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Abstract
Communication technology has advanced up to a point where children are getting unfamiliar

with the most iconic symbol in IT: the loading icon. We no longer wait for something to come

on TV, nor for a download to complete. All the content we desire is available in instantaneous

and personalized streams. Whereas users benefit tremendously from the increased freedom,

the network suffers. Not only do personalized data streams increase the load overall, the

instantaneous aspect concentrates traffic around peak hours. The heaviest (mostly video)

applications are used predominantly during the evening hours.

Caching is a tool to balance traffic without compromising the ‘on-demand’ aspect of content

delivery; by sending data in advance a server can avoid peak traffic. The challenge is, of course,

that in advance the server has no clue what data the user might be interested in. We study

this problem in a lossy source coding setting with Gaussian sources specifically, using a model

based on the Gray–Wyner network. Ultimately caching is a trade-off between anticipating

the precise demand through user habits versus ‘more bang for buck’ by exploiting correlation

among the files in the database.

For two Gaussian sources and using Gaussian codebooks we derive this trade-off completely.

Particularly interesting is the case when the user has no preference for some content a-priori,

caching then becomes an application of the concepts of Wyner’s common information and

Watanabe’s total correlation. We study these concepts in databases of more than two sources

where we derive that caching all of the information shared by multiple Gaussians is easy,

whereas caching some is hard. We characterize the former, provide an inner bound for the

latter and conjecture for which class of Gaussians it is tight. Later we also study how to most

efficiently capture the total correlation that exists between two sets of Gaussians.

As a final chapter, we study the applicability of caching of discrete information sources by

actually building such algorithms, using convolutional codes to ‘cache and compress’. We

provide a proof of concept of the practicality for doubly symmetric and circularly symmetric

binary sources. Lastly we provide a discussion on challenges to be overcome for generalizing

such algorithms.

Keywords: coded caching, source coding, Gaussian distributions, common information, total

correlation, Gray–Wyner network, convolutional codes
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Résumé
Les technologies de l’information et des communications ont avancé jusqu’à un niveau où

les enfants ne connaissent plus le symbole le plus iconique dans l’informatique : l’icône de

chargement. Nous ne devons plus attendre la diffusion d’un programme à la télé, ni la fin

d’un téléchargement. Tout le contenu que nous désirons est disponible instantanément. Alors

que les utilisateurs en bénéficient, le réseau souffre. Les flux de données personnalisés non

seulement augmentent le trafic en général, mais l’aspect instantané le concentre aux heures

de pointes. Les applications les plus lourdes sont surtout populaires le soir.

‘La mise en cache’ est une technique qui permet de repartir le trafic sans compromettre la

liberté d’une ‘diffusion sur demande’ ; un serveur peut éviter les heures de pointes en trans-

mettant les données à l’avance. Pourtant, le serveur ne sait évidemment pas à l’avance quelles

données seront demandées par l’utilisateur dans le futur. Nous étudions ce problème par un

modèle fondé sur le système de Gray–Wyner. Finalement, la mise en cache est un compromis

de l’anticipation de la demande exacte fondé sur les habitudes des utilisateurs versus la corré-

lation entre les fichiers enregistrés dans la base de données.

Nous décrivons complètement ce compromis pour deux sources Gaussiennes en utilisant les

codes Gaussiens. Un cas intéressant est lorsque l’utilisateur n’a aucune préférence pour un

fichier spécifique. La mise en cache devient alors une application des concepts de l’informa-

tion commune de Wyner et de la corrélation totale de Watanabe. Nous étudions ensuite ces

concepts dans des bases de données de plus de deux sources Gausiennes. Nous découvrons

que la mise en cache de toute l’information commune entre divers Gaussiens est facile, alors

que faire de même pour seulement une partie est un processus difficile. Le premier est caracté-

risé et nous proposons une limite pour le dernier. Ensuite, nous étudions comment capturer la

corrélation totale entre deux ensembles des sources Gaussiennes le plus efficacement possible.

Le denier chapitre discute l’applicabilité des algorithmes pour la mise en cache des sources

discrètes par l’utilisation des codes convolutionnels. Nous apportons une preuve du concept

pratique des sources binaire symétrique. Finalement, nous discutons les obstacles à surmonter

pour généraliser ces algorithmes.

Mots clefs : cache, Gaussian, l’information commune, la corrélation totale, le système de

Gray–Wyner, les codes convolutionnels
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the common information of each (X̃i , Ỹi )-pair and the shaded area equals Ri . In

this example, d = 4, ρi ∈ {0.9,0.8,0.6,0.4} (f.l.t.r.) and θ is such that R3 = R4 = 0. . 92

6.4 Example of the caching trade-off with d = 4 and ρi ∈ {0.9,0.8,0.6,0.4}. The dia-

monds correspond f.l.t.r. to the points were respectively R1, R2 and R3 become

positive, following the waterfilling of Theorem 6.2. The circle corresponds to

Rcache =CW (X,Y). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

7.1 The boundary of achievable (Rcache,Rupdate)−pairs is the thick black line right of

CW (X), and an unknown convex curve inside the gray triangle related to solving

ψ(r ) (7.6). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

7.2 CW (X1, X2) of a doubly symmetric binary source as a function of q (7.9). . . . . 98

7.3 The schematic of cache and update encoders in the case the user requests the

samples of X N
k for a k ∈ {1,2}. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

7.4 Caching a DSBS-duo with q = 0.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

7.5 Caching a DSBS-duo with q = 0.2. . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

7.6 Caching a DSBS-duo with q = 0.3. . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

7.7 Caching a CSBS-triplet with q = 0.1. . . . . . . . . . . . . . . . . . . . . . . . . . . 108

7.8 Caching a CSBS-triplet with q = 0.2. . . . . . . . . . . . . . . . . . . . . . . . . . . 108

7.9 Caching a CSBS-triplet with q = 0.3. . . . . . . . . . . . . . . . . . . . . . . . . . . 108

xiii





List of Tables
1.1 Most used matrix and vector functions. . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1 List of properties of ellipsoids. All random variables are Gaussian. . . . . . . . . 18

3.1 Examples of distortion functions d(X, X̂) = d(D) that depend only on the squared

error matrix and who preserve semidefinite ordering. . . . . . . . . . . . . . . . 22

xv





1 Introduction

For every advancement made in communication technologies users become even more

demanding. The privilege of being perfectly connected everywhere to endless amount of

content becomes so natural that people become increasingly unable to handle setbacks in

that connectivity. Speed, responsiveness, storage space, etc. are all expected to only increase

monotonically. This makes the work of engineers difficult: for every step forward there is no

way back. Hence, we must make sure the gains offset any new problems these advancements

might introduce.

The widespread adoption of streaming video services in the last few years has been the biggest

gamechanger in online content. Sure, Youtube has been around for longer, but the HD services

of Netflix, Hulu and Amazon Prime truly set the standard of what quality users nowadays

expect. The ‘on-demand’ aspect in particular has been the biggest leap in user experience

and the biggest headache for communication engineers. The instantaneous and personalized

properties of video-on-demand causes network traffic to be concentrated in ‘internet rush

hour’, the evening peak when users all log in simultaneously.

The engineering challenge ahead is to design communication technology that can provide

users the freedom of ‘on demand’ streaming with a balanced network load that providers can

handle. Guaranteeing both forces servers to anticipate demand and to communicate data

before it is even requested. Of course, correlation does not imply causation, but one cannot

help but notice that in this same timeframe caching became a hot topic in the information

theory community. The most popular caching paper by Maddah-Ali and Niessen [1] was first

published on arXiv in the same year in which Netflix tripled her stock value [2].

In this thesis we consider the same idea of coding information in two phases: to first anticipate

demand by writing something in the cache of the user, followed by responding to an actual

request for data by that same person. This second phase is most often called delivery, while we

prefer the term update. The impatience of the encoder makes it almost inevitable that some

data in the cache will turn out to be redundant; after all, at first he is blind to what he actually

needs to transmit. This loss is accepted in the knowledge that otherwise waiting for a user
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Chapter 1. Introduction

to make a request would put a heavy burden on the network during those ‘peak hours’. The

grand caching question is whether despite this loss there are still smart strategies to reduce

overall communication rates.

We study these problems in a lossy source coding setting and even more specific: using

Gaussian databases. The model is based on the (single user) work of Wang, Lim and Gastpar

who ventured in this direction using discrete information sources [3]. Recently this model was

extended to a lossy setting as well by Timo, Bidokhti, Wigger and Geiger [4]. Their focus was

on designing caching strategies that optimize the worst-case update scenario. Our objective,

however, will be to design caching codes that do well on average and to -when possible- also

model asymmetric user preference for certain data. In our model, the cache encoder weighs

two parameters in its strategy: the preference a user has for some files in the database versus

the correlation between those files to be able to transmit data that is useful no matter the

user’s request.

For related but a little more distant work one may also consider reading the following: Has-

sanzadeh, Erkip, Llorca and Tulino also study Gaussian caching in a broadcast scenario to

multiple users in a very hands-on, practical work [5]. Yang and Gündüz discuss the multi-user

case and distinguish their model by letting the distortion constraints vary per user using a

worst-case metric to evaluate update communication rates [6].

The Wang-Lim-Gastpar caching model is closely related to the classic Gray–Wyner network, in

which an encoder communicates two files to two decoders (one for each) via one common and

two individual communication links [7]. The common link stands analogous to the cache that

gets transmitted in any case, whereas the individual ones can be viewed upon as the update

messages that get send if either one file or the other is requested. If the user has no preference

for any data, the encoder must try to cache as much of the information that is shared by the

files as possible. After all, that data is useful no matter what, whereas individual information

might go to waste if the user makes a different choice. This perspective opens up a whole

range of questions on how to capture the information that is shared between Gaussians. As

this thesis progresses, this scenario receives most attention.

Caching without a bias in user preference is therefore closely related to the notions of Wyner’s

common information [8] and Watanabe’s total correlation [9]. It is through this analogy with

the Gray–Wyner network that these definitions are a right fit for this application rather than,

e.g., the Gács-Körner common information [10]. Research that is closely related to this thesis

therefore also includes the work of Viswanatha, Akyol and Rose [11] and Xu, Liu and Chen [12].

These authors have introduced and studied lossy common information, as well as provided

some important characterizations of these properties in Gaussian distributions. These tools

help us to identify what common information an encoder needs to cache in order to -for now-

speed up research, followed by hopefully one day Netflix.
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1.1. Outline and Contributions

1.1 Outline and Contributions

Our caching model is motivated by real world applications, yet simultaneously touches upon

more fundamental questions on the correlation structure of Gaussian multivariates. As the

chapters progress the emphasis slowly moves from being application-driven to focusing more

on these fundamental statistical questions. The final chapter is an exception to this trend as it

is actually the most applied of all.

• Chapters 2 and 3 serve as preliminary chapters. The latter addresses some basics on

Gaussian source coding, rate-distortion functions and successive refinability. The first

chapter covers a novel unification of well-known relationships between positive definite

matrices and ellipsoids and aims to better understand information theoretic concepts

through geometry. Many results in this thesis will be accompanied by such geometrical

pictures to appeal to intuition; those special sections will be clearly marked and Chapter

2 will thus explain how to read them.

• Chapter 4 starts with the most basic ánd most developed model of caching bivariate

Gaussian sources. We present a model based on the Gray–Wyner network [7], similar to

[3, 4]. Our model model distinguishes itself by focusing on average performance and

also including user preference. We provide a full characterization of optimal caching

strategies when using Gaussian codebooks. Specifically, we determine two key drivers:

user preference and the correlation among the information sources. We address each

separately and together:

– When there is user preference, but the sources are independent: we show that the

encoder should cache the most popular source exclusively.

– When the user’s choice is uniform, but the sources are dependent: we show that

the encoder should perform caching via a reverse water-filling procedure on the

correlation matrix (not the covariance!).

– When we take both drivers into account we derive the optimal caching strategy,

which does not follow a formula of simple intuition like the other cases. In addition,

we discuss how caching strategies depend on the size of the cache, how caching

is not a successively refinable process and we bound rate loss due to absence of

knowledge on user preference.

• Chapter 5 extends the caching model to databases of more than two information

sources, while we take user preference out of the equation. Contributions include:

– A characterization of high cache rates by deriving Wyner’s common information as

a convex optimization problem. We also derive this entity analytically for Gaussians

whose covariance is circulant.

– An inner bound for low cache rates using the result of Chapter 4.

– A conjecture that this inner bound is tight only for Gaussians whose correlation

matrix is circulant, accompanied by a discussion how this connects to known

results from the same chapter as well as the previous one.
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• Chapter 6 looks at databases of sets of Gaussians and studies the concept of total corre-

lation in particular. Contributions include:

– A derivation of the Wyner’s common information that exists between K Gaussian

vectors as a convex optimization problem.

– For 2 Gaussian vectors, we show that the optimal way to capture their total correla-

tion is by first transforming these 2 vectors into independent sets of Gaussian pairs,

followed by an optimization over these pairs which resembles reverse water-filling.

• Chapter 7 stands as the odd one out as it is the only chapter on discrete information

sources. We discuss the practicality of caching by building an actual caching algorithm.

We use convolutional codes to translate random coding arguments into systems of

acceptable block length and running time. Presented are experimental results for the

caching of doubly and circularly symmetric binary sources, as well as a discussion on

what barriers are to be overcome for implementing more universal caching systems.

1.2 Notation

The star of this thesis is the Gaussian multivariate X, distributed as ∼N (0,Σ). Unless explicitly

stated otherwise, covariance matrices Σ decompose as follows,

Σ=

⎡
⎢⎢⎢⎢⎣

σ2
1 ρ12σ1σ2 ρ13σ1σ3 · · ·

ρ12σ1σ2 σ2
2 ρ23σ2σ3

ρ13σ1σ3 ρ23σ2σ3 σ2
3

...
. . .

⎤
⎥⎥⎥⎥⎦

where σi is the variance of Xi , and ρi j the correlation between Xi and X j . More so than not

will unit variance be assumed for simplicity.

Boldface letters are reserved for either vectors (like v) or matrices (like A). Capital letters

denote either matrices, random variables or random vectors (like A, X and X respectively). To

avoid confusion between matrices and random vectors, the end of the alphabet is reserved

for random variables. Ai , j is a single element of the matrix A. As working with Gaussians

requires a hefty amount of linear algebra, Table 1.1 summarizes the most used operators in

this thesis. The semidefinite ordering symbol A � B means B−A is positive semidefinite. The

strict inequality ≺ implies the difference of both matrices is positive definite. The unit basis

vectors are denoted ei , who thus are all zero except for a 1 in the i ’th position.

Logarithms are all base-2, and log+(x) = max(0, log(x)); the superscript + is also used on other

occasions to enforce non-negativity. The set [a b] with square brackets indicates the set

of all elements between a and b, whereas {a,b} contains only a and b. H(X ) denotes the

classic discrete entropy, whereas h(X ) stands for the (in this thesis more frequently used)

differential entropy and in both the continuous and discrete domain I (X ;Y ) stands for mutual

information. Lastly, X −Y −Z signifies a Markov chain.
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Notation Meaning
λi (A) the i ’th eigenvalue of A.
λmin,λmax the smallest and respectively largest eigenvalue.
diag(A) a vector containing the diagonal elements of the matrix A.
diag(v) a diagonal matrix with non-zero entries equal to the vector v.
|A| the determinant of A.
||v|| the Euclidean norm of the vector v.
ker(A) the kernel (or nullspace) of A.
dim(·) the dimension of a vector space.

Table 1.1 – Most used matrix and vector functions.
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2 Preliminaries I: the Geometry to visu-
alize Gaussian Relationships

This chapter complements the thesis; a reader with little time can comfortably skip to Chapter 3

without compromising his or her understanding of any of the material.

Many information theoretic results for Gaussians can also be told in pictures, which may not

always help to write proofs, but certainly aids in grasping the intuition. This new graphical

language stems from two properties:

• Operations to Gaussian distributions can often be expressed by algebraic operations on

covariance matrices.

• Every K−dimensional covariance matrix, being real and symmetric, can be drawn as an

ellipsoid in K−dimensional space.

Consequently, concepts like correlation, independence, estimators as well as information-

theoretic properties like mutual information or Wyner’s common information can be explained

and understood by geometry. Many of the results in this thesis will be accompanied by a plot

that illustrates the intuition behind the formula. Look out for the boxed paragraphs at the end

of a section:

Theorems in Pictures

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Duis at eleifend lacus, et efficitur

elit. Quisque efficitur auctor ipsum, vel rutrum mauris tincidunt ut. Morbi a ante eget lacus

viverra iaculis ut sed metus. Integer iaculis consequat elit eget fringilla. Aliquam erat volutpat.

Vestibulum rutrum tortor quis velit pellentesque commodo. Proin mattis arcu quis mauris

feugiat aliquam.
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Chapter 2. Preliminaries I: the Geometry to visualize Gaussian Relationships

2.1 Ellipsoids and Joint Covariance

Every K ×K positive definite matrix corresponds uniquely to an ellipsoid in K -dimensional

space, and vice versa. In this thesis, we stick to the following definition:

Definition 2.1. The ellipsoid corresponding to a positive definite matrix A is the set:

EA = {u : uT A−1u = 1},

or, equivalently:

EA = {A1/2v : ||v|| = 1}.

When we take a look at the Gaussian distribution

p(x) = 1√
(2π)K |ΣX|

e−
1
2 xT Σ−1

X x (2.1)

we see that EΣX is an equipotential line of this distribution. An example of such an ellipsoid is

plotted in Figure 2.1.

Property 2.1. The semi-principal axes of EA are the eigenvectors of A with lengths equal to the

square root of their respective eigenvalue.

It is easy to see why. Namely, take the second definition of the ellipsoid: EA = {A1/2u : ||u|| = 1}

and recall that the square root of a symmetric matrix has the same set of eigenvectors and only

the eigenvalues have their square root taken. Thus, if vi is the i ’th eigenvector then

A1/2vi =
√
λi (A)vi . (2.2)

00

Figure 2.1 – Ellipses are the equipotential lines of a bivariate Gaussian distribution, as illus-
trated here via a scatter plot.
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(a) The eigenvectors of A form the semi-
principal axes of the ellipsoid.

(b) The ‘bounding box’ correspond to the
diagonal entries of A.

Figure 2.2 – The ellipsoid EA corresponding to the matrix A.

Property 2.2. The volume of EA relates to the determinant of A:

V ol (EA) =V ol (EI) ·
√
|A|. (2.3)

Proof. For simplicity, let us stick to 3 dimensions (the extension to arbitrary dimensions is

identical). Any ellipsoid
x2

a2 + y2

b2 + z2

c2 = 1,

can be viewed upon as a linear transformation (x, y, z) → (ax,by,cz) of a unit-sphere. In turn,

that transformation can also be expressed in matrix form as diag(a,b,c). Consequently, the

volume of an ellipsoid equals the volume of a unit-sphere multiplied by abc . In our definition

of an ellipsoid EA, we have

a =
√

λ1(A), b =
√

λ2(A), c =
√
λ3(A),

which proves the property. In 3-dimensions, we have V ol (EA) = 4
3π

�|A|.

The volume of the unit sphere is computed via the so-called Gamma-function, which we will

not elaborate on here, nor actually use in this thesis.
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Chapter 2. Preliminaries I: the Geometry to visualize Gaussian Relationships

2.2 Hyperrectangles and Marginal Variance

While most undergrad students have seen a Gaussian elliptical scatter plot and the role of

eigenvalues, a less well known property is that also the variance can be clearly seen in the

same plot. To be precise, for any EA the height/width in any dimension corresponds to the

diagonal entries of A:

Definition 2.2. Let Ba1,a2,··· ,aK be a K -dimensional hyperrectangle spanned by corner points

(±�a1,±�a2, · · · ,±�aK ). In addition, for matrices we use the shorthand notation BA =Bdiag(A).

We refer to this hyperrectangle as a box. The corner points are taken to be the square root of

the set of numbers given so as to match our other geometrical figure, the ellipsoid of Definition

2.1. Namely, BA and EA are connected as follows:

Property 2.3 (The Bounding Box). Let ei
T be the unit vector with a 1 in the i ’th position as its

only non-zero component, then

max
v∈EA

eT
i v =√

Ai ,i .

In other words, BA fits snugly around EA in all dimensions.

Proof. We make use of the second definition of the ellipsoid, i.e., EA = {A1/2u : ||u||2 = 1}. Then

the Cauchy-Schwarz inequality shows us that:

max
v∈EA

eT
i v = max

u:||u||=1
eT

i A1/2u

≤ ||eT
i A1/2|| · ||u||

=√
Ai ,i .

The last step follows from ||u|| = 1 and that the norm of the i ’th row of A1/2 equals
√

Ai ,i .

Back to Gaussians, the property says that the height and width of EΣX correspond to the

standard deviation σi . Figure 2.2b shows an example. This property is useful when in source

coding we put distortion constraints on these marginal variances. Searching for a Gaussian

distribution with individual constraints on variance is a search for an ellipsoid that fits inside

a particular bounding box.

Corollary 2.1. The ellipsoid EA is at its most wide with respect to the i ’th basis vector ei at the

i ’th column vector of A, scaled accordingly:

argmax
v∈EA

eT
i v =

√
Ai ,i

||Aei || (Aei ) .
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2.3 Inscribed Ellipsoids and Conditional Covariance

Property 2.4. A � B if and only if EA lies inside EB.

Property 2.5. A ≺ B if and only if EA lies inside EB and they do not touch.

Namely, we have A � B if and only if B−1 � A−1. Therefore, for all vectors v it holds that

vT B−1v ≤ vT A−1v. (2.4)

Combining this with the definition of EA, we conclude that EA must be smaller than EB in

all directions. If the inequality is non-strict, then there exists at least one v (that is not the

all-zeroes vector) for which vT Av = vT Bv. Consequently, the ellipsoids EA and EB are tangential

at this point (or these points). They are necessarily tangential and cannot cross, because that

would contradict the ordering A � B.

Consider (X,Y) that are jointly Gaussian with the following covariance:

Σ=
[
ΣX ΣXY

ΣYX ΣY

]
, (2.5)

where ΣYX =ΣT
XY. Then the distribution p(x|y) is Gaussian with a conditional covariance that

is found via the Schur-complement:

ΣX|Y =ΣX −ΣXYΣ
−1
Y ΣYX. (2.6)

The rightmost term is positive semidefinite. Furthermore, it is necessarily so that

ΣX|Y �ΣX (2.7)

and by the just established properties we have that EΣX|Y is inscribed inside EΣX . Examples and

derivatives of the ordering property are plotted in Figure 2.3.

(a) A � B implies EA lies inside
EB.

(b) A � C and B � C imply EC en-
circles both EA and EB.

(c) A � C and B � C imply EC lies
in the intersection of EA and EB.

Figure 2.3 – Some consequences from the ordering properties of Section 2.3.
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2.4 Touching Ellipsoids and Rank-Deficient Schur Complements

This section discusses the significance of the equality mark underneath A � B, especially when

applied to the Gaussian relationship between conditional covariance and the algebraic Schur-

complement (2.6)–(2.7). If a strict matrix ordering does not hold, then ∃v s.t. vT ΣXv = vT ΣX|Yv;

there exists a direction in which Y does not reduce the variance and hence contains no

information on X. This is particularly useful in information theory.

Imagine the following setting: Let us say that an encoder possesses information produced by

K dependent Gaussian sources X ∈RK . He wishes to communicate this data, but only has a

limited budget. So he decides not to transmit all his sources, but only a clever mixture and to

apply compression as well by the following test channel:

Y = AT X+W, (2.8)

where A ∈RK×L is an orthonormal projection matrix, i.e., L < K and AT A = I, and W is Gaussian

noise independent of X.

The receiver only learns partial information on X and still has the following uncertainty:

ΣX|Y = E[(X−E[X|Y])(X−E[X|Y])T ]

=ΣX −ΣXA
(
AT ΣXA+ΣW

)−1
AT ΣX. (2.9)

The crux is that the rightmost term is necessarily rank-deficient due to A being tall. Conse-

quently, dim
(
ker

(
ΣX −ΣX|Y

)) �= 0 . The result is that there exists a vector (or subspace) at which

EΣX|Y and EΣX ‘touch’; this is the little ‘or equal’ mark under the semidefinite ordering ΣX|Y �ΣX

as said earlier in Property 2.4.

The vectors/space where EΣX and EΣX|Y touch stands orthogonal to the set of projection vectors

A. We will prove this fact and use it (in the next Section) to argue that any point on the

contour of an ellipsoid corresponds to the variance of X conditioned on the space that stands

orthogonal to it. A hint of this could have already been seen in Definition 2.1, as the ellipsoid

is spanned by Σ−1, also known as the precision matrix of a set of random variables.

Property 2.6. Let A⊥ ∈RK×(K−L) be the orthogonal complement to A, which in turn was used

to compute Y = AT X+W for any independently drawn Gaussian noise W. Then EΣX and EΣX|Y
touch in the direction of A⊥, i.e.,

A⊥T
Σ−1

X A⊥ = A⊥T
Σ−1

X|YA⊥. (2.10)
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2.4. Touching Ellipsoids and Rank-Deficient Schur Complements

Figure 2.4 – If EΣX and EΣX|Y touch, they do so at the space orthogonal to a set of projection
vectors A belonging to the test channel Y = AT X+W.

Proof. The proof is a simple application of the Woodbury identity for inverses of a sum of

matrices:

Σ−1
X|Y =

(
ΣX −ΣXA

(
AT ΣXA+ΣW

)−1
AT ΣX

)−1
(2.11)

=Σ−1
X −Σ−1

X ΣXA
(
AT ΣXA+ΣW −AT ΣXΣ

−1
X ΣXA

)−1
AT ΣXΣ

−1
X (2.12)

=Σ−1
X −AΣ−1

W AT . (2.13)

Since A⊥T
A = 0, we observe that the rightmost part drops out when we multiply left and right

by A⊥, which proves the theorem.

A 2-dimensional example is shown in Figure 2.4.

Property 2.6 can be phrased the other way around: draw two nested ellipsoids and if they

touch, reason about which Gaussian test channel could attain it by recognizing that the coding

projection matrix A stands orthogonal to ker
(
Σ−1

X|Y −Σ−1
X

)
(mind the inverses). This reverse

phrasing is useful when in information theoretic applications one wants to ‘shape’ ΣX|Y, e.g.,

by distortion constraints. If dim
(
ker

(
ΣX −ΣX|Y

)) = 0 (and thus ΣX|Y ≺ ΣX is strict) then the

orthogonal complement spans the entire space, hence one can take A = I.
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2.5 Ellipsoidal Subspaces

In the previous two subsections we conditioned X on another jointly Gaussian Y, but a different

property arises when one partitions the elements of X and conditions some of them on all the

others.

Property 2.7. A two-dimensional ellipse based on covariance matrix ΣX cuts the axis beloning

to Xi at ±
√

σ2
i (1−ρ2).

Proof. The proof is straightforward:

Σ−1
X = 1

σ2
1σ

2
2(1−ρ2)

[
σ2

2 −ρσ1σ2

−ρσ1σ2 σ2
1

]
. (2.14)

Hence,
(
Σ−1

X

)
i ,i = 1

σ2
i (1−ρ2)

. Combined with the definition of EΣX this proves the statement.

See Figure 2.5 for an illustration of this fact.

This property stems from a more general and far more abstract property: any v ∈ EΣX has a

length equal to the (square root of the) variance of X conditioned on X projected on the space

that stands orthogonal to that v. In higher dimensions every lower-dimensional ellipsoid on

the contour of EΣX that is centered around 0 corresponds to the covariance of ΣX|ATX, where A

is the space orthogonal to that subdimensional ellipsoid. The meaning of this statement is

visualized in Figure 2.6 and more precisely formulated as follows:

Property 2.8. Partition any K ×K orthonormal matrix as Q = [A A⊥], where A ∈ RK×L with

L < K . Then, we have

A⊥T
Σ−1

X A⊥ = A⊥T
Σ−1

X|ATXA⊥.

Figure 2.5 – A two-dimensional ellipse corresponding to a covariance cuts the X1−axis at�
var(X1|X2) and vice-versa.

14



2.5. Ellipsoidal Subspaces

Figure 2.6 – Any lower dimensional ellipsoid along the contour of ΣX corresponds to the
covariance of ΣX|ATX, where A is the space orthogonal to that subdimensional ellipsoid.

Consequently, any L− dimensional ellipsoid along the surface of EΣX and centered around 0

characterizes EΣX|ATX
where A ∈RK×(K−L) stands orthogonal to that lower-dimensional ellipsoid.

Proof. First, consider the Gaussian test channel of Section 2.4, Y = AT X+W. Evaluate the

conditional covariance (2.9) and let the noise power of W go to zero:

lim
ΣW→0

ΣX|Y = lim
ΣW→0

ΣX −ΣXA
(
AT ΣXA+ΣW

)−1
AT ΣX (2.15)

=ΣX|AT X. (2.16)

Then apply Property 2.6. Taking the limit seems redundant, but is necessary as the proof of

Property 2.6 relies on the Woodbury Identity, which in turn requires invertibility.

From an information theoretic perspective, the difference between Section 2.4 and this one

can be seen as providing someone with perfect or imperfect side-information on parts of X.

For this reason, we explicitly included the proof technique using the Gaussian test channel and

a limit of noise power going to 0. One could have also gone a different way by remarking that

Λ� Σ−1
X is the precision matrix. Any principal submatrix of Λ is the conditional covariance

of all Xi indiced by that submatrix, conditioned on the others. Combining this property with

an orthonormal projection is another, but notation-wise more cumbersome route to prove

Property 2.8. A nice discussion on this characteristic of the precision matrix can be found in

[13, Section 2.3.1].
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Chapter 2. Preliminaries I: the Geometry to visualize Gaussian Relationships

2.6 Information Theoretic Properties

Property 2.9. The mutual information between two jointly Gaussian random variables X and

Y is measured by the ratio of volume of EΣX and EΣX|Y :

I (X;Y) = log
Vol(EΣX )

Vol(EΣX|Y )
. (2.17)

The above is the logical consequence of Property 2.2 and the fact that I (X;Y) = 1
2 log |ΣX|

|ΣX|Y| .
Information theoretic applications in which one wants to minimize I (X;Y) over Gaussian

test channels thus have an intuitive geometric interpretation: it corresponds to maximizing

the volume of any ellipsoid inside EΣX . Subjecting the minimization to some constraints

corresponds to desiring a particular shape for EΣX|Y . For example the following:

Property 2.10. X1, X2, · · · , XK are independent if an only if their covariance ΣX spans an ellip-

soid that is straight, i.e., whose semiprincipal axes align with the basis vectors of the system.

Gaussian random variables are independent if and only if their covariance matrix is diagonal.

Evidently, such a matrix has eigenvectors that are the unit basis vectors ei . Therefore, the

semiprincipal axis of EΣX must align with the coordinate system. The impact of correlation on

the shape of EΣX is demonstrated in Figure 2.7.

Property 2.11 (Nested Ellipsoids). For jointly Gaussian (X,Y,Z) the following two statements

are equivalent:

X−Y−Z
implies←→ ΣX �ΣX|Z �ΣX|Y

and therefore EΣX|Z is necessarily ‘sandwiched’ between EΣX and EΣX|Y .

This property follows from -for example- Nayak, Tuncel, Gündüz and Erkip proving the neces-

sity of the semidefinite ordering for the successive refinability of Gaussian sources [14] and

the general assertion of Equitz and Cover that a Markov chain is required [15]. A definition of

and discussion on successive refinability will follow in Section 3.4; we will refer back to here

once needed. A more direct proof of the property can be read in the work by Ando and Petz on

Gaussian Markov triplets, to be precise Theorem 1 (property (d)) and/or Corollary 1 in [16].

Figure 2.7 – Increasing the correlation ρ while keeping σ2
1 =σ2

2 = 1 constant.
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2.7. Closing Remarks

Figure 2.8 – Property 2.11 states that (X,Y,Z) form a Markov chain if and only if the ellipsoids
EΣX ,EΣX|Z and EΣX|Y are nested (in that order). In this specific example, EΣX and EΣX|Y touch and
therefore EΣX|Z is necessarily sandwiched at these points of contact.

The Markov property is most interesting when EΣX|Y and EΣX touch, i.e., when the outer ends

form a non-strict inequality ΣX � ΣX|Y ; if one desires a Markov chain X−Y−Z, then by the

sandwiching property it must be so that EΣX|Z touches EΣX in the same point(s). This connects

to Property 2.6: Z and Y can apparently be constructed via a test channel based on the same

projection matrix (though technically, Y could contain more projection vectors). Figure 2.8

shows an example of this ‘tight’ version of the Markovian sandwich.

2.7 Closing Remarks

In the following chapters more information theoretic properties will follow when appropriate,

including Wyner’s Common Information and Gaussian rate-distortion functions. The main

take-away of this Chapter are two properties in particular:

• Property 2.9: minimizing mutual information over Gaussian test channels equals maxi-

mizing the volume of an ellipsoid inside EΣX .

• Property 2.6: If an inner ellipsoid (associated EΣX|Y ) touches the outer ellipsoid (associ-

ated to EΣX ), then this Y is a Gaussian test channel based on projecting X onto the space

orthogonal to the space where the ellipsoids touch.

All other properties aid in thinking what shape that inscribed ellipsoid should have to ensure

statistical properties that are desirable with respect to the application.

An interesting, but very different take on elliptical geometry is the work of Friendly, Monette

and Fox [17]. After asserting similar basics, they use ellipsoids to reason about regression and

learning applications.

17



Chapter 2. Preliminaries I: the Geometry to visualize Gaussian Relationships

2.8 Overview of Properties

1 The semi-principal axis of EA are the eigenvectors of A with lengths equal to
√

λi (A).
2 Volume relates to determinant, i.e., V ol (EA) =V ol (EI) ·�|A|.
3 Height and width relate to diagonal entries, i.e., maxv∈EA eT

i v =√
Ai ,i .

4 A � B if and only if EA lies inside EB.
5 A ≺ B if and only if EA lies inside EB and they do not touch.
6 A � C and B � C hold if and only if EC circumferes EA and EB.
7 A � C and B � C hold if and only if EC lies in the intersection of EA and EB.

8 The ellipse of a 2-dimensional covariance matrix cuts the axis of Xi in
√
σ2

i (1−ρ2).

9 Any lower-dimensional ellipsoid along the contour of EΣX characterizes the covariance
ΣX|AT X where A is the space orthogonal to that subdimensional ellipsoid.

10 I (X;Y) = log
Vol(EΣX )

Vol(EΣX|Y ) .

11 X1, X2, · · · , XK are independent if and only if EΣX is straight.
12 X−Y−Z is a valid Markov chain if and only if EΣX ,EΣX|Z and EΣX|Y are nested (in that

order).

Table 2.1 – List of properties of ellipsoids. All random variables are Gaussian.
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3 Preliminaries II: Gaussian Rate-
Distortion Functions

The single most important tool in this thesis is the (Gaussian) rate distortion function with

respect to a variety of distortion criteria. With the exception of Chapter 7 all material concerns

the encoding of Gaussian sources. Hence, we are operating with information produced in a

continuous domain and the teachings of lossy source coding are required.

In addition, this entire thesis is on vector sources in particular (X ∼ N (0,ΣX)), not scalars

(X ∼N (0,σ2
x )). The ‘classic’ Gaussian vector rate-distortion function as often taught in un-

dergraduate courses is computed with respect to a sum (or mean) squared error [18, Section

10.3.3]. We emphasize that such a distortion function is a choice best fitted for a particular

application, but that in general one can consider many other classes of criteria as well. To that

end, we review some of these functions.

The source sequence is denoted is XN , which consists of N samples that are drawn in an i.i.d.

fashion from a K−dimensional Gaussian distribution. The encoder maps this sequence to an

index m by a function f (XN ) ∈ {1,2, · · · ,2N R }. The decoder, in turn, maps this index back to an

estimate X̂N via its own function g (m) = X̂N . A (2N R , N ) rate-distortion code consist of such

encoder and decoder functions. The distortion resulting from such a code is

E[d(XN , g ( f (XN ))], (3.1)

where d(·, ·) is the distortion measure, which can output a scalar, vector or a matrix.

A rate-distortion pair (R,D) is achievable if there exists a sequence of (2N R , N ) codes such that

lim
N→∞

E[d(XN , X̂N )] ≤ D. (3.2)

By the same style of notation, we say that a (R, [D1, · · · ,DK ]) pair is achievable if the distortion

measure is a vector constraint, or replace the second argument by a matrix and the inequality

by �.

The keystone of lossy source coding is that the infimum of achievable rates over particular
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Chapter 3. Preliminaries II: Gaussian Rate-Distortion Functions

distortion levels D is the information rate-distortion function:

RX(D)� min
p(x̂|x)

:E[d(X,X̂)]≤D

I (X; X̂). (3.3)

We draw special attention to the conditional rate-distortion function

RX|W(D)� min
p(x̂|x,w)

:E[d(X,X̂)]≤D

I (X; X̂|W ). (3.4)

Again we stress that depending on the distortion measure, the constraint can also be a set of

inequalities or a matrix ordering.

For a scalar Gaussian source X ∼N (0,σ2
X ) subject to a squared error constraint (X − X̂ )2, the

rate-distortion function equals

RX (D) = 1

2
log

σ2
X

D
. (3.5)

In general we simply denote R(D). The subscript is reserved for drawing explicit attention to

which distribution constitutes the rate-distortion function, if required so by the context.
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3.1. Maxdet Optimization and the Optimality of Gaussian Codebooks

3.1 Maxdet Optimization and the Optimality of Gaussian Codebooks

This thesis follows most closely the point of view of Jin-Jun Xiao and Zhi-Quan Luo [19]: for any

‘nice’ (to be defined shortly) squared-error distortion criterion, the Gaussian rate-distortion

function reduces to semidefinite programming: a minimization over distortion matrices D.

Sometimes, these problems can be solved by hand, but always by well-studied tools in convex

optimization. Even though Xiao and Luo wrote a paper specifically on individual distortion

criteria for each Xi , their proof extends to many classes of distortion functions by just a tiny

generalization. Here, we briefly review the core of their argument, followed by a brief overview

of some of those ‘nice’ distortion functions.

First, let D denote the mean squared error matrix between X and the lossy representation X̂:

D� E[(X− X̂)(X− X̂)T ]. (3.6)

Theorem 3.1. Let the distortion function only depend on the mean squared error matrix (3.6),

i.e., d(X, X̂) = d(D). Then, the Xiao-Luo general form of a Gaussian rate-distortion function is

the following:

RX(γ) = min
D

1

2
log

|ΣX|
|D| s.t.

⎧⎨
⎩0 � D �ΣX

d(D) ≤ γ,
(3.7)

which is the solution to (3.3) for all functions d(D) that preserve semidefinite ordering, i.e.:

D1 � D2 ⇒ d(D1) ≤ d(D2). (3.8)

Proof. We briefly review the main steps of the argument; the details of each step and lemma

can be read in [19].

Achievability:

Consider the Gaussian channel Z = X+W, where W ∼N (0,ΣW) is independent of X. Then, by

forming an estimator X̂ = E[X|Z] one can obtain any distortion (3.6) in the range 0 � D �ΣX by

generating the noise W along the following covariance matrix:

ΣW =ΣX (ΣX −D)−1ΣX −ΣX. (3.9)

This can easily be verified by computing the Schur complement based on X̂ = E[X|Z]:

E[(X− X̂)(X− X̂)T ] =ΣX −ΣX (ΣX +ΣW)−1ΣX = D. (3.10)

Note that D �ΣX implies that ΣW � 0.
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Chapter 3. Preliminaries II: Gaussian Rate-Distortion Functions

Problem Type Constraint Featured in e.g.
1: Trace (sum-squared error) tr(D) ≤ γ [18, Section 10.3.3],[20]
2: Individual squared error Di ,i ≤ γi [14, 19]
3: Matrix ordering D � K [21]

Table 3.1 – Examples of distortion functions d(X, X̂) = d(D) that depend only on the squared
error matrix and who preserve semidefinite ordering.

Converse:

The converse starts with two lemmas:

Lemma 3.1. For any random vector X̂ that is jointly distributed with X, we have

I (X; X̂) ≥ 1

2
log

|ΣX|
|D| . (3.11)

Equality holds for X̂ = E[X|Z] where Z is a Gaussian test channel of the form Z = X+W, where is

W is Gaussian distributed and independent of X.

Lemma 3.2. Suppose Z is a random variable jointly distributed with X. Then for X̂ = E[X|Z] it

holds that D �ΣX.

Then, a few logical steps assess the sufficiency of Gaussian codebooks.

If X̂ �= X̄ = E[X|X̂] then one can consider X̄ instead, because

1. I (X; X̂) ≥ I (X; X̄) (data processing inequality); X̄ has a lower objective value.

2. Let D̄ and D̂ be the distortion matrices (3.6) based on X̄ and X̂ respectively. Then, D̄ � D̂,

since X̄ is the MMSE estimator based on X̂. Therefore, if the distortion measure preserves

semidefinite ordering (as described in the theorem), then the constraint will not be

violated by picking X̂ instead1.

Since one can restrict one’s attention to X̄ = E[X|X̂], then by Lemma 3.2 this is equivalent to

considering only auxiliary random variables for which D �ΣX holds. For this class of random

variables, it holds by Lemma 3.1 that Gaussian test channels give the lowest objective value for

each possible distortion matrix in that specified range.

Table 3.1 lists a few examples of used distortion constraints that preserve semidefinite ordering

and thus for which (3.7) is the rate-distortion function.

1This step was only assessed for individual squared error constraints for each Xi when originally written in [19]:
D̄ � D̂ implies diag(D̄) ≤ diag(D̂), which generalizes to all ordering-preserving distortion functions.
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3.1. Maxdet Optimization and the Optimality of Gaussian Codebooks

Theorems in Pictures

The Gaussian rate-distortion function subject to linear constraints tries to find an ellipsoid

of maximum volume inside a convex body. Take for example, the second entry of Table

3.1: individual squared error constraints. The convex search space is the intersection of the

following two spaces:

1. EΣX , from D �ΣX,

2. BD1,D2 , from diag(D) ≤ [D1 D2].

As both spaces are convex, so is their intersection. The plot below depicts the geometry of this

optimization problem. The rate-distortion function subject to a matrix-ordering constraint

(D � K) follows a similar pattern, but optimizes inside the convex intersection of two ellipses

(the ones belonging to ΣX and K).

Figure 3.1 – The convex geometry of the Gaussian bivariate rate-distortion function. The thick
black line marks the intersection of the two convex spaces spanned by both constraints. The
red line is then the ellipse of maximum volume inside this space.

We specifically attend the reader to the link between these optimization problems and Sec-

tion 2.4. Since we maximize the volume of an ellipsoid inside a convex space, the solution will

touch the borders of the space spanned by the contraints. If the inner ellipsoid touches EΣX

in particular, then Section 2.4 teaches us about the Gaussian test channel that stands at its

foundation.
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Chapter 3. Preliminaries II: Gaussian Rate-Distortion Functions

3.2 The Rate-Distortion Function under a Sum Squared Error

The classic textbook example of Gaussian vector coding is the so-called ‘reverse water-filling’

procedure on the eigenvalues of ΣX [18, Section 10.3.3]. This technique is the solution to (3.7)

under a sum squared error constraint:

K∑
i=1

E[(Xi − X̂i )2] = tr(E[(X− X̂)(X− X̂)T ]) ≤ D. (3.12)

Theorem 3.2. Let X be a Gaussian random vector of length K , then the rate-distortion function

subject to a sum-squared error equals

RX(D)� min
p(x̂|x)

:tr(D)≤D

I (X; X̂) (3.13)

= 1

2

K∑
i=1

log
λi (ΣX)

Di
, (3.14)

where Di is chosen as follows using a parameter θ s.t.
∑K

i=1 Di = D:

Di =
⎧⎨
⎩θ θ <λi (ΣX),

λi (ΣX) θ ≥λi (ΣX).
(3.15)

A crucial insight is that D adheres to the eigenbasis of ΣX. One should not underestimate

how special this property is. Namely, both the objective |D| (3.7) and the constraint tr(D) are

rotation-invariant, meaning that a multiplication with an orthonormal matrix changes neither

the objective value nor the constraint. This is not the case for most other distortion functions,

for example those in Table 3.1.

0 1 2 3 4 5 6
0

2

4

6

8

Figure 3.2 – Example of RX(D) for a ΣX with eigenvalues equal to 3,2 and 1. The diamonds
correspond f.l.t.r. to the example points of Figures 3.3–3.5 on the next page.
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3.2. The Rate-Distortion Function under a Sum Squared Error

Theorems in Pictures

The geometric proof of Theorem 3.2 is as follows: Having proved that Gaussian codebooks are

optimal in Theorem 3.1, the problem reduces to choosing a D that maximizes its determinant

under a trace-constraint. In other words:

RX(D) : max
∏

i
λi (D) s.t.

∑
i
λi (D) ≤ D, and 0 � D �ΣX.

Maximizing a product of numbers under a sum-constraint is a well-known optimization

problem whose solution is to choose all λi to be equal. The optimal D is therefore a scaled

identity matrix, or geometrically, ED is ideally a sphere.

Tracing Figure 3.2 from left to right (thus increasing D) corresponds to inflating a sphere inside

EΣX . The largest sphere that fits inside the source ellipsoid is D =λmin(ΣX)I. Afterwards, the

sphere can still inflate equally in the direction of the other eigenvectors until it hits the wall

of the second smallest eigenvalue. This process continues iteratively and is another way of

looking at water filling.

The plots below depict this process at the three diamonds marked in Figure 3.2. The transpar-

ent mesh corresponds to EΣX and the colored ellipsoid on the inside to ED.
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X
1

X
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X
3

0

1

2
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(D)

Figure 3.3 – θ = 0.5. Figure 3.4 – θ = 1.25. Figure 3.5 – θ = 2.25.
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Chapter 3. Preliminaries II: Gaussian Rate-Distortion Functions

3.3 The Rate-Distortion Function under Individual Criteria

Corollary 3.1. The Gaussian rate-distortion function subject to individual squared error con-

straints is the following:

R(D1,D2, · · · ,DK ) = min
D

1

2
log

|ΣX|
|D| s.t.

⎧⎨
⎩0 � D �ΣX,

diag(D) ≤ [D1 D2 · · · DK ].
(3.16)

The above follows directly from plugging individual criteria into (3.7), as was the original work

of Xiao and Luo [19]. This function has not been reduced to a closed-form analytic solution,

but can be solved efficiently via interior point methods [22]. Namely, observe that the objective

function is strictly convex and the set of feasible D is convex as well.

A crucial observation is the role of the Hadamard inequality in this problem:

|D| ≤
K∏

i=1
Di ,i ≤

K∏
i=1

Di , (3.17)

resulting into the following lower bound:

R(D1,D2, · · · ,DK ) ≥ 1

2
log

|ΣX|∏K
i=1 Di

, (3.18)

which is met with equality if and only if diag(D1,D2, · · · ,DK ) �ΣX.

Thus far, the case of bivariate Gaussians X ∈ R2 is the only instance that is solved into a

closed-form expression. This function R(D1,D2) will be widely used throughout Chapter 4:

Corollary 3.2. Let K = 2 and assume w.l.o.g. that σ2
1 =σ2

2 = 1. Then for distortions 0 ≤ D1,D2 ≤
1, the Gaussian rate-distortion function with respect to individual squared error criteria equals

R(D1,D2) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1
2 log

(
1−ρ2

D1D2

)
if (D1,D2) ∈D1,

1
2 log

(
1−ρ2

D1D2−(|ρ|−�(1−D1)(1−D2))2

)
if (D1,D2) ∈D2,

1
2 log

(
1

min(D1,D2)

)
if (D1,D2) ∈D3,

(3.19)

where

D1 = {D1,D2 : (1−D1)(1−D2) ≥ ρ2}, (3.20)

D2 = {D1,D2 : (1−D1)(1−D2) ≤ ρ2 ≤ min

(
1−D1

1−D2
,

1−D2

1−D1

)
}, (3.21)

D3 =Dc
1 ∩Dc

2. (3.22)

For any other variance one has to normalize each Xi and scale the respective Di accordingly.
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3.3. The Rate-Distortion Function under Individual Criteria

10

1 0

(a) R(D1,D2).

0 1- 2 1
0

1- 2

1

(b) The distortion plane as de-
fined by (3.20)-(3.22).

0 1- 2 1
0

1- 2

1

(c) The distortion plane with con-
tour lines of R(D1,D2).

Figure 3.6 – Visualization of the Gaussian joint rate-distortion function and the regions of
(D1,D2) in which it exhibits different behavior.

Figure 3.6 makes R(D1,D2) tangible through visualization. The plane of distortion levels for

X̂1 and X̂2 is cut into different regions in which the rate-distortion function exhibits different

behavior. At each coordinate, the 2×2 error matrix D takes on a different shape (assuming

w.lo.g. ρ > 0):

D1 → D =
[

D1 0

0 D2

]
(3.23)

D2 → D =
[

D1 ρ−�
(1−D1)(1−D2))

ρ−�
(1−D1)(1−D2) D2

]
. (3.24)

In D1 this matrix is diagonal, whereas in D2 it is correlated. D3 is degenerate: the distortion

Di on one Xi is so small (in comparison to the other) that the best strategy is to only code that

Xi . One can then achieve any distortion in D3 on the other component by an estimator. We

call Figure 3.6b in its entirety the D−plane. On the next page we show some further examples

of the impact of this plane.
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Chapter 3. Preliminaries II: Gaussian Rate-Distortion Functions

Theorems in Pictures

The following plots match the D−plane to actual distortion matrices D (3.23)–(3.24) and the

role of the inequality D � ΣX. The black outer ellipse corresponds to ΣX, the inner ones to

distortion matrices that stem from the same-color coordinates in the left plots.

The first 2 examples illustrate that the difference between D1 and D2 stems from whether

or not D � ΣX is a strict inequality. In D1 the constraints are so small that consequently it

becomes strict. This also means that the bound of (3.18) can be met with equality and D is

consequently diagonal. The third example illustrates D3.

0 1- 2 1
0

1- 2

1

Figure 3.7 – The difference between D1

and D2 is that the inequality D ≺ΣX is...
Figure 3.8 – ... only strict in D1. In D2

Section 2.4 applies.

0 1- 2 1
0

1- 2

1

Figure 3.9 – On the border of D1 and D2

the inequality D �ΣX is not strict...
Figure 3.10 – ... but D is diagonal, hence

ED still aligns with the system axes.

0 1- 2 1
0

1- 2

1

Figure 3.11 – On the border of D2 and D3

the encoder only codes one...
Figure 3.12 – ... Xi . Therefore, ED touches

EΣX at the axis of the other X j �=i .
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3.4. Successive Refinability

3.4 Successive Refinability

In the early 90s, Equitz and Cover [15] and later Rimoldi [23] puzzled over iterative source

coding: Can one split the bits of R(D) into steps of which each is decodable and rate-distortion

optimal by itself? The answer turned out to be affirmative, but also a property that is not

common to all sources of information or all ranges of distortions.

The technicality of the matter is depicted in Figure 3.13: Two lossy representations of a source

X are to be decoded. There are two encoders of rate R1 and R2 and the second decoder

gets both messages to produce a lossy description X̂2 that is of better quality than X̂1 with

respect to the distortion measure used. Such communication was shown to be achievable for

a rate-distortion quadruple (R1,R2,D1,D2) if and only if there exists a distribution p(x̂1, x̂2|x)

such that [15, 23]:

I (X ; X̂1) ≤ R1

I (X ; X̂1X̂2) ≤ R2

E[d(X , X̂1)] ≤ D1

E[d(X , X̂1)] ≤ D2.

Definition 3.1. We say X is successively refinable from D1 to D2 ≤ D1 with respect to a particular

rate-distortion function if communication is achievable at the following rates:

R1 = R(D1) (3.25)

R1 +R2 = R(D2). (3.26)

Equitz and Cover proved that successive refinability is attainable if and only if the individual

rate-distortion solutions p(x̂1|x) and p(x̂2|x) are such that X − X̂2 − X̂1 holds as a Markov

chain [15]. For Gaussians, Markovity translates to a semidefinite ordering of conditional

covariances, as was mentioned in Property 2.11 in Chapter 2. Nayak, Tuncel, Gündüz and

Erkip studied explicitly the refinability with respect to the rate-distortion function subject to

individual squared error criteria [14]. Their result extends to the successive refinability of any

rate-distortion function whose solution is Gaussian distributed as follows:

X N

E1

E2

D1

D2

X̂ N
1

X̂ N
2

R1

R2

Figure 3.13 – Successive Refinability in two stages.
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Theorem 3.3 (Nayak et al. [14]). A Gaussian random vector X is successively refinable from

D1 to D2 ≤ D1 if the respective distortion matrices resulting from R(D1) and R(D2) result in a

semidefinite ordering:

D1 � D2.

It is irrelevant whether the distortion constraint is a scalar, vector or matrix inequality.

A reference that is particularly relevant for this thesis is earlier work of Nayak and Tuncel

on the successive coding of two correlated sources [24]. The setting is equivalent, but the

distortion measures in stage 1 and 2 are different in the sense that they measure the precision

with respect to only some and different elements of X, rather than X as a whole. This case is

encapsulated in their aforementioned general and later result.

3.4.1 Successive Refinability of the Bivariate Rate-Distortion Function under In-
dividual Distortion Criteria

We specifically wish to connect this discussion of refinability to Section 3.3. Later in Chapter 4

when we develop a model for caching we will ask ourselves whether the caching of bivariate

Gaussians is a successively refinable process or not. The bivariate Gaussian rate-distortion

function subject to individual squared error criteria was an explicit example in the work of

Nayak et al. [14]. Their result: such a situation is successively refinable, but not everywhere.

We review the important insight, but coming from a different point-of-view and notation. To

ensure successive refinability, we must assess whether R(D1,D2) produces distortion matrices

D that adhere to a semidefinite ordering as D1,D2 decrease.

Assume w.l.o.g. that X is of unit variance. Otherwise, normalize variance and scale the respec-

tive distortion matrix D accordingly. Then, the bivariate rate-distortion function R(D1,D2)

will result in the distortion matrices mentioned in (3.23) and (3.24), depending on (D1,D2)

being in D1 or D2
2 [19]. Now we discuss three possible refinement moves, all of which behave

differently:

1: D1 →D1

Successive refinability from any two coordinates (D1
1,D1

2) to (D2
1,D2

2) ≤ (D1
1,D1

2) is evidently

possible, as the distortion matrices will necessarily be diagonal therefore D1 � D2 is ensured.

2: D2 →D2

Observe that the distortion matrix (3.24) can be constructed as follows:

D =ΣX −
[�

1−D1�
1−D2

][�
1−D1

�
1−D2

]
; (3.27)

it is a rank-one correction of the original covariance matrix. Two distortion matrices generated

from different (D1,D2)−pairs in D2 cannot respect a semidefinite ordering if they are rank-1

2We omit D3 since it is degenerate; for the same rate one can code up to distortions on the border of D2 and D3.
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0 1- 2 1
0

1- 2

1

(a) D1 →D1, one can successively refine to all
(D1,D2) ≤ (D1

1,D1
2).

0 1- 2 1
0

1- 2

1

(b) D2 →D2 or D1, a new D−plane is drawn
from condition (3.28).

Figure 3.14 – Successive Refinability of R(D1,D2). The black dot represents example distortions
(D1

1,D1
2) after the first coding phase, the gray line and area are all coordinates up to which one

can successively refine the source.

corrections along different spaces. The outer product on the right-hand side must be the same

up to scaling. This implies that X is successively refinable from (D1
1,D1

2) to (D2
1,D2

2) in D2 if

and only if those two coordinates lie on a straight line originating from (1,1).

3: D2 →D1

After coding up to a first distortion matrix D1 in D2, one cannot refine to all coordinates in

D1. Namely, all diagonal D in D1 respect the ordering D � ΣX but may not respect D � D1.

Consider a refinement from (D1
1,D1

2) ∈D2 to (D2
1,D2

2) ∈D1. We will verify whether the matrices

generated by R(D1,D2) at these coordinates satisfy D1 � D2 by checking whether |D1 −D2| ≥ 0:

D1 −D2 =
⎡
⎣ D1

1 ρ−
√

(1−D1
1)(1−D1

2)

ρ−
√

(1−D1
1)(1−D1

2) D1
2

⎤
⎦−

[
D2

1 0

0 D2
2

]
,

hence successive refinability is achievable if and only if

(D1
1 −D2

1)(D1
2 −D2

2) ≥ (ρ−
√

(1−D1
1)(1−D1

2))2. (3.28)

Note the resemblance to the original condition for D1 (3.20). They are essentially the same:

D1 characterizes all diagonal matrices D satisfying D �ΣX. We derived the same condition not

for ΣX, but for a non-diagonal distortion D1. In other words one has to redraw a new D−plane

based on this smaller matrix D1. Coding from D2 to either D2 or D1 is drawn in Figure 3.14b.

31



Chapter 3. Preliminaries II: Gaussian Rate-Distortion Functions

Theorems in Pictures

Successively refining X from one set of distortion levels to another in D2 requires that both set

of coordinates lie on a straight line originating from (1,1). While the condition can be drawn

on the D−plane, it is impossible to see why from the same plot. The crux is the following: if

two matrices D1 and D2 are both rank-one corrections of ΣX but along different subspaces,

then neither D1 � D2 nor the reverse can hold.

The geometry is a contradiction of Properties 2.6 and 2.11 in Chapter 2.

1. For successive refinability, we need a Markov chain. Hence R(D1,D2) should code up

to distortion matrices that are ordered as ΣX � D1 � D2. This ordering is equivalent to their

respective ellipses needing to be nested.

2. Since any coordinate (D1,D2) ∈D2 is achieved by a D that is a rank-one correction of ΣX,

we have Property 2.6: ΣX and D must touch at a pair of symmetric points.

If by the first argument the ellipses need to be nested, then all three EΣX ,ED1 and ED2 must

touch at the same points, otherwise ED1 and ED2 intersect. Consequently, the encoder must

code information about the same subspace of ΣX in both stages. By the construction of D

in (3.27) it is clear this requires the ratio 1−D2
1−D1

to be a constant, which in turn constitutes the

aforementioned line originating from (1,1).

An example of a confirmation and a contradiction are plotted below.

0 1- 2 1
0

1- 2

1

Figure 3.15 – Refinement on a line.
placeholder

Figure 3.16 – The ellipses are nested and
all touch at the same pair of points.

0 1- 2 1
0

1- 2

1

Figure 3.17 – ‘Attempt’ to refine to
distortions not on the line.

Figure 3.18 – ED1 and ED2 touch EΣX at
different points and hence intersect.
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4 Caching of Bivariate Gaussian Sources

‘On-demand’ is the keyword for communication technology in this decade. Advancements in

information theory have brought us to a point of immense freedom for the end user: First,

downloading videos of one’s own choice replaced traditional broadcast of TV and radio. Then,

instantaneous streaming replaced downloading. While providing great flexibility, this demand

for personal and instantaneous data streams also increased the load on the network.

A second cost is often overlooked: on-demand services increase the imbalance of network load.

Notoriously data-heavy applications like Netflix and Amazon Prime are hardly popular during

the day; almost all users use the service sometime between dinner and their bedtime. Network

and server capacity suffer from this imbalance; they are installed to withstand peak traffic and

not average. Clearly, the trend of on-demand streaming is both costly and inefficient.

A challenge for information theorists is to combine the user experience of on-demand stream-

ing with a balanced network load; caching can be the tool to break that impasse. The key of

caching is that a server does not wait for a user to make a request for data. Instead the server

tries to anticipate what data will be requested and sends it in advance. Netflix, for example,

could already transmit parts of the next episode of your favorite series assuming that you

will continue your viewing habits. Imperfect prediction of the user’s request will increase the

overall need for data, but a well designed system will reduce the average network load during

the peak hours. This is the trade-off we intend to study.

Caching has been looked at from different angles, with the work from Maddah-Ali and Niesen

being the most popular [1]. In this thesis1, we take a lossy source coding perspective and

model the problem in a way that resembles the Gray–Wyner network [7]. This model was

introduced in a lossless discrete setting before [3]. Also Timo, Bidokhti, Wigger, and Geiger

studied the lossy case in a similar setting, but took a worst-case metric to design good caching

strategies, whereas we look at average performance [4]. Moreover, our focus is on Gaussian

sources in particular. An effective caching strategy carefully weighs two parameters: the

correlation between the elements of the database, and the user’s preference for one.

1The material of this chapter appeared in [25–27]
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(
X N

1
X N

2

) Ecache

Eupdate D X̂ N
i

Rcache

Ru,i

U = i

Figure 4.1 – The Caching Network

4.1 Problem Statement

Figure 4.1 serves as our model to capture the essence of caching as earlier described. For

discrete sources, this model was also studied in [3]. The database consists of two ‘files’, X N
1

and X N
2 and at some point the user will submit a request for either of the two. However, like

explained in the introduction the encoder does not wish to wait for this to happen, but instead

wants to already transmit some data ahead of time.

The model is accompanied by a timeline of three events:

1. A cache message is sent while the encoder is still unaware of the user’s choice.

2. The user submits a request for either X N
i .

3. A second encoder sends an update message tailored towards X N
i to complement the

cache. Both messages combined need to create a final lossy description X̂ N
i at a preci-

sion that is acceptable for the user.

The fundamental question is: What data should the first encoder write in the cache if it does

not know what will be requested?

4.1.1 The Caching Network

Let XN be a sequence of two-dimensional random vectors which fulfills the role of the database

in our model. Each sample of X is drawn in an i.i.d. fashion, but within one sample the vector

elements X1 and X2 can be correlated. This sequence is to be encoded into three messages,

mc for the ‘cache’ and mu,1,mu,2 for the ‘update’. The cache message mc is transmitted in any

case, while for the update the decoder will only receive mu,1 if it requests X N
1 (and similar for

mu,2 and X N
2 ). Each message m is an integer in the set IM = {1,2, · · · , M }, where the set size for

each message is denoted by Mc , Mu,1 and Mu,2.

A code consists of encoder mappings

f : R2×N → IMc × IMu,1 × IMu,2
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(
X N

1
X N

2

)
E

D1

D2

R0

R1

R2

X̂ N
1

X̂ N
2

Figure 4.2 – The Gray–Wyner network.

and a decoder

gi : IMc × IMu,i →R1×N for i = 1,2

of which the latter is meant to reconstruct X̂ N
i = gi (mc ,mu,i ) where i stands for the specific

file requested.

A caching rate-distortion tuple (Rcache,Ru,1,Ru,2,DF ) is said to be achievable if for arbitrary

ε> 0 there exist such encoders and decoders that for both i = 1,2 we have

Mc ≤ 2N (Rcache+ε)

Mu,i ≤ 2N (Ru,i+ε) for i = 1,2

1

N

N∑
n=1

d(Xi (n), X̂i (n)) ≤ DF +ε for i = 1,2

where dX (·, ·) is some single-letter distortion measure. As is clear from the definition, we apply

symmetric end distortion criteria to X1 and X2. This is a matter of notational convenience

and it will later become clear that (a)symmetry is neither important nor interesting. A far

more interesting thing to study in the Gaussian case are the intermediate distortion levels after

caching, these will be introduced in Section 4.1.4.

After the caching phase, the user submits a requests for either X N
1 or X N

2 which is modeled by

the Bernoulli random variable U ∈ {1,2}, distributed as P (U = 1) = p. The main question we

pose is: What does one need to cache in order to minimize the update rate that is still needed

on average? To that end define also the average update rate:

Rupdate � pRu,1 + (1−p)Ru,2. (4.1)

A shorthand notation will be to say that (Rcache,Rupdate,DF ) is achievable to indicate that (at

least one tuple) (Rcache,Ru,1,Ru,2,DF ) is, of which the average update rate equals Rupdate.

4.1.2 Analogy to the Gray–Wyner Network

From an operational perspective and the existence of codes, there is a complete equivalence

with the Gray–Wyner network [7], as depicted in Figure 4.2. Namely, even though the decoder
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Chapter 4. Caching of Bivariate Gaussian Sources

only needs X1 or X2, any code should be capable of doing both as the user could request any

of the two. By taking Figure 4.1 and drawing the events of the user asking for X1 or X2 as two

separate decoders one obtains 4.2. The equivalence is thus as follows:

R0 ↔ Rcache, R1 ↔ Ru,1, R2 ↔ Ru,2.

The Gray–Wyner network was introduced originally in [7], but also featured more recently in

an explicit lossy source coding setting [11, 12]. The region of achievable rate-distortion tuples

on the Gray–Wyner network is the union of all (R0,R1,R2,D1,D2) satisfying

R0 ≥ I (X;V ) (4.2)

R1 ≥ I (X1; X̂1|V ) (4.3)

R2 ≥ I (X2; X̂2|V ) (4.4)

D1 ≥ E[dX1 (X1, X̂1)] (4.5)

D2 ≥ E[dX2 (X2, X̂2)] (4.6)

over joint densities p(x, v, x̂), for some distortion measures dX (·, ·). Notation-wise, V may be a

single random variable, or also a vector, but for consistency (and with the end result in mind)

we stick to denoting V by a non-bold character.

Hence, by the equivalence with the Gray–Wyner network one knows which caching strategies

are achievable:

Theorem 4.1. Given a joint density p(x, v, x̂), all caching rate-distortion tuples (Rcache,Rupdate,DF )

satisfying the following inequalities

Rcache ≥ I (X;V )

Rupdate ≥ pI (X1; X̂1|V )+ (1−p)I (X2; X̂2|V )

DF ≥ E[dXi (Xi , X̂i )] for i = 1,2

are achievable. The closure of such achievable tuples over joint densities p(x, v, x̂) is denoted

Rcaching.

The goal is now to better understand the boundary of the (Rcache,Rupdate) trade-off, to under-

stand which strategies are not only achievable, but are also good.

4.1.3 Characteristics and (Non-)Attainable Limits

For a fixed DF , the boundary of the caching rate-distortion region of Theorem 4.1 is a curve

that is convex in Rcache and lies inside the triangle depicted in Figure 4.3. That shape is

the intersection of the following three bounds. Recall for these equations that R(D) is the

single rate-distortion function and R(D1,D2) is the bivariate rate-distortion function subject

to individual distortion constraints as defined in Chapter 3, specifically equations (3.3) and
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Figure 4.3 – The boundary of achievable (Rcache,Rupdate)−pairs lies inside this gray triangle.

(3.19). Figure 4.3 is then built as follows:

1. An achievable inner bound based on time-sharing the extremal strategies of caching

both files completely in advance or sending only one file completely in the update phase

by waiting for the user to make a request:

update everything (Rcache,Rupdate) = (0, pRX1 (DF )+ (1−p)RX2 (DF ))

or cache everything (Rcache,Rupdate) = (R(DF ,DF ),0).

2. An outer bound connecting the two points:

(Rcache,Rupdate) = (0, pRX1 (DF )+ (1−p)RX2 (DF ))

(Rcache,Rupdate) = (pRX1 (DF )+ (1−p)RX2 (DF ),0),

of which the first point is achievable with certainty. The bound stems from the following

inequality:

Rcache +Rupdate = p(Rcache +Ru,1)+ (1−p)(Rcache +Ru,2)

≥ pRX1 (DF )+ (1−p)RX2 (DF ).

If Rcache = 0, then all communication happens in the update phase when the encoder

is aware of the user’s request. Therefore indeed the leftmost point of this outer bound

coincides with the start of the boundary of achievable (Rcache,Rupdate)−pairs.

3. An outer bound connecting the two points:

(Rcache,Rupdate) = (0,R(DF ,DF ))

(Rcache,Rupdate) = (min(p,1−p)×R(DF ,DF ),0),
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Chapter 4. Caching of Bivariate Gaussian Sources

of which the second is achievable with certainty.

This bound is the consequence of Rcache +Ru,1 +Ru,2 ≥ R(DF ,DF ). Equality implies that

the joint rate-distortion function can be completely distributed over all branches of the

Gray–Wyner network. This is known to be possible in some cases (Rcache needs to be

large) and definitely not in others (see, e.g., [11]). The caching of Gaussian sources will

also have equality for some (Rcache,Rupdate), as will be detailed later.

4.1.4 The Gaussian Case

Now let us zoom in further: the database XN are IID samples from a Gaussian distribution

∼N (0,ΣX) with covariance

ΣX =
[

1 ρ

ρ 1

]
.

Reflecting on the equations of Theorem 4.1, one must note that the source X being Gaussian

distributed does not imply that V and X̂ are necessarily also Gaussian on the boundary of this

region. In Corollaries 4.2 and 4.5 we will show that using Gaussian codebooks it is possible to

attain communication at rates for which it holds that Rcache +Ru,1 +Ru,2 = R(DF ,DF ). Since

one cannot do better than the joint rate-distortion function, Gaussian auxiliaries are thus

sufficient for optimality in these cases.

However, in general it holds that Rcache +Ru,1 +Ru,2 ≥ R(DF ,DF ) and it is clear a priori that

this condition cannot be met with equality everywhere. For starters, we have in Figure 4.3

that the outer bound associated to this inequality crosses another outer bound. Whenever the

inequality is strict, to the best of our knowledge it is not known whether Gaussian auxiliaries are

sufficient for optimality; this remains an open problem. In this work, we restrict ourselves to all

variables being Gaussian. From here onwards we therefore speak of the Gaussian achievable

caching rate-distortion region.

Corollary 4.1. The Gaussian boundary of the caching rate-distortion region is characterized by

Rcache(d ,DF ) = min
DF≤D1,D2≤1

R(D1,D2) s.t. Dp
1 D1−p

2 ≤ d , (4.7)

for a normalized parameter d ∈ [DF ,1] that relates back to Rupdate by picking d ≤ DF 22Rupdate .

Proof. A shorthand but equally correct characterization of Rcaching is by means of the condi-

tional rate-distortion function, i.e. to take the union over all p(x, v) of⎧⎨
⎩Rcache ≥ I (X;V )

Rupdate ≥ pRX1|V (DF )+ (1−p)RX2|V (DF ).

By taking p(x|v) to be Gaussian, also RXi |V (DF ) is solved by Gaussian distributions since it is a
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regular rate-distortion function. Then, the cache rate condition translates to:

I (X;V ) = 1

2
log

|ΣX|
|D| , (4.8)

and the update

pI (X1; X̂1|V )+ (1−p)I (X2; X̂2|V ) = p

2
log+

D1,1

DF
+ 1−p

2
log+

D2,2

DF
(4.9)

= 1

2
log+

Dp
1,1D1−p

2,2

DF
, (4.10)

where

D = E[(X−E[X|V ])(X−E[X|V ])T ] =ΣX|V . (4.11)

Any positive semidefinite matrix D that satisfies D �ΣX can be associated to a random variable

V that is jointly Gaussian with X, and vice versa (see Section 3.1). Such a matrix can be

interpreted as a mean-squared error distortion after caching, but before the update phase. In

that light, one can equivalently optimize over all D rather than over all Gaussian distributions

p(x, v).

To characterize the boundary, we wish to fix one rate and minimize the other:

Rcache(γ) = min Rcache s.t. Rupdate ≤ γ.

As a matter of definition, instead of fixing Rupdate one can equivalently fix Dp
1,1D1−p

2,2 to empha-

size that the distortions up to which one caches the sources are truly the intrinsic variables of

this problem, they are both objective and constraint. Observe also that it serves no purpose

to cache either X1 or X2 beyond the final distortion constraint DF (4.9). In other words, it is

futile to pick a caching distortion profile D of which D1,1 < DF or D2,2 < DF ; that rate is better

spent on caching a component that does not yet satisfy the end criterion.

Combining all, define and simplify the following caching rate-distortion function:

Rcache(d ,DF ) = min
D

1

2
log

|ΣX|
|D| s.t.

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 � D �ΣX

Dp
1,1D1−p

2,2 ≤ d

D1,1,D2,2 ≥ DF

(4.12)

= min
D1,D2≥DF

min
D

:diag(D)=(D1,D2)

1

2
log

|ΣX|
|D| s.t.

⎧⎨
⎩0 � D �ΣX

Dp
1 D1−p

2 ≤ d
(4.13)

= min
DF≤D1,D2≤1

R(D1,D2) s.t. Dp
1 D1−p

2 ≤ d . (4.14)
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Note that the caching rate-distortion function is a minimization of a convex function over a

non-convex domain. Furthermore, also note that even though we constrain Dp
1 D1−p

2 ≤ d , the

minimizer to (4.7) will result in equality by construction.

Definition 4.1. A caching strategy refers to a pair of intermediate distortions (D1,D2) after

the caching phase. Such a strategy is said to be optimal if it is the minimizer to (4.7) w.r.t. an

instance of d and DF .

The extreme ends of (4.7) like depicted in Figure 4.3 simplify thanks to the symmetry assump-

tions (assuming p ∉ {0,1}):

Rcache(DF ,DF ) → (Rcache,Rupdate) = (R(DF ,DF ),0) all cache,

Rcache(1,DF ) → (Rcache,Rupdate) = (0,R(DF )) all update.

In the following sections we aim to understand Rcache(d ,DF ) while playing with both the

correlation ρ and the file preference p. As the bivariate rate-distortion function plays a key

role, we urge the reader to take note of its construction in equation (3.19) and in particular the

D−plane that distinguishes its behavior in (3.20)–(3.22) and Figure 3.6.
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4.2 Preference, but no dependence

First, we establish that in a database in which files have no information in common, the server

should cache the most preferred file exclusively. Only when the distortion constraint on that

data is met, should he continue caching the other. This remark is not specific to Gaussians.

Theorem 4.2. Assuming without loss of generality that p > 1−p, if X1 and X2 are independent

then the boundary of Rcaching is the following connection of two straight lines:

Rcache = δ

Rupdate = p
(
RX1 (DF )−δ1

)++ (1−p)
(
RX2 (DF )−δ2

)+
for δ ∈ [0,RX1 (DF )+RX2 (DF )] and

(δ1,δ2) =
⎧⎨
⎩(δ,0) if δ≤ RX1 (DF )

(RX1 (DF ),δ−RX1 (DF )) if RX1 (DF ) ≤ δ≤ RX1 (DF )+RX2 (DF ).

If p < 1−p, X1 and X2 switch roles.

Proof. Recall an important lower bound from the Gray–Wyner network:

Rcache +Ru,1 +Ru,2 ≥ R(DF ,DF ) (4.15)

≥ RX1 (DF )+RX2 (DF ).

When X1 and X2 are independent equality holds in the last step by definition. Equality in the

first line is attainable for all Rcache ∈ [0,RX1 (DF )+RX2 (DF )] by splitting the cache message into

two parts, one for each decoder. Each decoder then has a personal cache and update link

over which the encoder can split the bits of RXi (DF ). Call the size of those parts δ1 and δ2 for

decoders 1 and 2. Let δ ∈ [0,RX1 (DF )+RX2 (DF )]. Then Rupdate is minimized by:

argmin
δ1+δ2=δ

p
(
RX1 (DF )−δ1

)++ (1−p)
(
RX2 (DF )−δ2

)+ , (4.16)

which is solved by distributing rate in a greedy fashion as mentioned in the theorem: the

encoder should cache X1 exclusively until it satisfies the desired end distortion constraint.

It is important to realize that the cache message may very well be meaningless on its own

(which is part of the reason why it is hard to prove that Gaussian strategies are optimal for

Gaussian sources). However, if X1, X2 are independent and they are successively refinable, then

the caching could also be implemented as an application of successive refinability [15]. Instead

of splitting the bits of R(DF ) over both phases, one caches the most popular Xi up to some

distortion Dcache for R(Dcache) bits and then refines this to DF ≤ Dcache using R(DF )−R(Dcache)

bits as explained in Section 3.4. The cache message then serves as a ‘thumbnail’ of what is to

come. For Gaussians, this is already intrinsic to Rcache(d ,DF ) (4.7).
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4.3 Dependence, but no preference

In the absence of user preference, the caching problem revolves completely around correlation.

On a high level, if it is equally likely that the user picks X1 or X2 then there is no bias to be

leveraged. The best strategy for the encoder is then to cache the information that is shared

by both files; after all, the shared information is useful no matter the choice the user makes,

whereas information that is unique to one file might go to waste. In that light, we will argue

that if p = 1
2 the caching problem becomes an application of the concepts of Wyner’s common

information [8] and Watanabe’s total correlation [9]. In a Gaussian setting, these concepts

are encapsulated in the Hadamard inequality. To be precise, the gap on that inequality; we

will show that a good caching strategy is a distortion matrix of which that gap is as small as

possible. The consequence is that symmetry in user preference results in symmetry in the

caching strategy:

Theorem 4.3. If p = 1−p = 1
2 then

Rcache(d ,DF ) = R(d ,d)

=
⎧⎨
⎩

1
2 log 1−ρ2

d 2 for d ∈ [DF , 1−|ρ|],
1
2 log 1−ρ2

d 2−(d−(1−|ρ|))2 for d ∈ [1−|ρ|, 1].

The proof will be divided into two key steps, given by upcoming Lemmas 4.2 and 4.3.

An example is plotted in Figure 4.4. The result may not appear as surprising; we set both

end distortions to be equal to one criterion DF , hence one could argue that it is logical that

the optimal caching strategy would be to cache X1 and X2 equally. However, the symmetric

caching strategy stems from p = 1−p and not from the symmetric end distortion constraints.

It would also hold if the end criteria were asymmetric (assuming Rcache is not enough to fully

code either Xi ). To see this, we develop the proof of Theorem 4.3 in the next subsections at

perhaps a slower pace than necessary.

4.3.1 Efficient Gaussian Caching is Closing the Hadamard Inequality

In Corollary 4.1 we established that a Gaussian caching strategy can be picked by means of an

MSE distortion matrix D and that without loss of optimality one can always pick a matrix that

is rate-distortion optimal with respect to R(D1,D2). Instead of optimizing over all matrices

D, one would then only have to optimize over the marginal distortions D1 and D2. Let us,

however, take one step back and evaluate (Rcache,Rupdate) of a general Gaussian strategy:

⎧⎨
⎩Rcache = 1

2 log |ΣX|
|D| ,

Rupdate = 1
2 log

D1/2
1,1 D1/2

2,2

DF
= 1

4 log D1,1D2,2

D2
F

.
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0 1-| | 1- 2 1
0

D
F

1-| |

1- 2

1

(a) The optimal caching strategy re-
quires D1 = D2 at all time.

0 1 2
0

1

2

(b) An example of the consequent trade-off between
Rcache and Rupdate.

Figure 4.4 – If p = 1
2 , optimal caching strategies must lie on the diagonal line in the D−plane.

The blue dot corresponds to Rcache =CW (X1, X2), the best strategy then moves from D2 into
D1. For illustration purposes, the left is drawn with ρ = 0.5 and the right with ρ = 0.8.

Small Rcache requires the determinant to be large, whereas a small Rupdate forces us to minimize

the product of the diagonal entries of D. These two are related in the Hadamard inequality

D1,1D2,2 ≥ D, (4.17)

which relates to a classic information theoretic inequality

h(X1|V )+h(X2|V ) ≥ h(X|V ), (4.18)

by realizing the following relationship:⎧⎨
⎩h(X1|V )+h(X2|V ) = 1

2 log(2πe)2D1,1D2,2,

h(X|V ) = 1
2 log(2πe)2|D|.

(4.19)

A nice discussion of this one-to-one correspondence can be read in the classic book by Cover

and Thomas [18, Section 17.9]. These inequalities put the following limit on performance:

Lemma 4.1. The caching rate-distortion function is lower bounded as:

Rcache(d ,DF ) ≥ 1

2
log

|ΣX|
d 2 .

Proof. The determinant is bounded by the product of the diagonal, which in turn is bounded

by the constraint on Rupdate (by the definition of Rcache(d ,DF )):

d 2 ≥ D1,1D2,2 ≥ |D|. (4.20)
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Realizing that Rcache is minimized by maximizing |D|, the encoder must find a distortion

profile D that closes the gap on this inequality. Reflecting on the information theoretic version

of the inequality: a good caching strategy is one that exploits as much of the correlation as

possible in the cache phase, such that as little as possible goes to waste in the individual

update.

It turns out that whether equality is attainable or not separates the caching problem into two

distinct regions that exhibit different behavior.

4.3.2 High Cache Rate Region & Common Information

Equality on the Hadamard inequality requires the caching distortion profile D to be diagonal,

In a Gaussian universe this implies

h(X1|V )+h(X2|V ) = h(X|V ),

X1 and X2 have to become conditionally independent given V . This is not trivially attainable.

Namely, if D must be diagonal, then |D| cannot be arbitrarily large in order for D �ΣX to hold.

From an information theoretic perspective, to make X1 and X2 conditionally independent,

I (X;V ) cannot be arbitrarily small. The latter formulation led to the concept of Wyner’s

Common Information:

Definition 4.2 ([8]). Wyner’s Common Information is defined as

CW (X1, X2)� min
X1−V −X2

I (X;V ). (4.21)

Thanks to [28] we know that for two Gaussians we have

CW (X1, X2) = 1

2
log

1−|ρ|
1+|ρ| , (4.22)

which corresponds to a jointly Gaussian V which results in the following distortion

DCW =
[

1−|ρ| 0

0 1−|ρ|

]
. (4.23)

CW (X1, X2) being a minimum has consequences on the (Rcache,Rupdate) trade-off as follows:

Lemma 4.2. Equality in Lemma 4.1 is achievable if and only if Rcache ≥CW (X1, X2), which is

in the following range of d:

d ∈
⎧⎨
⎩[DF , 1−|ρ|] if DF ≤ 1−|ρ|,
� if DF > 1−|ρ|.
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D
F 1- 2 1

0

1- 2

1

Figure 4.5 – Once Rcache ≥CW (X1, X2), the optimal caching strategies lie inside D1 where the
joint rate-distortion function is separable. Therefore, all caching strategies on the hyperbola

1
D1D2

= 1
d 2 achieve Rcache(d ,DF ).

Proof. Tying this and the previous section together: Equality in Lemma 4.1 requires equality

in (4.20), which for Gaussians means that X1 and X2 become conditionally independent. By

the definition of Wyner’s Common Information, this can only be done if Rcache ≥CW (X1, X2).

For DF > 1− |ρ| we have, however, that R(DF ,DF ) < CW (X1, X2), i.e., even if the encoder

would cache X1 and X2 together and completely it would not need more rate than the com-

mon information. It is the regime where (DF ,DF ) ∈D2 (as defined in (3.21) in Section 3.3)

and therefore the rate-distortion optimal encoding of X1 and X2 is associated to a distor-

tion matrix that cannot be diagonal. For DF ≤ 1−|ρ|, the lower bound is achievable for all

Rcache ∈ [CW (X1, X2), R(DF ,DF )]. For example, let α ∈ [ DF
1−|ρ| ,1] and construct D′ = αDCW .

Then it holds that D′ � DCW �ΣX (it is an achievable Gaussian distortion matrix) and all D′ are

diagonal, achieving the optimum and spanning all Rcache ∈ [CW (X1, X2), R(DF ,DF )].

Corollary 4.2. If Rcache ≥ CW (X1, X2) then Rcache(d ,DF ) also characterizes the boundary of

Rcaching in general.

Proof. This optimality of Gaussians is a consequence of the rate-distortion function being

separable over all links of the Gray–Wyner network:

Rcache +Ru,1 +Ru,2 = 1

2
log

|ΣX|
|D| +

1

2
log

D1,1

DF
+ 1

2
log

D2,2

DF

= 1

2
log

1−ρ2

D1,1D2,2
+ 1

2
log

D1,1D2,2

D2
F

= 1

2
log

1−ρ2

D2
F

= R(DF ,DF ).
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Evidently, one cannot beat the joint rate-distortion function. In this regime caching achieves

the third outer bound described in Section 4.1.3.

The full story of the separability of R(D1,D2) on the Gray–Wyner network and the role of

Wyner’s Common Information can be found in the work of Viswanatha, Akyol and Rose [11].

Corollary 4.3. If Rcache ≥CW (X1, X2) then there exist infinitely many distortion profiles D that

optimize Rcache(d ,DF ).

Proof. For (D1,D2) ∈ D1 (3.20) the joint rate-distortion function behaves as R(D1,D2) =
1
2 log 1−ρ2

D1D2
. Consequently the cache and update phase fit together seamlessly for caching

strategies inside D1, since Rupdate = 1
4 log D1D2

D2
F

(also mentioned in the previous corollary).

Hence, if d ≤ 1− |ρ| then any D = diag(D1,D2) of which D1D2 = d 2 and (D1,D2) ∈D1 con-

stitute the same performance of (Rcache,Rupdate). In other words, for Rcache ≥ CW (X1, X2)

infinitely many optimal caching strategies lie in D1 on hyperbola 1
D1,D2

= 1
d 2 as depicted in

Figure 4.5.

The high cache rate regime is plotted on the right-hand side of Figure 4.4b. Observe how the

slope of the (Rcache,Rupdate) trade-off becomes constant. This is the result of the caching strat-

egy capturing all the information that is shared between X1 and X2. For Rcache ≤CW (X1, X2)

all that remains to cache is information that is individual to either Xi . Therefore, should one

decide to continue caching then only a per-file gain remains.
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Theorems in Pictures

Wyner’s Common Information also has a special geometric meaning. Namely, (4.22) can be

found in two steps: first by proving that CW (X1, X2) is solved by a V that is jointly Gaussian

with X, then by finding the best possible V . For Gaussians independence means diagonal

covariance/distortion. Therefore:

min
X1−V −X2

I (X;V ) = max
D

1

2
log

|ΣX|
|D| s.t.

⎧⎨
⎩0 � D �ΣX,

D is diagonal.

Geometrically, this optimization looks for the ellipse with the largest possible volume (the

objective) that lies inside EΣX (constraint 1) and is straight, i.e., whose semiprincipal axes align

with the axes of the system (constraint 2). For any general 2×2 covariance matrix, this is solved

by D = diag(σ2
1(1−|ρ|),σ2

2(1−|ρ|)). Consequently, if X1, X2 are of unit variance then DCW is a

scaled identity matrix: EDCW
is thus a circle and it touches EΣX at its semi-minor axis.

Figure 4.6 – The correspondence between the ellipses (left) and the D−plane (right).
To match points, the D−plane is drawn with

�
D1 instead of D1 (same for D2).
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4.3.3 Low Cache Rate Region & Total Conditional Correlation

The previous section introduced the notion of Wyner’s Common Information as a threshold of

where the caching-update trade-off reaches its maximum performance: It was associated to a

Rcache large enough to carry all the information that is shared between X1 and X2. What about

the other half of the (Rcache,Rupdate) trade-off, the region Rcache <CW (X1, X2)? In any case, it

must be so that for any caching auxiliary V we might consider it holds that (4.18) is strict, that

I (X1; X2|V ) = h(X1|V )+h(X2|V )−h(X|V ) > 0. (4.24)

This brings us to a notion that is closely related to common information:

Definition 4.3. [9] Let X be a K -dimensional random variable. Then Watanabe’s total correla-

tion equals

TC (X) =
K∑

i=1
h(Xi )−h(X),

which extends to total conditional correlation as:

TC (X|V ) =
K∑

i=1
h(Xi |V )−h(X|V ).

In our bivariate case this expression simplifies to I (X1; X2|V ), but we will refer to it as total

conditional correlation nonetheless. In this terminology, the insights so far can be restated as

saying that when Rcache ≥CW (X1, X2) we can apply caching strategies for which TC (X|V ) = 0 -

no shared information is left after caching.

For Rcache <CW (X1, X2), whatever cache auxiliary V one picks it must be so that TC (X|V ) > 0,

but the encoder should try to get as close to 0 as possible. One thing is certain for low cache

rates: D � ΣX is an active constraint (it is not a strict inequality). Namely, if it were not

active then there would be opportunity to get closer to the bound of Lemma 4.1 until it is2.

Consequently, if D∗ is the minimizer of (4.7) then it must be that

dim
(
ker

(
ΣX −D∗)) �= 0. (4.25)

Combining this with the condition D �ΣX, the optimal distortion profile takes on the form

D∗ =ΣX −vvT � 0; (4.26)

correlation is minimized by a rank-one correction along some subspace of ΣX.

The question is: which?

2A simple trick would be rotation: Given a Gaussian caching strategy D, multiply this distortion with a rotation
matrix. The determinant (and hence Rcache) will remain constant, while the product of the diagonal entries (hence
Rupdate) can improve. If D ≺ΣX, one can rotate until this inequality changes to D �ΣX.
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Lemma 4.3. For all d ≥ 1−|ρ|, Rcache(d ,DF ) is optimized for the following distortion matrix:

D =ΣX − (1−d)11T .

Proof. We established D �ΣX must be an active constraint, i.e., the equality is not strict and

ΣX−D is singular. The latter implies that we can model the optimal distortion profile as a rank-

one correction D =ΣX−αvvT , for some normalized vector v and scalar α. Let us maximize the

determinant of this expression, as that is the core of Rcache(d ,DF ):

Rcache(d ,DF ) → max
D

|D|
= max

α,v
(1−αv2

1)(1−αv2
2)− (ρ−αv1v2)2

≤ max
α,v

d 2 − (ρ−αv1v2)2. (4.27)

The last step follows from the constraint D1/2
1,1 D1/2

2,2 = d . Let us continue by finding the argument

that maximizes the above:

argmin
α,v

(ρ−αv1v2)2 = argmax
α,v

αv1v2.

Assume w.l.o.g. that {v1, v2} are normalized (α can take care of proper scaling). Then we can

add the constraint that v2
1 + v2

2 = 1. We thus end up at maximizing a product of numbers under

a sum constraint, which is known to be solved by taking all numbers equal. Thus, v1 = v2 = 1�
2

.

Plugging in (1−αv2
1)(1−αv2

2) = d from (4.27) tells us that α= 2(1−d), and thus

D =
[

1 ρ

ρ 1

]
− (1−d)11T . (4.28)

The above holds for ρ > 0. Otherwise, one can verify that v1 =−v2 is the right solution. Both

cases combined gives us |D| = d − (|ρ|− (1−d))2.

On a side note, this distortion matrix (4.28) is also the optimizer of the joint-rate distortion

function subject to symmetric distortions R(d ,d); the insight of the proof is thus more that

indeed these marginal distortions need to be equal. Observe as well that the all-ones vector in

the rank-one correction is the dominant eigenvector of the correlation matrix ΣX (for ρ > 0).

Lemma 4.2 and 4.3 together constitute Theorem 4.3 and Figure 4.4. We emphasize the nuance

that the caching strategy in this low cache rate regime is unique, whereas it is not in the high

rate regime (by Corollary 4.3).
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Theorems in Pictures

The series of plots below show the evolution of distortion matrices that attain the optimal

caching-updating trade-off as described by Theorem 4.3. From left to right d decreases,

meaning that Rcache(d ,DF ) increases; the encoder caches more information and hence the

distortion on X1 and X2 after caching decreases.

The middle plot depicts EDCW
, the ellipse corresponding to Rcache =CW (X1, X2), the common

information. The left two plots are two instances of the low cache-rate regime of Lemma

4.3, where the encoder caches the contribution along the dominant eigenvector 1. The right

two plots are two instances of the high cache-rate regime of Lemma 4.2, where the cache

encoder spends so much rate that it can make X1 and X2 conditionally independent. The

consequence is that the distortion matrices correspond to straight ellipses. Observe how ED

no longer touches EΣX . This indicates that D �ΣX becomes a strict inequality.

Figure 4.7 – Evolution of optimal caching distortion matrices that optimize Rcache(d ,DF ) for
(f.l.t.r.) d ∈ [0.8 0.6 0.5 0.3 0.1] and ρ = 1

2 .
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4.3.4 Variance is irrelevant - Reverse Water-Filling the Correlation Matrix

Asymmetric distortion constraints

The choice for setting symmetric end distortion constraints was motivated solely by simplify-

ing notation; the optimal caching strategy when p = 1−p results in X1 and X2 reaching the

end distortion criteria simultaneously when Rcache = R(DF ,DF ). The impact of choosing indi-

vidual criteria for both sources leaves Theorem 4.3 intact for all Rcache up to the point where

either X̂i reaches its end criterion first. Let DF,1 (resp. DF,2) be the end distortion constraint

for X̂1 (resp. X̂2). Define Rcache(d , [DF,1 DF,2]) to be the cache rate-distortion function exactly

as (4.7) but for asymmetric end distortion criteria, valid over d ∈ [D1/2
F,1 D1/2

F,2 , 1].

Corollary 4.4. If DF,1 > DF,2, then

Rcache(d , [DF,1 DF,2]) = R(D̄1,d 2/D̄1),

where D̄1 = max(d ,DF,1). If DF,1 < DF,2, switch X1 and X2.

Variance is irrelevant

Now consider asymmetric X1, X2, i.e., they are Gaussian distributed with a general covariance:

ΣX =
[

σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

]
.

The main message of this section is that the variance is irrelevant; one can scale X1 and X2

to unit variance, apply the symmetric caching strategy as developed in this Section and then

scale the end result back. This is possible because caching is a problem in which objective and

constraint are equally affected by scaling. Namely consider

max
0�D�ΣX

|D| s.t. D1,1D2,2 ≤ d 2.

Also define the matrix S = diag(σ1 σ2). Then one can decompose X = SX̄, of which X̄ are two

unit variance Gaussians. Then the optimization above can be equivalently written down as:

max
0�SD̄ST �SΣX̄ST

|SD̄ST | s.t. σ2
1D̄1,1σ

2
2D̄2,2 ≤ d 2,

which is solved by the same D̄ as the following normalized version of the problem:

max
0�D̄�ΣX̄

|D̄| s.t. D̄1,1D̄2,2 ≤ d 2

σ2
1σ

2
2

.

One could even redo Lemma 4.3 again for general covariances and find that the optimal

caching distortion profile for Rcache ≤CW (X1, X2) takes on the form D =ΣX − (1−d)vvt , where
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v = 1�
tr(ΣX)

[σ1 σ2]T . Decomposing with the scaling matrix S one finds the solution we already

had for caching of unit variance Gaussians.

This brings us to the main insight: The caching of bivariate Gaussians under p = 1− p =
1
2 is a reverse water-filling procedure on the eigenvectors of the correlation matrix. The

encoder should first scale the covariance matrix to unit variance, hence turning it into a

correlation matrix. Then it should cache the contribution along the dominant eigenvector of

that correlation matrix according to Lemma 4.3 until Rcache is so large that this construction

results in λ1(D) =λ2(D) = 1−|ρ|. After this point the cache encoder should keep D diagonal

and one way to do that is by reducing both eigenvalues of D equally.

Connecting everything to the start of this Section, we stated that an optimal strategy needs to

cache X up to a distortion matrix with the smallest possible gap on the Hadamard inequality

|D| ≤ D1,1D2,2. We noted the information theoretic meaning of this, which was that the

encoder needs to cache as much of the shared information as possible. In this last subsection

we observed that one can cache as much of the correlation as possible by ignoring variance

and applying a reverse water-filling procedure on the correlation matrix. This is similar to

RX(D), the multivariate rate-distortion function subject to a sum squared error (Theorem 3.2),

but different in the sense that this normalization of variance is a crucial step that comes first.
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Theorems in Pictures

Recall Property 2.6 in Section 2.4: If an encoder codes a projection of X by constructing:

Y = vT X+W,

with W independent Gaussian noise and v a projection vector, then EΣX and EΣX|Y ‘touch’ at

the vector that stands orthogonal to v. Conversely, if the ellipses of two matrices D �ΣX touch

at a particular vector, then this distortion matrix D can be attained by coding a projection that

again stands orthogonal to that vector.

The two plots below depict several caching-optimal distortion matrices in the range of

Rcache ∈ [0, CW (X1, X2)]. The left shows the caching of two Gaussians of arbitrary vari-

ance, the right of the same process after normalization. It can be seen that the ellipses of

all caching profiles pass through and thus touch at the same symmetric pair of points. The

arrow indicates the vector orthogonal to the vector on which the ellipses touch. While on the

left this coding vector appears to be arbitrary, one can observe that after normalization they

correspond to the eigenvectors of the correlation matrix.

One can derive that the arrow in the left plot constitutes the following construction:

Y = 1�
tr(ΣX)

[
σ2 σ1

]
X+W

The encoder can do caching (for rates Rcache ≤ CW (X1, X2)) by mixing X1 and X2 with co-

efficients equal to the variance of the other. Consequently, σ2X1 and σ1X2 will have equal

variance, thus rendering variance irrelevant. Caching (under uniform preference probabilities)

is about correlation only.

Figure 4.8 – σ2
1 = 1

2 and σ2
2 = 5

2 . Figure 4.9 – Normalized, σ2
1 =σ2

2 = 1.

In these plots, the blue dotted lines represent the ellipses of DCW , the distortion matrices

corresponding to Wyner’s Common Information.
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4.4 The Full Picture: Dependent Sources with Non-Uniform Prefer-

ence Probabilities

This section discusses the full (Rcache,Rupdate) trade-off by considering 0 < |ρ| < 1 and arbitrary

p. So far we understand the following cases:

Section 4.2 p ∈ {0,1} or ρ = 0 Cache only the most popular Xi ,

i.e., (D1,D2) must lie on the border of D2 and D3.

Section 4.3 p = 1
2 Cache X1 and X2 equally,

i.e., (D1,D2) must lie on the diagonal of the D−plane.

In this section we argue that for any p between those extremes, the optimal caching strategy is

a distortion pair (D1,D2) that lies between the diagonal and the border ofD2 andD3. Moreover,

we show at the end of this section that the caching problem turns out to be very sensitive to

knowledge of this user preference p.

The optimal (Rcache,Rupdate) trade-off and the strategies that attain it are shown by example

in Figure 4.11. These curves are what we will derive the next few pages. To the best of our

knowledge, no closed-form analytic expression exists for expressing these optimal cache-

distortions in terms of p and d . Numerically, however, the problem is not hard.

First of all, it should be clear that if p < 1−p then a good caching strategy should mostly cache

information on X2 and must thus result in D1 > D2. To that end, let us cut up the D−plane in

an upper and lower triangle:

Di ,1 =Di ∩ {D1,D2 : D2 ≥ D1} ,

Di ,2 =Di ∩ {D1,D2 : D2 ≤ D1} .

Lemma 4.4. If DF = 0, then the cache-update trade-off has one unique minimum on the

D−plane, which is the solution to

Rcache (d ,0) = min
D1

R(D1,d
1

1−p D
− p

1−p

1 ).

Proof. Neglect the constraint involving DF . In (4.7) one does not evaluate R(D1,D2) over all

(D1,D2) ∈D, but only along a ‘slice’ defined by the constraint:

Dp
1 D1−p

2 = d −→ D2 = d
1

1−p D
− p

1−p

1 . (4.29)

This slice is strictly convex with respect to (D1,D2). The contour lines (or isolines) of R(D1,D2)

are also convex (and continuous!) on the D−plane. More importantly, though, these contour

lines end straight ( dD2
dD1

= 0 in D3,2 and dD1
dD2

= 0 in D3,1). Consequently, the minimum of

R(D1,D2) evaluated on a strictly convex curve is where that curve is tangential with a contour

line; it cannot be at a simple crossing.
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0 1- 2 1
0

1- 2

1

(a) The optimal caching strategy is where a
contour line of R(D1,D2) is tangential to the

(dashed) line Dp
1 D1−p

2 = d .

0
1

1

1

 

0 0

(b) A slice of R(D1,D2) that is strictly convex
in (D1,D2) has one unique minimum.

Figure 4.10 – Example of Lemma 4.4 for p = 2
5 and d = 0.475.

This tangential part is either a unique point or a (set of) closed interval(s), the latter if and

only if ∃ a contour line that is described by the same curve as (4.29) for some interval(s). This

happens in D1 when p = 1
2 , but not for other p. Hence, there can only be one minimum.

An illustration of the ‘slicing’ of Lemma 4.4 is depicted in Figure 4.10. Using this as a building

block, we end with the following theorem:

Theorem 4.4. Without loss of generality, assume p < 1
2 . Then,

Rcache (d ,DF ) = R(D̄1,d
1

1−p D̄
− p

1−p

1 )

where D̄1 = max(DF ,D∗
1 ) and D∗

1 is the solution to

d

dD1

(
−1+D1 +d

1
1−p D

−p
1−p

1 +2ρ

√
(1−D1)(1−d

1
1−p D

−p
1−p

1 )

)
= 0, (4.30)

over (D1,d
1

1−p D
− p

1−p

1 ) ∈D2,2 .

Proof. First, assume DF plays no restricting role. Then, the minimum of Lemma 4.4 lies

necessarily in D2,2. Namely, it cannot lie in D3,2 since its boundary is strictly superior. Second,

in D1,2 the equipotential lines of R(D1,D2) behave as D1D2 = constant. Hence, they cannot be

tangential to the curve Dp
1 D1−p

2 = d , whose derivative is ‘less steep’ everywhere. That leaves

D2,2, where R(D1,D2) is minimized by maximizing D1D2 −
(
ρ−�

(1−D1)(1−D2)
)2

(3.19). By

restricting (D1,D2) = (D1,d
1

1−p D
− p

1−p

1 ) ∈D2,2 first and only then setting this derivative w.r.t. D1

to 0, one finds the optimum.
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0 1- 2 1
0

D
F

1- 2

1

(a) As long as no file is cached com-
pletely, optimal strategies lie in D2.

0 1 2
0

1

2

(b) The resulting trade-off between Rcache and Rupdate

with bounds.

Figure 4.11 – Example of optimal caching strategies and the resulting performance in terms of
(Rcache,Rupdate) for p = 0.4 and correlation ρ = 0.5.

Finally, should any Di drop to DF , then Rcache(d ,DF ) is minimized at the intersection of

Di = DF and Dp
1 D1−p

2 = d , since R(D1,D2) is monotonic along that curve on one side of the

aforementioned unconstrained minimum.

Figure 4.11 plots an example of Theorem 4.4. The qualitative interpretation of this result is the

following: for p = 1
2 the optimal strategy was to use all Rcache to make X1 and X2 conditionally

independent as quickly as possible. The opposite is the case if p �= 1−p; after caching there

should always remain some dependency between X1 and X2. The only exception is when one

file is cached completely, otherwise the optimal strategy lies necessarily in D2.

Corollary 4.5. Assume w.l.o.g. that p < 1− p, then describes the boundary of Rcaching for

Rcache ≥ R(1− ρ2

1−DF
,DF ), provided DF ≤ 1−|ρ|.

Proof. For Rcache ≥ R(1− ρ2

1−DF
,DF ), the optimal caching strategies as described by Theorem

4.4 lie inside D1. In this region R(D1,D2) = 1
2 log 1−ρ2

D1D2
, X1 and X2 become conditionally inde-

pendent and the same argument as for Corollary 4.2 holds. In this high cache rate regime,

the Gaussian (Rcache,Rupdate) trade-off attains the outer bound described as number 3 in

Subsection 4.1.3.
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4.5 Insights and Discussion

In Figure 4.12, we plot the evolution of optimal caching strategies and the (Rcache,Rupdate)

trade-off as we vary p. As expected, a stronger bias in preference results in more leverage on

the encoder side and hence a more efficient rate trade-off. Furthermore, as p → 0 or 1, the

distortions that achieve the optimal trade-off converge to the border of D2 and D3, indicating

the encoding of only the most popular Xi .

4.5.1 Size Matters

The presence or absence of preference determines whether or not the optimal caching strategy

also depends on the size of the cache, in addition to it -obviously- depending on ρ and p.

Corollary 4.6. The optimal caching strategy depends on the size of the cache.

Proof. Theorem 4.4 tells us that the optimal caching strategy necessarily lies inside D2 (except

for extremely large Rcache). Every point in D2 is obtained by coding a single Gaussian random

variable that is a mixture of the two sources (see again Chapter 3, specifically equation (3.27)).

In others words, the encoder constructs αX1 +βX2 +W , with α,β some constants and W

independent Gaussian noise (not mentioned explicitly, but a direct consequence of [19]).

These α and β are constant regardless of Rcache for two different pairs of distortions (D1,D2)

if and only if those two pairs lie on a straight line originating from (1,1). Due to the semi-

triangular shape of D2, however, it is impossible for all optimal caching distortion pairs to lie

on such a straight line, as can also be seen in Figure 4.12a. Therefore, the encoder must code

different mixtures of X1 and X2 as Rcache increases.

A direct follow-up is the observation that Gaussian bivariates are not successively refinable

with respect to Rcache(d ,DF ) from some d1 to a d2 < d1 according to Definition 3.1:

Corollary 4.7. Caching cannot be split into two steps that are both optimal w.r.t. Rcache(d ,DF ).

In other words, the caching rate-distortion function is not successively refinable from d1 to

d2 < d1. The only exceptions are when p ∈ {0, 1
2 ,1} or ρ = 0.

Proof. Gaussian sources subject to individual mean squared error constraints are successively

refinable from (D1,D2) to (D ′
1,D ′

2) if the matrices associated to the rate-distortion optimal

encoding satisfy D � D′ (see Theorem 3.3). In D2, this again requires for (D1,D2) and (D ′
1,D ′

2)

to lie on a straight line originating from (1,1). Since optimal caching strategies generally lie on

a curve instead of a line, it is impossible for the caching phase to be split into two of which both

phases are optimal w.r.t. Rcache(d ,DF ). The only exceptions are when p = 1
2 (when optimal

strategies lie on the diagonal) or when either ρ = 0 or p ∈ {0,1} (when the encoder codes only

X1 or X2).
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0 1- 2 1
0

D
F

1- 2

1

(a) Optimal strategies move away
from the diagonal as p decreases.

0 1 2
0

1

2

(b) The resulting trade-off between Rcache and Rupdate.
test test test test test test test test test

Figure 4.12 – Progression of strategies for p = 0.49,0.45,0.3 and 0.1 for correlation ρ = 0.5.

A last observation from Figure 4.12a is that encoder strategies diverge, but eventually converge:

Corollary 4.8. For DF → 0 and Rcache → ∞, the optimal strategy is to only cache the most

popular Xi irrespective of the exact value p.

Proof. D2 ends in two corners, i.e., (0,1−ρ2) or (1−ρ2,0). if Rcache grows very large and

DF plays no restricting role, the optimal caching strategy is necessarily squeezed into these

corners. These points are associated to a perfect description of one Xi and the resulting

MSE-estimator of the other. In other words: for very large Rcache the best caching strategy

cares more about the most popular component and less about the correlation between the

two, irrespective of the value of p.

4.5.2 Sensitivity to Exact Knowledge of User Preference

The strong change in optimal strategy as a function of preference begs the question exactly

how sensitive caching is to accurate knowledge of the user’s habits. Considering the two

parameters correlation and preference, one can argue that in practice the encoder most likely

has perfect knowledge of the former and only an estimate of the latter.

If the encoder does not know the value of p, his best strategy is to assume p = 1
2 . The loss

of performance due to this imperfect knowledge is bounded. This is already evident from

the geometry of Figure 4.3: the actual best Gaussian (Rcache,Rupdate) trade-off lies inside the

bounded triangle, as well as an encoding strategy of assuming p = 1
2 (even though that is not

the real value of p). In the following corollary we characterize the maximum loss explicitly.

A surprising result is that the maximum loss depends on p, but the point where this loss is

maximized does not; that only depends on DF .
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Theorem 4.5. Assume DF ≤ 1−|ρ| and w.l.o.g. that p < 1
2 . Loss due to lack of knowledge of p is

no larger than

ΔRu =
1

2
log

⎛
⎝1− ρ2

1−DF

DF

⎞
⎠

1
2−p

and attains this maximum at

Rcache = R(1− ρ2

1−DF
,DF ).

Proof. Let us use the superscript (Rcache,Rupdate)actual to refer to the Gaussian optimal caching

trade-off via Theorem 4.4 based on some fixed p < 1
2 . Introduce as well (Rcache,Rupdate)unif

to indicate the caching trade-off based on Theorem 4.3, i.e., when the encoder does not

know p and assumes it equals 1
2 . They key is that (Rcache,Rupdate)actual and (Rcache,Rupdate)unif

diverge until Rcache = R(1− ρ2

1−DF
,DF ) and then converge. Note that (Rcache,Rupdate)actual and

(Rcache,Rupdate)unif start and end in the same points, (0, 1
2 log 1

DF
) and ( 1

2 log 1−ρ2

D2
F

,0) respectively.

(Rcache,Rupdate)unif is a strictly convex curve on Rcache ∈ [0,CW (X1, X2)], after which it is a

straight line connecting ( 1
2 log 1−|ρ|

1+|ρ| ,
1
2 log 1−|ρ|

DF
) to the end ( 1

2 log 1−ρ2

D2
F

,0). The fact that p �= 1
2

does not affect performance; p has been made irrelevant because there is complete symmetry

in the sources, the end distortion constraints and the caching strategy, i.e. D1 = D2.

Then, (Rcache,Rupdate)actual is a strictly convex curve until Theorem 4.4 dictates to cache up to

distortions lying inside D1. This happens at Rcache = R(1− ρ2

1−DF
,DF ) ≥CW (X1, X2). From that

point on, the trade-off is a straight line connecting ( 1
2 log 1−ρ2

(1− ρ2

1−DF
)DF

, p
2 log

1− ρ2

1−DF
DF

) to the same

end point as the uniform strategy.

Because (Rcache,Rupdate)actual moves into a straight line at an Rcache strictly larger and an

Rupdate strictly smaller than where (Rcache,Rupdate)unif makes this change, combined with both

curves being strictly convex before reaching that point, must mean that the curves diverge

until Rcache = R(1− ρ2

1−DF
,DF ). The loss at this point equals

ΔRu =
1

2
log

√
(1− ρ2

1−DF
)DF

DF
− p

2
log

1− ρ2

1−DF

DF

= 1

2
log

⎛
⎝1− ρ2

1−DF

DF

⎞
⎠

1
2−p

.

The geometry of this loss is depicted in Figure 4.13.
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0 1- 2 1
0

D
F

1- 2

1

(a) Caching strategies enter D1 at
these dots.

(b) The (Rcache,Rupdate) trade-offs diverge until both
strategies cache up to distortions inside D1; at that
point loss is maximal.

Figure 4.13 – The geometry of how loss due to lack of knowledge of user preference is bounded.
Red solid line stands for a uniform caching strategy, whereas the black dotted line stands for
what the encouder should do. p = 1

4 and ρ = 3
5 .
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5 Caching of Multiple Gaussians under
Uniform Preference Probabilities

This chapter1 extends the caching of Gaussians under uniform preference probabilities to

databases of more than two sources. In terms of the problem there is little difference with

Chapter 4: If a user shows no preference for any of the files in the database, the encoder

should cache the information that is shared between them. The information that is unique to

a particular file is best left for the update phase. Like before, the concepts of Wyner’s common

information, Watanabe’s total correlation and for Gaussians the Hadamard inequality are the

measures that define what exactly this common core needs to be.

We saw in Section 4.3.4 that the encoder can successfully cache the total correlation of any

two Gaussians by applying reverse water-filling on the eigenvalues of their correlation matrix.

This solution does not generalize to larger databases; it is specific to having only two sources.

We argue in this chapter that the common information of an arbitrary number of Gaussians is

not (per sé) related to the eigendecomposition of the correlation matrix or a nice algebraic

operation on it.

Also now we split the caching of Gaussians without user preference in a high and low cache rate

regime, where again the turning point is when the cache rate exceeds the common information.

This time, however, the key differentiator is complexity. In the high cache rate regime, figuring

out what to cache is a convex problem, whereas for small Rcache it is non-convex. We show

that a water filling procedure on the eigendecomposition of the correlation matrix is only an

inner bound to achievable (Rcache,Rupdate)−pairs.

The chapter ends with the conjecture that this bound is tight if and only if the correlation

matrix is circulant. Such a conjecture would include the results of Section 4.3, since any 2×2

correlation matrix is necessarily circulant. In that regard, the main argument of this chapter is

thus that the clean caching procedure for a database of two sources is not the rule, but rather

the exception.

1The material of this chapter appeared in [26].
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⎛
⎜⎜⎜⎜⎝

X N
1

X N
2
...

X N
K

⎞
⎟⎟⎟⎟⎠

Ecache

Eupdate D X̂ N
i

Rcache

Ru,i

U = i

Figure 5.1 – The Caching Network for a database of K sources is the same as in Figure 4.1.

5.1 Problem Statement

The setup is equivalent to Chapter 4 (to be exact, Section 4.3), but is extended to a larger

database. This time, the source is consists of K files like XN ∈RK×N . The user is only interested

in one file X N
i , but the encoder will send a cache message before the user gets the chance to

announce this request.

A message m is an integer in the set IM = {1,2, · · · , M }. We have mc for the ‘cache’ and

mu,1,mu,2, · · · ,mu,K for the ‘update’. The size of each of their message sets is denoted by

the capital letter equivalent, i.e., Mc , Mu,i , etc. In any case mc is transmitted, while for the

update the decoder will only receive mu,1 if it requests X N
1 (and similar for all other X N

i ). A

code consists of encoder mappings

f : RK×N → IMc × IMu,1 × IMu,2 ×·· ·× IMu,K

and decoders

gi : IMc × IMu,i →R1×N for i = 1,2, · · · ,K

of which the latter is meant to reconstruct X̂ N
i = gi (mc ,mu,i ) where i stands for the specific

file requested.

A caching rate-distortion tuple (Rcache,Ru,1,Ru,2, · · · ,Ru,K ,DF ) is said to be achievable if for

arbitrary ε> 0 there exist such encoders and decoders that for both i = 1,2 we have

Mc ≤ 2N (Rcache+ε)

Mu,i ≤ 2N (Ru,i+ε) for i = 1,2, · · · ,K

1

N

N∑
n=1

d(Xi (n), X̂i (n)) ≤ DF +ε for i = 1,2, · · · ,K

where dX (·, ·) is some single letter distortion measure. For notational simplicity, each file is

subjected to the same final distortion constraint.

Furthermore, we focus on the scenario in which the user chooses each file equally likely. We

model this choice by a random variable U ∈ {1, · · · ,K } which has the uniform distribution.
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⎛
⎜⎜⎜⎜⎝
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...
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X̂ N
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X̂ N
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Figure 5.2 – The extended Gray–Wyner Network for K sources, equally many decoders and
individual links, and one common link.

Therefore the average update rate still required after caching equals

Rupdate �
1

K

K∑
i=1

Ru,i . (5.1)

A shorthand notation will be to say that (Rcache,Rupdate,DF ) is achievable to indicate that (at

least one tuple) (Rcache,Ru,1,Ru,2, · · · ,Ru,K ,DF ) is, of which the average update rate equals

Rupdate.

5.1.1 The Extended Gray–Wyner Network

The analogy with the Gray–Wyner network also extends to higher dimensions, even though

originally it was only defined for two sources [7]. The network was extended to K sources by

Xu, Liu and Chen, first for discrete sources [29] and then for lossy source coding as well [30].

This extension consists of K decoders who are connected to the encoder by one common link

and K individual links, like shown in Figure 5.2. In Xu et al.’s notation, R0 is the rate spent on

the common link and R1,R2, · · · ,RK relate to the individual links from the one encoder to each

decoder.

Using the notation of the conditional rate-distortion function as defined in (3.4), the region of

achievable communication was described as follows:

Lemma 5.1 (Xu, Liu and Chen [30]). Communication on the extended Gray–Wyner network is

achievable for rate-distortion tuples (R0,R1, · · · ,RK ,D1,D2, · · · ,DK ) that satisfy

R0 ≥ I (X;V)

Ri ≥ RXi |V(Di ) for i = 1,2, · · · ,K ,

for some conditional distribution p(v|x).

The extended Gray–Wyner network dictates the achievable rates for the caching problem.

Namely, despite the user decoding only one X N
i , any caching code must have update messages

that work for all elements of X since any one could be requested. The equivalence is that the

common link equals the cache and the individual links the update messages for each possible
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request:

R0 ↔ Rcache

Ri ↔ Ru,i i = 1,2, · · · ,K

This gives us the following:

Theorem 5.1. Given a joint density p(x,v), all caching rate-distortion tuples (Rcache,Rupdate,DF )

satisfying the following inequalities

Rcache ≥ I (X;V) (5.2)

Rupdate ≥
1

K

K∑
i=1

RXi |V(DF ) (5.3)

are achievable. The closure of such achievable tuples over joint densities p(x,v) is denoted

Rcaching.

The boundary of this achievable region lies inside the gray triangle of Figure 5.3. This shape is

obtained by first and foremost the crossing of two outer bounds:

1. The condition Rcache +
∑K

i=1 Ru,i ≥ R(DF , · · · ,DF ) and the false assumption this can be

met with equality everywhere.

2. The straight line (Rcache,Rupdate) : (0, 1
K

∑K
i=1 RXi (DF )) → ( 1

K

∑K
i=1 RXi (DF ),0) that stems

from a genie telling the cache encoder in advance which file will be requested.

These outer bounds are then paired with a time-sharing inner bound connecting the extremal

ends of the trade-off to ultimately obtain the triangular shape.

5.1.2 The Gaussian Case

Now consider specifically a database XN whose files are sequences of IID samples drawn from

a Gaussian distribution with mean 0 and covariance

ΣX =

⎡
⎢⎢⎢⎢⎣

1 ρ12 ρ13 · · ·
ρ12 1 ρ23

ρ13 ρ23 1
...

. . .

⎤
⎥⎥⎥⎥⎦ . (5.4)

In trying to understand the boundary of Rcaching we restrict the discussion to Gaussian code-

books, which brings us to the following function:
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Figure 5.3 – The boundary of achievable (Rcache,Rupdate)−pairs lies inside this triangle. Ex-
ample generated from a Gaussian X of K = 3 and ΣX as defined in (5.4) with ρ12 = 1/3 and
ρ23 = ρ13 = 2/3.

Corollary 5.1. The Gaussian boundary of Rcaching can be described by what we will call the

Gaussian caching rate-distortion function:

Rcache(d ,DF ) = min
D

1

2
log

|ΣX|
|D| s.t.

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 � D �ΣX∏K
i=1 Di ,i ≤ d

Di ,i ≥ DF , ∀i = 1,2, · · · ,K

(5.5)

for a normalized parameter d ∈ [DK
F ,1] that relates back to Rupdate by picking d = DK

F 22K Rupdate .

Proof. The derivation is analogous to Corollary 4.1. The goal is again to express the (Gaussian)

boundary of Rcaching by minimizing Rcache while constraining Rupdate.

Choosing a V that is jointly Gaussian with X in (5.2) yields:

I (X;V) = 1

2
log

|ΣX|
|D| , (5.6)

where as always

D = E[(X−E[X|V])(X−E[X|V])T ] =ΣX|V �ΣX. (5.7)

Furthermore, p(x|v) being Gaussian results in Ru,i to be

RXi |V(DF ) = 1

2
log+

Di ,i

DF
. (5.8)

Caching any Xi beyond DF serves no purpose: it increases Rcache while not improving Ru,i ,

since it cannot be negative. Therefore, demanding Di ,i ≥ DF ensures no cache rate is wasted
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on going beyond what is requested. This will thus ensure Ru,i ≥ 0 and hence we arrive at

Rupdate =
1

K

K∑
i=1

1

2
log

Di ,i

DF
(5.9)

= 1

2K
log

∏K
i=1 Di ,i

DK
F

. (5.10)

Combining everything together: Minimizing Rcache over all jointly Gaussian distributions

p(v,x) equals minimizing (5.6) over distortion matrices D �ΣX. Constraining Rupdate means

constraining
∏K

i=1 Di ,i for which we introduce a parameter called d to constrain

K∏
i=1

Di ,i = DK
F 22K Rupdate ≤ d . (5.11)

By picking d ∈ [DK
F ,1], one spans all possible values for Rupdate, i.e. Rupdate ∈ [0, 1

2 log 1
DF

]. This

gives us the function as defined in the Corollary. We note that even though we constrain∏K
i=1 Di ,i ≤ d , the minimizer to (5.5) will result in equality by construction.

5.1.3 Gaussian Caching is the Minimization of Total Conditional Correlation

The Hadamard inequality,

K∏
i=1

Di ,i ≥ |D|, (5.12)

still plays an important role in solving Rcache(d ,DF ) through its relationship with Watanabe’s

notion of total (conditional) correlation [9]. We introduced this notion before in Definition 4.3,

where for two sources it reduced to mutual information. In higher dimensions, let us repeat

that the definition is as follows (here denoted for a conditional distribution):

TC (X|V)�
K∑

i=1
h(Xi |V)−h(X|V), (5.13)

which for Gaussian distributions p(x|v) equals (using (5.7)):

T C (X|V) = 1

2
log

∏K
i=1 Di ,i

|D| . (5.14)

Because Rcache(d ,DF ) maximizes the denominator in (5.14) while upper bounding the nu-

merator by d , we have that an optimal caching strategy effectively minimizes the total con-

ditional correlation. A distortion matrix D that closes the Hadamard inequality is associ-

ated to a Gaussian conditional distribution of which TC (X|V) = 0. This in turn implies that

p(x|v) =∏K
i=1 p(xi |v) or, in other words, that V makes the elements of X conditionally indepen-

dent. Whether or not TC (X|V) = 0 is achievable will structure our discussion on Rcache(d ,DF ).
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5.2 High Cache Rate Region & Common Information

The caching rate-distortion function is lower bounded as

Rcache(d ,DF ) ≥ 1

2
log

|ΣX|
d

, (5.15)

which follows from the higher-dimensional Hadamard inequality d ≥∏K
i=1 Di ,i ≥ |D|. As stated

in the previous subsection, this lower bound is associated to conditional independence. In this

section we characterize in which regime of (Rcache,Rupdate)−pairs this bound is achievable.

To answer that question, we must better understand what is required to attain conditional

independence. Wyner’s common information was originally defined for two sources (4.21)

and helped us characterize a minimum on Rcache. For higher dimensions, we scale this notion

to multiple variables using the definition of total conditional correlation (5.13):

Definition 5.1. We define the multivariate extension of Wyner’s common information as

CW (X)� min
V

:TC (X|V)=0

I (X;V). (5.16)

For discrete random variables a similar extension appeared in [29].

Now, if X is Gaussian then the V that achieves CW (X) is necessarily Gaussian as well:

Theorem 5.2. If X is Gaussian distributed then the common information equals:

CW (X) = min
D

1

2
log

|ΣX|
|D| s.t.

⎧⎨
⎩0 � D �ΣX,

D is diagonal.
(5.17)

Proof. The proof uses standard arguments. Consider any V that is jointly distributed with X:

I (X;V) ≥ I (X;E[X|V])

≥ 1

2
log

|ΣX|
|D|

≥ 1

2
log

|ΣX|∏
i Di ,i

.

The first line follows from the data processing inequality and the second follows from the

Gaussian rate distortion function being the lower bound to any D �ΣX (this inequality is in

turn implied by using E[X|V], see [19, Lemma 2 and 3]). The last line is due to the Hadamard

inequality, which is met with equality if and only if D is diagonal. A diagonal D stands for zero

correlation, which does not guarantee (conditional) independence in general. For Gaussians,

however, zero correlation and independence do have an if and only if relationship. Since

any distortion matrix D �ΣX is attainable by Gaussian distributions we can achieve equality

throughout all steps.
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It is important to note that the constraint of D having to be diagonal is linear. Hence, the

Gaussian common information can always be found efficiently via numerical methods, like

the ones described by Boyd and Vandenberghe [22, 31]. Namely, the objective function is

strictly convex and the search domain is convex as well. This stands in sharp contrast to the

definition of Rcache(d ,DF ) in which the constraint
∏K

i=1 Di ,i ≤ d is non-linear, which renders

that optimization non-convex.

We encourage the reader to solve CW (X) for oneself using the CVX package in MATLAB [32].

To see how the common information helps one to achieve equality in (5.15), define again the

following:

Definition 5.2. Let DCW be the matrix that optimizes (5.17).

There exist correlation matrices ΣX for which DCW is very asymmetric, i.e., some diagonal

entries are very small in comparison to others. In this regard, one must not forget the other con-

straint inside Rcache(d ,DF ): the encoder should not cache any Xi up to a distortion Di ,i < DF .

A DCW of which one or some diagonal entries are below DF can therefore never be an opti-

mal caching strategy w.r.t. Rcache(d ,DF ). To overcome this, we include this practical coding

constraint inside the Gaussian common information:

Definition 5.3. We define the Gaussian constrained common information to be the following:

CW (X,DF ) = inf
D

1

2
log

|ΣX|
|D| s.t.

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 � D �ΣX,

D is diagonal,

Di ,i ≥ DF , ∀i = 1,2, · · · ,K .

(5.18)

In contrast to CW (X), this minimum may not exist. It exists if and only if DF · I �ΣX, which is a

consequence of combining all three constraints.

If this constrained common information exists, then we have

CW (X,DF ) ≥CW (X), (5.19)

because the search domain of CW (X,DF ) is a subset of that of CW (X). We note that the

constrained common information is also a convex problem, which can be solved by the same

numerical methods one would use for (5.17).

This constrained common information is closely related to the discussion on lossy common

information by Viswanatha, Akyol and Rose [11]. They define for two random variables the

notion CW (X1, X2,D1,D2) as the minimum common rate on the Gray–Wyner network needed

such that communication of X1, X2 is achievable at a sum-rate that does not exceed the

joint rate-distortion function R(D1,D2). This notion was also introduced precisely to cover

scenarios where the ‘lossless’ common information would result in distortions that are more

strict than desired by the lossy coding application. Especially insightful is that Viswanatha et

al. explicitly characterize the bivariate Gaussian case of their measure.
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Figure 5.4 – If Rcache ≥CW (X,DF ) and DF is not too large, then Gaussian caching codes can
achieve the outer bound. These (Rcache,Rupdate)-pairs are indicated by the thick black line.

Using this new constrained CW (X,DF ), the high cache rate regime as referred to by the title of

this subsection relates to the following theorem:

Theorem 5.3. If CW (X,DF ) exists, then for all d ≤ |ΣX|2−2CW (X,DF ) we have

Rcache(d ,DF ) = 1

2
log

|ΣX|
d

. (5.20)

If furthermore DF ≤ min(diag(DCW )), then the above holds for all d ≤ |ΣX|2−2CW (X).

Proof. As stated in its definition, CW (X,DF ) exists if and only if DF · I �ΣX. This also implies

that R(DF , · · · ,DF ) = Rcache(DK
F ,DF ) = 1

2 log |ΣX|
DK

F
.

Then, since CW (X,DF ) is a minimum, a diagonal D and hence equality on (5.15) is not achiev-

able for Rcache <CW (X,DF ). On the contrary, for all Rcache ≥CW (X,DF ) equality is achievable

and this requires d to be smaller than the condition mentioned in the theorem. Denote by D′

the diagonal matrix that solves CW (X,DF ), then we have:

CW (X,DF ) = 1

2
log

|ΣX|
|D′|

Hadamard−−−−−−−−→
(in)equality

K∏
i=1

D ′
i ,i = |ΣX|2−2CW (X,DF ).

Hence, for d ′ = |ΣX|2−2CW (X,DF ) we have that Rcache(d ′,DF ) = 1
2 log |ΣX|

d ′ , because it is the lower

bound (5.15) and it is achieved by diagonal distortion matrices. For all d smaller, the bound is

also met with equality. Namely, there are infinitely many diagonal matrices D in the range of

DF · I � D � D′ that are

1. achievable, because D � D′ and D′ �ΣX implies that D �ΣX,

2. and can span all
∏K

i=1 D ′
i ,i ∈ [DK

F , |ΣX|2−2CW (X,DF )] and so all Rcache ∈ [CW (X,DF ), 1
2 log |ΣX|

DK
F

].

If DF ≤ min(diag(DCW )), then CW (X) =CW (X,DF ) and Rcache ≥CW (X) is sufficient to achieve

the lower bound (5.15).
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Corollary 5.2. If d ≤ |ΣX|2−2CW (X,DF ), then the Gaussian caching rate-distortion function

Rcache(d ,DF ) also characterizes the boundary of achievable (Rcache,Rupdate)−pairs in general.

The use of Gaussian codebooks was an assumption in the desire to characterize the boundary

of Rcaching. Whenever Rcache ≥CW (X,DF ) their use is, however, sufficient for optimality. The

proof of the corollary is a direct extension of the two-dimensional case of Corollary 4.2 and is

related to the separability of the Gaussian rate-distortion function over all links of the Gray–

Wyner network. Figure 5.4 shows an example of Theorem 5.3 and Corollary 5.2 for a case

where DF ≤ min(diag(DCW )).
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5.2. High Cache Rate Region & Common Information

Theorems in Pictures

In higher dimensions, Wyner’s common information has the same geometrical meaning as

the two-dimensional case of Chapter 4 on Page 47: it corresponds to the ellipsoid of maximal

volume that fits inside EΣX and that is straight, i.e., whose semi-principal axes align with the

bases of the system.

One intriguing property of Gaussian common information is that of dimensionality. The

condition that 0 � DCW �ΣX, implies that we can construct DCW as (a Schur-complement):

DCW =ΣX − Σ̄,

where Σ̄ must be positive semidefinite. Also noticing that CW (X) is associated to a minimum,

we know that DCW � ΣX cannot be strict (otherwise one can always find a better D). The

non-strictness eliminates the possibility of Σ̄ being full rank. This in turn indicates that the V

that optimizes (5.16) has a dimensionality between 1 and K −1, or that it can be compressed

to a form of such limited dimensionality. This all relates again to Section 2.4.

Below are two example covariance matrices Σ1 and Σ2 of which the common information is

associated to a matrix Σ̄ of rank 1 and 2, respectively. The plots depict EΣX as a transparant

ellipsoid circumfering EDCW
in color. The three smaller plots show the two-dimensional views

from all sides of the bigger figure.

One intriguing open question is how the structure of a covariance matrix drives the dimen-

sionality of the variable that attains the common information.

Σ1 =

⎡
⎢⎣ 1 2/3

1/3

2/3 1 1/3

1/3
1/3 1

⎤
⎥⎦

Figure 5.5 – Since rank(Σ̄1) = 1, EΣ1 and
EDCW 1

touch along two dimensions, i.e., a
ring/ellipse along the surface of EΣ1 .

Σ2 =

⎡
⎢⎣ 1 2/3

2/3

2/3 1 1/3

2/3
1/3 1

⎤
⎥⎦

Figure 5.6 – Since rank(Σ̄2) = 2, EΣ1 and
EDCW 2

touch at two symmetric points only
(a one-dimensional ‘ellipse’).
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5.3 Low Cache Rate Region & Total Conditional Correlation

The difficulty of the Gaussian caching problem (5.5) is that even though the minimization

of − log |D| is strictly convex, the product-constraint on the diagonal entries of D renders the

search domain non-convex. The peculiar consequence of the previous subsection is that when

Rcache exceeds the common information, there is a turning point: There exists a D �ΣX that

closes the Hadamard inequality and the search for that particular matrix is a convex problem.

We call all rates Rcache < CW (X,DF ) the ‘low cache rate regime’. First of all, let us quickly

summarize the defining features of this region: Whatever V that is jointly Gaussian with X we

might consider, if I (X;V) <CW (X,DF ) then conditional independence between the elements

of X is not attainable, which means that

TC (X|V) = 1

2
log

∏K
i=1 Di ,i

|D| > 0; (5.21)

after caching there will always be some dependency left that the encoder no longer benefits

from in the update phase. Consequently, the lower bound on Rcache(d ,DF ) of (5.15) cannot be

met with equality.

For Rcache <CW (X), the non-convexity and hardness of the problem appears to persist. How

to solve Rcache(d ,DF ) in this regime remains an open problem. In this section we argue that

the solution we derived for K = 2 does not extend to higher dimensions. Instead we show it is

merely a bound.

5.3.1 Counterexample to Eigenvalue Operations being Generally Optimal

When we say that the bivariate tactic of Chapter 4 does not extend to K > 2 we mean the

following: operations on the eigenvalues of the correlation matrix is not the way to minimize

total conditional correlation TC (X|V). Specifically, in Section 4.3 we derived that the encoder

can do caching of two Gaussians by first transforming their covariance to a correlation matrix,

followed by applying reverse water-filling on its eigenvalues. This no longer works.

Consider this counterexample: Assume DF is small enough such that DCW is the optimal

caching distortion matrix for some d for which Rcache(d ,DF ) =CW (X). Then for K = 3 consider

the following correlation matrix ΣX and the DCW corresponding to its common information:

ΣX =

⎡
⎢⎣ 1 2/3

1/3

2/3 1 1/3

1/3
1/3 1

⎤
⎥⎦ ⇒ DCW =

⎡
⎢⎣

1/3 0 0

0 1/3 0

0 0 5/6

⎤
⎥⎦ .

If the bivariates result did extend to higher dimensions, the implication would have been that
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DCW is the result of an operation on the dominant eigenvalues of ΣX only. Contrarily,

DCW =ΣX − 3

2
·
[

2/3
2/3

1/3

]⎡⎢⎣
2/3

2/3

1/3

⎤
⎥⎦ .

The entire common information is captured in an elegant and structured subspace, whereas

the eigenvectors can be verified to be different and not nearly as nice. For example, the

dominant eigenvector of this ΣX is

vdominant =
1√

3+�
3

⎡
⎢⎣

1
2 (1+�

3)
1
2 (1+�

3)

1

⎤
⎥⎦ ,

which stands close but is not equal to the vector associated to the common information. This

single point disproves that total conditional correlation is generally minimized by corrections

that commute with the eigenspace of ΣX.

5.3.2 Reverse Water-Filling is an Inner Bound

In fact, a reverse water-filling procedure on the eigenvalues as what worked for K = 2 is only

an inner bound to the caching problem for K > 2. It stems from the inequality of geometric

and arithmetic means. To see why, define the following function similar to Rcache(d ,DF ), but

in which we replace the product constraint by the trace:

Rtrace(γ,DF )�min
D

1

2
log

|ΣX|
|D| s.t.

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 � D �ΣX

tr(D) ≤ γ

Di ,i ≥ DF , ∀i = 1,2, · · · ,K

(5.22)

Note that D being a squared error distortion matrix implies that tr(D) is the sum squared error:

tr(D) =
K∑

i=1
E[(Xi −E[Xi |V])2]. (5.23)

Lemma 5.2. The caching rate-distortion function is upper bounded as:

Rcache(d ,DF ) ≤ Rtrace(K d
1/K ,DF ). (5.24)

Proof. The trace of a matrix and the product of its diagonal entries are connected through the

inequality of geometric and arithmetic means:

(
K∏

i=1
Di ,i

)1/K

≤ 1

K
tr(D). (5.25)
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Figure 5.7 – Comparison of known achievable (Rcache,Rupdate)−pairs for all Rcache ≥CW (X,DF )
(the tick black line) and the reverse water-filling inner bound of Lemma 5.2 (the dashed blue
line). Example drawn for an X of which K = 3 and ρ12 = ρ13 = 1

3 , ρ23 = 5
6 .

Hence, if we plug in K d
1/K then Rtrace(K d

1/K ,DF ) must be solved by a matrix D of which

K∏
i=1

Di ,i ≤
(

1

K
tr(D)

)K

≤ d . (5.26)

The chain of inequalities imply that the domain of feasible D for Rtrace(K d
1/K ,DF ) is a subset

of the search domain of Rcache(d ,DF ). Since both functions minimize the same objective

function, we must therefore have that Rcache(d ,DF ) ≤ Rtrace(K d
1/K ,DF ).

The crux of Lemma 5.2 is the following: if DF is 0 (or more exactly, is so small that it poses

no active constraint in (5.22)), then Rtrace(d ,DF ) is the ‘classic’ rate-distortion function of a

Gaussian vector source subject to a sum squared error criterion ((3.7) and (3.14)). This function

is minimized by a reverse water-filling procedure on the eigenvalues of the covariance matrix.

Now if ΣX is normalized to a correlation matrix, such water-filled distortion matrices were also

optimal for caching for K = 2. The Lemma shows that for K > 2, though, they merely offer an

inner bound. Experiments show that in general one can do caching more efficiently by picking

a distortion matrix whose eigenbasis does not commute with the eigenspace of ΣX. Figure

5.7 shows an example of this trace-based inner bound compared to (Rcache,Rupdate)−pairs we

know are achievable in the high cache rate regime through Theorem 5.3.
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5.4 The Circulant Exception Conjecture

We conjecture that the inner bound of Lemma 5.2 is not tight except for one special case: when

ΣX is circulant. It would not have been unreasonable to expect that the eigendecomposition

of ΣX would capture the total conditional correlation TC (X|V), as it was the case for K = 2.

Lemma 5.2 suggested, however, that one might have to look beyond the eigendecomposition.

In this section, we conjecture that this is indeed the case.

Specifically, we argue that total conditional correlation is only minimized by taking a D whose

eigenspace commutes with that of ΣX if the eigenvectors are completely symmetric w.r.t. to

the basis vectors of the system. This is only the case for circulant ΣX. In such a setting, each Xi

is equivalent to any other and hence all Xi contribute equally to the total correlation.

If circulant ΣX would indeed be a special case, then it would explain why a water-filling

procedure on eigenvalues is optimal for the caching of bivariate Gaussians. After all, every

2×2 correlation matrix is circulant by construction. In other words, the ease of caching two

Gaussians and its tightness on Lemma 5.2 would not be the rule, but rather the exception.

To start, we take a second look at the common information of K Gaussian sources. Xu et

al. [30] were the first to extend common information to K sources. They found an analytic

expression for (5.16) for Gaussians whose pairwise correlations all equal ρ. In that special

case, CW (X) = 1
2 log

(
1+ K |ρ|

1−|ρ|
)
. In fact, this result is part of a much wider class of sources, i.e.,

Gaussians whose correlation matrix is circulant:

Theorem 5.4. For any K−dimensional Gaussian X whose covariance ΣX is circulant, we have

CW (X) = 1

2
log

|ΣX|
λmin(ΣX)K

,

where λmin(ΣX) is the smallest eigenvalue of ΣX.

Proof. First, the solution to (5.17) is a unique distortion profile D. In [33], among others,

the strict convexity of the Gaussian channel was discussed. Our formulation, though, more

closely resembles the geometric problem: min− log |D| under linear constraints corresponds

to finding a maximum volume ellipsoid inside a convex body (as also discussed heavily in

Chapter 2). It is called the (Löwner–)John ellipsoid and was shown in [34] to be unique.

Secondly, uniqueness implies that a circulant ΣX will result in a circulant D as the minimizer

of (5.17). Namely, consider the search space of all diagonal matrices D that satisfy D �ΣX. If it

holds that Di ,i �= D j , j for some i �= j , then there must exist other feasible distortion profiles

with the same determinant (and hence objective value). Namely, ΣX is circulant and thus one

could swap components Di ,i and D j , j , D �ΣX would still hold and |D| would be unaffected.

Therefore, any D whose diagonal entries are not equal cannot be unique and thus cannot be

the solution to (5.17). Concluding that all non-zero entries must be equal, D =λmin(ΣX)I has

the largest determinant among all scaled identity matrices subject to D �ΣX.
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Theorems in Pictures

The plot below shows an example of Theorem 5.4.

The common information of a circulant covariance matrix is associated to DCW =λmin(ΣX)I.

This means that EDCW
is a sphere. From a geometric perspective it is not hard to see why

this must be the case. Earlier, we established that EDCW
is the ellipsoid of the largest volume

whose semi-principal axes are straight and that fits inside EΣX . The eigenvectors of a circulant

ΣX, however, are perfectly symmetric with respect to the basis vectors; most notably, the

dominant eigenvector is 1 per definition, if K is even then the eigenvector of λmin alternates

+1 and −1, and all other eigenvalues come in multiplicity of two or multiples thereof. Hence,

the largest straight ellipsoid inside EΣX must be a sphere simply because there is no ‘room’ to

increase volume and be asymmetric in any particular direction.

For K = 3, the only circulant correlation matrix has equal correlation for all pairwise relations.

Consider

ΣX =

⎡
⎢⎣ 1 2/3

2/3

2/3 1 2/3

2/3
2/3 1

⎤
⎥⎦ .

The following figure plots the matrix associated to common information of ΣX. Note in

particular how each side view is the same.

Figure 5.8 – The common information of a circulant covariance matrix is associated to the
largest sphere that fits inside EΣX .
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As mentioned, we conjecture that total conditional correlation is minimized by a reverse water-

filling procedure on the eigenvalues of ΣX if and only if ΣX is circulant. In our caching coding

setting, we say the bound of Lemma 5.2 is tight if this is the case, which is the same statement

up to the inclusion of end distortion constraints DF . We now develop this conjecture by first

writing a lemma on the ‘if’-part and then a conjecture on the ‘only if’ part of the statement.

Lemma 5.3. If Rcache(d ,DF ) has a unique minimizer in the regime of d > |ΣX|2−2CW (X), then

Rcache(d ,DF ) = Rtrace(K d
1/K ,DF )

if ΣX is circulant.

Proof. The regime of Rcache ≥CW (X) is not the difficult part. First a technicality: observe the

use of Wyner’s common information rather than the constrained version CW (X,DF ). There

is no need for the latter, because DCW =λmin(ΣX)I has symmetric distortions and we defined

Rcache(d ,DF ) for symmetric end distortions as well. Then, observe that

1

2
log

|ΣX|
d

≤ Rcache(d ,DF ) ≤ Rtrace(K d
1/K ,DF ) (5.27)

is met with equality in all steps for d ≤ |ΣX|2−2CW (X).

For d > |ΣX|2−2CW (X) we invoke the same argument as for Theorem 5.4: if the D that solves

Rcache(d ,DF ) is unique and ΣX is circulant then D is necessarily circulant as well; otherwise

one can swap two pairs of rows and columns and that new matrix would be equally feasible.

This proves the lemma, because a circulant matrix achieves equality of the arithmetic and

geometric means, as D1,1 = D2,2 = ·· · = DK ,K . This was the core argument of comparing

Rcache(d ,DF ) and Rtrace(K d
1/K ) through (5.25).

At this point, it is unclear whether or not the minimizer of Rcache(d ,DF ) is unique. The actual

conjecture consists of the assumption that uniqueness is indeed guaranteed and that the equiv-

alence of Rcache(d ,DF ) and Rtrace(K d
1/K ,DF ) is a property solely held by circulant correlation

matrices. Thusfar, we have not been able to prove this conjecture theoretically, nor disprove it

by exhaustive search over possible distortion matrices that could solve Rcache(d ,DF ):

Conjecture 5.1. We have

Rcache(d ,DF ) = Rtrace(K d
1/K ,DF ),

if and only if the correlation matrix ΣX is circulant.

The ‘if’-part is contained in Lemma 5.3 and the assumption that the minimizer of Rcache(d ,DF )

is indeed unique. This assumption is supported by the assertion that D � ΣX cannot be

strict for d > |ΣX|2−2CW (X) (otherwise there exists a better distortion matrix D). However, the

combination of the semidefinite ordering with the non-convex constraint
∏K

i=1 Di ,i ≤ d makes

uniqueness difficult to prove.
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For the ‘only if’, the argument is as follows: If DF is not an active constraint then Rtrace(γ,DF )

coincides with the Gaussian rate-distortion function subject to a sum squared error, which is

solved by reverse water-filling on the eigenvalues of ΣX. The aforementioned is known; what

we now conjecture is that the construction of Rcache(d ,DF ) pushes the encoder to certainly

not work on the eigendecomposition of ΣX, unless it has no other option, which we believe is

what happens when the correlation matrix is circulant.

Namely, Rcache(d ,DF ) tries to find a D with max |D|, whose eigenvectors are as close to the

identity matrix as possible (since this would render D diagonal) under the constraint D � ΣX.

Consider any candidate D. Multiplying D by an orthonormal rotation matrix leaves the deter-

minant (and thus the objective value) intact, while
∏K

i=1 Di ,i may improve (hence providing

room on the constraint). The encoder will always try to rotate a distortion profile away from

the eigenbasis of ΣX in an attempt to diagonalize it. If the dominant eigenvectors of ΣX lean

towards any of the basis vectors, then this gives room on the constraint D �ΣX to do so.

All ΣX have dominant eigenvectors that lean in some direction, except for circulant matrices:

λ0(ΣX) is associated to the eigenvector 1, λK−1(ΣX) to [+1,−1,+1,−1 · · · ]T (if K even) and

all other λ come in pairs of two and have no uniquely defined eigenvectors. Consequently,

the encoder sees no room on the constraint D � ΣX to rotate the eigenbasis of D in any

direction (which could potentially improve the product-constraint) without compromising

on |D| (which hurts the objective value). One can therefore observe in simulations that the

D that minimizes Rcache(d ,DF ) keeps the same eigensystem as ΣX. Any non-circulant ΣX has

eigenvectors that show at least some bias towards a certain direction and we observe that the

eigenbasis of the optimal D follows this bias to approach identity as Rcache increases.

The next section of ‘Theorems in Pictures’ will visualize this difficult argument.

Connections Supporting the Conjecture

The conjecture does not contradict any of the results derived before and connects in the

following way:

1. As stated, it explains the result for the caching of two Gaussians, because every 2×2

correlation matrix is necessarily circulant.

2. As for K ≥ 2, the conjecture connects the low cache-rate regime to the start of the high

cache-rate regime at Theorem 5.4. Namely, a reverse water filling procedure on the

eigenvalues of ΣX will only result in a diagonal distortion matrix once D =λmin(ΣX) · I is

reached.

3. In Section 5.3.1 we argued by counterexample that, in general, the notion of total (con-

ditional) correlation is not minimized by operations that commute with the eigenspace

of ΣX. The conjecture would strengthen this anecdotal evidence by a clear segregation

of when it is and when it is not.
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Theorems in Pictures

In this box, we illustrate the ‘only if’ part of Conjecture 5.1. We resort back to examples

from K = 2 as we know the optimal caching strategy for correlation matrices (which are

circulant per construction) and non-circulant covariance matrices (by normalizing variance

and then doing caching, as described in Section 4.3.4). Plotted are EΣX and the ellipse of

one particular optimal caching distortion profile for some Rcache ≤CW (X). The left shows a

circulant correlation matrix, the right a non-circulant covariance. Observe that in the right

Figure, the dominant eigenvector leans towards one of the two basis vectors.

Recall that in optimizing Rcache(d ,DF ), the encoder tries to cache as much of the correlation as

possible (as measured by evaluating TC (X|V) (5.14)). This corresponds to an achievable distor-

tion profile that closes the Hadamard inequality on diag(D) as much as possible. In geometry,

a diagonal matrix corresponds to a straight ellipse. The encoder thus tries to find an ellipse

that maximizes volume (= large determinant = low Rcache) while being ‘as straight as possible’.

If the eigenvectors of ΣX are leaning towards any basis vector(s), the encoder can use this as

wiggle room to find large ellipses that are ‘more straight’ than EΣX without violating D �ΣX.

Circulant (correlation) matrices offer no such wiggle room, because their eigenvectors are

perfectly symmetric w.r.t. all basis vectors. Therefore, the encoder simply has no other option

than to pick a D whose eigenspace commutes with that ofΣX. That is the crux of Conjecture 5.1.

Figure 4.8 in Chapter 4 also shows how the eigenbasis of the optimal D rotates as Rcache

increases. It rotates in the direction of the basis vector to which the dominant eigenvector

leans, i.e., where the most room is offered by the convex hull (the ‘�ΣX’-constraint).

Figure 5.9 – Circulant ΣX, there is no
‘wiggle room’ to straighten ED without

compromising volume.

Figure 5.10 – The dominant eigenvector
leans towards [0,1]T . This ‘wiggle room’

allows ED to straighten through rotation.
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6 Total Correlation of Gaussian Vectors

In caching under uniform user preference, Watanabe’s notion of total conditional correlation

measures how well a caching strategy captures the shared information between the files in a

database. Whereas in Chapter 5 we increased the size of the database from two to K sources,

now instead we increase the size of the files1. We study the common information and total

correlation that exists in a library of vectors, X(1),X(2), · · · ,X(K ) (though for the greatest part we

take K = 2).

These thoughts are inspired by the work of Satpathy and Cuff on secure source coding [36].

They found en passant a closed-form expression for Wyner’s common information of two

Gaussian vectors. They used a transformation that turns two length d vectors (X,Y) into d

independent (X̃i , Ỹi ) pairs . The common information is then the sum of that of all the pairs:

CW (X,Y) =
d∑

i=1
CW (X̃i , Ỹi ).

Does this mechanism also apply to capturing parts of the correlation through the measure

of total conditional correlation, rather than capturing all through common information?

The answer is yes. Restricting again to Gaussian auxiliaries, total conditional correlation of

two vectors falls apart into a convex and non-convex part. The latter is the minimization of

correlation of each (X̃i , Ỹi )−pair. The former is a convex distribution problem of which pairs

need to be tackled first.

The most efficient way to minimize total conditional correlation of two vectors is by minimiz-

ing the correlation of each pair separately in a reverse water-filling fashion. Unlike traditional

Gaussian water filling, this procedure is not with respect to eigenvalues, but to which pair

has the most common information. The emphasis of this Chapter is on the lossless statistical

concepts, though at the end we also fit this building block into our caching coding problem

on the Gray–Wyner network and show a fit if the end distortion constraints are not too large.

1The material of this chapter appeared in [35]
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(
XN

YN

)
E

D1

D2

R0

R1

R2

X̂N

ŶN

Figure 6.1 – The Gray–Wyner network for 2 sources uses the notation (X,Y).

6.1 Problem Statement

The topic of study of this chapter is twofold, with each side touching upon different dimen-

sionality:

1. A simple generalization of Wyner’s common information for K Gaussian vectors.

2. The minimization of Watanabe’s total conditional correlation for 2 Gaussian vectors.

The second caries the most weight and hence most of the discussion will be told from the

bivariate perspective. At the very end we shall also apply that minimization of total correlation

as a building block inside the caching setting, sticking as well to dimensionality 2.

6.1.1 Notation

The motivation of the discussion is again anchored in the Gray–Wyner network of Figure 6.1

and its extension to K sources of Figure 6.2. In general, the information source of interest

consists of K Gaussian vectors (X(1),X(2), · · · ,X(K )), each of length d . Their joint covariance is

the following:

Σ=

⎡
⎢⎢⎣

ΣX(1) ΣX(1)X(2) · · ·
ΣT

X(1)X(2) ΣX(2)

...
. . .

⎤
⎥⎥⎦ .

The indexing makes notation undesirably complex. So whenever we deal with only two

Gaussian vectors, we prefer to use letters, i.e., (X,Y), and define the covariance as:

Σ=
[
ΣX ΣXY

ΣT
YX ΣY

]
.

No subscript indicates the 2d × 2d matrix corresponding to the joint distribution p(x,y),

whereas a subscript is to refer to a corner of that matrix. The same applies to the K d ×K d

matrix and its block structure. The same style of matrix indexing will apply in general, for

example to distortions.

The total correlation, as used before, follows for these Gaussian vectors the following expres-
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⎛
⎜⎜⎜⎜⎜⎝

X(1)N

X(2)N

...

X(K )N

⎞
⎟⎟⎟⎟⎟⎠ E

D1

D2

DK

...

X̂(1)N

X̂(1)N

X̂(K )N

Figure 6.2 – A K−extended Gray–Wyner network uses the notation (X(1),X(2), · · · ,X(K )).

sion:

TC (X(1),X(2), · · · ,X(K ))�
K∑

i=1
h(X(i ))−h(X(1),X(2), · · · ,X(K )) (6.1)

= 1

2
log

∏K
i=1 |ΣX(i ) |
|Σ| , (6.2)

or more compactly if we are only considering two:

TC (X,Y)� I (X;Y)

= 1

2
log

|ΣX| · |ΣY|
|Σ| . (6.3)

In words: total correlation is thus driven by the ratio of the product of determinants of each

block on the diagonal of Σ and the determinant of Σ itself. As for total conditional correlation,

TC (X(1),X(2), · · · ,X(K )|V) =
K∑

i=1
h(X(i )|V)−h(X(1),X(2), · · · ,X(K )|V). (6.4)

It decomposes into the same Gaussian expression based on the covariance matrix of the

conditional distribution p(x,y|v). Studying this last entity is the main topic of this chapter.

6.1.2 The Gray–Wyner Network in Vector Notation

Even though the emphasis of this chapter is on the statistical concepts of common information

and total correlation, let us briefly address the application/coding side as well to get everything

in vector notation. For the formal definitions of codes on the Gray–Wyner network we refer

the reader back to Section 4.1. Furthermore, for brevity and with the rest of the chapter in

mind, we stick to the K = 2 setting.

Consider Figure 6.1. A rate-distortion tuple (R0,R1,R2,Dx ,D y ) is achievable if for some p(v|x,y)

the following conditions hold [7, 12, 30]:

R0 ≥ I (X,Y;V)

R1 ≥ RX|V(Dx )

R2 ≥ RY|V(D y ).
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The union of all such tuples over all densities p(v|x,y) characterizes the entire achievable rate

region.

Working with Gaussian vector sources, let us choose for the distortion metric a trace-constraint,

i.e.,

E[dX(X, X̂)] = tr
(
E[(X− X̂)(X− X̂)T ]

)≤ Dx ,

the same for Y. With these constraints, the rate-distortion function under individual distortion

criteria is the following expression:

RX,Y(Dx ,D y ) = min
D

1

2
log

|Σ|
|D| s.t.

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 � D �Σ,

tr(DX) ≤ Dx ,

tr(DY) ≤ D y .

(6.5)

The above is a direct consequence of [19], as explained in Section 3.1. Observe that these trace-

constraints on the corners of D respect semidefinite ordering, i.e., D1 � D2 ⇒ d(D1) ≤ d(D2);

therefore Gaussian codebooks are optimal to achieve optimality in the rate-distortion sense

by Theorem 3.1.

To justify the motivation of studying total conditional correlation, observe that this measure

relates closely to the loss incurred in distributing rate between R0 and the two individual

branches R1+R2. For example, if one picks a V for the common branch that is jointly Gaussian

with (X,Y) then RX|V(Dx ) and RY|V(D y ) are necessarily solved by Gaussian distributions as well.

Let K be the covariance of the conditional distribution p(x,y|v) and let DX,DY be the distortion

matrices resulting from the conditional rate-distortion functions on the individual branches.

Then we have,

R0 = 1

2
log

|Σ|
|K| (6.6)

R1 +R2 = 1

2
log

|KX| · |KY|
|DX| · |DY|

. (6.7)

Observe that

R0 +R1 +R2 = 1

2
log

|ΣX|
|DX| · |DY|

+ 1

2
log

|KX| · |KY|
|K| (6.8)

= 1

2
log

|ΣX|
|DX| · |DY|

+TC (X,Y|V). (6.9)

T (X,Y|V ) characterizes the loss due to the encoder’s inability to leverage on the individual

branches the correlation between X and Y that still exists after conditioning on V (the common

message). We observed the same in the caching problem in which we compared the caching

rate to the average of updating either file. The rest of this chapter focuses more on the measure

T (X,Y|V) itself.
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6.1.3 Vectors to Pairs decomposition

The key operation of this chapter is a set of operations to turn two vectors (X,Y) into a set of d

independent unit-variance pairs (X̃i , Ỹi ), which Satpathy and Cuff used to characterize the

common information [36]. They used this method as a transform, but we -for convenience

later on- will rather decompose (X,Y). To start, pull out the variance:

X =Σ1/2
X X̄, (6.10)

Y =Σ1/2
Y Ȳ. (6.11)

The components of X̄, Ȳ are necessarily unit-variance independent Gaussians, but their cross-

correlation does not disappear by this step. Namely, their covariance takes on this shape:

Σ̄=
[

I Σ−1/2
X ΣXYΣ

−1/2
Y

Σ−1/2
X ΣXYΣ

−1/2
Y I

]
. (6.12)

The next step is to note that also this cross-correlation can be diagonalized by a singular value

decomposition:

ΣX̄Ȳ =Σ−1/2
X ΣXYΣ

−1/2
Y = BXΛBY, (6.13)

where now Λ is diagonal and positive, and BX,BY are orthonormal matrices. This gives us

X =Σ1/2
X BXX̃,

Y =Σ1/2
Y BYỸ.

The elements of both X̃ and Ỹ are also independent and of unit-variance, because BX,BY are

orthonormal. The covariance of (X̃, Ỹ) now equals

Σ̃=
[

I Λ

Λ I

]
, (6.14)

and features diagonal matrices in all its four corners. Thus (X̃, Ỹ) = (X̃1, Ỹ1), · · · , (X̃d , Ỹd ); two

Gaussian vectors of length d have been decomposed into d independent pairs. As of now, a

tilde over a random variable implies the above decomposition.

Lastly, we attend the reader that even though mutual information is invariant to such one-to-

one transformations, entropy is not. Therefore:

h(X,Y) = 1

2
log(2πe)2d |Σ|

= 1

2
log(2πe)2d |ΣX||ΣY||Σ̃|

=
d∑

i=1
h(X̃i , Ỹi )+ 1

2
log |ΣX||ΣY|. (6.15)
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6.2 Common Information of a Database of Vectors

First, we would like to add one comment to the work of Satpathy and Cuff on the common

information for Gaussian vectors [36]. For two scalars, we know that the closed-form solution

equals [28, 30]

CW (X ,Y ) = min
X−V −Y

I (X ,Y ;V ) = 1

2
log

1+|ρ|
1−|ρ| . (6.16)

Furthermore, we showed in Section 5.2 that the common information of K > 2 jointly Gaussian

random variables is necessarily Gaussian as well, but may not have a ‘nice’ analytic expression.

It is however a convex problem, which at least can be solved efficiently by linear programming

[26]. For Gaussian vectors, this scales up entirely in the same manner.

For two Gaussian vectors, Satpathy and Cuff derived the following:

Lemma 6.1 (Satpathy and Cuff [36]). For jointly Gaussian X,Y ∈Rd , Wyner’s common informa-

tion is given by

CW (X,Y) = min
X−V−Y

I (X,Y;V) = 1

2

d∑
i=1

log
1+|ρi |
1−|ρi |

, (6.17)

where {ρi } are the singular values of Σ−1/2
X ΣXYΣ

−1/2
Y .

In short, the vector common information equals the sum of the common information of all

(X̃i , Ỹi )-pairs obtained by the vector-to-pairs decomposition described in Section 6.1.3. Unfor-

tunately, such a transformation cannot apply when there are more than two vectors to make

independent; it breaks, because the singular value decomposition of (6.13) can diagonalize a

single cross-correlation block in the corner of Σ̄, but not multiple blocks simultaneously in the

case of K > 2.

For higher dimensions, define:

CW (X(1), · · · ,X(K ))�min
V

I (X(1), · · · ,X(K );V) (6.18)

s.t. TC (X(1), · · · ,X(K )|V) = 0.

Note that T C (X(1), · · · ,X(K )|V) = 0 if and only if p(x(1), · · · ,x(K )|v) =∏K
i=1 p(x(i )|v).

Theorem 6.1. For jointly Gaussian X(1), · · · ,X(K ) ∈Rd with K d ×K d joint covariance Σ, Wyner’s

common information is given by

CW (X(1), · · · ,X(M)) = min
D

1

2
log

|Σ|
|D| such that

⎧⎨
⎩0 � D �Σ,

D is block-diagonal.
(6.19)

Proof. Consider any V that is jointly distributed with X(1), · · · ,X(K ) and that makes all X(i )
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conditionally independent. Let furthermore D(i ) = E[(X(i ) −E[X(i )|V])(X(i ) −E[X(i )|V])T ] Then,

I (X(1), · · · ,X(K );V) = h(X(1), · · · ,X(K ))−h(X(1), · · · ,X(K )|V)

= h(X(1), · · · ,X(K ))−
K∑

i=1
h(X(i )|V)

=
K∑

i=1

(
h(X(i ))−h(X(i )|V)

)
−TC (X(1), · · · ,X(K ))

=
K∑

i=1
I (X(i );V)−TC (X(1), · · · ,X(K ))

≥
K∑

i=1
I (X(i );E[X(i )|V])−TC (X(1), · · · ,X(K )) (6.20)

≥
K∑

i=1
RX(i ) (D(i ))−TC (X(1), · · · ,X(K )) (6.21)

= 1

2
log

∏K
i=1 |ΣX(i ) |∏K
i=1 |D(i )| +

1

2
log

|Σ|∏K
i=1 |ΣX(i ) |

= 1

2
log

|Σ|∏K
i=1 |D(i )| .

(6.20) is the data processing inequality.

(6.21) is the Gaussian rate-distortion function with respect to a matrix distortion constraint.

Furthermore, let the covariance of the conditional distribution p(x(1), · · · ,x(K )|v) =∏K
i=1 p(x(i )|v)

be denoted by the K d ×K d matrix D. Then by the law of total covariance we must have D �Σ.

We have equality in all steps by picking V to be jointly Gaussian with (X(1), · · · ,X(M)) and D to

be block-diagonal. Hence one has to maximize
∏K

i=1 |D(i )| subject to 0 � D �Σ, and it will be

attainable by a Gaussian distribution.

Another way of looking at it would be as follows: Conditional independence requires zero

correlation. So one has to minimize mutual information subject to a shape-constraint on the

covariance, which necessarily leads to Gaussian distributions. Now in a general case having

zero correlation is necessary, but not sufficient for independence; for Gaussians, on the other

hand, it is.

The theorem in itself is not so much a revelation as is the insight that the problem of common

information is again a strictly convex MaxDet problem, constrained by only linear constraints

[31]. Consequently, as we argued for scalar Gaussians, the common information and the

distortion matrix that attains it can be found efficiently by linear programming. Using again

the popular CVX package for MATLAB [32], one can easily verify for oneself that for K = 2 the

optimization of Theorem 6.1 leads to the analytically found result by Satpathy and Cuff. For

K > 2 we know no analytic expression for the optimal distortion matrix D, though numerically

the problem remains equally tractable.
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6.3 Total Conditional Correlation of Two Vectors

Whereas common information characterizes a ‘cost’ of making random variables conditionally

independent, total conditional correlation is instead a measure of how dependent random

variables still are after conditioning. In this chapter we generalize this concept in a similar

way: we wish to minimize a cost function such that the total correlation after conditioning

does not exceed a certain level. This is similar to how in Chapters 4–5 we minimized cache

rates while constraining average update rate (4.7)–(5.5), but here we strip the core mechanism

bare of the application context.

The hypothesis is that by using the same cost function as CW (X,Y), the vectors-to-pair de-

composition (Section 6.1.3) is also the right tool to capture as much of the total correlation as

possible. This claim turns out to be true (given one restricts one’s attention to jointly Gaussian

auxiliaries). To that end, let us rewrite the notion of total conditional correlation into a cost

minimization:

TX,Y(γ)�min
V

I (X,Y;V) s.t. h(X|V)+h(Y|V) ≤ γ. (6.22)

The choice for I (X,Y;V) as the cost stems -of course- from the Gray–Wyner network and the

similarity to Wyner’s common information. TX,Y(γ) is convex and non-increasing in γ, however,

the constraint-function is concave in V. So far, it is still unclear whether X,Y being Gaussian

implies it suffices to also take V Gaussian. We therefore take Gaussianity as an assumption.

Let K be the covariance matrix associated to the Gaussian distribution p(x,y|v) and let KX, KY

be the top-left and bottom-right corner of that matrix. Then:

h(X|V)+h(Y|V) = 1

2
log(2πe)2d |KX||KY|.

For convenience, we redefine the Gaussian TX,Y(γ) to not worry about the constants and the

log, and focus on this conditional covariance K:

TX,Y(γ) = min
K

1

2
log

|Σ|
|K| s.t.

⎧⎨
⎩0 � K �Σ,

|KX||KY| ≤ γ,
(6.23)

for which now the parameter γ is nicely bounded to γ ∈ [0, |ΣX| · |ΣY|].

Since I (X,Y;V) = h(X,Y)−h(X,Y|V), the minimization of TX,Y(γ) is actually a maximization of

the joint conditional entropy. This objective and the constraint are bounds to each other,

h(X,Y|V) ≤ h(X|V)+h(Y|V), (6.24)

and TX,Y(γ) tries to close this inequality by maximizing the left-hand side, while bounding the

right. For Gaussians, the same bound is expressed by the Hadamard inequality, which we used
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before for scalars, but that applies equally for block matrices:

|K| ≤ |KX||KY|. (6.25)

At best, the inequality is met with equality, which happens if and only if X and Y become

conditionally independent. Consequently, there is again a close relationship between our

objective and Wyner’s common information:

Lemma 6.2. For jointly Gaussian X,Y ∈Rd ,

TX,Y
(
γ′
)=CW (X,Y), (6.26)

for γ′ = |ΣX||ΣY|∏d
i=1(1−|ρi |)2 and where {ρi } are the singular values of Σ−1/2

X ΣXYΣ
−1/2
Y .

Proof. Conditional independence is equivalent to the condition h(X|V)+h(Y|V) = h(X,Y|V).

For Gaussian distributions, this equality means that the covariance matrix associated to

p(x,y|v) satisfies |K| = |KX||KY|. For minimizing total conditional correlation, this equality is

the best one can achieve, as can be seen in (6.23). Filling equality in (6.25) into (6.23) gives:

TX,Y(γ) = 1

2
log

|Σ|
γ

.

The V that achieves common information corresponds to a matrix K that is diagonal after the

transformation of Section 6.1.3, and is of the form K̃X = K̃Y = diag({1−|ρi |}d
i=1). So the V that

achieves CW (X,Y) results in2:

h(X|V)+h(Y|V) = 1

2
log(2πe)2d |KX||KY|

= 1

2
log(2πe)2d |ΣX||ΣY|

d∏
i=1

(1−|ρi |)2. (6.27)

Hence, choosing γ equal to this value of |KX||KY| gives TX,Y(γ) =CW (X,Y).

For γ < |ΣX||ΣY|∏d
i=1(1−|ρi |)2 there is still equality in both (6.25) and (6.24), which implies

that the choice of picking V jointly Gaussian with X,Y is not just an assumption anymore, it is

also optimal in the general formulation of (6.22). Note, however, that for such small γ it holds

that that TX,Y(γ) >CW (X,Y). Another implication is that this regime of small γ and conditional

independence is not as challenging as large γ, where the total correlation remains strictly

positive after conditioning on V.

We now focus on γ> |ΣX||ΣY|∏d
i=1(1−|ρi |)2, which brings us to the main result: TX,Y(γ) is min-

imized by a reverse water-filling procedure on the common information of each (X̃i , Ỹi )−pair

found by the decomposition of Section 6.1.3:

2Recall for these steps that entropy is affected by scaling if one applies the decomposition, like we showed
before in (6.15).
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Theorem 6.2. For jointly Gaussian X,Y ∈Rd , the total conditional correlation is minimized by

a reverse water-filling procedure until X,Y become conditionally independent, i.e.

TX,Y(γ) =
⎧⎨
⎩

1
2 log |Σ|

γ γ≤ |ΣX||ΣY|∏d
i=1(1−|ρi |)2∑d

i=1 Ri otherwise
(6.28)

where

Ri = max(CW (X̃i , Ỹi )−θ,0), (6.29)

and θ is a positive constant chosen such that

|ΣX||ΣY|
d∏

i=1

(
1

2

(
2−2Ri (1+|ρi |)+ (1−|ρi |)

))2

= γ, (6.30)

where {ρi } are the singular values of Σ−1/2
X ΣXYΣ

−1/2
Y .

Proof. For γ small such that TX,Y(γ) ≥ CW (X,Y), conditional independence and equality in

(6.25) (and, as a matter of fact, also (6.24)) is attainable, see Lemma 6.2. Hence the following

chain is met with equality:

1

2
log

|Σ|
|K| ≥

1

2
log

|Σ|
|KX||KY|

≥ 1

2
log

|Σ|
γ

. (6.31)

For large γ (and thus small TX,Y(γ)), conditional independence is not attainable. In principle,

the problem is this optimization:

max
0�K�Σ

|K| s.t. |KX||KY| ≤ γ. (6.32)

Without loss of generality, one can do a change of variable by applying the vectors-to-pairs

decomposition of Section 6.1.3 to the source covariance Σ and the same transformation to

the variable K. Since this decomposition scales out the variance, which are not orthonormal

matrices, the objective and constraint are affected:

max
0�K̃�Σ̃

|ΣX||ΣY||K̃| s.t. |ΣX||ΣY||K̃X||K̃Y| ≤ γ.

Both are, however, affected equally and we can restrict our attention to finding a suitable K̃ � Σ̃

such that |K̃X||K̃Y| ≤ γ
|ΣX||ΣY| .

Note the special structure of Σ̃ (6.14): there only exists correlation between (X̃i , Ỹi )-pairs. It is

essentially a permuted block-diagonal matrix of 2×2 matrices that relate these pairs:

Σ̃(i ) =
[

1 ρi

ρi 1

]
, (6.33)
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where {ρi } are the singular values of Σ−1/2
X ΣXYΣ

−1/2
Y found in the top-right and bottom-left

corners of Σ̃ (6.14). In this notation K̃(i ) and Σ̃(i ) are the principal submatrices of K̃, Σ̃ by

keeping the i ’th and (i +d)’th row and column.

Our hypothesis is that without loss of optimality K̃ has the same eigenbasis that generates a

block-matrix with diagonal matrices in all its four corners. Consider the following relaxation

(in which for brevity we remove the constants from the objective function):

max
K̃

|K̃| s.t.

⎧⎨
⎩0 � K̃ � Σ̃

|K̃X||K̃Y| ≤ γ
|ΣX||ΣY|

≤ max
K̃

d∏
i=1

|K̃(i )| s.t.

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0 � K̃(i ) � Σ̃(i ), i = 1, · · · ,d

0 � K̃X � Σ̃X = I

0 � K̃Y � Σ̃Y = I

|K̃X||K̃Y| ≤ γ
|ΣX||ΣY|

(6.34)

we simultaneously upper-bounded the objective function by the block-equivalent of the

Hadamard inequality, as well as relaxed the semidefinite ordering constraint to only consider

a subset of principal submatrices.

Now, a candidate K̃ does not need to feature correlation between (X̃i , Ỹ j )i �= j -pair, because it

neither affects the objective, nor the constraint. Furthermore, observe that without loss of

optimality one can assume K̃X, K̃Y to be diagonal, because it is the least restrictive. Namely, the

last constraint is unaffected by any basis rotation, while K̃X � Σ̃X (and the one for Y) would

drop out as it would be implicitly included in K̃(i ) � Σ̃(i ).

Hence, there is no added value in a K̃ with a different eigenbasis than Σ̃ and one arrives at

the modular approach of looking for a 2×2 distortion matrix K̃(i ) for each (X̃i , Ỹi )-pair. For a

pair of Gaussians, we derived in the uniform caching problem of Section 4.3.3 that K̃(i ) should

be a rank-one correction along the dominant eigenvector of the correlation matrix of (X̃i , Ỹi ).

That leaves the question of which (X̃i , Ỹi )−pairs have the biggest impact on minimizing the

total conditional correlation of the vectors X and Y. This distribution problem turns out to be

convex, but it requires the proper variable to expose so. To that end, let

Ri � I (X̃i , Ỹi ;Vi ) = 1

2
log

1−ρ2
i

|K̃(i )| . (6.35)

Then if K̃(i ) is indeed only an update along the dominant eigenvector, then equivalently:

|K̃X||K̃Y| =
d∏

i=1
(K̃ (i )

Xi
K̃ (i )

Yi
) =

d∏
i=1

(
1

2

(
2−2Ri (1+|ρi |)+ (1−|ρi |)

))2

. (6.36)

Applying logarithms (in base 2), also the constraint-function is convex and we use Lagrangian

91



Chapter 6. Total Correlation of Gaussian Vectors

Figure 6.3 – Example of the reverse water filling procedure of Theorem 6.2. The bars represent
the common information of each (X̃i , Ỹi )-pair and the shaded area equals Ri . In this example,
d = 4, ρi ∈ {0.9,0.8,0.6,0.4} (f.l.t.r.) and θ is such that R3 = R4 = 0.

multipliers to construct the following expressions of which we set the derivative to zero:

J =
d∑

i=1
Ri +λ

d∑
i=1

log

(
1

4

(
2−2Ri (1+|ρi |)+ (1−|ρi |)

)2
)

, (6.37)

followed by

∂J

∂Ri
= 1−4λ

(1+|ρi |)2−2Ri

2−2Ri (1+|ρi |)+ (1−|ρi |)
= 0. (6.38)

Rewriting the above expression then leads to

Ri = 1

2
log

1+|ρi |
1−|ρi |

− 1

2
log

(
1

4λ−1

)
=CW (X̃i , Ỹi )−θ. (6.39)

Each Ri is ideally the common information of its (X̃i , Ỹi )-pair minus a constant θ. However, Ri

must be non-negative. Incorporating also this extra constraint leads to the reverse water-filling

procedure as stated in the theorem.

The rate–distortion function of a Gaussian vector X subject to a trace distortion constraint, i.e.

tr
(
E[(X− X̂)(X− X̂)T ]

)≤ D , is a classic result that also admits a reverse water-filling procedure

(3.14). We attend the reader to a subtle difference: the Gaussian vector rate-distortion function

applies reverse water filling to the eigenvalues of the covariance matrix Σ, whereas the mini-

mization of total conditional correlation uses Ri = I (X̃i , Ỹi ;Vi ) as the variable. Consequently,

one will not observe similar thresholding behavior by plotting the evolution of the eigenval-

ues. The right way to plot the water-filling of total conditional correlation is by plotting the

common information of each (X̃i , Ỹi )-pair as a bar graph. An example is shown in Figure 6.3.
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6.4 The Caching of Two Gaussian Databases

This section is to serve as an example of how the essentially lossless definition of TX,Y(γ) applies

to our lossy caching problem on the Gray–Wyner network. Let us extend the same model of

Section 4.3 in which a user chooses X or Y equally likely and base it on the vector-notated

version of the Gray–Wyner network as paraphrased in Section 6.1.2. In doing so, one finds:

Rcache ≥ I (X,Y;V), (6.40)

Rupdate ≥
1

2

(
RX|V(Dx )+RY|V(D y )

)
.

Applying Gaussian distributions to these equations, the Gaussian achievable caching rate-

distortion region is the union of (Rcache,Rupdate,Dx ,D y ) satisfying

Rcache ≥
1

2
log

|Σ|
|K| (6.41)

Rupdate ≥
1

4
log

|KX||KY|
|DX||DY|

(6.42)

Dx ≥ tr(DX)

D y ≥ tr(DY),

over positive semidefinite matrices DX,DY ∈Rd×d and K ∈R2d×2d satisfying DX � KX,DY � KY,

and K �Σ.

Observe that the interaction between Rcache and Rupdate features the trade-off we studied

in TX,Y(γ) : |K| ↔ |KX||KY|. However, the end distortion Dx ,D y also influence what choice

of K provides the most efficient (Rcache,Rupdate) trade-off. The lossless concept of TX,Y(γ) is

therefore not directly applicable to this coding problem on the Gray–Wyner network, but it is

under the following conditions:

Corollary 6.1. Let KCW be the distortion matrix that attains the common information CW (X,Y).

Then, the Gaussian trade-off between Rcache (6.41) and Rupdate (6.42) can be controlled by a

parameter γ such that

Rcache ≥ TX,Y(γ), (6.43)

Rupdate ≥
1

4
log

γ

|DX||DY|
,

for the regime of end distortion constraints satisfying:

Dx ≤ d ·λmin(KCW
X ), (6.44)

D y ≤ d ·λmin(KCW
Y ).

Proof. The rate-distortion theorem for Gaussian multivariates under a trace-constraint dic-

tates the update phase is most efficiently coded via a reverse water filling procedure on the
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Figure 6.4 – Example of the caching trade-off with d = 4 and ρi ∈ {0.9,0.8,0.6,0.4}. The di-
amonds correspond f.l.t.r. to the points were respectively R1, R2 and R3 become positive,
following the waterfilling of Theorem 6.2. The circle corresponds to Rcache =CW (X,Y).

eigenvalues of KX and KY (3.14). Hence, for large Dx ,D y the optimal choice of a K not only

depends on the determinants, but also the specific spectra of the submatrices in its top-left and

bottom-right corner, KX and KY. If Dx ≤ d ·λmin(KX), the distortion matrix DX that minimizes

the update rate does not depend on the spectrum of KX, but equals DX = ( Dx
d ) · I � KX.

If indeed Dx ≤ d ·λmin(KCW
X ) then the choice of K and DX,DY that minimize Rcache and Rupdate

decouple. Namely, in the regime Rcache ∈ [0, CW (X,Y)] the trade-off |K| ↔ |KX||KY| solved by

TX,Y(γ) produces a K′ that satisfies K′ � KCW , a consequence of Theorem 6.2. Therefore, the

optimal choice of DX remains DX = ( Dx
d ) · I. The same for Y. In the regime Rcache ≥CW (X,Y), X

and Y can become conditionally independent and the trade-off between cache and update

rate comes without rate loss.

An example of this trade-off is plotted in Figure 6.4 for the same example as used in Figure

6.3. The diamonds mark the points where the water-filling procedure hits a new threshold

and starts including another (X̃i , Ỹi )−pair into the coding process. Once Rcache ≥CW (X,Y) the

trade-off between Rcache and Rupdate coincides with the straight line connecting the points of(
Rcache,Rupdate

)
= (

RX,Y(Dx ,D y ),0
)

and
(
0, 1

2 RX,Y(Dx ,D y )
)
.
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7 Practical Caching of Discrete Sources
with Convolutional Codes

As a final chapter, we briefly touch upon the ancient question one gets when facing relatives:

“So as of when will we actually use such algorithms?”. Random coding limits and coding

theorems for continuous information sources in particular may appear to those relatives as

distant from the real world. The concepts of all these theoretic ideas of caching, however, may

not have to be so. This chapter serves as a proof-of-concept: caching can be practical.

As quite an abrupt change, we shift the discussion to the world of discrete information. The

discrete Gray–Wyner-based caching model was the topic of, as referenced before, Wang,

Lim and Gastpar [3]. The concepts of Wyner’s common information and total conditional

correlation are also the drivers of this lossless problem. Among general coding results, the

authors also derived precise constructions on how to cache a doubly symmetric binary source.

This we seek to actually build as an algorithm with practical block lengths and run times.

We argue in this chapter that the caching of two files generated by a doubly symmetric binary

source is a natural fit for convolution codes. Their common information can be captured in a

single bit per every pair of bits (from the two files), carrying the majority symbol followed by

compression. We explain in this chapter how this leads to a symmetric model on which linear

codes perform well in taking care of this compression part. In addition, the tracking of the

majority symbol lends itself quite naturally for trellis decoding in particular, motivating our

choice for convolution codes.

The barrier ahead, however, is that linear codes provide a practical tool for compression,

but one would first need to know what to compress. This is the biggest challenge of scaling

practical caching to databases of more than two files, like one would probably encounter

in real applications. We close this chapter by a discussion on a general class of circularly

symmetric binary sources, whose common information is also a single bit regardless of how

many sources are included. Specifically we study a trio of files and implement its caching with

convolutional codes as well.
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Chapter 7. Practical Caching of Discrete Sources with Convolutional Codes

7.1 Problem Statement and Recap of Theory

We consider the same caching model as Figure 4.1 and 5.1 subject to uniform request proba-

bilities for all files. Two changes are made:

1. All alphabets are discrete.

2. The user requires a lossless copy of the samples produced by X N
k .

This first section is a quick recap of the work by Wang, Lim and Gastpar [3].

7.1.1 Notation and General Model

Let X be a length-K discrete memoryless source taking values on alphabet X , which produces

a length-N sequence of samples. Similarly to our earlier discussed models, the encoder

encodes a cache message IMc ∈ [1, · · · ,2N Rcache ] which the decoder receives in any case. Later,

the user announces a request for X N
k , after which the encoder sends an update message

IMu,k ∈ [1, · · · ,2N Ru,k ] tailored towards that choice. Whereras [3] considers several models

for the user’s request and the reconstruction requirement we restrict out attention to the

user requesting each X N
k equally likely, in its entirety and up to perfect lossless precision.

Consequently, after the cache phase the encoder still spends the following:

Rupdate �
1

K

K∑
k=1

Ru,k . (7.1)

Theorem 7.1 (Wang, Lim and Gastpar [3]). Caching is achievable for (Rcache,Rupdate) satisfying

Rcache ≥ I (X;V) (7.2)

Rupdate ≥
1

K

K∑
k=1

H(Xk |V), (7.3)

for a conditional pmf p(v|x) where |V | ≤ |X |+1.

Note that again the notion of total conditional correlation TC (X|V) =∑K
k=1 H(Xk |V)−H(X|V)

characterizes the move from cache to update phase, even more explicitly than in the Gaussian

case. This leads to an equivalent characterization of achievable (Rcache,Rupdate):

Corollary 7.1 (Wang, Lim and Gastpar [3]). The boundary of the achievable rate region can be

described by a parameter r ∈ [0, H(X)]:

Rcache = r (7.4)

Rupdate =
1

K

(
H(X)− r +ψ(r )

)
, (7.5)

where

ψ(r ) = min
p(v|x)

T C (X|V) s.t. I (X;V) = r. (7.6)
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Figure 7.1 – The boundary of achievable (Rcache,Rupdate)−pairs is the thick black line right of
CW (X), and an unknown convex curve inside the gray triangle related to solving ψ(r ) (7.6).

In this notation ψ(r ) minimizes total conditional correlation by fixing Rcache and minimizing

Rupdate, as opposed to the other way around like we did in Chapters 4 to 6.

When ψ(r ) ≥ 0 is met with equality then the system moves from the cache into the update

phase without any loss of rate. This is attainable when Rcache ≥ CW (X) where CW (X) is the

(extended) Wyner’s common information [3, 29, 30]:

CW (X)� min
p(v|x)

I (X;V) s.t. TC (X|V) = 0. (7.7)

Therefore, for Rcache ≥CW (X) one has ψ(r ) = 0 and the (Rcache,Rupdate) trade-off becomes a

straight line, regardless of K or the distribution of X:⎧⎨
⎩Rcache ≥ r

Rupdate ≥ 1
K (H(X)− r ).

(7.8)

All together this constitutes Figure 7.1. For details on the plotted outer bounds we refer to [3].

7.1.2 A DSBS-pair of Information Sources

Consider specifically the case of two doubly symmetric binary memoryless source sequences.The

remark of ‘doubly symmetric’ refers to (X1, X2) following the distribution for some q ∈ [0, 1
2 ]:

p(x1, x2) =
[

1−q
2

q
2

q
2

1−q
2

]
. (7.9)

The common information for the DSBS source was already derived by Wyner in his original
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Figure 7.2 – CW (X1, X2) of a doubly symmetric binary source as a function of q (7.9).

paper [8]:

CW (X1, X2) = min
p(v |x1,x2)
:X1−V −X2

= 1+h2(q)−2h2

(
1

2
(1−√1−2q)

)
, (7.10)

where h2(·) is the binary entropy:

h2(p)� p log
1

p
+ (1−p) log

1

1−p
. (7.11)

Figure 7.2 characterizes CW (X1, X2) as a function of q .

For Rcache < CW (X1, X2), Wang, Lim and Gastpar conjecture the following choice of V is

optimal [3]:

V =
⎧⎨
⎩X1 ⊕U if X1 ⊕X2 = 0,

W if X1 ⊕X2 �= 0.
(7.12)

U ,W are binary and independent of (X1, X2). V ∼ Bern( 1
2 ) and pU (1) ∈ [ 1

2 −
�

1−2q
2(1−q) , 1

2 ] can be

controlled to cover different values of Rcache. Setting specifically pU (1) = 1
2 −

�
1−2q

2(1−q) results

in this construction attaining Wyner’s common information. Formally, this setup for V is a

conjecture, but numerical search over all distribution for V confirms this is indeed optimal.

Such a search is feasible as it must hold that |V | ≤ |X |+1 by Theorem 7.1.

Note that H(Xi |V ) = H(Xi ⊕V ), which simplifies any practical implementation: whereas

the auxiliary random variable V is used for the cache phase, the update encoder can simply

compute and compress X N
k ⊕V N , where k ∈ {1,2} marks the desired file.
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7.2. Convolutional Codes: A Natural Fit

7.2 Convolutional Codes: A Natural Fit

7.2.1 Motivation for Convolutional Codes

The construction of V (7.12) is such that random coding is not necessary; linear codes should

do well on this problem. Namely, the IID and symmetric natures makes joint typicality tests

simple: for the cache, select a codeword that agrees as much as possible with the majority

symbol of X1 and X2 on all positions and ignore those where X1 �= X2. In addition, linear codes

are sufficient to generate the codebook, since pV (0) = pV (1) = 1
2 .

Moreover, the construction of V (7.12) closely resembles to what in the literature on linear

codes for compression is known as binary erasure quantization: a symbol is either zero, one or

it is erased. In our caching setting X1 and X2 are either both zero or one, or they are different

in which case V flips a coin. Martinian and Yedidia designed for this application Low Density

Generator Matrix (LDGM) codes, the dual of LDPC [37]. Later also binary symmetric sources

were considered [38] and more elaborate LDGM compound codes [39, 40].

Nonetheless, a prevalent barrier LDGM suffers from in terms of practicality is that belief

propagation, which contributed to the success of LDPC, does not translate well to source

coding. The issue is that to-be-encoded sequences are spread uniformly and not necessarily

close to codewords, like what would be realistic in channel coding. Message parsing relies

on a reasonable initial state in order to converge. An excellent review on the implementation

challenges of LDGM can be read in the PhD thesis of Korada [41, Section 1.2.2].

Convolutional codes, on the other hand, fit caching like a glove. First, convergence of trellis

decoding/encoding does not depend on the distance of to-be-encoded sequences from possi-

ble codewords. Second, the Viterbi algorithm can be applied to source coding as it would for

channel coding without any changes [42, 43]. Namely, encoding a sequence can be done by

‘pretending’ the source samples came from a channel output. Source coding is in that sense

even simpler than channel coding, because the input to a Viterbi algorithm can be discrete

levels instead of a soft input like -for example- AWGN would generate.

For caching in particular, encoding V can happen by mimicking a BPSK channel: if X1 = X2

map their symbol to a fixed positive or negative value, if X1 �= X2 input the Viterbi algorithm

with 0. The rate of the convolutional code used then dictates the level of compression. De-

spite these advantages in implementation, though, one must remark that the computational

complexity of the Viterbi algorithm scales exponentially in trellis length.
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7.2.2 The Empirical Caching Model

The system we build follows the structure of Figure 7.3 and uses the CML package (in C) for

MATLAB to do large scale simulations of the Viterbi algorithm [44].

Cache Encoder

For the cache encoder side, the two source sequences X N
1 and X N

2 pass through three stages

to empirically extract and compress the common information:

fmajority : {0,1}N × {0,1}N → {0,?,1}N , (7.13)

fchannel : {0,?,1}N → {−1,0,+1}N , (7.14)

fViterbi : {−1,0,+1}N → {0,1}N . (7.15)

The first stage extracts the majority bit similar to the theoretical V (7.12):

fmajority(X1, X2) =
⎧⎨
⎩X1 if X1 ⊕X2 = 0,

? if X1 ⊕X2 �= 0.
(7.16)

The second prepares the sequence to an input suitable for the Viterbi algorithm by mapping

the majority-symbol sequence to ‘log-likelihood ratios’. In channel coding, this LLR of a

symbol gives the decoder an indication of how strongly that symbol is believed to be a zero or

one. Our compression setting, though, requires only hard/discrete beliefs as opposed to soft

information (as if it were BPSK before passing through a noisy channel if you will): Namely,

pX1,X2 (0,0) = pX1,X2 (1,1), in which case V should match that symbol up to a desired level

of compression (7.12). The symmetry of the probability of this happening indicates that in

these cases the input to the Viterbi encoder should be symmetric for the 0− or 1−majority. If

X1 �= X2, a coin flip suffices. This leads to the following mapping:

fchannel(·) :

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 →−1,

? → 0,

1 →+1.

(7.17)

The values ±1 are arbitrary; the symmetry is what counts. Mapping a ? to a 0 indicates to the

Viterbi-compressor that the symbol is a ‘don’t care’, which by construction and sufficiently

large block length will lead to the desired ∼ Bern( 1
2 ) distribution for these X1 �= X2 conflicts.

In the last stage, this ternary sequence is pulled through the Viterbi algorithm to compress it

to a binary codeword. We denote this cache-codeword by V N
C . This is in principle a length-N

sequence, but can be communicated more compactly by the index of the codeword in the

codebook.
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Figure 7.3 – The schematic of cache and update encoders in the case the user requests the
samples of X N

k for a k ∈ {1,2}.

An example of these steps is the following chain:

X N
1 = 01011011 · · ·

X N
2 = 01110011 · · ·

}
fmajority−−−−−→ 01?1?011 · · · fchannel−−−−→

+1 +1 +1 +1
0 0 · · ·−1 −1

fViterbi−−−−→V N
C (7.18)

Update Encoder

The update phase consists of two steps:

1. Identify the discrepancy between the cache V N
C and the desired file X N

k by computing

ΔN
k =V N

C ⊕X N
k , (7.19)

where k ∈ {1,2}.

2. Compress ΔN
k using any lossless universal compression algorithm1.

The above produces an update codeword V M
U , where M ≤ N .

Decoder: the User End

The user is provided with the cache codeword V N
C and the one for the update V M

U . Subse-

quently, the user first decompresses V M
U back to the length-N sequence ΔN

k by the inverse

steps of the universal compression algorithm used. Afterwards, the user retrieves the k’th file

losslessly by computing

X N
k =V N

C ⊕ΔN
k . (7.20)

1Note the subtlety here: whereas the caching phase is a lossy encoding, the update phase is lossless.
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7.3 Experimental Results

Simulations are provided in Figure 7.4–7.6. Plotted in black is the ensemble of (7.8) and

the cache/update rates resulting from a construction based on (7.12). The two sections are

separated by the red dot indicating Rcache =CW (X1, X2).

The blue triangles correspond to the empirical caching model described in the previous

section. Rcache is the rate of the convolutional codes used. Rupdate is computed as the average

conditional entropy of ΔN
1 and ΔN

2 , based on their empirical distribution:

p̄Δk (1) = 1

N

N∑
i=1

ΔN
k (i ) k = {1,2}. (7.21)

This results in:

RU = 1

2

(
h2(p̄Δ1 (1))+h2(p̄Δ2 (1))

)
. (7.22)

Block length is N = 30,000. Convolutional codes used have rates equal to (f.l.t.r.) 1
5 , 1

4 , 1
3 and 1

2 .

In these Figures, we plot different instances for q (7.9). Note in particular q = 0.3. Under this

condition we have CW (X1, X2) ≈ 0.5048; the convolution code of rate 1
2 comes exceptionally

close to achieving Wyner’s common information. In general, the experiments do not fully

attain the theoretic performance (for this N ), but approach it closely.
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7.3. Experimental Results

Figure 7.4 – Caching a DSBS-duo with q = 0.1.

Figure 7.5 – Caching a DSBS-duo with q = 0.2.

Figure 7.6 – Caching a DSBS-duo with q = 0.3.
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7.4 Barriers Ahead: Total Correlation beyond Two Files

Even though the convolutional caching of two binary symmetric files has proven to be feasible,

this does not yet pave the way for larger, more complex caching systems involving K > 2 files.

The caching phase of Figure 7.3 consists of two distinct parts: empirically extracting a perfect

common sequence of two files, followed by compression. Linear codes like convolutional

codes can easily be implemented in bigger settings to take care of the second task, but what

about the first?

The model of Figure 7.3 bases itself on a theoretical understanding of the notion of total

conditional correlation and common information through V (7.12): for a DSBS, both of these

measures are the majority symbol of X1 and X2, corrupted by more or less Bernoulli noise.

For three files or more is the common information still captured in a single binary random

variable, or should V have a higher cardinality? If the correlation structure of several random

variables is asymmetric are the symbols of each file then equally important in determining the

common information or do some contribute more?

The theory of total conditional correlation and common information beyond K > 2 is scarce,

which indicates the difficulty of the matter. The challenge of practical caching algorithms

therefore does not lie in how to cache, but rather what to cache. Currently it is not just unclear

what would be optimal, but even simply what would be smart.

7.4.1 (Three) Circularly Symmetric Binary Sources

A special case might be random variables whose common information is known to be one bit,

as first discussed by Liu, Xu and Chen [29]. Their approach was one of reverse engineering:

create a common binary random variable V and construct several Xi by processing V through

independent but identical bit-flip channels; they call these Xi circularly symmetric binary

sources (CSBS).

Consider K = 3, a CSBS-triplet is defined by the following pmf for some q ∈ [0, 1
2 ]:

p(x1, x2, x3) =
⎧⎨
⎩

1
2 − 3

4 q if x1 = x2 = x3,
1
4 q otherwise.

(7.23)

Liu, Xu and Chen proved that the Wyner’s common information of such a triplet equals:

CW (X1, X2, X3) = 1+q +h(q)+ (1−q)h

(
q

2(1−q)

)
︸ ︷︷ ︸

=H(X)

−3h(γ), (7.24)

where

γ= 1

2

(
1−√1−2q

)
.
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Reasoning in reverse: Let V be a ∼ Bern( 1
2 ) random variable. Then each Xi is the result of an

independent but identical binary symmetric channel with V as an input and γ as the crossover

probability2. This leads to the following construction of a (X1, X2, X3)−triplet:

000

001
010
100

V = 0

011
101
100

111

V = 1

x1x2x3 p(x1x2x3|v)

(1−γ)3

γ(1−γ)2

γ2(1−γ)
γ3

The main proof of Liu, Xu and Chen is that there exists no other common random variable V

that independently constitutes all Xi with a lower value of I (X;V ). In other words, this V not

only attains conditional independence for X, it is also indeed the minimizer for CW (X1, X2, X3).

7.4.2 Caching Inner Bound for a CSBS-triplet

We take the knowledge of Liu, Xu and Chen on the common information of a CSBS-triplet and

extrapolate it to a proposed construction to capture total conditional correlation. Then, we

put it to the test in our convolutional caching experiment.

First, observe that the V that achieves CW (X1, X2, X3) can be rewritten in a form similar to the

DSBS construction (7.12):

V =
⎧⎨
⎩X1 ⊕U1 if X1 = X2 = X3,

(majority symbol)⊕U2 if otherwise.
(7.25)

And

U1 ∼ Bern

(
γ3

1− 3
2 q

)
, (7.26)

U2 ∼ Bern

(
2(1−γ)γ2

q

)
. (7.27)

Since common information is only a single bit, we conjecture a similar construction as for the

DSBS case: for Rcache ≤CW (X1, X2, X3) it is sufficient to cache a further compressed version of

this V and one should not have to consider variables of larger cardinality.

The optimal way of compression would be to tune pU1 (1) and pU2 (1) separately and evaluate

2Note that any duo subset of this triplet constitutes a DSBS as considered earlier in this chapter.
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the impact on Rcache (7.2) and Rupdate (7.3). Instead, we start with a simple construction:

W =V ⊕U3, (7.28)

where U3 ∼ Bern(α) and we control this α ∈ [0 1
2 ]. Then, thanks to the total symmetry the rate

equations simplify:

Rcache = I (X;W ), (7.29)

Rupdate = H(X1|W ). (7.30)

The resulting rate-pairs, as a function of α span the black curves in Figures 7.7–7.9 to the left

of the big red dot corresponding to CW (X1, X2, X3). One can verify visually (or mathematically

if preferred) that as a function of α this construction gives a smooth convex curve covering the

range of

Rcache ∈ [0 CW (X1, X2, X3)]

and

Rupdate ∈ [H(X1)
1

3
(H(X)−CW (X1, X2, X3))].

7.4.3 Empirical Caching Setup for a CSBS-triplet

For the practical side we apply the same principle as the DSBS: provide the Viterbi encoder

with a ‘perfect’ common sequence and let the convolutional code handle the compression.

For a CSBS-triplet this procedure is more complex, since we either have that all symbols of

X1, X2, X3 are equal or there is a majority of only two being equal. The common information

through V (7.25) compressed these states with different U1,U2 of which pU1 (1) ≤ pU2 (1). In

words: If all Xi take on the same value, it is more likely that V takes on that same value than

when only two Xi are equal.

Therefore, when compressing and caching three CSBS-generated files one must input the

encoder with this level of nuance. The Viterbi algorithm as programmed in the CML package

for MATLAB requires log-likelihood-ratios as an input [44]. In the K = 2−case we only required

symmetry, now these need to be properly computed:

LLR(x1, x2, x3) = log
p(x1x2x3|v = 1)

p(x1x2x3|v = 0)
=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

3log 1−γ
γ if x1x2x3 = 111

log 1−γ
γ if x1x2x3 ∈ {110,101,011}

log γ
1−γ if x1x2x3 ∈ {001,010,100}

3log γ
1−γ if x1x2x3 = 000

(7.31)

Calling

λ� log
1−γ

γ
, (7.32)
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we do the following symbol-by-symbol mapping from three CSBS-generated files X N
1 , X N

2 , X N
3

to suitable input the Viterbi algorithm:

fsymbols-to-Viterbi(x1, x2, x3) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

3λ if x1x2x3 = 111

λ if x1x2x3 ∈ {110,101,011}

−λ if x1x2x3 ∈ {001,010,100}

−3λ if x1x2x3 = 000

(7.33)

7.4.4 Experimental Results for a CSBS-triplet

The theory and experiment combined constitute Figures 7.7–7.9. The big red dot stands for

the turning point of common information (7.24). The black curve is the theory (or the random

coding characterization if you will): the section right of the red dot stands for the straight

line (7.8), to the left the proposed ‘blunt’ compression of the common information V (7.25)

through (7.28). The dotted straight line connects the points (Rcache,Rupdate) = (0, 1
3

∑3
i=1 H (Xi ))

to (CW (X1, X2, X3), 1
3 (H (X)−CW (X1, X2, X3))), acting as a benchmark to beat. The blue triangles

correspond to the tests with convolutional codes. Plotted are the rate of those codes versus

the average entropy of ΔN
k as in (7.22). Also here N = 30,000.

Observe a subtle difference with the DSBS experiments of Figure 7.4–7.6: in those earlier tests

the convolutional code approached the theoretical construction. In this CSBS-triplet case the

empirical caching beats the inner bound created through (7.28) by a small margin. This can be

best viewed in the plot for q = 0.1. In other words, the convolutional code finds a better way

to compress the common information than the ‘blunt’ version of (7.28), while still using only

one bit to cache three (X1 through X3). This proves that total conditional correlation must be

captured by a random variable that is more nuanced. By construction, for small Rcache the

Viterbi algorithm gives a higher priority to positions where all Xk agree on the same symbol

than positions where only two of them agree.
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Figure 7.7 – Caching a CSBS-triplet with q = 0.1.

Figure 7.8 – Caching a CSBS-triplet with q = 0.2.

Figure 7.9 – Caching a CSBS-triplet with q = 0.3.
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7.5 Closing Thoughts: Analogies between the Gaussian and Binary

Case

On page 71 we posed an open question: how does correlation structure in ΣX drive the

dimensionality of the random variable V that attains Wyner’s common information? All that

is known is that for K dependent Gaussians, the dimensionality of that V is between 1 and

K −1. Through experiments we found plenty of examples of ΣX whose common information

is associated to any dimensionality in that range.

In the discrete world the question is rather: how does the joint distribution p(x) drive the car-

dinality |V | of the V that attains CW (X)? Also the discrete question is bounded, as |V | ≤ |X |+ 1,

mentioned in, e.g., Theorem 7.1. This chapter studied in particular doubly symmetric binary

sources and their extension to K dimensions called circularly symmetric. A property inherent

to their construction is that their common information is associated to a single binary random

variable V ∼ Bern( 1
2 ).

The CSBS source is one of which each Xi is indistinguishable from any other, which might

falsely remind one of the Gaussians with a circulant correlation matrix we studied heavily

in Chapter 5. Though tempting, the actual analogy is with respect to a particular Gaussian

distribution inside the class of circulants, those with all-equal correlation:

ΣX =

⎡
⎢⎢⎢⎢⎢⎣

1 ρ · · · ρ

ρ 1
...

...
. . . ρ

ρ · · · ρ 1

⎤
⎥⎥⎥⎥⎥⎦ .

We know CW (X) for circulant covariances in closed form by Theorem 5.4; it is associated

to a distortion matrix DCW = λmin(ΣX)I. The covariance above is special in the sense that

there is only one unique dominant eigenvalue and K −1 repeated other ones. The common

information of this class of Gaussians is associated to a V that captures the contribution

along this one top eigenvector. It has dimensionality 1 regardless of K , just like the common

information of a CSBS is a single binary variable regardless of K .
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7.6 Appendix: Generator Matrices Used

The following generator matrices were the basis of the convolutional codes used in this

chapter:

G 1
2
=
[

1 0 1 0 0 1 0 1 1 0 1 0 1 0 1 1

1 1 0 1 1 0 1 0 0 1 1 1 0 1 0 1

]

G 1
3
=

⎡
⎢⎣1 0 0 1 0 1 1 1 1 0 0 0 0 0 0 1

1 1 0 0 1 0 1 1 1 0 1 0 0 1 0 1

1 1 1 0 0 0 1 1 1 1 0 1 1 1 0 1

⎤
⎥⎦

G 1
4
=

⎡
⎢⎢⎢⎢⎣

1 0 1 0 1 1 0 0 1 1 0 1 1 1 1 1

1 0 1 1 0 1 0 0 1 1 1 1 1 0 0 1

1 1 0 0 1 0 1 1 0 1 1 1 0 0 1 1

1 1 1 0 1 1 0 1 1 1 1 0 0 1 0 1

⎤
⎥⎥⎥⎥⎦

G 1
5
=

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 1 1 1 0 1 0 0 0 1 1 1 1

1 0 0 1 1 0 0 1 1 1 1 0 1 1 0 1

1 0 1 1 1 1 1 0 1 0 1 0 0 0 1 1

1 1 0 0 1 1 1 1 0 1 1 1 0 0 0 1

1 1 1 0 0 1 1 0 0 1 0 1 0 1 1 1

⎤
⎥⎥⎥⎥⎥⎥⎦
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8 Conclusions

Caching Gaussian sources is hard whenever an encoder wishes to only cache a little and

easy when it can cache a lot. This fierce but slightly vague statement is carried through all

perspectives we have taken on in this thesis. When we considered the interplay of correlation

and user preference in our complete bivariate model, we derived this separation in terms

of difficulty/complexity in Theorem 4.4: for small Rcache optimal caching distortions lie on

a peculiar line in the D−plane without a clear closed-form expression (Figure 4.11a). When

we looked at uniform user requests we observed similar behavior: caching all the shared

information through Wyner’s common information is a convex optimization problem, whereas

caching only some through total conditional correlation is non-convex. Luckily, for bivariates

this non-convex problem turned out to be still manageable (Lemma 4.3).

The uniform caching model for bivariate Gaussians is intuitively pleasing in particular: optimal

caching strategies need to capture as much of the total correlation as possible and we derived

that the encoder can do this by caching the contribution along the dominant eigenvector of

the correlation matrix first. This result is reminiscent of the intuition behind the Gaussian

multivariate rate-distortion function subject to a trace-constraint: do an eigendecomposition

on the covariance to identify which components contribute the most to variance and code

those first. This analogy begged a grander question: would there be a similar decomposition

of the correlation matrix to tell one which components of X contribute most to TC (X)?

Chapter 5 tells us that for multivariates of arbitrary length the eigendecomposition of the

correlation matrix is not the right tool to capture total correlation. In higher dimensions it

is merely a bound to potentially better decompositions, as we saw by bounding our caching

problem by the trace-based rate-distortion function in Lemma 5.2. We conjectured that only

for circulant matrices, whose correlation structure is completely symmetric, the eigenbasis

offers the right decomposition.

For the moment, the separation in difficulty between capturing Wyner’s common information

and Watanabe’s total correlation persists and keeps us from fully understanding the latter. An

underlining of this was shown in Chapter 6. There we transformed two Gaussian vectors X and
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Y into independent sets of (Xi ,Yi )− pairs. The difficulty of capturing total correlation then

split into a convex problem of which pairs to tackle first, followed by the same non-convex

bivariate problem of minimizing the correlation between each Xi and Yi . It illustrated that the

size of the random variables does not make the problem harder, but rather that the hardness

is fundamentally and only in the X −Y interaction.

As a closing remark we point out two possible future directions:

• The algorithmic perspective: can total conditional correlation be efficiently captured

in a suboptimal fashion?

One question we barely touched upon is whether or not the non-convex optimization

problems involving total (conditional) correlation like Rcache(d ,DF ) can be relaxed in

a manner that is both meaningful and efficient. In his master’s thesis, Rohan Pote

proposed a change of variable that does not avoid the non-convexity of the feasible set,

but reshuffles it in such a way that optimizing Rcache(d ,DF ) generally avoids these parts

of the set [45]. Experiments in his report have proven to be successful in tricking interior

point algorithms into believing the problem is actually convex.

In addition, even though the geometry of capturing total correlation is not convex, it

does have structure that can potentially be leveraged. Namely, consider the following

rewriting:

max
D

|D| s.t.

⎧⎨
⎩0 � D �ΣX∏K

i=1 Di ,i ≤ d
= max

D1,··· ,DK

:
∏K

i=1 Di≤d

max
D

:diag(D)≤[D1,··· ,DK ]

|D| s.t. 0 � D �ΣX. (8.1)

The outer optimization walks over hyper-dimensional surfaces
∏K

i=1 Di = d , while the

inner optimization maximizes a matrix inside the convex intersection of the constraints

diag(D) ≤ [D1, · · · ,DK ] and D �ΣX. There is a sense of monotonic increase in the size of

this intersection as one walks over the surface
∏K

i=1 Di = d towards an optimum. This

structure shows there is more to this barrier of non-convexity than meets the eye; it can

potentially inspire the writing of clever approximation algorithms.

• Further analogies between the Gaussian and binary case: in Section 7.5 we argued

that the CSBS sources of Chapter 7 are analogous to Gaussian multivariates with all-

equal correlation. This class of Gaussians is a special case in the grander set of those

with circulant correlation matrices of which we understand the common information

in analytic closed-form (Theorem 5.4). Perhaps the understanding of how symmetry

in correlation drives Gaussian common information can help one to study the discrete

equivalent for some natural extension of CSBS sources.
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