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Abstract
Millions of digital images are captured by imaging devices on a daily basis. The way imaging

devices operate follows an integral process from which the information of the original scene

needs to be estimated. The estimation is done by inverting the integral process of the imaging

device with the use of optimization techniques.

This linear inverse problem, the inversion of the integral acquisition process, is at the heart

of several image processing applications such as denoising, deblurring, inpainting, and super-

resolution. We describe in detail the use of linear inverse problems in these applications. We

review and compare several state-of-the-art optimization algorithms that invert this integral

process.

Linear inverse problems are usually very difficult to solve. Therefore, additional prior assumptions

need to be introduced to successfully estimate the output signal. Several priors have been

suggested in the research literature, with the Total Variation (TV) being one of the most prominent.

In this thesis, we review another prior, the �0 pseudo-norm over the gradient domain. This prior

allows full control over how many non-zero gradients are retained to approximate prominent

structures of the image. We show the superiority of the �0 gradient prior over the TV prior in

recovering genuinely piece-wise constant signals. The �0 gradient prior has shown to produce

state-of-the-art results in edge-preserving image smoothing. Moreover, this general prior can

be applied to several other applications, such as edge extraction, clip-art JPEG artifact removal,

non-photorealistic image rendering, detail magnification, and tone mapping. We review and

evaluate several state-of-the-art algorithms that solve the optimization problem based on the �0

gradient prior. Subsequently we apply the �0 gradient prior to two applications where we show

superior results as compared to the current state-of-the-art.

The first application is that of single-image reflection removal. Existing solutions to this problem

have shown limited success because of the highly ill-posed nature of the problem. We show that

the standard �0 gradient prior with a modified data-fidelity term based on the Laplacian operator

is able to sufficiently remove unwanted reflections from images in many realistic scenarios. We

conduct extensive experiments and show that our method outperforms the state-of-the-art.

In the second application of haze removal from visible-NIR image pairs we propose a novel

optimization framework, where the prior term penalizes the number of non-zero gradients of the

difference between the output and the NIR image. Due to the longer wavelengths of NIR, an

image taken in the NIR spectrum suffers significantly less from haze artifacts. Using this prior

term, we are able to transfer details from the haze-free NIR image to the final result. We show

that our formulation provides state-of-the-art results compared to haze removal methods that use
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a single image and also to those that are based on visible-NIR image pairs.

Keywords: linear inverse problems, image processing, sparse gradient optimization, reflection

removal, haze removal
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Zusammenfassung
Täglich werden Millionen von digitalen Bildern mittels Aufnahmegeräten aufgenommen. Diese

Geräte funktionieren gemäss einem integralen Prozess, woraus die Information des ursprüngli-

chen Bildes geschätzt werden muss. Diese Schätzung erfolgt durch Umkehrung des integralen

Prozesses des Aufnahmegeräts mit Hilfe von Optimierungstechniken.

Dieses lineare inverse Problem, die Umkehrung des integralen Aufnahmeprozesses, ist die

Basis verschiedener Bildverarbeitungsanwendungen wie beispielsweise denoising, deblurring,

inpainting und super-resolution. Wir prüfen und vergleichen verschiedene Algorithmen zur

Optimierung der Umkehrung dieses integralen Prozesses, welche dem aktuellen Stand der

Wissenschaft entsprechen.

Lineare inverse Probleme sind in der Regel eher schwierig zu lösen. Deshalb müssen zusätzlich

vorgängige Annahmen getroffen werden, um das Outputsignal erfolgreich zu schätzen. In der

wissenschaftlichen Literatur werden verschiedene Annahmen vorgeschlagen, wobei diejenige der

Total Variation (TV) hervorsticht.

In dieser Arbeit beurteilen wir eine weitere Annahme, die �0-Gradient pseudo-norm. Dieser

Prior ermöglicht Kontrolle darüber, wie viele Nicht-Null Gradienten zurückbehalten werden, um

die wesentlichen Strukturen des Bildes zu schätzen. Wir zeigen die Vorteile der �0-Gradient-

Annahme gegenüber der TV-Annahme bei der Wiederherstellung echter piece-wise konstanten

Signalen. Die �0-Gradient-Annahme hat bei der edge-preserving Bildglättung hervorrangende

Resultate gezeigt. Ausserdem kann diese allgemeine Annahme auf verschiedene weitere An-

wendungen angewendet werden, (z.B. Kantenextraktion, clip-art JPEG Bildfehlerentfernung,

non-fotorealistisches Bildrendering, Detailmagnifikation und Dynamikkompression). Wir unter-

suchen und bewerten verschiedene dem aktuellen Stand der Technik entsprechende Algorithmen,

welche das Optimierungsproblem gestützt auf die �0-Gradient-Annahme lösen. Anschliessend

wenden wird die �0-Gradient-Annahme auf zwei Anwendungen an, wobei deren Überlegenheit

gegenüber den übrigen aktuellen Methoden gezeigt wird.

Die erste Anwendung ist jene der Entfernung von Spiegelungen mit einem einzigen Bild. Beste-

hende Lösungen zu diesem Problem waren nur beschränkt erfolgreich wegen des inkorrekt gestell-

ten Problems. Wir zeigen auf, dass es die Standard �0-Gradient-Annahme mit einer modifizierten

Datenintegrität Term gestützt auf den Laplace-Operator ermöglicht, ungewollte Spiegelungen in

vielen realistischen Szenarien zu entfernen. Wir führen umfangreiche Experimente durch und

zeigen, dass unsere Methode den aktuellen Stand der Technik übertrifft.

In der zweiten Anwendung, der Entfernung von Dunst von sichtbaren-NIR Bildpaaren, bringen

wir ein neuartiges Optimierungskonzept ein, wobei der Prior Term die Anzal der Nicht-Null
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Gradienten der Differenz zwischen dem Output und dem NIR Bild benachteiligt. Aufgrund der

grösseren Wellenlänge von NIR, leidet ein Bild, welches im NIR-Spektrum aufgenommen wurde,

erheblich weniger unter Dunstrückständen. Unter Verwendung dieser Annahme können Details

vom dunstfreien NIR Bild auf das Schlussresultat übertragen werden. Es wird gezeigt, dass

unsere Methode neuartige Resultate liefert bezüglich Entfernung von Dunst gegenüber Methoden,

welche ein einzelnes Bild verwenden und auch denjenigen, welche sich auf sichtbare-NIR

Bildpaare stützen.

Stichwörter: lineare inverse Probleme, Bildverarbeitung, spärliche Gradient Optimierung, Entfer-

nung von Spiegelungen, Entfernung von Dunst
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Notation

n ∈R � Latin characters represent a quantity, usually the number of

pixels of an image

λ ∈R � Greek letters represent regularization parameters

x ∈Rn � Vector representation of an image of n pixels

X ∈Rn×m � Matrix (corresponding to linear operator) of size n ×m
X� ∈Rm×n � Transpose of matrix X

X−1 ∈Rm×n � Inverse of matrix X
N (μ,Σ) � Gaussian distribution with mean μ and covariance matrix Σ

P (x) � Probability distribution of vector x
‖x‖2

2 � Squared Euclidean norm of vector x
‖x‖p

p � p-squared �p-norm of vector x
f (x) : Rn → R � Function of vector x applied to each of its elements xi , i =

1, . . . ,R
∇= [∇x ;∇y ] : Rn →R2n � Horizontal and vertical gradient operator
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1 Introduction

A huge quantity of digital images is captured by consumers on a daily basis. The plethora of

imaging sensors makes the acquisition of digital images accessible to a wide range of users with

varying needs. These digital images can be processed and manipulated with ease on a computer

to suit specific needs. The field of digital image processing allows a wide range of algorithms to

be applied to a digital image.

An electronic sensor involved in an imaging measuring process can be modeled by an integral

process, where light is integrated on a finite interval of the electromagnetic spectrum and produces

an electrical (analog) signal. This analog signal is converted to a digital one that can be processed

by a computer. In essence, with measuring devices we do not observe the original signals

themselves, but their integrals. This integral process can be modeled by the following equation

y(x) =
∫b

a
k(x,λ)o(λ)dλ+n(x), (1.1)

where

• x,λ denote the spatial location and the wavelength, respectively

• y(x) are the measurements from the image acquisition process

• k(x,λ) is the kernel of the integral equation and takes different forms depending on the

application

• o(λ) is the property of the signal we indirectly measure

• n(x) is the noise which appears in all actual acquisition processes

When information about the signals needs to be extracted, the integral process of Eq. (1.1) should

be inverted. Eq. (1.1) is continuous and needs to be discretized so that it can be numerically

solved by a computer. During this discretization process, the kernel k(x,λ) is converted to a
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Chapter 1. Introduction

matrix K ∈ Cm×n with possibly complex values. The captured signal y(x) is converted to a vector

of discretized values y ∈Rm . The resulting discrete formulation reads

y = Ko+n. (1.2)

The problem of Eqs. (1.2) is called a linear inverse problem, because the goal is to invert the

acquisition process so that we are able to extract the original signal o. In general, the problem of

Eq. (1.2) is ill-posed, because either one of the following conditions does not hold:

• A solution to Eq. (1.2) exists, that is, there exists at least one vector o that satisfies the

system of Eq. (1.2)

• The solution is unique, that is, there is only one signal o that satisfies Eq. (1.2)

• The solution depends continuously on the problem data, that is, small perturbations of the

measurements y do not have a significant influence on the result o

Note that the first and second conditions deal with the feasibility of the problem, while the

last condition is related to the implementation of a stable numerical algorithm for its solution.

Many linear inverse problems in imaging are ill-posed. Examples include denoising, inpainting,

deblurring and magnetic resonance imaging. In these problems, usually the number of unknowns

o ∈ Cn is more than the number of measurements y ∈ Cm , that is, m ≤ n. This leads to an

under-determined linear system of equations with an infinite number of solutions rendering it

ill-posed, because the unique solution condition does not hold.

To overcome the ill-posedness of these problems and stabilize the solution, research has concen-

trated on regularization techniques. From a Bayesian perspective, these techniques correspond to

taking into account prior information of the unknown signal itself. Instead of finding the signal

that maximizes the likelihood P (y | o) of the data, optimization techniques focus on finding the

signal that maximizes the posterior distribution P (o | y) ∝ P (y | o)P (o) (see chapter 2).

Our first contribution in this thesis starts at chapter 2, where we review some common regulariza-

tion techniques as well as optimization algorithms that solve Eq. (1.2). The most common prior

used in image processing is the Total Variation (TV) [Rudin et al., 1992], which assumes that

natural images have relatively low total variation, that is, the sum of their absolute gradients is

small. For images, (anisotropic) total variation is defined as [Rudin et al., 1992]

TV(x) =∑
i , j

∣∣xi+1, j −xi , j
∣∣+ ∣∣xi , j+1 −xi , j

∣∣ . (1.3)

The prior of Eq. (1.3) has been extensively used in several image restoration problems, includ-

ing as mentioned above, denoising [Rudin et al., 1992], inpainting [Getreuer, 2012], deblur-

ring [Bioucas-Dias et al., 2006] and magnetic resonance imaging [Lustig et al., 2008]. Its success

comes from the fact that it is able to simultaneously preserve important details (e.g., edges)
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while smoothing away noise in texture-less regions. We compare several TV-based optimization

algorithms on the problem of image denoising, and we discuss their properties.

The TV prior is convex, that is, it has only one optimum solution, and is often used as a relaxation

of the non-convex gradient counting prior

C(x) = #
{(

i , j
)

:
∣∣xi+1, j −xi , j

∣∣+ ∣∣xi , j+1 −xi , j
∣∣ 	= 0

}
, (1.4)

which counts the number of non-zero gradients of the input image. In the rest of the thesis we call

this prior the �0 gradient prior. The �0 gradient prior of Eq. (1.4) is significantly more difficult

to optimize than TV. However, due to its counting nature, it is more suitable for recovery of

genuinely piece-wise constant (jump-sparse) signals. Recently, several efficient algorithms have

been proposed to solve problems based on the �0 gradient prior of Eq. (1.4) [Xu et al., 2011;

Storath et al., 2014; Cheng et al., 2014; Nguyen and Brown, 2015; Ono, 2017]. The �0 gradient

prior is shown to be a powerful prior for edge-preserving image smoothing and can be used

in several applications, such as clip-art artifact removal, edge extraction, detail magnification,

non-photorealistic rendering, and tone mapping [Xu et al., 2011].

Our next contribution in chapter 3 is a comprehensive review of the properties of the �0 gradient

prior. We provide motivation for its use and we show with synthetic examples that this prior is

more suitable than TV for the recovery of genuinely jump-sparse signals. Moreover, we review

recently proposed optimization algorithms based on this prior. We evaluate them and discuss their

individual characteristics on the problem of image denoising and we compare their behaviour

with the TV prior.

In chapters 4 and 5 we apply the �0 gradient prior to two applications and we show superior

results to the current state-of-the-art:

• Reflection removal from a single image [Arvanitopoulos et al., 2017b]

Image with reflections Image with reflections removed
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Chapter 1. Introduction

• Haze removal from visible-NIR image pairs [Arvanitopoulos et al., 2017a]

Hazy image Haze-free image

In our first application, reflection removal from a single image, the goal is to separate unwanted

reflection components from the transmission signal in images taken through windows or glass. We

show that the �0 gradient prior combined with a modified data-fidelity term based on the Laplacian

operator is able to sufficiently remove unwanted reflections from images in many realistic

scenarios. Our data-fidelity term enables us to maintain as many important high frequency details

from the transmission signal as possible. The Laplacian operator better enforces consistency in

structures of fine detail. At the same time, its combination with the �0 gradient prior promotes

solutions with few number of strong gradients, which are assumed to be part of the important

transmitted signal. That way, the unimportant gradients that are assumed to belong to reflections

are removed. We conduct extensive experiments and show that our method outperforms the

state-of-the-art in single-image reflection removal.

Our second application is haze removal from visible-NIR image pairs. Due to the longer

wavelengths of NIR, an image taken in the NIR spectrum does not suffer from haze artifacts. We

are based on the standard haze model and we propose a novel optimization framework, where

the prior term penalizes the number of non-zero gradients of the difference between the output

and the NIR image. By using this prior term, we are able to transfer details from the haze-free

NIR image to the final result. Combined with an accurate procedure for air-light estimation,

we are able to faithfully reproduce the real colors of the captured scene. We conduct extensive

experiments in real-world images and show that our formulation provides state-of-the-art results

compared to haze removal methods that use a single image and also to those that are based on

visible-NIR image pairs.
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Summary of Contributions

Our contributions can be summarized in the following:

• We review state-of-the-art optimization algorithms that solve common linear inverse

problems in imaging. We compare them in image TV denoising and discuss their properties.

• We review in detail the �0 gradient prior and motivate its use for the recovery of genuine

piece-wise constant signals, compared to the popular TV prior. We describe state-of-the-art

algorithms based on this prior and compare them both qualitatively and quantitatively.

• We show that the �0 gradient prior in combination with a modified data-fidelity term can

be successfully applied to the problem of single-image reflection removal. With several

synthetic and real-world experiment we show that our novel optimization function provides

accurate reflection removal results, outperforming the current state-of-the-art.

• We propose a novel optimization framework for the problem of haze removal from visible-

NIR image pairs. We show that the �0 gradient prior can be successfully used to transfer

details from the (almost haze-free) NIR image to the final output, yielding haze removal

results that outperform the current state-of-the-art.

The thesis is organized as follows. In chapter 2 we motivate the use of linear inverse problems

in imaging applications. We review the TV prior and describe state-of-the-art optimization

algorithms for solving the corresponding linear inverse problem. We evaluate them on the

problem of image denoising and discuss their properties. In chapter 3 we describe in detail the

�0 gradient prior and give motivation for its use in the recovery of piece-wise constant signals.

We review state-of-the-art algorithms that optimize the inverse problems based on this prior

and compare their denoising results on several real-world images. In chapter 4 we describe our

application of the �0 gradient prior on the problem of reflection removal from a signal image. We

provide real-world results showing our algorithm’s superiority over the current state-of-the-art.

In chapter 5 we describe our application of the �0 gradient prior on the problem of haze removal

from visible-NIR image pairs and show its superior results over the state-of-the-art. Finally, in

chapter 6 we conclude the thesis with possible directions for future research. In appendices A

and B we present work on the analysis of document images. The first work is on text line

extraction on historical documents and the second work on the creation of a French dataset for

word spotting.
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2 Optimization for Image Processing

In this chapter we introduce the reader to linear inverse problems and their use in image processing

applications. In section 2.1 we provide probabilistic interpretations of the common procedures

that estimate solutions to these problems. In sections 2.2 and 2.3 we present two points of view

of the linear inverse problems, the synthesis and analysis models. We will focus on the analysis

model, due to its simplicity and its superior performance in many image processing applications.

In section 2.4 we present state-of-the-art algorithms that solve the analysis model. In section 2.5

we evaluate them in the problem of image denoising. Finally, in section 2.6 we conclude the

chapter.

2.1 Linear Inverse Problems

Linear inverse problems are common in the field of Image Processing. Several image restoration

problems can be cast as linear inverse problems. Examples include image denoising [Rudin

et al., 1992], inpainting [Fadili et al., 2009], deblurring [Beck and Teboulle, 2009a], super-

resolution [Yang et al., 2010], and image reconstruction from few measurements [Lustig et al.,

2008]. In all these problems the task is to recover an unknown image x ∈Rn from a set of (possibly

indirect) measurements y ∈Rm with m ≤ n. To keep the notation simple, we use the vector form

of an image by assuming concatenation of its columns over all its dimensions. Formally, the

model that describes the measurement process can be written as

y = T(x)+η, η∼N (0,σ2I), (2.1)

where T : Rn →Rm is a linear operator and η ∈Rm is a zero-mean Gaussian vector with diagonal

covariance matrix σ2I that models additive noise. N (μ,Σ) denotes the Gaussian distribution

with mean vector μ and covariance matrix Σ

η∼N (μ,Σ) = 1�|2πΣ| exp

(
−1

2
(η−μ)�Σ−1(η−μ)

)
.
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Since the operator T is linear, we can represent it as a matrix A ∈Rm×n . An equivalent formulation

of the linear inverse problem of Eq. (2.1) is given by the following linear system

y = Ax+η, η∼N (0,σ2I). (2.2)

An important quantity of the measurements y is their likelihood

P (y | x) = P (y−Ax) ⇒ y ∼N (Ax,σ2I) = 1√
(2πσ2)n

exp

(
− 1

2σ2

∥∥y−Ax
∥∥2

2

)
. (2.3)

Eq. (2.3) is true, because it holds y−Ax ∼N (0,σ2I).

Inverting Eq. (2.2) can be done in several ways. Without any prior knowledge on the unknown

signal x, Maximum Likelihood (ML) estimation can be used to compute the x that leads to the

most probable measurements y. The ML solution for x is given by

x∗ML = argmax
x

P (y | x) = argmax
x

{
logP (y | x)

}

= argmax
x

{
log

(
1√

(2πσ2)n
exp

(
− 1

2σ2

∥∥y−Ax
∥∥2

2

))}
= argmin

x

{
1

2σ2

∥∥y−Ax
∥∥2

2

}
.

(2.4)

If A ∈Rm×n represents a known degradation operator of full rank m ≤ n (such as a blurring kernel,

or a sub-sampling matrix), the solution x∗ML is given by the Moore-Penrose pseudo-inverse

x∗ML = A�(AA�)−1y. (2.5)

The solution of Eq. (2.5) is equivalent to the Least Squares solution for under-determined linear

systems (less equations than unknown variables). In this setting, x∗ML is the least-norm solution

that satisfies the relation y = Ax. However, in several applications, solving Eq. (2.5) is ill-posed.

One example is compressed sensing, where the Gramian matrix AA� is usually rank-deficient

(m � n). Another example is the denoising problem, where A = I and the ML solution is the

trivial one x∗ML = y, therefore no denoising is done.

To overcome the ill-posedness of the ML estimator and stabilize the solution, research has

concentrated on the use of Maximum A Posteriori Estimation (MAP), which regularizes the

estimation process with prior models about the statistics of the signal x. MAP computes x as the

mode of the posterior distribution P (x | y) as

x∗M AP = argmax
x

P (x | y) = argmax
x

{
P (y | x)P (x)

}= argmax
x

{
log

(
P (y | x)P (x)

)}
= argmax

x

{
logP (y | x)+ logP (x)

}= argmin
x

{
1

2σ2

∥∥y−Ax
∥∥2

2 − logP (x)

}
, (2.6)

where in Eq. (2.6) we use Bayes’ theorem, taking into account that the marginal likelihood of the
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2.2. Synthesis Model

measurements P (y) is constant

P (x | y) = P (y | x)P (x)

P (y)
∝ P (y | x)P (x), P (y) = const .

When studying the literature in MAP algorithms, we observe the emergence of two different prior

models:

1. Synthesis model: In this model, the main assumption is that the unknown signal x is linearly

synthesized by a vector of coefficients s, and the prior is imposed on s.

2. Analysis model: In this model, the prior is imposed on a forward transform of the image.

In both models the main heuristic is to sparsify an image representation. However, there is a

major difference between the two models: in the synthesis model the main assumption is that the

image can be represented as a sparse linear combination of basis elements, while in the analysis

model the sparsity assumption is applied on a forward transform of the image based on these

elements.

In the following, we present the two prior models in more detail.

2.2 Synthesis Model

The first type of prior model is based on the synthesis approach, which is inspired by the basis

pursuit works of [Mallat and Zhang, 1993; Chen et al., 2001]. The main assumption of the

synthesis model is that the unknown natural image x ∈Rn admits a sparse representation s ∈Rk

over some dictionary D ∈Rn×k with n ≤ k [Elad et al., 2010]. A vector s is called sparse when

most of its coefficients are small in magnitude (≈ 0). When x admits a sparse representation over

D, it can be expressed as a linear combination of only few columns {di }k
i=1, called atoms, of the

dictionary. That can be expressed as a simple matrix-vector product

x = Ds.

Usually k > n, and in that case we call the dictionary overcomplete. Now, using the sparsity

assumption, the sparse signal s can be computed by solving the following optimization problem

s∗ = argmin
s

{∥∥y−ADs
∥∥2

2 +λg (s)
}

, (2.7)

and the final unknown image can be expressed as

x∗M AP−s = Ds∗. (2.8)
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Here, the regularization function g : Rk →R promotes or measures sparsity of its argument. A

common choice for g is the �p-norm

g (s) = ‖s‖p
p =

k∑
i=1

|si |p . (2.9)

In the MAP framework, the synthesis prior of Eq. (2.9) corresponds to a distribution on the

representations of the following form

P (x) = 1

Z (λ)
exp

(−λ‖s(x)‖p
p
)

, (2.10)

where we write s(x) to denote the dependence between the two signals s and x and Z (λ) to denote

the dependency of the normalization function Z on the regularization parameter λ. The form of

Eq. (2.10) resembles the Gibbs distribution

P (x) = 1

Z (λ)
exp(−λE(x)) , (2.11)

where the term E(x) is an energy functional, which is supposed to be low for highly probable

signals and high for less probable ones. It is easy to see that by plugging-in the prior of Eq. (2.10)

to the MAP formulation of Eq. (2.6) we get the optimization problem of Eq. (2.7). The model in

Eq. (2.7) is called the synthesis model [Elad et al., 2007], because the final signal x is synthesized

from the sparse coefficients s using Eq. (2.8).

Synthesis-based approaches have evolved rapidly over the last decade. Initial approaches include

the works of [Mallat and Zhang, 1993; Chen et al., 2001], which motivated the transition from

transforms to dictionaries for sparse signal representations. Since then, many novel types of

dictionaries have been proposed. Examples include wedgelets [Donoho, 1999], ridgelets [Candès

and Donoho, 1999], curvelets [Candès and Donoho, 2000; Candès et al., 2006], contourlets [Do

and Vetterli, 2005; Lu and Do, 2006], bandelets [Pennec and Mallat, 2005; Peyré and Mallat,

2005], complex wavelets [Kingsbury, 2001; Selesnick et al., 2005], shearlets [Labate et al., 2005;

Easley et al., 2008] and directionlets [Velisavljevic et al., 2006].

Many approaches that learn the dictionary from data have recently been proposed [Olshausen

and Field, 1996; Engan et al., 1999; Chen et al., 2001; Kreutz-Delgado et al., 2003; Daubechies

et al., 2004; Vidal et al., 2005; Aharon et al., 2006; Mairal et al., 2009b; Rubinstein et al., 2010].

The methods based on learned dictionaries show superior image reconstruction results compared

to methods that depend on fixed dictionaries. However, this increase in accuracy comes with

the additional off-line training cost of the dictionary. Recent approaches [Mairal et al., 2009a;

Skretting and Engan, 2010] rely on online dictionary learning, which allows training dictionaries

from large-scale sets of examples. A review on how these methods can be employed in image

processing applications can be found in [Elad et al., 2010; Tosic and Frossard, 2011].
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2.3 Analysis Model

In the analysis model the prior g is applied to a forward transform of the image yielding the

following optimization problem

x∗M AP−a = argmin
x

{
1

2σ2

∥∥y−Ax
∥∥2

2 +λg (Bx)

}
. (2.12)

Here, B ∈Rk×n , called the analysis operator, is a transform that promotes sparsity of the unknown

image x. Examples include the wavelet transform or the derivative operator. As in the synthesis

model, the function g : Rk →R can be a function that measures sparsity

g (u) = ‖u‖p
p =

k∑
i=1

|ui |p , u = Bx. (2.13)

The model in Eq. (2.12) is called the analysis model [Elad et al., 2007], because the regularizer g

is based on a sequence of linear filters applied to the image itself, analyzing its behaviour, rather

than the coefficients of a representation.

The analysis model corresponds to a MAP solution with the following Gibbs-like distribution

(see Eq. (2.11)) as a prior over x

P (x) = 1

Z
exp

(−λ‖Bx‖p
p
)

. (2.14)

By plugging-in the prior of Eq. (2.14) into the MAP formulation of Eq. (2.6) we obtain the

equivalent problem of Eq. (2.12)

x∗M AP−a = argmax
x

P (x | y) = argmin
x

{− logP (y|x)− logP (x)
}

= argmin
x

{
1

2σ2

∥∥y−Ax
∥∥2

2 +λ‖Bx‖p
p

}
. (2.15)

Several choices for the prior have been proposed in the literature, depending on the specific image

reconstruction application. One of the most widely used choices is the Total Variation (TV) [Rudin

et al., 1992], where B = [B1;B2] ∈R2n×n represents the horizontal and vertical first-order finite

difference operators, respectively.

For isotropic TV, g : R2n →R takes the form

g (Bx) =
n∑

i=1

√
(∇x xi )2 + (∇y xi )2 =

n∑
i=1

‖∇xi‖2 , (2.16)

while for anisotropic TV, g : R2n →R takes the form

g (Bx) =
n∑

i=1

√
(∇x xi )2 +

√
(∇y xi )2 =

n∑
i=1

‖∇xi‖1 . (2.17)
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Other priors include the fused lasso [Tibshirani et al., 2005] and the over-complete wavelet

transform [Selesnick and Figueiredo, 2009]. Several methods have been proposed for learning

the analysis operator B [Yaghoobi et al., 2011; Roth and Black, 2005].

For a detailed comparison between analysis and synthesis priors we refer the interested reader

to [Elad et al., 2007; Selesnick and Figueiredo, 2009]. After extensive experimental evaluations,

the authors in [Elad et al., 2007; Selesnick and Figueiredo, 2009] conclude that, in general,

an analysis model might be more appropriate for signal restoration problems, especially when

using highly redundant transforms, while being simpler to solve. One possible explanation is

that the analysis prior utilizes all its filters simultaneously to support the recovery process and

therefore can be more robust in the presence of noise. Compared to the analysis model, the

compact representation of the synthesis model may be unstable when noise is introduced. Another

explanation can be due to the fact that the over-completeness in the synthesis model, instead of

enriching its descriptive capabilities, leads to a reverse effect where the dictionary represents

a wide range of undesirable signals. This effect does not apply to the analysis model where,

independent of the number of filters, the signal has to agree with all existing ones.

In the following we will concentrate on the analysis model, and use it to provide some examples

of analysis priors and optimization techniques to solve Eq. (2.12).

2.4 Algorithms

In the following we review algorithms that are used to find a solution to the analysis model of

Eq. (2.12).

2.4.1 Fast Iterative Shrinkage Thresholding Algorithm (FISTA)

The fast iterative shrinkage thresholding algorithm (FISTA) [Beck and Teboulle, 2009a,b] is a

special case of the backward-forward splitting algorithm [Passty, 1979] that utilizes Nesterov’s

acceleration method [Nesterov, 1983].

FISTA assumes the following non-smooth convex optimization model

min
x

{
f (x)+ g (x)

}
, x ∈Rn , (2.18)

where

• g : Rn → (−∞,+∞] is a proper closed convex function,

• f : Rn →R is continuously differentiable with Lipschitz continuous gradient L( f )

∥∥∇ f (x)−∇ f (y)
∥∥

2 ≤ L( f )
∥∥x−y

∥∥
2 ,∀x,y ∈Rn ,
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2.4. Algorithms

• the problem (2.18) is solvable, that is X ∗ = argminx

{
f (x)+ g (y)

} 	= � and for x∗ ∈ X ∗ we

have F∗ := minx{F (x)} = F (x∗).

The optimality conditions of the problem of Eq. (2.18) state that [Beck and Teboulle, 2009a]

0 ∈ t∇ f (x∗)+ t∂g (x∗) ⇒ 0 ∈ t∇ f (x∗)−x∗ +x∗ + t∂g (x∗) ⇒
(I+ t∂g )(x∗) ∈ (I− t∇ f (x∗))(x∗) ⇒ x∗ = (I+ t∂g )−1(I− t∇ f )(x∗), (2.19)

for any scalar t > 0. A natural scheme for solving problems of the form of Eq. (2.18) is by fixed

point iterations that emerge through the optimality condition (2.19)

x0 ∈Rn , xk = (I+ tk∂g )−1(I− tk∇ f )(xk−1), tk > 0. (2.20)

An important tool in the approach of Eq. (2.20) is the proximal map [Moreau, 1965] associated

with a convex function. Given a proper closed convex function g : Rn → (−∞,+∞] and a scalar

t > 0, the proximal map associated to g is defined as

proxt (g )(x) = argmin
u

{
g (u)+ 1

2t
‖u−x‖2

2

}
. (2.21)

From Lemma 3.1 in [Beck and Teboulle, 2009a], Eq. (2.20) can be written as

xk = proxt (g )(xk−1−tk∇ f (xk−1)) = argmin
x

{
g (x)+ 1

2tk

∥∥x− (
xk−1 − tk∇ f (xk−1)

)∥∥2
2

}
. (2.22)

In the smooth setting where g (x) = δC (x),C ⊂Rn and δC (·) denotes the indicator function on the

set C , [Nesterov, 1983] proposed an accelerated gradient projection method with a convergence

rate of O(1/k2). [Beck and Teboulle, 2009b] extended Nesterov’s method to handle the more

general non-smooth problem (2.18).

FISTA is summarized in Algorithm 1. For the case where g denotes the TV prior, we refer

Algorithm 1: FISTA [Beck and Teboulle, 2009a]

Input: y,L ≥ L( f ),kmax

Initialize : z1 ← x0 ∈Rn , k = 1, t1 = 1
while k < kmax do

xk = prox1/L(g )(zk ) (2.22) ;

tk+1 =
1+

√
1+4t 2

k

2 ;

zk+1 = xk +
(

tk−1
tk+1

)
(xk −xk−1) ;

end
Output: Output xkmax

the reader to [Beck and Teboulle, 2009a; Chambolle, 2004; Selesnick and Figueiredo, 2009] for

practical approaches that solve the proximal map of Eq. (2.22).
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2.4.2 Variable Splitting

The variable splitting algorithm [Wang et al., 2008] suggests to introduce an additional variable

u to the optimization problem and make the substitution u = Bx in Eq. (2.12). This leads to the

constrained problem

min
x,u

{
1

2σ2

∥∥y−Ax
∥∥2

2 +λg (u)

}
, s.t. u = Bx. (2.23)

The problem of Eq. (2.23) is solved by converting it to an unconstrained one through the addition

of a penalty term

min
x,u

{
1

2σ2

∥∥y−Ax
∥∥2

2 +λg (u)+ μ

2
‖u−Bx‖2

2

}
. (2.24)

The objective function of Eq. (2.24) is minimized in an alternating way by fixing one variable

and optimizing over the other. Fixing u, the solution for x is given by

x∗ = argmin
x

{
1

2σ2

∥∥y−Ax
∥∥2

2 +
μ

2
‖u−Bx‖2

2

}
, (2.25)

which is a quadratic function. The gradient of the objective with respect to x is

∇x

{
1

2σ2

∥∥y−Ax
∥∥2

2 +
μ

2
‖u−Bx‖2

2

}
=σ−2A� (

Ax−y
)+μB� (Bx−u)

= (
σ−2A�A+μB�B

)
x−σ−2A�y−μB�u.

Equating the gradient to zero, we arrive to the following linear system for the solution x

x∗ = (
σ−2A�A+μB�B

)−1 (
σ−2A�y+μB�u

)
. (2.26)

If B is the matrix that corresponds to the finite difference operator, B = [∇x ;∇y ], the system of

Eq. (2.26) is circulant in several applications, such as denoising, deblurring and MRI reconstruc-

tion [Wang et al., 2008; Goldstein and Osher, 2009; Afonso et al., 2010]. In these problems, the

matrices A�A and B�B are block circulant and can be diagonalized by the Fourier transform

A�A = F∗UAF ⇒ UA = FA�AF∗, B�B = F∗UB F ⇒ UB = FB�BF∗,

where F denotes the matrix that corresponds to the Fourier transform, F∗ its complex conjugate,

and the matrices UA ,UB are diagonal. With this diagonalization trick the linear system of

Eq. (2.26) can be solved in closed form with point-wise divisions. The solution can be written as

x∗ = F∗ (
σ−2UA +μUB

)−1
F

(
σ−2A�y+μB�u

)
. (2.27)

Now, fixing x, the solution for u is given by

u∗ = argmin
u

μ

2
‖u−Bx‖2

2 +λg (u). (2.28)
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2.4. Algorithms

Here, we give the solution u∗ when g corresponds to the TV prior. We define ui = (u1,i ,u2,i ) ∈
R2, i = 1, . . . ,n, which is an approximation of (Bx)i = [(B1x)i , (B2x)i ] = [(∇x x)i , (∇y x)i ] ∈R2.

For isotropic TV (2.16), the minimizer is given by the 2−D following shrinkage formula [Wang

et al., 2008]

u∗
i = max

{
‖(Bx)i‖2 −

λ

μ
,0

}
× (Bx)i

‖(Bx)i‖2
, i = 1, . . . ,n. (2.29)

In the case of anisotropic TV (2.17), the minimizer is given by the simpler component-wise 1−D

shrinkage [Wang et al., 2008]

u∗
l ,i = max

{
|(Bl x)i |− λ

μ
,0

}
× sgn((Bl x)i ), l = 1,2. (2.30)

The optimality conditions of Eq. (2.24) are given by [Wang et al., 2008]

⎧⎨
⎩ui /‖ui‖2 +μ (ui − (Bx)i ) = 0, i ∈ I1 := {i : ui 	= 0}

μ‖(Bx)i‖2 ≤ 1, i ∈ I2 := {i : ui = 0}
(2.31)

μB� (Bx−u)+A� (
Ax−y

)= 0. (2.32)

By defining the sets [Wang et al., 2008]

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

r1(i ) := (
ui /‖ui‖2

)
/μ+ui − (Bx)i , i ∈ I1

r2(i ) := ‖(Bx)i‖2 , i ∈ I2

r 3 :=μB� (Bx−u)+A� (
Ax−y

)
,

(2.33)

an algorithm that minimizes (x,u) in an alternating way can be stopped once the following

condition is reached [Wang et al., 2008]

Res := max

{
max
i∈I1

{‖r1(i )‖2
}

,max
i∈I2

{r2(i )} ,‖r 3‖∞
}
≤ ε. (2.34)

The authors in [Wang et al., 2008] propose a continuation scheme for the parameter μ, based on

their convergence results. Initially, μ is small and is gradually increased until its final value, so

that the constraint u = Bx is satisfied. The final Algorithm is given in Alg. 2.

2.4.3 ADMM

A different method to variable splitting for optimizing Eq. (2.23) is the alternating direction
method of multipliers (ADMM) first introduced in [Gabay and Mercier, 1976]. It is based on the

Augmented Lagrangian formulation of Eq. (2.23) [Nocedal and Wright, 2006]. A review with

theoretical results of the algorithm can be found in [Boyd et al., 2011]. The augmented Lagragian
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Algorithm 2: Variable Splitting Optimization [Wang et al., 2008]

Input: y,λ,μ0 > 0,μmax,τ> 1
Initialize : x ← y, μ←μ0

while μ≤μmax do
repeat

Update u using either Eq. (2.29) or Eq. (2.30) ;

Update x using Eq. (2.27) ;

until Eq.(2.34) is met;
μ← τμ;

end
Output: Output x

formulation of Eq. (2.23) is given by

L (x,u,v,μ) = 1

2σ2

∥∥y−Ax
∥∥2

2 +λg (u)+v� (Bx−u)+ μ

2
‖Bx−u‖2

2 . (2.35)

Eq. (2.35) can be written in a more convenient form by combining the introduced linear and

quadratic terms and scaling the dual variable v. Defining the residual r = Bx−u and completing

the square we have

v�r+ μ

2
‖r‖2

2 =
μ

2

∥∥r+ (
1/μ

)
v
∥∥2

2 −
1

2μ
‖v‖2

2 =
μ

2
‖r+z‖2

2 −
μ

2
‖z‖2

2 , (2.36)

where z = (
1/μ

)
v is the scaled dual variable. With this reformulation, ADMM solves the

following problems in an alternating way

xk+1 = argmin
x

{
1

2σ2

∥∥y−Ax
∥∥2

2 +
μ

2

∥∥∥Bx−uk +zk
∥∥∥2

2

}
, (2.37)

uk+1 = argmin
u

{
λg (u)+ μ

2

∥∥∥Bxk+1 −u+zk
∥∥∥2

2

}
, (2.38)

zk+1 = zk +Bxk+1 −uk+1, (2.39)

where k denotes the iteration number.

The optimization problem with respect to x in Eq. (2.37) is a quadratic. By following a similar

derivation as in the variable splitting algorithm (see Eq. (2.26)), the solution for the update over x

is given by

xk+1 = (
σ−2A�A+μB�B

)−1
(
σ−2A�y+μB�

(
uk −zk

))
. (2.40)

For circulant matrices A and B, the solution is given by two Fourier transforms (see Eq. (2.27))

xk+1 = F∗ (
σ−2UA +μUB

)−1
F

(
σ−2A�y+μB�

(
uk −zk

))
. (2.41)

As shown previously, the solution for u depends on the regularization function g . For isotropic
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TV (2.16) the solution is given by the 2-D shrinkage [Wang et al., 2008]

uk+1
i = max

{∥∥∥(Bxk+1)i +zk
i

∥∥∥
2
− λ

μ
,0

}
× (Bxk+1)i +zk

i∥∥(Bxk+1)i +zk
i

∥∥
2

, i = 1, . . . ,n. (2.42)

In the case of anisotropic TV (2.17), the minimizer is given by the simpler component-wise 1−D

shrinkage [Wang et al., 2008]

u∗
l ,i = max

{∣∣∣(Bl xk+1)i + zk
l ,i

∣∣∣− λ

μ
,0

}
×sgn((Bl xk+1)i +zk

l ,i ), l = 1,2, i = 1, . . . ,n. (2.43)

The final algorithm is summarized in Alg. 3. In practice, a similar continuation scheme for the

coupling parameter μ is used by [Wang et al., 2008].

Algorithm 3: ADMM Optimization

Input: y,λ,μ0 > 0,τ> 1,ε
Initialize : x ← y, u ← Bx, μ←μ0

repeat
Update uk+1 using either Eq. (2.42) or Eq. (2.43) ;

Update xk+1 using Eq. (2.40) ;

zk+1 = zk +Bxk+1 −uk+1 ;

μ← τμ ;

until
∥∥uk+1 −Bxk+1

∥∥2
2 < ε;

Output: Output x

2.5 Evaluation

In this section we perform a comparative evaluation of the three algorithms, namely FISTA [Beck

and Teboulle, 2009a], Variable Splitting [Wang et al., 2008] and ADMM [Boyd et al., 2011] on

the application of TV-based denoising. We apply the algorithms to three noisy versions of the

images “lena”, “barbara” and “peppers”. We add Gaussian noise of standard deviation σ= 0.1.

For all experiments we fix the regularization parameter to λ= 0.1.

In Fig. 2.1 we show the convergence rate of the methods as a function of the number of iterations

for the “lena” image. The results for the other images follow similar trends. We also provide

the total running time these methods needed to execute 15 iterations, which was a sufficient

number for convergence of all algorithms in this denoising application. We observe that ADMM

converges to the solution in the fewest number of iterations. It is also the fastest algorithm in

terms of running time. FISTA converges to the solution in fewer iterations than Variable Splitting,

but its running time per iteration is the largest among the competing algorithms.

In Fig. 2.2 we show the denoising results of the three algorithm on the “lena" image together

with the PSNR and SSIM values. We obtain similar results with the other two images. We
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Figure 2.1 – Convergence of the tested algorithms for TV denoising on the “lena” image. The

running times shown are the total times the algorithms needed to complete 15 iterations. Even

though FISTA converges in very few iterations, its time per iteration is larger than Variable

Splitting and ADMM.

observe that FISTA yields the best PSNR values, retaining more detail in the denoised image.

The Variable Splitting and ADMM approaches obtain smoother results, especially in texture-less

regions. By visual inspection we observe that the two methods obtain very similar results. This is

to be expected, because the algorithms are based on the same concept of variable splitting and

augmented formulation.

In Table 2.1 we provide comprehensive results of all the algorithms on all tested images. FISTA

is the algorithm that performs better in terms of PSNR values and the Variable Splitting approach

is one that performs better in terms of the SSIM metric. As we mentioned before, ADMM is

the fastest algorithm per iteration in terms of running time, but leads to lower PSNR values than

FISTA.

As a conclusion, for the TV denoising problem, if the goal is high quality, FISTA is the algorithm

of choice. On the other hand, if the goal is computational efficiency, ADMM is a better choice.
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(a) Input (b) Noisy

(c) FISTA, PSNR = 29.52, SSIM =

0.79

(d) Variable Splitting, PSNR = 29.07,

SSIM = 0.81

(e) ADMM, PSNR = 28.87, SSIM =

0.80

Figure 2.2 – TV denoising results of the three tested algorithms on the “lena” image. FISTA

obtains the best PSNR value retaining more details from the original image than Variable Splitting

and ADMM.

Image Method PSNR SSIM Time/iteration (seconds)

Lena

FISTA 29.52 0.79 0.043

Variable Splitting 29.07 0.81 0.036
ADMM 28.87 0.80 0.036

Barbara

FISTA 25.6 0.72 0.036

Variable Splitting 24.27 0.70 0.034
ADMM 23.85 0.67 0.034

Peppers

FISTA 29.78 0.79 0.038

Variable Splitting 28.81 0.81 0.033
ADMM 28.67 0.79 0.035

Table 2.1 – TV denoising results of the tested algorithm on three images. FISTA yields the best

results in terms of PSNR values, while Variable Splitting yields the best SSIM. Variable Splitting

and ADMM are computationally more efficient than FISTA.
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2.6 Conclusions

In this chapter we motivated the use of linear inverse problems in imaging, both from an

optimization point of view and also from a Bayesian perspective. We reviewed the main prior

models proposed in the literature, the analysis and synthesis models. We described regularization

techniques that enable us to efficient solve common image reconstruction problems. In addition,

we reviewed several state-of-the-art optimization algorithms to solve Eq. (2.2) using the TV

prior. In the next chapter we will motivate the use of another regularization function based on the

gradient counts. We show that for image smoothing applications this prior is better suited than

TV and we evaluate optimization algorithms based on it.
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3 �0 Gradient Model

In the previous chapter we reviewed state-of-the-art optimization algorithms for linear inverse

problems with general priors. In this chapter we will focus on the �0 gradient prior. In section 3.1

we motivate the use of the �0 gradient prior for edge preserving smoothing and denoising of

piece-wise constant signals. We show its advantages compared to the common Total Variation

prior. In section 3.2 we review state-of-the-art algorithm that solve the model based on the �0

gradient prior. In section 3.3 we evaluate the state-of-the-art on several real-world images and

discuss their results. Finally, in section 3.4 we conclude the chapter.

3.1 Motivation

The TV prior [Rudin et al., 1992] and in general priors based on the �1 norm have been suc-

cessfully applied to many image processing applications, such as denoising [Rudin et al., 1992],

deblurring [Babacan et al., 2009], super-resolution [Babacan et al., 2008], inpainting [Getreuer,

2012], optic-flow estimation [Zach et al., 2007], and Magnetic Resonance (MR) reconstruc-

tion [Lustig et al., 2008]. For a review on the properties of the TV prior and its applications we

refer the reader to [Estrela et al., 2016].

However, in cases where the goal is to recover genuinely piece-wise constant (jump-sparse)
signals, the number of non-zero gradients is a natural and powerful prior [Mumford and Shah,

1989]. In this chapter we investigate the �0 gradient minimization model, also called inverse Potts
model [Storath et al., 2014]

min
x

{
1

2σ2

∥∥y−Ax
∥∥2

2 +γ‖∇x‖0

}
, ‖∇x‖0 := #

{
i : |∇x xi |+

∣∣∇y xi
∣∣ 	= 0

}
, ∇xi = (∇x xi ,∇y xi ),

(3.1)

where ∇ = [∇x ;∇y ] : R2n → Rn denotes the horizontal and vertical finite differences. In the

following we will call the model of Eq. (3.1) the �0 gradient model. The formulation of Eq. (3.1)

assumes that x ∈Rn is a vectorized image where each column is stacked on top of each other to
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create a large vector. The same formulation of Eq. (3.1) can be used for 1-d signals by omitting

the vertical finite difference operator ∇y .

In Figs. 3.1,3.2 we show some examples of reconstruction of piece-wise constant signals. We

observe that the minimizers of TV generally differ from the �0 gradient model. Minimization of

the �0 gradient model of Eq. (3.1) is able to reconstruct genuine piece-wise constant signals, in

contrast to the TV prior, which does so only approximately.

(a) Noisy 1-d signal (b) TV reconstruction (c) �0 gradient reconstruction

Figure 3.1 – The original piece-wise constant signal (red dashed line) is corrupted with random

Gaussian noise of σ= 0.1 (left column). The TV reconstruction (middle column) reconstructs the

constant parts, however it adds transitional points between the plateaus (the non-differentiable

parts of the signal). The �0 gradient reconstruction recovers almost perfectly the original signal,

in particular the correct number of jumps.

The �0 gradient model has been successfully used in many applications that require edge-

preserving image smoothing, such as edge extraction, non-photorealistic rendering, clip-art

compression artifact removal, detail magnification and tone mapping [Xu et al., 2011; Storath

et al., 2014; Cheng et al., 2014; Nguyen and Brown, 2015; Ono, 2017]. In the following sections

we give a short overview of the state-of-the-art for solving the model of Eq. (3.1). We give

more details for the approach of [Xu et al., 2011], because it is the one we are based on for our

applications in chapters 4 and 5.

3.2 Algorithms

Notation

In the following we assume that in Eq. (3.1), A = I ∈Rn×n is the identity matrix. We combine the

two variables σ2 and γ into one regularization parameter λ := γσ2. Therefore, the problem of

Eq. (3.1) becomes

min
x

{
1

2

∥∥y−x
∥∥2

2 +λ‖∇x‖0

}
, ‖∇x‖0 := #

{
i : |∇x xi |+

∣∣∇y xi
∣∣ 	= 0

}
, ∇xi = (∇x xi ,∇y xi ). (3.2)
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(a) Noisy 2-d image (b) TV reconstruction, λ= 0.05 (c) �0 gradient reconstruction, λ =
0.05

(d) Noisy 2-d image (e) TV reconstruction, λ= 0.1 (f) �0 gradient reconstruction, λ= 0.1

(g) Noisy 2-d image (h) TV reconstruction, λ= 0.5 (i) �0 gradient reconstruction, λ= 0.5

(j) Noisy 2-d image (k) TV reconstruction, λ= 1 (l) �0 gradient reconstruction, λ= 1

Figure 3.2 – Image smoothing results on the noisy image created by [Farbman et al., 2008]

with difference values of the regularization parameter λ. We observe that the solution of the �0

gradient model is able to recover the original piece-wise constant signal for a suitable parameter

value. On the other hand, the TV approach, even though it denoises the signal, is still not able to

recover it, leading to smoothing artifacts around the edges.
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3.2.1 Variable Splitting [Xu et al., 2011]

The algorithm of [Xu et al., 2011] is based on the variable splitting approach of [Wang et al.,

2008]. The main idea is to introduce auxiliary variables hi and vi corresponding to the derivatives

∇x xi and ∇y xi , respectively. By defining

⎧⎨
⎩hi :=∇x xi , vi :=∇y xi

di := (hi , vi )
⇒‖∇x‖0 = ‖d‖1,0 =

{
i : ‖di‖1 	= 0

}
, d = {di }n

i=1 ,

the objective function becomes (see also section 2.4.2, Eq. (2.24))

min
x,d

{
1

2

∥∥y−x
∥∥2

2 +λ‖d‖1,0 +
μ

2
‖∇x−d‖2

2

}
, ‖∇x−d‖2

2 =
n∑

i=1
‖∇xi −di‖2

2 . (3.3)

Eq. (3.3) is solved by alternatively minimizing d and x by keeping the other variable fixed.

Fixing d, the optimization problem with respect to x is a quadratic

min
x

{
1

2

∥∥y−x
∥∥2

2 +
μ

2
‖∇x−d‖2

2

}
. (3.4)

Equating the gradient of Eq. (3.4) with respect to x to zero, we arrive at the following linear

system

(
I+μ∇�∇)

x = y+μ∇�d. (3.5)

The linear system of Eq. (3.5) can be efficiently solved with Fourier transform, because the matrix

∇�∇ is block circulant and can be diagonalized in Fourier space. Following the derivation of

section 2.4.2, the solution for x can be written as

x∗ = F−1 (
I+μ |U∇|2

)−1
F

(
y+μ∇�d

)
, |U∇|2 = F∇�∇F∗, (3.6)

where U∇ is a diagonal matrix containing the Fourier coefficients of the finite-difference operator

represented by ∇.

Fixing x, the optimization problem with respect to d is

min
d

{
λ‖d‖1,0 +

μ

2
‖∇x−d‖2

2

}
. (3.7)

Eq. (3.7) can be spatially decomposed and each element di can be estimated independently from
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each other. Eq. (3.7) can be written in an equivalent way

n∑
i=1

min
di

{E(di )} :=
n∑

i=1
min

di

{
λH(‖di‖1)+ μ

2
‖∇xi −di‖2

2

}
, di = (hi , vi ),

H(‖di‖1) =
⎧⎨
⎩1, ‖d‖1 = |hi |+ |vi | 	= 0,

0, otherwise.
(3.8)

The solution to Eq. (3.8) can be computed in closed form as shown in the following Lemma

from [Xu et al., 2011].

Lemma 3.2.1. Each sub-problem of Eq. (3.8) with respect to di , i = 1, . . . ,n reaches its minimum
at

d∗
i = (h∗

i , v∗
i ) =

⎧⎨
⎩(0,0), ‖∇xi‖2

2 = (∇x xi )2 + (∇y xi )2 ≤ 2λ/μ,

(∇x xi ,∇y xi ), otherwise.
(3.9)

Proof. For di 	= 0, we have

E(di 	= 0) = μ

2
‖∇xi −di‖2

2 +λ≥ E(di =∇xi ) =λ. (3.10)

For di = 0, we have

E(di = 0) = μ

2
‖∇xi‖2

2 . (3.11)

From Eqs. (3.10) and (3.11) we see that if
μ
2 ‖∇xi‖2

2 ≤ λ ⇒ ‖∇xi‖2
2 ≤ 2λ/μ then the optimal

solution is d∗
i = 0, otherwise d∗

i =∇xi .

The optimization algorithm of [Xu et al., 2011] follows the continuation scheme of [Wang et al.,

2008], where the parameter μ is increased in each iteration to speed up convergence. In [Xu et al.,

2011], only one iteration of the inner loop is done (see Alg. 2). The algorithm is summarized in

Alg. 4.

Algorithm 4: �0 Gradient Optimization of [Xu et al., 2011]

Input: y,λ,μ0,μmax,τ
Initialize : x ← y, μ←μ0, k ← 0
while μ≤μmax do

Update dk
i using Eq. (3.9) ;

Update xk using Eq. (3.6) ;

μ← τμ;k ← k +1 ;

end
Output: Final image x
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3.2.2 Coordinate Descent [Cheng et al., 2014]

The algorithm of [Cheng et al., 2014] for optimizing Eq. (3.2) is based on the coordinate descent

principle. Eq. (3.2) can be expanded as

min
x

n∑
i=1

{
1

2

(
yi −xi

)2 +λ
(‖∇x xi‖0 +

∥∥∇y xi
∥∥

0

)}
. (3.12)

Eq. (3.12) is solved with the following constraint: neighboring variables that have equal values

from previous iterations should be optimized together. Therefore, Eq. (3.12) has a modified form

min
x

m∑
j=1

{
1

2
n j

(
y j −x j

)2 +λ′ ∑
Gp∈N ( j )

l j ,p
∣∣x j −xp

∣∣
0

}
. (3.13)

In Eq. (3.13) the image y is assumed to be partitioned in a set of pixel groups G j , j = 1, . . . ,m.

Pixels in each group G j have the same smoothed value x j . n j denotes the number of pixels in

group G j . y j is the average value of the original pixels in group G j . N ( j ) denotes the set of

neighboring groups of G j . l j ,p denotes the boundary length between two neighboring groups G j

and Gp .

Eq. (3.13) is solved independently for each j = 1, . . . ,m. Afterwards, a merging step is performed

by checking whether the neighboring pixel sets x j and xp have equal values. If that is the case,

the sets G j and Gp are merged together as G j =G j ∪Gp and the new target y j is updated in an

online way together with N j . The complete algorithm is summarized in Alg. 5.

3.2.3 ADMM [Storath et al., 2014]

The work of [Storath et al., 2014] solves Eq. (3.2) using the alternating direction method of

multipliers (ADMM). The authors use the split

min
x

{
1

2

∥∥y−u
∥∥2

2 +λ‖∇x‖0

}
, s.t. x−u = 0. (3.14)

The augmented Lagrangian takes the form

L (x,u,v,μ) = 1

2

∥∥y−u
∥∥2

2 +λ‖∇x‖0 +v�(x−u)+ μ

2
‖x−u‖2

2 . (3.15)

By completing the square (see also Eq. (2.36)) the augmented Lagrangian takes the following

form

L (x,u,v,μ) = 1

2

∥∥y−u
∥∥2

2 +λ‖∇x‖0 +
μ

2

∥∥∥∥x−u+ v

μ

∥∥∥∥2

2
− μ

2

∥∥∥∥ v

μ

∥∥∥∥2

2
. (3.16)
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Algorithm 5: �0 Gradient Optimization of [Cheng et al., 2014]

Input: y,λ,α
Initialize : x ← y, λ′ ← 0, m ← n, {G j }m

j=1,G j = i , n j = 1

repeat
// coordinate descent step
for j = 1, . . . ,m do

Solve Eq. (3.13) ;

end
// fusion step
j ← 1 ;

while j < m do
forall the Gp ∈N ( j ) do

if xp == x j then
G j ←G j ∪Gp ;

y j ← (n j y j +np yp )/(n j +np ) ;

n j ← n j +np ;

m ← m −1 ;

Delete Gp , yp ,np ;

end
end
j ← j +1 ;

end
Find neighbors of every group and calculate their boundary lengths ;

λ′ ←λ′ +α ;

until λ′ >λ;

Output: Final image x that consists of piece-wise constant regions x j , j = 1, . . . ,m.

By defining the scaled dual variable z := v/μ, ADMM solves the following sub-problems alterna-

tively

xk+1 ∈ argmin
x

{
λ‖∇x‖0 +

μ

2

∥∥∥x−
(
uk −zk

)∥∥∥2

2

}
, (3.17)

uk+1 = argmin
u

{
1

2

∥∥y−u
∥∥2

2 +
μ

2

∥∥∥u−
(
xk+1 +zk

)∥∥∥2

2

}
, (3.18)

zk+1 = zk +
(
xk+1 −uk+1

)
. (3.19)

The first sub-problem (3.17) is a classical Potts problem, which for 1-d data can be solved fast

and exactly using dynamic programming [Friedrich et al., 2008]. For 2-d data, the classical

Potts problem is NP-hard [Boykov et al., 2001]. The authors in [Storath et al., 2014] use the

max-flow/min-cut algorithm of the GCOptimization library [Boykov et al., 2001].

The second sub-problem (3.18) is a standard Tikhonov quadratic that can be solved in closed

29



Chapter 3. �0 Gradient Model

form as

uk+1 = y+μ
(
xk+1 +zk

)
1+μ

. (3.20)

The algorithm is initialized with a small coupling parameter μ0 > 0, which is increased during

the iterations by a constant factor τ > 1. This enables x and u to evolve independently at the

beginning of the iterations, and to become close to each other in the end. The complete algorithm

is illustrated in Alg. 6.

Algorithm 6: �0 Gradient Optimization of [Storath et al., 2014]

Input: y,λ,μ0,τ,ε
Initialize : x ← y, z ← 0, μ←μ0

repeat
Update uk+1 by Eq. (3.20) ;

Update xk+1 by solving Eq. (3.17) ;

zk+1 = zk + (
xk+1 −uk+1

)
;

μ←μτ ;

until
∥∥xk+1 −uk+1

∥∥2
2 < ε;

Output: Final image x

3.2.4 Region Fusion [Nguyen and Brown, 2015]

The region fusion algorithm of [Nguyen and Brown, 2015] is similar in nature to the coordinate

descent method of [Cheng et al., 2014]. However, the authors of [Nguyen and Brown, 2015]

show better computational efficiency and monotonous decrease of the objective function. The

original problem of Eq. (3.2) can be re-written as

min
x

{
n∑

i=1

(
1

2

(
yi −xi

)2 + λ

2

∑
j∈N (i )

∣∣xi −x j
∣∣
0

)}
, (3.21)

where N (i ) is the neighboring set of pixel i .

At each step, the algorithm considers a pair of neighboring elements i and j . The contribution of

these elements in Eq. (3.21) is

E(xi , x j ) = min
xi ,x j

{
1

2

(
yi −xi

)2 + 1

2

(
y j −x j

)2 +λ
∣∣xi −x j

∣∣
0

}
. (3.22)

Two cases are distinguished: xi 	= x j and xi = x j .
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1. For xi 	= x j , Eq. (3.22) becomes

E(xi , x j ) = min
xi ,x j

{
1

2

(
yi −xi

)2 + 1

2

(
y j −x j

)2 +λ

}
,

E∗(xi , x j ) =λ,
(
x∗

i , x∗
j

)
= (

yi , y j
)

. (3.23)

2. For xi = x j , Eq. (3.22) becomes

E(xi ) = min
xi

{
1

2

(
yi −xi

)2 + 1

2

(
y j −xi

)2
}

,

E∗(xi ) = (
yi − y j

)2 /4,
(
x∗

i , x∗
j

)
= ((

yi + y j
)

/2,
(
yi + y j

)
/2

)
. (3.24)

Combining Eqs. (3.23) and (3.24) we arrive to the following solution

(xi , x j ) =
⎧⎨
⎩

(
yi+y j

2 ,
yi+y j

2

)
,

(
yi − y j

)2 ≤ 4λ,(
yi , y j

)
, otherwise.

(3.25)

Eq. (3.25) is the fusion criterion for the algorithm, that is, depending on the relation between

yi and y j , neighboring regions are either merged taking the new value of (yi + y j )/2 or they

remain unchanged. Initially, each group Gi of fused pixels contains only pixel i . The number

of elements in each group is denoted by wi and the number of elements connecting groups Gi

and G j is denoted by ci , j . yi stores the mean value of pixels of group Gi , which is initialized to

the original signal. In an intermediate step of the algorithm, after some fusion steps have been

performed, problem (3.22) becomes

min
xi ,x j

{ wi

2

(
xi − yi

)2 + w j

2

(
x j − y j

)2 +βci , j
∣∣xi −x j

∣∣
0

}
, 0 ≤β≤λ. (3.26)

The sub-problem (3.26) can be solved in an equivalent way to Eq. (3.22) yielding

(
xi , x j

)=
⎧⎨
⎩

(
wi yi+w j y j

wi+w j
,

wi yi+w j y j

wi+w j

)
, wi w j

(
yi − y j

)2 ≤ 2βci , j
(
wi +w j

)
,(

yi , y j
)

, otherwise.
(3.27)

Eq. (3.27) is used to decide if groups Gi and G j are fused together. If a fusion is performed, all

elements of G j are joined into Gi and the values for yi , wi are updated. The algorithm is repeated

until the auxiliary parameter β reaches the user-defined value λ. A summary of the algorithm is

given in Alg. 7.

31



Chapter 3. �0 Gradient Model

Algorithm 7: �0 Gradient Optimization of [Nguyen and Brown, 2015]

Input: y,λ
Initialize : x ← y, β← 0,Gi = i , wi = 1, Neighborhoods N (i ), ci , j , p ← n, k ← 0
repeat

i ← 1 ;

while i ≤ p do
forall the j ∈N (i ) do

if wi w j (yi − y j )2 ≤ 2βci , j (wi +w j ) then
Gi ←Gi ∪G j ;

yi ←
(
wi yi +w j y j

)
/
(
wi +w j

)
;

wi ← wi +w j ;

Remove j from N (i ) and delete ci , j ;

forall the k ∈N ( j ) \ {i } do
if k ∈N (i ) then

ci ,k ← ci ,k +c j ,k ;

ck,i ← ci ,k +c j ,k ;

else
N (i ) ←N (i )∪ {k} ;

N (k) ←N (k)∪ {i } ;

ci ,k = c j ,k , ck,i = c j ,k ;

end
Remove j from N (k) and delete ck, j ;

end
Delete G j ,N ( j ), w j ;

p ← p −1, i ← i +1 ;

end
end

end
k ← k +1 ;

b ← (k/K )γλ ;

until β>λ;

for i = 1 → p do
forall the j ∈Gi do

x j ← yi

end
end
Output: Final image x that consists of piece-wise constant regions x j , j = 1, . . . ,m.

3.2.5 Gradient Projection [Ono, 2017]

The algorithm of [Ono, 2017] reformulates the unconstrained problem (3.2) into a constrained

one

min
x

{
1

2

∥∥y−x
∥∥2

2

}
, s.t. ‖∇x‖0 ≤α, (3.28)
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where α is a user-defined parameter that corresponds to the degree of flatness of the solution x∗.

Eq. (3.28) is converted to a form where the alternating direction method of multipliers (ADMM)

can be applied. First the definition of the mixed �1,0 pseudo-norm is introduced [Ono, 2017].

Definition 3.2.2. Let w ∈RM and let G1, . . . ,GK 1 ≤ K ≤ M be index sets such that

• Gk ⊂ {1, . . . , M }, k = 1, . . . ,K ,

• Gk ∩Gl =�, k 	= l ,

• ∪K
k=1Gk = {1, . . . , M }.

Let wGk , k ∈ {1, . . . ,K } denote a subvector of w with entries specified by the index set Gk . Then,
the mixed �1,0 pseudo-norm is defined as

‖w‖G
1,0 := ∥∥(∥∥wG1

∥∥
1 , . . . ,

∥∥wGK

∥∥
1

)∥∥
0 . (3.29)

Essentially, the �1,0 pseudo-norm counts the number of subvectors whose �1 norm is not zero.

With this definition, the �0 gradient can be written as

‖∇x‖0 = ‖B∇x‖G
1,0 , (3.30)

where B ∈R2n×2n a diagonal matrix with binary entries that forces differences between opposite

boundaries to be zero. Here, the number of subvectors is n and each Gk contains the indices

corresponding to the vertical and horizontal differences at the k-th pixel. Using the new expression

for the �0 gradient, problem (3.28) can be formulated

min
x

{
1

2

∥∥y−x
∥∥2

2

}
, s.t ‖Bu‖G

1,0 ≤α, u =∇x. (3.31)

By defining the indicator function of the inequality constraint on the mixed �1,0 pseudo-norm as

ι{‖B·‖G
1,0≤α}(w) :=

⎧⎨
⎩0, ‖Bw‖G

1,0 ≤α,

∞, otherwise,
(3.32)

problem (3.31) can be reformulated as

min
x

{
1

2

∥∥y−x
∥∥2

2 + ι{‖B·‖G
1,0≤α}(u)

}
, s.t. u =∇x. (3.33)

Following the ADMM derivations of the previous algorithms, we arrive to the following ADMM
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iterations

xk+1 = argmin
x

{
1

2

∥∥y−x
∥∥2

2 +
μ

2

∥∥∥∇x− (uk −zk )
∥∥∥2

2
)

}
, (3.34)

uk+1 = argmin
u

{
ι{‖B·‖G

1,0≤α}(u)+ μ

2

∥∥∥u− (∇xk+1 +zk )
∥∥∥2

2
)

}
, (3.35)

zk+1 = zk +∇xk+1 −uk+1. (3.36)

Sub-problem (3.34) can be optimized with two Fourier transforms as in the case of the variable

splitting approach of [Xu et al., 2011]

x∗ = F−1 (
I+μ |U∇|2

)−1
F

(
y+μ∇�(uk −zk )

)
, |U∇|2 = F∇�∇F∗. (3.37)

Sub-problem (3.35) has also a closed form solution, which is given by the following proposi-

tion [Ono, 2017].

Proposition 3.2.3. Let w ∈RM , α ∈N+, S ∈RM×M a diagonal matrix with binary entries as in

Eq. (3.30) (therefore Sw =
(
w�

G1
, . . . ,w�

GK

)�
), with G1, . . . ,GK , 1 ≤ K ≤ M index sets satisfying the

conditions of Definition 3.2.2. We also assume that the vectors are sorted in descending order
with respect to their �2 norms by wG(1) , . . . ,wG(K ) ,

∥∥wG(1)

∥∥
2 ≥ ∥∥wG(2)

∥∥
2 ≥ ·· · ≥ ∥∥wG(K )

∥∥
2. For the

problem

u∗ ∈ argmin
u

1

2
‖u−w‖2

2 , s.t. ‖Su‖G
1,0 ≤α, (3.38)

one of the solutions is given by

u∗ =
⎧⎨
⎩w, ‖Su‖G

1,0 ≤α,

(ũ�
G1

· · · ũ�
GK

)�+ (I−S)u, otherwise,
(3.39)

where

ũGk :=
⎧⎨
⎩uGk , k ∈ {(1), . . . , (α)},

0 k ∈ {(α+1), . . . , (K )}.
(3.40)

Proof. We consider only the non-trivial case ‖Su‖G
1,0 >α. To satisfy the inequality constraint of

the �1,0 pseudo-norm in Eq. (3.38) at least K −α subvectors of S∗ have to be zero vectors (see

Eq. (3.30)). Moreover, any change of u∗ from w increases the value of the data fidelity term

1/2‖u−w‖2
2. Therefore, the values of the k-th subvector u∗

Gk
has to be either wGk or 0. The data

fidelity term can be expressed as

1

2
‖u−w‖2

2 =
1

2
‖S(u−w)‖2

2+
1

2
‖(I−S)(u−w)‖2

2 =
1

2

K∑
k=1

∥∥uGk −wGk

∥∥2
2+

1

2
‖(I−S)(u−w)‖2

2 .

(3.41)
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If we set uGk = 0 then the objective function is increased by wGk . Second, the second quadratic

term needs to be minimized, that is uGk = wGk for as many k as possible. Therefore, because

the subvectors are sorted in descending �2 norm, by setting uG(1) = wG(1) , . . . ,uG(α) = wG(α) and

uG(α+1) = 0, . . . ,uG(K ) = 0 we minimize the quadratic cost subject to the constraint ‖Su‖G
1,0 ≤α.

The ADMM procedure for the constrained �0 gradient algorithm is summarized in Alg. 8.

Algorithm 8: �0 Gradient Optimization of [Ono, 2017]

Input: y,α,μ0,τ,ε
Initialize : x ← y, z ← 0,u ←∇y, μ←μ0

while
∣∣∇xk −α

∣∣> ε do
Update uk+1 using Proposition 3.2.3 ;

Update xk+1 by solving Eq. (3.37) ;

zk+1 = zk +∇xk+1 −uk+1 ;

μ←μτ ;

end
Output: Final image x

3.3 Evaluation

In this section we perform a comparative evaluation of four �0 gradient optimization algo-

rithms [Xu et al., 2011; Storath et al., 2014; Nguyen and Brown, 2015; Ono, 2017] presented in

section 3.2. We follow a similar evaluation procedure as in chapter 2 and we apply the algorithms

to the problem of image denoising. This will also allow us to compare the two priors (TV and �0

gradient) on the same problem and analyze their individual characteristics.

We add noise of standard deviation σ= 0.1 to six images and we apply the algorithms to them.

We choose three real images and three cartoon images to compare the behaviour of the two priors

to different types of input with distinct characteristics. We expect that the �0 gradient prior will

produce better results compared to TV for the cartoon images, because these images better fulfill

the piece-wise constant assumptions of the �0 gradient prior. However, TV is expected to provide

better visual results compared to the �0 gradient prior on the real images, where the piece-wise

constant assumption does not hold.

Differently from section 2.5, we perform a grid search over the regularization parameter λ

for the methods of [Xu et al., 2011; Storath et al., 2014; Nguyen and Brown, 2015] and over

the gradient flatness α for the method of [Ono, 2017]. We select the parameter that obtains

the highest PSNR value between the recovered image and the original noise-free one. In

Figs. 3.3, 3.4, 3.5, 3.6, 3.7, 3.8 we show the recovered images of all the tested algorithms. In

Table 3.1 we summarize the performance and accuracy of the tested algorithms in terms of PSNR

values, number of gradients in the output, and running speeds.
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The algorithm of [Xu et al., 2011] produces a smoother result than the competing methods, closer

to the output of TV regularization. The algorithms of [Storath et al., 2014; Nguyen and Brown,

2015; Ono, 2017] yield more piece-wise constant results, especially in the cartoon images of

Figs. 3.6, 3.7, 3.8. This can be partially verified by the number of gradients in the output image,

see fourth column in Table 3.1. In most cases, the algorithm of [Xu et al., 2011] produces an

output with much more gradients than the other algorithms based on the �0 gradient prior. This

property of the algorithm of [Xu et al., 2011] may not be suitable for the recovery of genuinely

piece-wise constant signals, as we observe in Figs. 3.6, 3.7 3.8. However, it may be desirable in

applications of gradient fusion of real images, as we show in chapter 5.

The algorithms of [Storath et al., 2014; Nguyen and Brown, 2015; Ono, 2017] produce similar

results yielding solutions with the fewest number of gradients in all tested images. The methods

of [Storath et al., 2014] and [Nguyen and Brown, 2015] yield similar results for the same

parameter values. The gradient flatness parameter of [Ono, 2017], however, which denotes the

number of gradients in the output, is more intuitive for the user to tune according to the specific

imaging application at hand.

The approach of [Nguyen and Brown, 2015], even though it produces piece-wise constant output

in par with the methods of [Storath et al., 2014; Ono, 2017], in the case of the experiments on

real images it yields results that contain a very large number of gradients, see fourth column in

Table 3.1. The boundaries between the constant regions are extremely fine. This can be explained

by the fact that this algorithm is very similar to region growing image segmentation algorithms,

which try to faithfully retain color boundaries.

The TV approach yields superior results in terms of PSNR values for the experiments on real

images, see Figs 3.3, 3.4, 3.5. The TV prior removes noise in flat regions, while simultaneously

preserves important gradient information. On the other hand, the �0 gradient prior methods

produce images with visible piece-wise constant regions, a property which may not be desirable

for image denoising of real images. However, in Figs. 3.6, 3.7, 3.8 the �0 gradient-based methods

produce superior results compared to TV, due to the fact that the piece-wise constant assumption

of the original images holds.

The fastest algorithm is the method of [Nguyen and Brown, 2015] (implemented in C++),

which smooths an image in approximately one to two seconds, depending on the value of the

regularization parameter. The TV approach is the second fastest algorithm, followed by the

approach of [Xu et al., 2011]. The approaches of [Storath et al., 2014] and [Ono, 2017] are

computationally the most expensive. All methods, except the algorithm of [Nguyen and Brown,

2015] are implemented in MATLAB.

As a conclusion, we believe that if the goal of an application is to produce piece-wise constant

output, the algorithms of [Storath et al., 2014; Nguyen and Brown, 2015; Ono, 2017] are the most

suitable ones, yielding the solutions with the least number of gradients. The formulation of [Ono,

2017] is more intuitive than the others, because the regularization parameter corresponds to the
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degree of flatness of the output image. However, in gradient fusion applications, the approach

of [Xu et al., 2011] yields superior results. Another advantage of this algorithms is that it is easy

to implement and to modify according to the user’s need. For these reasons we decide to use the

algorithm of [Xu et al., 2011] for our applications in chapters 4 and 5.

Image Method PSNR # gradients Running time (seconds)

Fig. 3.3

[Xu et al., 2011] 24.04 243527 4.82
[Storath et al., 2014] 24.24 99795 105.19

[Nguyen and Brown, 2015] 23.65 283858 1.58
[Ono, 2017] 24.18 99961 105.25
TV (FISTA) 25.8 343980 2.73

Fig. 3.4

[Xu et al., 2011] 23.97 234231 5.18
[Storath et al., 2014] 23.73 112355 82.69

[Nguyen and Brown, 2015] 23.13 324372 3.06
[Ono, 2017] 23.84 150046 61.50
TV (FISTA) 24.61 326039 2.53

Fig. 3.5

[Xu et al., 2011] 25.37 148011 3.14
[Storath et al., 2014] 27.12 37929 64.56

[Nguyen and Brown, 2015] 26.05 172379 0.72
[Ono, 2017] 24.84 100034 54.51
TV (FISTA) 29.78 231964 1.56

Fig. 3.6

[Xu et al., 2011] 24.83 90546 3.56
[Storath et al., 2014] 25.65 55292 101.84

[Nguyen and Brown, 2015] 25.80 42134 0.88
[Ono, 2017] 25.18 40023 167.88
TV (FISTA) 24.84 293365 0.93

Fig. 3.7

[Xu et al., 2011] 27.68 66180 4.81
[Storath et al., 2014] 28.67 34312 130.77

[Nguyen and Brown, 2015] 28.82 28986 0.93
[Ono, 2017] 28.70 30054 219.23
TV (FISTA) 27.19 351310 1.24

Fig. 3.8

[Xu et al., 2011] 27.04 76662 3.66
[Storath et al., 2014] 28.22 35460 129.49

[Nguyen and Brown, 2015] 27.94 29879 1.34
[Ono, 2017] 27.69 40044 237.44
TV (FISTA) 27.42 319315 1.78

Table 3.1 – Comparison of the four �0 gradient optimization methods and FISTA on the problem

of image denoising. The methods of [Storath et al., 2014; Nguyen and Brown, 2015; Ono, 2017]

remove the largest number of gradients. They provide better PSNR values for the denoising of

cartoon images, while TV produces results with better PSNR for real images.
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Chapter 3. �0 Gradient Model

(a) Original input (b) Noisy input (c) TV (FISTA) λ= 0.05

(d) [Xu et al., 2011], λ= 0.01 (e) [Storath et al., 2014], λ= 0.05

(f) [Nguyen and Brown, 2015], λ= 0.05 (g) [Ono, 2017], α= 100000

Figure 3.3 – Image denoising results of the state-of-the-art algorithms based on the �0 gradient

model.

3.4 Conclusions

In this chapter we reviewed the �0 gradient prior and motivated its usefulness for reconstructing

genuine piece-wise constant signals. We showed that this prior performs better than the standard

TV prior in recovering piece-wise constant 1-d and 2-d signals. The �0 gradient prior finds

applications in edge-preserving image smoothing. In section 3.2 we reviewed algorithms for

solving the optimization problem of Eq. (3.2). In section 3.3 we presented image denoising results

for the reviewed state-of-the-art algorithms of [Xu et al., 2011; Storath et al., 2014; Nguyen and

Brown, 2015; Ono, 2017] and elaborated on their results. We conclude that each algorithm yields
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3.4. Conclusions

(a) Input (b) Noisy input (c) TV (FISTA) λ= 0.05

(d) [Xu et al., 2011], λ= 0.01 (e) [Storath et al., 2014], λ= 0.05

(f) [Nguyen and Brown, 2015], λ= 0.3 (g) [Ono, 2017], α= 150000

Figure 3.4 – Image denoising results of the state-of-the-art algorithms based on the �0 gradient

model.

different results, even with the same choice of parameters, due to the highly non-convex nature of

the optimization function.

The algorithm of [Nguyen and Brown, 2015] is the fastest method, and smooths an image of

resolution 720×480 in about a second, depending on the value of the regularization parameter.

The algorithms of [Storath et al., 2014; Nguyen and Brown, 2015; Ono, 2017] produce similar
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Chapter 3. �0 Gradient Model

(a) Input (b) Noisy input (c) TV (FISTA) λ= 0.1

(d) [Xu et al., 2011], λ= 0.01 (e) [Storath et al., 2014], λ= 0.05

(f) [Nguyen and Brown, 2015], λ= 0.3 (g) [Ono, 2017], α= 100000

Figure 3.5 – Image denoising results of the state-of-the-art algorithms based on the �0 gradient

model.

results, producing images with the fewest number of gradients. Finally, the approach of [Xu et al.,

2011] is the simplest to implement and also to modify according to the user’s needs. In addition,

it does not heavily penalize the number of gradient components on the final output, which makes

it a suitable method for image fusion applications. Therefore, we are based on this optimization

scheme for the applications in the following chapters.

In chapters 4, 5 we show how the �0 gradient prior can be successfully applied to two applications

yielding state-of-the-art results: Reflection removal from a single image (chapter 4) and haze

removal from visible-NIR image pairs (chapter 5).
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3.4. Conclusions

(a) Input (b) Noisy input (c) TV (FISTA) λ= 0.05

(d) [Xu et al., 2011], λ= 0.02 (e) [Storath et al., 2014], λ= 0.1

(f) [Nguyen and Brown, 2015], λ= 0.05 (g) [Ono, 2017], α= 25000

Figure 3.6 – Image denoising results of the state-of-the-art algorithms based on the �0 gradient

model.
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Chapter 3. �0 Gradient Model

(a) Input (b) Noisy input (c) TV (FISTA) λ= 0.1

(d) [Xu et al., 2011], λ= 0.02 (e) [Storath et al., 2014], λ= 0.05

(f) [Nguyen and Brown, 2015], λ= 0.05 (g) [Ono, 2017], α= 30000

Figure 3.7 – Image denoising results of the state-of-the-art algorithms based on the �0 gradient

model.
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(a) Input (b) Noisy input (c) TV (FISTA) λ= 0.05

(d) [Xu et al., 2011], λ= 0.02 (e) [Storath et al., 2014], λ= 0.05

(f) [Nguyen and Brown, 2015], λ= 0.05 (g) [Ono, 2017], α= 40000

Figure 3.8 – Image denoising results of the state-of-the-art algorithms based on the �0 gradient

model.
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4 Single Image Reflection Removal

In this chapter we present one image processing problem where the �0 gradient model can be

successfully applied yielding state-of-the-art results. In section 4.1 we give an introduction to

the problem of reflection removal from a single image and motivate the use of the �0 gradient

model. In section 4.2 we give a detailed description of the related work in single-image and

multiple-image reflection removal. In section 4.3 we present our reflection removal method

from a single image based on the �0 gradient model and provide justifications for our choices.

In section 4.4 we provide comparisons with state-of-the-art methods in single-image reflection

removal. Finally, in section 4.5 we conclude the chapter.

4.1 Introduction

Images taken through glass or windows often contain undesirable reflections. It is possible to

minimize their effect by using special hardware, multiple images, or manual post-processing.

For example, professional photographers use polarizing filters to mitigate, if not eliminate,

reflection artifacts. Similarly, using multiple photographs taken with small displacements makes

the problem easier to tackle [Gai et al., 2012; Guo et al., 2014; Li and Brown, 2013; Sarel and

Irani, 2004; Sinha et al., 2012; Sun et al., 2016; Szeliski et al., 2000; Xue et al., 2015]. However,

given the skill and resources of an average user, none of these methods is feasible. For everyday

photography done with consumer grade cameras, we need single-image reflection removal.

[Barrow and Tenenbaum, 1978] first presented a linear model assumption for an image Y that

contains reflections as a sum of two other images (or layers) as follows:

y = x+r, (4.1)

where y ∈Rn is the observed image in vector form, where each column is stacked on top of each

other. x,r are the transmission and reflection layers, respectively. Since we have one equation for

two unknowns, this problem is highly ill-posed. Methods to solve the problem have to impose

constraints based on assumptions from the physical world and prior knowledge.
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Chapter 4. Single Image Reflection Removal

Existing approaches for reflection removal from a single image rely on natural image priors

to formulate objective functions. Depending on the nature of these priors, all methods have

their specific limitations. We discuss these limitations with experiments conducted on synthetic

images.

Instead of trying to separate transmission and reflection from the original image, we develop an

algorithm whose output is an image where reflections are suppressed (see Fig. 4.1). This makes

the problem more tractable. We propose a novel and efficient optimization function, which is

based on an �0 prior on the gradient sparsity of the transmission layer. Additionally, we propose

a data fidelity term that penalizes the difference between the Laplacian of the input image and the

desired transmission layer. We show that our formulation provides better reflection suppression

(a) Original Image (b) Our result

Figure 4.1 – Our reflection suppression method applied on a real-world image taken through a

glass window. Notice how we succeed in suppressing the reflections and yet preserve the details

of the original image.

and color reproduction results than the state-of-the-art in single-image reflection removal on both

real and synthetic images. Our main contributions in this chapter are:

• A novel and computationally tractable single-image reflection suppression algorithm based

on an �0 gradient sparsity prior and on a Laplacian data fidelity term.

• Quantitative experiments on synthetic images that we create based on reflection model

assumptions. We show that we are better than the state-of-the-art by a significant margin.

• Better qualitative results in real-world images with respect to previous approaches in

single-image reflection removal.
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4.2. Background

4.2 Background

The first category of research in reflection removal uses multiple input images, while the second

performs single-image reflection removal.

4.2.1 Multiple-image Reflection Removal

A substantial amount of work on reflection removal relies on multiple captured images. The

works of [Kong et al., 2014] and [Schechner et al., 2000b] build upon a physical reflection model

and use several images taken with different polarization angles to estimate the reflection layer.

Similarly, [Farid and Adelson, 1999] use Independent Component Analysis to estimate the mixing

matrix of two images taken with different polarization angles.

[Agrawal et al., 2005] rely on two photos of the same scene, taken with and without a flash.

They use a gradient projection scheme based on a gradient coherence model that allows removal

of reflections and highlights from flash images. [Sirinukulwattana et al., 2015] exploit the fact

that the reflections vary in multiple images captured from slightly different viewpoints. They

impose a constraint on the disparity map which smooths specific areas of the reflection layer

while simultaneously preserving the sharpness of the transmission.

Some approaches rely on video sequences to decorrelate the motion between the transmission and

reflection layers [Sarel and Irani, 2004; Sinha et al., 2012; Szeliski et al., 2000]. [Xue et al., 2015]

utilize the motion differences to decompose the input image to an initial transmission and reflec-

tion layer. From the initial layers they extract motion fields. They repeat the process of updating

the transmission and reflection layers, and estimating the motion fields, until convergence. [Gai

et al., 2012] simultaneously estimate layer motions and linear mixing coefficients with a sparse

blind separation algorithm. [Guo et al., 2014] use rank constraints and structural priors to exploit

the correlation of the transmission layers from multiple images. In [Li and Brown, 2013; Sun

et al., 2016] the authors use SIFT-flow to calculate the motion from photos taken from different

view-points. Using a motion score they classify edges as belonging to either transmission or

reflection layers, which helps solve an optimization scheme to separate the layers.

4.2.2 Single-image Reflection Removal

Single-image reflection removal, which is the focus of this chapter, is of practical importance

because in most situations the user may not have access to multiple images. However, as stated

above, it is a highly ill-posed problem. Existing works therefore rely on sparse gradient priors to

distinguish between transmission and reflection edges [Levin and Weiss, 2007; Levin et al., 2004].

[Levin and Weiss, 2007] solve a constrained optimization problem by imposing a Laplacian

mixture prior over the image gradients. In their work though, user-intervention is required to

label image gradients as belonging to either the transmission or reflection layer.
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The work of [Li and Brown, 2014] automatically extracts the two layers by optimizing an objective

function which imposes a smooth gradient prior over the reflection layer and a sparse gradient

prior over the transmission. This gradient prior is based on the observation that reflections are

often less in focus, i.e., have weaker gradients, than the transmitted image. Similarly, [Wan

et al., 2016] compute the Depth of Field per pixel with the use of Kullback-Leibler divergence

to build reflection and transmission edge maps. With these maps they use the method of [Levin

and Weiss, 2007] to extract the two layers. The work of [Shih et al., 2015] tries to exploit

ghosting artifacts (double reflections) that are typical of images captured through a window in

order to solve a deblurring-based optimization problem. The ghosted reflection is modeled using

a double-impulse convolution kernel. For layer separation, the authors use an algorithm based on

Gaussian mixture models.

The performance of the methods that depend on only one image is, in general, limited in real-

world scenarios. This is to be expected, due to the highly ill-posed nature of the problem. In

addition, the methods proposed so far are often computationally inefficient. In this work, we

propose a method that suppresses reflections from a single input image and propose a solution

that is superior to the state-of-the-art.

4.3 Our Algorithm

We rely on two main observations in our method for reflection suppression. The first observation is

that, compared to transmission edges, reflection edges are of smaller magnitude and they are less

in focus. This is often true in real-life scenarios. The camera focuses on the background objects,

whose distance to the camera is usually different from the reflection components. Formally, we

can express our first assumption with the following image formation model [Li and Brown, 2014;

Schechner et al., 2000a]:

y = w◦x+ (1−w)◦ (k∗ r) , (4.2)

where ◦ denotes element-wise multiplication, k is the blurring kernel and ∗ denotes the convolu-

tion operation. w is a vector that weighs the contribution of the transmission layer at each pixel.

It is important to note here that for real images, w is not usually constant, but depends on the

lighting conditions and on the position of the camera relative to the image plane (see [Kong et al.,

2014] for a detailed discussion).

In the rest of the work we make the simplifying assumption that wi = w, i = 1, . . . ,n. Even

though this constant blending factor assumption can be incorrect in real-world scenarios, it is a

reasonable approximation that makes the problem tractable, considering that we only have one

image at our disposal from which to suppress reflection artifacts.

Humans have an uncanny ability to tell apart reflections in most cases. As illustrated in Fig. 4.1a,

the human visual system discounts the intensity modulations due to the reflection in the upper-
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right quadrant of the image. Humans rely on several visual cues for this, including, as we remark,

Gestalt continuity of structures in images [Ellis, 1938]. While harder to formalize per se, we use

this second observation to choose the prior term.

To account for these two observations, we build upon the successful image smoothing approach

of [Xu et al., 2011]. In their work, the authors smooth the image by imposing a constraint on the

number of non-zero gradients on the output. Their approach globally eliminates a substantial

amount of gradients of small magnitudes while simultaneously retaining large magnitude edges.

The optimization problem they solve has the form

x∗ = argmin
x

{
1

2

∥∥x−y
∥∥2

2 +λ‖∇x‖0

}
, ‖∇x‖0 = #

{
i : |∇x xi |+

∣∣∇y xi
∣∣ 	= 0

}
. (4.3)

The combination of the data fidelity term with the �0 prior on the image gradients ensures that

the algorithm removes edges in increasing order of magnitudes. The larger the regularization

parameter λ is, the more gradients are removed.

The formulation of Eq. (4.3) smooths the image maintaining the continuity of large structures.

However, it eliminates most of the high frequency details from the image, which is desirable for

smoothing, but not for reflection suppression. We want to not only preserve the Gestalt continuity

of large structures but also retain as much of the transmission layer details. We thus revisit the

data fidelity term.

To avoid losing important high frequency details from the image, we propose a Laplacian-based

data fidelity term to modify the objective function of Eq. (4.3). The Laplacian of an image is

defined as

L (y) =∇xx y+∇y y y, (4.4)

which is equivalent to a convolution with the 3×3 kernel kL = [0,1,0;1,−4,1;0,1,0]. A fidelity

term based on the Laplacian better enforces consistency in structures of fine details. Our proposed

optimization problem thus takes the following form:

x∗ = argmin
x

{
1

2

∥∥L (x)−L (y)
∥∥2

2 +λ‖∇x‖0

}
. (4.5)

We demonstrate the effect of our proposed method in Fig. 4.2. We create a synthetic blend of

the letters ‘T’ (Fig. 4.2a, transmission) and ‘R’ (Fig. 4.2b, reflection) with different types of

background texture. We use the model of Eq. (4.2) with w = 0.7 and k a Gaussian blur with

σ= 2. The resulting blend is shown in Fig. 4.2c. We compare our method (Fig. 4.2f) with the

approach of [Xu et al., 2011] (Fig. 4.2e). We also provide results for standard Total Variation

(TV) smoothing [Rudin et al., 1992] (Fig. 4.2d).

In Fig. 4.3 we show the superposed middle scan lines of Figures 4.2d, 4.2e, and 4.2f for a finer

visualization of the outputs. While conventional TV (l1-based) priors smooth edges, the �0-based
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(a) Transmission layer (b) Reflection layer (c) Synthetic blend, w = 0.7,σ= 2

(d) l1, λ= 0.5 (e) [Xu et al., 2011]

λ= 0.05
(f) Proposed, λ= 0.05

Figure 4.2 – Comparison of different smoothing techniques on a 2-d toy example. Fig. 4.2a and

Fig. 4.2b are combined to obtain Fig. 4.2c. Fig. 4.2d shows the result of l1 smoothing [Rudin

et al., 1992], Fig. 4.2e shows the result of [Xu et al., 2011], and Fig. 4.2f the result of our proposed

method. Our method is better able to retain the original texture content from the transmission

layer.

sparsity prior has the effect of flattening a signal in order to affect signal smoothness. We observe

that our proposed method with the Laplacian data fidelity term more faithfully represents strong

edges and detailed structures of the signal. At the same time, it retains more texture from the

transmission layer. The original approach of [Xu et al., 2011] drastically smooths image details,

even with very small regularization parameter values. This behavior results in severe loss of the

transmission layer’s original texture. The TV approach, on the other hand, uniformly reduces the

gradient magnitudes because of the soft thresholding operation. Even large magnitude edges are

smoothed out by increasing the regularization parameter. This is an unwanted effect in reflection

removal, where the goal is to maintain strong edges.

We solve the optimization problem in Eq. (4.5) with half-quadratic splitting as done by [Xu et al.,

2011], described in detail in chapter 3, section 3.2.1. Even though any other state-of-the-art

algorithm can be used to solve Eq. (4.5), the method of [Xu et al., 2011] is the easiest one to
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Figure 4.3 – A single scan-line from the middle of the synthetic blend of Fig. 4.2d, Fig. 4.2e, and

Fig. 4.2f overlapped one on top of the other. Note how our proposed method can suppress the

reflection component as well as or better than the method of [Xu et al., 2011].

modify and provides an excellent combination of accuracy and computational efficiency. As

described in section 3.2.1, we introduce auxiliary variables h and v, corresponding to ∇x x and

∇y x respectively. By defining d = [h;v] and ∇= [∇x ;∇y ], the objective function can be compactly

written as

x∗,d∗ = argmin
x,d

{
1

2

∥∥L (x)−L (y)
∥∥2

2 +λ‖d‖0 +
μ

2
‖∇x−d‖2

2

}
, (4.6)

where

‖d‖0 = ‖[h;v]‖0 = #{i : |hi |+ |vi | 	= 0} . (4.7)

The problem in Eq. (4.6) is solved by alternately minimizing over either d or x, while keeping

the other fixed. In the following, we provide the details on how to efficiently optimize each

sub-problem.
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4.3.1 Sub-problem 1

The optimization problem over x, keeping d fixed, is given by (see section 3.2.1)

x∗ = argmin
x

{
1

2

∥∥L (x)−L (y)
∥∥2

2 +
μ

2
‖∇x−d‖2

2

}
. (4.8)

The function is quadratic and can be solved analytically using the Fast Fourier Transform (FFT).

The FFT diagonalizes the Laplacian and gradient operators and the linear system is solved in the

Fourier domain with point-wise divisions.

However, using this approach a spatial shift can occur (also reported by [Li and Brown, 2014]),

because the Laplacian data fidelity term is insensitive to any global shift on the pixel values. In

other words, for any constant signal c ∈Rn , it holds L (x+c) =L (x). [Li and Brown, 2014] try

to compensate for this shift by re-normalizing the output to fall within a range. However, due

to the large dimensionality of the problem and numerical inconsistencies, a solution based on a

constant global shift is not suitable. This may explain the color shifts we observe in the results

of [Li and Brown, 2014] shown in Figs. 4.10, 4.11, 4.12, 4.13, 4.14.

To overcome this problem, we instead use gradient descent, applying ADAM [Kingma and Ba,

2014], an accelerated first-order gradient descent method, to minimize Eq. (4.8). The gradient of

the objective function in Eq. (4.8) is given by

∇T =L� (
L (x)−L (y)

)+μ∇� (∇x−d) , (4.9)

where L� and ∇� denote the transposed Laplacian and gradient operators, respectively.

4.3.2 Sub-problem 2

This sub-problem is equivalent to the second sub-problem in [Xu et al., 2011]. The objective

function over d is given by (see section 3.2.1)

d∗ = argmin
d

{
‖∇x−d‖2

2 +
2λ

β
‖d‖0

}
. (4.10)

The objective of Eq. (4.10) can be spatially decomposed over the elements of h and v and

efficiently optimized. For each pixel (i , j ) the analytic solution of Eq. (4.10) is given by

(hi , vi ) =
⎧⎨
⎩(0,0) , (∇x xi )2 + (∇y xi

)2 ≤ 2λ/β,(∇x xi ,∇y xi
)

, otherwise
. (4.11)

A proof of Eq. (4.11) is given by [Xu et al., 2011], see also section 3.2.1. We summarize our

proposed optimization method in Alg. 9.
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Algorithm 9: Reflection Suppression with Laplacian �0 Minimization

Input: y,λ,μ0,μmax,τ
Initialize : x ← y, μ←μ0

while μ≤μmax do
Update d using Eq. (4.11) ;

Update x using Adam and Eq. (4.9) ;

μ← τμ;
end
Output: Final image x

4.4 Experiments

As discussed in Section 4.2.2, there are only a few algorithms that attempt single-image reflection

removal. We compare our method against the state-of-the-art methods of [Li and Brown, 2014]

and [Wan et al., 2016] for a collection of synthetic and real-world images. Of the other methods,

the method of [Levin and Weiss, 2007] requires user labeling, while the method of [Shih et al.,

2015] is computationally intractable for the image sizes we use in our experiments (greater than

0.5 million pixels). Moreover, it assumes that the reflection image contains strong ghosting,

which does not cover all the real-world scenarios.

For the method of [Li and Brown, 2014] we fix the regularization parameter to λlb = 100. This

value is a good compromise between retaining transmission components and removing reflections

(see discussion in [Li and Brown, 2014]). The results of [Wan et al., 2016] were provided by the

authors using the default parameters described in their paper. For the Adam optimizer of our

method we use the default parameters as described by [Kingma and Ba, 2014].

For our algorithm, we fix the regularization parameter to λour s = 0.002. We observe empirically

that a range of values in the interval [0.001,0.005] is a good starting point for images with reflec-

tions. We show the effect of the regularization parameter on the output of our method in Fig. 4.4.

The larger the parameter, the more reflection components are removed. But simultaneously, more

details from the transmission layer are also lost. We fix the parameters of Alg. 9 to μ0 = 2λour s ,

μmax = 105 and τ= 2 as in [Xu et al., 2011]. Source code for our proposed method is available at

http://ivrl.epfl.ch/research/reflection_removal.

4.4.1 Synthetic Images

We create synthetic images to simulate reflections using the model of Eq. (4.2) with constant W =
w . We fix the kernel k to a Gaussian with σ= 2 and we use two blending weights w = {0.7,0.5}.

We compare our methods against the approaches of [Li and Brown, 2014] and [Wan et al., 2016].

In Fig. 4.5 we show the images we use as transmission (Figs. 4.5a, 4.5c) and reflection layers

(Figs. 4.5b, 4.5d) for the synthetic experiments. In Figs. 4.6, 4.7, 4.8, 4.9 we show the reflection

removal results of all the tested algorithms. Our method better suppresses the unwanted effect of
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(a) Input (b) Proposed, λ= 0.001

(c) Proposed, λ= 0.005 (d) Proposed, λ= 0.009

Figure 4.4 – Effect of the regularization parameter on our reflection suppression method. The

larger the parameter, the more reflection components are removed. However, more details from

the transmission layer are also lost. Best viewed on screen.

the reflection components compared to the competing methods. This is shown quantitatively in

Table 4.1 in terms of PSNR and SSIM, where we are better than the competing methods by a

significant margin.

The method of [Li and Brown, 2014] has the tendency to produce dark outputs and false colors

(see Figs. 4.6b, 4.7b, 4.8b, 4.9b), a fact that strongly affects its evaluation on the objective metrics.

The method of [Wan et al., 2016] better reproduces color, however it creates unwanted artifacts

and excessive smoothing in the transmission layer (see Figs. 4.6c, 4.7c, 4.8c, 4.9c).

Even in the limit case of w approaching 0.5, when all methods perform poorly, our method still

performs better than the state-of-the-art (see Figs. 4.7, 4.9). In this case, the reflection component

is as strong as the transmission and therefore is hard to suppress or remove. This is to be expected,

because all methods rely on the assumption that reflections are weaker and smoother than the

transmission signal. However, in real-world scenarios, these assumptions may not hold.
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(a) T1 (b) R1

(c) T2 (d) R2

Figure 4.5 – Images used as transmission (left column) and reflection layers (right column) for

the synthetic experiments.

4.4.2 Real-World Images

We provide results on real-world reflection images downloaded from the Internet. For these

images, the comparison can only be visual, since we do not have any ground truth. The results

from the methods considered are shown in Figs. 4.10, 4.11, 4.12, 4.13, 4.14. Similar to the

synthetic experiments, our algorithm is better able to suppress reflections and it preserves colors

in the transmission layer without producing additional artifacts. The method of [Li and Brown,

2014] produces dark images, often without maintaining color fidelity. The method of [Wan et al.,

2016] introduces artifacts and over-smooths parts of the transmission layer.
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(a) T1 +R1, w = 0.7,σ= 2 (b) [Li and Brown, 2014]

(c) [Wan et al., 2016] (d) Proposed

Figure 4.6 – Comparison of reflection removal methods on synthetic images with blending weight

w = 0.7. Compared to [Li and Brown, 2014] and [Wan et al., 2016] our method gives superior

color reproduction and reflection suppression results. Best viewed on screen.
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(a) T1 +R1, w = 0.5,σ= 2 (b) [Li and Brown, 2014]

(c) [Wan et al., 2016] (d) Proposed

Figure 4.7 – Comparison of reflection removal methods on synthetic images with blending weight

w = 0.5. Compared to [Li and Brown, 2014] and [Wan et al., 2016] our method gives superior

color reproduction and reflection suppression results. Best viewed on screen.
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(a) T2 +R2, w = 0.7,σ= 2 (b) [Li and Brown, 2014]

(c) [Wan et al., 2016] (d) Proposed

Figure 4.8 – Comparison of reflection removal methods on synthetic images with blending weight

w = 0.7. Compared to [Li and Brown, 2014] and [Wan et al., 2016] our method gives superior

color reproduction and reflection suppression results. Best viewed on screen.
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(a) T2 +R2, w = 0.5,σ= 2 (b) [Li and Brown, 2014]

(c) [Wan et al., 2016] (d) Proposed

Figure 4.9 – Comparison of reflection removal methods on synthetic images with blending weight

w = 0.5. Compared to [Li and Brown, 2014] and [Wan et al., 2016] our method gives superior

color reproduction and reflection suppression results. Best viewed on screen.
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(a) Input 1 (b) [Li and Brown, 2014]

(c) [Wan et al., 2016] (d) Proposed

Figure 4.10 – Comparison of reflection removal methods on real-world images taken from the

Internet. As in the case of artificial images, the method of [Li and Brown, 2014] suffers from

poor color reproduction, while the method of [Wan et al., 2016] over-smooths the image. Our

method gives superior color reproduction and reflection suppression results compared to both the

state-of-the-art techniques. Best viewed on screen.
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(a) Input 2 (b) [Li and Brown, 2014]

(c) [Wan et al., 2016] (d) Proposed

Figure 4.11 – Comparison of reflection removal methods on real-world images taken from the

Internet. As in the case of artificial images, the method of [Li and Brown, 2014] suffers from

poor color reproduction, while the method of [Wan et al., 2016] over-smooths the image. Our

method gives superior color reproduction and reflection suppression results compared to both the

state-of-the-art techniques. Best viewed on screen.
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(a) Input 3 (b) [Li and Brown, 2014]

(c) [Wan et al., 2016] (d) Proposed

Figure 4.12 – Comparison of reflection removal methods on real-world images taken from the

Internet. As in the case of artificial images, the method of [Li and Brown, 2014] suffers from

poor color reproduction, while the method of [Wan et al., 2016] over-smooths the image. Our

method gives superior color reproduction and reflection suppression results compared to both the

state-of-the-art techniques. Best viewed on screen.
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(a) Input 4 (b) [Li and Brown, 2014]

(c) [Wan et al., 2016] (d) Proposed

Figure 4.13 – Comparison of reflection removal methods on real-world images taken from the

Internet. As in the case of artificial images, the method of [Li and Brown, 2014] suffers from

poor color reproduction, while the method of [Wan et al., 2016] over-smooths the image. Our

method gives superior color reproduction and reflection suppression results compared to both the

state-of-the-art techniques. Best viewed on screen.
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(a) Input 5 (b) [Li and Brown, 2014]

(c) [Wan et al., 2016] (d) Proposed

Figure 4.14 – Comparison of reflection removal methods on real-world images taken from the

Internet. As in the case of artificial images, the method of [Li and Brown, 2014] suffers from

poor color reproduction, while the method of [Wan et al., 2016] over-smooths the image. Our

method gives superior color reproduction and reflection suppression results compared to both the

state-of-the-art techniques. Best viewed on screen.
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PSNR SSIM PSNR SSIM PSNR SSIM

Fig. 4.6a 20.15 0.89 18.33 0.86 20.37 0.93
Fig. 4.7a 15.61 0.77 15.63 0.72 15.72 0.81
Fig. 4.8a 14.78 0.62 20.17 0.93 22.35 0.96
Fig. 4.9a 14.15 0.55 17.76 0.85 18.09 0.89

[Li and Brown, 2014] [Wan et al., 2016] Proposed

Table 4.1 – PSNR and SSIM values for the synthetic experiments. In all cases our algorithm

performs better than the state-of-the-art by a significant margin.

In the cases where the reflections are strong and sharp, we observe that none of the tested

algorithms can suppress or remove them, because in such cases the assumptions reflection

removal algorithms make are not valid anymore. In Fig. 4.15 we show two examples of strong

reflections, where none of the algorithms is able to remove or suppress them.

(a) Input 1 (b) [Li and Brown, 2014] (c) [Wan et al., 2016] (d) Proposed

(e) Input 2 (f) [Li and Brown, 2014] (g) [Wan et al., 2016] (h) Proposed

Figure 4.15 – Failure cases in reflection removal. In this figure, we show the cases where our

technique fails to suppress reflections satisfactorily. We pose our results next to the results

from the state-of-the-art [Li and Brown, 2014; Wan et al., 2016] to show that they are equally

unsuccessful in removing reflections. This is due to the fact that the reflection components are

too strong to be distinguished from the main transmission layer. Best viewed on screen.

4.5 Conclusions

Reflection removal from a single image is a highly ill-posed problem. In order to take into

account visual continuity of reflection structures and simultaneously retain important details in

the image, we formulate our optimization problem using a Laplacian data fidelity term and an
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�0 prior term. We test our approach with experiments on artificial and real-world images and

compare our results against the state-of-the-art. Our approach performs better at suppressing

reflections than previous single-image reflection removal algorithms.

There is a trade-off between suppressing reflection artifacts and simultaneously retaining high-

frequency details. While we clearly outperform the state-of-the-art, we observe that suppressing

reflections from a single image remains a hard problem. There is still room to develop a general

solution that works for a wide range of images. In particular, it may be interesting to direct

future research on visual perception based reflection suppression. It may also help to have better

physical models of reflection phenomena.
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5 Haze Removal from Visible-NIR
Image Pairs

In this chapter we present a second imaging application where the �0 gradient model can be

successfully applied yielding state-of-the-art results. In section 5.1 we give an introduction to the

problem of haze removal from visible-NIR image pairs and motivate the use of the �0 gradient

model in this setting. In section 5.2 we give a detailed description of the related work in haze

removal based on a single image and on visible-NIR image pairs. In section 5.3 we present our

haze removal method based on the �0 gradient model and provide justifications for our choices.

In section 5.4 we provide comparisons with state-of-the-art methods in haze removal. Finally, in

section 5.5 we conclude the chapter.

5.1 Introduction

Landscape images usually contain haze due to the presence of dust, smoke or other dry particles

that absorb and scatter light. The scattered light is attenuated, causing a loss in contrast and detail

of the captured scene. The intensity of the scattered light is related to that of the incident light by

the photon’s wavelength λ and the size of the scattering particle. For particles of size smaller

than λ/10, light scattering follows Rayleigh’s law

Es ∝ E0

λ4 , (5.1)

where Es is the intensity of scattered light and E0 is the incident light. The effect of haze increases

with increasing distance between the observer and the object (see Fig. 5.1a). Removing haze is

desirable in consumer/computational photography, where it can significantly increase the contrast

of distant objects, making it visually more pleasing. In addition, it can benefit many computer

vision applications, such as remote sensing [Makarau et al., 2014] and video surveillance [Xie

et al., 2012].

Given a hazy color image y ∈Rn×3 in vector form, the general haze model at each pixel location
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i is given by [Fattal, 2008; Narasimhan and Nayar, 2002]

yc
i = ti xc

i + (1− ti ) Ac , c ∈ {R,G ,B}, (5.2)

where ti is the transmission map that describes the portion of light that reaches the camera, xi is

the scene radiance, and A ∈R3 is the air-light color, constant for the whole image.

(a) Visible image (b) Near-Infrared (NIR) image

(c) Our haze removal using visible and NIR image pairs

Figure 5.1 – Our haze removal algorithm applied to a hazy photograph. Notice the recovery of

detail in the upper half of the image as compared to the visible image.
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The first term ti xc
i describes the scene radiance and its decay in the medium, and the second

term (1− ti )Ac is due to scattered light and is responsible for the color shift in the final scene.

Assuming a homogeneous atmosphere, the transmission map can be expressed as ti = e−βdi ,

where β is the scattering coefficient and di is the scene depth.

Most of the existing approaches for haze removal are based on a single image and solve Eq. (5.2)

in two stages [Berman et al., 2016; Fattal, 2008; He et al., 2011; Ren et al., 2016; Tang et al.,

2014; Zhu et al., 2015]:

1. They estimate the transmission map ti and the air-light color A.

2. They solve for the scene radiance xi in closed-form directly from Eq. (5.2).

From Eq. (5.1) it is easy to see that scattering is significantly less in the Near-Infrared (NIR) than

in the visible spectrum, because of the longer NIR wavelengths (> 700nm). As a result, NIR

images exhibit significantly less attenuation, and retain contrast in distant regions (see upper

half of Fig. 5.1b). The additional details of the NIR image compared to the visible one can be

exploited to remove haze more accurately than in cases where only the visible image is used [Feng

et al., 2013; Schaul et al., 2009; Vanmali et al., 2015]. By using a visible-NIR image pair, we can

guide the scene radiance computation using the gradient information in the NIR image [Feng

et al., 2013].

We propose a novel algorithm for scene radiance estimation using visible-NIR image pairs

based on �0 gradient minimization. In Fig. 5.1c we show a haze removal example from our

algorithm using a visible-NIR image pair. Our approach is independent of the air-light color

and transmission estimation procedures. We show that our formulation provides accurate fusion

of visible and NIR information into the final scene radiance. We obtain superior results to the

state-of-the-art in both single-image and visible-NIR haze removal.

Our main contributions in this chapter are:

• A novel optimization objective for scene radiance estimation based on visible-NIR image

pairs with �0 gradient minimization. We show that our scene radiance estimation algorithm

qualitatively outperforms the state-of-the-art in single-image and visible-NIR haze removal.

• Quantitative analysis using an image fusion quality metric by [Xydeas and Petrovic, 2000]

and show that our algorithm out-performs the state-of-the-art in visible-NIR image haze

removal.

5.2 Background

We divide the related literature into two parts, the first dealing with single-image haze removal,

and the second dealing with haze removal with visible-NIR image pairs.
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5.2.1 Single Image Haze Removal

A substantial amount of haze removal research uses only visible light information, i.e., a single

color image. [Fattal, 2008] formulates a refined haze formation model that accounts for surface

shading. The solution of this model has the property that the resulting shading and transmission

functions are locally statistically uncorrelated. [Tan, 2008] proposes a solution to the single-image

haze removal problem based on two observations: haze-free images have increased contrast, and

air-light tends to be smooth. These two observations are formulated as an optimization function

using Markov-Random-Fields. [Tarel and Hautière, 2009] propose a fast visibility restoration

algorithm that can be applied in real-time applications, such as sign, lane-marking, and obstacle

detection from an in-vehicle camera. [Ancuti and Ancuti, 2013] use the initial hazy image to

derive two enhanced images that are fused using a Laplacian pyramid representation.

[He et al., 2011] propose the dark channel as a prior for air-light color and transmission estimation.

It is based on the observation that most local patches in haze-free outdoor images contain some

pixels which have very low intensities in at least one color channel. This prior has become the

basis for many haze removal algorithms that use a single image. In a different scheme, [Meng

et al., 2013] observe that the transmission function exhibits inherent boundary constraints. These

constraints are combined with a weighted l1-based contextual regularization to formulate an

optimization function that can be efficiently optimized with variable splitting techniques.

All the dark channel prior based methods suffer from the common shortcoming that they are

prone to err in choosing the prior from a white object that is not influenced by haze. There are

learning based approaches that partially overcome this limitation. [Tang et al., 2014] investigate

several haze-relevant features in a learning framework to identify the best feature combination

for haze removal. [Zhu et al., 2015] use an attenuation prior for single-image haze removal.

They create a linear model for the scene depth d under this prior and they learn the parameters

of the model with supervised learning. The deep learning approaches of [Cai et al., 2016; Ren

et al., 2016] train multi-scale convolutional neural networks to learn the mapping from the input

haze image to the transmission function, producing state-of-the-art results in single-image haze

removal.

5.2.2 Visible-NIR Haze Removal

NIR images contain significantly less haze than visible ones. This property can be used to fuse

together visible and NIR information for more accurate transmission, air-light color, and scene

radiance estimation. The output image contains detail that is transferred from the NIR image and

is not captured in the visible one (see upper half of Fig. 5.1c).

However, haze removal with visible-NIR image pairs has attracted less attention in the scientific

community due to the need of simultaneously acquiring visible and NIR images. However, the

NIR spectrum can easily be captured using off-the-shelf digital cameras with minor modifica-

tions [Fredembach and Süsstrunk, 2008], or through an RGBN camera that can simultaneously
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capture visible-NIR image pairs with a single sensor [Lu et al., 2009].123 The longer NIR wave-

lengths make it possible to acquire almost haze-free images in this spectrum, due to significantly

less scattering (see Eq. (5.1)).

[Schaul et al., 2009] were the first to combine visible and NIR images with a multi-resolution

approach based on the weighted-least-squares (WLS) framework. Their algorithm does not

require any light scattering model, however it often suffers from color shift artifacts. [Feng et al.,

2013] propose an air-light color estimation method by exploiting dissimilarities between the

NIR and other color bands, demonstrating better estimation than the dark channel prior. They

optimize for the haze-free image and the transmission map using an objection function that is

guided by an �1-based NIR gradient constraint. [Vanmali et al., 2015] propose a simple and

efficient algorithm for depth and air-light color estimation from visible-NIR image pairs. The

final image is computed in closed-form from the general haze model of Eq. (5.2).

In our work, we propose a novel objective function for scene radiance estimation with an �0

sparsity term. We penalize the gradient differences between the unknown scene radiance and the

NIR captured image. For the air-light color and transmission estimation we use the algorithm

of [Vanmali et al., 2015]. As we show in Figs. 5.3, 5.4, 5.5, 5.6 and in Section 5.4, our scene

radiance estimation algorithm in combination with the transmission and air-light color estimation

of [Vanmali et al., 2015] produces less hazy images with better color reproduction than the

competing methods.

5.3 Our Algorithm

We re-write the haze model of Eq. (5.2) in vector form as

y = t◦x+ (1− t)◦A, (5.3)

where, with a slight abuse of notation, the operator ◦ denotes the per-channel element-wise

product (t◦x)c = t◦xc and ((1− t)◦A)c = (1− t)Ac , c ∈ {R,G ,B}. Assuming the air-light color A

and transmission map t are known, we can solve for x as

x = y− (1− t)◦A

t
, (5.4)

where again here the divisions are per-channel element-wise. Eq. (5.4) provides a straightforward

data fidelity term for the unknown scene radiance,

D(x) = 1

2

∥∥∥∥x− y− (1− t)◦A

t

∥∥∥∥2

2
. (5.5)

1http://leica-geosystems.com/
2https://www.spectraldevices.com/
3http://www.teledynedalsa.com/
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Directly optimizing Eq. (5.5) would result in the trivial solution of Eq. (5.4). Therefore, we

regularize the objective of Eq. (5.5) by adding a regularization term that takes into account

the properties of the NIR image. We know that the NIR image contains more details, e.g.,

strong gradients, than the visible image in the parts of the scene where haze is more prominent.

Therefore, the final scene radiance should maintain as many strong gradients from the NIR

image as possible. From this observation, we propose a regularization term based on the gradient

sparsity difference between the unknown scene radiance and the NIR image

‖∇ (x−z)‖0 =#
{
i : |∇x (xi − zi )|+ ∣∣∇y (xi − zi )

∣∣ 	= 0
}

, (5.6)

where z ∈Rn×3 is the (grayscale) NIR image, duplicated three times to respect the dimensions of

the unknown color image x.

Using Eqs. (5.5), (5.6) we compute the scene radiance by solving the following optimization

problem

x∗ = argmin
x

{(D(x)+λ‖∇ (x−z)‖0)} . (5.7)

‖·‖0 counts the number of non-zero gradients of its argument. Note that, our goal is to keep as

many of the strong gradients of the NIR image z as possible. The regularization parameter λ

influences the number of NIR gradients retained in the final scene radiance, but not their intensity.

To efficiently solve Eq. (5.7), we substitute s = x− z ⇒ x = s+ z and we obtain the equivalent

problem

s∗ = argmin
s

{
1

2

∥∥∥∥s−
(

y− (1− t)◦A

t
−z

)∥∥∥∥2

2
+λ‖∇s‖0

}
. (5.8)

We solve Eq. (5.8) using the variable splitting approach of [Xu et al., 2011] as described in

chapter 3, section 3.2.1. The final scene radiance is then given by x∗ = s∗ +z. Let us note here

that even though any other state-of-the-art algorithm can be used to solve Eq. (4.5), the method

of [Xu et al., 2011] is the easiest one to modify and provides an excellent combination of accuracy

and computational efficiency.

To emphasize the benefits of our �0 minimization scheme, we compare our algorithm with the

standard Total Variation (TV) regularization [Rudin et al., 1992]. Optimization based on the TV

prior involves a soft-thresholding operation, which uniformly attenuates the gradient magnitudes

added to x. The attenuation is proportional to the value of the regularization parameter λ. This

is an unwanted effect, because in the haze removal problem the goal is to maintain the original

strong edges from the NIR image in the final scene radiance x, without any attenuation.

In Fig. 5.2 we show the results of applying TV regularization [Rudin et al., 1992] (Fig. 5.2c) and

our �0 regularization term (Fig. 5.2d) on a visible-NIR image pair (Figs. 5.2a, 5.2b). We can
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(a) Visible image (b) NIR image

(c) Result with TV (d) Our result with �0

(e) Zoomed upper half of TV result (f) Zoomed upper half of �0 result

Figure 5.2 – Haze removal results with TV regularization (Fig. 5.2c) and with our �0 regularization

term (Fig. 5.2d). Our �0 approach is able to recover more detail than TV, as can be seen in

Figs. 5.2e, 5.2f.

clearly see that the output of our �0 approach contains more details from the NIR image than the

output of TV regularization (see zoomed parts of the images in Figs. 5.2e and 5.2f).

After the optimization, the overall tone of the haze-free image x∗ may be darker than the input

visible image as observed in [Feng et al., 2013]. Therefore, we apply a simple post-processing

step to brighten the tones, particularly on the haze-free regions of the image. We apply a gamma
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correction with γ< 1 to brighten the overall tones

x∗γ =
(
x∗

)γ . (5.9)

We compute the luminance channel l∗ of x∗ by converting it to the LAB-CIE color space. We

compute the final scene radiance by

xout = l∗ ◦x∗ + (
1− l∗

)◦x∗γ, (5.10)

where again here the operator ◦ denotes the per-channel element-wise product. After this post-

processing step, the haze-free (usually darker) regions of the image are brightened and the hazy

ones (usually brighter) remain unchanged.

5.3.1 Air-light Color and Transmission Estimation

Our algorithm is independent of the air-light and transmission estimation method. However, it

is important to note that an accurate air-light color and transmission estimation procedure is

necessary for any optimization-based scene radiance estimation algorithm to produce visually

accurate haze-free images. In Figs. 5.3, 5.4, 5.5, 5.6 we show results of our algorithm in

combination with the transmission estimation methods of [He et al., 2011; Ren et al., 2016;

Vanmali et al., 2015]. We observe that the method of [Vanmali et al., 2015], which uses both

visible and NIR information for transmission estimation, provides, in general, more accurate

results than the remaining methods. The colors of the input image are more faithfully reproduced.

The method of [He et al., 2011] almost always overestimates the intensity of the air-light color,

producing unrealistic over-saturated results, especially in the blue regions of the images. The

method of [Ren et al., 2016] provides relatively accurate estimation, however in some cases also

produces over-saturated colors. Therefore, we choose to use the algorithm of [Vanmali et al.,

2015] for our experimental evaluation.

We summarize our proposed haze removal algorithm in Alg. 10.

Algorithm 10: Haze Removal with l0 Gradient Sparsity Regularization

Input: y ∈Rn×3,z ∈Rn ,λ ∈R

Compute t, d and A as in [Vanmali et al., 2015] ;

Compute z∗ from Eq. (5.8) ;

Compute xc,∗ = zc,∗ +z, c ∈ {R,G ,B} ;

Output: xout from Eqs. (5.9), (5.10)
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(a) RGB (b) NIR

(c) Ours with [He et al., 2011] (d) Ours with [Ren et al., 2016]

(e) Ours with [Vanmali et al., 2015]

Figure 5.3 – Qualitative comparison of transmission estimation algorithms using our proposed

scene radiance estimation. The method of [Vanmali et al., 2015] is in general more accurate with

faithful color reproduction. The methods of [He et al., 2011; Ren et al., 2016] result in unrealistic

over-saturated colors, particularly on the sky regions of the image.

5.4 Experiments

We compare our algorithm against the state-of-the-art in single and visible-NIR image haze

removal. We compare against two methods based on visible-NIR image pairs, the multi-resolution

image fusion algorithm of Schaul et al. (MIF) [Schaul et al., 2009] and the NIR-based transmission

estimation method of Vanmali et al. (NIRT) [Vanmali et al., 2015]. We include in our comparison

two methods based on a single image, the dark channel prior method of He et al. (DCP) [He

et al., 2011] and the multi-scale convolutional network approach of Ren et al. (MSCNN) [Ren
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(a) RGB (b) NIR

(c) Ours with [He et al., 2011] (d) Ours with [Ren et al., 2016]

(e) Ours with [Vanmali et al., 2015]

Figure 5.4 – Qualitative comparison of transmission estimation algorithms using our proposed

scene radiance estimation. The method of [Vanmali et al., 2015] is in general more accurate with

faithful color reproduction. The methods of [He et al., 2011; Ren et al., 2016] result in unrealistic

over-saturated colors, particularly on the sky regions of the image.

et al., 2016]. Of all the methods tested only NIRT [Vanmali et al., 2015] uses NIR information

for air-light color and transmission estimation. All methods, apart from MIF [Schaul et al., 2009],

compute the scene radiance in closed form directly from Eq. (5.2). Despite being a prominent

method in the literature we surveyed, we are unable to compare with the method of [Feng et al.,

2013], because the authors have not made the code publicly available and the method is not

reproducible from the information provided in the paper.

In all the images tested we use λ= 0.005 for the �0 minimization procedure and γ= 0.7 for the
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(a) RGB (b) NIR

(c) Ours with [He et al., 2011] (d) Ours with [Ren et al., 2016]

(e) Ours with [Vanmali et al., 2015]

Figure 5.5 – Qualitative comparison of transmission estimation algorithms using our proposed

scene radiance estimation. The method of [Vanmali et al., 2015] is in general more accurate with

faithful color reproduction. The methods of [He et al., 2011; Ren et al., 2016] result in unrealistic

over-saturated colors, particularly on the sky regions of the image.

post-processing step.

5.4.1 Qualitative Evaluation

In Figs. 5.7, 5.8, 5.9, 5.10, 5.11, 5.12 we show qualitative results on several hazy images taken

from the RGB-NIR dataset of [Brown and Süsstrunk, 2011]. Our algorithm is able to accurately

remove haze and introduce details using the gradients from the NIR image. This behaviour is

clearly seen in the mountain regions of all the tested images. In these parts haze is more prominent
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(a) RGB (b) NIR

(c) Ours with [He et al., 2011] (d) Ours with [Ren et al., 2016]

(e) Ours with [Vanmali et al., 2015]

Figure 5.6 – Qualitative comparison of transmission estimation algorithms using our proposed

scene radiance estimation. The method of [Vanmali et al., 2015] is in general more accurate with

faithful color reproduction. The methods of [He et al., 2011; Ren et al., 2016] result in unrealistic

over-saturated colors, particularly on the sky regions of the image.

and significantly attenuates detail and contrast. The method of [He et al., 2011] produces false

colors with an evident blue/purple hue in almost all tested images. The algorithm overestimates

the intensity of the air-light color, which is the reason for the unnatural and overly saturated

output colors. In contrast to He et al. [He et al., 2011], the learning algorithm of [Ren et al., 2016]

performs accurate transmission estimation without overestimating the air-light color. However, it

is not able to produce sufficiently haze-free images with increased detail, contrast, and saturation.

This lack of contrast and detail is more evident in the mountain and sky regions of the tested

images.
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(a) RGB (b) NIR

(c) DCP [He et al., 2011] (d) MSCNN [Ren et al., 2016]

(e) MIF [Schaul et al., 2009] (f) NIRT [Vanmali et al., 2015]

(g) Ours

Figure 5.7 – Qualitative comparison with the state-of-the-art in single and visible-NIR haze

removal. DCP [He et al., 2011] and MSCNN [Ren et al., 2016] are based on a single image,

while MIF [Schaul et al., 2009] and NIRT [Vanmali et al., 2015] use visible-NIR image pairs.

Our algorithm is able to faithfully reproduce colors while adding sufficient detail from the NIR

image to the output.
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(a) RGB (b) NIR

(c) DCP [He et al., 2011] (d) MSCNN [Ren et al., 2016]

(e) MIF [Schaul et al., 2009] (f) NIRT [Vanmali et al., 2015]

(g) Ours

Figure 5.8 – Qualitative comparison with the state-of-the-art in single and visible-NIR haze

removal. DCP [He et al., 2011] and MSCNN [Ren et al., 2016] are based on a single image,

while MIF [Schaul et al., 2009] and NIRT [Vanmali et al., 2015] use visible-NIR image pairs.

Our algorithm is able to faithfully reproduce colors while adding sufficient detail from the NIR

image to the output.
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5.4. Experiments

(a) RGB (b) NIR

(c) DCP [He et al., 2011] (d) MSCNN [Ren et al., 2016]

(e) MIF [Schaul et al., 2009] (f) NIRT [Vanmali et al., 2015]

(g) Ours

Figure 5.9 – Qualitative comparison with the state-of-the-art in single and visible-NIR haze

removal. DCP [He et al., 2011] and MSCNN [Ren et al., 2016] are based on a single image,

while MIF [Schaul et al., 2009] and NIRT [Vanmali et al., 2015] use visible-NIR image pairs.

Our algorithm is able to faithfully reproduce colors while adding sufficient detail from the NIR

image to the output.
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(a) RGB (b) NIR

(c) DCP [He et al., 2011] (d) MSCNN [Ren et al., 2016]

(e) MIF [Schaul et al., 2009] (f) NIRT [Vanmali et al., 2015]

(g) Ours

Figure 5.10 – Qualitative comparison with the state-of-the-art in single and visible-NIR haze

removal. DCP [He et al., 2011] and MSCNN [Ren et al., 2016] are based on a single image,

while MIF [Schaul et al., 2009] and NIRT [Vanmali et al., 2015] use visible-NIR image pairs.

Our algorithm is able to faithfully reproduce colors while adding sufficient detail from the NIR

image to the output.
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5.4. Experiments

(a) RGB (b) NIR

(c) DCP [He et al., 2011] (d) MSCNN [Ren et al., 2016]

(e) MIF [Schaul et al., 2009] (f) NIRT [Vanmali et al., 2015]

(g) Ours

Figure 5.11 – Qualitative comparison with the state-of-the-art in single and visible-NIR haze

removal. DCP [He et al., 2011] and MSCNN [Ren et al., 2016] are based on a single image,

while MIF [Schaul et al., 2009] and NIRT [Vanmali et al., 2015] use visible-NIR image pairs.

Our algorithm is able to faithfully reproduce colors while adding sufficient detail from the NIR

image to the output.
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(a) RGB (b) NIR

(c) DCP [He et al., 2011] (d) MSCNN [Ren et al., 2016]

(e) MIF [Schaul et al., 2009] (f) NIRT [Vanmali et al., 2015]

(g) Ours

Figure 5.12 – Qualitative comparison with the state-of-the-art in single and visible-NIR haze

removal. DCP [He et al., 2011] and MSCNN [Ren et al., 2016] are based on a single image,

while MIF [Schaul et al., 2009] and NIRT [Vanmali et al., 2015] use visible-NIR image pairs.

Our algorithm is able to faithfully reproduce colors while adding sufficient detail from the NIR

image to the output.
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5.4. Experiments

(a) RGB (b) NIR

(c) DCP [He et al., 2011] (d) MSCNN [Ren et al., 2016]

(e) MIF [Schaul et al., 2009] (f) NIRT [Vanmali et al., 2015]

(g) Ours

Figure 5.13 – Qualitative comparison with the state-of-the-art in single and visible-NIR haze

removal. DCP [He et al., 2011] and MSCNN [Ren et al., 2016] are based on a single image,

while MIF [Schaul et al., 2009] and NIRT [Vanmali et al., 2015] use visible-NIR image pairs.

Our algorithm is able to faithfully reproduce colors while adding sufficient detail from the NIR

image to the output.
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(a) RGB (b) NIR

(c) DCP [He et al., 2011] (d) MSCNN [Ren et al., 2016]

(e) MIF [Schaul et al., 2009] (f) NIRT [Vanmali et al., 2015]

(g) Ours

Figure 5.14 – Qualitative comparison with the state-of-the-art in single and visible-NIR haze

removal. DCP [He et al., 2011] and MSCNN [Ren et al., 2016] are based on a single image,

while MIF [Schaul et al., 2009] and NIRT [Vanmali et al., 2015] use visible-NIR image pairs.

Our algorithm is able to faithfully reproduce colors while adding sufficient detail from the NIR

image to the output.
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5.4. Experiments

(a) RGB (b) NIR

(c) DCP [He et al., 2011] (d) MSCNN [Ren et al., 2016]

(e) MIF [Schaul et al., 2009] (f) NIRT [Vanmali et al., 2015]

(g) Ours

Figure 5.15 – Qualitative comparison with the state-of-the-art in single and visible-NIR haze

removal. DCP [He et al., 2011] and MSCNN [Ren et al., 2016] are based on a single image,

while MIF [Schaul et al., 2009] and NIRT [Vanmali et al., 2015] use visible-NIR image pairs.

Our algorithm is able to faithfully reproduce colors while adding sufficient detail from the NIR

image to the output.
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(a) RGB (b) NIR

(c) DCP [He et al., 2011] (d) MSCNN [Ren et al., 2016]

(e) MIF [Schaul et al., 2009] (f) NIRT [Vanmali et al., 2015]

(g) Ours

Figure 5.16 – Qualitative comparison with the state-of-the-art in single and visible-NIR haze

removal. DCP [He et al., 2011] and MSCNN [Ren et al., 2016] are based on a single image,

while MIF [Schaul et al., 2009] and NIRT [Vanmali et al., 2015] use visible-NIR image pairs.

Our algorithm is able to faithfully reproduce colors while adding sufficient detail from the NIR

image to the output.
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On the contrary, the visible-NIR methods of [Schaul et al., 2009] and [Vanmali et al., 2015]

produce haze-free images with increased contrast and detail that is provided by the NIR image.

However, we observe some artifacts in the results of the two algorithms. [Schaul et al., 2009] use

the WLS filter in their pipeline, which often creates halo artifacts in the output haze-free image.

In some cases the algorithm produces unnatural looking images by aggressively blending strong

gradients from the NIR image into the final result. The method of [Vanmali et al., 2015] has the

tendency to incorrectly represent the green color in the output image. In some cases the blue

parts (mountains and sky) of the images have an unnatural blueish hue.

In contrast to the above methods, our algorithm is able to blend sufficient detail from the NIR

image into the final output and, at the same time, to faithfully reproduce colors.

5.4.2 Quantitative Evaluation

We quantitatively compare our method against the state-of-the-art methods of [Schaul et al.,

2009] and [Vanmali et al., 2015] that use visible-NIR image pairs for haze removal. We use the

well cited perceptual image fusion performance measure of [Xydeas and Petrovic, 2000]. This

measure calculates how well the edge strength and orientation values of a pixel are represented in

the fused image.

The resulting performance scores on the tested images of Figs. 5.7, 5.8, 5.9, 5.10, 5.11, 5.12 are

shown in Table 5.1. In the last row we show the average performance score of each algorithm

across all tested images together with its standard deviation. In most of the images our algorithm

gives higher scores. Our algorithm also performs the best, on average, across all tested images,

obtaining also the smallest standard deviation. This shows that our scene radiance estimation

method based on �0 gradient minimization is better able to combine visible and NIR information

in the final haze-free image than the competing methods.

There are some cases where our algorithm is not able to sufficiently remove haze, even with the

additional information from the NIR image. In Figs. 5.17, 5.18 we show two failure cases, where

our method does not perform too well, but no worse than the other algorithms. No approach is

able to sufficiently remove haze in these challenging cases.

5.5 Conclusions

We present a novel algorithm for haze removal from visible-NIR image pairs. Capturing a scene in

the NIR spectrum results in an image with significantly less haze than its visible counterpart. This

property of the NIR can be exploited for accurate transmission and scene radiance estimation.

We propose a novel optimization objective for scene radiance estimation using visible-NIR

image pairs based on �0 gradient minimization. Our optimization objective blends information

from both the visible and the NIR image, resulting in an increase of detail and contrast with

faithfully reproduced colors. We evaluate our approach both quantitatively and qualitatively on
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Image

MIF [Schaul et al., 2009] NIRT [Vanmali et al., 2015] Ours

0.3154 0.4436 0.5283

0.6188 0.6539 0.7090

0.5460 0.4716 0.5339

0.3709 0.4907 0.5265

0.5225 0.5044 0.5500

0.4737 0.4977 0.5429

0.4851 0.4388 0.4927

0.4404 0.3919 0.4534

0.4466 0.4843 0.5078

0.3212 0.4775 0.5591

mean (std) 0.4541(0.0976) 0.4854(0.0682) 0.5404(0.0668)

Table 5.1 – Perceptual performance scores of the state-of-the-art visible-NIR haze removal

algorithms using the method of [Xydeas and Petrovic, 2000]. In most of the images, our

algorithm gives better quality scores and obtains the best overall average score.
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5.5. Conclusions

(a) RGB (b) DCP [He et al., 2011]

(c) MSCNN [Ren et al., 2016] (d) MIF [Schaul et al., 2009]

(e) NIRT [Vanmali et al., 2015] (f) Ours

Figure 5.17 – Failure case of the state-of-the-art in single and visible-NIR haze removal. None of

the algorithms is able to sufficiently remove the haze component from these challenging images.
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(a) RGB (b) DCP [He et al., 2011]

(c) MSCNN [Ren et al., 2016] (d) MIF [Schaul et al., 2009]

(e) NIRT [Vanmali et al., 2015] (f) Ours

Figure 5.18 – Failure case of the state-of-the-art in single and visible-NIR haze removal. None of

the algorithms is able to sufficiently remove the haze component from these challenging images.
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5.5. Conclusions

several real-world hazy images and show that it is more effective in removing haze than the

state-of-the-art.
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6 Conclusions

In this thesis we motivated the importance of linear inverse problems in imaging applications.

Many imaging applications such denoising, inpainting and super-resolution can be cast as linear

inverse problems and solved using standard optimization techniques that have been proposed over

the last years. In chapter 2 we reviewed three state-of-the-art algorithms for solving common

linear inverse problems. We also stated the importance of the Total Variation (TV) prior for many

imaging applications, due to the properties of convexity and its ability to maintain important

image structures. We evaluated the presented algorithms in terms of speed and quality on the TV

denoising application and discussed their relative advantages and disadvantages.

In chapter 3 we investigated another image prior, the �0 gradient counting prior. We showed

with synthetic 1-d and 2-d examples that the �0 gradient prior is more suitable than TV for the

recovery of genuinely piece-wise constant signals. We reviewed the state-of-the-art optimization

algorithms that have been proposed in the literature to solve the objective criterion based on

the �0 gradient prior. We compared these algorithms quantitatively in the application of image

denoising and discussed in detail their individual characteristics.

In chapters 4 and 5 we presented two imaging applications where the �0 gradient prior can

be successfully applied yielding state-of-the-art results. One such application is single-image

reflection removal, where the goal is to separate unwanted reflections from images taken through

windows or glass. In this application, we showed that the standard �0 gradient model with a

modified data fidelity term based on the Laplacian operator can be used to remove reflections

from images in many real-world scenarios. The Laplacian-based data fidelity term avoids over-

smoothing of the resulting image and enables us to extract only the most significant gradients

from the captured reflection image, smoothing-out the unwanted reflection components. We

conducted extensive experiments on synthetic and real-world images and we showed that our

algorithm qualitatively outperforms the state-of-the-art in single-image reflection removal.

Another application is haze removal from visible-NIR image pairs. Due to the longer wavelengths

of NIR, an image taken in the NIR spectrum suffers significantly less from haze artifacts than an

image captured in the visible spectrum. We exploited this fact to propose a novel optimization
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framework where we imposed the �0 gradient prior on the difference between the output haze-free

image and its NIR counterpart. The main observation is that NIR images are haze-free, therefore,

by imposing the �0 gradient prior we ensure that we transfer most of the important details from

the NIR image to the output. Combined with an accurate air-light estimation algorithm, we were

able to successfully remove haze from many real-world images, while at the same time faithfully

reproducing the color of the original scene. Extensive evaluations showed that our algorithm

outperforms the state-of-the-art in haze removal, both from a single image and from visible-NIR

image pairs.

This thesis showed that the �0 gradient prior can be successfully applied to imaging applications

yielding state-of-the-art results. However, we note that there are linear inverse problems where

the �0 gradient prior may not be suitable. One such case is the denoising problem, where the

TV prior performs better, see discussions in chapters 2 and 3. The �0 gradient prior makes the

assumption that the output image is piece-wise constant, a property which may not be necessarily

true for several applications of inverse problems. Despite that, we believe that interesting

applications exist that deal with genuinely piece-wise constant signals and can benefit from this

prior. Examples may include satellite and medical imaging, and remote sensing.

The optimization problem based on the �0 gradient prior is highly non-convex. Therefore, each

optimization algorithm finds a different local minimum of the objective function. How to evaluate

the quality of the different local minima is an open problem, in particular when the output is

an image. Furthermore, it is difficult to establish a relationship between the local minima and

the value of the regularization parameter. This calls for new objective quality metrics that can

compare different outputs. Optimizing the �0 gradient prior model is computationally more

expensive compared to the TV prior. Research can be directed to develop efficient algorithms

that can run on large real-world images.

Another possible direction for future research would be to investigate imaging problems where

fusion from different acquisitions is necessary. The �0 gradient prior can be potentially useful

in this setting, where fusion of gradient information is necessary for the computation of the

final result, as is the case with our second application of haze removal. With this prior, accurate

transfer of details from different sources can be combined together.

Finally, outside the domain of 2-d imaging, there are other applications of signal processing

where piece-wise constant signals are common. These problems can significantly benefit from

the use of the �0 gradient prior, where step detection in the signal is necessary. Examples of such

problems include statistical process control [Page, 1955], geophysics (where the problem is to

segment a well-log recording into stratigraphic zones [Gill, 1970]), genetics (where the problem

is that of separating microarray data into similar copy-number regimes [Snijders et al., 2001]),

and biophysics (where the problem is that of detecting state transitions in a molecular machine as

recorded in time-position traces [Sowa et al., 2005]).

In the two appendices, we presented two works in another field, that of Document Analysis.
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In the first Appendix we presented a novel seam-carving application for text-line extraction on

color and gray-scale documents and showed state-of-the-art results. In the second Appendix

we presented a new word spotting dataset for the French language based on the works of the

Swiss-French writer C.F. Ramuz.
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A Text Line Extraction for Documents

A.1 Introduction

An important step in the handwriting recognition process is that of text line extraction: it aims at

extracting individual text lines from the text regions of the manuscript page. It is an essential

preprocessing step for many applications, such as word spotting, keyword searching, and script

alignment and recognition. We propose a binarization-free text line extraction method based on

seam carving, an algorithm that has been applied to image resizing [Avidan and Shamir, 2007].

Our goal is to compute separating seams between two consecutive text lines without cutting

through line components. Seam carving is a suitable algorithm for this application, because it

computes minimum energy seams in an image. In our problem, high-energy regions correspond

to text components and low-energy regions correspond to paper or parchment background.

However, unconstrained seam carving does not take into account any prior knowledge about the

text layout of the manuscript page. Therefore, the computed seams are likely to pass through

gaps between multiple text lines, if these are the lowest energy regions of the neighboring image

space. By constraining the seam computation between two consecutive text lines, we are able to

generate a separating seam that does not assign text parts to wrong lines. To address this problem,

we use a modified version of the projection profile matching approach of [Liwicki et al., 2007].

This method creates medial seams that can successfully approximate the orientation of each text

line (see Fig. A.1).

An important property of our method is that it can be directly applied to a grayscale manuscript

page without any prior binarization. The generated seams can be overlaid on the original color

page, as shown in Fig. A.1. This property gives a major advantage to our method, because even

the most robust algorithm can produce unreliable results when applied to a binary image. The

reason is that, depending on the quality of the manuscript page, the information loss introduced

by the binarization procedure can be substantial. An example is shown in Fig. A.2, where we

apply our algorithm to the original grayscale manuscript and its binary version computed with the

adaptive algorithm of [Sauvola and Pietikäinen, 2000]. Due to the low quality of the manuscript,
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Figure A.1 – Examples of computed medial seams (blue) and separating seams (red) on an extract

of the work Aline of C.F. Ramuz.

(a) Seam results using color input. (b) Seam results using binary input.

Figure A.2 – A comparison of our algorithm on color and binary input. The extensive information

loss renders our algorithm unreliable for separating seam computation.

the binarization method results in extensive loss of information, thus rendering non-applicable

any algorithm based on a binary input.

Our algorithm is general and can be applied to manuscripts of different languages, handwritings

and time periods. We conduct experiments on the pages of the work Aline of the important

Swiss-French writer Charles-Ferdinand Ramuz (see Fig. A.3 for an extract of a page). We are

able to obtain very high text line separation accuracy in this challenging collection. Additional

experimental evaluation conducted on the diverse dataset of [Saabni et al., 2014] shows that we

can obtain state-of-the-art results for color and grayscale text line extraction.

A.2 Related Work

Most of the state-of-the-art text line extraction approaches operate on a binary image of the

historical manuscript, because the location of the text is known and the extraction process

becomes more efficient. The works of [Marti and Bunke, 2001; Bulacu et al., 2007] are based on

horizontal projection profile analysis, with additional post-processing steps based on properties of

the text connected components. The approaches proposed in [Louloudis et al., 2008; Likforman-

Sulem et al., 1995] are based on the Hough transform, which detects straight lines in images.

Smearing methods are proposed in [Wong and Wahl, 1982; Shi and Govindaraju, 2004; Nikolaou

et al., 2010], where the goal is to group together homogeneous blocks of the manuscript page.

One method, based on dynamic programming, computes separating seams with minimum cost
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Figure A.3 – Extract from a page of Aline, p. 46, C.F. Ramuz.

between two consecutive lines [Liwicki et al., 2007] and has been extensively used in automatic

transcription and ground truth creation of historical manuscripts [Fischer et al., 2009, 2010].

Other methods address the problem of multi-orientation by using anisotropic filters and active

contours over detected ridges [Bukhari et al., 2009, 2011]. A similar approach is proposed

in [Nicolaou and Gatos, 2009], where local minima tracers are used to split an image into text

lines. A general method for multi-oriented text line extraction on Arabic documents based on

image meshing is proposed in [Ouwayed and Belaïd, 2012].

Lately, four approaches were proposed that do not necessitate binarization and work directly

on color manuscript pages. In [Garz et al., 2012], text lines are extracted based on feature

classification from interest points of the original manuscript image. The authors in [Garz et al.,

2013] extend the above algorithm to handle curved text lines. The hybrid approach of [Baechler

et al., 2013] extracts text lines from layout analysis results and refines them with the help of the

binary version of the manuscript. The above three approaches are proposed within the HisDoc

project [Fischer et al., 2012a].

Our method is closely related to the fourth method proposed in [Saabni et al., 2014], where the

authors use a two-stage procedure to extract text lines from a grayscale image. First, seam carving

is used to generate the medial seams of the manuscript page. The input to the optimization

procedure is the grayscale geodesic distance transform, in which each pixel’s value is its shortest

path length to the nearest background pixel [Toivanen, 1996]. In a second step, seam seeds

are generated and a greedy algorithm is applied, which propagates these seeds to generate two

separating seams: one above and one below the medial seam. These separating seams define the

upper and lower boundaries of the text line. Our algorithm differs from the above approach in the

sense that we apply seam carving to directly compute the separating seams and not the medial

ones. This results in a clearer separation of text lines with no cuts through letter components,

which is a common phenomenon with the greedy approach of [Saabni et al., 2014]. Furthermore,
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the use of seam carving for medial seam computation as in [Saabni et al., 2014] can result in

seams that jump over neighboring lines, especially in cases where the gaps between words are

large compared to the distance between two consecutive text lines. Our histogram matching

approach, however, is more robust, as it avoids jumping over neighboring lines while following

the multiple orientation of the text.

A.3 Our Approach

Our proposed method consists of two stages:

1. Medial seam computation using a projection profile matching approach similar to [Liwicki

et al., 2007].

2. Separating seam computation using a modification of the seam carving procedure [Avidan

and Shamir, 2007].

In the following two sections we describe these two stages in detail. We use the convention that

an image I ∈Rn×m converted to grayscale has n rows and m columns. The notation Ii , j denotes

the image value at the i -th row and j -th column. The coordinate system has its origin at the upper

left corner of the image.

A.3.1 Medial Seam Computation

Our medial seam computation method is inspired by the projection profile matching approach

of [Liwicki et al., 2007]. We split the page vertically into r slices, each one of width w = �m/r �.
We apply the Sobel operator to I to compute its edge image S ∈Rn×m . We calculate smoothed

horizontal projection profiles Pc
g of S in each slice independently:

P c
i =

k+w−1∑
j=k

Si , j , Pc = {P c
i }n

i=1, Pc
g = g (Pc ),

c = 1, . . . ,r, k ∈ {1,1+w, . . . ,1+ (r −1)w}, (A.1)

where g is a cubic spline smoothing filter. We denote the local maxima locations of the c-th

profile by Lc
h , h = 1, . . . , l and those of (c +1)-th by Lc+1

h′ , h′ = 1, . . . , l ′. Here, l and l ′ denote the,

potentially different, number of maxima found at profiles c and c +1 respectively. For each

maximum location of profile c, we find the closest maximum location of profile c +1 and for

each maximum location of profile c +1, we find the closest maximum location of profile c:

match(Lc
h) = argmin

Lc+1
h′

|Lc
h −Lc+1

h′ |, h = 1, . . . , l , (A.2)

match(Lc+1
h′ ) = argmin

Lc
h

|Lc+1
h′ −Lc

h |, h′ = 1, . . . , l ′. (A.3)
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If the above matched locations in (A.2) and (A.3) agree, they are connected with a line. The

above procedure is repeated until all slices are processed. The text line locations can now be

represented in matrix form Lh, j , h = 1, . . . , l , j = 1, . . . ,m, where each element Lh, j contains the

i -th coordinate of the h-th line, and l is the final number of lines found.

The proposed method creates piece-wise linear seams that approximate the medial axis of the

text lines in the manuscript page. Any two consecutive seams define a region in which the seam

carving computation is constrained. This constraint enforces the separating seam to pass between

two consecutive text lines, and thus, it prevents it from assigning text parts to wrong lines.

A.3.2 Separating Seam Computation

We adapt the seam carving algorithm proposed in [Avidan and Shamir, 2007] to compute the

separating seams. We include the regional constraints of the computed medial seams and modify

the seam computation so that it can handle non-rectangular image regions. The energy map is the

derivative image of the grayscale manuscript page:

Ei , j =
∣∣∣∣∣

Iσi , j+1 − Iσi , j−1

2

∣∣∣∣∣+
∣∣∣∣∣

Iσi+1, j − Iσi−1, j

2

∣∣∣∣∣ , (A.4)

where Iσ is the original grayscale image smoothed with a Gaussian filter of standard deviation

σ. On this map, high-energy regions correspond to text components and low-energy regions

correspond to parchment background.

Let us denote the energy map between two text lines by Eh = EJ, where J is a two-dimensional

grid of width m, where the j -th column contains all the intermediate i coordinates between two

text line locations, that is, J j = {Lh, j , . . . ,Lh+1, j }T ,h = 1, . . . , l −1, j = 1, . . . ,m. A seam that passes

horizontally through an image grid Eh can be defined as

sh = {sh, j }m
j=1 = {(yh( j ), j )}m

j=1,

|yh( j )− yh( j −1)| ≤ 1, yh( j ) = Lh, j , . . . ,Lh+1, j , (A.5)

where yh : [1, . . . ,m] → [Lh, j , . . . ,Lh+1, j ]. The seam computation is done using dynamic program-

ming in a similar way to [Avidan and Shamir, 2007]. We look for the optimal seam in the image

grid Eh that minimizes the following constrained optimization problem:

s∗h = argmin
sh

m∑
j=1

Esh, j , s.t. Lh, j ≤ yh( j ) ≤ Lh+1, j . (A.6)

The first step is to traverse the image grid Eh from left to right and to compute the cumulative
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Collection Parameters
r b σ

Al-Majid-A 1/2 4/4 0.05/0.005 0/0
Al-Majid-B 4 0.005 0.5

Wadod-A spanish 3 0.0005 0
Wadod-A arabic 1/2/3 4/4/4 0.015/0.005/0.0005 0/0/0

Wadod-B 4 0.001 0.1
AUB-(A,B) 4 0.001 0

Thomas Jefferson 4 0.001 0
Aline 8 0.0003 3

Table A.1 – Parameter values on the various datasets.

minimum energy M for all possible connected seams for each pixel location (yh( j ), j ):

Myh ( j ),1 = Eyh ( j ),1,

Myh ( j ), j = Eyh ( j ), j +min

⎧⎪⎨
⎪⎩

Myh ( j )−1, j−1

Myh ( j ), j−1

Myh ( j )+1, j−1

. (A.7)

The minimum value of the last column in M will indicate the end of the minimal connected

horizontal seam. In the second step we traverse the cumulative energy M backwards to find the

path of the optimal seam. The above procedure is repeated for each image grid Eh , until the

whole manuscript page is processed.

A.3.3 Parameter Selection

The parameters of our algorithm are the number of slices r for the medial seam computation, the

smoothing parameter b of the cubic spline filter (function csaps in MATLAB) and the standard

deviation σ of the Gaussian filter for the gradient image computation. In Table A.1 we show

the selected values for the above parameters on the applied datasets. There is no automatic way

to tune these parameters, because they depend on the type of manuscript under investigation.

Different parameters were used inside the collections due to the different type of pages contained

in them1 (see Section A.4.1 for more details on the datasets).

The standard deviation σ does not heavily affect the algorithm’s accuracy. A positive value can be

used when the manuscript images contain some amount of bleed-through noise, which can result

in a more robust separating seam computation. The number of slices r depends on the image

resolution and text layout. A value of r = 4 works relatively well for an average manuscript page.

In the case of Aline, the value of r = 8 is used due to the higher resolution of the image and the

different layout: many text lines span only part of the page width. The smoothing parameter b

1The different subsets are available in the README file of our code available in our research page http://ivrg.epfl.

ch/research/handwriting_recognition/text_line_extraction.
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Collection Pages Lines Language
Al-Majid-A/B 96/7 2043/60 Arabic

Wadod-A/B 70/29 1229/211 Arabic-Spanish

AUB-A/B 40/13 391/87 English

Thomas Jefferson 9 123 English

Aline 91 2906 French

Table A.2 – Details of the datasets used in our experiments.

depends on the handwriting and script complexity. Heavy smoothing would create fewer local

maxima, resulting in merged text lines. On the other hand, insufficient smoothing would create

additional medial seams between text, resulting in non-robust text lines.

A.4 Experimental Evaluation

A.4.1 Datasets

We conduct experiments on the original manuscript pages of the work Aline by the Swiss-French

writer Charles-Ferdinand Ramuz. We obtained it from the Bibliothèque Cantonale et Universitaire

of Lausanne (BCU)2. In order to show the applicability of our method to diverse manuscript

pages, we also apply our algorithm to the dataset of [Saabni et al., 2014], which is organized in

four collections and contains 215 manuscript pages in Arabic (Al-Majid and Wadod), Spanish

(Wadod) and English (AUB and Thomas Jefferson). Finally, we compare our algorithm with

the state-of-the-art method of [Saabni et al., 2014] on a smaller dataset similar to the one above.

We received it from the authors of [Saabni et al., 2014], along with their generated seams on it.

The characteristics of all the datasets are shown in Table A.2, where the indices A,B denote the

original dataset of [Saabni et al., 2014] and the smaller one, respectively. We decided to compare

only with the method of [Saabni et al., 2014], because this is the most related algorithm to our

method. In contrast to [Baechler et al., 2013], it does not depend on any learning procedure that

requires training and test data.

A.4.2 Results

The first evaluation of the text line extraction experiments is done manually by visually comparing

the generated separating seams with the available ground truth. We also compare our algorithm

with the method of [Saabni et al., 2014] on the two main datasets (except Aline) of Table A.2 using

the automatic evaluation protocol of [Saabni et al., 2014] for grayscale text line extraction. For

the purposes of the manual evaluation, we distinguish between three types of seams, according to

their accuracy:

1. Type I seams that pass between two consecutive text lines without cutting through any text

2http://www.bcu-lausanne.ch/. Due to copyright reasons, the manuscript pages are not available online.
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(a) Type I seams. (b) Type II seams. (c) Type III seam.

Figure A.4 – The three seam types generated by our algorithm.

(a) Computed seams with our approach. (b) Computed seams with the approach of [Saabni et al.,

2014].

Figure A.5 – Comparison on a sample page of Aline.

components. Only these seams correspond to perfect text line separation.

2. Type II seams that cut through letter components or assign punctuation marks to the wrong

line. These seams contain some false information about text line parts, but they are not

highly inaccurate.

3. Type III seams that cut through text lines and assign word parts to the wrong line. These

seams are highly inaccurate, since they contain false information about the current text

line.

In Fig. A.4 we show examples of the three seam types generated by our algorithm. In the last

row of Table A.3 we show results obtained by our algorithm on Aline. Most of the type II seams

assign punctuation marks to the wrong line (see Fig. A.4b) and only seven are the ones that cut

through letter components. The manuscript of Aline contains words between text lines, which

always belong to the lower one. Most of the type III seams are of this category (see Fig. A.4c).

Only in two cases of standard text layout did the seams assign text parts to the wrong lines. In

four cases, two lines are merged together and only when one of them contains just few words.

[Saabni et al., 2014] gave us the output of their algorithm on a page sample from Aline. In

Fig. A.5 we show the generated seams from the two algorithms. The method of [Saabni et al.,

2014] cannot cope with partial text lines and words between lines, missing them completely (see

Fig. A.5b). Our algorithm, however, is able to handle such situations, which are very frequent in

manuscript pages (see Fig. A.5a).

The results of our algorithm on the dataset of [Saabni et al., 2014] are shown in Table A.3. As in

the dataset of Aline, most of the type II seams assign punctuation marks on the wrong line. This

is evident in the Arabic script of the Al-Majid-A and Wadod-A collections (see Figs. A.6a, A.6b).

In these cases, the algorithm would need to take into account language-dependent information
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Seam Type
Collection I II III

Al-Majid-A 93.6% 6% 0.4%
Wadod-A 64.4% 35.3% 0.3%
AUB-A 76.4% 23.6% 0%

Thomas Jefferson 54.4% 45.6% 0%
Aline 91.5% 4.9% 3.6%

Table A.3 – Manual evaluation of our approach on the dataset of [Saabni et al., 2014].

(a) Al-Majid-A (b) Wadod-A

(c) AUB-A (d) Thomas Jefferson

Figure A.6 – Type II seams on the dataset of [Saabni et al., 2014].

in order to be able to correct for these failures. We observe that a fair amount of type II seams

occurs in the collections of AUB-A and Thomas Jefferson. Most of the type II seams in the AUB

collection assign punctuation marks to the wrong lines (see Fig. A.6c). In the Thomas Jefferson

collection, most of the seams cut through letter components, due to the low resolution of the

images and the existence of large ascenders and descenders in the script (see in Fig. A.6d the

second seam). Again, as in the manuscript of Aline, we observe that only few type III seams are

generated, and exclusively in pages of Arabic script. English and Spanish pages do not contain

any seam of this type.

In Table A.4 we present a comparison between our approach and the method of [Saabni et al.,

2014] on the smaller dataset of Table A.2. The results of our method are similar to the ones on

the larger dataset of [Saabni et al., 2014]: We obtain type III seams only on Arabic script and

most of the type II seams incorrectly assign punctuation marks. We consistently outperform the

method of [Saabni et al., 2014] on all seam types and on all data collections.

We compare both algorithms using the automatic evaluation protocol of [Saabni et al., 2014] on

the two datasets of Table A.2. The protocol uses a binary image to compute labels of the text

line extraction results. The same procedure is used to label the ground truth text lines. The final

accuracy is computed as the average overlap between the ground truth labels and the text line

extraction labels. The resulting text line extraction accuracy is shown in Table A.5. The results in

107



Appendix A. Text Line Extraction for Documents

Seam Type
Collection I II III

Ours [Saabni et al., 2014] Ours [Saabni et al., 2014] Ours [Saabni et al., 2014]

Al-Majid-B 98.2% 69.9% 1.8% 26.4% 0% 3.7%
Wadod-B 78% 53.9% 21.5% 45.6% 0.5% 0.5%
AUB-B 92% 53.9% 8% 43.4% 0% 2.7%

Table A.4 – Manual comparison on the smaller dataset of Table A.2.

Accuracy
Collection Ours [Saabni et al., 2014]

Al-Majid-A/B 99.30% / 99.97% 97.59% / 98.19%
Wadod-A/B 99.04% / 99.87% 98.35% / 97.53%
AUB-A/B 99.75% / 99.97% 98.05% / 96.15%

Thomas Jefferson 97.75% 95.21%

Table A.5 – Comparison with the evaluation protocol of [Saabni et al., 2014].

the third column for the large dataset were taken directly from [Saabni et al., 2014]. We observe

the same behavior as in the manual evaluation of Table A.4, where we consistently outperform

the algorithm of [Saabni et al., 2014] in all data collections. By comparing the two Tables, we can

see that the type III seams mainly affect the accuracy of a text line extraction algorithm, while the

type II seams only slightly influence the result. This is the case in the AUB-B collection, where

our algorithm does not produce any type III seams, in contrast to [Saabni et al., 2014], where

their algorithm misses two text lines that do not span the whole page width.

A.5 Conclusion and Future Work

We propose a novel text line extraction algorithm for grayscale or color scans of historical

manuscripts based on seam carving. We constrain the seam computation between two consecutive

text lines using a histogram matching procedure. As a result, we are able to generate robust

seams that do not cut through line components. We obtain state-of-the-art results on diverse

manuscript pages without any prior binarization. The code of our algorithm together with our

generated seams for the dataset of [Saabni et al., 2014] can be downloaded from our research

page http://ivrg.epfl.ch/research/handwriting_recognition/text_line_extraction.

The performance of our algorithm is dependent on the medial seam computation. Cases may arise

where the number of local maxima is not equal for some pairs of adjacent slices. This does not

pose any problem in our algorithm, because we match local maxima that agree in both directions.

Only in few cases we encountered matching problems between local maxima, and these can be

easily overcome with different selection of the parameters. An analytic evaluation of the medial

seam computation step and its performance correlation with the separating seam computation

will be investigated in future work.
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B A Handwritten French Dataset for
Word Spotting - CFRAMUZ

B.1 Introduction

Word spotting is the problem of retrieving instances of a word given as query in a dataset of

document pages. It has emerged as a more tractable alternative to word recognition for document

indexing. Word spotting does not rely on word annotations, however these are needed to evaluate

different techniques. The emergence of word spotting leads to an increased need for challenging

datasets with word-level annotations in order to test the accuracy of new or existing approaches.

There are several word spotting datasets available online. The IAM handwriting database [Marti

and Bunke, 2002] contains forms of unconstrained handwritten text written by 657 writers. It

is used mainly for word recognition, however it contains box coordinates over words. The

IFN/ENIT dataset [Pechwitz et al., 2002] is a dataset in the Arabic language that can be used for

word spotting, even though it targets mainly word recognition applications. Another dataset is the

CVL-database [Kleber et al., 2013] containing seven different handwritten texts (one German and

six English texts) from 311 different writers. The dataset is suitable for writer retrieval, writer

identification and word spotting.

Historical handwritten datasets exist in several languages. A recent historical dataset is the

HADARA80P [Pantke et al., 2014], which contains 80 pages from a historical Arabic manuscript

together with complete ground-truth for segmentation-free word spotting. Historical datasets

exist also in Latin [Fischer et al., 2011] and German [Fischer et al., 2012b] and can be partially

used for word spotting on line level. However, they do not contain comprehensive ground-truth on

word level. One of the most popular historical word spotting datasets is the George Washington

dataset [Lavrenko et al., 2004; Fischer et al., 2012b], which contains 20 pages from a collection

of letters from George Washington [was, 1741–1799]. It contains bounding boxes for 4894 words

in total. The 5CofM dataset [Almazán et al., 2012a] contains scanned marriage licenses of the

Barcelona Cathedral between 1451 and 1905. The ground-truth contains 50 pages from one

volume written by the same writer.
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To the best of our knowledge, the only dataset available for the french language is the Rimes

dataset [Augustin et al., 2006], which was created to evaluate systems of recognition and indexing

of handwritten letters sent by postal mail or fax. Contrary to the (non-historical) Rimes dataset,

our proposed dataset, CFRAMUZ, is based on original historical handwritten text from the

beginning of the 20-th century composed in an uncontrolled environment. The texts are written by

one author, C.F. Ramuz, and span his entire period of life. On this dataset we observe a significant

change in the handwriting style of the author after a specific time period. In Fig. B.1 we show

an example of the french word “petite”. We observe that from 1910 to 1914 the handwriting

style of the writer is similar (Figs. B.1a, B.1b). However, from 1920 the writer changes his

style significantly (Figs. B.1c, B.1d). This change in handwriting style poses new challenges for

state-of-the-art word spotting algorithms, as we show in section B.3.

(a) “petite”, 1910 (b) “petite”, 1914 (c) “petite”, 1920 (d) “petite”, 1946

Figure B.1 – Illustration of the different handwriting styles across the dataset. The word “petite”

written in the first style in Figs. B.1a, B.1b and the same word written in the second style in

Figs. B.1c, B.1d.

The dataset contains seven novels written by the author, containing 64 pages with 18027 words

in total. The number of unique words is 2998. The ground-truth contains annotated words with

bounding boxes and separate files with one-to-one page transcriptions. Together with the dataset

we provide an annotation tool that enables ground truth creation or editing. The annotation tool

together with an example of the dataset are available online1.

B.2 The C.F. Ramuz dataset

B.2.1 The dataset

The CFRAMUZ dataset consists of seven novels written by the french-speaking Swiss writer

Charles Ferdinand Ramuz (1878-1947). We chose the novels so that they span his entire life of

work, from 1910 to 1946. Even though the novels were written by the same writer, we observe a

significant change in his handwriting style (see Fig. B.1). This leads to new challenges for the

state-of-the-art in word spotting, as we show in section B.3.

1https://www.dropbox.com/s/292tf4l9gzcubr3/CFRAMUZ.zip?dl=0

password: CFRAMUZ_ICDAR2017
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C.F. Ramuz was born in the Canton of Vaud and educated in the University of Lausanne. He and

an artistic impression of his works appear on the present 200 Swiss franc note. He died in Pully,

Switzerland. A complete compilation of all the works of C.F. Ramuz can be found in Œuvres
Complètes [Ramuz]. In Table B.1 we show detailed statistics for each novel of the dataset.

Novels Year # Pages # Words # Classes

Le petit enterrement 1910 9 2525 686

La Mort du grand Favre 1910 10 2941 807

Mousse 1910 9 2875 793

L’epine dans le doigt 1914 7 1625 535

Adieu à beaucoup de personnages 1914 11 3341 1012

Anti-Poétique 1920 9 2302 716

La cloche qui sonne toute seule 1946 10 2418 712

Style1 [1910−1914] 46 13307 2415

Style2 [1920−1946] 19 4720 1199

Total 64 18027 2998

Table B.1 – The novels contained in the CFRAMUZ dataset together with their properties.

B.2.2 Acquisition

All the works of C.F. Ramuz are scanned in micro-film. From these scans we selected seven

novels and transferred them to uncompressed TIFF grayscale images. Two pages from different

novels can be seen in Fig. B.2. We selected novels of high image quality and simple layout, so

that they are suitable for segmentation-free word spotting methods.

B.2.3 Ground-truth

The novels were annotated and transcribed by literature experts in the works of C.F. Ramuz. The

original images were cropped so that they did not contain black borders. The word segmentation

was done by the experts using the dedicated annotation tool. Fig. B.3 shows a screenshot of the

annotation tool used in the ground-truth creation process.

The annotation tool enables the user to create new ground-truths or edit existing ones. Features,

such as insertion, deletion and modification of word rectangles exist to help the user in her work.

Detailed documentation and user manual are available together with the software.

For each page of the dataset we provide a one-to-one transcription in a text file. The word spotting

ground-truth of each page is represented as text and XML files. Each line of the ground-truth file

contains the properties of a word in the document page:
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(a) Anti-poétique, page 3 (b) La mort du grand Favre, page 7

Figure B.2 – Two pages from different novels of the CFRAMUZ dataset.

Figure B.3 – A screenshot from the annotation tool.

• Unique ID for each word

• (x, y) coordinates of the upper left corner of the word rectangle
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• width and height of the word rectangle

• line number of the word

• word number in the current line

• UTF-8 word transcription

The first line of each file contains the path of the corresponding document image. This is done in

case the user wants to edit the ground-truth with the provided annotation tool. Using the tool,

the user can directly load the ground-truth file and the tool will automatically superimpose the

ground-truth on top of the file which is denoted on the path.

B.3 Word Spotting Evaluation

In this section, we describe the state-of-the-art methods used for the experimental evaluation on

the CFRAMUZ dataset. We give details on the evaluation process together with results of the

methods on other commonly used handwritten word spotting datasets.

B.3.1 Methods

We use four state-of-the-art word spotting algorithms for our experimental evaluation: Word Spot-
ting with Embedded Attributes (EAWS) [Almazán et al., 2014], Efficient Exemplar Word Spotting
(EEWS) [Almazán et al., 2012b], Bag-of-Visual-Words Word Spotting (BoVWWS) [Rusinol et al.,

2011] and Fisher Kernels Word Spotting (FKWS) [Perronnin and Rodriguez-Serrano, 2009].

In the following subsections we give a short description of the above mentioned state-of-the-art

methods.

Word Spotting and Recognition with Embedded Attributes (EAWS)

In [Almazán et al., 2014] the authors use the notion of embedded attributes. In this word spotting

approach words and strings can be compared in a common vectorial subspace. Word labels and

word images are embedded in a common subspace. Then word spotting and recognition consist

of a simple nearest neighbor problem. Labels and word images are embedded with pyramidal

histogram of characters (PHOC) in a d-dimensional space. Words and character images are

encoded using Fisher Vectors and these feature vectors are used together with the PHOC labels

to learn SVM-based attribute models.
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Efficient Exemplar Word Spotting (EEWS)

In [Almazán et al., 2012b], image documents are divided into cells of equal size and represented

by HOG histograms. Queries are represented analogously using cells of the same size in pixels.

Then a similarity measure between the document region and the query using dot product is

applied to calculate the scores of document regions and produce a ranking result.

Bag-of-Visual-Words Word Spotting (BoVWWS)

In [Rusinol et al., 2011], the input image documents are segmented into sub-images using

standard segmentation techniques, and then are represented by a sequence of SIFT vectors of 128

dimensions. Then the SIFT vectors of the entire dataset are gathered together and partitioned

into a certain number of clusters by K-means. For each word image, the occurrence counts of

the SIFT vectors relative to each cluster are calculated. This occurrence vector represents the

Bag-of-Visual-Words (BoVW) for the word image.The query image is represented in the same

way. Finally the distances between the BoVW of the word images and the query image are

computed using cosine similarity.

Fisher Kernels Word Spotting (FKWS)

In [Perronnin and Rodriguez-Serrano, 2009], similar to BoVWWS word spotting, the input

image documents are segmented into sub-word images by standard segmentation techniques,

and are represented by sequences of SIFT vectors of 128 dimensions. The SIFT vectors of the

entire documents are gathered together to learn a Gaussian mixture model of a certain number of

clusters. The fisher vectors encode the SIFT vectors of the word images relative to the means,

covariances and prior probabilities of the Gaussian Mixture Model. The query image is also

represented in the same way as the input word images, and the fisher vector for the query image

is computed. Finally, the distances between the fisher vectors of each word image and the query

image are computed, and the retrieved result can be obtained by sorting the distances.

B.3.2 Experimental Results

In this subsection we provide extensive experimental comparisons of the state-of-the-art methods

on our dataset, as well as the commonly used datasets George Washington (GW) [Fischer et al.,

2012b] and Lord Byron (LB) [Rusinol et al., 2011].

State-of-the-art on CFRAMUZ

In Fig. B.4 we show precision-recall curves for the compared algorithms on the CFRAMUZ

dataset. The best performing method is EAWS [Almazán et al., 2014]. We observe that in the

case of EEWS [Almazán et al., 2012b] the precision-recall curve does not start from 1. This is
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Figure B.4 – Precision-Recall curves of the state-of-the-art on the CFRAMUZ dataset. EAWS [Al-

mazán et al., 2014] is the most accurate method by a significant margin.

due to the fact that this method is segmentation-free and in some query cases (e.g., “.”,“,”,“:”,

etc.) the precision is not 1, because the algorithm is not able to find all relevant repetitions of the

query. This leads to a significant drop in the accuracy of the algorithm, because these types of

queries are very common in our dataset.

In Fig. B.5 we show qualitative results of EAWS [Almazán et al., 2014] with two different

query words, on the complete dataset. Using as query the word “grand” (Fig. B.5a) the first

two retrieval results are correct (Figs. B.5b, B.5c), however the third result is the incorrect word

“quand” (Fig. B.5d). With the word “étaient” (Fig. B.5e) the retrieval results are less robust due to

existence of many words of similar orthography but different meaning in the dataset. The second

and third retrieval results (Figs. B.5g, B.5h) correspond to the words “tiraient” and “s’étaient”,

respectively.

Per-Style Evaluation

In this subsection we split the CFRAMUZ dataset in two groups according to the different

handwriting styles and we perform the following experiments:

• Training and testing on each style separately.

• Training on style 1 and testing on style 2, and vice versa.
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(a) “grand” (b) � (c) � (d) �

(e) “étaient” (f) � (g) � (h) �

Figure B.5 – EAWS retrieval results on two queries. On the first line we query the word “grand”

and obtain correct results except for Fig. B.5d with the similar word “quand”. On the second line

we query a more difficult word “étaient”, with retrieval results “étaient”, “tiraient” and “s’étaient”,

respectively (Figs. B.5f, B.5g, B.5h).

(a) Train and test on each style separately (b) Train and test on different styles

Figure B.6 – Comparison of EAWS on different train/test splits of the CFRAMUZ dataset. In

Fig. B.6a we show the accuracy of the algorithm in each style separately. Due to the smaller

amount of data in each dataset, the accuracy of the algorithm slightly drops compared to a

complete training. In Fig. B.6b we train the algorithm on style 1 and test on style 2, and vice

versa. We observe that by training on style 2 the algorithm is not able to generalize well on the

rest of the data. However, by training only on style 1 the accuracy of the algorithm is almost

equivalent as if using the whole dataset for training. Style 1 is more complete with more complex

word variations than style 2. By training on style 1, the learning algorithm automatically adapts

to the variations of style 2.

We perform these experiments to evaluate the difficulty of each handwriting style. For the

experiments we used the best performing method EAWS [Almazán et al., 2014]. The Precision-

Recall curves for the different experiments are shown in Fig. B.6. In Fig. B.6a we compare the
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Method Dataset
GW LB CFRAMUZ

EAWS 96.86 99.68 88.07
EEWS 50.92 83.60 29.20

BoVWWS 41.09 93.47 50.47

FKWS 36.30 83.44 46.05

Table B.2 – mean Average Precision results of all the tested algorithms on all dataset. EAWS is

the better method on all datasets. CFRAMUZ is the most challenging dataset.

accuracy of EAWS by training in each handwriting style separately. Despite the smaller datasets,

we do not observe a significant drop in the accuracy of the algorithm compared to a training

experiment on the whole dataset. In Fig. B.6b we train EAWS [Almazán et al., 2014] on one

handwriting style and test on the other. We observe that by training only on the handwriting style

2 the algorithm is not able to generalize well. The handwriting style contains less data with few

variations that are not representative of the complete dataset. On the other hand, by training on

handwriting style 1 the algorithm is able to generalize even though it was never trained with

data from style 2. Style 1 contains more data examples per word and larger variety. This is an

indication that style 1 is more challenging than style 2. The word variations in style 1 are a

super-set of the variations in style 2. Therefore, by adapting to style 1, the learning algorithm

automatically adapts to style 2.

B.3.3 State-of-the-art on other datasets

In this section we compare the results of the previously presented algorithms on the George

Washington (GW) [Fischer et al., 2012b], Lord Bryon (LB) [Rusinol et al., 2011] and on our

dataset. The LB dataset consists of 20 handwritten pages from a 1825 book with a total of 4988

words and 1569 word classes. The GW dataset consists of 20 handwritten pages with a total of

4894 words and 1471 word classes.

In Fig. B.7 we show the precision-recall curves of all the state-of-the-art methods on all datasets.

CFRAMUZ is the most challenging dataset. This can be explained by the particularities of the

French language, which gives more variability to our dataset: French contains many groups of

words with similar visual features but with different meanings. This characteristic of the language

poses several challenges to algorithms that depend heavily on off-the-shelf visual descriptors

for image representation. However, more sophisticated descriptors, such as PHOC used in

EAWS [Almazán et al., 2014] are partially able to overcome this problem, by taking into account

labeled information.

In Table B.2 we summarize the mean Average Precision (mAP) results of all the tested methods

on all the datasets.
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(a) EAWS [Almazán et al., 2014] (b) EEWS [Almazán et al., 2012b]

(c) BoVWWS [Rusinol et al., 2011] (d) FKWS [Perronnin and Rodriguez-Serrano, 2009]

Figure B.7 – Comparison of all the methods on the three handwritten datasets. CFRAMUZ is the

most challenging dataset.

B.4 Conclusion

We provide a novel and freely available handwritten dataset for segmentation-free word spotting

applications in the French language. The dataset contains works from a single writer through-out

his entire life, while exhibiting a significant change of the handwriting style. To the best of our

knowledge, it is the first dataset of this form in the French language. We present the whole

data acquisition and ground-truth creation process. Together with the dataset and its complete

ground-truth we provide a simple and intuitive annotation tool for ground-truth creation and

editing. Extensive experimental results show that, due to the particularities of the french language,

our dataset poses new challenges to state-of-the-art algorithms compared to commonly used

English handwritten datasets.
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