Infoscience

Journal article

Three-Dimensionally Enlarged Photoelectrodes by a Protogenetic Inclusion of Vertically Aligned Carbon Nanotubes into CH3NH3PbBr3 Single Crystals

We demonstrate that single crystals of methylammonium lead bromide (MAPbBr(3)) could be grown directly on vertically aligned carbon nanotube (VACNT) forests. The fast-growing MAPbBr3 single crystals engulfed the protogenetic inclusions in the form of individual CNTs, thus resulting in a three-dimensionally enlarged photosensitive interface. Photodetector devices were obtained, detecting low light intensities (similar to 2.0 nW) from the UV range to 550 nm. Moreover, a photocurrent tivaS recorded at zero external bias voltage which points to the plausible formation of a p-n junction resulting from interpenetration of MAPbBr(3) single crystals into the VACNT forest. This reveals that vertically aligned CNTs can be used as electrodes in operationally stable perovskite-based optoelectronic devices and can serve as a versatile platform for future selective electrode development.

Fulltext

Related material