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Abstract
Synaptic connectivity between neurons is naturally constrained by the anatomical overlap of neuronal arbors, the space
on the axon available for synapses, and by physiological mechanisms that form synapses at a subset of potential synapse
locations. What is not known is how these constraints impact emergent connectivity in a circuit with diverse morphologies.
We investigated the role of morphological diversity within and across neuronal types on emergent connectivity in a model
of neocortical microcircuitry. We found that the average overlap between the dendritic and axonal arbors of different types
of neurons determines neuron-type specific patterns of distance-dependent connectivity, severely constraining the space of
possible connectomes. However, higher order connectivity motifs depend on the diverse branching patterns of individual
arbors of neurons belonging to the same type. Morphological diversity across neuronal types, therefore, imposes a specific
structure on first order connectivity, and morphological diversity within neuronal types imposes a higher order structure of
connectivity. We estimate that the morphological constraints resulting from diversity within and across neuron types
together lead to a 10-fold reduction of the entropy of possible connectivity configurations, revealing an upper bound on the
space explored by structural plasticity.
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Introduction
The connectome—the comprehensive map of neural connections—
is believed to determine the functional capabilities of the brain
(Sporns et al. 2000; Honey et al. 2009). The connectome is not
fixed but changes continuously through structural plasticity
mechanisms (Feldman 2009; Hofer et al. 2009; Holtmaat and
Svoboda 2009), making it a primary substrate for learning
and memory. Storage capacity is limited by the number of
configurations of connectivity that can be reached through
plasticity (Chklovskii et al. 2004; Lamprecht and LeDoux
2004). Assuming 10% connectivity and no other constraints,
even a comparatively small, purely local microcircuit of
10 000 neurons would have roughly ×2.86 1014116758

theoretically possible network configurations (Fig. 1A, red).
In reality, however, rewiring through plasticity is subject to a
number of known constraints and probably many unknown
constraints as well. This makes it difficult to estimate the
number of “biologically available” configurations. What we
can do, is use the shape and extent of the dendritic and axo-
nal arborizations (Fig. 1B,C) and the number of synapses
required to form a viable connection (Fig. 1D) to define the
set of “anatomically constrained” configurations (Fig. 1E)—a
superset of the biologically available configurations. The size
of this set, as an approximation of the set of biologically
available configurations, places an upper bound on the
memory capacity of the microcircuit.
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While anatomical constraints may be known in principle,
we do not know the anatomical level of detail at which they
operate. In particular, it is unclear whether individual neuron
types can be represented by their “average morphology,” that
is, the probability distribution of dendrite and axon segments
around the soma (Markram et al. 2015), or whether connectivity
also depends on morphological variability within neuron types
(Fig. 1F).

Current experimental approaches cannot adequately
address these questions. For example, tract tracing and diffu-
sion tensor imaging have provided maps of the connections
between brain areas and regions on the scale of the whole
mammalian brain, but do not resolve individual neurons and
synapses (Kuan et al. 2014). Whole-cell paired recordings have
advanced the detailed characterization of the anatomy and
physiology of synaptic connections, in particular 3D recon-
structions of axons, dendrites, and their putative points of con-
tact (potential synapse locations). However, this has only been
possible for a miniscule number of connection types per spe-
cies (Markram et al. 1997; Feldmeyer et al. 2002; Wang et al.
2002; Le Bé et al. 2007; Silberberg and Markram 2007).

Experimental studies using electron microscopy (EM) have
yielded a complete map of connectivity between the 302 neu-
rons in the roundworm, Caenorhabditis elegans (White et al.
1986; Varshney et al. 2011), and similar methods have been
applied to mammalian nervous systems (Mishchenko et al.
2010; Kasthuri et al. 2015). However, the volumes of neural tis-
sue that have been reconstructed in mammals are smaller than
the size of a single dendrite and thus too small to determine all
the local connections in a microcircuit, or even all the afferent
connections of only a single neuron. Furthermore, even scaled-
up EM reconstructions would provide just a few out of a vast
number of biologically available configurations. Such recon-
struction would not address the question of how many and
which configurations are reachable by structural plasticity.

To evaluate anatomically constrained connectivity, we ana-
lyzed a model of neocortical tissue from the somatosensory
cortex of juvenile rat (Markram et al. 2015). This model imple-
ments 3 anatomical constraints on connectivity (synapses a
subset of axo-dendritic appositions; number of synapses lim-
ited by axonal length; connections formed by multiple synap-
ses; see also below, Hill et al. 2012; Reimann et al. 2015). We
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Figure 1. Anatomical constraints on local connectivity in a microcircuit. (A) Without constraints on connectivity there is an enormous number of ways to fill the

matrix of connections between neurons in a microcircuit (mathematically describable configurations, red). In a microcircuit only 1 of them is active at any given time

and through structural plasticity it can move from 1 configuration to another (blue). Only a subset of configurations can be reached through plasticity, the biologically

available configurations (green). (B–D) Three anatomical constraints limit which configurations can be biologically viable. (B) The space on axons for synapse forma-

tion is limited. (C) Synapse form at locations of axo-dendritic overlap. (D) The number of synapses forming a connection is close to a number that is characteristic for

the connection type. (E) The constraints yield the set of anatomically constrained configurations in between the mathematically describable and biologically available

configurations. (F) To evaluate the anatomical constraints 1 needs neuron positions (left) and data on morphological variability of neuron types. This can comprise

the variability within a neuron type (middle) or merely the variability across types (right; axons red, dendrites blue).
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began by studying the impact of the constraints on the connec-
tions formed by a single neuron. We then performed detailed,
analyses of the connection matrices of the modeled microcir-
cuits, each of which represents a random instance of anatomi-
cally constrained connectivity within a cylindrical volume with
a diameter of ~440 μm and a thickness of ~2082 μm. The analy-
ses characterized the connectivity structure of the model with
respect to a number of nonrandom features of biological con-
nectivity, previously characterized in in vitro experiments.

We found that most of the biologically characterized structure
emerges when constraints based on the “average” morphologies
of different neuron types are applied. However, higher order con-
nectivity motifs, such as clustered connectivity depend on indi-
vidual variability within neuron types (Perin et al. 2011). Since
the connection matrices were not subject to rewiring through
plasticity, we conclude that the initial emergence of first and
higher order structure does not require experience-driven synap-
tic plasticity. On this basis, we hypothesize that the upper bound
on the size of the set of biologically available configurations, pro-
vided by anatomical constraints alone, provides a useful approxi-
mation of its limits.

Materials and Methods
Entropy of Constrained Connectivity

We analyzed the entropy of the efferent connectivity of individ-
ual PCs in layer 5 of the model described in (Markram et al.
2015). For a given PC and each other neuron in this model, we
considered the probability distribution of the number of synap-
ses connecting the pair, ( = )→P n xi j . The entropy was then cal-
culated as:

∑ ∑( ) = − ( = ) × ( ( = ))→ →H i P n x P n xlog ,
j

i j i j
x

2

where →ni j is the number of synapses formed by neuron i on
neuron j. Assuming only a single constraint of a maximum of
20 synapses between pairs of neurons (a biologically relevant
range) entropy is maximized for the uniform distribution on
the interval between 0 and 20. Further constraints could then
be applied by changing the ( = )→P n xi j for connections to indi-
vidual neurons or neuron types. Either by counting the number
of axo-dendritic appositions, that is, potential synaptic loca-
tions, between the pair and setting it ( = ) =→P n x 0i j for all x
above that maximum value; and/or by prescribing a probability
distribution for the number of synapses per connections to
individual neuron types, based on experimental data or pre-
dicted from the average number of appositions between pairs
as described in (Reimann et al. 2015). Additionally, a probability
distribution for the total number of synapses formed by the PC
onto all other neurons could be applied. For the handling of
this case see Supplementary material.

Analysis of Instances of Constrained Connectivity

We analyzed the connectivity of 7 instances of modeled micro-
circuitry described in (Markram et al. 2015). We extracted the
connectivity between the approximately 31 000 neurons of each
instance in the form of a connection matrix M, detailing the
presence or absence of a connection between all pairs of neu-
rons. The matrix was further subdivided into 3025 submatrices
of connectivity between 55 individual neuron types: →Mm mi j, for
neuron types mi and mj. These matrices had the shape ×N Ni j,
where Ni denotes the number of neurons of type mi. Combining

the submatrices for several neuron types in the same layer
yielded →Mm Li , the connection matrix for connections from mi

to all types in layer L.

Comparison to a Quantitative Map of Visual Cortex

We calculated the ratio of excitatory to inhibitory input into
neurons in individual layers and the ratio of trans- to intrala-
minar synapses in the data set of (Binzegger et al. 2004) using the
normalized synapse numbers reported in their Supplementary
material and converting them to absolute numbers by multiplying
with cell counts reported in their Figure 6. Next, counts were
summed according to the following mapping: L2/3 excitatory: p2/3;
L2/3 inhibitory: b2/3 + db2/3 + axon2/3 + sm2/3; L4 exc.: ss4 + p4; L4
inh.: b4 + sm4; L5 exc.: p5; L5 inh.: b5 + sm5; L6 exc: p6; L6 inh.:
sm6.

Common Neighbor Bias

The matrix of the number of common neighbors between types
mi and mj was calculated as:

= ×→ →CN M Mi j m L m L
T

, i j

The result has the shape ×N Ni j.
With CNi j, and →Mm mi j, we calculate the global clustering

coefficient for connections from mi to mj as follows. The sum
over all entries in CNi j, yields the number of triangular motifs
with an mi neuron in one corner, an mj neuron in another cor-
ner and a neuron in layer L in the third. The sum over all
entries where the corresponding entry in →Mm mi j is 1 (i.e., a con-
nection exists) yields the number of closed triangles. The ratio
of closed to all triangles is then the global clustering coefficient
for connections from mi to mj.

Control Connectivity Preserving Individual Distance
Dependence

The number of common neighbors and clustering coefficients
were compared to results from randomized connection matri-
ces that preserved the distance dependence of all connection
types, generated in the following way:

For all connection types →m mi j, we considered the connec-
tion matrix →Mm mi j and the matrix of pairwise soma distances

→Dm mi j. We assigned each neuron pair into one of d distance
bins based on the entries in →Dm mi j. We then shuffled all entries
of →Mm mi j within the same distance bin to generate any number
of randomized connection matrices. If =m mi j, that is, connec-
tivity within a neuron type, the entries along the main diagonal
were always kept 0 (no autapses).

The number of distance bins d was determined as follows:
Starting with =d 1, we generated 10 randomized connection

matrices for →m mi j. We then calculated for the original and
randomized matrices the probability distribution of soma dis-
tances of “connected” pairs of neurons. If a Kolmogorov-
Smirnov (KS) test of the difference between the distributions
yielded no significance difference ( >P 0.05) for all 10 random-
ized matrices, we concluded that the distance dependence was
preseved, otherwise the procedure was repeated with an incre-
mented value of d.

We assembled randomized connection matrices with pre-
served distance dependence for the whole microcircuit by
repeating this procedure for all 55 × 55 = 3025 possible pairs of
neuron types.
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Recreating a Connectivity Sampling Experiment

We compared connectivity in anatomically constrained con-
nectivity to results from (Perin et al., 2011) by recreating their
in vitro connectivity sampling experiment in silico. We
obtained the relative coordinates of the patch pipettes used in
43 of their experiments (8.7 ± 2.7 coordinates per experiment;
mean pairwise distance: 105 μm) inside layer 5 of the modeled
microcircuitry with random offsets and picked for each result-
ing location the closest PC. Connectivity was then investigated
for all × ( − )N N 1

2
pairs in a set. Each set of coordinates was ran-

domly placed 10 times, leading to 430 analyzed sets with a total
of 16 020 pairs of neurons.

Calculation of Average Dendrite and Axon Clouds

Average morphologies were calculated by considering 10
instances of each available reconstructed morphology of a neu-
ron type, assigning it a random rotation around the vertical
axis and aligning them all at the soma. We projected the result
along the depth axis and then calculated for each 2×2 μm pixel
the mean dendrite or axon density (μm of axon/dendrite length
per pixel). We call the results Vm

dendrite
i

and Vm
axon

i
.

Using Average Clouds to Connect Neurons

To generate connections from neuron type mi to mj, i.e., to gen-
erate →Mm m

cloud
i j

we first calculated the “overlap” of the types at
various spatial offsets as the convolution of their axon and den-
drite clouds, ×V Vm m

axon dendrite
i j

. Next, we filled →Om m
cloud

i j
, a Table of

overlap strengths for all pairs of neurons, by looking up the
value for their relative soma positions in the result of the
convolution.

After applying any transfer function to →Om m
cloud

i j
, the result

was normalized, yielding a matrix of connection probabilities
with an expected number of connections equal to the number
of connections in →Mm mi j:

= =→
→

→ →P
O

f
f P Mwith chosen such thatm m

m m
m m m m

cloud
cloud

cloud
i j

i j

i j i j

(Note: Entries of the →Pm m
cloud

i j
resulting from this simple nor-

malization were always <1, that is, it always resulted in a valid
connection probability matrix.)

Each entry in →Pm m
cloud

i j
was then considered the probability to

find a connection in the indicated direction between the corre-
sponding pair of neurons. Probabilities for different pairs were
otherwise statistically independent. The matrix of connection
probabilities could then be used to generate any number of ran-
dom instances of cloud-based connectivity from mi to mj.

Repeating this procedure for all 55 × 55 = 3025 possible pairs
of neuron types we assembled connection matrices for the
whole microcircuit.

Results
The biologically driven in silico modeling effort described in
Markram et al. (2015) uses 55 morphological neuron types,
resulting in 3025 theoretically possible “connection types” (sets
of pairwise connections between neurons of specific morpho-
logical types, for example, pyramidal cells (PCs) in layer 4 to
large basket cells (LBCs) in layer 4; see also Supplementary
Table S1). The algorithm used to generate the local connectivity
applied the following 3 morphological and anatomical princi-
ples of biological connectivity, parameterized with biological

data, as constraints that drastically reduced the number of con-
nections in the model: (1) The number of synapses forming a
connection is close to a number larger than 1 and predictable
from the average strength of axo-dendritic overlap of the connec-
tion type (Fig. 1D); (2) the total number of efferent synapses on a
neuron is limited by the space available on the axon (Fig. 1B); (3)
synaptic locations are a subset of axo-dendritic appositions, that
is, the connections formed by a neuron are limited to the regions
reached by its axon (Fig. 1C), which are determined by its mor-
phology and the laminar structure of the neocortex.

To evaluate the degree to which these constraints limit the
number of available configurations, we calculated the mean
entropy of the connections formed by individual PCs in layer 5
before and after application of the constraints (see Materials
and Methods section). This entropy can be thought of as a mea-
sure of the uncertainty in the presence and number of synap-
ses formed by neuron i onto any other neuron j.

∑ ∑( ) = − ( = ) × ( ( = ))
=

→ →H i P n x P n xlog ,
j x

n

i j i j
0

2

max

where →ni j is the number of synapses formed by neuron i on
neuron j and nmax is the highest number of synapses it can
form.

Without these constraints, each neuron is potentially capa-
ble of innervating any of N = 31 000 local neurons with any real-
istic number of synapses, which we set to be between 0 and

=n 20max (Fig. 2A, top). According to the principle of maximum
entropy, we set ( = ) = +→P n x n1/ 1i j max . This yields approxi-
mately 145 000 bits of entropy.

In the anatomically constrained case (Fig. 2B, middle),
entropy is reduced by prescribing narrower, nonuniform distri-
butions, ( = )→P n xi j for connections onto different neurons,
including outright rejection of some connections (i.e.,

( = ) =→P n 0 1i j ), and by introducing a statistical dependence
between the distributions for individual neurons in the form of
a probability distribution for the total number of efferent syn-
apses (i.e., (∑ = )→P n xj i j ).

We found that applying any 1 of these constraints led to a
reduction in entropy of approximately 40% to approximately
86 000 bits. Applying constraint 2 combined with constraint
3 led to an additional reduction of just 22%, indicating that the
2 constraints are partially redundant. Conversely, the 2 other
possible combinations (1 and 2 or 1 and 3) produced reductions
close to 80%, indicating very little redundancy. Finally, when all
3 constraints were combined, entropy was reduced by about
90%. Considering that, in this context, the entropy is propor-
tional to the binary logarithm of the number of available wiring
configurations, this corresponds to a ~1039000 fold reduction in
the number of anatomically feasible configurations.

It is conceivable that other topological constraints that have
been observed in experiments further reduce the space of possi-
ble configurations. These include distance-dependent connectiv-
ity (Holmgren et al. 2003; Perin et al. 2011), the nonrandom
structure of interlaminar connectivity (Bannister 2005; Shepherd
et al. 2005; Helmstaedter et al. 2008), nonrandom “targeting” of
individual neuron types (Callaway 2002; Watts and Thomson
2005; Yoshimura and Callaway 2005; Wozny and Williams 2011),
and clustering of connectivity (Song et al. 2005; Perin et al. 2011).
However, it is also possible that these additional constraints are
partially or completely redundant once anatomical constraints
have been taken into account.

To explore the extent to which these biological features con-
strain connectivity, we performed a comprehensive analysis of the
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connectivity generated by just applying the anatomical constraints.
We, therefore, analyzed the connection matrices for 7 instances of
a model of neocortical microcircuitry as described in (Markram
et al. 2015; Reimann et al. 2015, from here on: Neocortical
Microcircuit or “NMCmodel”), that is, 7 randomly chosen instances
of anatomically constrained connectivity. Each matrix summarizes
the connectivity between ~31000 neurons, belonging to 55 layer-
specific neuron types, connected via ~36.5 million synapses in ~7.5
million multi-synaptic connections. The analysis was applied to
NMC connectivity for all possible pairs of neuron types, allowing
comparisons against the small subset whose connectivity has been
measured experimentally, but also predictions for all other types.

Distance-Dependent Connection Probabilities

Local neuronal connectivity at the resolution of single neurons and
connections is commonly assessed in slice preparations at dis-
tances up to about 100 μm, occasionally up to 150 μm (Holmgren
et al. 2003; Le Bé et al. 2007; Silberberg and Markram 2007). Such
studies have estimated excitatory connection probabilities in cor-
tex in the range 0.03–0.15. An equivalent analysis of the NMC con-
nectivity for pairs of neurons lying within 100 μm of each other,
yielded a mean connection probability of 0.065 ± 0.001. The main
anatomical constraint underlying this value was the space avail-
able on the axon to form connections: any higher value would
have required more densely packed synapses or longer axons.

Previous studies have shown that the connectivity is not uni-
form, but strongly distance dependent (Holmgren et al. 2003;
Perin et al. 2011). To investigate this, we characterized the
distance-dependent connection probabilities (CP) for individual
connection types in the 7 connection matrices (see Fig. 3A). We
found that, as in biology, CPs fell as the distance between neurons

grew and their local arborizations separated. However, we also
found that the “rate” at which they fell was connection-type spe-
cific. For example, CPs for intralaminar connections from
Martinotti cells (MCs) or large Basket cells (BCs) to PCs fall more
rapidly than those for connections from PCs to PCs: at short dis-
tances, CPs for MC to PC connections are higher than for PC to PC
connections while at distances beyond 200 μm this relationship is
inverted (Fig. 3B). Since the number of potential synaptic partners
grows linearly with lateral distance, relatively small differences in
CP for higher distances translate into large difference in the total
number of connected neurons (see Supplementary Fig. S1).

For a more systematic analysis, we performed exponential
fits of the distance-dependent fall-off of CP for all connection
types and calculated their respective space constants (Fig. 3C).
These proved to be highest for connections between excitatory
neurons and lowest for connections between inhibitory neu-
rons (see Supplementary Fig. S2). The predicted neuron type-
specific distance dependencies are a strong indicator of non-
random structure in the connectivity and, therefore, further
evidence of the strength of anatomical constraints.

Comparing connection probability profiles to literature is
somewhat problematic, as the various results were often
obtained from different animals, brain regions and ages and con-
sequently vary drastically (Fig. 3B). Also, connectivity analyzed
in vitro is potentially subject to sampling biases of distances or
directions relative to the layer boundaries. Finally, both in vitro
experiments and the NMC model are likely to underestimate
connectivity due to slicing artifacts, which have been shown to
be substantial (Stepanyants et al. 2009). We expect the effect to
be stronger in the NMC model, although it employs a limited
repair process which attempts to compensate for cut axons in
morphological reconstructions from cortical slices (Markram
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Figure 2. Evaluating morphological constraints. (A) Without further information an exemplary neuron can be connected to any other local neuron with any number

of synapses (top). Applying the constraints reduces the number of ways the neuron can be wired to individual other neurons and also the total number of synapses it

can form (middle). One of the anatomically constrained instances is active at any given time (bottom). (B) Different combinations of anatomical constraints are

applied and the predicted mean of the remaining entropy of the connections formed by a single PC in layer 5 is calculated.
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et al. 2015). This is because in vitro the non-sliced portions of
axons and dendrites are still aligned in the same plane, allowing
them to meet, whereas the model assigns a random rotation to
neurons. Slicing affects upwards connections more strongly
(Stepanyants et al. 2009), and indeed the NMC model matched
the literature well for downward connections from layers 2/3 and
4–5 and for intralaminar connections within layers 2/3 and 5, but
generally underestimated upward connection probabilities
(Fig. 3B, see also Supplementary Figs S3–S5). The model did not
match the dense inhibitory connectivity within a layer reported
from mouse cortex (Fino and Yuste 2011; Jiang et al. 2015), but
corresponding values reported for rat are significantly lower
(Thomson et al. 2002; Yoshimura and Callaway 2005).

Finally, slicing is known to affect more distant connections
generally more strongly (Stepanyants et al. 2009), thus the true
space constants of distance-dependent connectivity are likely
to be larger than in the NMC model.

Large-Scale Patterns of Interlaminar Connectivity

In the NMC model, the laminar structure and diversity of the
neocortex was implemented through layer-specific neuronal
densities and compositions (Fig. 4A) as well as layer-specific
reconstructed morphologies for each neuron type. We expected
that this anatomical specificity would impose large-scale struc-
ture onto synaptic connectivity within and across layers, which
we characterized in terms of synapse numbers in connections
within and across layers, both in total and normalized by neu-
ron count (see Supplementary material). We also compared
these numbers to results from the literature, albeit from a dif-
ferent animal and brain region (Binzegger et al. 2004, see
Materials and Methods section).

Layer 1 was characterized by low neuron densities and thus
contributed only a tiny proportion of all synapses (Fig. 4A, B).
Synapse numbers in the other layers increased with cortical
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Figure 3. Distance dependence of connection probabilities in anatomically constrained connectivity. (A) Connection probability for presynaptic and postsynaptic pairs

of neuron types at different intersomatic distances. Distances are (from left to right): 50 ± 25 μm, 100 ± 25 μm, 150 ± 25 μm, and 200 ± 25 μm. For interlaminar connec-

tion types only the horizontal offset is considered. White areas indicate no neuron pair found at the indicated distance. (B) Distance-dependent connection probabili-

ties for connections onto PCs in various layers. A selection of intralaminar and interlaminar connections is shown; see Supplementary material for exhaustive data.

Blue: from MCs, red: from BCs; green: from other PCs. Circles and error bars indicate mean and SD of sampled probabilities (N = 7 instances of connectivity), lines rep-

resent exponential fits to the data. Dashed lines indicate results from the literature. Colors as above. X-marks: (Lefort et al. 2009); stars: (Jiang et al. 2015); triangles: 2/

3 to 2/3: (Thomson et al. 2002; Holmgren et al. 2003; Yoshimura and Callaway 2005); 5 to 5: (Thomson et al. 2002; Perin et al. 2011); 4 to 2/3: (Feldmeyer et al. 2002). An

upwards pointing arrow with labeled connection probability is used where it lies beyond the limits of the y-axis. (C) Space constants of the exponential fits for all con-

nection types where the fit was possible (at least 1 pair of neurons at a lateral distance ≤25 μm). Excitatory morphological types are surrounded by red lines.
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depth (82% increase from L2/3 to L6) but were all within the
same order of magnitude. The ratio of interlaminar output to
interlaminar input was highest in layer 1 (13.6 ± 1.0, mean ±
std), decreasing sharply through layers 2/3 (5.82 ± 0.08), 4 (1.64 ±
0.02), 5 (0.45 ± 0.01), and 6 (0.48 ± 0.01). These findings reveal
a highly polar structure with a net flow of connections
from more superficial to deeper layers. Similarly, the data of
Binzegger et al. (2004) reveal a reduction in the ratio of out- to
inputs from 1.71 in L2/3 to 0.67 in L5, but followed by an
increase to 2.89 in L6. The reason for this discrepancy is possi-
bly that the model is based on data from juvenile rats, where
ascending axons are not yet fully mature, or the slicing artifact
discussed above.

Overall, numbers of intralaminar and interlaminar synapses
were approximately equal (18.3M vs. 17.7M, respectively) as
they were in Binzegger et al. (2004) (intralaminar divided by
interlaminar synapse count: 0.99). However, there were strong
differences between layers. Neurons in layer 1 received most of
their synapses from neurons in other layers (intralaminar/
interlaminar quotient: 0.42 ± 0.04, mean ± std), while neurons
in layers 2/3 received 2.73 ± 0.06 times more synapses from
neurons in the same layer than from neurons in other layers.
In layers 4 and 5, the ratio was much lower (0.57 ± 0.01 and 0.62 ±
0.01 respectively), but rose again in layer 6 (1.77 ± 0.02). This
overall trend was comparable to the results of Binzegger et al.
(2004), although they found even less intralaminar input into
layers 5 and 6 (ratio for 2/3:2.96, 4:0.7, 5:0.17, 6:0.69).

Although these results only refer to connections originating
and terminating within the modeled microcircuitry, they con-
firm the nonrandom structure of its interlaminar connectivity.
Further investigation showed that neurons in layers 1 and 4

receive relatively few intralaminar connections and that they
both provide more trans-laminar connectivity to other layers
than they receive (see above). This is consistent with their role
as primary targets for white matter projections (Felleman and
Van Essen 1991).

Analysis of the mean number of synapses formed by indi-
vidual neurons in the different layers (Fig. 4C) further charac-
terized layers 1, 2/3, and 4 as sources, and layers 5 and 6 as
recipients of interlaminar connections with strong recurrent
connectivity. It also revealed that the apparent weakness of
connections from layer 1 was mainly due to low-neuron den-
sity. In fact, individual layer 1 neurons were one of the stron-
gest interlaminar inhibitors.

The ratio of excitatory to inhibitory afferent synapses
formed a gradient, increasing monotonically with cortical
depth, from 0.16 ± 0.01 in layer 1 to 4.56 ± 0.08 in layer 6. It thus
appears that excitatory connections have a stronger down-
wards bias than inhibitory connections. Indeed, 63 ± 0.2% of
excitatory connections from layers 2/3 and 4 targeted layers 5
or 6; the equivalent proportion for inhibitory connections was
only 43% ± 0.5%. These numbers are lower than estimated
ratios of excitatory to inhibitory synapses obtained from EM
data (Kasthuri et al. 2015) and the predictions of Binzegger et al.
(2004) (from 5.3 for neurons in L2/3 monotonically increasing to
16.4 for neurons in L6). Since connectivity in our model is lim-
ited to local intracortical connections, and external and extra-
cortical input is largely excitatory, this discrepancy is expected.
The strong increase of excitatory to inhibitory balance with cor-
tical depth, however, matches the result of (Binzegger et al.
2004) closely. Assuming the missing connections are accounted
for by long range intracortical, white matter cortical and extra-
cortical projections, we can estimate the contributions of the
latter to the synaptic anatomy of the microcircuit to be 80 ± 2%
of all synapses (Markram et al. 2015).

Taken together, these results confirm that anatomical con-
straints impose a specific structure on connectivity, reflected in
aggregate synapse counts for individual layers. While this high-
level structure is not surprising, this is the first time it has been
characterized extensively. We continued our analysis by char-
acterizing the specificity of connectivity in the NMC model on a
more fine-grained level, taking individual neuron types within
a layer into account.

Targeting Morphological Types

Structure in the connectivity of neural microcircuitry extends
beyond laminarity, with different neuron types within a layer
preferentially sending synaptic output to and receiving input
from a subset of other neuron types in the same and other
layers (Silberberg and Markram 2007; Helmstaedter et al. 2008;
Brown and Hestrin 2009). This pattern is frequently explained
in terms of specific molecular targeting mechanisms and
experience-driven plasticity (Somogyi 1977; Somogyi et al. 1998;
Hofer et al. 2009; Holtmaat and Svoboda 2009). To examine the
role of purely anatomical constraints in the absence of such
mechanisms, we compared the NMC connectivity to statistical
control cases with respect to the degree of specificity in the
neuron types innervated by the axons of individual neurons.
While the interlaminar structure examined above may result
largely from the laminar placement of neurons, any difference
in the targeting of neuron types within the same layer must be
a consequence of their morphological differences.

For the 7 instances of connectivity, we generated 2 “neuron
type innervation profiles”—representing for each neuron the
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presence or absence of inputs/outputs from/to each of the 55
neuron types. The input profile was represented by a 55 bit vec-
tor per neuron [ ( )]I nin , where the value of ( )I nin was 1 if neuron
n received at least 1 input from a neuron belonging to type j,
otherwise 0. The output profile, [ ( )]I nout , was calculated in the
same way, but for neuron outputs (for examples see Fig. 5A).

If—hypothetically—connectivity were completely unstruc-
tured, according to the principle of maximum entropy, innerva-
tion of each neuron type would be statistically independent of
all other types with a probability of 0.5. Consequently, all of the
255 possible profiles would be equally likely and the possibility
of finding 2 duplicate profiles would be vanishingly small. We,

therefore, tested each profile for the presence of duplicates.
The results showed that 27% of the output profiles and 9% of
the input profiles were duplicates of existing profiles (Fig. 5B,
red bars). As this result is virtually impossible in unstructured
connectivity, we can conclude that the repeated patterns are
not mere coincidence but an indication of a targeting of certain
connection types.

The presence of duplicate profiles is an indication that some
profiles are vastly more likely than others. To explore this ques-
tion further, we analyzed the probability distribution of neuron
type innervation profiles for individual neurons. Since each
NMC model instance provides no more than ~31 000 out of
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Figure 5. Nonrandom targeting of neurons within a layer. (A) Innervation profiles for all neurons in an instance of anatomically constrained connectivity: For each

neuron (horizontal axis) we identified all neuron types (vertical axis) with which it formed at least 1 synaptic contact (shown in black) and all types with which it

formed no contacts (white). Top: For outputs of neurons, bottom: for inputs of neurons. (B) Entropy of the distribution of Innervation profiles of individual neurons

(blue lines) and fraction of duplication profiles (red bars) in in 42 instances. (C) Like B, but for randomly generated innervation profiles. From left to right: profiles based

on the overall mean connection probability (P); profiles based on the observed connection probabilities for each neuron type (M); profiles based on the observed

connection probabilities for specific neuron types in specific layers (M × L); profiles based on the observed connection probabilities for specific pairs of neuron types

(M × M). (D) MI for innervation of pairs of neuron types, that is, pairs of rows in A. Left: For output profiles, bottom: input profiles. Upper left triangles: for randomly

generated innervation profiles (M × M), bottom right triangles: in anatomically constrained connectivity.
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more than 1016 possible innervation profiles (1 data point per
neuron), we also included the data from 35 additional
instances, where the anatomical and morphological constraints
on the connectivity were parameterized with data from 5 indi-
vidual rats (Markram et al. 2015). In this way, we were able to
sample 42 instances providing a total of 1 302 000 data points.

We started by calculating the entropy of the distribution of
profiles, which we estimated at 15 bits per neuron for the out-
put profiles and 17 bits per neuron for the input profiles
(Fig. 5B). In contrast, a completely unstructured circuit would
have an actual entropy of 55 bits per neuron and, when under-
sampled with 1 302 000 data points, would yield an estimated
entropy of ( ) ≅log 1 302 000 20.32 bits per neuron. The difference
is evidence that neurons are strongly constrained with respect
to the neuron types they connect to.

To understand how this reduction in entropy relates to neu-
ron morphology and its variability across and within neuron
types, we generated 4 statistical control models, P, M, M × L,
and M × M (see below, methods), each incorporating progres-
sively more anatomical constraints than the previous one. For
each control, we generated 1 instance based on each of our
42 NMC model instances, thus subjecting each to the same
under-sampling as in the original analysis. Specifically, the first
statistical control (P) was based on the “average” neuron type
connection probability observed in the 42 NMC instances.
Thus, = ∑ ∑ ( ) (| | × )=

=P I n n/ 55j
j

n j
out

1
55 out , where | |n indicates the

number of neurons in the microcircuit and 55 is the number
of neuron types; Pin was computed in the same way. The sec-
ond control (M) used specific probabilities for each neuron
type: = ∑ ( ) | |M I n n/j n j

out out . The third control (M × L) incorporat-
ed information on the layer of the profiled neuron:

× = ∑ ( ) | |∈M L I n l/l j n l j,
out out , where l indicates a cortical layer and

| |l is the number of neurons in the layer. Finally, the fourth con-
trol (M × M), incorporated information on the neuron type of
the profiled neuron: × = ∑ ( ) | |∈M M I n m/l j n m j,

out out , where m indi-
cates a neuron type and | |m is the number of neurons of the
type.

The P control is unstructured: the probability that the pro-
filed neuron forms a connection with a neuron type is equal for
all neurons and types. The M control accounts for differences
in the number of neurons innervated by a given neuron type,
but not for specific preferences—that is, it takes account of the
overall size of dendritic/axonal trees, but not of their shape.
Conversely, the M × L and M × M controls account for neuron
type-specific preferences in the targeting of layers and/or neu-
ron types, but not for individual neuron morphologies.

Analysis of connectivity in the 4 models showed higher
redundancy and lower entropy for outputs than for inputs—a
trend which became stronger as new constraints were added to
the models. However, the differences between the M × L and
M × M controls were negligible and even the M × M controls still
displayed higher entropy than the NMC model (4.1 bits higher
for outputs; 2.5 bits higher for inputs; Fig. 5C, blue lines).

The entropy of the P and the M controls was not maximal,
because the probabilities used to construct the profiles were
significantly different from 0.5—the value that yields maximal
entropy (and the minimum number of duplicates). However,
entropy in M × L and M × M was further reduced by correlations
between the innervation of different neuron types. For exam-
ple, the tendency of neurons to innervate neurons of type A
may correlate with innervation of a second type B.

To quantify these correlations and their dependence on
individual neuron variability, we calculated the mutual infor-
mation (MI) between pairs of neuron types in the innervation

profiles, that is, between individual rows of the profiles
(〈 ( ) ( ) … ( )〉I I I n1 , 2 , ,j j j

out out out , similarly for Iin ) and compared the
results for M × M with those for the NMC model (Fig. 5D). In P
and M, MI was zero by definition. Results for M × L were compa-
rable to those for M × M. The M × M output profiles were char-
acterized by the presence of significant MI, mainly between
specific neuron types in layers 2/3 and 4; these types also
shared some MI with PCs in layer 5 and BCs and MCs in layer 6.
However, in most cases, MI in the control model was far lower
than in the NMC model. This was most pronounced for pairs of
neuron types in the same layer, but also for combinations of
pairs across layers 2/3, 4, and 5, where MI was more than 2-fold
higher in the NMC model. Notably, only the NMC model dis-
played significant MI within layer 5. Neither the NMC model
nor the M × M controls showed any significant MI between neu-
ron types in layer 5 and types in layer 6, nor between types in
layer 1 and any other neuron type.

In a similar analysis of input profiles, most of the MI in M × M
was between neuron types in layer 6 and types in layers 2/3, 5, or
6. In the NMC model by contrast, we found additional MI
between pairs in layers 4 and 5 and within layer 2/3. MI for pairs
where 1 neuron type was in layer 6 was not further increased rel-
ative to M × M.

MI between pairs of neuron types can be interpreted as
probabilistic connectivity rules, where the probability that a
neuron innervates 1 of the neuron types in the pair is depen-
dent on whether it innervates the other. For example, we pre-
dict that when a particular neuron innervates PCs in layer 2/3,
the probability that the same neuron will innervate Inverted
PCs (IPCs) in layer 6 is “reduced” (see Supplementary Fig. S6),
but the probability that it innervates Star PCs (SPs) is
“increased”. Similarly for inputs: innervation of a neuron by an
MC in layer 2/3 reduces the probability that it will be innervated
by a Nest BC (NBC) in layer 6, but increases the probability that
it will be innervated by an MC in L5.

These findings support the notion that anatomical con-
straints alone are sufficient to produce highly structured pat-
terns of interlayer innervation and reveal a degree of specificity
that goes beyond simple laminar targeting. Notably, however,
this specificity only appears when we take account of morpho-
logical variability “within” neuron types.

Emergent Neuronal Assemblies

Previous studies have also identified higher-order connectivity
motifs in biological microcircuits. For example, a study of con-
nectivity in networks of PCs in layer 5 using simultaneous
patch clamping of up to 12 cells showed that connected pairs of
neurons in the network had more “common neighbors,” that is,
neurons connected to both neurons of the pair, than would be
the case in a random network (Song et al. 2005; Perin et al.
2011). This suggested the presence of neuronal assemblies—
clusters of tightly—interconnected neurons.

To investigate whether anatomical constraints alone could
give rise to such structures, we recreated the experiment
reported in Perin et al. (2011) for 7 instances of NMC connectiv-
ity. As in the original experiment, we randomly selected
regions of the model, and measured the connections of PCs in
layer 5 at relative positions approximating those of patched
neurons in the original experiment (see Materials and Methods
section). We found that the number of connected pairs with
more than 2 common neighbors was more than 10 times the
value expected for a random network with the same overall
connection probability (see Fig. 6A, gray bars vs. black line).
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This result closely matched the results of (Perin et al. 2011)
(Fig. 6A, green line).

While experiments are usually restricted to testing the com-
mon neighbor rule for 1 type of neuron at a time, we tested the
rule for all possible pairs of neuron types in the NMC model.
We first calculated the distribution of common neighbor num-
bers over all pairs of neurons belonging to the selected types,
considering common neighbors of “any” type in the same layer
(Fig. 6B). We then compared against the results for random con-
trol networks. To a certain degree, a distance-dependent con-
nection probability alone can explain an increase in common
neighbor numbers compared to an Erdős–Rényi model, as neu-
rons in close proximity will have an equally elevated connection
probability to neurons in their shared spatial neighborhood and,
therefore, a large number of common neighbors. We, therefore,
compared against controls with the same distance-dependent
connection probabilities: for each instance of anatomically con-
strained connectivity, we generated 10 random instances with
the same neuron positions and the same distance-dependent
connection probability profiles for all connection types (see
Materials and Methods section; as these controls also recreated
the distance dependence of individual connection types (see

Fig. 4), they preserved even more biological detail than the M × M
model). We then performed the same common neighbor analysis
for matching connection types in the controls. Finally, we used
the mean difference between NMC and controls in the slope of
log-linear fits to the distribution of common neighbors as a mea-
sure of the “strength of the common neighbor rule” for specific
connection types (Fig. 6C).

We found that increased numbers of common neighbors
numbers was a near universal feature of anatomically con-
strained connectivity (Fig. 6D). For all but 6 pairs of neuron
types, the slope of common neighbor numbers was signifi-
cantly steeper in the NMC model than the control networks
(P < 0.01, one-tailed t-test, 7 instances against 7 × 10 = 70 ran-
dom networks). Most of the connection types where the differ-
ence did not reach significance were in layer 1, where neuron
densities are low. It is possible, therefore, that the failure to reach
significance was due to small sample size only. Surprisingly,
6 out of 16 pairs with a result ≥0.75 were also in layer 1.

Overall, the strongest effects were observed in pairs of neu-
rons belonging to the same type (12 out of 16 results with a
result ≥0.75) and the mean strength of the effect was more
than 2 times higher within the same type than across types
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(0.60 vs. 0.26). This suggests that neurons whose axons and
dendrites have similar shapes reach overlapping regions of the
microcircuit, where they form connections with strongly over-
lapping sets of partners.

Generally, the common neighbor rule was stronger for
inhibitory than for excitatory types (0.32 ± 0.27 for I–I pairs,
0.25 ± 0.12 for E–I pairs, 0.23 ± 0.09 for E–E pairs, differences
between all 3 groups significant, P < 0.01, two tailed t-test). On
this basis, we predict that the excess of common neighbors will
be larger in networks involving inhibitory types than in purely
excitatory networks.

The neuron types with the strongest tendency to form com-
mon neighbors were DBCs in layers 5 and 6, which both dis-
played results more than 2 times higher than the mean of
these layers. Interestingly, this tendency was weaker or absent
in DBCs in layers 2/3 and 4. This distinction coincides with

significant differences in morphology. The axons of DBCs in
layers 2/3 and 4 point predominantly downwards while the
dendrites point upwards. In layers 5 and 6, the axons tend to
point upwards and the dendrites downwards (see Markram
et al., 2015). This is further evidence that the excess of common
neighbors is a consequence of neuron morphology.

Another higher-order rule of connectivity found by (Perin
et al. 2011) is that the connection probability for pairs of PCs is
higher when they have higher numbers of common neighbors.
Again, we found the same phenomenon in the NMC model,
where the connection probability increased from 0.1, for neu-
rons with no common neighbors, to 0.24, for neurons with 3
common neighbors (Fig. 7A).

To measure the strength of this “common neighbor bias” for
pairs of neuron types we used a version of the global “cluster-
ing coefficient” (Luce and Perry 1949; Watts and Strogatz 1998).

0 1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

C
o
n
n
e
c
ti
o
n
 p

ro
b
.

Num. com. neighbors

A

1 32n.s

B

? ?

cluster coefficient

(fraction of closed triangles)

m
pre

m
post

m
pre

m
post

normalized with respect to random

connections (same dist. dep.)

DAC

D
A

C

DLAC

D
L

A
C

HAC

H
A

C

NGC-DA

N
G

C
-D

A

NGC-SA

N
G

C
-S

A

SLAC

S
L

A
C

PC

P
C

BP

B
P

BTC

B
T

C

ChC

C
h

C

DBC

D
B

C

LBC

L
B

C

MC

M
C

NBC

N
B

C

NGC

N
G

C

SBC

S
B

C

PC

P
C

SP

S
P

SS

S
S

BP

B
P

BTC

B
T
C

ChC

C
h

C

DBC

D
B

C

LBC

L
B

C

MC

M
C

NBC

N
B

C

NGC

N
G

C

SBC

S
B

C

STPC

S
T

P
C

TTPC1

T
T

P
C

1

TTPC2

T
T

P
C

2

UTPC

U
T

P
C

BP

B
P

BTC

B
T

C

ChC

C
h

C

DBC

D
B

C

LBC

L
B

C

MC

M
C

NBC

N
B

C

NGC

N
G

C

SBC

S
B

C

BPC

B
P

C
IPC

IP
C

TPC

T
P

C
TPC

T
P

C
UTPC

U
T

P
C

BP

B
P

BTC

B
T

C
ChC

C
h

C
DBC

D
B

C
LBC

L
B

C
MC

M
C

NBC

N
B

C
NGC

N
G

C
SBC

S
B

C

m
p

re

m
post

m
post

m
p

re

C

m
post

Anatomic.
constrained

Expected
Biology

Figure 7. Connection probability depends on the number of common neighbors. (A) Analyzing the same simulated multi-patch experiment as in Figure 6, we evalu-

ated connection probabilities for pairs of PCs in layer 5 with different numbers of common neighbors (gray bars) and compared the results to data from (Perin et al.

2011) (green). In a random network, numbers of common neighbors would have no effect on connection probabilities (black). (B) The global cluster coefficient is com-

puted as the fraction of closed triangle motifs over all triangle motifs. As in Figure 6, we consider triangles where 2 of the corners are formed by neurons of a given

pair of types and the third neuron is in the same layer. Triangles are considered closed only if there exists a connection from the presynaptic neuron type (mpre) to

the postsynaptic type (mpost ). Connected neuron pairs with many common neighbors will close many triangles simultaneously. Thus, positive correlation between

common neighbor numbers and connection probability will increase the clustering coefficient. (C) Mean ratio of the observed clustering coefficient to the clustering

coefficient in a randomized network with the same neuron positions and distance-dependent connection probabilities (7 instances of connectivity; 10 randomized

per anatomically constrained instance). Nonsignificant differences shown in gray (paired t-test).

4580 | Cerebral Cortex, 2017, Vol. 27, No. 9

D
ow

nloaded from
 https://academ

ic.oup.com
/cercor/article-abstract/27/9/4570/3872356 by guest on 04 February 2020



0

0.04

0.08

0.12

0.16

0

0.05

0.1

0.15

0.2

0

0.05

0.1

0.15

0.2

0.25

0 100 200 300 400

Distance (um)

C
o
n
n
e
c
ti
o
n
 p

ro
b
a
b
ili

ty

Reconstructed

microcircuit

P ~ O

P ~ O2

P ~ O3

L4PC to L4PC

L5MC to L5TTPC1

L6LBC to L6TPCL1

PC-BC

MC-MC

BC-BC

PC-PC

BC-PC

PC-MC

MC-PC

0.0 0.1 0.2 0.3 0.4

1 2 3 4 5 6 7 8
Reconstructed microcircuit

Bias for reciprocal connectivity

1

2

3

4

5

6

7

8

M
e
a
n
 f
ie

ld
 o

v
e

rl
a

p
 P

~
O

2

Value of KS-statistic

M
e

a
n

 f
ie

ld
 o

v
e
rl
a
p
 P

~
O

2

Normalized cluster coefficient

CB

E

G

Δy
=

1
9

5
u

m
y=

1
9

5
u

m

Δxz=-70umxz=-70um

Axonal volume

Dendritic volume

O(-70, 185) O = Axon   Dendrite*A

Δxz (um)

Δy
 (

u
m

)

150 300

150

300

450

600

Touch detection

and rand. reduction

R
e
c
ip

ro
c
a
l 
b
ia

s

MC to PC

PC to PC

Exponent

V
a
lu

e
 o

f 
K

S
-s

ta
ti
s
ti
c

P ~ O

P ~ O2

P ~ O3

Exponent

C
o
n
n
e
c
ti
o
n
 p

ro
b
a
b
ili

ty
C

o
n
n
e
c
ti
o
n
 p

ro
b
a
b
ili

ty

D

F

1.0 1.5 2.0 2.5 3.0 3.5

0.00

0.05

0.10

0.15

0.20

0.25

0.30

1.0 1.5 2.0 2.5 3.0
0

2

4

6

8

L6: MC-PC

L6: PC-PC L5: MC-PC

L5: PC-PC

V
axon

, V
dendrite O

Transfer

function

Normali-

zation
P

1.4 1.6 1.8 2.0 2.2 2.4

1.1

1.2

1.3

1.4

1.5

Reconstructed microcircuit

1.0 1.5 2.0 2.5 3.0

1.0

1.2

1.4

1.6

1.8

2.0

Exponent

H

N
o
rm

a
liz

e
d
 c

lu
s
te

r 
c
o
e
ff
ic

ie
n
t

L6: MC-PC

L6: PC-PC

L5: MC-PC

L5: PC-PC

Reconstructed

microcircuit

Mean field overlap

Figure 8. Connectivity derived from average morphologies. (A) Generating connectivity from dendritic and axonal clouds for individual neuron types. From left to

right: all reconstructed morphologies for a type were aligned at the soma. The spatial distributions of dendrites (blue) and axons (red) were calculated as in Markram

et al. (2015). The figure shows the dendrites of SSs and the axons of LBCs in layer 4. Next, the strength of the overlap for relative soma positions was calculated as the

convolution of the axonal and the dendrite distributions. The matrix of overlaps of all neuron pairs for a connection type was filled and a transfer function applied.

Results were converted into connection probabilities by normalizing them such that the expected number of connections was equal to the number of connections for

the same type in the anatomically constrained connectivity. (B) Distance-dependent connection probabilities for exemplary connection types in 3 layers for different

transfer functions (green: identity, teal, o2, red o3). Black dashed lines indicate results in the reconstructed microcircuit and dotted lines the results for connectivity

derived by randomly removing appositions until biological bouton densities were reached. (C) KS-statistic comparing the distribution of soma distances for connected

neuron pairs in a number of connection types. Lower values indicate more similar distributions. Different colors indicate different transfer functions as in B. (D) KS-

statistic as in C against exponents used in the transfer function for MC to PC (red) and PC to PC (blue) connections in different layers. (E) Bias for reciprocal

Morphological Diversity Strongly Constrains Synaptic Connectivity and Plasticity Reimann et al. | 4581
D

ow
nloaded from

 https://academ
ic.oup.com

/cercor/article-abstract/27/9/4570/3872356 by guest on 04 February 2020



Briefly, a pair of neurons that share a common neighbor gives
rise to a “triangle motif”. The clustering coefficient is defined as
the fraction of such triangles that are closed, that is, the frac-
tion of triangles where the original pair is connected. The more
common neighbors a pair shares, the more triangles are closed
when a connection exists. Thus, given an overall connection
probability, higher values of the clustering coefficient are equiv-
alent to stronger common neighbor bias.

As above, our analysis was connection-type specific, consid-
ering only triangles formed by pairs of neuron types and their
common neighbors in the same layer (Fig. 7B). Further, we con-
sidered connections between the original pair only in the indi-
cated direction, measuring only the increase of directed
connection probability “from” a neuron type mpre to a type
mpost. “Common neighbor bias” was then computed as the ratio
between the clustering coefficients in the model and a control
network, where the connections between the types under con-
sideration (i.e., →m mpre post), were shuffled, while maintaining
the distance-dependent connection probability profile.
Connections from mpre or mpost to the rest of the network, and
consequently the numbers and identities of common neighbors
between mpre/mpost pairs, remained untouched.

As before, we found the effect described by (Perin et al.,
2011) in all regions of the NMC model (Fig. 7C). In fact, the effect
for pairs of PCs in layer 5 (the types in the original study) was
weaker than for most other pairs. The strongest effect was
found for I→ I pairs, albeit with high variability (2.45 ± 2.30).
With other connection types, variability was lower (1.83 ± 0.46
for I→ E connections, 1.91 ± 0.90 for E→ I and 1.49 ± 0.18 for
E→ E). Between group differences were all statistically signifi-
cant (P < 0.01) except for I→ E against E→ I (P = 0.03).

The strength of the common neighbor bias appears to
depend more on the presynaptic than on the postsynaptic neu-
ron type (average standard deviation across postsynaptic vs.
presynaptic neuron type: 0.90 vs. 0.57; P = 0.024, paired t-test).
This is an indication that it depends more on axonal than on
dendritic morphology.

The Role of Morphological Variability

The finding that the anatomically constrained connectivity
reproduces many nonrandom features of biological connectiv-
ity complements previous findings that it reproduces average
connection probabilities and a bias for reciprocal connections
(Reimann et al. 2015), observed in many in vitro studies (Song
et al. 2005; Larimer and Strowbridge 2008; Perin et al. 2011).
Clearly, most of the nonrandom features we observed were
strongly dependent on neuron type (Figs 4, 5D, 6, 7), highlight-
ing the crucial role of morphological variability in connectivity.
However, it remained unclear how far these features were
determined by the morphological characteristics shared by all
neurons of a specific type, and how far they depended on indi-
vidual within-type morphological variability.

To answer this question, we developed an algorithm that
connected neurons based on the overlap between the average
axonal and dendritic “clouds” of their respective types, that is,
the probability distribution of the relative positions of dendrite

and axonal segments relative to the soma (see Markram et al.
2015, Methods). In this approach, connectivity was still con-
strained by morphological variability across neuron types, the
positions of neurons within each layer and the maximum num-
ber of connections an axon can sustain. However, the approach
ignored individual morphological variability within a neuron type
as expressed through branching angles, segment length distribu-
tions and other measures of local geometry. Thus, types that are
very different in terms of their “specific” versus “nonspecific” lay-
outs or the correlations between the positions of individual seg-
ments (Stepanyants and Chklovskii 2005) could still give rise to
the same “cloud” representation (see Supplementary Fig. S7).

Briefly, for each pair of neuron types, we computed the con-
volution of their respective dendritic and axonal clouds yield-
ing a measure of overlap for different relative soma locations
(Fig. 8A). Next, for each pair of neurons belonging to a specific
pair of types, we looked up the strength of the overlap for their
relative positions and placed the value in a Table of overlaps.
Finally, we applied a transfer function to the Table (see below)
and normalized the results, such that the resulting connection
probabilities would conserve the expected total number of con-
nections between the 2 neuron types. We then used the table
to generate random instances of “cloud-derived” connectivity
for further analysis.

With identity as the transfer function, the distance depen-
dency of connection probabilities were much flatter than in the
NMC model, that is, there were too few connections at low dis-
tances and too many at high distance (Fig. 8B, green lines vs.
dashed, black lines). In fact, the profiles were comparable to
those obtained by randomly pruning appositions, without
applying a multi-synapse rule, that is, by ignoring anatomical
constraint 1 (Fig. 8B, dotted lines).

A multi-synapse rule will make anatomically strong connec-
tions more likely and weak connections less likely. To emulate
this effect, we recomputed the connectome using alternative
transfer functions y = O2 and y = O3 (Fig. 8B, blue, red lines). With
y = O2, we found a good match between the distance dependency
profile for the cloud-derived connectome and the profile for the
actual microcircuit model (Fig. 8C), the only exceptions being a
few connection types involving MCs, where y = O3 provided a
better fit. More generally, we found optimal fits for exponents
around 2 ± 0.2 (Fig. 8D), the only exceptions being some of the
connection types formed by MCs onto PCs. These results suggest
that while the bias toward structurally stronger connections may
be type specific, the realistic distance-dependent connection
probability profiles in the NMC model depend on the large-scale
morphological properties of the neuron types and not on the
shapes of individual neurons within a type.

As a further test, we compared the cloud-derived connec-
tome (transfer function y = O2) to the full-detail NMC model,
in terms of bias for reciprocal connectivity, that is,

( → | → ) ( → )P A B B A P A B/ (Fig. 8E). Once more we found an
exceptional match, except for pathways involving MCs (Fig. 8E,
red and maroon), where higher exponents produced a better fit
(Fig. 8F). Thus, bias for reciprocal connectivity is also indepen-
dent of the morphologies of individual neurons. However, this
is not the case for common neighbor bias. In fact, there is

connectivity, that is, |( → → )
( → )

P A B B A
P A B

, when the transfer function O2 is used compared to the bias in the anatomically constrained connectivity. Different colors indicate

different connection types. (F) Bias for reciprocal connectivity against exponents used in the transfer function for MC to PC (red) and PC to PC (blue) connection types

in different layers. Markers indicate where the bias in the anatomically constrained connectivity is reached. (G) Normalized cluster coefficient (as in Fig. 7) compared

to the one in anatomically constrained connectivity. (H) Normalized cluster coefficient against exponents used in the transfer function for MC to PC (red) and PC to PC

(blue) connection types in different layers. Dashed lines indicate corresponding coefficients in anatomically constrained connectivity.
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practically no overlap between the value of the normalized
cluster coefficient for the cloud-based connectivity, calculated
as in Figure 7, and the value for the full-detail microcircuit
model (Fig. 8G). Only the very largest coefficient in the cloud-
derived connectivity (1.39, L4_PC to L4_MC) exceeds the mini-
mal value for the full-detail model (1.3, L5_STPC to L5_TTPC1).
Even using transfer functions with higher exponents, the com-
mon neighbor bias in the cloud-based connectivity remained
lower (Fig. 8H, 4 exemplary connection types shown; results for
others were similar). This is direct evidence that the common
neighbor bias depends on individual differences between the
morphologies of neurons belonging to the same type.

Discussion
This study explored the extent to which morphological diversity
across and within neuronal types constrains connectivity. We
used known biological rules to reconstruct connectivity between
known neuron types in different statistical instances of a biologi-
cally driven in silico model of neocortical microcircuitry. We
found on the one hand, that the average morphology of neuronal
types imposes significant constraints on the first order structure
of the network. These are reflected in the strengths of connec-
tions between different neuron types, interlaminar connectivity,
distance-dependent connectivity (which varied between neuron
types) and reciprocal connectivity bias. On the other hand,
higher-order structure, such as the experimentally derived com-
mon neighbor bias of connectivity, depends on morphological
diversity within individual neuronal types. The exact nature of
the morphological features leading to this effect—possibly distri-
butions of branch angles/lengths or correlations therein—
remains an open question to be addressed in future work.

Our approach to the analysis of local microcircuits allowed us
to generate numerous predictions about the structure of their
connectivity. For example, the analysis predicts that different
connection types have different distance-dependent connectivity
profiles (Fig. 4), that synaptic innervation follows statistical rules
(Fig. 5, see Supplementary Fig. S6) and that almost all neuron
types display clustered connectivity (Figs 6, 7). These predictions
demonstrate the power of statistical, in silico connectome deri-
vations to complement in vivo, in vitro, and EM measurements.

The accuracy of the predictions depends on the underlying
modeling method, and the biological data used to parameterize it.
Although the integration process exploited an unprecedented vol-
ume of biological data, these data were still not complete, making
it necessary to base some aspects of the model on extrapolation.
In particular, the model captured morphological variation within
neuron types by creating multiple new samples of manually
reconstructed neuron morphologies, adding small statistical varia-
tions to the branch lengths and angles of the original morphology.
It is possible that this process underestimated the morphological
diversity within cell types actually present in cortical tissue. Based
on the finding that this intrinsic morphological diversity shapes
higher order connectivity, it is likely that the higher order connec-
tivity is even more complex than predicted.

Since different neuron types play an interdependent role in
determining connectivity, it is possible that the addition of new
neuron types to the model would affect the connectivity of other
types. However, our main conclusions—that first order structure
depends on morphological diversity between cell types, that
higher order connectivity depends on diversity within types,
that almost all types of neurons will show strong common
neighbor bias—are more likely to be strengthened than weak-
ened by the inclusion of additional morphological detail.

The fact that anatomical constraints alone are enough to
account for a wide range of known features of neuronal connec-
tivity (except for specifically crafted patterns that are cell-type
specific, such as the innervation of the axon initial segment by
Chandelier neurons), suggests that it may be possible to charac-
terize biologically available configurations of connectivity, that
is, the configurations reachable via structural plasticity, with
only few—if any—additional constraints. If this is so, the upper
bound placed by anatomical constraints on the storage capacity
of neural microcircuitry provides a useful estimate of its limits.

The same observations suggest that the activity-dependent
long-term microcircuit plasticity or rewiring that has been dem-
onstrated experimentally (Le Be and Markram 2006) is not the
main cause of the clustered connectivity we observe in the brain,
but rather a mechanism to shift from one specific clustering con-
figuration to another. Despite anatomical constraints, the space
of possible configurations is still enormous, and it is unlikely that
plasticity can explore it completely. We suggest, therefore, that
for learning to be feasible, plasticity mechanisms must necessar-
ily place significant global constraints on how connections can
change. One way of achieving this would be through homeostatic
plasticity, for example, regulation of neuron firing rates (Renart
et al. 2003; Turrigiano and Nelson 2004; Delattre et al. 2015).
Mechanisms that require continuous shifting between a vast set
of possible configurations pose significant challenges for current
theories of information processing, storage and retrieval. It is
likely, therefore, that future studies will have to consider the sta-
bility of individual configurations in addition to their availability.

Supplementary Material
Supplementary data are available at Cerebral Cortex online. The
in silico connectome derived in this study can be freely obtained
from the Neocortical Microcircuit Collaboration Portal - https://
bbp.epfl.ch/nmc-portal/downloads (Ramaswamy et al. 2015).
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