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Summary 

Krüppel-associated box domain zinc finger proteins (KZFPs) are the largest 

family of transcriptional regulators encoded by higher vertebrates. 

Characterized by an N-terminal KRAB domain and a C-terminal array of DNA-

binding zinc fingers, KZFPs are encoded in the hundreds by the human genome, 

and participate, together with their cofactor KAP1, in repressing sequences 

derived from transposable elements during the epigenetic reprogramming that 

takes place in the first few days of embryogenesis. TEs likely account for more 

than two thirds of the human genome, and this so-called endovirome is 

considered both as a genomic threat and an important motor of evolution. Until 

recently, the KZFP/KAP1-mediated repression of the endovirome was thought to 

lead to irreversible silencing, and the evolutionary selection of KZFPs was taken 

as the host component of an arms race against transposable elements. Recent 

advances partly invalidate this view, and indicate that KZFPs and their TE targets 

partner up to establish species-specific regulatory networks that influence 

multiple aspects of vertebrate development and physiology.  
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Introduction 

All biological events are regulated by complex transcriptional networks, from the 

self-renewal of pluripotent embryonic stem cells to the making of a neuron, and 

from the activation of a lymphocyte meeting its antigen to the fine-tuning of 

glycemia on fat and lean days alike. Keys to this process are the interactions of 

transcription factors with cis-acting genomic sequences and their modulation by 

epigenetic modifications of the DNA and protein constituents of the chromatin. 

Almost 70 years ago, Barbara McClintock proposed that part of these regulatory 

DNA sequences lay in mobile genetic elements (McClintock, 1950), and twenty 

years later Roy Britten and Eric Davidson outlined that the repetitive nature of 

these genetic invaders might explain how multiple changes in gene activity can 

so remarkably result from a single initiatory event (Britten and Davidson, 1969). 

Nevertheless, transposable elements (TEs) were long considered mostly as 

genetic threats in need of the strictest silencing, and were otherwise dismissed 

as purely selfish or junk DNA (Doolittle and Sapienza, 1980). The sequencing of 

the human genome at the dawn of the century changed this view, and it is 

increasingly recognized that TEs are crucial components of transcriptional 

regulatory networks that play essential roles not only in the evolution but also 

the biology of most organisms.    

Ancestral RNA interference mechanisms, based on various forms of small RNAs, 

play an important role in silencing TEs in the germ line (reviewed in(Friedli and 

Trono, 2015)). However, while these can be subjected to some dynamic 

modulation, a protein-based system is much more amenable to all kinds of 

regulation, hence would seem better suited for exploiting fully the 

transcriptional modulatory power of the endovirome. Recent work indicates that 

Krüppel-associated box domain zinc finger proteins (KZFPs), which fulfill such 

requirement, control transposable elements in higher vertebrates, and as such 

exert key influences on the biology of these organisms, including humans. 

KZFP genes first emerged more than 400 million years ago, and are now encoded 

in the hundreds by all examined modern tetrapods, with the notable exception of 

birds, where they are much fewer (Emerson and Thomas, 2009, Liu et al., 2014, 



 

 4

Imbeault et al., 2017, Kauzlaric et al., 2017)}.  Their protein products are 

characterized by an N-terminal Krüppel-associated box (KRAB) domain and a C-

terminal array of C2H2 zinc fingers (ZNF) (Urrutia, 2003). In spite of their 

numerical abundance, the functions of KZFPs have long remained ill defined, 

although cumulated data implicated some of them in processes as diverse as 

imprinting, cell differentiation, metabolic control and sexual dimorphism 

(reviewed in(Lupo et al., 2013)). The picture changed when their KRAB-binding 

cofactor KAP1/TRIM28 was demonstrated to be essential for the early 

embryonic repression of transposable elements in both mouse and human, and 

when a few individual KZFPs could be linked to this function as well (Wolf and 

Goff, 2007, Wolf and Goff, 2009, Wolf et al., 2015, Rowe et al., 2013a, Jacobs et al., 

2014). It then became suspected that the primary role of KZFPs was to silence 

TEs, and that their evolutionary selection represented the host component of an 

arms race against these genetic invaders. Recent data, while partly validating 

this view, reveal that KZFPs fulfill a role that is far more elaborate, as the 

instruments of a massive enterprise of TE domestication for the benefit of the 

host (Ecco et al., 2016, Imbeault et al., 2017).  

In this primer, after a brief presentation of the endovirome, we sum up our 

current understanding of the KZFP family. We discuss its evolution, its role in 

controlling TEs, and how the selection of both TEs and KZFPs represents a 

dynamic partnership generating largely species-specific transcriptional 

networks that likely influence most aspects of human biology.  

Transposable elements and their genomic impact 

TEs can be classified according to their transposition mechanism, overall genetic 

structure and phylogenesis (Box 1). Most TEs present in the human genome are 

retroelements, whether endogenous retroviruses (HERV, or LTR- long terminal 

repeat- retrotransposons) or non-LTR-retrotransposons of the LINE, SINE 

(which include Alu) and SVA subgroups. All retroelements spread via a copy-

and-paste mechanism leading to their amplification.  Some 5 million sequences 

derived from TEs can be readily identified in the human genome. This 

endovirome accounts for a readily recognizable 50% of our DNA, but since TEs 
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become unrecognizable over time due to mutational drifting, it is likely that this 

represents an underestimate of their contribution to our genetic make up. TEs 

fuel genetic diversity but can induce deleterious mutations responsible for 

disease, although less than 1 out of 10’000 human TE is still capable of 

transposition (about 100 LINEs, 1,000 Alus and a few tens of SVAs). Yet a far 

greater proportion can alter gene expression, as TEs can bear promoters, 

enhancers, repressors, insulators, splice sites or transcriptional stop signals  

(Figure 2). Accordingly, they can disrupt genes (via alternative splicing, 

truncation or insertion of new exons) or modify their expression (via promoter, 

enhancer or repressor effects). Owing to their highly repetitive nature, TEs also 

lay the ground for recombination events that can lead to deletions, duplications, 

rearrangements or translocations. Finally, they can alter genome architecture via 

insulator sequences or by nucleating short- and long-range chromatin 

interactions, or provide entirely novel open reading frames (reviewed in(Friedli 

and Trono, 2015, Rebollo et al., 2012b, Warren et al., 2015). Consistent with their 

disruptive potential, TEs are counter-selected when inserted inside genes, 

notably in the sense orientation (Zhang et al., 2011, Medstrand et al., 2002).  

Pathologies associated with new TE insertions or other types of deregulation 

include cancers, hemophilia, muscular dystrophy and other congenital or 

acquired human diseases (reviewed in(Ayarpadikannan et al., 2015, Hancks and 

Kazazian, 2012, Mager and Stoye, 2015). Most TE-associated human disorders 

are related to non-LTR retrotransposons. A known cause of breast cancer is the 

insertion of a primate-specific Alu SINE into the BRCA1/2 genes (Miki et al., 1996, 

Puget et al., 1999), and cases of hemophilia A and B are associated with 

insertional mutations of LINE-1 or Alu elements into genes coding for the 

corresponding coagulation factors (Kazazian et al., 1988, Li et al., 2001).  LTR 

retrotransposons have also been associated with some diseases, especially 

cancer, as ERV transcripts are upregulated in some tumors and there are reports 

of LTRs driving oncogene expression in human lymphomas (Lamprecht et al., 

2010, Romanish et al., 2010). In mouse, many LTR elements are transcriptionally 

proficient and ERVs related to MMTV (mouse mammary tumor virus) and MLV 

(mouse leukemia virus) can cause cancer via activation of proto-oncogenes 
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(Rosenberg and Jolicoeur, 1997). Finally, expression of ERV proteins can be 

detrimental to the host and might be associated with autoimmune diseases such 

as systemic lupus erythematosus in mice and multiple sclerosis in humans 

(Baudino et al., 2010, Antony et al., 2011). 

However, it is on an evolutionary scale that the impact of transposable elements 

is best appreciated. TEs sprinkle the genomes of their host species with binding 

sites for transcription factors, which can then contribute to species-restricted 

phenotypes (reviewed in(Thompson et al., 2016)). For instance mammals 

generally produce amylase in the pancreas, yet primates release this enzyme in 

saliva too, owing to the insertion upstream the amylase coding sequence of a 

HERV-E LTR driving expression in salivary glands (Samuelson et al., 1996, Ting 

et al., 1992). Many other cases of LTR promoter exaptation have been 

documented, generally resulting in new or altered tissue-specificity for cellular 

genes (Cohen et al., 2009, Stavenhagen and Robins, 1988, Rebollo et al., 2012a). 

Examples of TE-based species-specific enhancers also abound, and in mammals 

include MER130 elements acting as neocortex-specific units, a SINE integrant 

functioning as a distal enhancer of Fgf8 in the diencephalon, RLTR13D5 ERVs co-

opted as placenta-specific enhancers, and the MER41-mediated dispersion of 

interferon-responsive elements in primates (Notwell et al., 2015, Nakanishi et al., 

2012, Chuong et al., 2013). Retroelements also contribute to embryonic stem 

cells (ESC) regulatory networks, as many binding sites for pluripotency factors 

(such as Oct4 and Nanog) reside within primate- or human-specific ERVs in the 

human genome, and LTR elements are implicated in the regulation of specific 

genes in early embryogenesis (Bourque et al., 2008, Fort et al., 2014b, Macfarlan 

et al., 2012, Peaston et al., 2004). TEs further correlate with p53 recruitment, 

with more than one third of the genomic targets of this tumor suppressor 

overlapping with primate-specific ERVs (Wang et al., 2007). 

Finally, ERV-derived proteins can themselves be sources of genetic diversity, as 

illustrated in placental mammals where formation of the syncytiotrophoblast, a 

placenta layer with extensive cellular fusion, is mediated by the ERV envelope-

derived syncytins (Mi et al., 2000, Dupressoir et al., 2009, Dupressoir et al., 

2011). Interestingly, across mammals, these proteins derive from the env gene of 
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distinct groups of ERVs, indicating convergent evolution with multiple and 

independent events of ERV co-option (Lavialle et al., 2013).  

The impact of the endovirome on the evolution and biology of complex 

organisms is thus enormous, yet it would be likely far more limited were it not 

for host-encoded activities capable of modulating its influences. In higher 

vertebrates, this is a function notably accomplished by KRAB zinc finger 

proteins.  

The make up of a KRAB zinc finger protein 

KZFPs are characterized by the presence of a KRAB domain and an array of C2H2 

zinc fingers (Figure 3). The KRAB domain encompasses approximately 75 amino 

acids often split in two modules, the A-box – primarily responsible for repressive 

activity - and the B-box – thought to potentiate KRAB-A effectiveness (Bellefroid 

et al., 1991, Mannini et al., 2006, Witzgall et al., 1994). The repressor activity of 

KZFPs stems from the KRAB-mediated recruitment of KAP1 (KRAB-associated 

protein 1, also known as TRIM28 –tripartite motif protein 28-, Tif1β or KRIP-1) 

(Friedman et al., 1996), a scaffold protein that recruits mediators of 

heterochromatin formation (Iyengar and Farnham, 2011). 

The C-terminal C2H2 ZNF arrays of KZFPs are tandem repeats of the CX2-

4CX12HX2–6H motif (where X is any amino acid) interspaced by seven residue-

long linkers (Iuchi, 2001). Human KZFPs harbor from 2 to more than forty ZNFs, 

for an average of 12 (Urrutia, 2003). Each zinc finger can theoretically interact 

with 3 nucleotides of the primary DNA strand via amino acids at positions -1, 3, 

and 6 of the C2H2 helix, with some contacts established with the secondary 

strand via amino acid 2. KZFP genes display signs of strong positive selection at 

codons encoding for these positions, consistent with interactions of their 

products with DNA targets themselves capable of rapid evolution, such as 

transposable elements or viruses (Emerson and Thomas, 2009). While the length 

of many KZFP ZNF arrays should allow for a very high degree of specificity in the 

recognition of long DNA targets, KZFP binding motifs are usually shorter than 

predicted, suggesting that some ZNFs rather engage in other types of 



 

 8

interactions, for instance with RNA or proteins (Najafabadi et al., 2015, Imbeault 

et al., 2017, Schmitges et al., 2016). 

Some highly conserved KZFPs contain additional elements in their N-terminus, 

such as SCAN or DUF3669 domains. The vertebrate-specific SCAN can mediate 

oligomerization notably with other SCAN-containing proteins (Honer et al., 

2001), whereas the function of the DUF3669 domain remains largely unknown, 

as indicated by its acronym (Domain of Unknown Function).  

Genomic targets of human KZFPs 

The genomic targets of a large fraction of human KZFPs were cumulatively 

characterized through three recent studies using chromatin 

immunoprecipitation followed by deep sequencing (ChIP-seq) and tagged 

proteins overexpressed in 293T cells as baits (Najafabadi et al., 2015, Imbeault et 

al., 2017, Schmitges et al., 2016). Our lab succeeded in identifying the genomic 

targets of 222 human KZFPs (Imbeault et al., 2017). In line with the other two 

studies, we found that a great majority of human KZFPs associate with at least 

one subfamily of transposable elements, most of them retrotransposons. Some 

KZFPs bound sequences in different TE families (e.g. HERVs and LINEs), 

although usually with variable affinities. Conversely, many TE subfamilies were 

recognized by several KZFPs, which most often targeted clearly distinct regions 

of their integrants. Illustrative of this situation, HERVH-int sequences could 

recruit, from 5’ to 3’, ZNF90, ZNF534, ZFP69B and ZNF257. Interestingly ZNF90 

and ZNF534, which bound in very close proximity around the PBS (primer 

binding site)-coding sequence of HERVH, were often found on the same 

proviruses, whereas ZFP69B and ZNF257, which recognized sequences located 

further downstream, were largely mutually exclusive. As well, primate-specific 

L1PA integrants could be bound, from 5’ to 3’, by various combinations of 

ZNF141, ZNF649, ZNF765, ZNF93, ZNF382, ZNF17, ZNF425 and ZNF248. 

Interestingly, the age of these elements influenced their pattern of KZFP 

recruitment. L1PA4s, which are approximately 20 million year old (myo), were 

recognized by many of these KZFPs. In contrast, most human-specific L1Hs were 

devoid of binding sites for factors recruited near the L1 promoter, such as ZNF93 
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(~20 myo), ZNF649 (~105 myo), ZNF765 (~7 myo) and ZNF141 (~43 myo). 

However, 3’ binders such as ZNF382, ZNF84 (both ~105 myo) and ZNF429 (~29 

myo) bound a significant fraction of all L1PA integrants, from the ~40 myo 

L1PA16 to the youngest L1Hs (Imbeault et al., 2017).  

About a third of the tested human KZFPs did not significantly associate with TEs, 

and were instead recruited to other types of genomic targets such as promoters, 

simple repeats and poly-zinc finger protein genes. Many of the promoter-binding 

KZFPs are evolutionary conserved and contain SCAN or DUF3669 domains; most 

do not recruit KAP1, and are of yet unknown function. Some associated with 

wide arrays of promoters, for instance ZNF202, which was found binding in the 

vicinity of several thousand TSS. Others bound to some promoters in a 

combinatorial fashion, ranging from the overlapping binding sites of the 

evolutionary conserved DUF3669-containing ZNF282 and ZNF398 to KZFP 

couples binding at variable distances from each other (ZNF282 and ZNF777, 

ZNF282 and ZNF202, ZNF534 and ZNF202, ZKSCAN2 and ZNF263) (Imbeault et 

al., 2017). 

ZNF75D and ZNF274 both associated with the 3’ region of poly-zinc finger 

protein genes, where they recognized conserved and partly overlapping motifs 

within the proximal part of ZNF-encoding sequences. This resulted in their 

spatially rhythmic recruitment over these gene targets, 75 of them for ZNF274, 

which was previously identified as responsible for tethering KAP1 to the 3’ end 

of a subset of zinc finger genes (Frietze et al., 2010), and around 300 for ZNF75D, 

which recognizes a shorter binding motif and was also found at thousands of 

other genomic locations. Interestingly, ZNF75D has a paralogue in human and 

many other mammals, ZNF75A, which harbors the same zinc finger signature 

and is therefore expected to bind the same sequences. 

Biological impact of KZFPs 

KAP1 binding has been confirmed for a sizeable fraction of human and murine 

KZFPs (Schmitges et al., 2016) (and our unpublished data). KAP1 acts as as a 

scaffold for a silencing complex that comprises the histone methyltransferase 
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SETDB1 (also known as ESET) (Schultz et al., 2002), the nucleosome remodeling 

and deacetylation (NuRD) complex (Schultz et al., 2001), heterochromatin 

protein 1 (HP-1) (Nielsen et al., 1999, Sripathy et al., 2006) and DNA 

methyltransferases (Quenneville et al., 2012) (Figure 4). Accordingly, many 

KZFPs act as transcriptional repressors via the KAP1-nucleated induction of 

heterochromatin and, in early embryonic cells, DNA methylation (Wolf and Goff, 

2009, Quenneville et al., 2012, Rowe et al., 2013a, Jacobs et al., 2014, Najafabadi 

et al., 2015, Ecco et al., 2016, Schmitges et al., 2016, Imbeault et al., 2017). 

However, not all KZFPs bind KAP1, and the interactome of more ancient human 

family members, notably those endowed with SCAN or DUF3669 domains, 

reveals associations with other types of proteins, including transcriptional 

activators (Schmitges et al., 2016) (and our unpublished data). 

KZFPs have roles in different biological contexts (Box 2), but the best-

characterized function of these proteins is the locus-specific induction of 

heterochromatin during early embryogenesis via the KRAB-mediated 

recruitment of KAP1.  At imprinting control regions, where a methylated 

hexanucleotide is recognized in mouse and human by ZFP57, this results in the 

trans-generational preservation of imprinting (Quenneville et al., 2011, Li et al., 

2008a, Strogantsev et al., 2015). At sequences derived from transposable 

elements, this allows for the taming of transcriptional influences that would 

otherwise hamper early development, from zygotic genome activation to the 

establishment and normal differentiation of pluripotent stem cells (Rowe et al., 

2010, Matsui et al., 2010, Rowe et al., 2013b, Turelli et al., 2014, Macfarlan et al., 

2012). KZFPs display exquisitely regulated patterns of expression during the 

first few days of embryogenesis in both human and mouse, mirroring the tightly 

orchestrated transcription of TE-containing loci during this period (Corsinotti et 

al., 2013, Theunissen et al., 2016, Macfarlan et al., 2012, Fort et al., 2014a, Gifford 

et al., 2013, Goke et al., 2015, Grow et al., 2015, Kunarso et al., 2010, Xue et al., 

2013, Yan et al., 2013), and removal of KAP1 or its partner histone 

methyltransferase SETDB1 in murine or human embryonic stem cells activates 

the expression of multiple TEs (Matsui et al., 2010, Rowe et al., 2010, Turelli et 

al., 2014). ZFP809, a murine-specific KZFP, was demonstrated early on to silence 
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exogenous MLV in embryonic carcinoma cells through recognition of the 

provirus primer binding site-coding sequence (Wolf and Goff, 2007, Wolf and 

Goff, 2009). Curiously, depletion of ZFP809 in the mouse leads to de-repression 

of MLV-related ERVs in adult tissues, but not in ES cells (Wolf et al., 2015). While 

functional data on the role of individual human KZFPs during this period are still 

missing, it is noteworthy that HERVH integrants, which appear to play an 

important role in human ES cells pluripotency, are recognized by several KZFPs, 

the levels of which change during the switch of these cells from naïve to primed 

state (Theunissen et al., 2016). Other KZFPs controlling TEs in ES cells are ZNF91 

and ZNF93, which respectively repress SVAs and LINE-1 (Jacobs et al., 2014), 

and the murine paralogs ZFP932 and Gm15446, which regulate ERVKs (Ecco et 

al., 2016). It is now established that, by controlling TEs, the KZFP/KAP1 complex 

ensures the transcriptional homeostasis and normal differentiation of embryonic 

stem cells. Upon KAP1 or KZFPs depletion in ES cells, repressive chromatin 

marks at TEs are replaced by active histone modifications typically found on 

enhancers, and nearby genes can become activated (Rowe et al., 2013b, Jacobs et 

al., 2014, Turelli et al., 2014, Ecco et al., 2016). 

Until recently, it was generally believed that most TEs are irreversibly silenced 

during this period, alleviating the need for subsequent sequence-specific control 

including by the KZFP/KAP1 system (Maksakova et al., 2008, Walsh et al., 1998). 

However, recent evidence proves otherwise. First, deep transcriptome analyses 

indicate that some TE loci can be transcriptionally active in adult tissues, 

providing alternative promoters or fulfilling other regulatory functions 

(Faulkner et al., 2009, Belancio et al., 2010). Second, a significant fraction of TEs 

bound by KAP1 in human ES cells still carries the co-repressor in mature T 

lymphocytes (Turelli et al., 2014). Third, KAP1 deletion in neuronal progenitors 

activates some EREs (Fasching et al., 2015), and selected ERVs are similarly 

induced in murine B-lymphocytes or mouse embryonic fibroblasts (MEFs) 

depleted for SETDB1 (Collins et al., 2015, Wolf et al., 2015). Correspondingly, 

human KZFPs display extensive and cell-specific patterns of expression in all 

adult tissues examined (Imbeault et al., 2017). Furthermore, the mouse-specific 

paralogs ZFP932 and Gm15446 are also involved in controlling their TE targets 
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in somatic tissues, where they modulate the TE-mediated regulation of 

neighboring genes, including in vivo (Ecco et al., 2016). More broadly, by 

comparing KZFP binding sites with the ENCODE database, we observed 

significant overlap between the TE targets of a number of human KZFPs and the 

binding regions of other transcription factors such as YY1, CEBPZ, GATA3, 

FOXA1, and STAT1 (Imbeault et al., 2017). Finally, by examining the chromatin 

state of KZFP-bound TEs in a subset of these tissues, we found that a significant 

fraction could display a cell-specific enrichment of activation marks instead of 

those associated with repressive heterochromatin. Moreover, in these cases, 

nearby genes were on average expressed at higher levels, consistent with KZFP-

controlled, TE-based enhancer effects on these genes (Imbeault et al., 2017). 

Considering the limited scope of this type of analysis, which can detect neither 

long range effects nor trans acting influences by TE-derived regulatory RNAs, 

and the fact that chromatin data were available only for a few cell types, it is very 

likely that the KZFP-mediated control of TEs impacts on the physiology of an 

extremely broad range of developing and adult tissues. This is consistent with 

data obtained through the conditional knockout of Kap1 in the mouse, which 

revealed that the master regulator partakes in processes as diverse as the 

management of behavioral stress, the differentiation of erythroid precursors, the 

maturation and activation of B- and T-lymphocytes and the metabolism of 

hormones and xenobiotics in the liver (Jakobsson et al., 2008, Barde et al., 2013a, 

Santoni de Sio et al., 2012a, Santoni de Sio et al., 2012b, Bojkowska et al., 2012, 

Chikuma et al., 2012).  

The evolutionary path towards human KZFPs 

A survey of more than 200 vertebrate genomes reveals that KZFP genes first 

appeared in an early Devonian common Sarcopterygian precursor of African 

coelacanth, lungfish and tetrapods, some 420 million years ago (Imbeault et al., 

2017). The genomes of all analyzed modern species derived from this ancestor 

contain several hundreds of KZFP genes, except for birds in which they are 

scarce. All 300 or so KZFP genes found in coelacanth seem mono-exonic, whereas 

in all other species the KRAB and zinc finger domains are most often encoded by 

separate exons. The switch to multi-exonic genes may have facilitated the 
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reshuffling of zinc finger arrays and the independent evolution of the KRAB 

domain, paving the way to its coupling in some proteins to SCAN or DUF3669 

domains, and to the emergence of non-canonical KRAB units not functionally 

limited to KAP1 recruitment.  

To trace putative DNA binding orthologues, we and others compared the zinc 

fingerprints of KZFPs, that is, the series of amino acid triplets within their ZNF 

arrays predicted to dictate their DNA binding specificity (Liu et al., 2014, 

Imbeault et al., 2017). This delineated clusters specific for most taxonomic 

orders and the identification of KZFPs restricted to each species (Imbeault et al., 

2017). Interestingly, no zinc fingerprint orthologue of coelacanth KZFPs is found 

in any other species, suggesting that the genomic targets of these proteins are 

unique to this organism and possibly untested close relatives, consistent with 

species-restricted transposable elements. Many species- and class-specific KZFPs 

can similarly be detected in most analyzed genomes, indicating ongoing 

amplification and turnover of the family with regular addition of new members 

(Imbeault et al., 2017). A closer examination of the mouse genome identifies 

about twice more elements than previously annotated as either KZFP genes or 

pseudogenes, notably by assigning to this family an entity formerly considered 

as a large group of Satellite repeats (Kauzlaric et al., 2017). It also outlines an 

organization in clusters distributed throughout the genome, with signs of 

recombination, translocation, duplication and seeding of new sites by 

retrotransduction of KZFP genes. Finally, it provides evidence that closely 

related paralogs have evolved through both drifting and shifting of sequences 

encoding for zinc finger arrays (Kauzlaric et al., 2017). 

Invasion by new families of endogenous retroviruses coincided with the 

appearance of novel KZFP duplicates in primates (Thomas and Schneider, 2011). 

The guinea pig, opossum and to a lesser extent mouse genomes display an 

unusually high number of species-specific paralogues. The mouse genome is 

known to harbor a significant fraction of retrotransposition-competent TEs, 

including ERVs and LINEs (Kazazian, 2004, DeBerardinis et al., 1998), supporting 

a model whereby new TE variants contribute to fix recently emerged KZFP 

paralogues. Conversely, a few KZFPs highly conserved in other mammals were 
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lost in primates, and some human KZFP pseudogenes have functional 

orthologues in closely related species, indicating divergence in the selective 

pressures responsible for their maintenance (Imbeault et al., 2017).  

It is remarkable that all examined bird genomes stand out for their very low 

content in KZFP genes. Interestingly, avian genomes are significantly smaller 

than those of other amniotes (Organ et al., 2007, Wallis et al., 2004), and a much 

smaller fraction of the chicken and zebra finch genomes can be readily attributed 

to TEs, compared with most other tetrapods (15% vs. 40-50% on average) 

(Chalopin et al., 2015). It further suggests that TE burden and activity contribute 

to maintaining a pool of functional KZFPs. However, it may also be that birds, 

when they emerged from theropod dinosaurs, evolved another TE control 

system with many of the same functional properties as KZFPs, rendering the 

latter dispensable. 

An arms race turned into a massive enterprise of domestication 

Several lines of evidence indicate that transposable elements have served as an 

important motor for the evolution of KZFP genes. During evolution, KZFP genes 

underwent strong positive selection at positions encoding for amino acids 

predicted to determine the DNA binding specificity of their products (Emerson 

and Thomas, 2009, Liu et al., 2014). Furthermore, KZFP paralogs exhibit not only 

significant differences in zinc fingerprints, but also differential expression and 

splicing patterns across tissues, consistent with the acquisition of new functions 

following gene duplication events (Nowick et al., 2010, Kauzlaric et al., 2017). An 

analysis of data from the 1,000 Genomes Project revealed that human KZFP 

genes harboring non-synonymous SNPs in sequences encoding their predictive 

DNA-contacting residues are generally expressed at lower levels, are 

evolutionarily younger, and seem to be less evolutionarily constrained than 

those without such polymorphism, suggesting that they are on their way to 

become pseudogenes (Kapopoulou et al., 2016).  

Most importantly, both KZFPs and TEs underwent parallel waves of expansion in 

the genomes of tetrapods (Thomas and Schneider, 2011). Also, in human 

embryonic stem cells, a dynamic regulation model of LINE elements by 
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KZFP/KAP1 can be documented, whereby the expression of newly emerged 

LINE-1 families is initially repressed by small-RNA-induced DNA methylation, 

before KAP1-mediated repression takes over through the selection of KZFPs 

sequentially capable of recognizing these TEs, until these are ultimately deprived 

of any activity by mutations (Castro-Diaz et al., 2014). 

The arms race model (Figure 5 A-B) asserts that a dynamic competition 

between transposable elements and KZFPs is driving their co-evolution, with TEs 

controlled by a KZFP mutating away to escape repression while the pool of KZFP 

genes evolves proteins with novel zinc finger arrays, which get fixed once they 

can recognize the renegade TE (Imbeault and Trono, 2014). It is best studied 

within the context of the primate-specific L1PA subfamily of LINE elements, as 

these TEs devoid of extracellular phase display a linear evolutionary path, each 

new subfamily deriving from the one previously expanded in the genome of its 

host species and ancestors. With ERVs, the situation is more complicated, since 

these TEs are endogenized following waves of genomic invasion originating from 

external sources, with potential iterations precluding firm dating. Compelling 

evidence for the arms race model stems from the characterization of ZNF93 and 

its binding to L1PA elements – in particular the loss via deletion of the ZNF93 

recognition site in newer L1PA subfamilies (Jacobs et al., 2014). Additional 

support comes from the recent identification of the TE targets of a large set of 

human KZFPs, as it reveals the sequential recruitment at the 5T ends of primate-

specific L1 elements not only of ZNF93 but also ZNF141, ZNF649, and ZNF765, 

with zinc finger mutations accumulating coincidentally with the appearance of 

new L1PA subfamilies, and loss of binding sites for all of these KZFPs in the 

newest human-specific LINE-1. In addition, it retraces specific mutation events in 

the binding motifs of KZFPs that correlated with loss of binding in the youngest 

elements, generally subtler than the 129-bp deletion event that led to escape 

from ZNF93 (Imbeault et al., 2017). In the mouse, the KZFP paralogs ZFP932 and 

Gm15446 regulate overlapping but distinct sets of ERVKs (Ecco et al., 2016). 

Both proteins bind to the 3’end of members from the same families of 

retroelements, but with different preferences. While ZFP932 and Gm15446 are 

similarly enriched at RLTR44-int, IAP-d-int, and MMERVK10D3_I-int elements, 
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Gm15446 is more frequently found at MMERVK10C-int, IAPEy-int, and IAPEY3-

int (Ecco et al., 2016). Further analyses suggest that ZFP932 appeared first and 

that Gm15446 arose secondarily by imperfect duplication, with subsequent 

accumulation of mutations leading to a partial shift in target range (Kauzlaric et 

al., 2017). 

However, cumulated evidence also demonstrates that a host-invader arms race 

cannot have been the sole motor of the evolutionary selection of KZFP genes. 

First, the recognition of many TEs by several KZFPs would constitute, analogous 

to antiviral combination therapies, a major obstacle to mutational escape if these 

factors were all simultaneously engaged in their repression. Second, LINE1 

integrants controlled by KAP1 in human ES cells are between ~7 and 25 million 

years of age, and have all long lost all transposition potential (Castro-Diaz et al., 

2014), as do all HERVs, including the tens of thousands of integrants still 

controlled by KAP1; therefore, the conservation of KZFP binding sites in these 

elements does not arise from the need to suppress their replication. Third, 

numerous TEs have kept spreading or even started invading the human 

ancestral genome long after KZFPs capable of recognizing their sequence had 

emerged. For instance ZNF649, which as ZNF93 binds the L1PA promoter and 

exhibits a very similar expression pattern, dates back to the time of mammalian 

radiation, some 60 million years before either ZNF93 or any of its target L1PA 

subfamilies appeared. Finally, our data suggest that enrichment for certain 

KZFPs is positively selected on some TEs, as for ZNF382 and ZNF84 on L1Hs 

(Imbeault et al., 2017).  

Collectively, the phylogenetic study of the KZFP gene family, the characterization 

of the genomic targets of its human products, preliminary analyses of their 

protein interactome, as well as functional data indicating that KZFPs partner up 

with TEs to create regulator hubs strongly suggest that these proteins, rather 

than just engaged in blocking the transposition potential of TEs, participate in 

their domestication, along a general model (Figure 5 A-C) that can be described 

as follows: when a new TE enters the genome, whether from an exogenous 

source (for ERVs) or by mutation of an endogenous predecessor, it is initially 

silenced via ancestral RNA-based mechanisms, such as mediated by piRNAs. 
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Over time, its integrants accumulate mutations that progressively hamper their 

transposition potential. Meanwhile, KZFP paralogs with novel DNA binding 

specificities are generated, some of which recognize these TEs and get fixed, 

either because they contribute to preventing the further spread of these 

elements or because they partake in their co-option for the benefit of the host. 

Based on the observed evolutionary dynamic of KAP1-control of human LINE1 in 

human ES cells, it seems that, at least in recent time and for this class of 

retroelements, matching between a newly appeared TE and an inhibitory KZFP 

can take more than 7 million years, since KAP1 does not repress any human-

specific LINEs (Castro-Diaz et al., 2014). Over time, KZFP/KAP1-controlled TE 

integrants continue to undergo a mutational drift, so that in some cases only 

their KZFP-recruiting region remains to serve as a transcription regulatory 

platform, which maybe explains why we frequently find the oldest human KZFPs 

at promoters, without identifiable TE signature. KZFPs themselves might evolve 

to become capable of recruiting activities distinct from KAP1-nucleated 

repression. Ultimately, all that might be left from the TE/repressor pair is a DNA 

target motif and its sequence-specific polypeptidic ligand, with no recognizable 

trace of their source elements. 

Concluding remarks: of the species-specificity of human biology  

An important implication is that TEs and their KZFP controllers confer a high 

degree of species-specificity to the conduct of many biological processes relevant 

to human development and physiology. Indeed, a large fraction of the human 

endovirome is unique to our species and its close relatives, both in the sequence 

and genomic distribution of its individual components and, correspondingly, 

many human KZFPs are relatively recent products of our evolution (Nowick et 

al., 2010, Liu et al., 2014, Imbeault et al., 2017). Therefore, while animal models 

may be valuable for delineating general principles and studying canonical 

aspects of gene regulation, many cis- and trans-regulatory features likely 

essential to human biology can only be studied in the human system, whether in 

tissue culture or in vivo.  
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Considering that species-restricted KZFPs and TEs likely shape regulatory 

networks in all mammals, the high degree of similarity in the physiology of these 

organisms might seem surprising. However, while the dynamic partnership 

between TEs and their KZFPs provides plenty of ground for divergence, for most 

organ systems functional evolution is limited by prior decisions and 

environmental constraints. For instance, even though early embryogenesis is 

regulated by different sets of TEs and KZFPs in mouse and human, major 

deviations are difficult to introduce in this highly orchestrated process. Similarly, 

gene expression in murine and human hepatocytes or blood cells is influenced by 

species-distinct TEs and KZFPs, but the functions to be fulfilled by cells from 

either system are grossly similar between the two species. One organ that likely 

escapes at last partly this type of restriction is the central nervous system, since 

at least in humans a very wide range of cognitive and psychological phenotypes 

are compatible with normal life expectancy and efficient reproduction. It is thus 

interesting to note that remarkably elevated levels of TE activity have been 

recorded in the brain (Erwin et al., 2014), that the hominoid-restricted SVAs are 

vastly overrepresented in neuron-specific enhancers (our unpublished results), 

that a higher range of KZFPs is expressed in the brain than in most other adult 

human tissues  (http://fantom.gsc.riken.jp/) and that KZFPs disproportionately 

contribute to differences between the brain gene networks of chimpanzees and 

humans (Nowick et al., 2009). It suggests that the endovirome and its KZFP 

controllers have played an important role in the expansion of higher brain 

functions that was key to the emergence of modern humans. 
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FIGURE LEGENDS AND BOXES 

Box 1. TE classification. 

TEs are classified into two classes according to their transposition mechanism 

(Figure 1) (Rebollo et al., 2012b, Warren et al., 2015, Feschotte and Pritham, 

2007). Class I elements, or retrotransposons, replicate via an RNA intermediate, 

using a copy-and-paste mechanism. They are further divided into long terminal 

repeat (LTR)-containing and non-LTR retroelements. The main representatives 

of LTR retroelements are endogenous retroviruses (ERVs), elements reminiscent 

of ancient retroviral infections. Several hundreds murine ERVs are active and 

capable of retrotransposition, accounting for up to 10% of spontaneous 

mutations observed in inbred mice (Maksakova et al., 2006). In contrast, all 

humans ERVs are transposition-defective. Non-LTR retrotransposons are further 

divided into autonomous, or long interspersed elements (LINE), and non-

autonomous elements, comprising the short interspersed elements (SINE) and, 

in hominoid primates, the SINE-R, VNTR, Alu (SVA) elements. SINEs and SVAs 

depend on trans acting functions encoded by LINEs for their retrotransposition 

(Raiz et al., 2012, Hancks and Kazazian, 2010).. A few hundred LINEs, about a 

thousand SINEs (of Alu subtype) and a few tens of SVAs are still transposition-

competent in humans, accounting for 0.1% of de novo mutations in humans 

(Maksakova et al., 2006, Antony et al., 2011).  

Class II elements, or DNA transposons, replicate via a DNA intermediate, either 

by a cut-and-paste mechanism (classic DNA transposons harboring 

transposases), by rolling-circle DNA replication (Helitrons), or by mechanisms 

not yet fully understood (Mavericks). DNA transposons are not active in humans, 

with the last transposition-competent element in primates dating back to 37 

million years (Padeken et al., 2015, Pace and Feschotte, 2007). 

Box 2. KZFPs influence a variety of biological processes. 

While TE-based sequences appear to represent an important fraction of KZFPs 

targets, these regulators have been implicated in various biological events, 
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although in many cases the underlying mechanism was not completely 

elucidated. 

Metabolism 

ZFP69 was reported to mediate liver fat accumulation and mild insulin 

resistance in mice (Chung et al., 2015). ZNF224, in humans, is associated with 

glycolysis and oxidative metabolism (Iacobazzi et al., 2009, Lupo et al., 2011). 

ZNF74 binds RNA and is tightly associated with the nuclear matrix, suggesting a 

role for this protein in RNA metabolism (Grondin et al., 1996).  ZNF255, an 

isoform of ZNF224, interacts with a Wilms’ tumour 1 (WT1) protein isoform that 

has affinity for RNA and has been implicated in transcript processing, suggesting 

a role for this KZFP in RNA maturation and post-transcriptional control (Florio et 

al., 2010). 

Differentiation and development 

Many KZFPs are expressed in embryonic stem cells and early progenitors 

(Corsinotti et al., 2013), where many are engaged together with their cofactor 

KAP1 in repressing transposable elements. At this or later stages, they influence 

other aspects of development. In the mouse, ZFP689, ZFP13 and KAP1 play an 

important role in erythropoiesis by regulating an miRNA cascade that governs 

mitophagy in red cell precursors (Barde et al., 2013b). In humans, there is 

evidence that ZNF589, ZNF268, and ZNF300 influence hematopoietic 

differentiation (Venturini et al., 2016, Zeng et al., 2012, Xu et al., 2010). Other 

events influenced by KZFPs include osteogenesis, (Jheon et al., 2001), mammary 

gland development (Oliver et al., 2012), and formation of extra-embryonic 

tissues (Shibata and Garcia-Garcia, 2011, Shibata et al., 2011). 

Imprinting 

The well-studied ZFP57 is implicated in the maintenance of imprinting marks 

during early embryogenesis through binding to imprinting control regions (ICR) 

followed by recruitment of KAP1 and other chromatin inducing proteins, which 
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drive subsequent methylation (Zuo et al., 2012, Quenneville et al., 2011). Loss of 

ZFP57 in mouse embryos and ES cells leads to loss of DNA methylation at 

multiple imprinted regions (Li et al., 2008b, Zuo et al., 2012).  

Sexual dimorphism 

In mouse, the KZFPs RSL1 and RSL2 are involved in sexually dimorphic gene 

expression in liver, repressing male-specific hepatic genes, such as members of 

the cytochrome P450 (Cyp) families (Krebs et al., 2003). These dimorphic 

cytochrome P450 genes are also upregulated in KAP1 KO liver (Bojkowska et al., 

2012). Interestingly, it has been reported that the control of one of RSL1 targets, 

the gene encoding for the sex-limited protein (SLP), seems to occur via binding 

to an ancient endogenous retrovirus (Stavenhagen and Robins, 1988, Krebs et al., 

2012). 

 

Figure 1. Classification of transposable elements. The different classes of 

transposable elements and examples of their structures are depicted. LTR, long 

terminal repeat; Gag, group-specific antigen; Pol, polymerase; Env, envelope 

protein; UTR, untranslated region; ORF, open reading frame; (A)n , poly(A) tail; A 

and B, component sequences of the RNA polymerase III promoter; AR, the 

adenosine-rich segment separating the 7SL monomers; VNTR, variable number 

target repeats; ITR, inverted terminal repeat. 

Figure 2. How transposable elements can impact on host genomes.  

Figure 3. Domain structure of KZFPs. All KZFPs contain a KRAB domain and an 

array of zinc fingers. Those are responsible for interacting with the DNA, and in 

each three amino acids (at positions 6, 3, and -1) are engaged in mediating 

contacts with DNA. KRAB, Krüppel-associated box; ZF, zinc finger; SCAN, SRE-

ZBP, CTfin51, AW-1, and Number 18 cDNA; DUF3669, domain of unknown 

function 3669. 

Figure 4. The KRAB/KAP1 repressive complex. KZFPs bind to DNA via their 

zinc fingers and recruit KAP1 via their KRAB domain. KAP1 then recruits 
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components of a repressor complex, which leads to heterochromatin formation 

and transcriptional silencing. H3ac, acetylated histone H3; H3K9me3, histone H3 

trimethylated at Lys9; NURD, nucleosome remodeling deacetylase complex; 

HDAC, histone deacetylase; KAP1, Krüppel-associated box (KRAB)-associated 

protein 1; KZFP, KRAB-zinc finger protein; SETDB1, SET domain bifurcated 1; 

HP1, heterochromatin protein 1; DNMT, DNA methyltransferase. 

Figure 5. The dual evolutionary drive of KZFPs: arms race and TE 

domestication. (A) KZFPs gene expansion over time. Duplication events and 

accumulation of mutations are depicted. (B) An evolutionary arms race between 

KZFPs and TEs. When a novel TE enters the host, it starts to be expressed and to 

transpose, albeit partly controlled by a first, small RNA-based, line of defense (1). 

Over time, KZFPs genes duplicate and paralogs emerge that can bind these TEs 

(2). In parallel, transposons accumulate mutations and escape repression (3 and 

5), yet new KZFPs appear that can suppress the expression of these escapees (4 

and 6). Eventually some of these TEs accumulate mutations and are rendered 

inactive (7) (C) From deleterious mutations to co-option. Left, a hypothetical 

gene would initially have a certain phenotypic impact (phenotypic impact 1). 

Middle, transposon insertions near genes can lead to transcriptional effects with 

phenotypic consequences (causing a phenotypic impact 2). Right, some of these 

could be beneficial for the host, notably if modulated by KZFP-mediated control, 

which can incur a variety of transcriptional and phenotypic effects. The TE/KZFP 

pair then can become fixed in evolution, completing the co-option process. 

KZFPs, KRAB-zinc finger proteins; TEs, transposable elements; TFs, transcription 

factors 
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