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Abstract: We derive the quantum analogues of some recently discovered symmetry relations for time
correlation functions in systems subject to a constant magnetic field. The symmetry relations deal with
the effect of time reversal and do not require—as in the formulations of Casimir and Kubo—that the
magnetic field be reversed. It has been anticipated that the same symmetry relations hold for quantum
systems. Thus, here we explicitly construct the required symmetry transformations, acting upon
the relevant quantum operators, which conserve the Hamiltonian of a system of many interacting
spinless particles, under time reversal. Differently from the classical case, parity transformations
always reverse the sign of both the coordinates and of the momenta, while time reversal only of the
latter. By implementing time reversal in conjunction with ad hoc “incomplete” parity transformations
(i.e., transformations that act upon only some of the spatial directions), it is nevertheless possible to
achieve the construction of the quantum analogues of the classical maps. The proof that the mentioned
symmetry relations apply straightforwardly to quantal time correlation functions is outlined.
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1. Introduction

Microscopic time reversibility is a key precept in Physics. Its usefulness is not limited to
discussions around causality or about its relation with macroscopic irreversibility: it is also a useful tool
to derive relations regarding dynamical observables such as transport coefficients. Since Casimir first
discussed Onsager’s relations of microscopic reversibility [1], it has become customary to refer to time
correlation functions in the presence of a magnetic field in a different manner than their counterparts
in the absence of it [2,3]. It is typically stated or implied that any time reversal symmetry is associated
with a reversal of the magnetic field. Other symmetries which emancipate one from that obligation
have not been discussed until very recently [4]. Kubo [5–7] derived classical and quantal symmetry
relations for time correlation functions in systems subjected to an external constant magnetic field.
These relations all involve time- and magnetic field-reversal. Concisely written, they are expressed
as 〈X(0) ·Y(t)〉B = ηX ηY 〈X(0) ·Y(−t)〉−B, where · stands for canonical multiplication in classical
systems, and for appropriately specified combinations of the observable operators qualifying X and Y
in quantum systems. ηX and ηY are signatures (i.e., they take up the values ±1), specifying the effect of
the reversal of time, of the momenta, and of the magnetic field on the observables X and Y, respectively.
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The association of magnetic field reversal with time reversal is usually interpreted as signifying the
odd character of the field itself, with respect to the underlying symmetry transformation. This is pacific
if one considers time reversal acting on the Universe as a whole, so that the external magnetic field is
reversed as well. It is however arbitrary in character when time reversal is only considered to pertain
to a certain specific subsystem of interest, with respect to which the magnetic field is an external
force. The traditional approach of Kubo, while formally correct, forces one to consider symmetry
relations only between pairs of subclasses of systems, each item in one class having the external
magnetic field in the opposite direction to that of each item in the other class. As mentioned above,
however, it was recently shown that generalized time reversal symmetries between subsystems subject
to the same magnetic field can be established [4]. Interestingly, these symmetries relate observables
within the same system. As discussed in more detail in the next section, it suffices to transform only
some of the coordinates and momenta in some prescribed manner. Thus, in [4] it was shown that for
classical systems 〈X(0)Y(t)〉B = ηX ηY 〈X(0)Y(−t)〉B, now ηX , ηY being the signatures with respect
to the particular symmetry transformations which have been selected. The only requirement is that
the peculiar transformation associated with time reversal leaves the microscopic dynamics invariant.
Now the correlation relations involve solely the time evolution of the system’s own time-dependent
observables, and therefore bear physical relations between its constituents. They no more involve—as
in the previous formulations—a purported one-to-one matching between the constituents of two
systems, interacting selectively with two magnetic fields pointing in opposite directions.

The above observation may have some consequences when one considers statistical averages
or fluctuation relations in many-body systems, interacting among themselves and with a constant
external magnetic field. In general, when many trajectories are possible within a given macroscopic
ensemble, any symmetry may imply the possibility of establishing a one-to-one correspondence
between “forward” and “backward” trajectories. Weighing each trajectory with the probability
distribution of its initial value, one arrives at estimating the relative probabilities of finding the
system in two distinct macroscopic states [8,9].

In [4] it was anticipated that that the newly established symmetry relations could be extended
to the quantum case. Indeed, care must only be taken to deal with the interlacing of coordinates
and momenta operators with respect to parity. It is then possible to extend the classical result to
the quantum case, as we show in this paper. It also emerges that the recipe for finding the entire
class of admissible transformations is neatly established by requiring the invariance of the quantum
Hamiltonian. Only the case of a time-independent Hamiltonian and a system of spineless particles has
been considered here.

2. From the Classical Result to a Quantum System

Let us consider a system of N spinless particles of mass mi and charge qi in the presence of
a constant magnetic field B. In the case of classical mechanics, in [4] the existence of a length-conserving,
time-reversing symmetry transformationM was proven, such that

〈Φ(0)Ψ(t)〉B = ηΦηΨ 〈Φ(0)Ψ(−t)〉B (1)

under the transformation. Φ and Ψ are any two observables, respectively with signatures ηΦ = ±1
and ηΨ = ±1 underM. The result complements that of Kubo [5–7], who far earlier found that similar
general correlation relations hold for (concurrent) time- and B-reversal symmetries. The peculiarity
of (1) is that it directly permits the formal derivation of some equilibrium and nonequilibrium
properties within a single system (e.g., fluctuation relations), via the association of trajectories which
are pair-wise invariant under time reversal, even if the field B is not reversed [9]. Furthermore, the map
M is not unique [10] and this straightforwardly implies constraints on time correlation functions, since
combining the maps produces certain self-antisymmetric relations.



Symmetry 2017, 9, 120 3 of 7

In [4], it was also conjectured that in the context of quantum mechanics, a map operating similarly
toM would produce the same type of relations as in (1), provided one uses the appropriate quantal
correlation functions. The need to use certain appropriate correlation functions in quantum systems
stems from the fact that Φ and Ψ may not commute in general and, by consequence, correlators as in (1)
may not be real-valued, the averaged operator being nonhermitian. This is a limitation if one wants
to associate the correlators themselves with observable quantities. Further, parity operators work
differently from the classical case, where momentum and position are independent, as the quantum
momentum is a position-dependent operator in coordinates space. Here, we set out to explicitly prove
the above-mentioned conjecture, providing a simple recipe for exhausting the alternative choices
of map.

We start by briefly reviewing the classical case [4]. To fix our ideas, B is parallel to z, B = B ez and
the vector potential satisfies 2A(r) = B(−y ex + x ey). The mapM is defined as:

M : (x, y, z, px, py, pz, t) 7−→ (x,−y, z,−px, py,−pz,−t). (2)

Given the particles occupying positions ri and defining rij = rj − ri, the equations of motion are
derived from the classical Hamiltonian:

H =
N

∑
i=1

(
pi − qiA(ri)

)2

2mi
+

1
2

1,N

∑
i 6=j

U(|rij|) (3)

and they read, after defining ωi =
qiB
2mi

and the α component (α = x, y, z) of the force on particle i,

Fα
i = − ∂

∂αi

N
∑
j 6=i

U(|rij|):

ẋi =
px

i
mi

+ ωiyi,

ẏi =
py

i
mi
−ωixi,

żi =
pz

i
mi

,

ṗx
i = Fx

i + ωi(py
i −miωixi),

ṗy
i = Fy

i −ωi(px
i + miωiyi),

ṗz
i = Fz

i .

(4)

The mapM leaves the dynamics in (4) invariant.
To build the quantum notation, we start by noting the effect of the relevant transformations on

the single-particle quantum operators. From now on, all variables are to be understood as quantum
operators. Time reversal is represented by an anti-unitary T transformation [11,12], satisfying:

T αi T −1 = αi, T p α
i T −1 = −p α

i , (α = x, y, z); T i T = −i. (5)

Parity restricted to the direction β of space entails the following (α, β = x, y, z):

Pβ αi P−1
β = (1− 2δαβ) αi, Pβ p α

i P−1
β = (1− 2δαβ) p α

i , Pβ iP−1
β = i. (6)

Here, δαβ = 1 if α = β and δαβ = 0 otherwise. Thus, for example, Px acts as the identity
with respect to the yi and zi coordinate operators and the p y

i and p z
i momentum operators, while it

reverses the sign of both xi and p x
i . The latter effect on momenta distinguishes a quantum system from

a classical system and it reflects the fact that the quantum momentum in real space is a differential
operator with respect to the homologous coordinate. By introducing (6), one is able to consider
incomplete parity transformations; i.e., transformations that emulate parity, but only with respect to
some assigned direction or directions. To incorporate all incomplete parity transformations, one can
thus also define:
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Pαβ = PαPβ. (7)

The complete parity—or simply parity—is trivially given by P = PxPyPz. With Pα and Pαβ,
combined eventually with T (which commute with all P∗’s), one is able to investigate various
symmetries in quantum Hamiltonian systems. For example, the map M in (2) has the following
counterpart in quantum mechanics:

M 7−→ My = PyT . (8)

One more remark is in order. Since T is anti-unitary, it follows [11,12] that the only two alternative
possibilities are

T −1 = ηT T , (ηT = ±1), (9)

where ηT = 1 for particles without internal degrees of freedom.

3. Invariance of the Quantum Hamiltonian

The quantum mechanical transcription of Equation (3) gives the quantum Hamiltonian as soon as
any variable is replaced by the corresponding quantum operator. In the Coulomb gauge, Equation (3)
now reads:

H =
N

∑
i=1

( p2
i

2mi
− qi

mi
A(ri) · pi +

q2
i

2mi
A2(ri)

)
+

1
2

1,N

∑
i 6=j

U(|rij|) (10)

and is further simplified by the above-specified alignment of the magnetic field B = B ez, and form of
the vector potential, 2A(r) = B(−y ex + x ey),

H =
N

∑
i=1

( p2
i

2mi
+

qiB
2mi

yi p x
i −

qiB
2mi

xi p y
i +

q2
i B2

8mi
(x2

i + y2
i )
)
+

1
2

1,N

∑
i 6=j

U(|rij|). (11)

Now note that:

My xiM−1
y = xi; My yiM−1

y = −yi; My ziM−1
y = zi;

My px
i M−1

y = −px
i ; My py

i M
−1
y = py

i ; My pz
i M−1

y = −pz
i ;

My A(ri)M−1
y = B(yi ex + xi ey)/2. (12)

As for higher-order operators:

My p2
i M−1

y = p2
i ; My A(ri) · piM−1

y = A(ri) · pi;

My A2(ri)M−1
y = A2(ri); My U(|rij|)M−1

y = U(|rij|). (13)

It follows that the Hamiltonian is invariant with respect to the transformationMy,

MyHM−1
y = H. (14)

This is a necessary and sufficient condition for the dynamics of a time-independent Hamiltonian
to be invariant, and one could also readily inspect its character by applying the operatorMy to the
evolution of the wave function ψ; i.e., i∂tψ−Hψ = 0,

My (i ∂t −H)ψ = (−i ∂t −H)My ψ = 0. (15)
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Therefore ψ′ = My ψ is a solution of the equation (−i ∂t −H)ψ′ = 0, which is precisely the
original Schrodinger equation, after the replacement t→ −t.

Equations (3), (10) and (11) are alternative representations in the case of B aligned with ez,
and allow one to derive the transformations which leave the Hamiltonian invariant. The term which
is problematic when time reversal is considered is, for example, A(ri) · pi in (10). Traditionally, to
attain invariance of H, one observes that T reverses all pi’s, and therefore the magnetic field must
also be reversed (and thus inversion of A follows). An additional complete parity transformation
would only flip all the coordinates and all the momenta, without changing the relative signs of the
momenta with respect to the magnetic field. The only way to obtain a transformation that preserves
the sign of B and also reverses time is that A(ri) · pi be invariant. Along withMy = PyT , then also
Mx = PxT ,Myz = PyzT , andMxz = PxzT comply with the requirement. It is noted that this is a
definitive assessment in the quantum formalism, which is distinct from the classical requirement that
Equation (4) be invariant, albeit the two approaches may lead to reciprocally consistent conclusions.

4. Correlation Functions

For brevity, we denote asM any of the four aforementioned quantum transformations, which
leave the magnetic field unchanged and with respect to which the Hamiltonian is invariant.
Suppose that

MΦM−1 = ηΦ Φ and MΨM−1 = ηΨ Ψ, (ηΦ , ηΨ = ±1). (16)

We consider the time correlator

〈Φ(0)Ψ(t)〉 = Tr [ρ Φ(0)Ψ(t)]. (17)

ρ is the density operator generating the implied equilibrium probability measure. Notice
that (17) could be non-observable, since Φ and Ψ may not commute, which implies that Φ(0)Ψ(t) be
nonhermitian for finite times. It is, however, mathematically well-defined.

We have:

〈Φ(0)Ψ(t)〉 = Tr [ρ Φ(0)e
iHt

h̄ Ψ(0)e−
iHt

h̄ ] = Tr [ρ Φ(0)e
iHt

h̄ M−1MΨ(0)M−1M e−
iHt

h̄ ]

= ηΨ Tr [ρ Φ(0)e
iHt

h̄ M−1 Ψ(0)M e−
iHt

h̄ ] = ηΨ Tr [ρ Φ(0)M−1 e−
iHt

h̄ Ψ(0) e
iHt

h̄ M]

= ηΨ Tr [ρMΦ(0)M−1 e−
iHt

h̄ Ψ(0) e
iHt

h̄ ] = ηΦ ηΨ Tr [ρ Φ(0) e−
iHt

h̄ Ψ(0) e
iHt

h̄ ] = ηΦ ηΨ 〈Φ(0)Ψ(−t)〉 .

In addition to (16), we have used the following identities:

M e−
iHt

h̄ = e
iHt

h̄ M, e
iHt

h̄ M−1 =M−1 e−
iHt

h̄ , Tr [ρ AM] = Tr [ρM A], (18)

the first two of which express the invariance ofH under the anti-unitary transformationM and account
for the anti-hermitian property of the time reversal operator—see Equations (5) and (8), the latter
following from the invariance of the trace under cyclic permutation of operators, in addition toM
commuting with the equilibrium density operator, assumed to depend on the Hamiltonian. The first
two identities in (18) have a dynamical interpretation. For example, in layman terms, the first of them
expresses the possibility of inferring the state of a system which progressed from some time −t in the
past and was then transformed byM by just applyingM to the actual state and letting it evolve for
a time t in the future. One may also express the time reversal symmetries here illustrated as one way
to obtain the state in the past that has produced the present state, by evolving forward in time the state
obtained by applying the symmetry operator to the present state, and then applying the symmetry
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operator at the end of that evolution. After all, it is not possible to travel backward in time, as far as
we know.

In the case of Ψ = Φ, it trivially follows that

〈Φ(0)Φ(t)〉 = 〈Φ(0)Φ(−t)〉 ,

which is now a relation between two observable averages.
Following Kubo, we may readily write for the symmetrized correlator 〈X, Y〉 = 〈XY〉+ 〈YX〉:

〈Φ(0), Ψ(t)〉 = ηΦ ηΨ 〈Φ(0), Ψ(−t)〉

The proof is trivial.
Kubo also defines

〈Φ(0); Ψ(t)〉 = 1
β

∫ β

0
dλ Tr [ρ eλH Φ(0) e−λH Ψ(t)], (19)

which is also real, as is the symmetrized one, because it is the average of a hermitian operator.
Now, reiterating the proof in (18) after replacing Φ(0) with eλH Φ(0) e−λH, it is straightforward

to write:

〈Φ(0); Ψ(t)〉 = 1
β

∫ β

0
dλ Tr [ρ eλH Φ(0) e−λH Ψ(t)]

=
ηΦ ηΨ

β

∫ β

0
dλ Tr [ρ eλH Φ(0) e−λH Ψ(−t)] = ηΦ ηΨ 〈Φ(0); Ψ(−t)〉 . (20)

We point out that it is a simple exercise, starting from the quantum Hamiltonian (3) and choosing
the Landau gauge A(r) = −B y ex, or alternatively A(r) = B x ey, to obtain again the result. Indeed,
the said Hamiltonian is notoriously gauge invariant, which implies that its wave functions absorb
a gauge transformation by acquiring a local gauge phase; i.e., multiplication by a unitary operator
(here time-independent). A physical operator must undergo the same unitary transformation for every
new choice of the vector potential. Notice that PyT correctly transforms each quadratic term in (3) in
the chosen gauges, acting always on the generalized momenta.

5. Conclusions

By providing a systematic procedure to identify the quantum analogue of the generalized time
reversal symmetries introduced in [4] for classical systems, we have proved that well-defined signature
properties for quantum time correlations can be derived, as conjectured in previous work. More
precisely, Equation (20) has been proved for systems whose equilibrium distribution depend only on
the Hamiltonian (10). We have found a way to systematically identify the transformations for which (20)
is valid. The result implies that for spinless particles obeying the time-independent Hamiltonian (10),
there exist time-reversal symmetry transformations which do not require inversion of the magnetic
field. The notion that any external magnetic field is an intrinsically odd quantity for any time-reversal
transformation should be reviewed. The present work does not address the case of particles with spin
interacting with the magnetic field, or the case of time-dependent Hamiltonians.
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