Atmos. Meas. Tech., 10, 2573-2594, 2017
https://doi.org/10.5194/amt-10-2573-2017

© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.

Atmospheric
Measurement
Techniques

Retrieval of the raindrop size distribution from polarimetric radar
data using double-moment normalisation

Timothy H. Raupach and Alexis Berne

Environmental Remote Sensing Laboratory, School of Architecture, Civil, and Environmental Engineering,
Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland

Correspondence to: Alexis Berne (alexis.berne @epfl.ch)

Received: 16 September 2016 — Discussion started: 25 November 2016
Revised: 23 May 2017 — Accepted: 10 June 2017 — Published: 20 July 2017

Abstract. A new technique for estimating the raindrop size
distribution (DSD) from polarimetric radar data is proposed.
Two statistical moments of the DSD are estimated from
polarimetric variables, and the DSD is reconstructed using
a double-moment normalisation. The technique takes advan-
tage of the relative invariance of the double-moment nor-
malised DSD. The method was tested using X-band radar
data and networks of disdrometers in three different climatic
regions. Radar-derived estimates of the DSD compare rea-
sonably well to observations. In the three tested domains, in
terms of DSD moments, rain rate, and characteristic drop di-
ameter, the proposed method performs similarly to and often
better than a state-of-the-art DSD-retrieval technique. The
approach is flexible because no specific DSD model is pre-
scribed. In addition, a method is proposed to treat noisy radar
data to improve DSD-retrieval performance with radar mea-
surements.

1 Introduction

The raindrop size distribution (DSD) describes the mi-
crostructure of liquid precipitation and is highly variable
(Jameson and Kostinski, 2001; Uijlenhoet et al., 2003; Tapi-
ador et al., 2010; Jaffrain and Berne, 2012). The DSD is mea-
sured at the point scale by disdrometers. For applications
such as numerical weather prediction (e.g. Baldauf et al.,
2011) or radar remote sensing (e.g. Bringi and Chandrasekar,
2001), it is often necessary to know the areal DSD at the pixel
scale. In other cases, such as studies of the microphysics of
precipitation (Pruppacher and Klett, 2000; Tapiador et al.,
2014), it would be useful to be able to remotely infer the

DSD aloft or in remote locations. For these reasons, retrieval
of the DSD from radar data has been a long-standing goal.
In this paper we present a new technique for DSD retrieval
from polarimetric radar data, which is based on the double-
moment normalisation technique of Lee et al. (2004).

Polarimetric weather radars are particularly useful for re-
mote retrieval of the DSD, because differences between ver-
tically and horizontally polarised electromagnetic waves re-
flected off hydrometeors in the atmosphere provide infor-
mation on the particles’ concentration, size, and shape. In
rainfall, radar reflectivity in horizontal (Zy, dBZ) or vertical
(Zv, dBZ) polarisation primarily relates to drop concentra-
tion and size, differential reflectivity (Zpr, dB) reflects drop
shape, and specific differential phase shift on propagation
(Kdgp, ° km™!) relates to both the concentration and shape of
the drops (Bringi and Chandrasekar, 2001). Seliga and Bringi
(1976) showed that Zpr can be linked to the median volume
drop diameter, a microphysical property of rain. Since then,
many methods for DSD retrieval from radar variables have
been proposed.

Zhang et al. (2001) introduced the “constrained gamma”
method, in which the shape and slope parameters of a gamma
DSD model (Ulbrich, 1983) are assumed dependent. This as-
sumption is subject to debate (e.g. Zhang et al., 2003; At-
las and Ulbrich, 2006; Moisseev and Chandrasekar, 2007;
Cao and Zhang, 2009). The technique, modified by Brandes
et al. (2003), can provide useful DSD information (Bran-
des et al., 2004a). In the “beta” method (Gorgucci et al.,
2002), the effective slope of the drop axis ratio to diameter
relationship is retrieved. The slope is used to find parame-
ter values for the normalised gamma model of Willis (1984),
which has advantages for use with polarimetric observations
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(Illingworth and Blackman, 2002). Retrieval of the gamma
model shape parameter with the beta method is subject to
high uncertainty (Gorgucci et al., 2002; Anagnostou et al.,
2008). To deal with noisy Zpgr and Kgp, data at low rain rates,
Bringi et al. (2002, 2003) used the beta method for heavy
rain and disdrometer-based regressions on Zyg and Zpr for
light rain. Brandes et al. (2004b) found that the constrained
gamma method was in better agreement with disdrometer
data than the beta method, while Anagnostou et al. (2008)
reported similar performance from the two techniques, and
both studies noted that the beta method is sensitive to errors
in Kqp. Vulpiani et al. (2006) developed a neural-network
DSD-retrieval technique, and spatial correlations of DSD
model parameters have been retrieved from radar data (Thu-
rai et al., 2012; Bringi et al., 2015).

X-band polarimetric weather radars are popular due to
their portability, small size, and high resolution and sensi-
tivity, but measurements at X band suffer from attenuation
by heavy rain (Anagnostou et al., 2013; Kalogiros et al.,
2013) and must be corrected (Matrosov et al., 2005; Park
et al., 2005a). Several DSD-retrieval algorithms have been
developed for X band (e.g. Park et al., 2005b; Gorgucci
et al., 2008; Anagnostou et al., 2013; Kalogiros et al.,
2013), including some with integrated attenuation correction
(e.g. Testud et al., 2000; Yoshikawa et al., 2014). The self-
consistent with optimal parameterization attenuation correc-
tion and microphysics estimation (SCOP-ME) algorithm, de-
veloped through studies by Anagnostou et al. (2009, 2010)
and Kalogiros et al. (2013), uses relationships calculated for
the Rayleigh limit, corrected for Mie scattering at X band.
It performs well compared to contemporary algorithms and
disdrometer observations (Anagnostou et al., 2013). In this
paper we present a new method for DSD retrieval that uses
the double-moment DSD normalisation of Lee et al. (2004),
we and compare it to SCOP-ME.

The rest of this manuscript is organised as follows: we
briefly describe the double-moment DSD normalisation tech-
nique of Lee et al. (2004) in Sect. 2. Bulk rainfall variables
that we use are introduced in Sect. 3. Data used are presented
in Sect. 4. In Sect. 5 we propose a new DSD-retrieval method
that uses double-moment normalisation to retrieve the DSD
from polarimetric radar data. Its performance is compared
to that of SCOP-ME using radar variables simulated from
DSD measurements in Sect. 6. In Sect. 7 we introduce a new
method to reduce the effects of noise in radar measurements.
Using this method, the DSD-retrieval algorithms are com-
pared using radar data in Sect. 8. Conclusions are made in
Sect. 9.

2 Double-moment DSD normalisation

The DSD is written as N(D) (mm~! m_3) and is defined
as the concentration in air of raindrops with equivolume di-
ameter in the interval from D to D +§D mm. The equivol-
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ume diameter is used because raindrops become oblate with
size (e.g. Thurai et al., 2007); it is simply the diameter of
a sphere that contains the same volume of water as a drop.
M,, (mm” m~3), the nth-order moment of the DSD, is

M, =/N(D)D”dD. (1)
0

The double-moment normalisation method of Lee et al.
(2004) allows for the DSD to be expressed as a combination
of two of its moments M; and M of arbitrary orders i and j
and a double-moment normalised DSD /A (x) (=), where x =
DMil/ =D a7 10=D () is the second-normalised diameter
(Lee et al., 2004). Using the normalisation, the DSD can be
written as

N(D) — Ml(/+1)/(/_Z)M](l+1)/(l_/)h(x) (2)

The method is flexible because the function i(x) is not
prescribed. Lee et al. (2004) suggested that a generalised
gamma model is an appropriate choice for /(x). Following
their recommendation, we use the following double-moment
normalised DSD (Lee et al., 2004):

N (D) = MU0y DD 3)

h(x) = Cri(j+CH)/(i—j)F;—i—cu)/(i—j)xcu_l

NI
! c

X exp ‘(F) x|, o)
J

where I' is the gamma function, I'; ='(u +i/c) and I'j =
I'(w+ j/c), and ¢ (-) and p (-) are parameters which must
be fitted to the generalised gamma model. Since this formula-
tion allows any DSD to be described using only two of its sta-
tistical moments, the task of our DSD-retrieval algorithm is
to estimate two DSD moments from polarimetric radar data.

The question of whether the double-moment normalised
DSD is invariant has been investigated. Compared to pre-
vious single-moment normalisation approaches that vary
by rainfall type (Sempere-Torres et al., 2000), the double-
moment approach shows more similarity across such
changes (Lee et al., 2004). Raupach and Berne (2017) tested
the double-moment normalised DSD across spatial displace-
ment and between different climatic regions. They showed
that for practical purposes in stratiform rain and with well-
chosen input moments, the double-moment DSD can be con-
sidered invariant across space with acceptable resulting per-
formance on reconstruction of the DSD. Lee et al. (2007)
showed that h(x) derived from time series measurements
at one location had low scatter around the average double-
moment normalised DSD. In the DSD-retrieval method pro-
posed here, we make the assumption that the double-moment
normalised DSD function £ (x) is invariant in space and time
over the typical domain of interest and that variance in the
DSD is adequately explained through variance in two mo-
ments of the DSD.

www.atmos-meas-tech.net/10/2573/2017/
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3 Bulk rainfall variables

All bulk rainfall variables can be derived from the DSD (a de-
tailed review is provided by Bringi and Chandrasekar, 2001).
The mass-weighted mean drop diameter Dy, (mm), useful as
a characteristic drop size, is M4/M3. Liquid water content
W (g m~3) is related to the third moment of the DSD and is
written as

T .n-3
W = g10 ° pwM3, (5)

where py (g cm™3) is the density of water. The rain rate R
(mmh~!) is defined as

R = 6n10_4/v(D)D3N(D)dD, (6)
0

where v(D) (ms™!) is the still-air terminal fall speed of
a drop with equivolume diameter D. In this study v(D) was
calculated using the method of Beard (1976), for site-specific
altitudes and latitudes, and an assumed sea-level temperature
of 15° and relative humidity of 0.95.

Radar variables can also be derived from the DSD. In
Rayleigh scattering, when the radar wavelength is much
larger than the particles being measured and drops are as-
sumed to be spherical, the radar reflectivity is Z = Mg (Mar-
shall et al., 1947). In Mie scattering, in which the wavelength
is of similar size to the particles, reflectivity in horizontal
polarisation Zy (mm6 m_3) is defined as (Bringi and Chan-
drasekar, 2001)

10024

h = JT5|K|2

/ oo (D)N(D)dD, ™

0

where A (cm) is the wavelength, | K |? () is the dielectric fac-
tor of water, and op, (D) (cm?) is the back-scattering cross
section at horizontal polarisation of a raindrop of equiv-
olume diameter D. Reflectivity in vertical polarisation, Z,
(mm® m—3), is obtained by replacing oy, (D) with the verti-
cally polarised back-scattering cross section oy (D) (cm?).
It is usual practice to deal with radar reflectivities in dBZ,
calculated as Zy = 10log;yZ, and Zy = 10log;yZy.

Differential reflectivity Zpr (dB) is Zy — Zvy. Differential
reflectivity in linear units, &g, (—), defined as Zy,/Zy, has been
shown to relate to the reflectivity-weighted mean drop axis
ratio r, (=) (Jameson, 1983). r, is defined as

/r(D)DéN(D)dD
LR : ®)
/ DON(D)dD

0

I, =
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where r (D) is the vertical to horizontal axis ratio of a drop of
equivolume diameter D. The relationship found by Jameson
(1983) is

ry~ (Ear) 7 )

which is valid for narrow distributions of the raindrop axis
ratio (Bringi and Chandrasekar, 2001).

Dual-polarisation radars measure specific differential
phase shift (on propagation) Kqp (° km™"), which is the dif-
ference in phase produced between horizontally and verti-
cally polarised waves that pass through rain. It is defined as
(Bringi and Chandrasekar, 2001)

1800, [
de=710 /Re[fhh(D)—fvv(D)]N(D)dD, (10)

0
where Re represents the real part of a complex number and
Re(fuh) (cm) and Re( fyy) (cm) are the real parts of the for-
ward scattering amplitudes for horizontal and vertical polar-
isation respectively. Jameson (1985) showed that Kgp, can be
linked to the product of liquid water content and the deviation
from unity of the mass-weighted mean raindrop axis ratio ryy,
(-). rm is defined as

/ r(D)D3N(D)dD

0
Tm= . (11)

/ D3>N(D)dD

0

Kgp can be written as

Kap = (@) IO_ICK(I —m), (12)
A w

with dimensionless value C ~3.75 (Bringi and Chan-

drasekar, 2001). Various raindrop axis ratio functions are

available (e.g. Pruppacher and Beard, 1970; Andsager et al.,

1999; Brandes et al., 2002; Thurai et al., 2007). We return to

the question of axis ratios and Kgp, in Sect. 5.

The integrals in this section and Eq. (1) are idealised be-
cause the range of drop sizes is written from zero to infin-
ity. Using measured data, the integrals were calculated over
truncated classes of diameter and second-normalised diame-
ter, with D and x as class centres and dD and dx as class
widths. Since truncation potentially affects bulk variables
(e.g. Willis, 1984; Ulbrich, 1985; Vivekanandan et al., 2004),
we used the same truncation limits for compared quantities.
When polarimetric variables were calculated from DSDs, the
T-matrix codes of Mishchenko and Travis (1998) were used
to calculate raindrop scattering properties, with an assumed
temperature of 12.5°C, a Gaussian distribution of raindrop
canting angles with zero mean and a standard deviation of
6° (stated as reasonable by Bringi and Chandrasekar, 2001),
and a radar frequency of 9.4 GHz.

Atmos. Meas. Tech., 10, 2573-2594, 2017
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Table 1. Summary of instrument networks used. Coordinates for Parsivel networks are bounding boxes. Altitude is above sea level to nearest
10 m. Hours are provided only for non-instantaneous measurements and show total hours of rain data measured by each network.

Data set  Instrument type Coordinates Altitude (m)  Hours

HyMeX Parsivel (V1 and V2) 44.5547-44.6141° N, 4.3826-4.5461°E 200-640 403
MRR 44.5790° N, 4.5011°E 270 24
X-band radar 44.6141° N, 4.5461° E 600

Payerne  Parsivel (V1) 46.8115-46.9783° N, 6.9184-7.13°E 430490 347
X-band radar 46.8133° N, 6.9428°E 490

Iowa Parsivel (V2) 41.6406-42.2388° N, 92.4637-91.5416° W 200-290 412

X-band radar

41.8870° N, 91.7341° W 260

4 Data

To train and test the new method, data from three networks
of OTT Parsivel (Loffler-Mang and Joss, 2000) disdrometers
were used. Each network had a nearby X-band weather radar
that scanned above the disdrometers. A full description of
the data and their treatment, and the coordinates for all sta-
tions, are provided in Raupach and Berne (2017), in which
the same disdrometer networks were used. Here we provide
a summary of the data used in this study.

The first network provided the HyMeX data set. This net-
work was located in Ardeche, France, in the autumns of 2012
and 2013, for the special observation periods of the Hydro-
logical Cycle in the Mediterranean Experiment (HyMeX!,
Drobinski et al.,, 2014). In this study we used data from
11 first-generation Parsivel and 5 Parsivel?. disdrometers lo-
cated in the approximately 13 x 7km? network. Also used
were data from a METEK GmbH micro rain radar (MRR
Peters et al., 2002, 2005; Tridon et al., 2011) within the net-
work, which provided vertical profiles of estimated DSDs
recorded with 100 m vertical resolution and 10s integra-
tion time. MXPol, a transportable Doppler dual-polarisation
weather radar (for instrument details see Schneebeli et al.,
2013), was located to the north-east of the disdrometer net-
work. In 2013, MXPol recorded “stacked” plan position in-
dicator (PPI) scans above the Parsivel network at elevations
of 4, 5, 6, 8, 10, 12, 14, 16, and 20° above horizontal, with
a return time of about 6 min. Six rainfall events in which the
MRR and MXPol both recorded data were selected for 2013.
The events were from 1.8 to 7.5 h in length. Temperature data
from a weather station at Pradel Grainage were used to esti-
mate freezing level cutoff heights, below which precipitation
was assumed to be primarily liquid. These heights ranged
from 971 to 2386 ma.s.1., and only those MRR data from be-
low the cutoff level per event were used. More network de-
tails and the list of identified events are provided in Raupach
and Berne (2017). The HyMeX data set was the only set used
in which MRR estimates of the DSD aloft were available.

Igee http://www.hymex.org.
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Two more data sets were used in order to incorporate data
from different climatologies. The second instrument network
was composed of five first-generation Parsivel disdrometers
and MXPol, in Payerne, Switzerland, and took measurements
from February to July 2014. We used the MXPol PPI scan at
5° above horizontal, which had a return time of about 5 min.
The scans covered the region over three of the disdrome-
ters. The third data set was from a network of 14 Parsivel?
disdrometers (Petersen et al., 2014) deployed in Iowa, US,
during the National Aeronautics and Space Administration
Iowa Flood Studies (IFloodS) Global Precipitation Measure-
ment ground validation campaign. Overlooking this network
was the University of Iowa’s X-band radar XPOLS (Mishra
et al., 2016). We used PPI data recorded at 3° above hori-
zontal, with a variable return time of about 2 to 8 min, for
3 days of heavy rainfall: the 25th, 26th, and 27th of May
2013. These scans covered the area over 10 of the disdrome-
ters. The three networks were in regions with different clima-
tologies (as described in Wolfensberger et al., 2016). Table 1
provides a summary of the three networks. Radar scans were
matched to instrument times by finding scans for which at
least half of the typical scanning period was within the in-
strument integration time. Scans typically lasted about 30s
in HyMeX, about 44 s in Payerne, and about 60s in Iowa.
Table 2 shows the instruments covered by PPI scans, the dis-
tance of each station to the PPI radar volumes used, and the
number of radar scans that overlapped with 1 min observa-
tions.

Disdrometer data, which had raw integration times of ei-
ther 30 or 60s, and MRR data, with 10s integration time,
were resampled to 1 min temporal resolution. HyMeX and
Payerne Parsivel data were corrected with reference to 2D-
video-disdrometer (2DVD) measurements from the HyMeX
campaign (Raupach and Berne, 2015a, b), with correction
factors trained using reprocessed Parsivel data from the
HyMeX 2013 campaign. This procedure removed unrealis-
tically large drops and those too far from expected velocities,
adjusted velocity measurements, and adjusted drop concen-
trations so that DSD moments more closely matched those
of the 2DVD. These Parsivel data were quality controlled so

www.atmos-meas-tech.net/10/2573/2017/
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Table 2. Instrument stations with corresponding PPI volumes, with the number of scans for that volume (S), the volume centre’s height above
the ground (H, ma.g.l., to nearest 10 m), height above sea level (H, ma.s.l., to nearest 10 m), and horizontal range from the radar (D, km).
MI (mmh 1) is the maximum 1 min rain intensity recorded by each instrument at a radar scan time.

Network  Station S H(magl) H (masl) D MI
Payerne  HARAS Avenches 482 910 1350 9.8 152
Payerne military airport 408 370 820 37 163
Morat airport 349 2090 2520 232 165
HyMeX  Lavilledieu 1205 970 1190 84 537
Les Blaches 1258 550 980 54 603
Lussas 1279 730 1020 6.0 655
Mirabel 1254 370 870 38 575
Mont-Redon 1265 140 780 25 182
Pradel 1 1238 680 960 5.1 39.6
Pradel 2 1238 680 960 5.1 351
Pradel Grainage 1215 700 970 5.3 431
Pradel Grainage v2 1215 700 970 53 444
Pradel-Vignes 1221 730 990 55 224
Saint-Etienne-de-Fontbellon 1102 1210 1520 13.1 757
St Germain 1136 1100 1310 10.1 73.8
Villeneuve-de-Berg 1146 840 1140 7.7 449
Villeneuve-de-Berg 2 1150 840 1140 7.7 454
Villeneuve-de-Berg 3 1146 840 1140 7.7 455
Pradel Grainage (MRR) 694 700-1850 970-2120 53 489
Iowa apu05 95 1520 1810 295 50.8
apu06 92 1570 1840 30.1 593
apu07 85 1660 1930 319 476
apu08 93 1570 1850 303 68.7
apu09 165 700 940 129 314
apulO 181 640 890 12.0 26.1
apull 159 600 860 11.4 259
apul2 161 540 800 103 57.0
apul3 102 1730 1920 317 827
apul4 101 1730 1920 31.7 84.7

that only error-free time steps containing liquid precipitation
were used. lowa Parsivel data were used as provided without
further quality control.

Parsivel data are subject to uncertainty due to
differences across individual instruments and in-
strument  generations (e.g. Jaffrain and Berne,
2011; Tokay et al, 2014; Thurai et al., 2011,

Raupach and Berne, 2015a), and their limited sampling
area introduces a bias, as reported by Tapiador et al. (2017).
The Iowa data were provided in diameter class definitions
that differed from those of the instrument manufacturer
(Petersen et al., 2014). The HyMeX and Payerne data sets
used the manufacturer’s diameter class definitions, which
implies the assumption of a raindrop axis ratio to equivolume
diameter relationship (Battaglia et al., 2010). Our tests (not
shown) showed limited differences made to DSD bulk
variables when different axis ratio functions were used to
modify the class definitions. Given the uncertainties involved
in using modified diameter classes, we decided to use the

www.atmos-meas-tech.net/10/2573/2017/

manufacturer’s class definitions for these two data sets. For
each of the three regions, the Parsivel data were randomly
sampled so that 60 % of records formed a training data set
and the remaining 40 % formed an independent validation
data set. Sensitivity of the random sampling was evaluated
through repeated tests with different sample realisations and
was found to be low.

All available disdrometer and PPI data were used, while
MRR data were subset to event times so that likely solid pre-
cipitation was not considered. MRR data were attenuation-
corrected (METEK, 2010; Peters et al., 2010) and contained
DSDs retrieved with vertical wind ignored (Strauch, 1976;
Peters et al., 2002). Negative concentrations (METEK, 2010)
in MRR DSDs were reset to zero. PPI radar reflectivities
were compared to measurements from disdrometers (and the
MRR in HyMeX), and bias in Zg was corrected on a per-
campaign basis. Bias in Zpr was estimated using vertical
scans (birdbath scans, similar to Grazioli et al., 2015) and
was corrected in each of the three data sets. Two days of

Atmos. Meas. Tech., 10, 2573-2594, 2017
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radar data from Payerne (22 March 2014 and 8 April 2014)
exhibited higher radar bias due to hardware problems and
were not included in this study. Attenuation correction for
the PPI data was performed using the ZPHI algorithm (Tes-
tud et al., 2000), and Kgp was estimated using the method
of Schneebeli et al. (2014). PPI scan data were sampled
for instrument locations by taking the mean values of radar
volumes that horizontally overlapped the instrument coordi-
nates. To discount noise, PPI records were subset to those
for which Zy was greater than or equal to 10dBZ, and the
signal-to-noise ratio in horizontal polarisation was greater
than or equal to 5 dB. DSD data were treated as in Raupach
and Berne (2017): Parsivel DSDs were truncated to 0.2495
(0.2565) to 7 (7.21) mm for HyMeX and Payerne (Iowa) Par-
sivel data (Raupach and Berne, 2015a); to avoid including
overestimated numbers of small drops (Peters et al., 2005),
DSDs estimated by the MRR were truncated to 0.6 to 5.8 mm
(Raupach and Berne, 2017) and MRR data were further sub-
set to records with R < 150 mmh ™! (thus removing 0.2 % of
records); MRR data for altitudes greater than 2250 m were
excluded because not enough points were available at those
altitudes, and all DSDs were subset to time steps in which
R > 0.1mmh~!. In each data set, more than 85 % of the
DSDs sampled were classified as stratiform type by Raupach
and Berne (2017).

To compare measured vs. estimated or retrieved values in
this work, we use the median relative bias, the interquartile
range (IQR) of relative bias, and the squared Pearson correla-
tion coefficient (%) between reference and estimated values.
If VR is the reference value and Vg is the estimated value, the
relative bias expressed as a percentage of the reference value
is defined as 100(Vg — VR)/VR.

5 DSD retrieval from polarimetric radar data

Raupach and Berne (2017) showed that with reasonably cho-
sen input moments, the double-moment normalised DSD of
Lee et al. (2004) can be assumed invariant across spatial dis-
placement in stratiform rain, with a performance loss that
is acceptable for practical applications. Results on limited
data for non-stratiform rain types suggested that, while the
double-moment normalised DSD varies more in these cases,
the assumption of its invariance may still lead to acceptable
performance with input moments that are not both of low
or both of high order. Using the assumption of an invariant
double-moment normalised DSD model, the DSD can be es-
timated using polarimetric radar data. Given a known double-
moment normalised DSD, the task of DSD reconstruction be-
comes that of estimating from radar information the values of
two DSD moments. In this section we present a new DSD-
retrieval method that uses this idea. The aim of the proposed
DSD-retrieval technique is to retrieve two DSD moments us-
ing only polarimetric radar data.

Atmos. Meas. Tech., 10, 2573-2594, 2017
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The SCOP-ME method was trained with DSDs simulated
using a DSD model and a wide range of DSD parameter val-
ues. In contrast, we used empirical DSDs measured by Par-
sivels to train our method to avoid any assumption about the
shape of the DSD. A trade-off in using empirical DSDs is
that measured DSDs are necessarily truncated by instrumen-
tal limitations. However, previous studies have shown that
if the considered range of drop diameters is large enough
around the median drop diameter Dy (mm), the effect of trun-
cation on calculated bulk variables is limited (Willis, 1984;
Vivekanandan et al., 2004). Willis (1984) concluded that the
effect of maximum considered drop size Dy,x on bulk vari-
ables is negligible if Dnax exceeds 2.5Dg. Using Dy cal-
culated from the recorded (truncated) Parsivel DSDs, this
criteria was met for 99.6 % of the records. The criteria of
Vivekanandan et al. (2004) is that, for there to be less than
five percent error on bulk variables, the minimum drop size
Dmin should be less than Dg/2 and D,y should exceed 4 Dy.
This constraint was met by 90.5 % of the DSDs (93.5 % met
this criteria for the upper drop size limit). Calculated Dy may
also be subject to error because of the truncation, but we con-
sider that these calculations give broad confidence in the bulk
variables we used to train the method. Further, the truncation
on the Parsivel data affects primarily very small drops since
large drops are rare, and therefore its influence on the higher-
order moments we use is expected to be negligible.

The training data set was sampled as 60 % of each of
the three Parsivel data sets and contained 181 829 measured
1 min DSDs. Zy, Kgp, and Zpr were calculated for these
DSDs for the MXPol stacked PPI incidence angles; temper-
atures of five, 10, and 15°C; and each of four drop axis ra-
tio functions: those of Andsager et al. (1999); Brandes et al.
(2002); Thurai et al. (2007), and that of Beard and Chuang
(1987) in the form shown in Kalogiros et al. (2013). Unusual
records with Zpr or Kgp less than or equal to zero (0.16 %
of all simulated radar records) were excluded.

5.1 Retrieval of DSD moment six

Radar reflectivity in linear units, Zy, (mm6 m_3), is the sixth
moment of the DSD in the Rayleigh scattering regime for
spherical drops (Bringi and Chandrasekar, 2001). At X-band
frequencies, larger drops enter into the Mie scattering regime
and differences appear between Mg and Zy. We use the ob-
servation that Zy departs from Mg for heavier rain and as-
sume that this departure occurs when Zpy is greater than
a threshold value. This threshold was determined through
comparison of Mg and Zy for DSDs, classed by Zy in
classes of width 2 dBZ between 10 and 40 dBZ, and was set
to 28 dBZ. For both smaller and larger reflectivity values,
a power law relationship was found using orthogonal least
squares fitting in log—log space. The resulting relationship is
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Figure 1. A sample of 20 000 points from the training set, showing
the relationship between radar reflectivity and DSD moment six in
dB scale. The one-to-one line is shown in black; the red dashed
line shows the fitted relationship of Eq. (13). The Zy threshold of
28 dBZ is shown with a triangle.

1.01
— Zh

if 10lo Zn) <28
M = g10(Zn) <

2.67 2% if 10log;((Zy) > 28. (13)

On the training set, median relative bias between M\G and
Mg was 0.1 %, the IQR of relative bias was 2.5 percentage
points, and the 7> value was 0.98. The fitted relationship is
shown on samples of training data in Fig. 1. Temperature
made only limited difference to the fitted parameters: the pre-
factor varied from 2.45 to 2.90 for the larger values of Zy,
and the other parameters differed by 0.01 or less from the
value found for all temperatures combined.

5.2 Retrieval of DSD moment three

Retrieving a second, lower-order DSD moment is more dif-
ficult than estimating Mg, because radar variables are more
closely linked to the higher-order moments of the DSD. Us-
ing theoretical relationships as much as possible, we present
a method to estimate the third moment of the DSD from po-
larimetric data. As shown in Eq. (9), the reflectivity-weighted
mean drop axis ratio, r,, is related to a negative power of
the differential reflectivity in linear units. In Kalogiros et al.
(2013), the reflectivity-weighted and mass-weighted drop
axis ratios were assumed to be the same and differences
were dealt with through fitting of qualitative relationships
between radar variables. A similar approach is taken here.
Since r, and the mass-weighted mean drop axis ratio ryy, are
both weighted mean drop axis ratios, we assume that ry, is
also related to differential reflectivity and estimate ry, using
a polynomial fit to ZpR, such that
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5
fm= > ¢iZig. (14)
&

With our training data, this polynomial of order five pro-
duced low relative bias on retrieval of M3. Recall from
Eq. (5) that M3 relates to W: substituting Eq. (5) into
Eq. (12), and solving for M3, we have

_6110°  Kgp
T 187C (1 =)’
At X band (9.4GHz, A =3.189cm), assuming that py, =

1 gem™3, and replacing r, with its estimate based on Zpg,
M3 is predicted by
_ 3384 Kgp

S e 1o

3 (15)

where C is a single representative value for C.

K p is sensitive to the raindrop axis ratio (e.g. Bringi and
Chandrasekar, 2001), so values for ¢; and C were found per
axis ratio function. The coefficients ¢; in Eq. (14) were found
using least squares polynomial fitting. In rare cases for large
values of Zpgr the relationships returned unrealistic values of
rm (0 < rp or ry > 1). In these few cases, 7y was set to 0.75.
Estimated ry, values were used to find C for each training
DSD, and the mean of these values was used as C. The re-
sults and their performance statistics are shown in Table 3.
Fitted parameters differed across the three tested tempera-
tures. However, parameters fitted using all training data per-
formed similarly on training data for individual temperatures,
with the median relative bias remaining within £1 % of the
all-temperatures value and IQR of relative bias varying by
about one percentage point. The values fitted using combined
training data were used.

5.3 Summary of DSD-retrieval technique

The proposed DSD-retrieval method is summarised as fol-
lows: the double-moment normalised DSD ﬁ(x) with param-
eters ¢ and u is assumed trained from data and known. Then,
given Kqp, Zpr, and Zy, (1) DSD moment six is estimated
using Eq. (13) and (2) DSD moment three is estimated using
Egs. (14) and (16) and parameters from Table 3. The DSD is
then retrieved using Eqs. (3) and (4) withi =3 and j = 6.

6 Comparison to an existing DSD-retrieval method

The new DSD-retrieval method was compared to SCOP-ME
(Anagnostou et al., 2009, 2010; Kalogiros et al., 2013). We
implemented SCOP-ME using its description in Anagnos-
tou et al. (2013). SCOP-ME was developed for X band us-
ing simulated DSDs and T-matrix simulations of radar vari-
ables, and in Anagnostou et al. (2013) it is shown to out-
perform the algorithms of Anagnostou et al. (2008) and
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Table 3. Fitted values of C (Eq. 16) and ¢; (Eq. 14), by drop axis ratio function (Ratio). M3 estimation performance in the training data is
shown in terms of median relative bias (RB, %), IQR of relative bias (IQR, % pts), and 2. Max ZpR (dB) shows the maximum value of Zpr

each relationship can use.

-~

Ratio C o c1 c c3 c4 cs RB IQR r2 Max ZDR
Thurai 3.456 1 —-0.073624 0.041651 —0.017042 0.002498 —0.000093 0.8 25 097 6.58
Brandes 3.311 1 —0.077672 0.047704 —0.020042 0.003505 —0.000220 —0.7 22 097 8.51
Andsager 3.256 1 —0.090137 0.070235 —0.033933 0.006913 —0.000514 —0.2 20 097 7.15
Beard 3.217 1 —0.087646 0.053086 —0.020336 0.002963 —0.000129 —0.6 21 097 7.21

Park et al. (2005a). The DSD model used by SCOP-ME is
based on the normalised DSD of Willis (1984) (see also
Bringi and Chandrasekar, 2001). Kalogiros et al. (2013) also
shows SCOP-ME equations in which Kgp is not used, which
are to be employed when Kgp, is absent or close to noise. In
this work we used only the version of SCOP-ME that uses
Kgp, as presented in Anagnostou et al. (2013), and we use
it only with positive and non-zero values of Kgp and Zpr
(tests on our data sets showed better SCOP-ME performance
with this configuration). Kalogiros et al. (2013) provides an
explicit expression for rain rate using polarimetric variables,
but, since we are interested in the whole DSD, in the follow-
ing we compare R computed from reconstructed DSDs. The
comparison of the two methods is first shown using Parsivel
data in which the radar values were simulated using T-matrix
codes and were therefore free of radar measurement noise.

Comparisons of the two techniques were made using the
Parsivel validation data set composed of 40 % of the records
from HyMeX, Payerne, and Iowa. For each 1 min DSD, Zj,
Kdp, and Zpr were calculated using T-matrix codes, for an
elevation angle of 4° above horizontal, and using each of the
four drop axis ratio functions. For the double-moment tech-
nique, the generalised gamma model h(x) (Eq. 4) fori =3
and j = 6 was used. ﬁ(x) was fitted to non-zero median val-
ues of A(x) in classes of x with width 0.2, using weighted
least squares fitting in log space, with each class weighted by
né, where nc is the number of observations in the class. This
is the same technique shown in Raupach and Berne (2017),
except that the class weights increase more quickly with the
number of class points. We found this different weighting im-
proved the accuracy of the shape of the average reconstructed
DSD, which is sensitive to the form of ﬁ(x). The parameters
found for the combined Parsivel training data were ¢ = 1.69
and p =2.22. SCOP-ME and the double-moment method
were used to retrieve the DSD concentrations N (D) for D in
the class centres of the truncated Parsivel diameter classes.
For each technique and axis ratio function, retrieved DSDs
were compared to measured DSDs by comparing moments
zero to seven, Dy, and R.

Comparisons of relative error distributions by technique
are shown in Fig. 2. Example scatter plot results are shown
for the HyMeX data set and the drop axis ratio model of
Beard and Chuang (1987) in Fig. 3. The Beard model, which
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Table 4. Average differences between double-moment and SCOP-
ME techniques, on Parsivel data, over three regions and four axis ra-
tio functions. Negative values show an improvement by the double-
moment technique over SCOP-ME.

Variable RB IQR r2 Slope
Dn —-0.34 096 0.04 —0.08
My 321 1452 -0.02 0.03
M, 0.27 5.92 0.03 0.06
M —0.44 1.16 0.02 —0.07
M3 —0.93 0.01 0.00 —0.04
My —1.14 1.29 —-0.00 0.02
Ms —1.08 221 —-0.00 —0.00
Mg —2.08 080 —0.01 —0.03
My —1.68 9.73 —0.03 0.03
R —1.10 1.44 0.00 0.02

has been shown to match well to observations (Thurai et al.,
2009), is shown because it provided the equilibrium drop
shapes around which the SCOP-ME training set was simu-
lated (Kalogiros et al., 2013). Because we are using empir-
ical DSDs, some extreme values of Dy, are shown in this
figure. Values of Dy, above 5mm are extremely rare; less
than 0.02 % of DSDs in each data set show these values,
and they have a negligible influence on the regression lines.
Full performance results are shown for the HyMeX data set
in Table A1, for Payerne in Table A2, and for Iowa in Ta-
ble A3. The metrics used were median relative bias, IQR
of relative bias, r2, and the slope of the linear regression
on measured vs. reconstructed points. Differences between
the performance metrics for the two techniques were calcu-
lated such that a negative difference indicates that the double-
moment technique performed better than SCOP-ME. These
differences are shown visually in Fig. 4, in which red colours
show negative differences.

In over half of the tested region, axis ratio function, and
variable combinations, the double-moment technique pro-
duced a better median relative bias than the SCOP-ME tech-
nique, with an overall average difference of —0.53 percent-
age points. IQR of relative bias was usually slightly higher
for the double-moment technique, with an average difference
of 3.8 percentage points. Correlation coefficients and scat-
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Figure 2. Relative bias distributions for the double-moment and SCOP-ME DSD-retrieval methods, by drop axis ratio function and data set
(H stands for HyMeX, P for Payerne, and I for Iowa). Variables are moment order n (mm” m_3), Dy (mm), and R (mm h_l). Bold bars
show medians, boxes show IQRs, and whiskers show 10th to 90th percentile ranges.

ter plot slopes were usually similar for both techniques. The
average differences across the three tested regions and four
tested raindrop axis ratio functions are shown in Table 4. On
average, the double-moment technique produced better me-
dian relative bias than SCOP-ME on R, Dy, and DSD mo-
ments two to seven. IQRs were similar on average, with the
exception of moments zero, one, and seven for which SCOP-
ME produced notably smaller IQRs. As shown in Tables Al,
A2, and A3, the results differed across the different drop
axis ratio functions and regions. It was often the case that
SCOP-ME produced a less biased estimate of DSD moment
zero, but in most of these cases the double-moment technique
produced a better 2. The double-moment technique’s per-
formance variations relate to the accuracy of the prediction
of DSD moment three from K4, and Zpr and to the fit of
the generalised gamma function fz(x). ﬁ(x) was trained on
data from all data sets combined, in order to have the most
general model possible. Our experiments showed that perfor-
mance for low-order moments could be increased in any one
region by training the gamma model on data from that re-
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gion only. This aligns with the conclusions of Raupach and
Berne (2017), who noted that, while the double-normalised
DSD can be assumed invariant for practical purposes, some
residual variability remains and results in performance loss
that depends on the input moments used. We now move to
testing the two techniques on measured radar data, in which
noise is a problem that must be dealt with.

7 Reducing the effects of noise

Radar data are noisy at light rain rates, particularly for Kgp
and Zpr (e.g. Bringi et al., 2002; Schneebeli et al., 2014).
We propose here a method to deal with this noise for the cur-
rent application of DSD retrieval. Regressions on Zy and &gy,
are used to determine “expected” values for these variables,
which can be used when the measured values are likely to be
noisy. We found that Zpr can be reasonably predicted from
Zn using

Atmos. Meas. Tech., 10, 2573-2594, 2017



2582 T. H. Raupach and A. Berne: Retrieval of the DSD from polarimetric data
Mo M M,
// Ve 2
4000 - e 4000 - / /
. / 5000 - /
' 5/ . . .
2000 - . 2000 - Vo
M LI | " =" - :
[l 1" = T
0- T T = .I 0 L T ‘I‘ T 0 L I- T T T
0 2000 4000 0 2000 4000 0 2000 4000 6000
Ms My Ms
y 1e+05 -
/ / -
10000 20000 -
7. 5e+04
5000 - <~ 10000
g ’ :
E 0- 1 1 1 0 - 1 1 1 0e+00 B T T
_; 0 5000 10000 0 10000 20000 0e+00 5e+04 le+05
(]
s Ms M; Din
E / 3e+06 - z 6
4e+05 Vs Y o8
2e+06 - 1 -
/4 1 >
v, -
2e+05- 1e+06 - 5
0e+00 47~ . . 0e+00 -/ . . . . . .
0e+00 2e+05 4e+05 0e+00 le+06 2e+06 3e+06 2 4 6
R
150 A
100 - :
Count -
50 100 10000
O_

0 50 100 150

Measured value

Figure 3. Density scatter plots of retrieved vs. measured moments M, (mm” m_3), R (mm h_l), and Dy, (mm) for the double-moment
method, on the HyMeX data set, using the axis ratio function of Beard and Chuang (1987). One-to-one lines are shown in black. Regression
lines for the double-moment method are shown in solid red, and dotted red lines show linear regressions for SCOP-ME, for which the

densities are not shown.

Zpr ~ azZ*, (17
and Ky, can be predicted from Zj, and &g, using
Iedp'\'aKmeEfrm, (18)

with parameters oz, B8z, @k, Bk1, and Bg2. Least squares
fitting in log—log space, using the training data set described
in Sect. 5, was used to find best-fitting parameter values per
raindrop axis ratio function. Just as for the retrieval of DSD
moment six, assumed air temperature made only a small dif-
ference (parameter values fitted to individual temperature
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data sets differed by less than 6 % from those fitted using
combined temperatures), whereas different axis ratios pro-
duced more diverse parameter values. Resulting parameter
values and performance statistics are shown in Table 5.
Threshold values are used to determine when Kgp and Zpg
may be noisy. A threshold value on Zp selects values of
Zy for which Kgp and Zpr showed large variation around
their expected values in the three radar data sets used here.
Threshold values on Zpgr and Kgp are those of Bringi et al.
(2002). Although these were established for S band, their in-
fluence is rather limited compared to the threshold on Zg.
The threshold on Zy is set to 37 dBZ; it is used in addition to
the noise thresholds on Zpg and Ky, in order to avoid effects
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Table 5. Fitted coefficients and the performance of the fits on the training data, for Eqs. (17) and (18), by raindrop axis ratio function (Ratio).

Performance is shown in terms of median relative bias (RB, %) and the IQR (% pts) of relative bias.

ZpR performance

Kgp performance

Ratio [e%4 ﬂz RB IQR oK ﬂK 1 ﬂKZ RB IQR
Thurai 0.030 0436 -5 64 0.00010 1.055 -—3.156 2 18
Brandes 0.027 0449 -5 70 0.00010 1.038 —2.723 -1 13
Andsager 0.043 0377 -3 57 0.00017 0976 —3.251 1 16
Beard 0.048 0384 —4 60 0.00017 1.013 —-3.338 -1 13
like ground clutter as well as noise that significantly affect
any DSD-retrieval algorithm. A drawback of this method is
HyMeX Payerne lowa that it reduces the benefit of observed polarimetric variables
04 when Zy is under 37 dBZ, but the average error is kept low.
%: > To reduce the effects of noise, then, if Zg < 37dBZ or
2: 3 Zpr < 0.2dB, measured ZpRr is replaged by the expected
2 é value Zpg and & is replaced by 10(“PR/10), Likewise, if
/1 e Zn <37dBZ or Kgp < 0.3°km™", K, is replaced by Kap
R- (calculated with &y if &g was replaced). This treatment
(1): || [ | method allows radar data with negative or zero Kqp or Zpr
2- to be used. The treatment improved DSD-retrieval perfor-
2: é‘- mance for both the double-moment and SCOP-ME tech-
g: S niques. For example, on PPI data with positive Zpgr and Kgp,
o D;: - when retrieved DSDs were matched to measured MRR data
2 Rj (Sect. 8.1), the median relative bias was reduced by an av-
& 01 ] erage (across variables) of ~ 8 percentage points for SCOP-
> 14 .
%: w ME and by ~ 16 percentage points for the double-moment
4 o technique, while average IQRs were reduced more; for ex-
2: & ample on the comparison with MRR data the IQRs were
DZ]: s reduced by ~ 78 (80) percentage points for the SCOP-ME
R (double-moment) method. When retrieved DSDs were com-
(1): pared to Parsivel data (Sect. 8.2), the noise in the radar data
27 contributed to errors to such an extent that for both tech-
3- w . .
g: o niques the proposed treatment reduced the IQR and at times
6- 3 the median of relative bias by hundreds of percentage points
DZ1: for some variables. We note that because most values of Zy
R R R recorded in the PPIs analysed here were lower than 37 dBZ,
RBIQR 2 S RBIQR @ S RBIQR ¢ 5 the noise correction affected the majority of radar records.
Diff. 20 o 20

Figure 4. Differences in performance between the double-moment
technique and SCOP-ME, using radar variables simulated from Par-
sivel data, by region and drop axis ratio function (differences in Ta-
bles Al, A2, and A3). Reds indicate negative differences, where
the double-moment technique outperformed SCOP-ME. Variables
are moment order n (mm” m_3), Dy (mm), and R (mm h_l). Dif-
ferences are shown for median relative bias (RB, % pts), IQR of
relative bias (IQR, % pts), 2 (difference in deviations from unity,
multiplied by 100 for display on this scale), and regression slope (S;
difference in deviations from unity, multiplied by 100).
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8 Comparisons using radar data

The DSD-retrieval techniques were applied to PPI radar
data from the three locations. The double-moment tech-
nique was run on noise-corrected data. SCOP-ME was run
on uncorrected PPI data (subset to Kqp > 0 and Zpgr > 0)
and noise-corrected data. We used the elevation angles of
the stacked PPIs for HyMeX, 5° for Payerne, and 3° for
Iowa. Measured radar variables Zy, Kgp, and Zpr were
recovered for volumes corresponding to instrument loca-
tions. DSD retrieval was performed using these values, and
the resulting DSDs compared to those that were measured
by other instruments. All comparisons using PPI data in-

Atmos. Meas. Tech., 10, 2573-2594, 2017



2584

volved a difference in measurement volume — a change-of-
support problem that we expect will introduce error spread
(e.g. Raupach and Berne, 2016). There were, at times, sig-
nificant vertical distances between the radar volume and the
ground-based Parsivels used in these comparisons (see Ta-
ble 2). Further, the disdrometers and MRR made integrated
measurements, while the PPI scans made instantaneous mea-
surements that could shift in time compared to the instru-
ment’s integration period (at worst, this shift could lead to the
scan being up to half the typical scan length before or after
the instrument integration time). We used the lowest possi-
ble radar elevation angles, but the possibility remains that at
large distances the radar could have sampled solid precipita-
tion above the ground instruments. These factors and uncer-
tainty in the noise-correction and bias-correction techniques
combine to create greater uncertainty in the comparisons of
the two techniques made using real data than in those made
using simulated radar variables from disdrometer data.

Because the axis ratio of Thurai et al. (2007) produced
good results using the double-moment technique on the Par-
sivel data, the double-moment technique was used with pa-
rameters for this axis ratio function. Note that the assumption
of axis ratio function affects only parameters of the double-
moment technique, because the radar data used in this sec-
tion are measured, not simulated, and the SCOP-ME tech-
nique is used as presented in Anagnostou et al. (2013). In
the HyMeX campaign, the lowest available PPI elevation an-
gle (4°) was used to compare results to Parsivels, but there
was also an MRR at Pradel Grainage which retrieved esti-
mates of the DSD aloft. MRR-derived DSDs were compared
at eight different altitudes using the MXPol stacked PPIs (ex-
cept 20° elevation) above the HyMeX instrument network.
We first address the comparisons with MRR for HyMeX and
then move to the comparisons with the Parsivel networks in
all three regions.

8.1 Comparisons to MRR DSD estimates aloft

MXPol volume centre altitudes were projected onto MRR
altitude classes for comparison. The double-moment DSD-
retrieval algorithm was used with generalised gamma model
h parameters (Eq. 4) for MRR data and i =3 and j =6.
These parameters were found using the same fitting tech-
nique as for Parsivel data (Sect. 6) but differ since instru-
mental differences produce different forms of fz(x) (Rau-
pach and Berne, 2017). The parameters were set to ¢ = 1
and p =5.28. The use of stronger weighting in the fitting
procedure reduced the influence of the large numbers of
small drops returned by the DSD-retrieval algorithm used by
the MRR, and thus the value of y was smaller than those
reported in Raupach and Berne (2017). The reconstructed
DSDs were found for classes of drop diameter with class cen-
tres from 0.65 to 5.75 mm and a class width of 0.1 mm, so the
reconstructed truncation matched that of the MRR data. PPI
values from eight 100 m altitude classes between about 900
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and 2100 ma.s.l. were compared to MRR estimates of the
DSD aloft. Two output pairings are shown here: the first in
which both techniques used noise-corrected data and the sec-
ond in which the SCOP-ME technique used raw data and the
double-moment technique used the same raw data set cor-
rected for noise. This second pairing was made to ensure that
the performance of SCOP-ME was not compromised by the
noise-correction technique.

Results of comparisons between MRR- and PPI-derived
DSDs are shown for three example altitudes in Fig. 5. There
was good agreement between the recorded radar reflectivity
recorded by both instruments, with a median relative bias of
—3 %, an IQR on relative bias of 16 percentage points, and
a value of 72 of 0.68. The improvement in SCOP-ME perfor-
mance made by the noise correction is clear. When both tech-
niques used noise-corrected input, both overestimated DSD
moment orders zero to four and underestimated orders six
and seven. Rain rate was recovered with a median relative
bias of 8 % (IQR 101 % pts) by the double-moment tech-
nique and 17 % (IQR 105 % pts) by SCOP-ME. The double-
moment technique showed lower median relative bias than
SCOP-ME on moments one to five, seven, and R and smaller
IQRs on moments two to seven and R. Similar to some of
the Parsivel results, the double-moment technique overesti-
mated moments zero and one of the DSD. r2 values were low
for both techniques (the maximum was 0.35, by SCOP-ME
for Dp,), but the double-moment technique had the same or
a slightly higher value of 72 in the majority of cases. High
best-fit slopes were observed for both techniques for mo-
ments five, six, and seven and show the effect of a few out-
lier points in these cases. Performance differences between
the two techniques using noise-corrected data are shown in
Table A4. Overall, the double-moment technique for DSD-
retrieval out-performed SCOP-ME for the retrieval of DSD
moments above order zero and rain rate measured aloft by
the MRR.

8.2 Comparisons to DSDs measured by Parsivels

DSDs retrieved from polarimetric radar data were also com-
pared to those recorded by ground-based Parsivels in the
three regions we studied. Unlike in previous sections where
training and validation divisions of the Parsivel data were
used, here we compared DSDs derived using independent
radar data to all available matching Parsivel records. The
DSDs were retrieved in truncated Parsivel drop diameter
classes, using the Parsivel generalised gamma model pa-
rameters quoted in Sect. 6. Particularly in the Payerne data
set, the noise-correction routine was required in order to re-
trieve realistic DSDs; the results shown here are thus for
the SCOP-ME and double-moment techniques both run on
noise-corrected PPI data. Figure 6 shows distributions of
DSD-retrieval relative error for each region.

The double-moment technique produced smaller IQRs of
relative bias than SCOP-ME for moments four to seven. For
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Figure 5. Distributions of relative bias on DSD moments zero to seven, comparing DSDs retrieved using PPI data to those measured by the
MRR at Pradel Grainage. The results are classed by altitude for a selection of three altitudes across the compared range. Two comparisons are
shown: in comparison A, SCOP-ME used raw PPI data and the double-moment technique used the noise-corrected version of the same data
set. In B, both techniques used noise-corrected data sets. Variables and symbols as for Fig. 2. Input data for comparison A excluded records
with negative or zero Kq, or ZpR, while the noise-correction technique deals with these values and they were included in comparison B.
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Figure 6. Distributions of relative bias on DSD moments zero to seven, comparing DSDs retrieved using noise-corrected PPI data and those

measured by Parsivel networks. Variables and symbols as for Fig. 2.

moment orders zero to three, the double-moment technique
produced better median relative bias than SCOP-ME in the
HyMeX and Iowa data sets, but worse in Payerne. Where
the double-moment technique produced better median rel-
ative bias, the average improvement was of seven percent-
age points; in cases where SCOP-ME performed better, the
average improvement was five percentage points. Values of
r2 and scatter plot slope were similar between the two tech-
niques, with the majority of cases showing differences of less
than 0.05 for both variables. Differences in performance be-
tween the two techniques are shown in Fig. 7 and Table A4.
The performance of the double-moment technique is re-
liant on how accurately two DSD moments can be extracted

www.atmos-meas-tech.net/10/2573/2017/

from radar data and in turn on how accurate the radar data
are. Both retrieval techniques appear to be similarly affected
by radar inaccuracies, and experiments with different re-
flectivity bias corrections (not shown here) showed similar
patterns of results. In Parsivel comparisons, the proposed
DSD-retrieval technique was applied using a single double-
moment normalised DSD model in all three tested regions,
without significant performance loss between regions. This
supports previous findings (Raupach and Berne, 2017) that
for practical use with real radar data in primarily stratiform
rain, the double-moment normalised DSD may be considered
invariant in regions at similar latitudes.
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Figure 7. Differences in performance between the double-moment
technique and SCOP-ME using noise-corrected radar data, for
MRR and for Parsivels by region (differences in Table A4). Vari-
ables and performance statistics as for Fig. 4. Red indicates that the
double-moment technique outperformed SCOP-ME. Grey indicates
an r2 difference greater than 50 on this scale; these slopes were af-
fected by outliers.

9 Conclusions

Given the assumption of an invariant normalised DSD, and
an estimate of that function, the DSD can be predicted using
only two of its moments using the double-moment normali-
sation method of Lee et al. (2004). Two DSD moments are
available from polarimetric radar data. At X band, radar re-
flectivity can be used to accurately predict the sixth moment
of the DSD, and moment three can be retrieved relatively
accurately using K4, and Zpr. We showed that by estimat-
ing these two DSD moments from radar data, the DSD for
a radar volume can be predicted using the double-moment
formulation. Tests on disdrometer data from three networks
in different climatic regions showed that DSD retrieval using
this new technique produced similar or slightly better perfor-
mance than the SCOP-ME DSD-retrieval technique of Kalo-
giros et al. (2013). The proposed method is also more flex-
ible, because there is no prescribed functional form for the
double-moment normalised DSD, and even a non-parametric
fz(x) could be used. The shape of the retrieved DSD is sensi-
tive to the fitted form of /1(x), and better fitting methods may
in future improve the performance of the retrieval method.
The flexibility of the technique extends to there being no pre-
scribed method for DSD moment extraction, which means
that the moments used could be tailored to the intended pur-
pose.
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A new method for treatment of radar data with possibly
noisy values of Kq, and Zpr was proposed. The method is
based on predicting the expected values of these variables
from radar reflectivity, and it considerably improved the per-
formance of both the DSD-retrieval techniques when real
radar data were used. DSDs were predicted from polarimetric
variables in noise-corrected PPI scans measured by X-band
radars in each of the three regions. Comparisons of the re-
trieved DSDs to MRR data for DSDs aloft in the HyMeX
region in France, and of radar-retrieved DSDs to disdrome-
ter data from the three regions, showed reasonable agreement
but large error spread for both methods. This study provides
a proof of concept for DSD retrieval using noise-corrected
radar data, the double-moment normalisation method of Lee
et al. (2004), and a generalised gamma model for the nor-
malised DSD. Performance improvements may be possible
through future work that should test the approach using dif-
ferent instruments and data sets, including testing whether
such extensive noise correction is always required. Future
work should also address more precise prediction of low-
order DSD moments from polarimetric radar data and inves-
tigate different models and fitting methods for the double-
moment normalised DSD.

Data availability. HyMeX MXPol, MRR, and Parsivel data are
available through the HyMeX database at http://www.hymex.org,
and DOIs for individual data sets are listed in Nord et al. (2017).
Weather station data, Payerne radar data, and Payerne Parsivel data
are publicly available upon request from EPFL-LTE. IFloodS X-
band radar data is publicly available in Krajewski et al. (2016).
IFloods Parsivel data is publicly available in Petersen et al. (2014).
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Table Al. Comparison of double-moment method to SCOP-ME results on all Parsivel data in the HyMeX data set by axis ratio function
(Ratio). RB (%) is median relative bias, IQR (% pts) is interquartile range of relative bias (% points), r2 is squared correlation coefficient. S
is the slope on measured vs. reconstructed regression. Difference is the difference in absolute values for RB and IQR and the difference in
deviation from unity for r2 and slope. A negative difference shows that the double-moment method improved on SCOP-ME’s performance.

Double-moment SCOP-ME ‘ Difference
Ratio Var RB IQR  r2 S|RB IQR  r? S | RB IQR r2 N
Andsager Dp -2 10 085 098 | -2 9 088 0.82 0 1 0.03 -0.16
Mg 19 81 070 098 | 11 68 0.64 098 8 12 —0.06 001
M; 11 52 080 097 | 10 49 079 1.10 1 3000 —0.07
M, 6 33 090 1.04 9 33 091 116 | -2 -0 001 —0.12
M; 320 097 1.09 7 20 097 113 —4 -0 000 —0.04
My 1 11 099 1.08 5 10 099 105 | —4 1 0.00  0.03
Ms -1 6 099 1.02 3 3 1.00 1.00 | =3 2 001 001
Mg 0 3098 0.92 2 2 098 097 | —2 2 000 005
M7 1 15 098 081 2 3 094 092 -0 13 —0.04  0.11
R 1 13099 1.11 6 11 099 1.08 | -5 1 000 003
Thurai Dm -1 13 0.83 1.00 1 12 087 0.79 1 1 004 —021
My 10 95 063 090 | —1 73 054 088 9 22 —0.09 —0.02
M, 5 65 075 092 | -1 54 073 1.04| 4 11 —002 005
My 3 43 088 098 | —1 39 088 1.14| 2 4 000 -—0.13
Mj 1 26 096 1.04| -0 26 09 1.15 1 0 000 —0.10
My 0 14 099 1.05 0 14 099 1.09 0 -0 000 —0.04
Ms —1 7 099 1.00 1 5 1.00 1.03| —0 1 000 —0.03
Mg 0 3099 0091 3 2 098 098 | —2 1 000 007
M7 2 12 098 081 6 5 094 093 | —4 7 —0.04 0.1
R 0 16 099 1.07 0 16 099 1.11 0 -0 000 —0.05
Brandes Dn —2 11 083 0.98 1 10 0.87 081 2 0 004 —0.18
My 19 8 066 095| —1 67 058 08 | 18 20 —0.09 —0.06
M; 11 57 076 095 | —1 49 074 1.02] 10 8 —002 002
M, 6 37 088 1.03| —1 35 088 I1.12 5 2 001 —0.09
M; 223 09 1.09| —0 22 096 .12 2 1 000 —0.02
My 0 13 099 1.09 0 12 099 1.05 0 2 000 0.3
Ms -1 7 099 1.03 1 4 1.00 1.00 | -0 2 000 0.03
Mg 0 3098 0.95 3 2 098 097 | —2 1 000 002
M7 2 15 098 085 5 5 094 092| -3 10 —-004 007
R 0 16 099 1.11 0 13 099 1.08 0 2 000  0.03
Beard Dm -2 10 085 098 | —1 10 0.88 0.80 1 0 004 —0.18
My 19 8 068 0.95 8§ 71 060 097 | 11 11 —0.08 001
M; 11 54 078 097 7 52 077 1.11 4 3 —0.01 —0.09
M, 6 35 089 1.05 6 36 09 120 -0 -0 000 —0.15
M; 323 097 1.11 5 22 097 118 | —2 0 000 —0.08
My 1 14 099 1.09 4 12 099 1.11 | -3 2 0.00 —0.01
Ms —0 7 099 1.03 3 4 100 1.04 | -3 3 001 —001
Mg 1 3099 0.93 2 2 098 099 | —2 1 0.00  0.06
M7 2 16 098 082 3 3095 094 | —1 12 —0.03 012
R 1 16 099 112| 4 13 099 1.14| -3 3 000 —001
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Table A2. Comparison of double-moment method to SCOP-ME results on all Parsivel data in the Payerne data set by axis ratio function
(Ratio). Columns are as for Table Al.

Double-moment ‘ SCOP-ME ‘ Difference
Ratio Var RB IQR  r2 S| RB IQR  r2 S| RB IQR r2 S
Andsager D, 0 8 085 1.14 1 7 088 092 -1 1 003 005
My 7 63 060 08 | —4 43 0.69 0.88 3 19 010  0.02
M, 2 40 074 089 | -2 33 080 095| -0 7 006 0.6
M, -1 25 087 094 0 24 089 099 1 1 002 006
My -2 14 096 0.99 2 15 095 100| -0 -1 0.00  0.01
My =2 8 099 1.03 3 8 098 098 | -1 0 -0.01 0.1
Ms —1 4 099 1.03 3 3 098 090 | -2 1 —0.01 —0.08
Mg 0 2098 0.90 3 1 097 076 | -2 1 -001 -0.14
M7 310 097 0.73 2 2 096 0.64 0 8 —0.01 -0.10
R -2 9 099 1.03 3 9 098 1.00| -1 0 —001 0.3
Thurai Dm -0 11 084 1.0 2 9 087 091 ] -2 2003 011
My 7 81 053 084 | —11 46 066 081 | —4 35 013 -0.03
M, 2 54 069 08 | -9 37 078 08 | -7 17 009  0.03
M, -0 34 08 08 | -6 28 08 09| —6 6 004 0.5
My -1 20 095 094 | -3 19 095 098 | —2 1 0.00  0.04
My -0 10 099 099 | -1 11 098 097 | -1 -1 -001 -0.01
Ms —0 4 099 0.99 1 4 098 09| -0 -0 —0.01 —0.09

Mg 0 2 098 0.88 3 1 096 0.76 -2 0 -0.02 -0.12
My 2 6 097 0.73 5 4 095 0.64 -3 2 -0.02 -0.09
R -1 11 098 0.98 -1 12 098 0.99 -1 -1 0.00 0.01

Brandes D 1 10 083 1.13 3 9 087 0.89 -3 1 0.04 0.02
My 3 65 057 083 | —16 43 065 0.80 | —13 22 0.08 —0.03

M -2 44 071 0.87 | —13 33 0.77 088 | —11 10 0.06 0.01
M, -3 28 085 093 | —-10 25 0.87 094 —6 3 0.03 0.01
M; =3 17 095 0.99 —6 17 094 0098 -3 0 0.00 —0.01
My -3 10 099 1.04 -3 10 098 0.97 -0 1 -0.01 0.01
Ms =2 5 099 1.05 -0 4 098 0.8 2 2 —-0.01 -0.06
Mg 0 2 098 094 3 1 096 0.76 -3 0 -0.02 -0.18
My 4 10 097 0.79 7 4 095 0.64 -3 6 —0.02 -0.15
R -3 11 098 1.03 —4 11 097 0.99 -0 1 —-0.01 0.02
Beard Dm 1 9 085 1.12 2 8 0.88 0.88 -1 1 0.03 0.00
My 6 61 0.60 0.86 -8 44 0.68 0.88 =2 16 0.09 0.02
M, 0 40 0.74 0.90 -5 34 0.80 0.96 -5 6 0.06 0.06
M, =2 25 0.87 0.96 -3 25 0.89 1.02 -1 1 0.03 0.01
M; =2 16 096 1.02 -0 16 096 1.05 2 -0 0.00 -0.03
My -2 10 099 1.07 1 9 099 1.04 1 1 0.00 0.03
Ms -1 5 099 1.06 2 0.99 0.96 -1 2 0.00 0.03
Mg 1 2 098 092 3 1 098 0.82 -2 0 0.00 -0.10
My 4 11 097 0.74 4 0.97 0.68 -0 8 0.00 —-0.05
R -2 11 099 1.06 1 10 098 1.06 1 1 0.00 0.00
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Table A3. Comparison of double-moment method to SCOP-ME results on all Parsivel data in the Iowa data set by axis ratio function (Ratio).

Columns are as for Table Al.

Double-moment ‘ SCOP-ME ‘ Difference
Ratio Var RB IQR  r2 S| RB IQR /2 S | RBIQR r2 S
Andsager D 0 13 087 105] -0 12 091 085| 0 1 004 -0.10
My -8 77 053 065| -2 76 047 078 | 6 1 —0.05 013
My, -5 56 070 0.77 1 56 074 108| 5 -0 004 015
M, -2 38 090 095 339 092 117 -0 -1 002 -0.12
M; 0 24 098 1.09 4 24 098 1.11 | —4 0 001 —0.02
My 1 15 099 1.13 4 12 100 1.04 | -3 3 001 0.9
Ms  —0 7 099 1.06 3 4 099 098 | -3 4 000 0.04
Mg 1 4 099 092 2 2 098 092 | -2 2 —001  0.00
My 2 19 098 0.76 2 3 095 08 | -0 16 —0.03  0.10
R 1 17 098 1.16 4 14 099 1.07 | -3 3001 009
Thurai Dm 0 15 086 1.08 1 14 090 083 —1 2 004 —0.09
My —10 8 045 061 | -8 8 037 0.71 2 9 —0.08  0.10
My -7 66 066 074| -5 60 0.69 1.08 1 5 003 0.8
M, -2 45 0.89 090 | -2 43 091 123| 0 1 002 -0.14
M; 1 27 098 1.05 0 28 098 1.18 1 -1 000 -0.13
My 2 15 099 1.09 2 15 100 1.09]| 0 -0 000 0.0
Ms 0 7 099 1.03 2 5 099 1.01 | —1 2 000  0.02
Mg 1 3099 0.90 3 2 098 093 | -2 1 —001  0.03
My 1 14 098 0.76 4 5 095 0.86 | -3 9 —0.03 0.10
R 2 17 099 1.11 2 17 099 1.14| 0 -0 000 —0.02
Brandes  Dp 0 13 086 1.08 1 12 090 0.86 | —1 1 0.04 —0.06
My -6 8 060 080 |—-10 73 053 08 | -3 10 -007 0.2
My -5 59 071 079| -7 54 075 105 | -2 5 004 016
M, -3 39 089 092| —4 38 091 114 ]| -2 1 002 =007
My -1 24 097 108 | -2 24 098 1.10 | —1 0 001 —0.02
My 0 16 099 1.14| —0 13 1.00 104 | —0 3001 0.0
Ms  —1 8 099 1.08 1 5 1.00 098 | 0 3000 007
Mg 1 4 099 095 3 3 098 093 | —2 1 —001 —0.02
My 318 098 0.81 5 6 096 0.87 | -2 12 —0.03  0.07
R -0 18 098 1.16 | -1 15 099 1.07 | —0 3001 009
Beard Dm 1 13 087 1.05 1 12 091 083 ] 0 1 004 —0.12
My —11 76 054 066 | —6 79 044 080 | 4 —4 —009 0.14
My -8 55 071 077 | -3 58 072 L12| 5 —4 002 011
My, =5 37 090 095| —0 41 092 124 | 4 —4 002 -—020
My =2 25 098 1.10 2 26 098 1.18| 0 —1 000 —0.08
My 0 18 099 1.14 2 14 100 109 | —2 4 000  0.05
Ms -1 9 099 1.06 2 5 099 1.01 | —2 4 000  0.05
Mg 1 3099 0.92 3 3 098 093 | —2 1 —001  0.02
My 320 098 0.77 4 6 095 086 | —1 14 —0.03  0.10
R -0 20 099 1.16 2 16 099 1.13 | =2 4 001  0.03
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Table A4. Differences in performance by variable and region, for DSDs retrieved from noise-corrected PPI data using the double-moment
technique and SCOP-ME, compared to the MRR at Pradel Grainage (MRR) and Parsivels by region (HyMeX, Payerne, and Iowa). Metrics
and differences are defined as for Table A1. An exception is Z, which refers to Zy measured by the radar, not reconstructed through DSD

T. H. Raupach and A. Berne: Retrieval of the DSD from polarimetric data

retrieval (hence it is the same for both techniques).

Double-moment ‘ SCOP-ME ‘ Difference
Variable RB IQR  r2 S| RB IQR /2 S| RB IQR r2 S
MRR D —6 25 033 048 | —6 25 035 045 1 -0 002 —0.03
M 21 165 0.00 0.03 17 159 0.00 0.03 3 6 000  0.00
M 20 152 0.00 0.07 | 23 145 0.00 007 | -3 7 000  0.00
M, 23 129 0.00 0.15| 26 132 000 0.16 | -3 —4 000 001
M3 16 109 001 037 | 22 111 000 042| —6 -1 —001 0.5
My 5 94 003 1.06 13 100 002 122 | -8 —6 —001 —0.16
Ms -3 77 015 277 4 81 008 294 | -1 -5 —007 —0.18
Mg —14 78 028 434 | —11 82 0.17 4.09 3 -4 —0.11 025
My —24 81 031 465| -25 84 020 397 | -0 -3 —011  0.68
R 8 101 002 072| 17 105 001 084 | -9 —4 —001  0.12
z -3 16 0.68 094 | -3 16 0.68 0.4 0 0 000 0.0
HyMeX D -7 27 028 048] -5 26 029 042 2 1 001 —0.07
M -3 157 0.02 028 | —10 122 0.04 026 | -7 35 0.02 —0.03
M, —7 128 0.04 037 | —12 112 007 035 | -5 17 003 —0.02
M, —12 109 0.10 046 | —15 103 0.12 045 | =3 6  0.02 —0.01
M; —19 98 019 049 | =20 97 0.19 050 | -1 2 000  0.00
My —26 96 021 043 | —25 98 022 045 0 -1 001 002
Ms —-32 97 013 033 | —-31 101 0.18 036 2 =3 005 003
Mg —38 102 0.06 025 | -35 110 0.11 0.28 3 -8 005 0.03
M —44 112 0.02 0.19 | =39 124 006 0.22 5 —11 004 003
R —21 100 022 048 | —21 101 021 049 0 -1 -001 0.0l
z —8 27 048 066 | -8 27 048 0.66 0 0 000  0.00
Payerne  Dp -8 22 021 034| —4 22 021 030 3 -0 0.00 -003
My 35 177 007 052 | -3 123 0.1 034 | 32 53 004 —0.18
M, 22 142 0.08 045 0 122 011 036| 22 20 003 —0.08
M, 10 122 011 044 | —1 113 0.14 041 10 9 003 -003
M; -1 107 0.19 047 | —4 105 020 047 | -2 2001 0.0
My —11 99 029 048 | —11 99 027 0.1 1 -1 -002 0.03
Ms —21 103 029 037 | —19 106 026 0.42 2 -3 —0.03 005
Mg —29 110 0.2 0.2 | =26 113 0.10 0.15 3 —4  —0.02 003
My —38 112 003 0.02 | —36 119 0.02 0.03 2 -7 —001 001
R -5 107 026 051 | —5 108 024 0.3 1 -1 -002 002
z -7 29 042 057 | -7 29 042 057 0 0 000 0.0
Towa D —12 29 025 032]-12 27 029 029 0 1 004 —0.03
My 4 114 005 059 | 28 145 006 047 | —23 —31 0.0l —0.12
M, 8 108 009 067 | 20 128 0.09 056 | —12 —20 000 —0.11
M, 6 112 017 0.67 11 119 017 060 | -4 —6 000 —0.07
M; 1 112 028 0.2 3 115 026 052 | —2 -3 —0.02 -0.01
My -8 114 033 031 | -6 116 033 034 2 =2 000 0.04
Ms —22 118 027 0.14 | —19 122 032 0.19 4 -4 005 005
Mg -35 119 0.13 0.06 | —28 129 023 0.10 7 —-10 0.10 0.04
My —46 124 0.04 0.02 | =37 144 0.2 0.05 9 —20 0.08  0.02
R 1 119 031 042 1 124 030 0.45 0 -5 —001 003
z -6 26 047 057 | -6 26 047 0.57 0 0 000 0.0
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