV. Only once
the correctness and the robustness of the control algorithm are
verified in simulation using experimental data of the previous
shots, is it commissioned into RT system. Another essential
advantage is that algorithm authors can use the extensive
Simulink block library for standard components such as filters,
integrators, matrix multiplications and other advanced signal
processing tools. For TCV, standard custom-built blocks are
provided for interfacing algorithms with TCV diagnostics and
actuators, implementing calibration factors, signal selection,
actuator constraints and saturation, etc.

III. INTEGRATION OF NODE 7

Having introduced the general architecture of TCV SCD
control system, now we explain the integration of the new
node 7.

A. Hardware and the hardware interface code

From the point of view of the hardware architecture, node
7 is similar to all others SCD nodes, being constituted of
a cPCI acquisition crate fitted with a DTACQ ACQ196 96
channels synchronous digitizer card, a rear transition module
(DTACQ RTM type T) and an industrial PC, acting as the host
processing unit. The industrial PC is fitted with a Reflective
Memory Card of the same kind as all the other nodes of the
system to communicate with real time network.

As mentioned, node 7 is devoted to fast magnetic signal
acquisition and processing in real time. The main technical
requirements to be fulfilled are as follows:

1) Sampling frequency. The frequency of the usually
observed plasma instabilities of the TCV tokamak lie
in the range from some hundreds of Hz to 100kHz. Fur-
thermore, phase coherence based algorithms are often
used to infer coherent plasma structures and so simul-
taneous sampling of signals is mandatory. Simultaneous
sampling of at least 32 magnetic signals at frequencies
above 200 ksps is required.

2) CPU process time. The previous requirement limits the
CPU processing time since higher sampling rates lower
the available processing time on the CPU (being equal to
the sampling period). The aim of this node is to execute
complex analysis algorithms on high speed multichannel
data streams within a reasonable processing time.

3) Multi-processing capability. Processing algorithms
may be spread over multiple cores to increase the
computational power.

4) Legacy RFM interface. Data sharing with other nodes
of the control system have to comply with the existing
data distribution scheme described in II-A.

5) Processing  algorithms written in
works/Simulink. The analysis algorithms

Math-
should
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TABLE II

be developed in Matlab/Simulink and automatically
uploaded to the analysis node. Therefore, node 7 must
be fully compatible with the software architecture
described in figure 2.

To comply with the above requirements, we adopted a
packet acquisition-processing scheme where the ADCs have
a double buffered data path allowing the CPUs to operate on
each data packet as described in [11]. The acquisition hardware
employs an ADC subsystem with a D-TACQ ADC196 board
augmented with a RTM-T rear transition module [12]. This
module provides a high speed PCI-Express 1x link to the host
PC, which is equipped with a recent, high-end, motherboard
hosting an Intel 17-5960X 8-core 3GHz processor. The adopted
kernel is Scientific Linux 6.7 especially configured for user-
mode RT capabilities with a dedicated hardware interface code
fully compliant with fig. 2. The ad-hoc configured kernel
together with hardware interface code exploit the multicore
CPU by distributing tasks on the cores as summarized in
table II. The kernel is restricted to the first core by Linux init
command options flexibility with all main kernel threads and
user processes executed on this core leaving the others free for
user real-time processes and/or threads; the only kernel threads
remaining on these cores are the basic Linux kernel threads
required for handling the cores (such as the interrupt handling
kthread, the migration kthread and the watchdog kthread).

Once the system enters the real-time state before the plasma
discharge, the hardware interface code is launched as an user
process on core 2. Node 7’s hardware interface code is a
multi-thread process that spawns a thread per used core to
distribute the computational tasks. Besides hosting the hard-
ware interface code, core 2 receives data-ready interrupts from
the acquisition subsystem (which thus also synchronizes the
node), distributes fresh ADC data to the processing threads and
prepares RFM read/write buffer (without actually moving them

TASK ASSIGNMENT TO CPU CORES OF SCD NODE 07

Core no. | Task

1 Linux kernel (forced here in the boot command).

5 Data.c_o'mmunications with DT ACQ196/RTM—T
acquisition subsystem, data dispatch to processing cores.

3 Processing core 1.

4 Processing core 2.

5 Processing core 3.

6 Processing core 4.

7 Synch.ronization handshaking and data exchange on the
RFM interface.

8 Not used.

on the RFM board). Cores 3 to 6 each can host a processing
Simulink algorithm, making this node fully multiprocessing.
Finally core 7 is used to synchronize data transmission and
reception on the RFM card; we employ a dedicated thread
on a dedicated core to run this task since the node must
resynchronize itself to the master RFM node’s read and write
clocks and the fastest way to achieve this is by polling the
RFM card. Since a polling thread usually consumes all the core
activity rate and can only be preempted by an higher priority
thread (on a RT kernel), we chose to employ a separated core
and thread to do this, leaving core 2 fully committed to real
time ADC data handling.

Figure 3 presents the typical working time chart of node
7. The ADCs on the ACQ196 board are clocked at 256 kHz
synchronous with TCV main clock at 1 MHz; the synchronous
sampling clock is generated by a high accuracy DDS (Direct
Digital Synthesizer) chip on a companion board in the acqui-
sition cPCI crate. ADCs’ data stream is directed to a double



buffer on the acquisition board, when one buffer is full, a
data ready interrupt is sent to the host PC and the buffer is
switched, releasing the just filled one to the host CPU. The
arrival rate of this interrupt is evaluated as follows:

Js

fint - Nsch

(D

where f;,: is the interrupt frequency, fs; the sampling fre-
quency and N, the number of samples per channel in the
buffer. With typical working parameters: f; = 256000 and
Ngep, = 256 the interrupt frequency is f;,; = 1000, i.e. we
have a 1 ms cycle time. With this hardware, N, must be a
power of two, hence the choice of 256 kHz for the sampling
frequency to obtain a 1 ms cycle time.

The hardware interface code exploits Intel TSC (Time
Stamp Counter [13]) technology to precisely time stamp its
activities. Every core has a 64 bit wide counter clocked at the
CPU nominal frequency that can be read very quickly using
dedicated assembler code. These counters can be exploited
to time stamp key passages of the hardware interface code,
providing the timing information for system monitoring and
algorithm benchmarking. The initial timing information is the
measured system cycle time, i.e. time interval tl in figure 3.
The time trace of this value is the first indicator of good
or improper RT behavior of the system; with the working
parameters introduced in the previous paragraph, this trace
should be a constant value of 1 ms. Once the data ready
interrupt has been issued, the CPU must copy fresh ADC
data from the acquisition board to main memory, distribute
it to the processing cores and update the RFM buffers. This
requires time that is stored in time stamp t2 and is depicted as
the purple phase in figure 3. After this phase the processing
cores have new data to process and thus processing algorithms
can be triggered; several processing cores act on ADC data in
parallel as depicted by the "CPU 1 processing” and “CPU
2 proc” phases in figure 3, their processing time are stored
in markers t5 and t6. Up to four processing cores can be
used: the algorithm presented in this paper uses two. The
available computational time to all processing cores in every
cycle is equal to tl - t2. The hardware interface code can
allow some processing cores to work at a lower speed w.r.t.
the main ADC data ready by triggering at a fraction 1/N
of the rate of data ready interrupt arrival; this allows these
cores to operate at lower speed w.r.t. data packet rate, granting
more computational time at the expense of analyzing only a
subset of the signals windows, i.e. one every N. In this case
data exchange with other cores happens every N computing
cycle as well. Following the t2 phase, the hardware interface
code exchanges data with the reflective memory board. It must
first synchronize itself with the read and write phases dictated
by the RFM master node. Time elapsed from the data ready
interrupt and the read and write synch time are recorded in
time stamps t3 and t4 of figure 3.

All timing information are stored to the SCD MDSplus tree
and are used to check the node functionality.
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B. Software, the Simulink model and integration of the MHD
analysis code

As all the other nodes of the control system, the control
code (or diagnostic processing code, in this case) is written
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Fig. 5. Simulink diagram of one of node 7 processing cores.

as a Simulink block diagram. This enormously facilitates
algorithms’ management during both experimental activity and
later data analysis. Since node 7 is a multicore processing
machine, a dedicated Simulink block model was developed.
This model is shown in figure 4. Every processing core
is modeled as Simulink block with standardized input and
output ports; since node 7 has 4 parallel processing cores,
four of these blocks are inserted. Each block represents an
independent processing thread that can process input data in
parallel w.r.t. the others.

Once one TCV pulse is initiated, the active blocks’ content
is opened by the SCD build process, a Linux shared object
library is generated for each and these libraries are distributed
to node 7. Upon entering the real-time phase of the discharge,
the hardware interface code of node 7 is launched and loads
these shared objects assigning their processing code to one
thread per core. During the discharge, these cores process data
from the fast magnetic signals in parallel and return the results
via the RFM real time network, as described in III-A.

Figure 5 shows a Simulink block representing a single core.
This is the Simulink object that is then translated into C code
and then compiled into the Linux shared library upon shot
preparation. It has four input and five output ports whose
meaning and sizes are summarized in table III. This block
acts as a wrapper for every processing algorithm, a Simulink
model inserted and it also provides a clear and straightforward
mean of standardizing the input and output interfaces.

Figure 4 shows the actual interconnections of the core
models on the node CPU. Basically every core’s proc_out port
is looped back to the proc_in port of the other cores with one
cycle delay. This provides a simple and general modeling of
inter-thread data communication. The hardware interface code
takes care of these data movements once the algorithms models
are uploaded to node 7. Obviously, this is not the most efficient
way to handle inter core data communications since a fixed
amount of data (figures are in table III) is always exchanged
irrespective of what is really present on the proc_out ports.
Nevertheless, we chose a general, fixed interface, approach at
the expense of communication overhead. This is also true for
all the input and output ports.

Input and output ports to and from the CPU are arranged
with the twofold aim of mimicking the real system (particu-
larly the hardware interface code) allowing SCD re-simulation
on a past data in Simulink. As an example, the ADC input port
is connected to a InputFromWorkspace block that is initialized

TABLE III
INPUT AND OUTPUT PORT MEANING OF THE EMPLOYED SIMULINK
MODEL OF 1 PROCESSING CORE

Port Function Size
name
ade data buffer from the ADCs, it contains 16384 words
the last acquired data packet. (16 bits)
RFM buffer from other nodes, it contains 1024 sineles
rfm_in the last data sent of the RFM network by 32 bits)g
other nodes.
wave IF can b.e used to prov1de pre compute?d 1024 singles
en file signals in alternative of putting them into (32 bits)
gen_ the Simulink model.
Inter-cores data communication input, it 1536 sineles
proc_in provides the mean of receiving data from 32 bi‘ts)g ’
other cores of the CPU.
dac DAC output port, it contains data to be 96 words
sent to node’s DACs, if present. (16 bits)
Real-time storage memories. Data put
into this port is stored into dedicated
memor channels during the discharge and stored 256 doubles
y to MDSplus database, i.e. it is the main (64 bits)
way to check and debug the real-time
code.
DO Digital output port, it contains data to be 8 int (32
sent to node’s digital outputs, if present. bits)
RFM write buffer, this is the port used to
fm out transmit data on the RFM network; data 196 singles
- put here by the algorithms are broadcast (32 bits)
on the RFM to other nodes.
Inter-cores data communication output, it .
. L 512 singles
proc_out | provides the mean of transmitting data to (32 bits)
other cores of the CPU.

with previous shot ADC data, taken from the SCD MDSplus
database if the model is used for re-simulation. It is connected
to the real ADCs by the hardware interface code when the
core model is uploaded to node 7. The same happens for
the other ports, allowing an efficient and easily manageable
re-simulation of past shots whilst providing a very flexible
processing algorithm development environment.

Node 7 was programmed and tested with the SVD rt MHD
analysis code described in [14]. In essence this code employs a
Singular Value Decomposition of a matrix whose columns are
a bandpass filtered copy of the fast magnetic signals followed
by a post-processing phase that compares the experimental
principal axes (i.e. the columns of one of the three matrices
computed by the SV decomposition) with those computed on
a numerically generated set of signals from a theoretical model
of rotating modes. This algorithm was ported to the Simulink
representation introduced here. It exploits the multiprocessing
capability of node 7 operating on to 2 cores: the first computes
the SVD decomposition of live signals from the ADCs and the
second computes the SVD decomposition of the theoretical
model. Not only does this reduce the computational time but
the theoretical model can be made dependable on other live
plasma signals. In the presented implementation it depends
upon the plasma magnetic axis in the machine. Conventional
oddN and evenN MHD markers have also been included in
the analysis code.

Figure 6 reports the algorithm that runs on core 1. The
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Fig. 6. Simulink diagram MHD analysis algorithm on node 7 core 1.

algorithm that runs on core 2 is omitted for brevity. This
Simulink block is contained in the wrapper of figure 5. In the
algorithm model, we followed the usual Simulink convention
with the signals flow from left to right. So the ADC input port
is placed at top-left in the figure and supplies all acquired
64 channels, each having 256 samples. This data buffer is
decomposed by the pre-treatment stage whose tasks are to
extract 13 channels (12 for the SVD plus 1 for one of
the conventional markers), to apply the inverse sensor-adc
transfer function to compensate for the analog chain, 2x digital
downsample the signals (applying a low pass filter and a 2x
decimator) and to apply a high-pass filter. Pre-treated channels
are prepared by the RMS normalization stage before being fed
to the actual SVD factorization and post-processing algorithm
(currently implemented as a Simulink S-function C++ block).
The outputs of this block are passed to two output ports of
the core: the RFM port to distribute the results to other nodes
and the memory port to store the results on the MDSplus
database for later analysis. The SVD factorization block needs
the theoretical principal axes computed by the companion
algorithm that runs on core 2. This data enters the block
through the proc_in port at the bottom left of the figure, is
extracted by a signal extraction block and connected to the
SVD block.

Six pre-treated signals are employed to compute three pairs

of conventional oddN and evenN markers. These signals come
from three couples of fast magnetic sensors located each 180
degrees apart on the equatorial LFS plane on the machine
(each couple at a different absolute toroidal angle). From their
location, summing and subtracting their signals and cascading
an RMS average stage (and possibly low pass filtering) pro-
vides information on the presence and amplitude of modes
with even and odd toroidal mode number (N) separately. This
algorithm was installed and is depicted at the bottom right of
figure 6.

IV. TESTS ON THE TCV PLASMA

Node 7 has been tested on real TCV plasmas during the
most recent campaign with the MHD analysis code described
in section III-B. The node performed well both in terms of real
time performance and effectiveness in providing on line MHD
activity markers. Figure 7 shows real time traces measured by
the hardware interface code on node 7 during a discharge.
The abscissa axis is shot time, starts at t=-0.5 s and ends
at t=2.0 s (breakdown is intended at t=0.0s). Timings are
arranged by the MDSplus archiving routines of node 7 in order
to facilitate algorithms’ computational time compliance check
by the system operator. In particular, timings t2, t3, t4 are
plotted ”‘upside-down™’ from the cycle time (t1) track whereas
cores’ computational time are plotted normally. In this way it
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Fig. 7. Timing traces of node 7 during TCV shot no. 54642.

is simple to check when a core isn’t able to keep-up with
the RT requirements since the available computational time is
quickly identified (see figure 7 on the right).

The node was parametrized with a 1 ms nominal cycle time
and the measured one exactly matches with only some ps
of jitter (tl in figure 7). With two active processing cores
data distribution takes approximately 80 us (t2 interval, in
figure 7). The two processing cores execute the two algorithms
in parallel and respect the limit on available computational
time, as depicted by t5 and t6 time intervals in the figure.
Finally reflective memory read and write synch timestamps are
recorded (t3 and t4 time intervals in the figure), proving that
the 10kHz RFM strobe synch from RFM master node (node
2 in this shot) was correctly captured and data was correctly
distributed to and from the real time network.

Figure 8 shows some MHD analysis results. The abscissa
axis is identical to figure 7. The first plot shows node tim-
ings as in figure 7 while the second plot shows raw ADC
channels of magnetic signals from TCV. The third plot shows
normalized SVD based NTM presence markers, as described
in [14]. Briefly, the H marker is the entropy of the set of
normalized singular values and is thus related to the degree of
phase coherence shown by all the magnetic signals. The more
it is near 0 the more we have a phase coherent signal in all
the sensors and so one or more rotating modes. The P1 and
P2 markers are the relative squared magnitude of the first and
second couples of singular values w.r.t. all the others; their
behavior is opposite w.r.t the H marker and they are linked
to the presence of only one (P1) or two (P2) rotating modes
at the same time. The fourth graph displays the frequency
of the rotating mode, if any, and the fifth the (2,1), (3,1)
and (3,2) modes likelihood markers. The last plot shows the
standard MHD markers oddN and evenN. The interested reader
is pointed to [14] for further information on this algorithm.

Looking at these signals, this shot is characterized by a
quick (3,1) rotating mode just after the breakdown and by a
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Fig. 8. MHD analysis results during TCV shot no. 54642.

(2,1) mode in the interval t=[1.1,1.4] and again in the interval
t=[1.8,2.2]. Since these signals are distributed on the real
time network, they can be used to trigger countermeasures
to control the MHD activity (for instance by means of ECR
heating) or, more simply, to soft land the discharge without
incurring a full high current disruption. For example, in the
presented shot, ECRH beams were switched on triggered by
the (2,1) likelihood signal and effectively compensated the
rotating mode at t=1.4 and at t=2.2.

V. CONCLUSION AND OUTLOOK

We have described the integration of a new node into the
TCV real time control system. The new node is tailored to
performing advanced analysis algorithm on the fast magnetic
signals of TCV in real time and to distribute the results
to the real time network of the control system. During the
development of the system we succeeded in respecting all
useful features of the legacy system, namely: a strict separation
between the environment in which algorithms are developed
(Mathworks/Simulink) and that in which they are executed
(custom C/C++ code) and compatibility with the legacy data
interface on the RFM network, etc. New features have also
been introduced: a real-time packet acquisition and processing
approach, multi-core data processing and data transfers on a
multi synchronous system (ADC side and RFM side).



We think that the approach followed in this paper can be
continued in the future whenever there is the need for the real-
time processing of fast diagnostics with complex algorithms
and to distribute results to other actors in the control system.
One example on our system is the soft-x XTOMO acquisition
node no. 5, which could be refurbished with an approach like
that described here.
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