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a b s t r a c t 

The formation of a vein during cyclic shearing of a single copper crystal oriented for single 

slip can be followed in transmission Laue diffraction by analyzing the spatially resolved lat- 

tice rotation evolution. Because Laue transmission integrates the signal over the thickness 

of the sample, the structure of the vein in the beam direction is a priori believed to be 

inaccessible. Here we show that the vein geometry in the beam direction can be retrieved 

by comparing lattice curvature tensor components from crystal plasticity finite element 

simulations with those experimentally derived. Virtual sectional analysis facilitates the in- 

terpretation of the measured lattice curvatures of quasi-2D dislocation structures, allowing 

identifying a vein morphology that is slightly vertically and horizontally inclined in the 

through thickness direction. 

© 2017 The Authors. Published by Elsevier Ltd. 

This is an open access article under the CC BY-NC-ND license. 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. Introduction 

Dislocations move across the crystal lattice in response to the applied stress and self-organize into defined patterns,

determining the macroscopic behavior of the materials ( Argon, 2007; Kubin, 2013; Kubin et al., 2002 ). The developed dis-

location arrangements depend on the applied loading conditions and the crystallographic orientation of the crystal. During

fatigue at low and intermediate strain amplitudes in single slip oriented copper single crystals, so-called channel-vein dislo-

cation structures are expected, which transform into persistent slip bands (PSBs) after a large number of cycles ( Ackermann

et al., 1984; Ahmed et al., 2006 ). Fig. 1 shows the schematic of such a vein-channel structure. The veins consist mainly

of edge dipole bundles of primary dislocations that are aligned approximately with the dislocation line perpendicular to

the Burger’s vector and slip plane normal, and extend in the third dimension. The channels are almost dislocation-free re-

gions, where dislocations travel back and forth during cycles. Veins are reported to have a characteristic width of 1.5 μm in

saturation ( Laird et al., 1986 ). 

The accumulation of edge dipoles on the primary (111) slip plane with Burgers vectors [ ̄1 0 1] causes rotation about

an axis parallel to the [1 ̄2 1] direction –i.e. the dislocation line direction ( Mughrabi, 2006a ). A lattice misorientation of

0.33 ° around the primary edge dislocation line has been reported for a copper single crystal fatigued till PSBs were formed

( Mughrabi, 2006b; Wilkens et al., 1980 ). The misorientation for a vein is expected to be lower ( Mughrabi, 2006a ). Elec-
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Fig. 1. Schematic of the vein-channel representation. 

Fig. 2. Misorientation, rotation field and apparent GND density of the developed vein (data obtained from Irastorza-Landa et al., 2016 ). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

tron microscopic observations did not reveal lattice misorientation, but relaxation due to the thin film sample preparation

procedure cannot be excluded ( Neumann, 1983 ). 

Using x-ray Laue diffraction scans with sub-micron spatial resolution in 2D, the developing microstructure during cyclic

shear was followed in a single crystalline copper (Cu) sample ( Irastorza-Landa et al., 2016 ). The experiment was carried

out with a miniaturized shear device installed at the MicroXAS beamline of the Swiss Light Source. The Cu single crystal

oriented for single slip shaped in Miyauchi’s geometry and thinned using picosecond laser ablation to 30 μm ( Guitton et al.,

2015 ) was cyclically deformed with different strain amplitudes. Spatial resolved Laue diffraction patterns were recorded in

transmission mode after different number of cycles. The evolving dislocation microstructure was analyzed in terms of lattice

rotation and apparent geometrically necessary dislocation (GND) densities ( Irastorza-Landa et al., 2016 ). The evolution of

the GND traces showed a clear redistribution of the pre-existing GNDs and the appearance of regions surrounded by GND

walls with no GNDs inside the perimeter. Such regions were recognized as developing vein structures. Fig. 2 shows the

distribution of the misorientation, the rotations about X-, Y- and Z- axes and the apparent GND density of the developed

vein ( Irastorza-Landa et al., 2016 ). The vein is rotated predominantly around Z- axis by 0.22 ° and is surrounded with GND

walls in its perimeter. 

In this experiment, the saturation stage has not been reached and no slip bands, characteristic feature of PSBs

( Grosskreutz, 1971 ), were observed on the surface. Along the dislocation line direction the veins are expected to be curved

dislocation structures, as has been observed in TEM images ( Basinski et al., 1980; Mughbrabi et al., 1979 ). Since in Laue

micro-diffraction in transmission mode information is integrated along the sample depth, curvatures of the vein structure

along the depth of the sample cannot be resolved. 

Here we present synergetic work between Laue micro-diffraction experiments and crystal plasticity finite element (CPFE)

simulations performed in order to reveal the geometrical structure of the vein responsible for the observed misoriented area

in Fig. 2 . 
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2. Methodology 

2.1. Lattice curvature from X-ray diffraction data 

The Laue diffraction scan with step size of 300 nm covering 10 × 25 μm 

2 was collected after 120 fully reversed shear

fatigue cycles integrated over a thickness of 30 μm. More details about the conducted mechanical test can be found in

Irastorza-Landa et al. (2016 ). Each diffraction pattern is indexed using the maximum intensity for each reflection. The ori-

entation matrix, G , is determined using a refinement procedure, after which the relative misorientation between two neigh-

boring points is calculated. This corresponds to the curvature tensor κ ij that is defined as the gradient of the rotation about

the ‘ i ’ axis along the ‘ j’ direction: 

κij = 

∂θi 

∂x j 

with { i, j } = { x, y, z } (1)

where θ is the lattice rotation vector. 

The disorientation vector ( �θ) defines the orientation difference between two neighboring points (A and B). In sample

coordinates, it can be derived as follows: 

�G = G 

−1 
A 

G B (2)

�θ = arccos 

(
�G ii − 1 

2 

)
(3)

with �G ii the trace of �G. 

�θk = −εkij �G ij 

�θ

2 sin �θ
(4)

with { i, j, k } = { x, y, z } and εkij the Levi-Civita permutation symbol. 

From the disorientation of two points, separated spatially by a distance �x, the lattice curvatures can be approximated

as: 

κi j ≈
�θi 

�x j 

with { i, j } = { x, y, z } (5)

When working in Laue transmission mode, the differentiation along the third direction is lost. Therefore, only six compo-

nents of the curvature tensor are available: κ ix and κ iy with { i } = { x, y, z } . A similar procedure has been applied by Pantleon

(2008 ) to obtain lattice curvatures from EBSD measurements. It has also been applied in 3D X-ray diffraction by Larson

et al. (2007 ) for which the full curvature tensor can be obtained. 

In the absence of elastic strain or in the assumption of small elastic strains, rotations and/or small elastic strain gradients,

the measured lattice curvatures can be related to the GND density by the Nye’s formula ( Nye, 1953 ): 

α ≈ κT − κii I (6)

with κ ii the trace of κ and I the identity matrix, which yields: ( 

αxx αxy αxz 

αyx αyy αyz 

αzx αzy αzz 

) 

= 

( −κyy − κzz κyx κzx 

κxy −κxx − κzz κzy 

κxz κyz −κxx − κyy 

) 

(7)

In our experiment only six components of the curvature tensor are available ( κ ix and κ iy with { i } = { x, y, z } ) - marked in

blue. This allows to determine an apparent density of GNDs as suggested in Gupta and Agnew (2010 ): 

ρapparent = 

1 

b 
( | αxy | + | αxz | + | αyx | + | αyz | + | αzz | ) (8)

2.2. Computational model 

The simulations are based on the CPFE method and dislocation based constitutive laws. They are carried out using the

DAMASK subroutine – Düsseldorf Advanced Material Simulation Kit ( Roters et al., 2012 ). The CPFE method is formulated

using finite strains and the deformation gradient F is multiplicatively decomposed into an elastic and a plastic component

( Lee, 1969 ): 

F = F e F p (9)

The elastic deformation gradient is related to the stress by an anisotropic elastic stiffness tensor C : 

S = C · ( F T e F e − I) / 2 (10)
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Fig. 3. Representative volume of the simulation and boundary condition. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In FCC materials the elastic stiffness tensor is characterized by three elastic constants c 11 , c 12 , c 44 ( Overton and Gaffney,

1955 ). The time evolution of the plastic deformation gradient depends on L p , which is the so-called plastic velocity gradient

( Roters et al., 2010 ). In the CPFE method, L p has contributions from the shear rates ( ̇ γ α) of all the slip systems: 

L p = 

12 ∑ 

α=1 

˙ γ αm 

α
� n 

α (11) 

where the unit vectors m 

α and n 

α describe the slip direction and the normal to the slip plane of the slip system α. 

The simulated geometry consists of two regions, as schematically shown in Fig. 3 . A dislocation-based constitutive model

is used in the central part (white region). This parallelepiped with dimensions 5 × 5 × L μm 

3 will be called “Block 1” and it

is embedded in a region “Block 2” with dimensions 10 × 10 × L μm 

3 . 

The model applied ( Grilli et al., 2015 ) in Block 1 uses positive and negative edge and screw dislocations as state vari-

ables. It incorporates dislocation multiplication, annihilation and cross slip. The dislocation motion through the geometry is

described by flux terms ( Roters et al., 2010 ) and the threshold resolved shear stress to move a dislocation on the slip system

α is ( Arsenlis and Parks, 2002 ): 

τα
th = μb 

√ √ √ √ 

12 ∑ 

β=1 

ξαβρβ (12) 

where μ is the shear modulus, b is the Burgers vector, ξαβ are interaction coefficients among the slip planes and ρβ the

total dislocation density on the slip system β . 

A cluster of immobile dislocations is introduced in Block 1 to mimic the presence of a vein, schematically represented by

the pink square in the white region in Fig. 3 . Different configurations for the immobile dislocation cluster are used, as ex-

plained in Section 4 . During simulation of a fatigue cycle, mobile dislocations will accumulate at the interface of the cluster

when the threshold stress in Eq. (12 ) is reached and will form dislocation walls constituted of GNDs. Periodic dislocation

fluxes are imposed in 3D on the boundary of Block 1 to avoid size effects. Shear displacement is applied on the right surface

of Block 2. The obtained displacement field is shown by the arrows in Fig. 3 . 

The boundary region Block 2 is described using Von Mises plasticity ( Peirce et al., 1982 ). The plastic velocity gradient is:

L p = 

√ 

2 

3 

˙ γ0 
‖ S ∗‖ 

n −1 

g n 
S ∗ (13) 

where ˙ γ0 is a reference shear strain rate, g is the flow stress, n is the stress exponent, S ∗ is the deviatoric stress and ‖ S ∗‖
its second invariant. The flow stress evolves from g o to g sat as: 

˙ g = h 0 ˙ γ0 

(‖ 

S ∗‖ 

n 

g n 

)∣∣∣1 − g 

g sat 

∣∣∣a 

(14) 

Pure copper single crystal parameters from Déprés et al. (2008 ) and Overton and Gaffney (1955 ) have been used and

they are reported in Table 1 . 

The CPFE method can calculate the lattice rotation by left polar decomposition of the elastic deformation gradient ( Eberl

et al., 2002 ) as: 

F e = G · U e (15) 

where G is a rotation matrix, analogue to experimental, and U e represents pure stretching. Therefore, the same procedure

as explained in the experimental Section 2.1 can be followed to calculate the rotation fields, lattice curvatures and apparent

GND density. The rotation at each ( x,y ) point is the averaged rotation along the Z -axis Fig. 3 . 
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Table 1 

Material parameters used for simulations. 

Elastic constants c 11 165.00 GPa 

c 12 117.52 GPa 

c 44 75.68 GPa 

Stress exponent n 20 

Initial value of slip resistance parameter g o 10 MPa 

Saturation value of slip resistance parameter g sat 28 MPa 

Reference shear strain rate ˙ γ0 1 · 10 −10 s −1 

Hardening parameters a 1 

h o 100 MPa 

Fig. 4. Experimental lattice curvatures of the evolved misoriented region. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3. Experimental lattice curvatures 

Fig. 4 shows the lattice curvature components of the evolved region in mrad/μm. For comparison, the same scale bar (|8

mrad/μm|) has been given to all the components. At the left wall of the rotated area, the region has negative torsion around

X- axis ( κxx ), a plane perpendicular to X- axis has positive flexion around the Y- axis ( κyx ) and negative around Z- axis ( κzx ).

Reverse signs are found at the right wall. On the upper side, the region has positive torsion around Y- axis ( κyy ) and the plane

perpendicular to the Y- axis has negative flexion around both X- axis ( κxy ) and Z -axis ( κzy ). The lower part is characterized

by opposite values. The geometrical meaning of the lattice curvatures is summarized in Fig. 5 . 

The statistical distribution of each lattice curvature is graphically depicted as boxplots in Fig. 6 . Briefly, each box repre-

sents the middle fifty (interquartile = IQR) of the population and the whiskers extend till |1.5 × IQR|. The points plotted as

‘ + ’ symbols, outliers, are values lying outside the |1.5 × IQR| range. The medians of all distributions, the central mark of the

box, correspond to ∼0 mrad/μm. Detailed information of boxplots is given in Appendix A . The boxplot shows that outliers

of κxx , κyx and κyy exceed |10 mrad/μm|, whereas the limits of κxy , κzx and κzy are below |10 mrad/μm|. Out of 378 total

measurements, 47–49% are outliers. 

Dislocations corresponding to the primary slip system for single slip orientation have their Burgers vector parallel to

Y = [ ̄1 01 ] and line direction in the Z- axis. If straight, these dislocations should cause only non-zero values for κzx and κzy

lattice curvatures (see Appendix B ). Therefore, κzx and κzy can be directly attributed to the presence of primary edge GND

walls surrounding the dipoles, as schematically drawn in Fig. 7 . Nevertheless, the experimental measurements show that

κzx and κzy are not the only present lattice curvatures. In fact, their distribution can be narrower when comparing to the

distribution of other curvature components (see Fig. 6 ). In order to understand this observation computational simulations

with different vein geometries have been performed. 

4. Simulated geometries 

Four configurations representing possible geometries that dislocations could adopt when forming a vein have been in-

troduced in Block 1 shown in Fig. 3: 

• A straight vein 



162 A. Irastorza-Landa et al. / Journal of the Mechanics and Physics of Solids 104 (2017) 157–171 

Fig. 5. Representation of the observed lattice curvatures around the region. See text for description. 

Fig. 6. Statistical distribution of the experimental lattice curvatures. Blue box represents the IQR of the population, the whiskers extend till |1.5 × IQR|and 

the red ‘ + ’ are outliers. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

 

 

 

 

• A vein inclined towards the Y- axis ( Y- inclined vein) 
• A vein inclined towards the Y- and the X- axis ( Y & X- inclined vein) 
• Two veins, both inclined towards the Y- axis (Two inclined veins) 

The schematic and geometrical details are shown in Fig. 8 . 

Each simulated vein has a density of 100 μm 

−2 immobile dislocations. Additionally, a uniform mobile dislocation density

of 5 μm 

−2 for each dislocation type (positive and negative, edge and screw dislocations) is added in Block 1. 1% random

perturbations are added to this uniform distribution and these fluctuations have the same magnitude for positive and neg-

ative signed mobile dislocations. Each vein configuration is then subjected to one full cycle with an applied shear strain of
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Fig. 7. Schematic of dislocations forming dipoles in a vein. Excess of dislocations around the vein (in red) contribute to GNDs. (For interpretation of the 

references to color in this figure legend, the reader is referred to the web version of this article.) 

Fig. 8. Schematic and geometrical details of simulated veins. 

 

 

 

 

 

 

 

∼0.50%, during which primary dislocations are trapped around the immobile vein as schematically shown in Fig. 7 . The ro-

tation field of each configuration is then calculated as explained in Section 2.2 . As reference, the rotation field after one full

cycle is calculated for a configuration without an immobile dislocation cluster. This rotation field is subtracted from those

obtained with immobile clusters to remove boundary effects caused by the interface between Block 1 and Block 2. 

5. Simulated rotation field, apparent density of GNDs and lattice curvatures 

Fig. 9 shows the rotation about the Z- axis [mdeg] and the apparent GND density [μm 

−2 ] distributions for the different

vein geometries. All of them show positive rotation about the Z- axis. The value of the Z -rotation is higher for the straight

vein than for the two inclined clusters. The Y- inclined and Y & X- inclined veins have intermediate rotation values. Interest-

ingly, the apparent GND density maps show that an inclination across the thickness is necessary in order to have apparent
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Fig. 9. (a) Rotation about Z- axis and (b) Apparent GND density of different simulated vein geometries. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

GNDs in the lateral walls. A pure straight configuration would create only apparent GND densities at the top and bottom of

the vein. In the special case of two inclined clusters, the apparent GND density has no clear structure. 

The statistical distributions of each lattice curvature component are graphically depicted as boxplots in Fig. 10 for all

simulated vein configurations. It can be observed that the distributions of κxx , κxy , κyx and κyy are very similar in all

the geometries: the values are slightly higher in the Y- inclined case than in the other configurations. On the other hand,

κzx and κzy are extremely sensitive to the vein configuration. Their outlier values are highly influenced (at least a factor of

two) when changing the geometry from straight to any of the other three configurations. These results can explain why

experimentally the expected κzx and κzy do not have the highest values. 

6. Curvatures from a Y & X -inclined vein and sectional analysis 

The lattice curvatures for the Y & X -inclined vein are further analyzed. In order to have more pronounced rotation fields,

a longer vein is simulated with similar geometrical configurations as shown in Fig. 11 . The vein can be divided in four

sections/cuboid, each one 1 μm long. The first section is straight along the Z -axis, Section 2 is inclined along Y -axis, Section

3 is inclined in X -axis and the last section is again straight along the Z -axis. 

Fig. 12 shows the distribution maps of each lattice curvature component for the Y & X -inclined long vein configuration

derived from averaged rotation fields integrated over the entire thickness (see Appendix C for average rotation fields). In the

right side of each box a schematic of the lattice curvatures is shown. One can observe several similarities when comparing

the simulated and experimental distributions shown in Fig. 4: 

• Simulated κxx and κzx components have vertical boundaries in the lateral walls of the vein. Similar to experimental

results, the signs are reversed in the left and right walls. The distribution of the κyx component is not as defined as

the one of κxx and κzx components, but faint left and right walls can be distinguished. The sign is, however, reversed

comparing to experimental values. This is related to the average Y- rotation field obtained ( Appendix C ) and is discussed

below. 
• Simulated κxy and κzy components have horizontal boundaries in the upper and lower walls of the vein. The signs are

reversed in the upper and lower walls, and the signs match when comparing to experimental results. The distribution of

κyy also shows reversed signs in the upper and lower walls but the sign and distribution do not have strong correlation

with the experimental observations. 

The influence of the geometry of each cuboid of the long Y&X- inclined vein shown in Fig. 11 is now studied in detail

by calculating the lattice curvatures of the sections separately. Fig. 13 shows the sectional maps of all lattice curvature

components and Fig. 14 shows their distribution as boxplots. The sectional rotation distributions are given in Appendix C . 

One can observe that in all sections the simulated κzx and κzy show localized traces forming the left-right walls or upper-

lower walls of the vein with same sign as in experiments. The values are rather similar in all sections and they are higher

compared to the other lattice curvatures. The greatest variation is observed in Section 3 where the values of κzx double

those of the other sections. This corresponds to the part where the vein is inclined along X- axis and the X- and Z- rotation

are the highest (see Appendix C ). 

When analyzing the maps of the other four components κxx , κxy , κyx and κyy , it is found that the distribution of the

lattice curvatures is different for each cuboid: 

• There is no standard structure of κxx in the straight sections (1 and 4) where the vein is located: in Section 1, for

instance, the inner part of the vein has positive κxx values surrounded by negative values outside the vein; in Section 4
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Fig. 10. Lattice curvature components distributions of the four computed vein geometries. 

 

 

 

 

 

 

 

 

 

the left and right walls have negative and positive κxx values respectively. In the Y- inclined Section 2, the κxx traces

are mainly in the upper and lower walls due to the gradient induced by the inclination. In the X- inclined Section 3, the

lattice curvature is only localized in the left and right walls, and the values are highest. Besides they match in sign with

those measured experimentally: left negative, right positive. Therefore Section 3 resembles more the experimental data. 
• In Sections 1, 3 and 4, κxy mark the upper and lower walls of the vein. The signs are in agreement with experimental

observations. The κxy values are highest in Section 3, similar as what was observed for κxx . In the Y- inclined Section 2,

the κxy traces are localized in the left-right walls of the vein due to the gradient induced by the inclination. 
• κyx shows similar values for all four sections. In the straight sections (1 and 4) there is no defined structure where

the vein is located. In the Y- inclined Section 2, the κyx traces are located in the left-right walls similar to those ob-

served experimentally and with the same signs. In the X- inclined Section 3, on the other hand, the κyx traces mark the

upper-lower walls of the vein. This difference is induced by the particular inclination in each section, a piece of informa-
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Fig. 11. Schematic and geometrical details of long Y&X -inclined vein configuration. 

Fig. 12. Distribution of lattice curvature components of the simulated Y & X -inclined long vein in [mrad/μm]. 

 

 

 

 

 

 

 

 

 

 

 

 

tion that is lost when analyzing the averaged lattice curvature distribution. This causes the dissimilarities between the

experimental and averaged computed lattice curvature maps (see Fig. 12 ). 
• The κyy traces in the straight sections (1 and 4) and in the X- inclined Section 3 have non-zero values in the left-right

walls. Their values are however lower when comparing to those of Y- inclined Section 2. There, the κyy traces mark the

upper-lower walls analogue to the experimental data, and they have same sign. Similar as for κyx , this information is

lost in the averaged plots shown in Fig. 12 . 

In summary, the sectional analysis of the vein reveals that vertical and horizontal inclinations are required to explain the

experimentally obtained lattice curvature distributions. 

7. Conclusions 

Lattice curvatures in relation to a vein formed during cyclic fatigue in a single Cu crystal oriented for single slip have

been derived from spatially resolved Laue micro-diffraction in transmission mode. Since Laue in transmission cannot pro-

vide information on the distribution of lattice curvatures along the depth of the sample, dedicated CPFE simulations are

performed in order to obtain information on the geometry of the vein. The dedicated simulation brings detailed informa-

tion on the lattice curvature caused by a straight dislocation vein and allows differentiation between veins with different

inclined sections. By comparing with experimentally obtained lattice curvatures measured for a vein structure, it is possible

to geometrically interpret the vein in the 3rd dimension. In particular, for a cyclic fatigued single slip oriented Cu crystal,
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Fig. 13. Sectional lattice curvature maps of a Y-X- inclined long vein. 
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Fig. 14. Lattice curvature components distributions at each section of a Y-X- inclined long vein. 

 

 

 

 

 

the developing vein is slightly inclined vertically and horizontally in the third direction. This is in good agreement with the

curved dislocation structures observed in TEM images such as in Basinski et al. (1980 ) and Mughbrabi et al. (1979 ). 

Acknowledgments 

The authors thank the Swiss National Science foundation for financial support ( SNF – 138240 ). A.I-L and H.V.S. thank the

European Research Council for the advanced grant MULTIAX (339245) . 

Appendix A. Statistical representation of data as boxplots 

The box plot is a quick way of examining one or more sets of data graphically. Each box represents the middle fifty of

the population. The tops and bottoms of each box are the 25th and 75th percentiles of the samples, respectively. The total

length of the box is the interquartile range (IQR). The whiskers, in other words the arms, extend till 1.5 × IQR. The line inside

http://dx.doi.org/10.13039/501100001711
http://dx.doi.org/10.13039/501100000781
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Fig. A.1. Visual representation of a boxplot. Adapted from Mathworks Website (n.d.) . 

 

 

 

 

 

 

 

 

 

 

 

 

 

the box is the sample median. The points plotted as ‘ + ’ symbol are outliers that are values outside the |1.5 ∗IQR| range. The

maximum and minimum outlier defines the total range of the distribution. The visual representation of a boxplot is given

in Fig. A.1 . 

Appendix B. Lattice curvatures of infinite edge dislocation with its line along Z -axis 

The curvature tensor κ ij describes the relative misorientation and is defined as the gradient of the rotation about the ‘ i ’

axis along the ‘ j’ direction: 

κij = 

∂θi 

∂x j 

with { i, j } = { x, y, k } (B.1)

where θ is the lattice rotation vector: 

θk = −∈ ki j ω i j 

2 

with { i, j, k } = { x, y, z } (B.2)

and where ω is the lattice rotation tensor ( Pantleon, 2008 ). 

This yields: 

θx = ω zy (B.3)

θy = ω xz (B.4)

θz = ω yx (B.5)

The lattice rotation field is defined as: 

ω i j = 

1 

2 

(
∂ u i 

∂ x j 
− ∂ u j 

∂ x i 

)
with { i, j } = { x, y, k } (B.6)

where u is the elastic distortion field ( Acharya and Knops, 2013 ). 

The elastic distortion field of a straight dislocation in an infinitely extended isotropic body with the dislocation line along

the Z- axis is as follows ( deWit, 1973 ): 

u x = b x 

[
ϕ 

2 π
+ 

x x x y 

4 π( 1 − ν) ρ2 

]
+ 

b y 

4 π( 1 − ν) 

[
( 1 − 2 ν) ln ρ + 

x 2 y 

ρ2 

]
(B.7)

u y = − b x 

4 π( 1 − ν) 

[
( 1 − 2 ν) ln ρ + 

x 2 yx 

ρ2 

]
+ b y 

[
ϕ 

2 π
+ 

x x x y 

4 π( 1 − ν) ρ2 

]
(B.8)

u z = 

b z ϕ 

(B.9)

2 π
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Fig. C.1. Average and sectional rotation fields of the Y & X -inclined long vein shown in Fig. 11 . 

 

 

 

 

 

 

where 

ρ = 

√ 

x 2 x + x 2 y (B.10) 

ϕ = tan 

−1 
(

x y 

x x 

)
(B.11) 

Now, computing:

ω zy = 

1 

2 

(
∂ u z 

∂ x y 
− ∂ u y 

∂ x z 

)
= 0 (B.12) 

ω xz = 

1 

2 

(
∂ u x 

∂ x z 
− ∂ u z 

∂ x x 

)
= 0 (B.13) 

ω yx = 

1 

2 

(
∂ u y 

∂ x x 
− ∂ u x 

∂ x y 

)
� = 0 (B.14) 

This yields to the fact that θ z ( x, y ) is the only non-zero component and therefore κzx and κzy are the only lattice curva-

tures induced by an infinite edge dislocation with its line along Z -axis. 

Appendix C. Average and sectional rotation fields of long Y&X -inclined long vein 

Fig. C.1. 
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