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ABSTRACT: We show how dynamic nuclear polarization (DNP) NMR can
be used in combination with models for polarization dynamics to determine
the domain sizes in complex materials. By selectively doping a source
component with radicals and leaving the target undoped, we can measure
experimental polarization buildup curves which can be compared with
simulations based on heterogeneous distributions of polarization within the
sample. The variation of the integrated DNP enhancement as a function of the
polarization time is found to be characteristic of the geometry. We
demonstrate the method experimentally on four different systems where we
successfully determine domain sizes between 200 and 20 000 nm, specifically
in powdered histidine hydrochloride monohydrate, pore lengths of mesoporous silica materials, and two domain sizes in two-
component polymer film coatings. Additionally, we find that even in the apparently homogeneous frozen solutions used as
polarization sources in most DNP experiments, polarization is relayed from protons near the radicals to the bulk of the solution
by spin diffusion, which explains the experimentally observed buildup times in these samples.

■ INTRODUCTION

Modern materials such as polymers or pharmaceuticals, as well
as porous materials, are usually well-designed nano- or
microstructured (multicomponent) systems. The physical
properties of these materials are strongly related to particle
sizes, pore sizes or pore lengths, and domain sizes. Therefore,
methods to determine architectures on these nano- to
micrometer length scales are necessary for the development
of next-generation materials.
Depending on the nature of the sample, domain sizes may be

measurable by laser diffraction, scattering methods, or by
electron microscopy methods.1−3 However, in complex multi-
component mixtures, these methods become much more
difficult to apply because they often cannot resolve more than
two components. NMR would be a method of choice in these
cases. Indeed, based on chemical shift differences or relaxation
properties of different compounds, NMR often allows clear
distinction among several components. Consequently, the
study of in situ domain sizes becomes feasible with NMR
methods.4,5

Proton spin diffusion experiments are the most widely used
methods for domain size measurement.6,7 In these experiments,
an initial spatially heterogeneous nonequilibrium distribution of
magnetization is created, and the return to equilibrium driven
by spin diffusion is monitored.8 In order to create the
nonequilibrium distribution by selecting proton magnetization
from particular domains, different procedures have been
proposed including filters based on dipolar couplings,7,9,10

differences in relaxation properties,8 or proton or carbon
chemical shift differences.11−15 These methods work well in
two-component systems where the components exhibit
significant differences in the properties chosen for selection.
However, for more complex multiple component systems these
methods are usually not feasible.
It has recently been shown that domain sizes can be

determined in complex systems using dynamic nuclear
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polarization (DNP) where the nonequilibrium distribution of
magnetization is obtained by locally enhancing polariza-
tion.16−19 It has also been shown that the selection process
can be replaced by selective doping of one of the domains of
the diamagnetic system with paramagnetic species and using
paramagnetic relaxation enhancement to estimate the domain
sizes.20

In these approaches, the initial out-of-equilibrium state is
achieved by selective doping followed by either comparison
with spin diffusion dynamics in an undoped sample or
comparison to a state in which the doped region is
hyperpolarized. The curves obtained through comparison of
the two initial states for different recovery times in saturation-
recovery experiments can then be interpreted using numerical
solutions of the diffusion equations.
The DNP method has previously been used to determine

domain sizes for an active pharmaceutical ingredient (API),
cetirizine dihydrochloride, in a drug formulation.19 Griffin and
co-workers previously studied the dynamics of hyperpolariza-
tion21 and the diffusion of polarization through peptide
nanocrystals in a frozen solution.16

Note that, in comparison to conventional 1H spin diffusion-
based approaches, DNP requires a material stable under
grinding, impregnation, and low temperatures. The advantages
are, however, that there is a much larger polarization gradient
induced by the DNP effect, which allows larger distances to be
probed through spin diffusion. Also, higher sensitivity (in the
microwaves on experiment) allows measurement of smaller
targets with very low content (down to picomolar for some
samples).
Here we present a general approach to model the relay of

hyperpolarization in these experiments, and we provide a
detailed analysis of four different archetypal geometries.
Experimental validation is given with the determination of
particle sizes in powdered histidine hydrochloride monohy-
drate, the pore lengths of mesoporous silica materials, and two
domain sizes in two-component polymer film coatings. We
show that with typical values of the relaxation times T1 and
diffusion rates D in organic solids, the method is sensitive to
architectures with sizes from 50 nm to 20 μm. We also provide
analytical approximations that allow us to relate steady-state
DNP enhancement values to the microarchitecture of the
systems. In particular, we find that the analysis is also applicable
to the nanoscale heterogeneity in the bulk polarizing solution
itself.

■ EXPERIMENTAL SECTION
Sample Preparation. Powdered histidine hydrochloride

monohydrate was obtained from Sigma-Aldrich and used
without further purification. For DNP enhanced NMR
experiments on powdered histidine hydrochloride monohy-
drate, the organic powder either was used as is or was finely
ground by hand in an agate mortar and pestle for several
minutes. Incipient wetness impregnation (IWI)22 was used to
uniformly wet the surface of around 30 mg of the powdered
solid with around 15 μL of a solution containing 16 mM state
of the art biradical polarizing agent TEKPol in 1,1,2,2-
tetrachloroethane (TCE).23 Alternatively, a few milligrams of
powder was dissolved in a solution containing 12 mM biradical
AMUPol in glycerol-d8:D2O:H2O (6:3:1) to obtain a
homogeneous mixture.24 Samples were then transferred to a
sapphire rotor, packed with a polytetrafluoroethylene (PTFE)
insert, and capped with a PTFE or vespel cap.

The mesoporous materials were synthesized as described in
the Supporting Information. For DNP enhanced NMR
experiments on passivated mesoporous SBA-15 functionalized
with a propylimidazolium group, between 30 and 40 mg of the
silica-based mesoporous material was wetted with between 10
and 20 μL of a solution containing 16 mM binitroxide
polarizing agent TEKPol2 in 1,1,2,2-tetrachloroethane solu-
tion.25

Coated pellet samples, consisting of a microcrystalline
cellulose (MCC) core, spray coated with a film of ethyl
cellulose (EC) and hydroxypropyl cellulose (HPC) in a ratio of
70/30, were provided by AstraZeneca. For DNP enhanced
NMR experiments, about 15 μL of 16 mM biradical solution
TOTAPOL in glycerol-d8:D2O:H2O (6:3:1) was added to
about 30 mg of pellets. The wet sample was then mixed with a
glass stirring rod and transferred to a sapphire rotor, packed
with a PTFE insert, and capped with a PTFE cap.

DNP Enhanced NMR Spectroscopy. DNP enhanced
solid-state NMR experiments were performed on wide bore
400 MHz (B0 = 9.4 T) Bruker Avance I and Avance IIIHD
spectrometers both equipped with 263 GHz gyrotrons, a low-
temperature cooling cabinet, and a triple-resonance 3.2 mm
low-temperature magic angle spinning (MAS) probe. The
sample temperature for DNP experiments was approximately
105 K. The sweep coil of the main magnetic field (ν0(

1H) =
400.432 MHz) was set so that microwave irradiation occurred
at the same position as the ε maximum for TOTAPOL.26 The
estimated power of the microwave beam at the output of the
waveguide was approximately 4−8 W. The sample spinning rate
(νrot) was 8000 Hz. For all cross polarization (CP) experiments,
the amplitude of the 1H RF field was ramped during the contact
time to improve efficiency (Scheme 1).27

Low-temperature solid-state NMR experiments without
DNP were performed on a wide bore 500 MHz (i.e., B0 =
11.74 T) Bruker III HD spectrometer equipped with a low-
temperature cooling cabinet and a triple resonance 3.2 mm low-
temperature magic angle spinning probe. The sample temper-
ature was approximately 105 K.

Numerical Simulations. Numerical simulations were
performed using the Matlab differential equation solver
“pdepe”, which solves initial-boundary condition problems for
partial differential equations in space (x) and time (t) domains.
Two different differential equations were used for the cases
where the microwave irradiation (μwave) is on or off. Initial
and boundary conditions do not change between the μwave on

Scheme 1. Saturation-Recovery 1H−13C CP Pulse Sequence
Used for Acquisition of Spectraa

aτd was set to 20 ms, and n to 20. τ is the polarization delay.
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and off cases, whereas the local equilibrium polarization P0
changes between μwaves on (P0,on) and μwaves off (P0,off)
cases. The values of T1 or TB and P0 where defined using the
hyperbolic secant functions described in the main text and in
the Supporting Information. For both μwaves on and off cases,
numerical values of the polarization function that satisfy the
differential equations were found, and the polarization was
scaled by |J(x)|, where |J(x)| is the Jacobian as described in
Results and Discussion. The simulated signal was obtained by
integration of the resulting polarization using a trapezoidal
numerical integration. The simulated enhancement was
calculated as the ratio of the integrated μwaves on and off
signals. The normalization factors for the signals were obtained
using the value of the signal at steady state. The Matlab code is
available with the Supporting Information. Automatic fits were
performed with Matlab using the least-squares method for both
the enhancement and the buildup data.

■ RESULTS AND DISCUSSION

Spin Diffusion Relayed DNP. The basic principle behind
the idea of measuring domain structures with DNP or PRE
experiments is that the sample can be prepared in a way that
one component contains a polarization agent, which will be
referred to here as the source, while a second component is free
of polarizing agents, which will be referred to as the target.
When the source is hyperpolarized, polarization builds up
quickly and then diffuses into the target through homonuclear
proton spin-diffusion. The buildup of the polarization in the
target thus depends on its size.
The observable buildup time of a compound resonance

subject to spin diffusion in a saturation-recovery experiment can
be quite different from the “intrinsic” buildup time. This
effective buildup time has been previously referred to as TB,

28

T1,
29 T1*,

20 or TDNP.
30 Here it is essential to differentiate the

intrinsic buildup time from both the μwaves on and μwaves off
effective buildup times; the following notation will be used:
T1 is the

1H relaxation time measured during a saturation-
recovery experiment on a pure dry solid.
TB is the effective 1H buildup time measured when the

sample is doped with paramagnetic species: TB,OFF in the
absence of μwave irradiations and TB,ON in the presence of
μwave irradiations.
In order to determine sizes quantitatively, we must develop a

numerical model for the process, as described in the following.
The model used to describe the saturation-recovery experi-

ments investigated here is based on a system containing at least
two distinct domains. The source is selectively doped with a
paramagnetic species, while the target remains undoped. The
source also undergoes paramagnetic relaxation enhancement
(PRE) induced by the presence of radicals.31 We assume that
the border between the two domains has a finite width, and we
describe this interfacial region by a gradient function moving
from pure source to pure target.
In the following, we model a system in which the recovery

toward equilibrium for the two different components will not
be a single monoexponential function with T1,source and T1,target.
Rather, multiexponential buildup will be observed for both
components if the domain sizes of the source and target are
comparable to the distances over which spin diffusion can
transport polarization on the T1 time scales. We define the
characteristic diffusion length as x

DT1
(see details in the

Supporting Information). If the domain sizes are very small

compared to the character is t ic diffusion length ,
≪ ⟨ ⟩⟨ ⟩L D T1 , then both components will appear to relax

toward equilibrium with the same buildup time, TB. If the
domain sizes are very large, ≫ ⟨ ⟩⟨ ⟩L D T1 compared to the
diffusion length, then both components will appear to relax
toward equilibrium with their intrinsic buildup times T1,source
and T1,target. In the intermediate regime, where the domain sizes
are comparable to the diffusion length, relaxation toward
equilibrium will appear multiexponential and will be a function
of the size and geometry of the domains. It is this effect that we
exploit here. This basic principle of spin diffusion relayed
relaxation has been introduced and used widely in the past in
both solids and solutions.16−20,29,32−41 One of the particularities
here is that we introduce differential relaxation into a normally
diamagnetic sample by selective doping of one domain, and
that we can then determine geometries by comparing
polarization dynamics in experiments that are otherwise
identical except for the initial conditions of the value of T1 in
the dopant (which corresponds to relayed-PRE20) or, here, by
changing the equilibrium polarization of the dopant with DNP.
We also remark that recently there has been considerable

interest in developing computational models for spin
diffusion42−47 and for different aspects of spin dynamics
specifically in DNP experiments.46,48 Some very interesting
work has been done to include the role of the depolarization
induced by the biradicals under the MAS rotation.49,50

However, because we are concerned here with length scales
beyond ∼50 Å, we adopt a method that is based solely on
transport by spin diffusion.16,17

Numerical Models for Spin Diffusion Relayed DNP.
The polarization dynamics is described by the following
differential equation, where we assume the transfer of
polarization behaves like thermal or other classical diffusion
processes that follow Fick’s second law:8,51,52

∂
∂

= ·Δ −
−P x t

t
D x P

P x t P x
T x

( , )
( )

( , ) ( )
( )

0

1 (1)

where x is the position vector distance from the border between
source and target in μm, t the time in seconds (0 < t < ∞), P
the instantaneous polarization (arbitrary units), P0 the local
equilibrium polarization, D the diffusion rate at position x, T1
the longitudinal relaxation time at position x, and ΔP the
Laplacian of the polarization whose formal expression depends
on the symmetry of the system (see details in the Supporting
Information).
In practice, depending on the nature of the physical interface

between the source and the target, the thickness of the border
will vary, as discussed later in the text. We consider two
different functions for the change in NMR parameters at the
interface. The first is the case for an interface that is a step
function, and where the NMR properties then change as 1/r6

beyond the interface (function described in detail in the
Supporting Information). The second would be appropriate
when the interface itself extends over a range of distance and
where we consider that the gradient between the components
at the crossover follows (for example) a hyperbolic tangent
function, as shown in Figure 1. When the border is only 2 nm
thick, the 1/r6 dependence is most appropriate, but the shape of
the function has little or no effect on the observables because
the width of the objects considered here is on the order of
micrometers. For objects for which the border is significantly
thicker, the hyperbolic secant is more appropriate to describe a
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gradient of radicals. For the sake of convenience, we chose to
use here the hyperbolic secant function to describe the
transition at the interface. However, as required, different
functions could be used for the three variables, which might
more accurately reproduce the physical and spatial depend-
encies of the interactions. The hyperbolic secant functions are
described in detail in the Supporting Information.
Equation 1 does not have a general analytical solution. Under

certain approximations, we can find some general analytical
solutions as described in the Supporting Information. Here, we
resort to numerical solutions with the following boundary
conditions:

=P x( , 0) 0 (2)

∂
∂

=
⎛
⎝⎜

⎞
⎠⎟

P x t
x

( , )
0

x0 (3)

where x0 corresponds to the position at the extremity of the
system. The first condition corresponds to no initial polar-
ization inside the system (for saturation-recovery experiments),
and the second corresponds to the absence of polarization flux
at the edge of the system. The second condition implies no flux
of polarization at the center of the target nor at the edge of the
source. Notably we model the entire system as a single
continuous object, and we do not need to partition the system
(as long as the numerical solutions converge). Also, the
boundary conditions reflect the fact that the system is periodic,
i.e. each unit feels the presence of a neighbor.

Small Targets and Homogeneous Bulk Solutions. As
shown in Figure 2a, a solution containing dissolved radicals can
already be described using this general formalism. In this case
the average distance between sources (where each radical
molecule acts as a polarization source) is short enough that spin
diffusion equalizes the polarization throughout the sample on a
time scale short compared to the characteristic buildup times.
This case corresponds to the situation of a bulk polarizing
solution, e.g. containing a biradical such as TEKPol or
AMUPol.
In this case, the average distance between (bi)radicals is

defined as twice the Wigner−Seitz radius:53

λ
π

̅ = =
⎛
⎝⎜

⎞
⎠⎟d

CN
2 2

3
4 A

1/3

(4)

where C is the concentration of DNP active radicals and NA is
Avogadro’s number. For a 16 mM solution of biradical, if we
assume all the radicals are DNP active for the sake of simplicity
(though some fraction is probably not active, which would lead
to a lower concentration of sources than relaxation sinks), we
find a distance of 5.8 nm. With a diffusion constant of 10−4

μm2 s−1, the volume between two radicals is polarized by spin
diffusion in less than 10 ms. This quasi-instantaneous spin
diffusion leads to the observation of a monoexponential buildup
for a bulk solution of radicals, despite the fact that the source
and target areas have different intrinsic T1. However, very
importantly, we find here that a signif icant part of the solvent is
mostly polarized by relayed transfer; therefore, the concentration
of radicals does influence the observed DNP buildup time of
the system. This has also been postulated very recently in
simulations by Mentink-Vigier et al.48

As illustrated in Figure 2a, we define a volume close to the
radical, VQ, in which 1H spins undergo strong paramagnetic
interaction because of the hyperfine coupling between nuclear
and electron spins which leads to, for example, large anisotropic
shifts or enhanced relaxation and quenching of the nuclear
polarization. The large shift anisotropy means that spins inside
VQ communicate with each other much less efficiently, and that
the nuclear spin diffusion is reduced (as an illustrative example,
D might decrease from values around 10−4 μm2 s−1 at the
border between VQ and VP to about 0 μm

2 s−1 at the location of
the electron, see the Supporting Information). Additionally, we
assume that spins inside VQ do not produce any observable
signal because of relaxation, but also because of the large
anisotropic interaction that spread the resonances over a wide
spectral window. We then define a volume, VP, in which 1H
spins are considered to be directly polarized by the radicals.
Finally, as shown in Figure 2a, the remaining volume, VSD, is

Figure 1. (a) Schematic representation of a system containing a source
and a target. The source has a length PL and is doped with, for
example, organic radicals, whereas the target has a length L and
remains undoped. Red dots represent schematically the presence of
radicals. Hyperbolic tangent (tanh) and 1/r6 functions describe in
panel b the relaxation time T1 and in panel c the local equilibrium
polarization P0 as a function of the distance from the border.
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not directly polarized by the radicals. In this model the spins
inside both VP and VSD are observable, and they are in contact
by spin diffusion. Thus, in relation to Figure 1, VP + VQ
constitute the source and VSD is the target. The intrinsic T1,VP
and T1,VQ of spins contained in VP and VQ are not directly
measurable because we do not know a priori the ratio between
VP, VQ, and VSD in a given sample.
In Figure 2, to determine T1,VP and T1,VQ, we measure the

buildup time TB of a series of samples without μwave
irradiations and with different radical concentrations, for
TEKPol in TCE at 105 K. The data are then fit using the
numerical model described above. The best fit between
simulated and experimental buildup times was found for VQ
= VP = 3.8 ± 0.1 Å, T1,VQ = 50 ± 10 ms, and T1,VP = 80 ± 10
ms, as shown in Figure 2b. We note that an analogous model

was tested, for which the diffusion rate was constant throughout
the system (D = 10−4 μm2 s−1) which gave slightly worse fits
with only slightly different T1 values (see the Supporting
Information).
The overall observed buildup time in the polarizing solution

varies as a function of concentration because the volume VSD,
which has the intrinsic buildup time of the pure solvent (here
T1,VSD for pure TCE is measured to be 27 s at 500 MHz),
increases as the radical concentration decreases. Because spin
diffusion over this length scale is much faster than T1,VSD, we
therefore observe a single monoexponential buildup time for
the sample which is simply a volume weighted average of the
three intrinsic buildup times (here T1,VSD = 27 s, T1,VP = 80 ms
and T1,VQ = 50 ms) and this explains the typically observable
the signal buildup time constants of about 2−3 s typically
observed in bulk solutions of 16 mM biradicals at around 105
K.23−25,55,56 The dependence of the experimental buildup time
on residual volume was previously reported by Lange et al.57 in
the context of the evaluation of quenching factors.
We note that we would expect this type of behavior for any

kind of formulation in which the average closest distance
between two radicals is smaller than the characteristic diffusion
length (here ⟨ ⟩⟨ ⟩D T1 = 50 nm for TCE).

Large Targets and Heterogeneous Mixtures. We now
move on to consider systems in which the dimension of the
target ≈ ⟨ ⟩⟨ ⟩L D T1 . In this case the polarization dynamics
will be characteristic of the length and the geometry of the
source and the target. In the following we show how to predict
these dynamics numerically using Equations 1−3. To do this
we need to specify the spatial dependence of T1, the local
equilibrium polarizations, the diffusion constant, and the effect
of depolarization.
Note that, because we will now study the diffusion of

polarization on a scale much larger than in the “small targets”
section above, we will now refer to the radical−solvent solution
as a single source, without considering the VP or VSD volumes
further. Because the source is now a mixture of radicals and
solvent, its effective buildup time, which depends on the
concentration of radicals, will be referred to as TB,source.
The spatial dependence of T1 as it changes from the source

to the target has been described above and is shown in Figure 1
for r−6 and hyperbolic tangent functions. As before, the
presence of radicals in the system will induce some signal
quenching and/or depolarization in the source.22,50 Notably,
for cross-effect biradicals, depolarization occurs in the source,
and this will lead to a decrease in the source signal, typically
around a factor 0.5 at 8 kHz spinning rate at 9.4 T and 105
K.49,50 We remark that depolarization does not play a role in
the simulated buildup time for the small target regime
described above, but it will influence the behavior in large
targets.
The local equilibrium polarization (P0) is the polarization

that each voxel would reach at infinite time if no spin-diffusion
occurs. In the absence of microwaves, polarization will tend to
recover in the target toward the Boltzmann polarization which
we take to be P0,off = 1. In the source, however, depolarization
may occur in the case of a biradical under MAS at rate ν, and
the polarization tends to a lower value of the local equilibrium
polarization P0,off(ν) = εDepo(ν), where

ε ν
ν
ν

=
>
=

P

P
( )

( 0)

( 0)Depo
0,off

0,off (5)

Figure 2. (a) Schematic representation of a bulk radical solution
(small target) system. The different components are described in the
main text. (b) Experimental 1H buildup time TB as a function of the
concentration of TEKPol in a frozen solution of TCE at 105 K, with 8
kHz sample spinning recorded on a 500 MHz spectrometer, using
saturation-recovery and determined using a monoexponential fit. All
samples were degassed using 5 insert−eject cycles prior to measure-
ment to minimize additional paramagnetic relaxation due to dissolved
oxygen.54 The solid blue line is the result of a numerical simulation for
a source and target according to panel a for which at each
concentration the buildup was simulated and then fit to a
monoexponential. In the simulations, the system was assumed to be
three-dimensional. T1,VSD was measured to be 27 s (in pure TCE). The
size of the volumes VQ and VP were both determined by fitting to be
3.8 ± 0.1 Å. T1,VQ and T1,VP were determined by fitting to be 50 ± 10
and 80 ± 10 ms, respectively.
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where P0,off(ν > 0) and P0,off(ν = 0) are the μwaves off local
equilibrium polarizations of the source for spinning and static
samples, respectively. In the simulations, we will always take
εDepo = 0.5 in line with values found in the literature.50

In the presence of μwaves, the local equilibrium polarization
within the source is greatly increased, such that P0,on = ε0P0,off
where ε0 is the DNP enhancement factor of the source in the
absence of spin diffusion.
We now note that the steady-state source polarization does

not necessarily reach the local equilibrium polarization in the
presence of spin diffusion from the source to the target. For
example, the source polarization close to the interface is higher
than the local equilibrium polarization in the absence of μwaves
because polarization will diffuse from the target to the interface
to compensate MAS driven depolarization. On the other hand,
diffusion from the source to the target in the presence of
μwaves prevents the source from reaching its equilibrium value.
With the typical sizes and diffusion coefficients that we consider
here, where the sizes of the source are much larger than the
diffusion length, for simplicity we will consider the polarization
to be equal to the local equilibrium polarization throughout the
source. Thus, the depolarization coefficient defined by Vega
and co-workers49 because the ratio of signals is quite close that
defined as the ratio of polarizations (more details in the
Supporting Information).
Within the target, the equilibrium polarization will decay

rapidly to P0,on = 1 as the direct DNP effect drops off according
to Figure 1, and we choose to model this for simplicity with the
same hyperbolic tangent function as used for the changes in T1
(Figure 1c).
The value of the spin diffusion coefficient D may vary from

the source to the target as the proton concentration changes.
Because the diffusion coefficient is thought to vary with λ−4

where λ is the Wigner-Seitz radius between protons, we then
chose to scale the diffusion coefficient with C4/3 where C is the
1H concentration.16,18 Moreover, depending on if the sample is
amorphous or crystalline and on the temperature, the diffusion
rate may vary. In the following, we will use common values of
the diffusion rates reported in the literature for organic solids.
The thickness of the domains also affects spin diffusion

dynamics. Indeed, the reservoir of polarization in both domains
is not infinite, and for example if there is only a thin layer of
source compared to the size of the target this would lead to a
depletion of the source under μwave irradiations and less
hyperpolarization of the target. The source polarization then
does not reach ε0P0,off. Analogously, in the absence of μwaves, a
thin source compared to the size of the target would lead to an
increase in the source polarization, and the polarization in the
source will not reach the P0,off(ν) = εDepo(ν) level, as it would
for an undoped sample. These limiting cases may be of interest
in certain cases, and particularly for applications in dissolution
DNP,58 but we will not consider them further here, where we
look at cases where the source is always much larger than the
diffusion length.
In the following we present examples of polarization

dynamics characteristic of different target geometries.
Polarization Dynamics for Different Architectures.

Figure 3 shows the three different archetypal geometries that
will be considered and compared to experimental measure-
ments.
The formalisms developed here can be adapted to any

geometry, and they are applicable to both DNP and PRE
experiments. The three examples we use are chosen because

they correspond to common systems of experimental interest.
The first system considered is a prototypical organic micro-
crystal or microparticle. The particle is assumed to be spherical
(Figure 3a), and hyperpolarization diffuses into the particle
from a layer of impregnating solvent. This corresponds to the
situation for ordinary organic powders obtained by grinding
and impregnation with a radical containing nonsolvent
solution,17,19 or for a frozen suspension of particles.16

The second system is considered to be a prototypical pore,
which we model as a cylinder (Figure 3b) into which the
polarization diffuses from the outside. Because polarization has
no known associated viscosity, we assume the diffusion of
polarization to be constant over the sample. This model
corresponds for example to a solvent filling the pores in a
mesoporous material and where the radical does not enter the
pores.59,60 The solvent is pure inside the pore and doped with
radical outside the pore.
The third system is prototypical mixture of polymers, where

a soluble polymer domain is doped with radical, and insoluble
domains remain radical free (Figure 3c).20 We model this as a
one-dimensional network.
Apart from the different symmetries of these geometries, the

main difference between them will be the typical sizes and the
relative thickness of the border between the source and the

Figure 3. Schematic representation of (a) a spherical organic
microcrystal coated with a radical containing solution; (b) a cylinder
of pure solvent of length L, which is polarized by radical solution at the
ends of the cylinder (this model corresponds for example to a solvent
filling the pores in a mesoporous material, and where the radical does
not enter the pores); and (c) an organic film containing hydrophilic
domains (pink) that are doped with radicals and hydrophobic domains
(blue) that remain undoped. Red dots indicate schematically the
presence of radical molecules. In cases a and c, the radical is separated
from the target because they are two different compounds: a solid line
separates the two domains. In case b, the target can be either atoms on
the wall of the pore or the proton atoms of the pure solvent inside the
pore: a dashed line separates the pure solvent (blue) from the radical
containing solvent (pink).
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target. For example, in the cases of Figure 3a,c, the source and
the target are two distinct compounds, and the border is well-
defined. Whereas in Figure 3b, the transition from doped to
undoped solvent is probably more gradual.59,60

The influence of the simulation parameters on the μwaves on
polarization and on the enhancement are described in the
Supporting Information. We use two types of border: one thin
(2 nm) and one thick (200 nm). The border defines the area
(or volume) in which the parameters described above
transition. For both thick and thin border systems, the
polarization is propagated numerically through the target
until the steady state is reached. The resulting spatial evolution
of the polarization as a function time for a spherically
symmetric system is plotted in Figure 4.

The polarization is then integrated over the desired region,
giving a signal:

∫= ·| |S t
V

P x t J x x( )
1

( , ) ( ) d
V

on/off on/off (6)

where Son and Soff correspond to the signals with and without
microwave irradiation, respectively; Pon and Poff correspond to
the polarization with and without microwaves irradiation; and |
J(x)| corresponds to the Jacobian determinant: |J(x)| = 1 for
linear symmetry, and for spherical symmetry, after integration
on the angular coordinates, we have |J(x)| = 4πx2. (The
adaptation to other geometries can be done, for example, for a
system where spin diffusion can occur in two dimensions: the
Jacobian thus has to be equal to 2πx. Other changes also have
to be made in the diffusion eq 1, as described at the end of
Results and Discussion.)
Archetypal signal buildup curves for the target for μwave on

and off are plotted in Figure 5a for the thin and thick border
cases. We immediately note that the recovery is accelerated in

the presence of μwaves, and this is the primary signature of
relayed DNP.

We then note that the main difference between the thin and
thick border cases occurs at early times. This is not surprising,
because at early times the target hyperpolarization is located at
the border between the source and the target. Its thickness then
determines the intensity of the signal at early times.
The enhancement as a function of time can be then trivially

calculated:

ε =t
S t
S t

( )
( )
( )

on

off (7)

Figure 5b shows enhancement versus time for the same
cases. We remark that the enhancement varies significantly with
time, and this is a key signature of heterogeneous polarization
and relayed transfer. Indeed, if the sample polarization is
homogeneous, then spin diffusion will not cause any change in
local polarization, and enhancement would be constant as a
function of the polarization time.
For a system with a source and a large target, the normalized

signal follows a multi (or stretched) exponential buildup:

= − − β
S t( ) 1 e t T( / )B (8)

where TB is the effective buildup time with or without μwave
irradiation. In the case of a homogeneous system, spin diffusion
has no effect on local polarization, and the signal buildup will be
monoexponential (β = 1). The buildup time of the signal
buildup in μwave on (TB,ON) and off (TB,OFF) is then the same,
and so the enhancement is constant.
As mentioned earlier, the difference between thin and thick

border cases has an effect on enhancement at early times, and
Figure 5b shows that this is predicted to lead to a completely
different enhancement behavior. For the thin border case, the
enhancement decreases monotonically as a function of time.
The thick border case is significantly different with an increase
in the enhancement at early times, followed by a decay.
The late stage decay of enhancement as a function of time

can be explained physically as follows. With time, the target
polarization builds up to 1 in the μwave off case (without
considering depolarization), whereas it is far from reaching ε0 in
the μwave on case, because of longitudinal relaxation (see
Figure 4b,d). Thus, with time, the target polarization increases
relatively more in the μwave off than in the μwave on case. This

Figure 4. Simulations of polarization as a function of the position for a
spherically symmetric system in (a, c) absence and (b, d) presence of
microwave irradiation, for different times from t = 0 to 200 s (where a
steady state is reached, dashed light blue lines) with exponential time
increment. Panels a and b have a thin border (2 nm) whereas c and d
have a thick border (200 nm). The source is shown in red, whereas the
target is shown in blue. In both cases, L = 2 μm, TB,source = 100 ms,
T1,target = 100 s, εDepo = 0.5, ε0 = 150, Dtarget = Dsource = 1.0 × 10−3

μm2 s−1, and PL = 0.5 μm.

Figure 5. (a) Simulations of normalized target signal buildup as a
function of time in absence and in the presence of microwave
irradiation for a thin border (red) and a thick border (blue). (b)
Simulated enhancement as a function of time in the target (solid lines)
and in the source (dashed lines) for a thin border (red) and a thick
border (blue). In all simulations, L = 2 μm, TB,source = 100 ms, T1,target =
100 s, ε0 = 150, Dtarget = Dsource = 1.0 × 10−3 μm2 s−1.
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explains the late stage decay of the enhancement seen in both
thick and thin border cases. The early time increase in
enhancement seen for the thick border case is rationalized by
looking at the source behavior in the border region, as
described in detail in the Supporting Information.
In summary, in Figure 5b we see that the nature of the

border influences the behavior of the enhancement at early
times and that the decay to a steady-state enhancement at later
times in both cases is a universal signature of relayed spin
diffusion.
We note in Figure 5a that the observable buildup time is

always shorter for μwaves on than off. This is easily explained
by the fact that the gradient of polarization between the source
and the target is much larger with than without DNP. We also
note that TB,target < T1,target. This arises from the fact that spin
diffusion, both in μwave on and off cases, connects polarization
between the source and the target and because TB,source is here
always shorter than T1,target; this accelerates the effective buildup
time in the target. Specifically, fitting the buildup curves of
Figure 5a to a stretched exponential, we find that TB,target is
always shorter than 42 s, whereas T1,target = 100 s. An important
consequence of this observation is that, because proportionally
more spins are closer to the source in smaller objects, we
predict shorter buildup times for smaller objects. Figure 6
shows simulations of the normalized signal buildup curves and
enhancements of the target for a spherically symmetric object
for different target sizes.

In Figure 6a,b, as expected, the buildup time of the target is
predicted to increase with the size of the object. The
enhancement decreases with the size of the target, because
relaxation in the target destroys the propagating hyper-
polarization before it has time to spin diffuse through the
whole target (Figure 6c). As shown in Figure 6d, we observe
that the enhancement of a spherical object is higher, with all
other parameters being identical, than the enhancement for a

linear object being polarized from the ends. Indeed, with the
same polarizing length L, the spherical symmetry offers less
target volume to be polarized for unit of polarizing surface with
respect to the linear symmetry. For a diffusion in two
dimensions, we expect a curve in between the two shown.

Buildup Time and Steady-State Enhancement Behav-
ior. As shown in Figure 6b, the buildup time depends on the
size of the target, ranging from TB,target = TB,source = 3 s for an
infinitely small target (which corresponds to a homogeneous
system) and tends to T1,target for an infinitely large target. (The
values of the β coefficient of the stretched exponentials are
shown in Figure S15.)
At long polarization times, a steady state is achieved in which

relaxation exactly balances diffusion polarization flow into the
target. The change in the steady-state enhancement as a
function of the size of the object is shown in Figure 7. The

great interest of the steady-state enhancement is that it does not
depend on the nature of the border. As shown below, the
steady-state enhancement is only a function of the geometry
(linear, cylindrical, or spherical), the length L, the relaxation
time T1,target, and the diffusion rate Dtarget.
We fit the curves in Figure 7a with an expression derived

from the steady-state solution to eq 1:

ε = + −∞
⎛
⎝⎜

⎞
⎠⎟

b
L

L
b

1 (a 1)
2

tanh
2 (9a)

for the 1D case and

ε = + − −∞

⎡
⎣⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥

b
L

L
b

b
L

1 (a 1)
3

coth
(9b)

for the 3D case where ε∞ is the steady-state enhancement of
the target, a and b are fitting parameters, and D and T1 are the
diffusion rate and relaxation time in the target, respectively. The
reasoning behind the choice of these functions is given in the
Supporting Information. By inspection, the fitted values of a
and b are found to be

ε=a 0 (10)

where ε0 corresponds to the enhancement of the source (which
is constant) and

= ·b D T1 (11)

A phenomenological relation between the steady-state
enhancement and the size of the object can thus be determined
as

Figure 6. Spherical targets with a thin border. Simulations of
normalized signal buildup curves for different target radii as a function
of time for (a) μwaves off and (b) μwaves on. Buildup times TB were
determined from a fit to a stretched exponential. (c) Enhancement of
the target as a function of time for different radii. (d) Enhancement of
the target for a spherical and a linear geometry. In all simulations,
TB,source = 100 ms, T1,target = 100 s, ε0 = 150, and Dtarget = Dsource = 1.0 ×
10−3 μm2 s−1.

Figure 7. (a) Simulated enhancement of the target at steady state as a
function of the size of the target for spherically and linearly symmetric
objects with thin borders. (b) Simulated buildup times of the target as
a function of the size of the target for a spherically symmetric object.
In all simulations, TB,source = 3 s, T1,target = 100 s, ε0 = 150, and Dtarget =
Dsource = 1.0 × 10−3 μm2 s−1.
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for the 3D case. Similar fitting was done for the cylindrical (or
2D) case, leading to a steady-state enhancement of
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where I0 and I1 are the zero and first-order modified Bessel
functions, respectively.
We can reinforce this observation by noting how the

diffusion equation (eq 1) behaves at steady state. In the absence
of depolarization, without microwave irradiation, P0,off = 1 in
the target. With microwave irradiation, we also have P0,on = 1 in
the target. Then, assuming that the diffusion and relaxation
times are constant in the target (which is reasonable, e.g., for a
border thickness of 2 nm), for one-dimensional spin diffusion,
the steady-state solution in the target is

∞ = + +−P x A B( , ) e e 1x DT x DT/ /1 1 (13)

where A and B depend on the boundary conditions (see details
in the Supporting Information). This is in agreement with
previous results.16,61 We observe that the position dependence
is scaled by the term DT1 , and the polarization is in fact a
function of the characteristic diffusion length x

DT1
as detailed in

the Supporting Information. This observation rationalizes the
phenomenological form of b observed for the steady-state
enhancement in eq 12a−c.

■ EXPERIMENTAL RESULTS
To support the predictions made above we have performed
experiments on three prototypical systems.
Homogeneous Sample. The homogeneous case was

verified with a sample of histidine dissolved in glycerol-
d8:D2O:H2O (60:30:10) with AMUPol as the biradical
polarization source24 and recording the enhancement of the
signals from histidine and glycerol. The prediction is that a
homogeneous system displays a constant enhancement as a
function of polarization time. As shown in Figure 8a, the
histidine 13C NMR peaks are much broader than the peaks
observed when the crystalline histidine is impregnated with a
radical solution remotely polarized (see Figure 10a). The signal
buildup of histidine peaks was recorded with a CP saturation-
recovery experiment. The μwaves on buildup time was the
same as the solvent buildup time as shown in Figure 8b,
confirming that the histidine, glycerol, water, and radical
molecules are homogeneously mixed. As shown in Figure 8c,
the enhancement of both histidine and glycerol was found to be
constant over 15 s, which confirms the prediction. The
measurement error is relatively large for the histidine peaks
because the signal-to-noise ratio was poor in the μwaves off
spectra even with 2048 scans (8.5 h), due to low concentration
of histidine.

Heterogeneous Samples: Microcrystalline Powder. To
confirm predictions of the simulations that signal buildup times
depend on the size of the target in heterogeneous samples, 13C
detected 1H buildup times of histidine signals were measured
when the histidine was either dissolved in a radical containing
solution, ground then impregnated with a solution, unground
and impregnated, and for the dry powder alone. As shown in
Figure 9, the buildup time clearly increases with the size of the
particle, ranging for the μwaves on case from 2.7 s for the
homogeneous solution to 435 s when the size of the particles is
large, up to 1038 s for the dry powder which corresponds to the
intrinsic T1 of crystalline histidine. As predicted for
heterogeneous systems, shorter buildup times are measured
for μwaves on than for μwave off for the impregnated powders.
Figure 10a shows the DNP enhanced spectrum from a

sample of microcrystalline histidine ground for 5 min to reduce
particle sizes and impregnated with 1,1,2,2-tetrachloroethane
(TCE) containing 16 mM TEKPol biradical.23 We notice that
the histidine 13C NMR peaks in this heterogeneous sample are
much narrower than those in the homogeneous solution of
Figure 8, because the organic domains now remain crystalline.
In Figure 10b we show the normalized signal buildup of TCE as
a function of the polarization delay with and without microwave
irradiation, together with the prediction for the homogeneous
solvent. Simulations are overlaid on the experimental data
points. Analogously to the homogeneous case, the buildup time
does not depend on the μwave irradiations because the TCE
domains contain homogeneously dispersed radicals. The
enhancement of the TCE signal is thus found to be constant,
as shown in Figure 10c. The buildup of the histidine peaks with
and without microwave irradiation is shown in Figure 10d,
together with the prediction for spherical domains of radius of
2.3 μm (see figure caption for the other parameters), which is
in good agreement with the size measured in scanning electron
microscopy images (see the Supporting Information). The
same system was also studied by DNP with unground particles,
as shown in the Supporting Information, and a 9 μm average
particle radius was determined.

Figure 8. (a) 13C CPMAS DNP enhanced solid-state NMR spectrum
of histidine with microwave irradiation obtained at 105 K, 8 kHz MAS,
and B0 = 9.4 T. For spectrum a, around 0.5 mg of powdered histidine
was dissolved in 100 μL of glycerol-d8:D2O:H2O (60:30:10)
containing 12 mM AMUPol. The polarization delay was set to 15 s.
(b) Normalized signal buildup with microwave irradiation of the
histidine and glycerol peak areas as a function of the polarization delay
and (c) the corresponding enhancement of the histidine and glycerol
signals. The asterisks indicate spinning sidebands.
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Heterogeneous Samples: Porous Materials. A meso-
porous material MatImPh-dTMS was impregnated with a TCE
solution containing TEKPol2,25 as shown in Figure 11.
Here we assume that the bulky radical25 cannot thoroughly

enter the pore18,59,60 so that the silicon sites on the pore surface
are polarized by spin diffusion through the solvent as illustrated
in Figure 3. The enhancement behavior here is indeed found to
be in extremely good agreement with the predictions of this
model, including the details of the rising and then decaying
enhancement for early polarization times, for a pore length of
0.75 μm.
Heterogeneous Samples: Polymer Composites. EC/

HPC coated microcrystalline cellulose (MCC) pellets were
impregnated with 16 mM TOTAPOL biradical in glycerol-
d8:D2O:H2O (60:30:10) solution, as shown in Figure 12.
Here we assume that the aqueous polarization source

impregnates the soluble HPC domains, but that it does not
penetrate the insoluble EC domains, which are thus considered
as the target. The enhancement behavior here is again found to
be in extremely good agreement with the predictions of this
model, including the details decaying enhancement for early
polarization times, for EC domains of 0.2 μm. This is in
agreement with measurements made using NMR PRE type
approaches.20

Heterogeneous Samples: Colloidal Suspensions. Fi-
nally, insoluble EC Aquacoat nanoparticles were suspended in a
solution of 16 mM bCTbK23 in TCE/MeOH (80:20). The
relayed DNP measurements shown in Figure 13 are in excellent
agreement with a one-dimensional diffusion model with a
diameter of 170 nm, which is in good agreement with the 169
nm average measured by dynamic light scattering.

Size Distributions and the Correlation between Size
and the Diffusion Constant. In the descriptions above we
have assumed a single value of the particle sizes present in the
samples. Of course, the same approach can be used to model
the spin diffusion behavior in samples with particle size
distributions by modeling the sums of the curves calculated
above. For example, for the histidine crystals, a Weibull62

distribution might be considered as was done by Rossini et
al.17,19 This might produce better agreement in the early time
behavior, though there is a clear danger of overfitting. For the
case of the EC suspensions in Figure 13, no significant
improvement is seen if a Weibull distribution is used to fit the
data, as shown in the Supporting Information. The only change
is that the center of the distribution is slightly shifted (190 nm
instead of 170 nm) because of the asymmetry of the Weibull
distribution function.
Finally, we note that here D is known to be typically between

0.2 × 10−3 and 1.0 × 10−3 μm2 s−1 in most organic solids.63,64

In the examples above we have assumed values of D most
appropriate to each case on this basis, which allows us to
deduce lengths from the buildup behaviors. As mentioned

Figure 9. Signal 1H buildup curves detected through the signal of the
13C peaks in CPMAS NMR spectra recorded at 105 K, 8 kHz MAS,
and B0 = 9.4 T (a) without and (b) with microwave irradiation of
either dry, ground, unground, or dissolved powders of histidine
hydrochloride monohydrate. The dissolved sample was in glycerol-
d8:D2O:H2O (60:30:10) with 12 mM AMUPol. The impregnation was
done with 1,1,2,2-tetrachloroethane (TCE) containing 16 mM
TEKPol. All signals were normalized using the steady-state value
from the exponential fits.

Figure 10. (a) 13C CPMAS DNP enhanced solid-state NMR spectra
obtained at 105 K, B0 = 9.4 T, and 8 kHz MAS of microcrystalline
histidine which was ground by hand for 5 min and impregnated with a
solution of TCE containing TEKPol. (b) 13C CPMAS normalized
signal buildup of the TCE peaks with and without microwave
irradiation. Normalization was performed using the value of the signals
at steady state from a stretched exponential fit. (c) 13C CP DNP
enhancement of TCE peaks as a function of the polarization delay. (d)
Signal buildup of histidine peaks with and without microwave
irradiation as a function of the polarization delay. (d) 13C CP DNP
enhancement of histidine peaks as a function of the polarization delay.
The histidine buildup points correspond to the average of the
integrated areas of all the histidine 13C peaks. Error bars were
calculated by propagation of error using the noise levels of the spectra
acquired with and without microwave irradiation as the standard
deviation. In panels d and e, numerical simulations are overlapped for
particle with spherical symmetry with L = 2.3 μm (fitted), TB,source =
2.7 s, T1,histidine = 1038 s, Dtarget = 1 × 10−3 μm2 s−1, Dsource = 1.3 × 10−4

μm2 s−1, PL = 1 μm, and εDepo = 0.5. The asterisks indicate spinning
sidebands.

The Journal of Physical Chemistry C Article

DOI: 10.1021/acs.jpcc.7b04438
J. Phys. Chem. C 2017, 121, 15993−16005

16002

http://pubs.acs.org/doi/suppl/10.1021/acs.jpcc.7b04438/suppl_file/jp7b04438_si_001.pdf
http://dx.doi.org/10.1021/acs.jpcc.7b04438


above, in cases where D cannot be measured experimentally
independently, the result here is a measurement of the product
L·D.

■ CONCLUSIONS
We have shown how DNP NMR can be used in combination
with models for polarization dynamics to determine the domain

sizes in complex materials. This is achieved by measuring
experimental polarization buildup curves in samples that are
selectively doped with a radical containing source component.
The observed polarization dynamics can be fully explained in
terms of a simple model of spin diffusion between
heterogeneous distributions of polarization within the sample.
The DNP buildup times as well as the variation of the DNP
enhancement as a function of the polarization time are found to
be characteristic of the size and geometry of the micro- to
nanoscale domains in the sample. We demonstrate the
approach experimentally on four different systems where we
successfully determine domain sizes between 200 and 20 000
nm, specifically in powdered histidine hydrochloride mono-
hydrate, the pore lengths of mesoporous silica materials, and
domain sizes in two-component polymer film coatings.
Additionally, we determine experimentally that even in the
apparently homogeneous frozen solutions used as polarization
sources in most DNP experiments, polarization is relayed from
protons near the radicals to the bulk of the solution by spin
diffusion, which confirms recent predictions48 and explains the
experimentally observed buildup times in these samples.
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Figure 11. (a) 29Si CPMAS DNP enhanced solid-state NMR spectra
obtained at 105 K, B0 = 9.4 T, and 8 kHz MAS of the mesoporous
material MatImPh-dTMS impregnated with TCE containing 16 mM
biradical TEKPol2. (b) 29Si CPMAS normalized signal buildup of the
silicon peaks with and without irradiations. The signals were
normalized to that of the longest polarization delay. (c) 29Si CP
DNP enhancement of the 29Si signal as a function of the polarization
delay. In panels b and c, numerical simulations are overlaid for one-
dimensional diffusion with the following parameters: L = 0.75 μm
(fitted), TB,source = 442 ms, TB,TCE = 8 s, and Dtarget = Dsource = 1.2 ×
10−4 μm2 s−1.

Figure 12. 13C CPMAS DNP enhanced solid-state NMR spectra
obtained at 105 K, B0 = 9.4 T, and 8 kHz MAS for EC/HPC coated
MCC pellets with 16 mM TOTAPOL biradical in glycerol-
d8:D2O:H2O (60:30:10) solution. Because the resolution of EC and
HPC methyl peaks is only partial, deconvolution was used to obtain
the peak intensities (illustrated in green). (b) 13C CPMAS normalized
signal buildups of the EC peak. Normalization was performed using
the value of the signals at steady state from a stretched exponential fit.
(c) 13C CP DNP enhancement of the EC peak as a function of the
polarization delay. Error bars were calculated by propagation of error
using the noise levels of the spectra acquired with and without
microwave irradiation as the standard deviation. In panels b and c,
numerical simulations are overlapped for one-dimensional diffusion
with the following parameters: L = 200 nm (fitted), TB,source = 5 ms,
T1,target = 3.5 s, Dtarget = Dsource = 2 × 10−4 μm2 s−1, PL = 42 nm, and
εDepo = 0.5. The ratio of EC/HPC lengths was fixed to 70/30.

Figure 13. 13C CPMAS DNP enhanced solid-state NMR spectra
obtained at 95 K, B0 = 9.4 T and 8 kHz MAS of EC nanoparticles
impregnated with TCE/MeOH containing bCTbK. (b) 13C CPMAS
normalized signal buildup of the EC peak. Normalization was
performed using the value of the signals at steady of a stretched
exponential fit. (c) 13C CP DNP enhancement of the EC peak as a
function of the polarization delay. Error bars were calculated by
propagation of error using the noise levels of the spectra acquired with
and without microwave irradiation as the standard deviation. In panels
b and c, numerical simulations of a linear system are overlapped with
the following parameters: L = 170 nm (fitted), TB,source = 5 ms, T1,target
= 3.7 s, PL = 20 nm, Dtarget = Dsource = 2 × 10−4 μm2 s−1 and εDepo = 0.5.
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Experimental details 

Elemental Analysis  

Elemental analysis was carried out by Mikroanalytisches Labor Pascher.  

Synthesis of Material Ph-Im-OH 

Si(CD3)3Cl was purchased from Cortecnet and used as received. Triethylamine was purchased from 
Fluka and distilled from CaH2 before use. In an Ar-filled glovebox, a 100 mL round-bottomed flask 
equipped with a stir bar was charged with 1g of the precursor, sealed with a rubber septum and electrical 
tape, and brought into a fume hood. A needle connected to a flow of Ar was attached to the vessel and, 
via syringe, 20 mL of toluene was added followed by 0.31 mL (0.35 g, 2.4 mmol) of 1-phenylimidazole. 
The rubber septum was quickly exchanged for a reflux condenser capped with a rubber septum. The re-
action mixture was then heated to reflux and allowed to stir for 18 h while being protected from light 
with aluminum foil. After allowing the reaction mixture to cool to room temperature, the resulting pale 
yellow solid was collected on a porosity 3 fritted funnel and was washed with dichloromethane (3 x 30 
mL). The solid was then transferred to a 100 mL round-bottomed flask containing a stirring mixture of 
pyridine, deionized water, and 2 M aqueous HCl (18:18:6 mL, respectively), and the reaction vessel was 
capped with a rubber septum containing a vent needle.  The reaction mixture was heated to 50 ºC and 
allowed to stir for 20 h. After allowing the reaction mixture to cool to room temperature, the resulting 
pale yellow solid was collected on a porosity 3 fritted funnel and was washed with deionized H2O (3 x 
30 mL), acetone (3 x 30 mL), and diethyl either (3 x 30 mL). The solid was then dried for 12 hours un-
der a vacuum of less than 10–4 Torr at 135 ºC using a temperature ramp of 1 ºC/min from room tempera-
ture (~23 ºC) and brought into an Ar-filled glovebox. Following drying, 0.80 g of an off-white solid was 
obtained. Elemental analyswas: C = 6.3%wt; H = 1.0%wt; N = 1.2%wt. C/N ratio obtained: 5.9 (expected 
6.0). 

Synthesis of Material Ph-Im-OSi(CD3)3 

In an Ar-filled glovebox, a 25 mL round-bottomed flask equipped with a stir bar is charged with 0.60 g 
(0.29 mmol) of Ph-Im-OH, sealed with a rubber septum and electrical tape, and brought into a fume 
hood. A needle connected to a flow of Ar is attached to the vessel and toluene (10 mL), triethylamine 
(2.5 mL, 18 mmol), and Si(CD3)3Cl (1.2 mL, 8.7 mmol) are added via syringe in that order. The reaction 
is then allowed to stir at room temperature (~23 ºC) for 18 h. The reaction mixture is filtered through a 
porosity 3 fritted funnel and the resulting solid is washed with deionized water (2 x 50 mL) and acetone 
(2 x 50 mL). The white powder is then dried for 12 hours under a vacuum of less than 10-4 Torr at 135 
ºC using a temperature ramp of 1 ºC/min from room temperature (~23 ºC) and brought into an Ar-filled 
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glovebox. Following drying, 0.62 g of an off- white powder was obtained. Elemental analysis: C = 
11.4%wt; H = 0.6%wt; N = 1.0%wt.  

 

Hyperbolic secant functions: 

For a 1 dimensional system with 2 sources: 

𝑇" 𝑥 = 𝑇",&'()*+ +
𝑇",-.)/+- − 𝑇",&'()*+

2 tanh 𝑝 𝑥 − 𝑃8 + tanh	(𝑝(𝐿 − 𝑥 − 𝑃8)  

𝑃=,>? 𝑥 = 𝜀= +
1 − 𝜀=
2 tanh 𝑝 𝑥 − 𝑃8 + tanh	(𝑝(𝐿 − 𝑥 − 𝑃8)  

𝐷 𝑥 = 𝐷&'()*+ +
𝐷-.)/+- − 𝐷&'()*+

2 tanh 𝑝 𝑥 − 𝑃8 + tanh	(𝑝(𝐿 − 𝑥 − 𝑃8)  

For a 3 dimensional system with 1 source: 

𝑇" 𝑥 =
𝑇",-.)/+- + 𝑇",&'()*+

2 +
𝑇",-.)/+- − 𝑇",&'()*+

2 tanh	(𝑝(𝐿 − 𝑥 − 𝑃8)  

𝑃=,'C 𝑥 =
𝜀= + 1
2 +

1 − 𝜀=
2 tanh	(𝑝(𝐿 − 𝑥 − 𝑃8)  

𝐷 𝑥 =
𝐷&'()*+ + 𝐷-.)/+-

2 +
𝐷-.)/+- − 𝐷&'()*+

2 tanh	(𝑝(𝐿 − 𝑥 − 𝑃8)  

where x is the position in µm, p is the slope of the inflexion point of the hyperbolic secant function, 
which defines the thickness of the border, T1 the relaxation time in seconds, D the diffusion coefficient 
in µm2.s-1, ɛ 0 the local equilibrium enhancement of the source, L the length of the target, and PL the 
length of the source, both in µm. 

The 1/r6 function presented in the main text are described as: 

𝐴(𝑥) = 	
1

1
𝐴EF?

+ 𝐴EF? − 𝐴EGH𝐴EF?𝐴EGH
2	10JK

2	10JK − 𝐿 − 𝑥
L 

where Amin and Amax are the minimal and maximal values of A, and L the length of the target. 

In the next simulations, a quenching factor was taken into account in the source. We define θmin as the 
fraction of observed signal. 

Enhancement of the target as a function of position: 
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Figure S1. Simulations of the enhancement as a function of the position in a system with μwave irradia-
tions, for different times from t = 0 to 200 s (steady state reached) with exponential time steps, in a 3D 
system. The source is shown in a red background, whereas the target is shown in a blue background. In 
the simulation, T1,source = 5 ms, T1,target = 30 s, ε0 = 150, Dtarget = 1.10–3 μm2s–1, PL = 0.1 μm, and θmin = 0 in 

the source. The border thickness was 2 nm. 
 

 

Influence of the spinning rate.  

 

Figure S2. Left: Simulated polarization at steady state in a 1D system as a function of the position, for 
different spinning rates. Right: Simulated target enhancement as a function of the polarization delay, for 
different spinning rates. In all simulations, L = 1.2 μm, T1,source = 5 ms, T1,target = 30 s, ε0 = 150, PL = 0.1 
μm, θmin = 0 in the source, and the border thickness was 200 nm. The spinning rate was taken to be in-

versely proportional to the diffusion coefficient, as described in ref 1. 
 

Influence of the border thickness.  

The slope of the inflexion point (parameter p) of the hyperbolic secant function defines the thickness of 
the border between the source and the target. 
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Figure S3. Top left graph shows the simulated target enhancement of a 1D system as a function of the 
polarization delay for different slopes at the inflexion point of the hyperbolic secant function (i.e. for 

different border thicknesses). Top right graph shows the simulated percentage of observable signal of a 
1D system as a function of the position for different border thicknesses. Bottom graph shows the simu-
lated µwave on polarization at steady state of a 1D system as a function of position for different border 
thicknesses. In all simulations, L = 1.2 μm, T1,source = 5 ms, T1,target = 30 s, ε0 = 150, Dtarget = Dsource = 1.10–3 

μm2s–1, PL = 0.1 μm, θmin = 0. 
 

Influence of the fraction of observable signal in the source for a thick border.  

 

Figure S4. Left graph shows the simulated µwave on polarization at steady state of a 1D system as a 
function of position for different fractions of observable signal in the source. Right graph shows the 

simulated target enhancement of a 1D system as a function of the polarization delay for different frac-
tions of observable signal in the source. In all simulations, L = 1.2 μm, T1,source = 5 ms, T1,target = 30 s, ε0 = 

150, Dtarget = Dsource = 1.10–3 μm2s–1, PL = 0.1 μm, and the border thickness was 200 nm. 
 
 

Polarization delay (s)
0 20 40 60 80

En
ha

nc
em

en
t

0

20

40

60

80

100

120

140

5.100

5.100.5

5.101

5.101.5

5.102

5.102.5

5.103

5.103.5

5.104

Slope at the
inflextion point

Polarization delay (s)
0 20 40 60 80

En
ha

nc
em

en
t

0

10

20

30

40

50

60



 

 

6 

Influence of the fraction of observable signal in the source for a thin border.  

 

 

Figure S5. Left graph shows the simulated µwave on polarization at steady state of a 1D system as a 
function of position for different fractions of observable signal in the source. Right graph shows the tar-
get enhancement of a 1D system as a function of the recycle delay for different fractions of observable 
signal in the source. In all simulations, L = 1.2 μm, T1,source = 5 ms, T1,target = 30 s, ε0 = 150, Dtarget = Dsource 

= 1.10–3 μm2s–1, PL = 0.1 μm, and the border thickness was 2 nm. 
 

Influence of the length of the source.  

 

Figure S6. Left graph shows the simulated µwave on polarization at steady state of a 1D system as a 
function of position for different source lengths. Right graph shows the target enhancement of a 1D sys-
tem as a function of the polarization delay for different source lengths. In all simulations, L = 1.2 μm, 
T1,source = 5 ms, T1,target = 30 s, Dtarget = Dsource = 1.10–3 μm2s–1, PL = 0.1 μm, ε0 = 150, θmin = 0, and the bor-

der thickness was 200 nm. 

 

 

Influence of the source enhancement. 
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Figure S7. Left graph shows the µwave on polarization at steady state of a 1D system as a function of 
position for different source enhancements. Right graph shows the target enhancement of a 1D system 

as a function of the recycle delay for different source enhancements. In all simulations, L = 1.2 μm, 
T1,source = 5 ms, T1,target = 30 s, ε0 = 150, Dtarget = Dsource = 1.10–3 μm2s–1, PL = 0.1 μm, θmin = 0, and the bor-

der thickness was 200 nm. 

Influence of T1,target. 

 
Figure S8. Left graph shows the microwave on polarization at steady state of a 1D system as a function 

of position for different longitudinal relaxation times in the target. Right graph shows the target en-
hancement of a 1D system as a function of the polarization delay for different longitudinal relaxation 

times in the target. In all simulations, L = 1.2 μm, T1,source = 5 ms, ε0 = 150, Dtarget = Dsource = 1.10–3 μm2s–1, 
PL = 0.1 μm, θmin = 0, and the border thickness was 200 nm. 

Influence of T1,source. 
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Figure S9. Left graph shows the µwave on polarization at steady state of a 1D system as a function of 
position for different longitudinal relaxation times in the source. Left graph shows the target enhance-

ment of a 1D system as a function of the polarization delay for different longitudinal relaxation times in 
the source. In all simulations, L = 1.2 μm, T1,target = 30 s, ε0 = 150, Dtarget = Dsource = 1.10–3 μm2s–1, PL = 0.1 

μm, θmin = 0, and the border thickness was 200 nm. 

 

Influence of T1,target on the enhancement at steady state. 

 

Figure S10. Simulated enhancement at steady state of a 3D system as a function of position for different 
longitudinal relaxation times in the target. In all simulations, T1,source = 5 ms, ε0 = 150, Dtarget = Dsource = 

1.10–3 μm2s–1, PL = 0.1 μm, ε0 = 150, θmin = 0, and the border thickness was 2 nm. N  

Little jumps in the curves correspond to numerical errors. 

Modeled depolarization factor vs. literature depolarization factor: 

In the following, we will only be concerned about the source. 

The depolarization factor is described in the literature for bulk sample as:2 

𝜀M+N',OP- = 	
𝑆'RR	(𝑡, 𝜈 > 0)
𝑆'RR(𝑡, 𝜈 = 0)  

As described in the main text, a bulk sample doesn’t contain any heterogeneity of radical distribution, 
thus no heterogeneity of polarization. There is no substantive spin diffusion in such system. The ob-
served build-up time is thus following TB,source. The intrinsic longitudinal relaxation time doesn’t depend 
on the spinning rate, so neither the build-up time. Thus, the signal build-up follows: 

𝑆'RR	 𝑡, 𝜈 > 0 = εM+N',N'O	 ν 1 − eJ
Y
Z[,\]^_`a  

where we define εDepo,pol (ν) as 

𝜀M+N',N'O(ν) = 	
𝑃=,'RR	(𝜈 > 0)
𝑃=,'RR(𝜈 = 0) 	 

and 

𝑆'RR 𝑡, 𝜈 = 0 = 1 − eJ
Y
Zb,\]^_`a 
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The depolarization factor in this case becomes: 

𝜀M+N',OP- = 	
εM+N',N'O	 ν 1 − eJ

Y
Z[,\]^_`a

1 − eJ
Y
Z[,\]^_`a

= εM+N',N'O	 ν  

In other words: 

𝑆'RR	(𝑡, 𝜈 > 0)
𝑆'RR(𝑡, 𝜈 = 0) =

𝑃=,'RR	(𝜈 > 0)
𝑃=,'RR(𝜈 = 0)  

It means that, in a homogeneous system, when we can define the depolarization factor as the ratio of 
local equilibrium polarization factor instead of the ratio of signals. The main consequence is that we can 
assert that the depolarization factor doesn’t depend on time. 

For a heterogeneous system, the build-up is no longer mono-exponential since spin diffusion occurs. 
The depolarization factor theoretically depends on time, and be different from a simple ratio of local 
equilibrium polarizations as for a homogeneous system like a bulk a sample. We thus calculated the de-
polarization factor as a function of time for a system with typical values of diffusion coefficient and re-
laxation times: Dsource = Dtarget = 1.10–3 μm2s–1, T1,source = 3 s and T1,target = 30 s as shown in Figure S11. We 
see that the actual depolarization factor plotted on the right graph, which is the ratio of the signals, is 
quite close to the ratio of the local equilibrium polarizations (which is 0.5). In the main text, we assume 
that the ratio of signals is equal to the ratio of local equilibrium polarizations, as for a homogeneous sys-
tem. 

 
Figure S11. Left: Source signals without µwave irradiation in a 3D system as a function of the polariza-

tion delay without depolarization (P0,off = 1) and with depolarization (P0,off = 0.5). Right: Ratio of the 
signals of the left figure. In the simulation, L = 1 μm, T1,source = 3 s, T1,target = 30 s, ε0 = 150, Dtarget = Dsource 

= 1.10–3 μm2.s–1, PL = 0.2 μm, θmin = 1, and the border was 2 nm thick. 
 

Analogous observation is done for a system when the microwave irradiation is effective. We see that the 
ratio of the local equilibrium polarizations is quite close to the ratio of the signals. We assumed that 
both were equal for typical values of the relaxation times and diffusion coefficient. We note that if the 
relaxation time of the source and the target are in the same order of magnitude, this approximation will 
no longer be appropriate for a heterogeneous system.    
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Figure S12. Left: Source signals with and without µwave irradiation in a 3D system as a function of the 
polarization delay. Right: Ratio of the signals of the left figure (thus, the enhancement of the source as a 
function of the polarization delay). In the simulation, L = 1 μm, T1,source = 3 s, T1,target = 30 s, ε0 = 5, Dtarget 

= Dsource = 1.10–3 μm2s–1, PL = 0.2 μm, θmin = 1, and the border was 2 nm thick. 

We see in Figure S12 that the source enhancement can be considered as constant, which is in agreement 
with what we observe with the TCE or glycerol enhancement in the main paper. 

 

 

β factor of the stretched exponential fitting functions as a function of the length of the target: 

 

 

Figure S13. Values of β of the stretched exponential fitting function as a function of the length of the 
target for a spherically symmetric system. All simulations parameters are given in the result section of 

the main text. 
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SEM image of the ground Histidine powder: 

 
Figure S14. SEM image of the Histidine powder manually ground for 5 minutes in a mortar. 

 

Size distribution of EC lengths for the aquacoat study 

 
Figure S15. Left: Weibull distribution of EC lengths used for the simulation. Right: Comparison of the 

enhancements with and without a distribution of EC lengths. 
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Unground Histidine Powder polarized by Relayed DNP 

 
Figure S16. (a) 13C CPMAS DNP enhanced solid-state NMR spectra obtained at 105 K, B0 = 9.4 T and 

8 kHz MAS of microcrystalline histidine which was ground by hand for 5 minutes and impregnated 
with a solution of TCE containing TEKPol. (b) 13C CPMAS normalized signal build-up of the TCE 

peaks with and without microwave irradiation. Normalization was performed using the value of the sig-
nals at steady from a stretched exponential fit. (c) 13C CP DNP enhancement of TCE peaks as a function 

of the polarization delay. (d) Build-up of histidine peaks with and without microwave irradiation as a 
function of the polarization delay. (d) 13C CP DNP enhancement of histidine peaks as a function of the 
polarization delay. The histidine build-up points correspond to the average of the integrated areas of all 
the histidine 13C peaks. Error bars were calculated by propagation of error using the noise levels of the 

spectra acquired with and without microwave irradiation as the standard deviation. In Figures (d) and (e) 
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numerical simulations are overlapped for particle with spherical symmetry with: L = 7 μm, TB,source = 5 
ms, T1,target = 1038 s, Dtarget = 1,2.10–4 μm2s–1, Dsource = 3.10–5 μm2s–1, PL = 1 μm, and εDepo = 0.5. 

Why does the enhancement increase at early times for thick borders?  

dε
dt > 0 ⟺

d 𝑃ef
𝑃egg
dt > 0 ⟺

d𝑃ef
dt 𝑃egg −

d𝑃egg
dt 𝑃ef > 0 ⟺

𝐝𝑷𝑶𝑵
𝐝𝐭 (𝒕)
𝛆(𝐭) >

𝐝𝑷𝑶𝑭𝑭(𝒕)
𝐝𝐭  

The above shows that asserting that the enhancement increases with polarization time means that the 
polarization with μwaves on, scaled by the enhancement, builds up faster than the polarization without 
μwaves. This last condition has to be satisfied for any time during which the enhancement is increasing. 

To verify this condition for the thick border case, we plot in Figure S17 the polarizations with and with-
out μwaves in the target for a region next to the border for two early time points (1 and 2 seconds). We 
then scale the µwaves on polarizations by the average of the enhancement between 1 and 2 seconds (the 
enhancement is 42 at 1 s and 58 at 2 s so we choose to scale the polarization by 50). 

In this way we see that the polarization has increased relatively more in presence of μwaves than with-
out μwaves (see Figure S17a). This thus satisfies the condition above for the thick border case. In the 
thin border case, the polarization increases more without μwaves than with μwaves, and the condition is 
not fulfilled: the enhancement decreases at early times. 
 
The fact that the target polarization increases more rapidly with than without μwaves in the thick border 
case comes from the fact that a small region of the target also contains sources. Since the border is thick, 
the hyperbolic secant functions are broad enough to overlap significantly with the target region. When 
polarization builds up in this target region, relatively more polarization diffuses out of the region by spin 
diffusion in the μwaves off than μwaves on case (since longitudinal relaxation reduces diffusion in the 
μwaves on case, and enhances diffusion in the μwaves off case). Consequently, at a given time, a larger 
part of the polarization is present outside this region in the μwaves off case than in the μwaves on case. 
Thus, the overall build-up is slower without than with microwaves.  

 
Figure S17. Simulated polarization curves as a function of the position in the target, in the volume next 
to the border with the source (the border is at 1 µm on this scale). The plotted polarizations correspond 
to the polarization at 1 and 2 seconds after saturation in absence of microwaves (POFF, red) and in pres-
ence of microwaves (PON, blue) in the (a) thick border and (b) thin border cases. The polarizations with 
microwaves were scaled down by the enhancement since the actual hyperpolarization value is much 
higher than 1, since the DNP effect is occurring. The system was considered to have a spherical sym-
metry, T1,source = 100 ms, T1,target = 100 s, Dsource = Dtarget = 10–3 μm2s–1, PL = 1 μm, P0,ON = 100 and εDepo = 1. 
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Definition of Characteristic diffusion length and characteristic diffusion time. 
 

The Fick diffusion equation for the spin-diffusion process is defined as: 

pq H,Y
pY

= 𝐷 𝑥 ∙ ∆𝑃 − q H,Y Jqt H
Zb H

  (1) 

where x is the position vector distance from the border between source and target, t is the time (0 < t < 
∞), P is the instantaneous polarization, P0 is the local equilibrium polarization, D is the diffusion rate at 
position x, T1 is the longitudinal relaxation time at position x, and ∆𝑃	is the Laplacian. 

The detailed expression of the Laplacian depends on the geometry of the system to be investigated. In 
the main text we are analysis three different geometries corresponding to linear, cylindrical and spheri-
cal symmetry. In all of these descriptions only one of the three coordinates is relevant since, for example 
in a system with spherical symmetry, the polarization function P does not explicitly depend in the angu-
lar coordinates (q, f), but only in the radial coordinate. 

In these cases, the Fick equation can be written as equation (2): 

pq u,Y
pY

= 𝐷 𝑟 ∙ 𝑟"JE p
pu

𝑟EJ" pq u,Y
pu

− q u,Y Jqt u
Zb u

 (2) 

where r is the relevant “radial” coordinate and m is parameter that describes the symmetry of the sys-
tem. For the spherical symmetry we have m = 3, in cylindrical coordinates m = 2 and for the planar 
symmetry m = 1. In the latter case the Fick equation has the same expression as the mono dimensional 
linear diffusion.  

If we consider a domain (source or target) sufficiently homogenous to reasonably assume that the diffu-
sion constant D and the relaxation time T1 are uniform constant with the domain, it becomes convenient 
to describe eq. (2) introducing two modified variables: the characteristic diffusion length r, 

𝜌 = u
xZb

 (3a) 

and the characteristic diffusion time t, 

𝜏 = Y
Zb

  (3b) 

In these variables equation (2) becomes the following characteristic equation: 

pq z,{
p{

= 𝜌"JE p
pz

𝜌EJ" pq(z,{)
pz

− 𝑃 𝜌, 𝜏 −𝑃= 𝜌  (4) 

which does not depend anymore on the D and T1 constants, since these are implicitly included in the 
characteristic variables. Whatever will be the specific solution of eq. (4), it is thus possible to find a 
general solution, independent from D and T1, and to analyze the behavior in terms of the characteristic 
length and time. In any investigated systems we expect to have different behaviors if r, t >> 1 or r, t  
<< 1: 

𝜌 ≪ 1,					𝑟 ≪ 𝐷𝑇"  (5a) 

and   

𝜌 ≫ 1,					𝑟 ≫ 𝐷𝑇"  (5b) 
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Equations (5) can be extended for a system where D and T1 are not a constant but a function of the posi-
tion defining characteristic diffusion length and time on the bases of the average values inside the do-
main: 

𝜌 ≪ 1,					𝑟 ≪ 𝐷 𝑇"    (6a) 

and   

𝜌 ≫ 1,					𝑟 ≫ 𝐷 𝑇"   (6b) 

which is the definition reported in the main text. 

Solution for the linear case  
As an example of the meaning of the characteristic length we report here the analytic solution for the 
linear diffusion. The equation for linear diffusion can be derived from equation (2) using m = 1, and we 
assume D, T1, as well as the equilibrium polarization P0, constant inside the target volume: 

pq u,Y
pY

= 𝐷 ∙ p
~q u,Y
pu~

− q u,Y Jqt
Zb

  (7) 

If we call: 

𝑃 𝑟, 𝑡 −𝑃= = 𝑃′ 𝑟, 𝑡   (8) 

we have: 

pq� u,Y
pY

= pq u,Y
pY

  (9a) 

p~q� u,Y
pu~

= p~q u,Y
pu~

  (9b) 

with these conditions, the equation (7) become: 

pq� u,Y
pY

= 𝐷 ∙ p
~q� u,Y
pu~

− q� u,Y
Zb

  (10) 

and for the steady state (homogenous equation), equation (10) becomes: 

𝐷 ∙ p
~q� u,Y
pu~

− q� u,Y
Zb

= 0  (11) 

It can be seen that the general solution for equation (11) is: 

𝑃� 𝑟,∞ = 𝐴	𝑒
_
��b + 𝐵𝑒

J _
��b = (𝐴 + 𝐵) cosh u

xZb
+ (𝐴 − 𝐵)sinh u

xZb
  (12) 

and the steady-state polarization 𝑃 𝑟,∞  is: 

𝑃 𝑟,∞ = 𝐴	𝑒
_
��b + 𝐵𝑒

J _
��b + 𝑃= = 𝐴 + 𝐵 cosh u

xZb
+ 𝐴 − 𝐵 sinh u

xZb
+ 𝑃=  (13) 

where A and B constants are determined from the boundary conditions. 

We can see that the radial dependence r is scaled by the term 𝐷𝑇" as expected form the characteristic 
diffusion length. Equation (12) is in fact a function of the characteristic length r (eq. 3a), which make 
possible to generalize the behavior for samples with different D and T1. 
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Analytic solution for the 𝜺𝒕𝒂𝒓𝒈𝒆𝒕,� for linear and spherical symmetry. 
Linear symmetry 

The Fick equation for the linear symmetry in the steady state limit assuming D and T1 constant, and the 
equilibrium polarization P0 being equal to 1 inside the target volume, is:  

𝐷 ∙ p
~q u,Y
pu~

− q u,Y J"
Zb

= 0  (14) 

It is convenient to set the center of the target domain as the origin of the r coordinates (Figure S18a), in 
this condition we can find that solution of the Fick equation is: 

 

𝑃 𝑟,∞ = q\]^_`aJ"

*'&� �
~ ��b

cosh u
xZb

+ 1  (15) 

where 𝑃𝑠𝑜𝑢𝑟𝑐𝑒 is the source polarization, L is the total length of the target. As boundary conditions we 
assumed that at the border between target and source (𝑟 = ± 8

�
	) the steady state polarization is 

𝑃 ± 8
�
,∞ = 𝑃�>�u��.  

We also assume that, in absence of microwave 𝑃&'()*+,��� = 1, which means that don’t take into ac-
count depolarization phenomena. As a consequence, 𝑃&'()*+,�� = ε&'()*+. In these conditions, by inte-
grating the equation (15) along the target length, we obtain the enhancement 𝜀𝑡𝑎𝑟𝑔𝑒𝑡,∞ as: 
 

𝜀𝑡𝑎𝑟𝑔𝑒𝑡,∞ = 1+ 𝜀𝑠𝑜𝑢𝑟𝑐𝑒 − 1
2 𝐷𝑇1
𝐿 tanh 𝐿

2 𝐷𝑇1
  (16) 

This is the general solution of Fick’s equation in a linear symmetry. 

Cylindrical symmetry 

The Fick equation for the cylindrical symmetry in the steady state limit and assuming D, T1, and the 
equilibrium polarization P0, being equal to 1 inside the target domain volume is:  

   𝐷 ∙ p~q u,Y
pu~

+ "
u
pq u,Y
pu

− q u,Y J"
Zb

= 0  (17) 

It is convenient to set the center of the cylindrical target domain as the origin of the r coordinates (Fig-
ure S18a), in this condition we can find that solution of the Fick equation is: 

𝑃 𝑟,∞ = q\]^_`aJqt
¢t

�
��b

𝐼=
u
xZb

+ 𝑃=   (18) 

where 𝑃𝑠𝑜𝑢𝑟𝑐𝑒 is the source polarization, L is the length of the target cylinder and 𝐼= 𝑥  is the modified 
Bessel function of the zero order. As boundary conditions we assume that at the border between target 
and source (𝑟 = 𝐿	) the polarization is 𝑃 𝐿,∞ = 𝑃�>�u��.  

We also assume that, in absence of microwave 𝑃�>�u��,egg = 1, which means that don’t take into ac-
count depolarization phenomena. As a consequence, 𝑃&'()*+,�� = ε&'()*+. In these conditions, by inte-
grating the equation (18) along the target length, we obtain the enhancement 𝜀𝑡𝑎𝑟𝑔𝑒𝑡,∞ as: 
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𝜀𝑡𝑎𝑟𝑔𝑒𝑡,∞ = 1+ 𝜀𝑠𝑜𝑢𝑟𝑐𝑒 − 1
2 𝐷𝑇1
𝐿

𝐼1
𝐿
𝐷𝑇1

𝐼0
𝐿
𝐷𝑇1

  (19) 

where 𝐼= 𝑥  and 𝐼" 𝑥  are the modified Bessel function of the zero and first order, respectively. This is 
the general solution of Fick’s equation in a cylindrical symmetry. 

 

Spherical symmetry 

The Fick equation for the spherical symmetry in the steady state limit assuming D and T1 constant, and 
the equilibrium polarization P0 being equal to 1 inside the target volume, is:  

𝐷 ∙ p~q u,Y
pu~

+ �
u
pq u,Y
pu

− q u,Y J"
Zb

= 0  (20) 

It is convenient to set the center of the target domain as the origin of the r coordinates (Figure S18b), in 
this condition we can find that solution of the Fick equation is: 

𝑃 𝑟,∞ = q\]^_`aJ"

&PC� �
��b

8
xZb

&PC� _
��b

u
+ 1  (21) 

where 𝑃𝑠𝑜𝑢𝑟𝑐𝑒 is the source polarization, L is the total radius of the target sphere. As boundary condi-
tions we assume that at the border between target and source (𝑟 = 𝐿	) the polarization is 𝑃 𝐿,∞ =
𝑃�>�u�� which means a thin border and a high diffusion rate inside the source domain.  

We also assume that, in absence of microwave 𝑃&'()*+,��� = 1, which means that don’t take into ac-
count depolarization phenomena. As a consequence, 𝑃&'()*+,�� = ε&'()*+. In these conditions, by inte-
grating the equation (21) along the target volume, we obtain the enhancement 𝜀𝑡𝑎𝑟𝑔𝑒𝑡,∞ as: 
 

𝜀𝑡𝑎𝑟𝑔𝑒𝑡,∞ = 1+ 𝜀𝑠𝑜𝑢𝑟𝑐𝑒 − 1
3 𝐷𝑇1
𝐿 coth 𝐿

𝐷𝑇1
−

𝐷𝑇1
𝐿   (22) 

This is the general solution of Fick’s equation in a spherical symmetry. 

Enhancement equations 

The comparison of the 𝜀YGu¥�Y,� for different symmetries is more appropriate if we compare targets of 
radius L in the spherical and cylindrical symmetries with targets of length 2L for the linear symmetry. 
The equations for 𝜀YGu¥�Y,� become: 

Linear symmetry  

𝜀YGu¥�Y,� = 1 + 𝜀�>�u�� − 1
xZb
8
tanh 8

xZb
  (23) 

Cylindrical symmetry  

𝜀YGu¥�Y,� = 1 + 𝜀�>�u�� − 1
� xZb
8

¢b
�
��b

¢t
�
��b

  (24) 

Spherical symmetry  
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𝜀YGu¥�Y,� = 1 + 𝜀�>�u�� − 1
K xZb
8

coth 8
xZb

− xZb
8

  (25) 

We can plot the enhancement as a function of L for D = 10-3 µm2s-1 and T1 = 40 s, we obtain: 

 

where we notice that going towards a spherical symmetry, enhancement increases. Mathematically, this 

is explained by the increasing number m in the factor E xZb
8

 in the middle of the previous equations. The 
physical reason for this different trend is because the different symmetries have different ratio between 
the polarizing surface (S) in contact with the source, and the target volume to be polarized (V). This ra-
tio is ¦

§
= 	E

8
, with m = 1, 2, 3, for linear, cylindrical and spherical case, respectively, and L is the size. 

This means that for the same size, the spherical case has more polarizing surface for unit of volume, 
which explains the increasing hyperpolarization and enhancement. 
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Figure S18. Coordinates Frame reference for equations used in the linear and spherical symmetry de-
scription.  
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Diffusion rate profile as a function of position, close to the electron location 

 

Figure S19. Simulated diffusion rate profile as a function of the position, close to the electron location.  

The profile shown in Figure S19 is the one used for the simulations of the main text. Another model 
where the diffusion rate was kept constant at 10–3 μm2.s–1 as a function of the position, and gave slightly 
worse fit, with only slightly different T1s, as shown in the following. 
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Figure S20. Experimental 1H build-up time TB as a function of the concentration of TEKPol in a frozen 
solution of TCE at 105 K, with 8 kHz sample spinning recorded on a 500 MHz spectrometer, using satu-
ration recovery and determined using a mono exponential fit. All samples were degassed using 5 insert-
eject cycles prior to measurement to minimize additional paramagnetic relaxation due to dissolved oxy-
gen.3 The solid blue line is the result of a numerical simulation for a source and target according to Fig-

ure 2a of the main text for which at each concentration the build-up was simulated and then fit to a 
mono exponential. In the simulations, the system was assumed to be three-dimensional. T1,VSD was 

measured to be 27 s (in pure TCE). The size of the volumes VQ and VP were determined by fitting to be 
both 3.8 ± 0.1Å. T1,VQ and T1,VP were determined by fitting to be 50 ± 10 ms and 30 ± 10 ms respectively. 
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