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‘ “What makes the desert beautiful,”

said the little prince,

“is that somewhere it hides a well...” ’

— Antoine de Saint-Exupéry
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Abstract
In materials where electrons interact strongly, a number of exotic and exciting phenomena

arise. The mechanisms at the base of many of these phenomena remain debated, as strongly

correlated electron physics represents one of the biggest challenges for modern condensed

matter physics. Transition metal oxides are a class of strongly correlated systems which exhibit

a multitude of physical properties, among which unconventional superconductivity, incom-

mensurate charge and spin ordering, partial anisotropic gapping, strange metallicity, colossal

magnetoresistance, multiferroicity, antiferromagnetic Mott insulation, etc.. These properties

are often observed in close vicinity, when pressure, temperature or chemical composition are

varied. As a consequence, it is challenging to disentangle not only their origin, but also their

effects on the elementary excitations of the system. In this thesis, high quality single crystals

of copper and ruthenium based transition metal oxides (cuprate and ruthenate compounds)

were investigated with synchrotron-based spectroscopic techniques.

Our angle resolved photoemission spectroscopy (ARPES) studies focused on the normal

state of cuprates, at hole content varying from under- to over-doping. First, the low energy

single particle excitations in overdoped cuprates were verified to fulfill the mathematical

conditions for Landau Fermi quasiparticles. In a second study, the evolution of the spectral

gap was followed as function of doping and temperature, across the charge order, pseudogap

and strange metal phases of a cuprate compound, La1.6−x Nd0.4Srx CuO4. This systematic study

allowed the identification of an optimal doping regime for the investigation of the pseudogap

physics in cuprates.

The orbital structure of single layer ruthenates was explored combining X-ray absorption

and resonant inelastic X-ray spectroscopies (XAS and RIXS). Since spectroscopies at the L ab-

sorption edge of 4d materials are challenged by insufficient energy resolution, we performed

our studies at the oxygen K edge, in the soft X-ray energy range. By exploiting the strong orbital

hybridization between the oxygen 2p and the ruthenium 4d states, we obtained high resolu-

tion experimental access to the 4d electron properties. The results were interpreted through a

simple model Hamiltonian, with analytic solutions that provide a consistent description of

the low energy features observed.

Key words: cuprates, ruthenates, strong correlations, RIXS, ARPES, XAS, pseudogap, strange

metal, spin orbit coupling, crystal field.
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Sommario
Le teorie dei solidi sviluppate nel secolo scorso, che descrivono con successo la fisica di semi-

conduttori e metalli convenzionali, sono basate sull’ipotesi che le interazioni tra gli elettroni

all’interno di un cristallo possano essere considerate alla stregua di un poteziale efficace. In

materiali fortemente correlati, le interazioni tra elettroni devono essere trattate esplicitamente

cosí che il problema ad N corpi (con N dell’ordine di 1023) non puó essere semplificato. Dalle

forti correlazioni elettroniche emerge una serie di fenomeni esotici ed interessanti, la cui origi-

ne rimane controversa. I materiali fortemente correlati rimangono infatti una delle maggiori

sfide della moderna fisica della materia condensata.

Gli ossidi dei metalli di transizione rappresentano una particolare classe di materiali forte-

mente correlati, ed esibiscono una moltitudine di sorprendenti prorietá fisiche, che spesso

emergono in estrema vicinanza, quando si modifica la pressione, la temperatura o la compo-

sizione chimica. Di conseguenza, risulta estremamente complicato distinguere non solo le

relative origini, ma perfino gli effetti di ciascuna sulle eccitazioni elementari del sistema. In

questo lavoro di tesi, cristalli di ossidi di transizione a base di rame e di rutenio (denominati

cuprati e rutenati) sono stati esplorati tramite tecniche spectroscopiche di sincrotrone.

I nostri studi tramite spettroscopia di photoemissione risolta in angolo (ARPES) si sono

concentrati sullo studio dello stato normale dei cuprati, con diverso contenuto di droganti

di tipo p. Nella prima parte, abbiamo verificato che le eccitazioni a bassa energia di cuprati

sovra-drogati soddisfano le condizioni matematiche per la definizione delle quasi-particelle

di Landau Fermi. Successivamente, abbiamo seguito l’evoluzione della gap di particella sin-

gola al variare di temperatura e drogaggio, attraverso le fasi di ordine di carica, pseudogap e

metallicitá non convenzionale del cuprato La1.6−x Nd0.4Srx CuO4. Sulla base di questo studio

sistematico é stato identificato un regime di drogaggio ideale per lo studio della misteriosa

fase pseudogap dei cuprati.

La struttura orbitale di rutenati a layer singolo é stata esplorata tramite raggi X, in uno studio

combinato di spettroscopia di assorbimento (XAS) e di risonanza inelastica (RIXS). Vista la

scarsa risoluzione in energia alla risonanza di assorbimento della soglia L del rutenio, i com-

posti sono stati studiati alla soglia K dell’ ossigeno. Sfruttando l’ibridazione tra gli orbitali 2p

dell’ossigeno e i 4d del rutenio, é stato possibile studiare questi ultimi con alta risoluzione

in energia. I risultati ottenti sono stati interpretati tramite un modello semplificato, le cui

soluzioni analitiche producono una descrizione consistente delle eccitazioni osservate.
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1 Introduction

‘T.T.T.

Put up in a place

where it’s easy to see

the cryptic admonishment

T. T. T.

When you feel how depressingly

slowly you climb,

it’s well to remember that

Things Take Time!’

— Piet Hein

Macroscopic properties of materials are intimately connected with their microscopic elec-

tronic structure, which is determined by the mixing of the valence orbitals. An important

role is played by the symmetry of these orbitals as well as their size. When one compares the

inter-atomic distance D with the valence orbital radius R, two contrasting regimes can be iden-

tified. If the orbitals extends over neighboring atomic sites (D«R), the large overlap of orbitals

originating from different atoms causes the electrons to lose their atomic identity. This is the

case of s and p valence orbitals. The bands originated from these orbitals are generally broad

and valence electrons can be treated as independent single particles, described by Bloch wave-

functions within the tight-binding model. This approach successfully describes the physics of

conventional metals, insulators and semiconductors. Conversely, if the valence orbitals of dif-

ferent atomic sites have little overlap (D»R), the valence electrons retain their atomic character

and produce narrow bands. In this case, strong electron-electron interactions take place and

1



Chapter 1. Introduction

to gain an accurate microscopic description requires solving of a many body problem. The d

and f orbitals fall into this category and mean field approaches fail to describe their physics [1].

A clear example of this failure is demonstrated by those compounds expected to behave

like band metals but which are found to be insulators, with an anti-ferromagnetic ground

state. These materials are called Mott insulators. Within the the Mott-Hubbard model [2, 3],

the origin of these gaps, referred to as Mott gaps, can be ascribed to a strong on-site Coulomb

repulsion, U, which opposes charge fluctuations. If the Coulomb repulsion is larger than

the orbital bandwidth, the valence band is split into a lower and an upper Hubbard band,

separated by a gap of size given by U, typically of a few eV. Charge fluctuations may occur not

only between two adjacent transition metal sites, but can involve a ligand, typically oxygen.

The energy necessary to introduce a hole into the ligand band is the charge-transfer gap Δ.

The ratio between U and Δ determines the size of the gap in these materials, classified as

Mott-Hubbard or Charge-transfer insulators according to which energy scales determines the

energy of the lowest possible charge excitation [4].

Transition metal oxides are a class of strongly correlated materials that exhibit a variety

of surprising physical phenomena, such as multiferroicity, giant magnetoresistance or un-

conventional superconductivity, which are not predicted by either the tight-binding or the

Mott-Hubbard models [1, 5, 6, 7]. These phenomena often arise in close vicinity to each other

and to Mott insulation, when temperature, doping or pressure is modified. Therefore, it is

evident that to capture the physics of these materials it is not sufficient to consider their orbital

degrees of freedom alone, but charge, lattice, and spin should be also taken into account.

As a result of this complexity, strongly correlated electron systems represent a challenging

puzzle for modern solid state physics, and progress has been largely driven by experimental

discoveries. The techniques successfully applied to this field rely on different probes, such

as neutron and X-ray scattering, transport measurements, scanning tunneling microscopy,

etc.. Angle resolved photoemission (ARPES) and resonant inelastic scattering (RIXS) are two

powerful spectroscopic techniques which grant direct access to the electronic structure of the

investigated materials.

In this thesis, two classes of transition metal oxides have been targeted, that of cuprates

and ruthenates. The valence electrons in these compounds originate from the 3d orbitals

in the case of cuprates, and the 4d ones in the case of ruthenates. The occupancy of these

states is very different in the two cases, with a single hole found in the cuprates 3d orbitals. In

the case of ruthenates, four electrons are expected to occupy the valence states originating

from the 4d states. Furthermore, the spin orbit coupling is expected to be stronger in the 4d

subshell than in the 3d one. Both these families of materials exhibit strong correlations and a

variety of ground states. In particular, Mott insulation and unconventional superconductivity

are found among both cuprates and ruthenates. It is not clear however if, across these fam-

ilies, the Mott gap has a common origin, or if the superconducting state, whose underlying

mechanism is unknown, has the same symmetry. In fact, the superconducting gap of cuprates

2



has a d wave symmetry, but Sr2RuO4 has been proposed to be a p wave superconductor [8].

Furthermore, in cuprates, the Mott gap is opened in the half filled eg single band by strong

Coulomb interaction. In Ca2RuO4, the 4 electrons in the 4d orbitals produce a 2/3 occupancy

in the 4d-t2g substates, separated from the eg states by the crystal field interaction. Since the

crystal field acts differently on the different d-t2g states, namely it has opposite effects on the

dx y orbital, at planar character, and on the dxz,y z ones, at out of plane character. It is a matter

of debate whether the dx y orbital is stabilized at deeper energy by the crystal field, so that it is

not involved in the origin of the upper and lower Hubbard bands [9, 10] or if the spin-orbit

mixes the planar and out of plane orbitals and the Mott gap opens in an orbital dependent

manner [11, 12].

Open questions in the physics of strongly correlated systems also exist regarding their normal

state, outside the superconducting phase. In the so called strange, or bad, metal phase, gapless

excitations do not follow the Drude-Sommerfeld model and low temperature resistivity does

not scale with the temperature square. A strange metal phase is observed in cuprates, ruthen-

ates, iron-based superconductors and heavy fermion systems (compounds with valence bands

originating from f orbitals). Not only is a microscopic description for elementary excitations

in strange metals missing, it is also not clear whether all strange metals originate from the

same mechanism. Strongly correlated system also exhibit a mysterious pseudogap phase,

where gapless excitations are found only in some region of momentum space and low temper-

ature resistivity deviates from the temperature square law observed in conventional metals.

A pseudogap phase is observed in underdoped cuprates and has been reported in surface

doped iridates coumpounds [13]. The discussion on whether the pseudogap acts a precursor

to unconventional superconductivity, or is in competition with it, is complicated by the obser-

vation of charge order, in the same region of the cuprates phase diagram [14, 15, 16, 17, 18].

To investigate the role of electron correlations, structural distortions, orbital and spin-orbital

interactions, the elementary electronic excitations in these families have been studied via

ARPES and RIXS, as function of chemical composition and/or temperature.

Outline of the manuscript

This manuscript is structured as follows. The experimental methods employed are outlined

in chapter 2: angle resolved photoemission spectroscopy (ARPES, 2.1)and resonant inelastic

X-ray scattering (RIXS, 2.2). The structure of the following sections follows the temporal devel-

opment of the research performed.

First, the results obtained on cuprates are discussed, in chapter 3. Section 3.1 is devoted to a

careful analysis of the low energy excitations in the strange metal phase of cuprates. To con-

duct this study, high resolution ARPES data on La1.77Sr0.23CuO4 are self-consistently analyzed

in their momentum and energy evolution, with the aim of verifying the fulfillment of the math-
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Chapter 1. Introduction

ematical conditions for Landau-Fermi quasiparticles. Next, the evolution of the ARPES spectra

was systematically studied in the normal state of the cuprate system La1.6−x Nd0.4Srx CuO4,

described in section 3.2. In this section, the single particle spectral gap is estimated at various

values of temperature and/or doping. Varying these parameters causes this system to exhibit

different phenomena, such as charge order, pseudogap and strange metallicity. The scope of

these experiments was to investigate the ARPES signatures of these different phases, which

are universally displayed by cuprates.

Chapter 4 is devoted the RIXS investigation of (Ca,Sr)2RuO4. The dependence on experi-

mental geometry and incoming light polarization of the X-ray absorption spectroscopy (XAS)

spectra was exploited to identify the energy scales of the states of d orbital origin. The identi-

fication of the absorption resonances was used to tune the photon energy to employ in the

RIXS process. The low energy features in the RIXS spectra of both materials were interpreted

within a simple model Hamiltonian with analytical solutions. This study focused on the effects

of spin-orbit interaction and structural distortions on the electronic properties of strongly

correlated systems.

Additional information on the methods or models employed can be found in the appendix A,

at the end of the thesis. In appendix B are reproduced other published works to which the

author contributed.
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2 Experimental methods

In this chapter are described the techniques adopted in the studies presented in this manuscript,

namely angle resolved photoemission spectroscopy (ARPES) and resonant inelastic X-ray scat-

tering (RIXS). As will be discussed in the following sections, ARPES is a photon-in electron-out

spectroscopy, while RIXS is a photon-in photon-out spectroscopy. Both this techniques re-

quire a monochromatic photon source and tremendously benefit from the high brilliance of

third generation synchrotrons, such is for example the Swiss Light Source of the Paul Scherrer

institute. Furthermore, the experimental impact of these spectroscopies has been enhanced

by recent advances in technology, such as the tremendous improvements in crystal growing

and ultra-high vacuum techniques, together with the developments of high resolution elec-

tron analyzers in the case of ARPES [19, 20] and high resolution Soft X-ray spectrometers for

RIXS [21].

The aim of this chapter is to provide the reader with the necessary information to follow

the experimental discussions, presented in sections 3 and 4. With this scope in mind, the

occasional practical examples specifically refer to the materials and experimental set-ups

employed in the experiments. More general and complete descriptions of the ARPES and RIXS

techniques can be found in references [22, 23, 24] and [25, 26, 27], respectively, while infor-

mation about synchrotron radiation can be found in reference [28]. All analysis presented in

this thesis have been performed using MatLab commercial software, mostly via custom-made

scripts.
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Chapter 2. Experimental methods

2.1 Angle resolved photoemission spectroscopy - ARPES

2.1.1 The photoelectric effect

Angle resolved photoemission spectroscopy is a powerful technique, which gives direct access

to the momentum and energy properties of electronic single particle excitations in a material.

The photoelectric effect, discovered in 1887 [29] and explained in 1905 [30], manifests as the

emission of electrons from a material illuminated with light of sufficient energy. As a result of

the optical absorption, an electron escapes the material (photoelectron) and leaves behind

an empty state (photohole). The energy threshold for the process coincides with the energy

that electrons have to spend to escape the material, referred to as the work function W of the

material, see figure 2.1. Energy and momentum conservation laws link the photoelectron

state to that of the photohole, allowing direct experimental access to the electronic structure

of solids. To extract meaningful information both in energy and momentum, the investigated

samples should be single crystals appropriately aligned.

The emission process is illustrated in figure 2.2. A monochromatic photon beam of energy

hν is incident on the sample surface and a photoelectron is emitted, with energy Eki n and

momentum p = p// +p⊥ (components along the sample surface and its normal). We assume

that the sample is oriented with a,b and c axis co-aligned with the x,y and z axis. Notice that

the photoelectrons escape in all directions but are measured within a finite acceptance angle,

defined by the detector geometry. Energy conservation law implies:

hν−EB =Eki n +W, (2.1)

where EB indicates the binding energy of the electron before photon absorption (with EB =0 at

the Fermi level). Therefore for the modulus of the momentum:

p =
√

2me Eki n , (2.2)

with me being the free electron mass.

Along the surface normal, the transitional symmetry is broken and p⊥ is not conserved.

However, for the component parallel to the sample surface, we can write:

p// =
√

2me Eki n sinθ. (2.3)

Since the photon momentum khν is typically negligible at the photon energies (5-500 eV)

typically employed in ARPES experimentsi, from momentum conservation we find:

ki
//+khν,// � ki

// = k f
//; (2.4)

iat hν=55 eV for example, khν ∼ 0.004 Å, corresponding to less than 1 per cent of the typical Brillouin zone of
cuprates.
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2.1. Angle resolved photoemission spectroscopy - ARPES
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W

Figure 2.1 – Photoemission energy conservation | Within the sample, the Fermi level corre-
sponds to zero binding energy. Once escaped, the kinetic energy of the photoelectron Eki n

refers to the vacuum level Evac =EF +W as the zero-energy level, where W indicates the work
function of the sample. Adapted from reference [22].

Figure 2.2 – Photoemission process | A monochromatic photon beam of (sufficient) energy
hν causes the emission of electrons of energy Eki n and momentum p, directed in all directions.
The direction along which photoelectrons are measured is indentified by the polar angle θ

and the azimuthal angle φ. From reference [31]
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Chapter 2. Experimental methods

hence:

k// =p//

�
=

√
2me Eki n

�
sinθ(cosφx̂+ sinφŷ), (2.5)

where k// is the electron crystal momentum, along the sample surface, in the extended zone

scheme ii.

Equations 2.1 and 2.5 are at the basis of angle resolved photoemission spectroscopy. In

quasi-2D materials, the dispersion along z can be neglected and the electronic dispersion

relation E(k)�E(k//) can be evaluated without knowledge of k⊥ iii. In the following sections, a

more detailed treatment is presented, which allows the derivation of a formal description of

the ARPES intensity.

2.1.2 The three steps model

In the previous section, we have made the implicit assumption that the electrons within the

material do not react to the presence of the photohole (non-interacting electron picture).

However, photoemission is a many body process, in which the incident radiation causes

emission of an electron from an interacting N-electron system, which evolves from the initial

state ΨN
i to a final state ΨN

f . The process probability wi→ f can be approximated, within the

lowest-order perturbation theory, by the Fermi golden rule:

wi→ f =
2π

�
|〈ΨN

f |H i nt |ΨN
i 〉|2δ(EN

f −EN
i −hν), (2.6)

where EN
f ,i are the initial and final energies of the N-electron system, and H i nt is the electron-

photon interaction. In the Coulomb gauge and within the dipole approximation, H i nt =
i� e

me c A•∇ [23], with A vector potential of the electromagnetic field, e electric charge of the

electron and c speed of light.

To proceed, it is necessary to model the initial and final states wavefunction of the N-electron

systems. The most widely adopted approach relies on the phenomenological three step model,

which leads to a clear and intuitive picture of the photoemission process [22]. Within this

phenomenological approach, the photoemission process is broken down in three independent

steps:

1. optical excitation of an electron in the bulk;

2. transport of the excited electron from the bulk to the surface;

iiTo obtain the crystal momentum in the reduced zone, is sufficient to subtract the corresponding reciprocal
lattice vector G.

iiiIn the case of cuprates, their layered structure as well as the strong resistivity anisotropy (which, in the normal
state, is two order of magnitude larger out of lane than in plane [32]) suggest a weak out of plane dispersion, which
is neglected within the work presented in this thesis.
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2.1. Angle resolved photoemission spectroscopy - ARPES

3. escape of the photoelectron through the surface into vacuum.

The photoemission intensity is then given by the product of the single steps probabilities,

derived in the following sections.

2.1.2.1 Optical excitation

The first step in the photoemission process is the optical transition of an electron into an

excited state, into the bulk. To evaluate the probability of the transition, we can refer to equa-

tion 2.6, with the sole difference that in the final states all electrons are still within the crystal.

For photoelectrons with high kinetic energy, the transition can be treated within the sudden

approximation, which assumes instantaneous removal of the excited electron iv.

Within the sudden approximation, the wavefunctions of the initial and final states can be

factorized:

ΨN
i , f =APφ

k
i , f Ψ

N−1
i , f , (2.7)

where AP is an anti-simmetrization operator which ensures ΨN
i , f satisfies Pauli exclusion

principle and φi , f is the wavefunction of the electron of momentum k, before and after ab-

sorption of the photon. The N-1 electron wavefuction ΨN−1
i = ckΨ

N
i (ck annihilation operator)

describes a ionized state, which is not a eigenstate of the system. The ensemble of the N-1

electrons can collectively be treated as a single particle of charge +e, the photohole. The final

wavefunction of this ensemble ΨN−1
f will fall on one of the eigenstates of the excited system:

ΨN−1
f =ΨN−1

m , of eigenenergy EN−1
m . The probability of the optical excitation process is then

given by the sum over all possible excited states and the initial and final energies can be written

as: EN
i =EN−1

i -Ek
i , EN

f =EN−1
m +Ek

f , where Ek
i , f is the energy of the electron with wavefunction φk

i , f ,

within the materialv.

With this modelization for ΨN
i , f , the transition element in equation 2.6 can be split into a

single and a collective part:

〈ΨN
f |H i nt |ΨN

i 〉 =〈φk
f Ψ

N−1
m |A †

P H i nt AP |φk
i Ψ

N−1
i 〉 =

=〈φk
f |H i nt |φk

i 〉〈ΨN−1
m |ΨN−1

i 〉,
(2.8)

where we used the fact that AP commutes with all Hermitian operators and is unitaryvi, and

that, within the approximations adopted, H i nt operates only on the single particle part of

the wavefunction. The term 〈φk
f |H i nt |φk

i 〉 ≡M k
i→ f represents the one-electron dipole matrix

ivIn the case of cuprates, the sudden approximation is found appropriate already at kinetic energies of ∼20
eV [22].

vNotice that the energy EN−1
i is higher than EN

i , since the removal of an electron leaves the ensemble into a
ionized state.

viA †
P AP gives the identity operator.
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Chapter 2. Experimental methods

element while 〈ΨN−1
m |ΨN−1

i 〉 gives the overlap integral of the remaining N-1 electron ensemble.

Considering all possible final and initial states, for the photoemission intensity, function of k

and Eki n =Ek
f , we have:

I (Eki n ,k) ∝∑
i , f

wi→ f ∝
∑
i , f

|M k
i→ f |2

∑
m

|ci→m |2δ(
Eki n +EN−1

m −EN
i −hν

)
, (2.9)

where |ci→m |2 gives the probability that after the sudden removal of the photoelectron the

remaining N-1 electrons ensemble, initially in state ΨN−1
i will be left in state ΨN−1

m .

In the non-interacting particle picture, it is assumed that ΨN−1
i corresponds to one of the

possible final states ΨN−1
m

, so that
∑

m |cm→m |2 = δm,m
vii. The ARPES intensity, within this

overly simplified picture, is then proportional to the delta function δ
(
Eki n +Ek

i −hν
)
, provided

M k
i→ f �= 0. A more reasonable assumption is that the electron removal considerably affects

the potential of the system, so that ΨN−1
i does not coincide with any of the excited eigenstates

and |ci→m |2 gives a finite contribution over many values of m. The ARPES intensity will then

not have a delta profile, but will show a main line corresponding to the state with maximum

overlap and several satellite lines, according to how many of the m states are created in the

photoemission process [23].

At this point is is useful to refer to the one-electron removal spectral function:

A −(ω,k) =∑
m
〈ΨN−1

m |ck|ΨN
i 〉δ(

ω−EN−1
m +EN

i

)
, (2.10)

which gives the probability of removing an electron of momentum k and energy ω from the

N electrons system described by ΨN
i . Taking into account that ΨN−1

i = ckΨ
N
i , and posing

ω=Eki n −hν, the photoemission intensity is proportional to the removal spectral function:

I−(ω,k) ∝∑
i , f

|M k
i→ f |2A −(ω,k). (2.11)

Analogously, the inverse photoemission process is proportional to the addition spectral func-

tion, I+(ω,k) ∝A +(ω,k) while the single particle spectral function is given by the sum of the

two:

A (ω,k) =A −(ω,k)+A +(ω,k). (2.12)

The single particle spectral function contains information about physical quantities relevant

for the electronic systems, such as mass renormalization due to correlations, lifetime of the

viiKroneker delta: δm,m = 1 if m = m, 0 otherwise.
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2.1. Angle resolved photoemission spectroscopy - ARPES

excitations, ect.. A (ω,k) is formally defined in its relation to the particle’s Green function:

G (ω,k) =G ′(ω,k)+ iG ′′(ω,k);

A (ω,k) =−1

π
G ′′(ω,k).

(2.13)

Since the Green function is a linear response function, casuality dictates that its real and

imaginary part are linked through the Kramers Kronig relations.

2.1.2.2 Transport to the surface, escape into vacuum and detection

Once the photoelectron is excited, within the material, it needs to travel to the surface (second

step). This step can be described in terms of an effective mean free path. We need to evaluate

the probability that the excited electron reaches the surface without loosing information in

energy or momentum, i.e. without undergoing scattering events. The scattered electrons,

labeled as secondary, contribute to a momentum independent background.

The intensity of the primary photoelectrons scales with a factor e−x/λ f −p , where x is the

distance from the location of excitation and λ f −p is the electronic mean free path. λ f −p has

been shown to follow a universal curve as function of the electronic kinetic energy [33]. At the

energies relevant for the work presented in this thesisviii, λ f −p ∼ 10 Å. Since photoelectrons

excited deeper into the material are scattered before reaching the surface, λ f −p is referred

to as the electronic escape depth. This implies that ARPES is a surface sensitive technique

that can only probe a few atomic planes. In the soft X-ray regime (hν>200 eV) the electronic

escape depth increases, improving bulk sensitivity.

The third and last step concerns the escape of the photoelectron, which can be described as

the probability for the electron to be transmitted through the surface. To escape, the excited

electrons have to overcome the material work function W , the energy difference between

the Fermi level of the material and the vacuum level Evac , see figure 2.1. The transmission

probability T is a function of the momentum of the photoelectrons and the potential step to

overcome W . For electrons directed along the surface normal, if Eki n >>W ix, T � 1.

In order to escape, the emerging photoelectron loses part of its kinetic energy. If inside

the material the photoelectron had kinetic energy Ei nt
ki n , once escaped into vacuum its kinetic

energy values Evac
ki n = Ei nt

ki n - W . The need to overcome a potential barrier (W ), puts a limit into

the angles at which the excited photoelectrons can approach the surface and be able to escape.

To illustrate this effect, it is useful to refer to the free electron final state model, illustrated

in panel 2.3(a). Within this model, the excited photoelectron is assumed to follow the free

electrons parabolic dispersion, with the bottom of the parabola given by E0, a constant a priori

viiiTo optimize matrix element effects in the cuprates compounds investigated in this thesis, it is convenient to
use an incoming photon beam of hν� 55 eV, which corresponds to a photoelectron kinetic energy of ∼50 eV.

ixTypical values of W vary between 4 and 6 eV.
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Chapter 2. Experimental methods

unknown. The kinetic energy of the photoelectron is measured from E0.

The momenta of the photoelectron inside and outside the material, ki nt ,vac see panel 2.3(b),

are separated in their component along the sample surface and along the out of plane direc-

tion:

ki nt ,vac = ki nt ,vac
// +ki nt ,vac

⊥ . (2.14)

The potential barrier V0 is given by the difference between the vacuum level Evac and E0

and puts a lower limit into ki nt
⊥ . To be able to escape, the out of plane component of the

photoelectron momentum, within the material, must satisfy:

�ki nt
⊥ ≥

√
2me V0. (2.15)

Once escaped into vacuum, the photoelectrons reach the electron analyzer, described in

section 2.1.3, without further interactions. The sample and the analyzer are kept in ultra

high vacuum, with typical pressure below 0.7 10−10 mbar. Entering into the detector changes

again the kinetic energy, as a consequence of the contact potential (generated between the

sample and the detector). Since the sample and the detector are in electric contact, their Fermi

levels EF align and the contact potential is given by W −W det , with W det work function of the

detector. The detected kinetic energy is then given by:

Edet
ki n = Evac

ki n +
(
W −W det

)
= hν−EB −W det ; (2.16)

with EB = hν - Ei nt
ki n binding energy of the photoelectron (i.e. energy level occupied prior

excitation). Since the detector work function is known (typically, W det ≈ 4.5 eV), the binding

energy can be evaluated. Experimentally, is it convenient to simply measure the kinetic energy

corresponding to the Fermi level of the sample, EF
ki n , for example by recording photoemission

spectra from polycrystalline metals in thermal and electric contact with the sample. The

excitation energy ω=−EB is the determined as the difference between the detected energy

Edet
ki n and the energy corresponding to the Fermi step, EF

ki n . This procedure is illustrated in

section 2.1.5.

The effect of crossing the surface on the photoelectron momentum, is illustrated in panel

2.3(b). Within the free electron final state model, the momenta inside and outside the material

have moduli:

ki nt =1

�

√
2me

(
Ei nt

ki n −E0
)
;

kvac =1

�

√
2me

(
Evac

ki n −Evac
)
.

(2.17)

The momentum of the photoelectron is not modified by the optical excitation, i.e. k = ki nt .
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2.1. Angle resolved photoemission spectroscopy - ARPES

Figure 2.3 – Free electron final state model and momentum discontinuity| a) Within the free
electron final state model, the barrier to overcome for the escape of the photoelectrons is
given by V0= Evac -E0, where E0 is the bottom of the parabolic free electron dispersion. Once
escaped, the photoelectron energy and momentum are modified, with Evac

ki n = Ei nt
ki n - V0. b)

Crossing the sample surface breaks the translational invariance, in the direction normal to the
surface. As a consequence, the momentum is conserved only in its component parallel to the
surface. Adapted from reference [31].

As discussed in section 2.1.1, only the in-plane component of the photoelectron momen-

tum is conserved in the process and the detection of the photoelectron as function of the

outgoing angles θ and φ, see figure 2.2, directly probes k// = kvac
// = kdet , see equation 2.5. An

expression for the modulus of the out of plane momentum component can be derived, within

the free electron final state model:

k⊥ =
√

k2 −k2
// =

1

�

√
2me

(
Ei nt

ki n −E0
)−�2k2

// =
1

�

√
2me

(
Edet

ki n +V0
)−�2k2

// =

=1

�

√
2me

(
hν−EB −W det +V0

)−�2k2
//,

(2.18)

in the extended zone representation. Notice that k⊥ can be indirectly probed by varying the

energy of the incident photons, although its value ultimately depends on the unknown inner

potential V0=Evac -E0.

2.1.2.3 Final equations

To conclude, we summarize the photoemission relations derived within the three steps model

and adopting the sudden approximation and the free electron final state model.

The relation between the detected photoelectron energy and the energy level occupied before

excitation, EB , is given by:

EB = hν−Edet
ki n −W det . (2.19)
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For the photoelectron momentum, we have derived:

k// =
√

2me Edet
ki n

�
sinθ(cosφx̂+ sinφŷ);

k⊥ =1

�

√
2me

(
hν−EB −W det +V0

)−�2k2
//ẑ.

(2.20)

The fact that direct photoemission only probes the occupied states can be taken into account

by including, in the expression of the ARPES intensity, the Fermi Dirac distribution:

F D (ω,T ) = (
1+eω/(KB T ))−1

, (2.21)

where ω=-EB is the excitation energy, KB the Boltzmann constant and the Fermi level corre-

spond to zero energy. The sample temperature T can be varied during the experiment and is

usually measured by thermocouples. The ARPES intensity re-writes:

I (ω,k) =I0(ω,k,ν,A)•A (ω,k)•F D (ω,T ), (2.22)

where I0(ω,k,ν,A) is proportional to the matrix element, which depends on the photoelectron

momentum and energy, as well as the the energy and polarization of the incident photon

beam. The ability to directly probe the single particle spectral function A (ω,k), modulated by

matrix elements, is a unique characteristic of the ARPES technique.

2.1.3 Electron analyzer

There exists different kind of electron analyzers that can be employed in ARPES experi-

ment [23]. The ARPES data presented in this manuscript have been acquired through a

SCIENTA analyzer [19, 20] (specifically, SES2002 or R4000), whose main characteristics are il-

lustrated in figure 2.4. At the core of the SCIENTA electron analyzers lies the electron deflector:

an hemispherical capacitor with internal and external radii R1 and R2. The potential difference

between the two concentric hemispheres, ΔV, determines the pass energy Epass = eΔV R1R2

R2
1−R2

2
.

Only electrons entering the capacitor (at the entrance slit) with kinetic energy close to Epass

can reach the detector.

Since the resolution in energy is proportional to Epass , it is convenient to reduce the veloc-

ity of the photoelectrons, before they reach the capacitor entrance slit. This operation is

performed, without changing the absolute spread in the photoelectrons speed, by multiele-

ment electrostatic lens, placed between the sample and the entrance slit. The detectors of

SCIENTA analyzers are two-dimensional and position sensitive. The electrons are spread by

the capacitor along the x(y) detector direction, as a function of the direction (energy) with

which they arrive at the entrance slit. As a result, multiple energies are measured at various

momenta at the same time: each ARPES measure yields a 2D intensity map, recorded as n
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2.1. Angle resolved photoemission spectroscopy - ARPES

Figure 2.4 – SCIENTA analyzer | The photoelectrons are emitted in all directions but collected
within a limited solid angle. In the first stage, multielements electrostatics lens decelerate the
photoelectrons to match the acceptance energy, Epass of the hemispherical capacitor. Only
those electrons reaching the entrance slits with kinetic energy within a defined range around
Epass will reach the 2D detector plate. The electrons disperse according to the direction of
entry along the detector x axis, Θx in the figure, and the energy of entry along the y axis, Ek .
Adapted from reference [22].

energy distribution curves, where n is the number of detector channels (spread along the

detector x direction, thus corresponding to different values of the photoelectron emission

angle).

Similar hemispherical deflection analyzers are the SPECS PHOIBOS analyzers. Time of flight

analyzers can also be employed, if the photon source has an appropriate time structure.

2.1.4 Experimental conditions and coordinate transformation

The ARPES data discussed in this thesis have been collected on single layered lanthanium-

based cuprates, using SCIENTA SES2002 or R4000 analyzers (angle resolution <0.2deg, energy

resolution <10 meV), at the Swiss Light Source of the Paul Scherrer Institute, on the Surface

and Interface Spectroscopy (SIS) beam line [34]. To optimize matrix elements effects, which

are material specific, the energy of the incident photon beam was set to 55 eV, and all data

were recorded in the second Brillouin zone, but presented in the equivalent points in the first

zone, for convenience and clarity of display. Furthermore, the incident photon beam was

circularly polarized.

The experiments were performed on high quality single crystals of La2−x Srx CuO4and La1.6−x Nd0.4Srx CuO4,

grown by the traveling zone method. After alignment via Laue diffraction, sample of area

∼ 1 mm2, were mounted on a polycrystalline copper sample holder with the c axis directed

along the surface normal of both the sample and the holder. To ensure thermal and electric
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Figure 2.5 – Laboratory coordinate system | Adapted from reference [31].

Figure 2.6 – Manipulator rotational angles | The gray area indicates the place where the
sample holder is inserted. The copper belt around it keeps the holder in position and moves
together with it. Prior rotation, the coordinate system of the sample holder overlaps with that
of the laboratory, panel (a). Panels (b-d) illustrate the rotation around each of the axis of the
laboratory frame. Adapted from reference [31].

contact, a vacuum compatible conductive silver epoxy was employed to fix the samples on the

sample holders. To perform the experiment, the sample holder is mounted into the beam line

manipulator, which is kept under ultra-high vacuum conditions. To expose fresh, atomically

clean surfaces, the samples were cleaved in-situ, at pressure ∼ 0.5 10−10 mbar, using a top-post

technique or a specially designed cleaving tool [35].

The SIS beamline is equipped with a CARVING manipulator, which has six degrees of freedom.

The position of the sample can be translated along and rotated around three axis, fixed in

the laboratory frame, x ′, y ′ and z ′. As sketched in figure 2.5, z ′ points to the center of the

analyzer and together with x ′ identifies the mirror plane, defined as the plane where lie both

the incident photon momentum and the momentum of the detected photoelectron. The y ′

direction is orthogonal to the mirror plane. The angle between the direction of the incoming

photon beam and the center of the analyzer slit, β, is fixed to 45 deg at the SIS endstation.
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2.1. Angle resolved photoemission spectroscopy - ARPES

The ability to rotate the sample around 3 orthogonal axis allows to explore a wide portion

of the Brillouin zone within the same experiment. As described in the previous section, the

detector measures the photoelectron momentum along the detector axis Θx . In the laboratory

coordinate system the measured momentum, of modulus k, is given by:

kΘx = k
(−sinαŝ+cosαẑ′

)
; (2.23)

where α is the angle between the photoelectron direction and z ′ and ŝ is a unitary vector

whose direction depends on the direction of the analyzer slit. If the slit lies in the mirror plane,

it is called horizontal and ŝ corresponds to x̂′. If the slit is perpendicular to the mirror plane, it

is called vertical and ŝ=ŷ′.

We now want to convert the measured momentum to the sample coordinate system. To

do so, it is convenient to refer to the coordinate system of the sample holder, defined as

x ′′,y ′′ and z ′′. We define χ, ϑ and ϕ the angles of rotation around x ′,y ′ and z ′, see figure 2.6.

To express kΘx into the sample holder coordinate system is sufficient to consider the three,

independent, rotation matrices Rχ, Rϑ and Rϕ:

k′′ =RχRϑRϕkΘx ; (2.24)

with:

Rχ =

⎛
⎜⎝

1 0 0

0 cosχ sinχ

0 −sinχ cosχ

⎞
⎟⎠ ; Rϑ =

⎛
⎜⎝

cosϑ 0 −sinϑ

0 1 0

sinϑ 0 cosϑ

⎞
⎟⎠ ; Rϕ =

⎛
⎜⎝

cosϕ −sinϕ 0

sinϕ cosϕ 0

0 0 1

⎞
⎟⎠ . (2.25)

A misalignment between the a axis of the sample and x ′′ corresponds to an offset value for

the angle ϕ. Given the angle γ between the c axis of the sample and z ′′, we can express the

momentum in the sample coordinate system:

k =

⎛
⎜⎝

cosβ −sinβ 0

sinβ cosβ 0

0 0 1

⎞
⎟⎠

⎛
⎜⎝

cosγ 0 −sinγ

0 1 0

sinγ 0 cosγ

⎞
⎟⎠

⎛
⎜⎝

cosβ sinβ 0

−sinβ cosβ 0

0 0 1

⎞
⎟⎠k′′. (2.26)

2.1.5 ARPES data normalization

To account for differences in the channel efficiency, accurately determine the kinetic energy

corresponding to the Fermi level, and estimate the experimental resolution, 2D ARPES inten-

sity maps are collected on the sample and on a polycrystalline metal reference (typically gold,

copper or platinum), in thermal and electric contact with the sample.

In panel 2.7(a) is presented a raw ARPES map recorded on polycrystalline copper, kept at

22 K. ARPES data from a polycrystalline metal should have energy dependence given by the
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Figure 2.7 – ARPES data normalization | a) Raw ARPES intensity map recorded on polycrys-
talline copper at 22 K, as function of the kinetic energy and the detector angle Θx . b) Same map,
normalized for the channels efficiency and plotted versus excitation energy ω =EF -kinetic
energy. The vertical green dashed line indicates at what detector angle was extracted the en-
ergy distribution curve shown in panel (d) with green crosses. c) Normalized ARPES intensity
map recorded on a sample of La1.4Nd0.4Sr0.2CuO4, in thermal and electric contact with the
polycrystalline copper. The horizontal white dashed line indicates the Fermi level. White
dots illustrate the momentum distribution curve at the Fermi level, from which the Fermi
momenta an be extracted. The vertical blue dashed line indicates at what detector angle was
extracted the energy distribution curve shown in panel (d) in blue open dots. In panels (b)
and (c), the intensity across the detector channels is normalized to the integrated intensity of
the raw copper data, shown in panel (a). d) Example of energy distribution curves, extracted
from panels (b,c).

Fermi Dirac distribution (plus a background due to secondary electrons) and no momen-

tum dispersion. Indeed, the energy distribution curve at each detector channel shows the

expected step function profile, see the green crosses curve in panel 2.7(d), but the intensity

is not constant across the channels, due to different channel efficiencies. To correct for this

effect, the intensity at each detector channel is integrated over the kinetic energy. By dividing

the measured ARPES intensity over the raw copper integrated intensity, at each channel, the

influence of the channel efficiency is removed, as shown in panel 2.7(b).

To go from the detected kinetic energy to the excitation energy, it is sufficient to evaluate
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50.4 50.5 50.6 50.7
kinetic energy - E kin(eV)

in
te

ns
ity

 (a
rb

.u
.)

EDC
C
F

a)

EF
kin

-0.03 -0.02 -0.01 0 0.01 0.02

= EF
kin-Ekin (eV)

b)

Figure 2.8 – Extraction of the Fermi level and experimental resolution | Open dots indicate
the ARPES intensity measured on polycrystalline copper, at a certain detector angle (energy
distribution curve, EDC). The red line is a fit to the convoluted Fermi Dirac distribution (C),
where the value of the temperature was fixed to that measured on the metal (22 K). The un-
convoluted Fermi Dirac function is indicated by the blue dotted line (F). The vertical dashed
line indicates the extracted value of EF

ki n .

what kinetic energy corresponds to photoelectrons excited from the Fermi level, EF
ki n . In the

case presented in panel 2.7(a), it corresponds to ∼50.65 eV (incident photon energy was fixed

at 55 eV). It is often critical to estimate the value of EF
ki n with the highest precision possible (for

example if in presence of small gaps). The simplest way to do so, is to fit the energy distribution

curve recorded on polycrystalline copper to the Fermi Dirac distribution, at temperatures

fixed to the value measured on the metal (typically by thermocouples). To account for the

presence of secondary electrons, a linear slope was added to the Fermi Dirac distribution,

while finite resolution effects are included by Gaussian convolution. From this fit, illustrated in

panel 2.8(a) by a red solid line, the position of the Fermi level and the standard deviation of the

Gaussian convolution are extracted, at each channel. The blue dotted line in panels 2.8(a,b)

indicates the same function lineshape, without finite resolution effects (without Gaussian

convolution the width is only determined by thermal broadening). The Gaussian standard

deviation extracted from the convoluted fit represents the effective experimental resolution,

which in the studies presented in this thesis varied between 6 and 9 meV. Once EF
ki n has been

extracted, the detected kinetic energy can be converted to the excitation energy ω=EF
ki n−Eki n ,

as illustrated in 2.8(b) in a smaller energy range around EF
ki n , to better compare the convoluted

and unconvoluted Fermi functions.

An example of normalized ARPES spectra is shown in panel 2.7(c). Routinely, the recorded

2D ARPES intensity maps are analyzed separately in their dependence on momentum and

on energy. Momentum distribution curves are extracted at constant excitation energy ω and

give the ARPES intensity as function of the photoelectron momentum. The white dotted curve
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in panel 2.7(c) is an example of momentum distribution curve, extracted at the Fermi level

(ω= 0). In the given example, the spectral weight at ω=0 follows the profile of two Lorentzian

curves, over a smooth background. The momenta corresponding to the peaks of the the

momentum distribution curve at the Fermi level (MDCF )are defined the Fermi momenta, kF .

Energy distribution curves are extracted at a given value of momentum and yield the ARPES in-

tensity as function of the excitation energy. Notice that the energy distribution curve extracted

at kF (EDCF ) peaks at the Fermi level only in absence of a spectral gap. In panel 2.7(d), the

sample EDCF is compared to the energy distribution curve recorded on copper, in the same

channel. By comparing to the Fermi step extracted from polycrystalline copper, it appears

that the EDCF peaks at energies deeper than the Fermi level, while low energy spectral weight

seems suppressed, indicating the presence of a spectral gap. In these case, ones refers to kF as

the underlying Fermi momentum.
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2.2. Resonant Inelastic X-ray Spectroscopy - RIXS

2.2 Resonant Inelastic X-ray Spectroscopy - RIXS

2.2.1 Physical process

Resonant inelastic X-ray spectroscopy (RIXS) is an extremely versatile spectroscopic technique

which probes charge-neutral excitations. In fact, contrarily to photoemission, X-ray scattering

does not change the total charge of the target. The RIXS process is a second order process in

which the investigated sample absorbs and re-emits highly energetic photons, as depicted

in figure 2.9. The optical absorption process contains information about the unoccupied

states within the sample and represents an independent investigation tool, X-ray absorption

spectroscopy (XAS), which is discusses in section 2.2.2. Resonant inelastic X-ray spectroscopy

relies on the ability to resolve the energy of the re-emitted photons, which allows a direct

insight into the system excitations. Typically, in a RIXS experiment the samples are first

investigated by XAS to accurately identify the system absorption resonances, which are then

used to resonantly excite the system.

A monochromatic X-ray photon beam is directed towards the sample, which is initially in

equilibrium. The energy of the in-coming beam, hνi n - in the soft or hard X-ray energy range

-, is set to an absorption resonance of the sample, to enhance the cross section of the process.

It is important to note that by selecting a specific absorption edge, one controls in which

chemical element the optical absorption occurs. Furthermore, the symmetry of the initial

state can determine the symmetry of the unoccupied energy level to which the core electron

is promoted. These aspects of the absorption process are discussed in section 2.2.2. In the

course of a RIXS experiment, one varies hνi n around the chosen resonance value (typically

within ∼ 1 eV), to investigate the in- and off-resonance effects.

The system is pushed far from equilibrium, in an intermediate state which is highly un-

stable due to the presence of a deep core hole. In order to relax, the core hole needs to be

filled and the excess energy can be released back in the form of a photon (radiative relaxation).

The energy of the re-emitted photon, hνout , depends on the details of the relaxation event.

If the highly-excited electron created by the absorption process falls back into the core level,

the system will return to the initial state and the energy of the out-coming photon will be the

same as the incident one: hνout = hνi n . In this case, the overall process can be regarded as an

elastic scattering event. However, any electron can fall into the core hole, so that the photon

emerging from the scattering event will have energy hνout ≤hνi n . The energy lost in this in-

elastic process is directly related to the energy difference between the initial and the final states.

Figure 2.10 summarizes the most common excitations that can be accessed via the resonant

inelastic process described in this section. The most significant limitation in the observation

of the various excitations is the energy resolution, particularly for those falling at low energy

loss, where they may merge with the elastic peak.
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Figure 2.9 – schematic depiction of the RIXS process | The absorption of the incoming pho-
tons of energy hνi n brings the system from equilibrium (initial state) to a high energy inter-
mediate state, depicted in the central sketch. In this strongly out of equilibrium state, a core
electron is promoted to an unoccupied state above the Fermi level, EF - and leaves behind a
core hole. Many channels can be available for the system to relax into a less out of equilibrium
state, in which the core hole is filled and a photon of energy hνout is emitted. The energy lost
by the out coming photons, hνi n-hνout , is in direct correspondence with the energy of the
final state.

Figure 2.10 – Excitations accessible by RIXS | Indicative energy scale of the different excita-
tions accessible by RIXS [25].
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2.2. Resonant Inelastic X-ray Spectroscopy - RIXS

2.2.1.1 RIXS cross section

While optical absorption is a first order process, to derive the cross section for the RIXS process

the Fermi golden rule should be expanded up to the second order:

wi→ f =
2π

�

∣∣∣∣〈 f |H i nt |i 〉+
∑
n

〈 f |H i nt |n〉〈n|H i nt |i 〉
Ei +hνi n −En

∣∣∣∣2

δ
(
E f +hνout − (Ei +hνi n)

)
, (2.27)

where |n〉 indicates the intermediate state of energy En , hνi n the incident photon energy, hνout

the energy of the re-emitted photons and |i , f 〉 the initial and finale states of energies Ei , f .

The direct transition from the initial to the final state represents the non-resonant inelastic

scattering and is dominant at generic values of hνi n . If however the incident energy is set

to an absorption resonance (hνi n � En −Ei ), the second term, describing resonant inelastic

scattering, diverges and the first term can be neglected.

Resonant inelastic scattering is the result of two first order transitions, happening in se-

quence (resulting therefore in a second order process), from |i 〉 to |n〉 and from |n〉 to | f 〉. To

take into account the finite lifetime τ of the intermediate state (the core hole relaxes within

femtoseconds), the intermediate energy is considered a complex number, with imaginary part

equal to the broadening Γ= �/τ.

Resonant scattering can in principle occur both via a magnetic and a non-magnetic term.

However, the magnetic term has been shown [25] to be weakerx. If the interaction between

the radiation and the electron spin is neglected, the Hamiltonian connecting each of the first

order transitions can be described, within the dipole approximation, by i� e
me c A•∇, as already

discussed within the three step model of ARPES (section 2.1.2).

Within these approximations, the RIXS cross section is described by the Kramers-Heisenberg

equation:

F (νi n ,νout ) ∝∑
f

∣∣∣∣∑
n

〈 f |D∗|n〉〈n|D|i 〉
Ei +hνi n −En − iΓ

∣∣∣∣2

δ
(
E f +hνout − (Ei +hνi n)

)
, (2.28)

with D = ε• r the dipole absorption operator, D∗ = ε∗ • r the dipole emission operator and ε

the polarization of the absorbed/emitted photon.

The (coherent) sum over the intermediate state index n, accounts for the eventuality that

the process involves more than one intermediate state, as long as their energy difference is

smaller than Γ (this possibility is a consequence of the finite lifetime of the core hole). The

(incoherent) sum over the final state index f describes the scattering contributions due to

different final states and explains the versatility of RIXS. The final state can display excitations

x10 to 100 times smaller than the non-magnetic term, in the soft X-ray range [36].
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of different origins (lattice, magnetic, electronic, etc.), which are reflected in the RIXS intensity.

The elastic process, corresponding to Thompson scattering, corresponds to the case f=i and

contains important information about the charge density of the system. The delta function

enforces energy conservation. A complete derivation of the Kramers-Heisenberg equation can

be found in references [25, 26, 27].

2.2.2 X-ray Absorption Spectroscopy - XAS

X-ray absorption spectroscopy is a well established experimental technique extensively em-

ployed in chemistry, solid state physics and material science for the investigation of molecules,

gases, liquids and solids [37, 38, 39]. As discussed for the photoelectric process, when photons

carrying sufficient energy are incident on a material, their energy can be absorbed by a bound

electron, which is promoted to a previously unoccupied state (within the material), see inset

of figure 2.9. In other words, the absorption process coincides with step one of the three step

model of photoemission, optical excitation. A very important difference however is that, in

the case of X-ray absorption, the state of origin of the excited electron is not in the material

valence band but in the deep core levels, which retain a strong atomic character and have a

well defined binding energy EB . In fact, the optical absorption matrix elements allow a fine

tuning of the electron initial and final states, as explained in the following.

As a consequence of the absorption process, the intensity I0 of the beam incident on a sample

of thickness t is reduced according to Beer’s law [39]:

IT (t ) = I0e−μ(νi n )t , (2.29)

where μ(νi n) is the material specific absorption coefficient, which strongly depends on the

incident photon frequency, and IT is the intensity of the transmitted X-ray beam. By varying

the energy of the incident photon beam, μ(νi n) can be determined by measuring the intensity

of the incident and transmitted beams. Over wide energy ranges, μ is a smooth function of the

incoming energy hνi n :

μ(νi n) ∼ ρZ4

A(hνi n)3 , (2.30)

where ρ is the sample density and Z and A are the atomic number and mass of the chemical

element responsible for the absorption. Starting from low energies and increasing hνi n , a

new absorption channel becomes available when the photon energy matches the binding

energy of a core electron, which causes a sharp increase of the absorption coefficient. Further

increase of the incoming energy results in a lower value of μ(νi n), according to equation 2.30,

until a new absorption resonance is matched and μ(ν) exhibits a corresponding steep increase.

The energies corresponding to the discontinuities in μ(νi n) are referred to as "absorption
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Figure 2.11 – Dependence on the atomic number Z of the energy of K, L and M absorption
edges | For L and M edges, the highest and lowest energies are shown, corresponding to L1,3
(where the core levels involved are within the 2s, 2p3/2 subshells), and M1,5 (3s, 3d 5/2). The
horizontal lines between the hard and soft X-ray energy ranges indicate the energies of 1.5
and 4 KeV. Adapted from reference [25].

edges". These edges occur at the binding energies of all core levels, and are classified according

to the main quantum number n of the specific core level involved in the absorption: if the

photon energy is absorbed by electrons in the first shell (n=1), the relative edge is labeled "K",

the second shell corresponds to "L" absorption edges, the third to "M" and so on. Since the

core levels retains a strong atomic character, the energy corresponding to each edge is only

slightly influenced by a different chemical environment and varies, for each element, roughly

as Z2, see figure 2.11. The incoming photon energy can therefore be set to a specific resonance,

and contributions to the absorption from other elements or other core levels can be treated as

a continuous background, see appendix A.1.

Another consequence of the strong atomic character of core levels is the fact that, at each edge,

the initial state of the X-ray absorption process has a well defined symmetry. The quantum me-

chanical optical selection rules therefore place strong constrains on the symmetry of the final

state. For example, the K-edge corresponds to the promotion of a 1s electron into unoccupied

valence orbitals with a strong p character (electric dipole allowed transitions must correspond

to a final state with orbital momentum � increased of decreased by a quantum, Δ� = ±1).

Notice that the final state of the absorption process coincides with the RIXS intermediate state.

In conclusion, XAS is a chemical selective spectroscopy, sensitive to the unoccupied den-

sity of states as well as the symmetry of the unoccupied states. These characteristics make

XAS a suitable probe of the local electronic structure, oxidation state as well as chemical

coordination of specific elements within virtually any compound [37, 38, 40].
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2.2.2.1 Total fluorescence yield and total electron yield

The absorption coefficient μ(νi n) can be directly measured in transmission mode, which re-

quires homogenous sample of thickness in the μm range. Such an experimental configuration

is however unpractical, especially when the same sample is to be investigated via RIXS (which

does not operates in transmission but rather reflection). A more convenient investigation

method relies, similarly to the RIXS technique, on the relaxation of the core hole created in

the absorption process. The core hole is filled within ∼ 10−15 seconds (in the femtoseconds

timescale) after optical absorption, by an electron in the valence band of the system. The

energy released by the electron which fills the core hole can be released in the form of a photon

(radiative relaxation) or can be absorbed by another valence electron (Auger relaxation), which

will transit into some unoccupied state within the material and may eventually escape into

vacuum. Indirect XAS measures are operated in fluorescent yield mode or electron yield mode,

according to which decay products (emitted photons or electrons) are measured.

As a result of the optical absorption and Auger relaxation, photoelectrons, secondary electrons

and Auger electrons can escape the sample into vacuum. The samples are routinely grounded

so that the emitted electrons (whose number is proportional to the number of absorbed

photons) are replaced and the Fermi level of the system is not affected by the process (such a

precaution is also adopted in photoemission experiments). In total electron yield (TEY) mode,

one measures the current flowing from the ground to the sample, which preserves charge

neutrality and is ultimately proportional to the absorbed intensity.

In total fluorescence yield (TFY) mode, photons emitted in the radiative relaxation of the

core hole are collected by a detector with a finite angular acceptance. The detector does

not resolve the photon energy and can be a photodiode, a channel electron multiplier or a

microchannel plane detector. Therefore, in TFY mode out-coming photons are integrated over

a finite solid angle and a broad range of photon energies. In other words, the TFY intensity at a

certain incident energy hνi n corresponds to the RIXS intensity at the same incident energy,

non resolved in energy or angular dependence of the emitted photons. In the following section

it is illustrated how the energy of the emitted photons is resolved by a RIXS spectrometer.

The escape depth of X-ray photons is larger than that of electrons, so that the TEY is more

surface sensitive than the TFY. However, TFY can be influenced by self-absorption, i.e. the

photon emitted in the radiative relaxation process can be re-absorbed by the sample. Self-

absorption, if present, is influenced by the experimental geometry (since the probability of

self-absorption increases with the sample thickness traversed to escape). Therefore, the lack

of geometrical influences on the measured TFY spectra indicates little to no influence from

self-absorption. It is good practice to compare the TEY and TFY signals, to evaluate whether

the measured profile is affected by systematic errors, due to surface effects or self-absorption.
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Figure 2.12 – schematic depiction of a RIXS spectrometer| The photon beam scattered by
the sample is masked by an entrance slit, to select a well defined angle of incidence on the
diffraction grating. The grating disperses the polychromatic beam according to the wavelength
of its components: photons of different energies hit the detector at different heights. In this
way one gains direct experimental access to the energy distribution of the scattered beam
[adapted from [36]].

2.2.3 Dispersion in energy loss

Figure 2.12 illustrates the experimental realization of a RIXS spectrometer. The highly excited

sample relaxes radiatively and emits x-ray photons in a large solid angle. The position of the

detector defines the direction of measure and an entrance slits reduces the angular distribu-

tion of the out-coming polychromatic beam. The resolution in energy is obtained through

diffraction, which disperses the beam, with photons of different energies scattered in different

directions. The height of the detector determines the energy range to be measured (typically �
5-15 eV around the central value), and needs to be adjusted when the energy of the in-coming

monochromatic beam is changed by more than � 10 eV (for example if different absorption

edges are explored).

At a synchrotron, monochromatic photon beams of sufficient intensity can be obtained in a

wide range of energies. For the diffraction to be effective, the spacing of the diffractometer has

to be in the same order of magnitude as the photon wavelength. This is the same mechanism

employed to select a specific energy from the Bremsstrahlung emission of the relativistic

electrons circling in the synchrotron ring. Hard X-ray photons have wavelength in the order of

the Angstrom (λ� 1-3 Å for hν� 4−15 KeV), and efficient diffraction can be obtained from

crystals. The longer wavelength of soft X-ray photons well adapts to the groove spacing in

grating monochromators, but only for hν≤ 1.5 KeV (λ≥ 8 Å).
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Figure 2.13 – Raw RIXS spectrum | taken on Ca2RuO4 with incident energy of 529.9 eV and
linear horizontal polarization (parallel to the scattering plane). Gray bars indicate the uncer-
tainties.

Figure 2.13 shows an example of RIXS spectrum as recorded by the detector at the high resolu-

tion ADRESS beamline of the Swiss Light Source, which operates in the soft X-ray energy range

and employs plane diffraction gratings. Each of the detector channels corresponds to a specific

photon energy, and is numbered with increasing energy. The energy difference between 2

adjacent channels is equal to 17.5 meV. As explained earlier, the energy of the central channel

is not known a priori (but changes with the height of the detector). Figure 2.14 illustrates the

energy calibration procedure.

The value of hνi n puts an upper limit to the values of hνout that can be recorded, with

hνout =hνi n for elastic events. Therefore by fitting the elastic peak (excitation observed at the

highest detector channel) to a Gaussian, one can extract the channel corresponding to the

energy value of hνi n :

Fel (x) = Ie−
(x−c)2

2σ2 (2.31)

With x= detector channel, c center of the elastic resonance of intensity I and full width at half

maximum (FWHM) given by 2
�

2ln2σ.

The center of the Gaussian is the channel corresponding to the value of the in-coming energy,

while the FWHM gives an estimate of the experimental energy resolution.
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Figure 2.14 – Calibration procedure of a RIXS spectrum | taken on Ca2RuO4 with incident
energy of hνi n= 529.9 eV and linear horizontal polarization. A) The red solid line is a Gaussian
fit of the elastic peak. The values extracted for the center, c and the standard deviation, σ,
are indicated in the figure. The fit is plotted in a thicker line within the region of fit (marked
by the gray vertical lines), which is restricted to just after the peak on the left side, to avoid
broadening due to possible contributions from low energy excitations (see figure 2.10). The
full width at half maximum (FWHM), � 2.35•σ, gives an estimate on the energy resolution of
the experiment, the position of the center of the elastic peak . b,c) calibrated spectrum, is a
function of the energy of the out-coming beam, hνout , or of the energy loss= hνi n- hνout .

If the elastic peak on the sample is suppressed or there are low energy excitations partially

or totally covering it, it is useful to take a reference on amorphous carbon (it is sufficient to

apply some carbon tape next to the sample, at approximately the same height as the sample

surface). The carbon tape reference in RIXS can be thought of as equivalent to the polycrys-

talline metal reference in ARPES. In fact, the elastic signal recorded on the carbon tape is

also useful to derive the energy resolution, since its width is not affected by low energy features.

As illustrated in figure 2.10, a wide range of excitations are probed by the RIXS process, and,
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on the sample, the presence of some very low energy loss features cannot be excluded. These

would fall very close to the elastic peak of the sample, and could broaden its profile, on the

lower energy side. For this reason the Gaussian fit is restricted to just after the peak, as in-

dicated by the thicker red line in panel 2.14(a). In the case of the example, the agreement

between the fit of the elastic peak and the data remains satisfying in a larger range, indicating

absence of excitations at very low energies. It is important to check that the width extracted is

equal, within a few percent, to that obtained from coplanar amorphous carbon.

Once the center of the elastic peak has been determined, the channels of the detector can be

converted to the corresponding value in energy. The calibrated spectrum is shown in panels

2.14(b,c), where the intensity of the RIXS signal is plotted versus the value of hνout , panel

2.14(b), or that of the energy loss= hνi n- hνout , panel 2.14(c).

2.2.4 Dispersion in incident energy

Varying the energy of the monochromatic incident beam enables us to follow the evolution of

the observed feature as function of incident energy. This possibility proves particularly useful

in the identification of Raman-like vs fluorescent-like excitations, as explained below and

shown for a practical example in appendix A.4.

The absorption of the in-coming photon brings the system strongly out of equilibrium, since

it involves the assimilation of an enormous amount of energy (in the order of 100 eV or more,

compared to typical energy scales of the order of the eV, or less). To return into a more stable

state, many relaxation channels are available to the system. This situation is illustrated in

figure 2.9. These channels can be classified according to their dependence on the energy of

the incident or scattered photon.

Relaxation through a Raman channel leaves the system into a final state of well defined energy

ΔER . As a consequence, varying the amount of incident energy results in a parallel change

in the amount of energy released, since the system cannot retain more energy than ΔER .

Fluorescence on the other hand is observed if, in the final state, the system can accommodate

a wide range of energies (i.e. the final state belongs to a continuum of states). In this situation,

the amount of energy released in the relaxation does not correlate with the amount of energy

supplied to the system. A higher (or lower) incident photon energy does not affect the energy

of the re-emitted photon, but rather the amount of energy retained by the system. In other

words, varying the incident photon energy hνi n , Raman-like excitations manifest themselves

at constant energy loss= ΔER , while the energy loss related to fluorescent processes depends

linearly on the incident energy, since in this case is hνout to remain constant.

Excitations of Raman character are for example the excitation of collective modes (photon,

plasmon, magnon, ect.) or the effective transfer of an electron between valence orbitals with

small band widths (d −d excitations). If the bandwidth extends over a significant range of
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energies, as is the case of oxygen states for example, the relaxation process assumes a fluores-

cent character. A common fluorescent excitation observed in transition metal oxides is charge

transfer. To discuss the nature of this excitation is convenient to refer to a practical example.

Lets consider the case of oxygen K edge absorption resonance in the ruthenates. If we limit

ourselves to the RuO2 planes and consider the 4d ruthenium orbitals and the 2p oxygen ones.

The total number of electrons occupying O2p-Ru4d the valence states are 16, of which 12 are

mostly localized around the strongly electronegative oxygen atoms and 4 spending most of

their time near the ruthenium ones.

The excitation of a 1s oxygen core electron into the O2p-Ru4d states causes a redistribu-

tion of the charge. In the strongly out of equilibrium intermediate state, there is an extra

electron into the O2p-Ru4d valence states which has to be (mostly) localized around the

ruthenium atom. Notice that in a purely ionic model the O1s →O2p transition would be

prohibited, since there would be no states available for the core electron to transit to.

In the final state, the core hole is filled and there are again 16 electrons in the O2p-Ru4d

states. Charge transfer occurs if the final charge distribution features 5 electrons, instead of

the initial 4, mostly delocalized around the ruthenium nucleus, with a hole left in the oxygen

states. Since the oxygen valence band extends over a wide range of energies xi, in this final

configuration the system can retain a similarly wide range of energies, which explains the

observed fluorescent character of this relaxation channel. As a final remark, it is worth to

mention that a redistribution of charges is energetically expensive, and it occurs at energy loss

larger than 2 eV - as illustrated in figure 2.10.

2.2.5 Dispersion in momentum

In this section we discuss the conservation of momentum in the RIXS process, which gives

access to the momentum dispersion of the observed excitations. For simplicity, we consider

only the elastic case, where the in-coming and out-coming photons have same energy. The

error introduced in this fashion is negligible, since an energy difference of 10 eV only changes

the photon momentum by ∼ 5 10−3 Å−1, and we operated in the soft X-ray regime where

photons carry a momentum of the order of 10−1 Å−1xii.

In figure 2.15 the elastic scattering geometry is depicted for two case: specular condition

in panel 2.15(a), and general in panel 2.15(b). The incident and scattered beams have mo-

mentum Kin and Kout, respectively, with |Kin|=|Kout|=K (elastic process). The scattering angle

α between Kin and Kout is generally fixed within each experiment (but can be varied upon

necessity, by rotating the RIXS spectrometer). In our case it was fixed to α=50o , by the experi-

xiThe oxygen K absorption edge exhibits significant intensity from ∼529 eV to 550 eV and more, see section 4.2.
xiiMore specifically, our in-coming beam had energies varying between ∼ 527 eV and ∼ 531 eV, corresponding to

a wavelength of ∼ 23.4 Å and a momentum of ∼ 0.268Å−1.
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Chapter 2. Experimental methods

Figure 2.15 – Scattering geometry of the elastic process | θ is the angle between the normal
to the sample surface and the momentum of the incident beam, Kin. The scattering angle, α,
is fixed by the direction of incidence and the direction of the RIXS spectrometer, which collects
the out-coming beam of momentum Kout. In the process, the momentum Q = Kout −Kin is
transferred to the crystal. (a) Q is perfectly orthogonal to the sample for θ =α/2, corresponding
to the specular condition and enhancement of the elastic signal. (b) At all other values of θ, Q
has both an orthogonal and in-plane component, Q⊥ and Q//.

mental set up. θ is the angle between the normal to the sample surface and Kin.

The scattering process involves the transfer of momentum Q = Kout −Kin to the sample, with

direction defined by the bisector to α and modulus:

|Q| =|Kout −Kin| = 2K cos
α

2
= 2

2π

12.4
hνcos(25o) � 0.92•hν Å−1 (2.32)

In the case of α=50o and with the photon energy expressed in KeV. In the case of the data

presented in section 4.3, hν� 530 eV and |Q| � 0.49 Å−1. In the case of 2D, or quasi-2D systems,

the quantity of interest however is the projection of Q on the sample surface, which depends

on the incident angle θ:

Q =Q⊥+Q// = q⊥ê⊥+q//ê//

q⊥ =|Q|cos
(α

2
−θ

)
� 0.92cos

(
25o −θ

)•hν Å−1

q// =|Q|sin
(α

2
−θ

)
� 0.92sin

(
25o −θ

)•hν Å−1

(2.33)

The specular condition is realized for θ =α/2, see panel 2.15(a). In this case, the momentum

transferred to the sample is perpendicular to the sample surface: Q = q⊥ê⊥. For all other

values of θ, the scattering process involves a momentum transfer along the plane of the sample,

as shown in panel 2.15(b). Through this mechanism, the energy vs momentum dispersion of

the observed excitations can be accessed.
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Among transition metal oxides, cuprates are probably the most investigated compounds [22,

42, 43, 44]. These materials in fact exhibit a number of fascinating and unsolved physical

phenomena, such as unconventional superconductivity, anti-ferromagnetic insulation, spin

and charge modulation, anisotropic partial gapping and strange metallicity.

As illustrated in figure 3.1, these phenomena generally occur in close vicinity, when vary-

ing the composition and/or temperature, so that the relation connecting the one to the other

is not evident. In fact, strongly correlated systems have a tendency for avalanches, where one

electron instability triggers or facilitates another. To understand these phenomena therefore

one should distinguish the driving mechanism from the secondary effects, which proves

Figure 3.1 – Cuprates phase diagram | as function of temperature and hole doping. Adapted
from reference [41]. The insiet on the right shows the crystal structure of single layered
cuprates, with indication of the valence states of each element. Substitution of interstitial
elements at valence state +3, I+3, with others at valence state +2, I+2, corresponds to hole-
doping the system. Adapted from reference [22].
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extremely challenging.

The observation of the pseudogap, charge order, and superconductivity in the same region of

the phase diagram triggers questions about their origin as well as relation. Do they arise as

competing mechanism, or are they precursor to each other? Moving towards the right extrema

in the phase diagram, one finds the strange metal phase, with gapless excitations that do not

follow the Drude-Sommerfeld model and whose microscopic description is still missing.

The compounds employed for our study have a single-layered perovskite crystal structure,

composed by a single layer of oxygen octahedra enclosing a copper atom and separated by in-

terstitial elements, indicated as I, at valence states +3 or +2 (for example lanthanum, strontium,

barium, europium or neodymium), see inset of figure 3.1. The hole content is given by the

amount of I+2 atoms present in the crystal, per copper atom. Optimally doping corresponds

to the maximum in the superconducting transition temperature, while crystals with a smaller

(higher) hole content are called under(over)-doped.

In this section we will present our angle resolved photoemission spectroscopy results on

the physics of the normal state of cuprates, outside of the superconducting phase. In particu-

lar, we will focus on the properties of low energy excitations in the strange metal phase, on the

over-doped side of the phase diagram (section 3.1) and in the charge order and pseudo gap

phases, found in the underdoped side (section 3.2).
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3.1. Self-energy and quasiparticle renormalization effects

3.1 Self-energy and quasiparticle renormalization effects

This section is devoted to a discussion on the nature of low energy nodal excitations in over-

doped cuprates. The notion of "quasi-particle" underlies modern understanding of many

condensed matter problems [45]. Electrons in solids are well known examples: the crystalline

potential affects their physical description and they exhibit a different dispersion than in

vacuum. The effects of the periodic potential can be accounted for by a mass normaliza-

tion [46]. An effective mass is thus assigned to the electrons, which are consequently described

as quasi-particles.

When the electronic interactions cannot be neglected, as happens in strongly correlated

materials, a further mass normalization occurs to include these effects, and the quasi-particles

are said to be "dressed" by the correlations. The effective mass assigned to the electronic

quasi-particles as a result of the crystalline periodic potential only (in absence of electronic

correlations) is called "bare-mass", mb . The dispersion that the quasi-particles would follow

in this case is called bare-band εb , as opposed to the experimentally observed renormalized

dispersion εk .

It is useful to describe the quasi-particles in terms of their self-energy, Σ = Σ′ + iΣ′′. While

the imaginary part of the self energy Σ′′ describes the lifetime of the quasi-particles, the real

part Σ′ determines their renormalized mass m∗. In particular, for electrons (or holes) in

strongly correlated materials such are the cuprates, the renormalized mass m∗ is generally

given by mb/m∗ = Z Ẑ , where Z = (1− ∂Σ′
∂ω )−1 and Ẑ = 1+ (mb/�2kF )∂Σ′(k,0)/∂k [47], with

ω, k excitation energy and momentum and kF Fermi momentum. If the self energy is mo-

mentum independent, the quasi-particle mass is given by m∗ = mb/Z , where Z indicates the

quasi-particle residue: Z−1 ≡ 1− ∂Σ′
∂ω

We provided an ARPES proof, published in reference [48], that the self energy of low en-

ergy excitations in the strange-metal phase of cuprates satisfies the mathematical conditions

for Landau Fermi liquid quasi-particles [49, 50, 51], namely:

1. Σ′′ ∝ω2

2. −Z •Σ′′ < |ω|

For convenience, in this discussion the excitation energy ω is defined positive.

Generally, both Z and Σ are functions of the bare-band velocity vb = ∂εb
∂k , which is not experi-

mentally accessible. Because of the difficulty in the determination of Σ and vb [52], the exact

nature had not yet been proved by ARPES, although the Landau quasi-particle terminology

has been widely used to describe these excitations. This task was made possible by the avail-

ability of high quality nodal spectra of La1.77Sr0.23CuO4, recorded as part of the detailed Fermi

surface study performed by J. Chang, M. Månsson, S. Pailhés, T. Claesson, O. J. Lipscombe,
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S. M. Hayden, L. Patthey, O. Tjernberg and J. Mesot - published in reference [53] and briefly

summarized in section 3.1.1. The analysis of the nodal spectra is presented in section 3.1.2,

and the results are discussed in sections 3.1.3 and 3.1.4 and summarized in section 3.1.5.

3.1.1 Fermi surface of La1.77Sr0.23CuO4

The scope of this section is to outline the main results of the Fermi surface study to which

belongs the ARPES data used for our proof.

J. Chang et al. [53] used angle resolved photo emission to determine the Fermi surface of

La1.77Sr0.23CuO4 and extract the imaginary part of the self energy, Σ′′. The ARPES study was

performed out of the superconducting phase, into the strange-metal state of the system. Gap-

less excitations were observed across the full Fermi surface, illustrated in the top left inset of

figure 3.2.

Interestingly, the self energy dependence on the excitations energy ω was found to be highly

anisotropic. Around the Fermi level, Σ′′ would exhibit a quadratic dependence on ω in ARPES

data taken along the Brillouin zone diagonal (nodal direction, corresponding to a Fermi surface

angle φ� 45deg), and a linear dependence (not compatible with Fermi liquid quasi-particles)

in data taken along the main Brillouin zone axis (anti-nodal direction, φ� 0deg/90deg).

Furthermore, at a given Fermi surface angle φ, a cut off energy value ωc was identified, with

Σ′′ ∝ω for ω>ωc . The value of ωc , which defines the energy interval in which Σ′′ ∝ω2 (com-

patible with Landau quasi-particle), undergoes a gradual evolution with the Fermi surface

angle φ, as documented in figure 3.3.

3.1.2 Analyis of nodal ARPES spectra

Studying the Fermi surface of La1.77Sr0.23CuO4, J. Chang et al. [53] have found arcs of Fermi-

liquid-compatible quasi-particles (at excitation energy <200 meV), separated by gapless non-

Fermi liquid excitations i. The subsequent analysis presented in this and the following sections

aimed at an experimental proof of the Fermi-liquid nature of the nodal low energy excitations.

The nodal ARPES data is presented in figure 3.4. Panel 3.4(a) displays the ARPES intensity

I (ω,k), recorded along the cut shown in the inset of panel 3.4(c), as function of the excitation

energy ω and momentum k −kF , where kF indicates the Fermi momentum. The momentum

distribution curves (MDCs) shown in panel 3.4(b) represent the ARPES intensity I (ω̄,k) as

function of the moment, at constant excitation energy ω̄ as indicated. The Fermi momentum

kF is extracted from the MDC at the Fermi energy, corresponding to ω= 0 (see section 2.1).

The energy distribution curves (EDCs) shown in panel 3.4(c), on the other hand, indicate

iIn the pseudo gap phase a similar anisotropy is observed, but in that case the gapless excitations found in the
so-called Fermi arcs are separated by gapped excitations.
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Figure 3.2 – La2−x Srx CuO4 phase diagram | and Fermi surface at hole content x=0.23, indi-
cated by the vertical bar. The system evolves from a Mott insulator, for x=0, to a Fermi metal,
for x=2. At intermediate values of x, the system exhibits a pseudogap phase and a supercon-
ducting ground state. In a strongly correlated Fermi liquid, the imaginary part of the self
energy is expected to scale with the excitation energy squared, Σ′′ ∝ω2, as illustrated in the
top left inset. J. Chang et al. [53] report a breakdown of the Fermi liquid description in the
Fermi surface of La1.77Sr0.23CuO4, illustrated by the top left inset. Blue indicates an observed
self energy compatible with Fermi liquid quasi-particles, red a non-Fermi liquid behavior
(ImΣ′′ ∝ω). Adapted from reference [53].

Figure 3.3 – Anisotropy of Σ′′ | Fermi liquid cutoff energy ωc as function of the Fermi surface
angle φ. Blue indicates an observed self energy compatible with Fermi liquid quasi-particles
(Σ′′ ∝ω2), red a non-Fermi liquid behavior (Σ′′ ∝ω). Adapted from reference [53].
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the ARPES intensity I (ω, k̄) as function of the excitation energy, for constant values of the

momentum k −kF as indicated. Note that an ω-dependent background was subtracted to

the EDCs. The background was estimated from an EDC at momentum k −kF = 0.089Å, away

form the dispersive features [53, 54], indicated by the vertical dashed line in panel 3.4(a). To

double-check the background removal, EDCs at k > kF are shown in open circles at the bottom

of panel 3.4(c). The same background was subtracted to all EDCs, but only those taken at

k > kF appear featureless. Solid lines in panel 3.4(b) are fits to a Lorentzian function (equation

3.1), while the solid lines in panel 3.4(c) display the ω dependence of the ARPES intensity

function derived in the following, which consistently describes both MDCs and EDCs, see

equation 3.15.

We start our discussion with the momentum dependence of the ARPES intensity at constant

excitation energy, i.e. the momentum distribution. The MDCs lineshape consists of symmetric

peaks on constant background that can be empirically modeled by a Lorentzian function:

I (ω̄,k) ≡ I0
Γ

(k − k̄)2 +Γ2
+CBG (3.1)

where Γ is the Lorentzian width (half width at half maximum), k̄ the peak position, I0 the peak

intensity and CBG a constant background. From fitting of MDCs taken at different value of ω̄

to equation 3.1, the excitation dispersion εk = f (k̄) can be extracted. At low excitation energy,

this analysis yields a linear dispersion:

εk � vF (k −kF ) (3.2)

with slope given by the Fermi velocity vF = 1.62(2) eVÅ - in agreement with values previously

derived on La2−x Srx CuO4 [55, 56].

The Lorentzian width Γ extracted is reproduced in figure 3.5, for the two cuts indicated

by the color-coded bars in the top left inset, as a function of the excitation energy squared,

ω2, and as a function of ω in the lower right inset. Γ is found to follow a quadratic law for

ω<ωc = 0.18±0.02 eV, and a linear one for ω>ωc . In the quadratic range:

Γ� Γ(0)+ηω2 (3.3)

with η= 3.14(4) eV−2Å−1 and Γ(0) = 0.0117(1) Å−1ii.

To obtain a consistent description of the EDC lineshape, we need to model the spectral

function A (ω,k), detailed in the following section.

iiReported values of the elastic scattering Γ(0) in La2−x Srx CuO4 are typically higher [56, 57]. Since impurity
scattering contribute to the elastic scattering [58], lower values of Γ(0) could indicate higher sample purity.
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Figure 3.4 – Nodal ARPES spectra and selected distribution curves | recorded on cleaved [35]
samples of over-doped La2−x Srx CuO4 (x = 0.23), at T = 15 K with 55 eV incident photon
energy and circular polarization. The experiment was performed at the surface and interface
spectroscopy beam line of the Swiss Light Source (SLS, Paul Scherrer Institute, Switzerland),
under ultra-high vacuum conditions (p ∼ 10−11 mbar) [53]. a) ARPES intensity, indicated
by the colorbar, displayed versus momentum k −kF (horizontal) and excitation energy ω

(vertical). Color-coded horizontal and vertical bars indicate at which value of ω or k −kF

where extracted the curves reproduced in panels (b,c), respectively. The vertical white dashed
line indicates the ω dependent background, subtracted to the curves displayed in panel
(c). b) Momentum distribution curves (MDCs) of the spectra shown in (a), at constant ω̄ as
indicated. Solid lines are Lorentzian fits to the data. c) Energy distribution curves (EDCs)
recorded at momenta k −kF as indicated. An ω dependent background, taken at momentum
k −kF = 0.089 Å−1, was removed from the EDCs. The horizontal dashed lines indicate zero net
intensity (after the background removal) for the corresponding EDC. Note that curves taken at
k > kF appear featureless. Solid lines display the ω-dependence of equation 3.15, convoluted
with the instrumental resolution (σexp =9 meV). The Fermi surface of La1.77Sr0.23CuO4 [53]
is shown in the inset, with the black bar indicating the cut along which the ARPES spectra
were recorded. The curves in panels (b) and (c) were arbitrarily shifted to improve visibility.
Adapted from reference [48].
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Figure 3.5 – Low energy excitation linewidth | extracted from the fits of the momentum
distribution curves (MDCs) of ARPES spectra taken along the two cuts illustrated by the bars
in the top left inset. The linewidth Γ is plotted versus the excitation energies squared (ω2).
Bottom right inset shows Γ vs ω. The arrow indicates the energy ωc at which the ω-dependence
of Γ changes from quadratic to ∼ linear. Adapted from reference [48].

3.1.3 Spectral function model

As discussed in section 2.1, the photoemission intensity I =I (ω,k) can be modeled, within

the three step model [22], by the spectral function A (ω,k) times the Fermi-Dirac distribution

at temperature T , F D (ω,T ), modulated by a matrix element M (ω,k):

I (ω,k) �A (ω,k)•F D (ω,T )•M (ω,k). (3.4)

Since the gapless excitation were found to be compatible with the Fermi liquid description

only for energies smaller than a cut off value of ωc ≤∼ 180 meV [53], we focuses our analysis in

this energy range. Furthermore, from panels 3.4(a,b) we observe that the excitations disperse

over a momentum interval smaller than 0.1 Å−1, corresponding to less than 10 percent of the

Brillouin zone ( 2π
a ∼1.1 Å−1, with a �3.35 Å size of the tetragonal unit cell [59]).

Matrix elements typically vary weakly as a function of (ω,k), and can be assumed to be

∼constant in the range considered (ω < 0.2 eV, |k −kF | < 0.1Å−1). Under this assumption,

I (ω,k) directly probes the occupied part of the spectral function:

I (ω,k) ∝A (ω,k)•F D (ω,T ). (3.5)
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We separate the spectral function into coherent and incoherent contributions [22]:

A (ω,k) =Acoh(ω,k)+Ai ncoh(ω,k). (3.6)

Sharp dispersing features are associated to Acoh(ω,k), while diffuse featureless spectral weight

is associated with the incoherent part of the spectral function. In the energy range of interest,

coherent features dominates and we neglect Ai ncoh(ω,k).

For the coherent part we write:

Acoh(ω,k) = −1

π

Σ′′(ω,k)

(ω−Σ′(ω,k)−εb)2 +Σ′′(ω,k)2 (3.7)

where εb represents the bare band (a priori unknown) and the self energy Σ must obey

|Σ′|� |Σ′′| [60].

We assume εb to follow a linear dispersion: εb � vb(k −kF ). The observed, renormalized,

band εk extracted from the fit of low energy MDCs to equation 3.1 is compared to the esti-

mated εb in figure 3.6. Since the renormalized band follows a linear momentum dependence,

it is reasonable to assume a linear dependence for the bare band εb . In fact, the bare band

velocity vb ≡ ∂εb
∂k is expected to be larger than the observed Fermi velocity vF (LDA calcula-

tions for example estimate vb � 3.5 eVÅ [61]) so that, in the limited energy interval considered

here (ω < 0.2 eV), eventual curvature effects can be neglected. In the inset of 3.6 the ob-

served dispersion is reproduced in a larger energy interval and one can notice the change

in slope around ω∼ 80 meV, known as the cuprates nodal kink and consistent with previous

reports [53, 62, 63, 64, 65].

Furthermore, we assume that, within the interval of interest, the momentum dependence

of the self-energy can be neglected: Σ(k,ω) ≡Σ(ω). This assumption is only justified locally,

as Σ appears to vary strongly with the Fermi surface angle φ, as reported in figure 3.3 [53].

However, in the vicinity of the nodal direction (φ∼ 45deg) the anisotropy of the self energy

can be disregarded. This assumption is supported by the observations made of the two nodal

cuts indicated in the top left inset of figure 3.5. Both the linewidth (figure 3.5) and the band

velocity (figure 3.6) extracted from the MDCs analysis superpose for the two cuts, in the low

excitation energy range considered. Even the Lorentzian intensities are found to be equivalent,

as testified by figure 3.7. Moreover, a dependence on k of Σ would cause an asymmetry in the

MDC intensity I (ω̄,k). The symmetric lineshape of the MDCs (see panel 3.4(b)) therefore

provides an additional argument in support of a (locally) momentum independent self energy.

Assuming the linearity of εb and the momentum independence of Σ allows to re-write the

expression for the coherent part of the spectral weight:

Acoh(ω,k) �−1

π

Σ′′(ω)

[ω−Σ′(ω)− vb(k −kF )]2 +Σ′′(ω)2 . (3.8)
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Posing (k −kF ) = k̄ and considering that energy over velocity has the dimension of the mo-

mentum, ω−Σ′(ω)
v+b ≡ k, the coherent part of the spectral weight assumes, in its dependence to k,

the form of a Lorentzian function peaked around k̄ with half width at half maximum given by

Σ′′(ω)/vb :

Acoh(ω,k) �−1

π

1

vb

Σ′′(ω)
vb

(k − k̄)2 +
(
Σ′′(ω)

vb

)2 . (3.9)

In other words, we have found a direct relation between Acoh(ω,k) and the empirical parametriza-

tion of the MDCs intensity given in equation 3.1. From these considerations, we can extract

an explicit expression for the imaginary part of the self energy:

−Σ′′(ω)

vb
≡ Γ ⇒ Σ′′(ω) ≡−vb •Γ=−vbηω

2. (3.10)

Therefore, Σ′′(ω) ∝ω2, compatibly with Landau Fermi quasi-particles.

To verify the fulfillment of the second mathematical condition, we need to evaluate the quasi-

particle residue, Z−1 ≡ 1− ∂Σ′
∂ω . Enforcing the self energy to be Kramers-Kronig consistent leads

to a linear dependence on ω for the real part, Σ′(ω) ∝ω, and specifically:

Σ′(ω) ≡−γω, (3.11)

derived in the next section. From this expression of Σ′ we can easily derive:

Z−1 ≡ 1− ∂Σ′(ω)

∂ω
= 1+γ ⇒ Z ≡ 1

1+γ
. (3.12)

And the coherent spectral function transforms, from equation 3.8, into:

Acoh(ω,k) � 1

π

vbΓ[
(1+γ)ω− vbk̄

]2 + v2
bΓ

2
=

= 1

π

1

1+γ

vb
1+γΓ(

ω− vb
1+γ k̄

)2 + v2
b

(1+γ)2 Γ2
;

(3.13)

where we used k̄ ≡ (k −kF ) and equations 3.10 and 3.11. In this form, the ω dependence of

Acoh(ω,k) is highlighted. As a function of the excitation energy, the coherent spectral weight

assumes the shape of a Lorentzian peaked at vb
1+γ k̄. Comparing to the momentum dependence,

a consistent description of the ARPES intensity if found by imposing vb
1+γ = vF , which implies:

Z =vF

vb
;

Acoh(ω, k̄) � 1

π
Z

vFΓ

(ω− vF k̄)2 + v2
FΓ

2
.

(3.14)
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Figure 3.6 – Low energy excitation dispersion | of the excitation energy ω as function of the
momentum k −kF , extracted from the analysis of the momentum distribution curves (MDCs)
of the two ARPES cuts shown in the inset of figure 3.5. The dashed line indicates the bare-band,
estimated by assuming Kramers-Kronig consistency of the self-energy Σ. The dispersion is
reproduced in a larger excitation energy interval in the inset, where one can notice a change
in the slope around ω∼ 80 meV (nodal kink, [53, 62, 63, 64, 65]). Adapted from reference [48].

ω

Figure 3.7 – Low energy excitation amplitude | I0, in arbitrary units, of the momentum distri-
bution curves (MDCs) versus excitation energy ω, for the two cuts indicated the inset of figure
3.5, fitted to equation 3.1. Adapted from reference [48].
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The ARPES intensity as function of ω can then be modeled by:

I (ω, k̄) ∝ vFηω
2

(ω− vF k̄)2 + v2
Fη

2ω4
•F D (ω,T ) (3.15)

where vF and η are experimentally determined (vF = 1.62(2) eVÅ and η= 3.14(4) eV−2Å−1, see

section 3.1.2). Hence, the complete EDC lineshape is determined from the analysis of the

MDCs, short of an intensity factor. The agreement between this parametrization of I (ω, k̄)

and the EDC lineshape is shown in panel 3.4(c) for various values of momentum. The solid

lines indicate the evolution of equation 3.15, convoluted with the experimental resolution.

From the expression of Z found in equation 3.14, we can discuss the second condition for

Landau Fermi quasi-particles: −Z •Σ′′ < |ω|. We found, for ω<ωc , Σ′′(ω) ≡−vbηω
2 (equation

3.10), with η experimentally determined and vb a priori unknown. Since the quasi-particle

residue was found inversely proportional to vb , the product of these quantities can be evalu-

ated without knowledge of the bare band velocity:

−Z •Σ′′ � vFηω
2 < |ω| ⇒ |ω| < 1

vFη
∼ 0.19(6)eV. (3.16)

Meaning that, for ω<ωc = 0.18 eV, the excitations satisfy both conditions for Landau Fermi

quasi-particles.

In the following section, the Kramers-Kronig consistency will be treated, which allows to

determine an explicit expression for Σ′ and Z , leading to an experimental estimate of vb .

3.1.4 Kramers-Kronig consistency

The real and imaginary part of the self energy are, alike the refractive index and many other

properties of solids, bound together via the Kramers-Kroning relations [45]:

Σ(ω) =Σ′(ω)+ iΣ′′(ω);

Σ′(ω) = 1

π
P

∫∞

−∞
Σ′′(ω′)
ω′ −ω

dω′;

Σ′′(ω) =−1

π
P

∫∞

−∞
Σ′(ω′)
ω′ −ω

dω′;

(3.17)

where P indicates principal value integrals iii.

iiiusing principal value integral allows to compute improper integrals, through a limit operation. For example:

P
∫∞
−∞

F (u)
u+10 du = lim

r→∞,δ→0
[
∫10−δ
−r

F (u)
u+10 du +∫r

10+δ
F (u)
u+10 du]
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3.1. Self-energy and quasiparticle renormalization effects

Therefore, the unknown real part Σ′ can be derived from the imaginary part Σ′′:

Σ′(ω) = 1

π
P

∫ωc

−ωc

Σ′′(ω′)
ω′ −ω

dω′ ± 1

π
P

∫±W

±ωc

Σ′′(ω′)
ω′ −ω

dω′ =

≡Σ′
qp (ω)+Σ′

nqp (ω);

(3.18)

where the integration has been truncated at the value W ivand split over 3 intervals: [−W,−ωc ],

[−ωc ,ωc ] and [ωc ,W ]. We have derived an analytical expression for Σ′′(ω), under the condition

ω < ωc . We can therefore directly estimate the low energy integral of Σ′(ω):

Σ′
qp (ω) �− 1

π
ηvbP

∫ωc

−ωc

ω′2

ω′ −ω
dω′ = − 2

π
ηvbωcω+O(ω2) �−γqpω; (3.19)

with γqp = 2
πηvbωc . A detailed knowledge of Σ′′(ω) at ω > ωc is missing, so that it is not

feasible to extract Σ′
nqp (ω) from equation 3.18, since it would require the integration of an

unknown function. Instead, it is useful to consider the relation to the quasi-particle residue:

Z−1(ω) = 1− ∂Σ′(ω)

∂ω
= 1−

∂[Σ′
qp (ω)+Σ′

nqp (ω)]

∂ω
= 1+γqp −

∂Σ′
nqp (ω)

∂ω
. (3.20)

From equation 3.14, we deduce that the spectral function, and therefore the ARPES intensity

I0, is proportional to Z . In figure 3.7 is shown the ω dependence of I0, extracted from the fit

of the MDCs to equation 3.1, for the two cuts indicated in the inset of figure 3.5. Since I0 has

essentially no dependence on the energy, we can assume that
∂Σ′

nqp (ω)

∂ω ≡−γnqp is constant, at

the first order. In this case, for the quasi-particle residues we have:

Z−1(ω) � 1+γqp +γnqp ; (3.21)

which implies, at the first order in ω:

Σ′
nqp (ω) �−γnqpω;

Σ′(ω) �− (γqp +γnqp )ω≡−γω;
(3.22)

with γ ≡ γqp +γnqp . Assuming Σ′′(ω) follows a ∼linear dependence for ω > ωc , allows to

roughly estimate γnqp ∝ ln C
ωc

, with C an unknown constant. From equation 3.19, γqp ∝ωc .

For small values of ωc , γnqp diverges logarithmically and γ∼ γnqp . For large values of ωc , γnqp

will tend to zero and γ∼ γqp . Notice that at the node ωc has its maximum value, ∼ 0.2 eV, as

documented in figure 3.3. At the electronic scale, an energy of ∼ 0.2 eV is very large. For a

comparison, it is equivalent to a temperature of ∼ 2000 K.

Under the assumption that ωc is large enough to neglect γnqp , we can write γ � γqp . In

ivIt is reasonable to assume a finite bandwidth, equivalent to W .
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Chapter 3. Normal state fermiology of cuprates

this case, using equations 3.14 and 3.19 we can derive:

vF

vb
= Z = 1

1+γ
� 1

1+γqp
= 1

1+ 2
πηvbωc

⇒ vb � πvF

π−2ηvFωc
, (3.23)

where vF , η and ωc are extracted from the analysis of the MDCs, see section 3.1.2. We can

therefore extract an experimental estimate of the bare band velocity:

vb � 3.8 eVÅ. (3.24)

This value is found in good agreement with both the La2−x Srx CuO4 nodal Fermi velocity

estimated by Local Density Approximation (LDA), vLD A = 3.5 eVÅ [61], and values vs−c derived

through a numeric self-consistent method [52] - which, applied on cuprates, yields bare-band

velocity vs−c between 3.3 and 3.8 eVÅ, depending on the specif chemical formula [52]. The

consistency between the extracted value of vb and the literature values vLD A , vs−c suggests

that, in the nodal direction, indeed γnqp << γqp and γ� γqp .

Under the hypothesis that Σ is momentum independent, the ratio between the bare-band

mass mb and the renormalized quasi-particle mass m∗ is given by the quasi-particle residue

Z , mb/m∗ = Z . Once we have derived an estimate for vb , we can also evaluate Z . We find Z �
0.42(7), which implies, for the nodal Landau Fermi liquid quasi-particles in La1.77Sr0.23CuO4,

m∗ � 2.4mb .

3.1.5 Summary of results

In conclusion, we have provided a mathematical proof that the single-particle excitations

observed along the nodal ARPES spectra of overdoped cuprates fulfill the conditions for

Landau Fermi liquid quasiparticle. This result could be derived within a consistent description

of momentum and energy distribution curves and without knowledge of the exact bare band.

The self-consistent analysis is outlined in the following paragraphs, where the experimental

result, model assumptions and concluding observations are grouped and summarized.

Experimental observations

From the phenomenological Lorentzian fits of the momentum distribution curves at low

excitation energy, the renormalized dispersion εk , the Fermi velocity vF and the scattering Γ

were extracted:

εk �vF (k −kF );

vF �1.62 eV Å;

Γ�Γ(0)+η•ω2, for ω < ωc ;

(3.25)
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3.1. Self-energy and quasiparticle renormalization effects

Γ(0) �0.0117 Å−1;

η�3.14 eV Å−1;

ωc �0.18 eV.

(3.26)

Assumptions

The analysis focused on ARPES data collected at the node (at Fermi surface angle φ� 45deg),

in a limited range of energies and momentum: ω< 0.2 eV; |k−kF | < 0.1Å−1. Within these limits,

the following assumptions for the matrix element M (ω,k), the self energy Σ, the bare-band

dispersion εb and the spectral function A (ω,k) were made:

M (ω,k) ≡constant;

Σ(ω,k) ≡Σ(ω);

εb �vb(k −kF );

A (ω,k) =Acoh(ω,k)+Ai ncoh(ω,k) �Acoh(ω,k).

(3.27)

Following this model, the expression of the ARPES intensity was re-written:

I (ω,k) ∝
Σ′′(ω)

vb

(k − k̄)2 +
(
Σ′′(ω)

vb

)2 •F D (ω,T ). (3.28)

Derivation of the self energy

Focusing on the momentum dependence, I (ω̄,k) can be directly compared to the Lorentzian

fit of the MDCs, leading to an experimental estimate of the imaginary part of the self energy:

Σ′′(ω) �
{−vbηω

2, for ω < ωc .

∼−ω, for ω > ωc .
(3.29)

The real part could then be evaluated, from the Kramers-Kronig relations:

Σ′(ω) �−γω, (3.30)

with γ= γqp +γnqp , at the first order in ω.

47



Chapter 3. Normal state fermiology of cuprates

Self consistent description of the ARPES intensity

This conclusion lead to explicit expressions for both the quasi particle residue:

Z = 1

1+γ
; (3.31)

and the ω dependence of the spectral function:

Acoh(ω, k̄) � 1

π
Z

vb ZΓ

(ω− vb Z k̄)2 + v2
b Z 2Γ2

, (3.32)

where k̄ = k −kF correspond to the poles of the coherent spectral function in its momentum

dependence, Acoh(ω̄,k).

Forcing consistency between the poles of the energy and momentum distribution curves

implies vb Z = vF . As a consequence, the ω dependence of Acoh(ω,k) is completely deter-

mined - short of an intensity factor - by constants extracted form the analysis of the momentum

distribution curves:

Acoh(ω, k̄) ∝ vFηω
2

(ω− vF k̄)2 + v2
Fη

2ω4
, (3.33)

Notice that the lineshape derived from this model (equation 3.15) is in good agreement with

the measured energy distribution curves, see panel 3.4(c).

Identification of Landau Fermi quasi-particles

From the derived expression of Z , follows that −Z •Σ′′ = vFΣ
′′

vb
. Therefore the product−Z •Σ′′

could be evaluated without direct knowledge of vb , in the limit ω < ωc � 0.18 eV - within

which the analytical expression of Σ′′ was extracted. −ZΣ′′ � vFηω
2 is smaller than ω for

ω<0.19 eV. Therefore, we found that both mathematical conditions for Landau Fermi quasi-

particles [49, 50, 51]:

1. Σ′′ ∝ω2

2. −Z •Σ′′ < |ω|

are satisfied for ω < ωc , and the observed low energy nodal excitations can indeed be de-

scribed as Landau Fermi quasi-particles.

Under the further assumption that γnqp << γqp , the bare-band velocity and the ratio be-
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3.1. Self-energy and quasiparticle renormalization effects

tween bare- and renormalized quasi-particle mass could be estimated:

vb �3.8 eVÅ;
mb

m∗ =Z � 0.42 ⇔ m∗ � 2.4mb .
(3.34)
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3.2 Single particle spectral gap evolution, from underdoped to over-

doped regime

From our analysis of the nodal spectra of La1.77Sr0.23CuO4 in its normal state, we have iden-

tified the nature of the low energy nodal excitations in the strange metal phase of cuprates

as coherent Landau Fermi quasiparticles. This description is however incompatible with

the excitations found in the anti-nodal region. In other words, arcs of gapless Landau Fermi

quasiparticles are separated by gapless non-Fermi liquid excitations.

A similar strong anisotropy is observed in under-doped cuprates. In this doping regime,

gapless excitations are found in the nodal direction, while anti-nodal excitations appear

gapped. This anti-nodal gap is observed at temperatures much higher than the supercon-

ductivity transition temperature TC , and its origin remains elusive. Furthermore, in the same

doping regime, charge order has been experimentally observed both in real and momentum

space [68, 16, 17, 15, 14]. That is to say that, in the under-doped region of the phase diagram

of cuprates, three distinct physical phenomena occur: unconventional superconductivity [69],

partial anisotropic gapping [70], and charge order [71]. The exact relationship between these

phenomena is still under debate [72, 73]. The anti-correlation between superconductivity and

charge order, observed in La2−x Bax CuO4 [18] as documented in figure 3.8, suggests charge

order emerges in competition with superconductivity. Our efforts, see reference [67], focused

on the relation between charge order and the pseudo gap phase.

Figure 3.8 – Doping dependence of the single particle gap and charge order strength in
La2−x Bax CuO4 (LBCO) | (a) Charge order parameter Δch at T=3 K, estimated from the intensity
of the charge order diffraction peaks (at zero field) observed via hard x-rays diffraction [18].
Suppression of superconductivity (through the application of a magnetic field) leads to an
enhancement of the charge order strength, which is not observed for x ∼1/8 doping (where
superconductivity is suppressed even in zero field) [18]. (b) Doping dependence of the anti-
nodal (i.e. along the main axes of the Brillouin zone) single particle gap at T=20 K, estimated
from the leading edge of ARPES measurements[66]. Notice that for x=1/8, where the gap has
its maximum value, superconductivity is completely suppressed and the charge stripe order is
fully developed, see panel (a). Adapted from reference [67].
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3.2. Single particle spectral gap evolution, from underdoped to overdoped regime

To reduce the complexity of the problem, we selected a cuprate compound with strongly

suppressed superconductivity: La1.6−x Nd0.4Srx CuO4. We performed a detailed systematic

study of the normal state (T>TC ) ARPES spectra of La1.6−x Nd0.4Srx CuO4, as a function of hole

doping x, temperature, and Fermi surface angle. Particular attention was paid to the nodal

and anti-nodal directions (corresponding to the Brillouin zone first diagonal and main axis,

respectively). Furthermore, the anti-nodal lineshape evolution as function of doping was

compared to that of La2−x Srx CuO4. The experimental conditions are detailed in section 3.2.1.

The extracted spectra are discussed in section 3.2.2. The positive correlation found between

the pseudogap strength and the electron scattering is presented in section 3.2.3. The results

are summarized in section 3.2.4.

3.2.1 ARPES spectra

The phase diagram of La1.6−x Nd0.4Srx CuO4, as a function of hole doping x and temperature

T, is outlined in figure 3.9. Superconductivity appears at relatively low temperature, with

maximum TC < 20 K. At 1/8 doping, TC � 7 K. As a result, low temperature studies of the

pseudogap phase can be carried out without influences from superconductivity. The charge

order on set temperature is compared to that of La1.8−x Eu0.2Srx CuO4 [76], which peaks around

1/8 doping. Notice that charge order is expected to be the strongest around 1/8 doping and

have a steep decrease in intensity with increasing hole doping, as experimentally observed in

Figure 3.9 – La1.6−x Nd0.4Srx CuO4 phase diagram in the low doping region |, as extrapolated
from diffraction and resistivity experiments [71, 74, 75, 76]. The open dots indicate the pseu-
dogap on set temperature Tp , determined from resistivity measurements as the temperature
at which the resistivity deviates from the linear law observed at T>Tp [74]. The charge ordering
temperature Tc−o is estimated from x-ray diffraction experiments on La1.6−x Nd0.4Srx CuO4,
indicated by full dots [71, 75], and La1.8−x Eu0.2Srx CuO4, open squares [76]. All lines are guides
to the eye. Adapted from reference [67].
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La2−x Bax CuO4 [18] (see panel 3.8(a)). In all three compounds, charge density waves are found

coupled to spin stripes [71, 77, 78, 79, 80, 81].

We focused on the hole doping regime varying from 1/8 hole content, in the charge order

phase, to the over-doped side of the - strongly suppressed - superconducting dome, where

the pseudogap gives way to the strange metal phase of cuprates. Specifically, the samples

used for this study had hole content x equal to 0.12, 0.15, 0.20 and 0.24, and they were all

studied in their normal state - i.e. at temperatures higher than TC . Samples of ARPES spectra

recorded along the anti-nodal direction are shown in figure 3.10, for the different values of

doping explored.

Figure 3.10 – Samples of La1.6−x Nd0.4Srx CuO4 ARPES spectra | recorded along the anti-nodal
direction (at Fermi surface angle φ∼ 10deg) at dopings (a) x = 0.12 (b) x = 0.15 (c) x = 0.20
and (d) x = 0.24, in the normal state (at temperatures T>TC , as indicated). The momentum
distribution curves at the Fermi level (indicated by the dashed horizontal lines) are shown in
full white circles. The solid golden lines are fit to double Lorentzian curves. The Fermi surface
topology in the first Brillouin zone is sketched in the top panels, at doping as indicated. The
red bars indicate the direction of the cuts shown in the lower panels. Full black points mark
the underlying Fermi momenta kF relevant for panels 3.16(c,d). Adapted from reference [67].
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At higher doping (panel 3.10(d)), the spectral weight is mostly concentrated near the Fermi

level, and progressively migrates towards deeper energies ω with decreasing doping. How-

ever, for all explored doping values, finite spectral weight was found at the Fermi energy, as

documented by the momentum distribution curves of panels 3.10(a-d). Therefore, the under-

lying Fermi momenta kF could be determined even within the pseudogap and charge order

phases [82]. The value of kF was estimated as the momenta at which peaks the intensity of the

momentum distribution curves (MDCs) taken at ω= 0 (Fermi level). The energy distribution

curves (EDCs) discussed in the next sections are all extracted at momenta corresponding to kF .

The Fermi surface topology of La1.6−x Nd0.4Srx CuO4 is similar to that of La2−x Srx CuO4 [83, 84],

and is sketched in the top panels of 3.10 for the various compositions employed. Notice that

between 0.20 and 0.24 hole doping, a van-Hove singularity crosses EF , which changes the

Fermi surface topology.

3.2.2 Analysis

3.2.2.1 Intrinsic lineshape and symmetrization

As already discussed in section 3.1.2, the ARPES intensity is affected by an ω dependent back-

ground (see figure 3.4). It is interesting to note that the lineshape of this background is consis-

tent across all the measured compounds, in both La1.6−x Nd0.4Srx CuO4 and La2−x Srx CuO4. We

can then consider the ARPES spectra composed of an extrinsic background and an intrinsic

signal. The relative ratio between these two components can vary in different experiments

performed on the same compound, as illustrated in panel 3.11(a). This explains the origin

of the small differences that can be observed in raw ARPES spectra. However, the intrinsic

lineshape is found to be consistent across distinct experiments, when performed in the same

conditions, see panel 3.11(b). The spectra shown in the remaining part of the chapter have all

been normalized to the intensity of the extrinsic background, at ω=−0.2 eV.

Symmetrization of energy distribution curves is a convenient way to visualize single particle

gaps in ARPES measurements. The convenience of symmetrization is easily understood when

one considers the formal expression of the ARPES intensity, within the three step model [22].

Neglecting matrix element effects, the ARPES intensity is proportional to the occupied spectral

function:

I (ω,k) = I0A (ω,k)•F D (ω,T ). (3.35)

For the Fermi Dirac distribution it is found that F D (−ω,T ) = 1−F D (ω,T ), while A (−ω,k) =
A (ω,k), if particle-hole symmetry is assumed v. Therefore, by adding I (−ω,k) to I (ω,k),

vAlthough particole-hole asymmetry has been reported in the cuprates [85, 86], such an assumption allows a
simpler analysis of the spectra, so that it is adopted for convenience. The value of the gap extracted in this fashion
is indicative of the depth of the particle states and might differ from the actual particle-hole gap.
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Figure 3.11 – Intrinsic lineshape | Direct comparison of anti-nodal ARPES spectra recorded
on La1.48Nd0.4Sr0.12CuO4 samples at T=80 K, in the course of two distinct experiments. (a)
Squares indicate the recorded (raw) intensity, at k = kF , while crosses indicate the extrinsic
background, at k = kBG . Symbols open and full, black and red differentiate data taken in the
two experiments. All spectra were normalized to the intensity of the relative background, at
ω = −0.2 eV. In this fashion it is evident that the raw lineshape recorded at kF can change
from one experiment to the next. (b) Same spectra after background removal, i.e. intrinsic
lineshape of the raw spectra shown in panel (a). The intrinsic lineshape is consistent across
different experiments, independently of the specific ratio between the intrinsic signal and the
extrinsic background. Adapted from reference [67].

one finds:

IS(ω,k) =I (−ω,k)+I (ω,k) = I0
[
A (ω,k)• (

1−F D (ω,T )
)+A (ω,k)•F D (ω,T )

]=
=I0A (ω,k).

(3.36)

The Fermi Dirac distribution (containing the effect of thermal broadening) does not influence

the symmetrized intensity IS(ω,k), and the spectral function A (ω,k) is directly probed, for

small values of |ω|. Since the presence of a gap manifests around the Fermi level (correspond-

ing to ω= 0), this method is extremely useful for our scopes. We restricted the analysis in the

range |ω| <0.125 eV.

An example of this procedure is shown in figure 3.12, in the case of a study of the gap tempera-

ture dependence in Bi2Sr2CaCu2O8+δ (TC =85 K)[70]. In presence of a gap, the spectral weight

is pushed away from the Fermi level. This effect is observed in the lower temperature curves
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Figure 3.12 – Symmetrization of energy distribution curves | (a) Solid black curves are energy
distribution curves (EDCs) taken on under-doped Bi2Sr2CaCu2O8+δ (TC =85 K), at the same
momentum but different temperatures. The gray dotted curves are a reference for the Fermi
level, extracted from polycrystalline platinum in thermal and electric contact with the sample.
(b) Sample Brillouin zone, the black full dot indicates the momentum at which the EDCs were
extracted. (c) Symmetrization of the EDCs in panel (a). In this form, identification of the gap
is more intuitive. Adapted from reference [70].

of panel 3.12(a), and clearly absent in the curve taken at 180 K. It is difficult to distinguish if

curves taken at intermediate temperatures are affected by a smaller gap or gapless.

Upon symmetrization, a gapped EDC produces a double peaked structure, due to the deple-

tion of states at the Fermi level. Simmetrized gapless curves on the other hand peak at the

Fermi level, with a Voigt-like profile. Looking at panel 3.12(b), we can deduce that the gap is

closed at T=120 K and at higher temperatures, but not completely closed at T= 95 K.
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Figure 3.13 – Effect of finite experimental resolution on gapless spectra | Red dashed line
simulates the symmetrized ARPES intensity at the Fermi momentum in absence of a gap, a
Lorentzian curve (L) with half width at half maximum Γ=0.01 (as an example). The dotted
blue line indicate a gaussian curve (G) indicating the experimental sensitivity, with standard
deviation σexp . The result of convoluting the simulated intensity with the experimental
gaussian (C) is indicated by the solid line. (a) If σexp >> Γ, the convoluted curve can be
approximated by a Gaussian. (b) When σexp and Γ are comparable, one obtains a Voigt profile.
(c) If σexp << Γ, the effect of the experimental finite resolution can be neglected. The curves
are normalized to their maximum value, to ease comparison.

3.2.2.2 Model of the symmetrized intrinsic lineshape

At small excitation energies, the symmetrized intrinsic lineshape is directly proportional to the

coherent part of the spectral function [70]. Using equation 3.7, evaluated at k = kF , one finds:

IS(ω,kF ) ∝Acoh(ω,kF ) ∝ −Σ′′

(ω−Σ′)2 +Σ′′2 , (3.37)

where the ω dependence of the self energy Σ = Σ′ + iΣ′′ has been neglected. In the case of

gapless excitations, the spectral function evaluated in kF should exhibit a pole at the Fermi

level. This implies Σ′ = 0. Therefore, the symmetrized ARPES intensity of gapless excitation

assumes the functional form of a Lorentzian curve peaked around the Fermi level:

IS(ω,kF ) ∝Acoh(ω,kF ) ∝ Γ

ω2 +Γ2 , (3.38)

with Σ′′ = −Γ and in a small energy interval. The intrinsic linewidth Γ is a measure of the

excitation lifetime, discussed in terms of scattering rate. Assuming conservation of the spectra

weight, larger values of Γ produce a broader, less intense peak. In other words, the excitations

coherence is lowered by higher scattering rates.

The measured spectra are however also influenced by the instrumental resolution, which can

be taken into account by Gaussian convolution. The effect of a finite instrumental resolution

on gapless spectra is illustrated in figure 3.13. If the scattering rate is comparable with the

experimental resolution, the measured spectra assume a Voigt profile, as shown in panel 3.13.

If it is much smaller, as in panel 3.13(a), the convoluted profile will approximate a Gaussian
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curve of width determined by the experimental resolution. In the opposite limit (panel 3.13(c),

negligible experimental resolution) the intrinsic Lorentzian profile is preserved.

To model gapped spectra is more complex. Eliashberg theory, applied to the normal state,

finds that, in presence of a spectral gap Δ, the Green function at the Fermi momentum is

written:

G (ω,kF ) = 1

(ω+ iΓ)− Δ2

(ω+iΓ)

, (3.39)

where Γ is the scattering rate [87]. Phenomenologically, however, a simpler expression for

G (ω,kF ) has been adopted, in this work as well as in literature [70, 88, 89, 90, 91, 92]:

GPh(ω,kF ) = 1

(ω+ iΓ)− Δ2

ω

=G ′
Ph(ω,kF )+ iG ′′

Ph(ω,kF ). (3.40)

From which:

APh(ω,kF ) = 1

π
G ′′

Ph(ω,kF ) = 1

π

−Γ(
ω− Δ2

ω

)2 +Γ2
. (3.41)

This phenomenological spectral function can be expressed as function of two dimensionless

quantities, χ= ω
Δ and γ= −Γ

Δ :

APh(ω,kF ) = 1

π

1

Δ

γ(
χ− 1

χ

)2 +γ2
. (3.42)

For the symmetrized ARPES intensity at Fermi momentum therefore we have:

IS(ω,kF ) = I0APh(ω,kF ) ∝ γ(
χ− 1

χ

)2 +γ2
. (3.43)

This phenomenological model function maintains a Lorentzian lineshape, as well as the

total spectral weight. The Lorentzian peak however is now divided into two mirrored peaks,

centered in χ=±1 (ω=±Δ) of width γ= −Γ
Δ , renormalized by the spectral gap. As in the case

of gapless spectra, increasing the scattering rate Γ (keeping the value of the gap unchanged)

leads to broader and less intense peaks.

In figure 3.14 the modelled lineshape is plotted versus the ratio χ= ω
Δ , for different values of

γ= −Γ
Δ and convoluted with different values of the experimental resolution, as indicated. All

curves are normalized to their maximum value, for better visibility. In the convoluted curves, a

gap can be identified under the condition that it is smaller or comparable to the experimental

resolution. This limit situation is illustrated in panels 3.14(a,e,i). For larger values of σexp , the

convolution of a gapped Lorentzian produces a Voigt-like profile, as in panels 3.14(d,g,h) and

the gap cannot be resolved.
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Figure 3.14 – Effect of finite experimental resolution on gapped spectra | In each panel,
red dot-dashed line simulates the symmetrized ARPES intensity at the Fermi momentum
in presence of a gap, a gapped Lorentzian curve (LGap , see equation 3.43 ). The solid line
indicates the convolution (C) of curve LGap with a Gaussian of standard deviation equal the
experimental resolution, σexp . The effect of different finite resolution (σexp = 2γ,γ,γ/2) is
illustrated in the cases: (a-c) Δ>Γ (γ < 1); (d-f) Δ = Γ (γ = 1); (g-i) Δ<Γ (γ > 1). From top to
bottom (e.g. from panel (c) to (i)), the ratio between the experimental resolution σexp and γ is
constant. the evolution of the final profile can therefore be followed as function of the ratio
between σexp and γ (horizontally) or between the gap Δ and the scattering rate Γ (vertically).
All curves have been normalized to their maximum value, to ease comparison.

Notice that the combined effect of experimental resolution and scattering can hide the gap,

but does not "empty" the peaks. This effect is emphasized in figure 3.15, where the value of

the experimental resolution was fixed to half the value of the gap. The simulated scattering

rate was varied between half the value of the gap and five times the gap. The symmetrical

peaks are weakened and broadened but are not canceled. The curves were normalized to their

maximum intensity. The curve at Γ= 5Δ was amplified by a factor of ∼5 to match the intensity

of the curve at Γ=Δ/2.

If the gap is set to zero, equation 3.43 coincides with equation 3.38. The phenomenolog-
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Figure 3.15 – Influence on the convoluted lineshape of the scattering rate | Γ as indicated, for
fixed values of the gap Δ and experimental resolution σexp . All curves have been normalized
to their maximum value, to ease comparison.

ical symmetrized intensity of equation 3.43 can therefore be used to fit both gapped and

gapless symmetrized spectra, taken at the Fermi momentum. The experimental resolution

was fixed, for each experiment, to the value extracted from polycristalline copper. The scatter-

ing rate Γ, the gap Δ and an intensity factor were left as free parameters. The results of such

analysis are presented in the next sections.

3.2.2.3 Symmetrized spectra

Figure 3.16 allows direct comparison of symmetrized spectra taken at the (underlying, see fig-

ure 3.10) Fermi momentum, at different compositions (first two rows of panels from the left), in

different point of momentum space (central panels) or at different temperatures (last two pan-

els). Top panels 3.16(a-f) feature symmetrized "raw" spectra, while an extrinsic background,

discussed in section 3.2.2.1 has been subtracted before symmetrization, to the spectra shown

in the bottom panels 3.16(g-l). Solid lines are fits to equation 3.43, convoluted with the experi-

mental resolution, which varied slightly across the experiments, within 6 and 9 meV. All spectra

were record in the normal state. If not indicated, the sample temperature was just above TC .

With the exception of the central panels, all shown spectra were recorded in the anti-nodal

region. Differences between the raw anti-nodal spectra of La1.48Nd0.4Sr0.12CuO4 (bottom

spectra in panels 3.10(b,c)) originate from slightly different background-to-signal ratios, see

figure 3.11.

First, we discuss the anti-nodal lineshape as function of the composition. Anti-nodal over-

doped spectra of both La2−x Srx CuO4 and La1.6−x Nd0.4Srx CuO4 (top spectra in panels 3.16(a-
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Figure 3.16 – Evolution of the Symmetrized spectra with composition, Fermi surface an-
gle and temperature | in the normal state. If not indicated, the samples temperature was
just above TC . (a,b) Symmetrized anti-nodal energy distribution curves (EDCs) taken on
La2−x Srx CuO4 (LSCO) and La1.6−x Nd0.4Srx CuO4 (Nd-LSCO) samples at hole doping content
p= x as indicated. Spectra taken on La2−x Srx CuO4 x = 0.105 and x =0.145 have been pre-
sented in references [90, 91, 93]. All La2−x Srx CuO4 samples were characterized by neutron
scattering experiments [57, 94, 95]. (c,d) Momentum dependence of the symmetrized (EDCs)
on La1.6−x Nd0.4Srx CuO4 x = p = 0.12 and 0.20, taken at underlying Fermi momenta indicated
by the full black dots in top panels 3.10(a,c). (e,f) Temperature dependence of the anti-nodal
symmetrized (EDCs), on La1.6−x Nd0.4Srx CuO4 x = p = 0.12 and 0.20. (g-l) background-free
spectra as in the top panels, to emphasize the intrinsic symmetrized lineshape. Solid black
lines are fit to equation 3.43, convoluted with the experimental resolution. An arbitrary shift
was applied to the various spectra, normalized so that the extrinsic backgrounds superpose,
see panel 3.11(a). If indicated, an additional factor was given, to improve visibility. From
reference [67].
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3.2. Single particle spectral gap evolution, from underdoped to overdoped regime

b,g-h)) exhibit a Voigt-like lineshape, which is not affected by background removal. As dis-

cussed in the previous section, such a profile suggests resolution-limited gapless excitations.

At a smaller hole content, x =0.20, a clear gap is observed in La1.6−x Nd0.4Srx CuO4. Further

reducing of the doping produces similar gapped lineshapes in La2−x Srx CuO4 at x = 0.145,0.12

and La1.6−x Nd0.4Srx CuO4 at x = 0.15. At these compositions, the anti-nodal lineshape is

only slightly affected by the background removal. A very different lineshape is found in

La1.48Nd0.4Sr0.12CuO4 (bottom spectra in panels 3.16(b,h)), where the peaks appear strongly

depleted and background removal has a remarkable effect.

Shifting our attention to panels 3.16(c,i), an analogous evolution is found as a function of the

Fermi surface angle, in La1.48Nd0.4Sr0.12CuO4. Moving from nodal to anti-nodal spectra (see

top inset of panel 3.10(a)), the lineshape evolves from a gapless Voigt-like profile to a gapped

lorentzian, whose double peaks appear systematically more depleted as we move deeper in

the anti-nodal region. Notice that, the deeper into the anti-nodal region, the more striking is

the effect of background removal.

Panels 3.16(d,j) show the momentum dependence of La1.4Nd0.4Sr0.2CuO4 spectra (see top

inset of panel 3.10(c)). Moving from the node towards the anti-node, a gapless profile gives

way to the opening of a gap. However, clear peaks are observed for all underlying Fermi

momenta, in striking contrast to the behavior observed in La1.48Nd0.4Sr0.12CuO4. Removal of

the background emphasizes the peaks, but does not substantially affect the lineshapes.

The temperature dependence of La1.6−x Nd0.4Srx CuO4 anti-nodal spectra was investigated at

these same values of doping: x = 0.12 (panels 3.16(e,k)) and in x = 0.20 (panels 3.16(f,l)). For

La1.48Nd0.4Sr0.12CuO4, the normal state anti-nodal gap is observed at all explored tempera-

tures. However, the intensity of the peaks is much higher outside of the charge stripe order

(Tch ≈70 K [71]). At lower temperatures, the peaks are easily observed only after background

subtraction. In the case of La1.4Nd0.4Sr0.2CuO4, at T=75 K the normal state gap is either closed

or smaller than the experimental resolution (σexp =6 meV). At lower temperatures, the anti-

nodal gap is clearly observed, and it appears to increase with cooling. Additionally, the peaks

grow more pronounced with lower temperatures, a trend in direct opposition to that observed

on La1.48Nd0.4Sr0.12CuO4 (where the peaks seem to lose coherence at lower temperatures).

3.2.2.4 Spectral weight transfer

This effect can be considered in terms of spectral weight conservation, for which it is conve-

nient to refer to the un-symmetrized energy distribution curves. In figure 3.17, anti-nodal spec-

tra taken on La1.6−x Nd0.4Srx CuO4 at x = 0.12,0.20 at 75 K are compared to spectra recorded

on the same samples, but at temperatures just above TC .

Upon cooling (deeper into the pseudogap state), the gap found in La1.4Nd0.4Sr0.2CuO4 seems

to conserve the spectral weight. As the gap grows, the states near the Fermi level are more
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Figure 3.17 – Spectral weight loss vs transfer | (a) Raw anti-nodal spectra recorded on
La1.48Nd0.4Sr0.12CuO4 at 75 K (red full squares) and at 17 K (blue squares), normalized so
that the backgrounds (blue and red crosses) overlap. (b) La1.4Nd0.4Sr0.2CuO4 raw anti-nodal
spectra recorded, at 75 K (red full circles) and 22 K (blue circles), normalized to superpose
the backgrounds (blue and red crosses). The backgrounds are evaluated from energy dis-
tributed curves taken far from the underlying Fermi momentum (c),(d) Same anti-nodal
spectra, after background removal. A net spectral weight loss is observed when cooling
La1.48Nd0.4Sr0.12CuO4 into the charge order phase. In La1.4Nd0.4Sr0.2CuO4 spectral weight
seems to shift towards deeper states upon cooling (deeper into the pseudogap state). Adapted
from reference [67].
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3.2. Single particle spectral gap evolution, from underdoped to overdoped regime

depleted, but the spectral weight "missing" is transferred to states at deeper energy, as evident

in panel 3.17(d). In La1.48Nd0.4Sr0.12CuO4, on the other hand, lowering the temperature from

75 K to17 K results in what appears as a net loss of spectral weight, see panel 3.17(c). Notice

that the spectra have not been normalized to their intensity at deep energy, but rather to the

background intensity, extracted from an energy distribution curve at momentum far from kF .

The apparent spectra weight loss is already noticeable in the raw spectra, panel 3.17(a), and

emphasized by the background removal.

Even if a non-trivial redistribution is not ruled out, the behavior recorded at 1/8 doping con-

siderably stands out, when compared to the other doping explored in La1.6−x Nd0.4Srx CuO4 as

well as La2−x Srx CuO4, including La1.88Sr0.12CuO4.

3.2.2.5 Correlation between gap and scattering rate

Fitting of the background-free symmetrized spectra to equation 3.43, convoluted with the

experimental resolution, allows to extract the single particle spectral gap Δ and the scat-

tering rate Γ. In figure 3.18 are reported the result of such analysis, performed on spectra

recorded along the underlying Fermi surface of La1.48Nd0.4Sr0.12CuO4 and La1.4Nd0.4Sr0.2CuO4,

in their normal state (at temperatures just above TC ), or in the anti-nodal direction on

La1.6−x Nd0.4Srx CuO4 with x = 0.12,0.20,0.24 at various temperatures.

From the analysis of La1.4Nd0.4Sr0.2CuO4 spectra, a positive correlation emerges between the

spectral gap and the scattering rate, in spectra taken at different values of (underlying) Fermi

momentum or temperature. This relation between the anisotropic spectral gap observed

above TC , the pseudogap, and the electronic scattering is consistent with previous observa-

tion. In fact, it is established that the pseudogap maximized near the zone boundary, in the

anti-node [70, 96, 97]. In parallel, the scattering rate has been reported to increase from the

node towards the anti-node [53, 98].

In La1.48Nd0.4Sr0.12CuO4, gapless arcs centered in the node (Fermi arcs) were found to have

finite length even at the lowest measured temperatures [82]. Since raw spectra can be af-

fected by the extrinsic background, we refer to the intrinsic lineshape, obtained from the

background removal (see figure 3.11), shown in panels 3.16(h,i,k). The low temperature line-

shape evolution in momentum space is shown in panel 3.16(i), from the anti-node towards

the node, until just before the Fermi arc tip. Spectra near the Fermi arc tip closely resem-

ble those observed on La1.4Nd0.4Sr0.2CuO4, and fitting to equation 3.43, convoluted with

the experimental resolution, yields values of Δ and Γ consistent with those extracted from

La1.4Nd0.4Sr0.2CuO4 spectra. At the anti-node, however, the lineshape changes dramatically, as

described in the previous sections. The double-peak structure appears to have lost coherence

and the parameters extracted from fitting have a much smaller ratio Δ/Γ. As the temperature

is raised above the charge order on set Tc−o , the anti-nodal lineshape recovers coherence and
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Figure 3.18 – Correlation between spectral gap Δ and scattering rate Γ | extracted by fit-
ting to equation 3.43, convoluted with the experimental resolution, of symmetrized en-
ergy distribution curves. The curves were extracted along the underlying Fermi surface of
La1.48Nd0.4Sr0.12CuO4 and La1.4Nd0.4Sr0.2CuO4 at temperatures as indicated, or in the anti-
nodal (AN) direction on La1.6−x Nd0.4Srx CuO4 at doping and temperatures as indicated. An
extrinsic background was subtracted to all spectra, before symmetrization.
The gray shaded area indicates schematically the positive correlation observed between the
gap and the scattering rate. Adapted from reference [67].

the parameters extracted follow the trend of those estimated from La1.4Nd0.4Sr0.2CuO4 spectra.

The anti-nodal lineshape of La1.36Nd0.4Sr0.24CuO4 appears gapless, within the experimental

resolution, already at temperatures just above the superconducting transition. The value of

electron scattering extracted from fitting to equation 3.43, with Δ= 0 and convoluted with the

experimental resolution, is consistent with the values found near the node in La1.4Nd0.4Sr0.2CuO4.

3.2.3 Discussion

In conventional charge density wave systems, the order parameter Δch coincides with the

single-particle gap [99], and scales with the lattice distortion u [99]. Hard x-ray diffraction stud-

ies on La2−x Bax CuO4 have found u, and henceΔch , to exhibit a strong doping dependence [18],

see panel 3.8(a). Notice that the charge ordered ground state found in La1.6−x Nd0.4Srx CuO4,

La1.8−x Eu0.2Srx CuO4 and La2−x Bax CuO4 at x = 0.12 is believed to be the same state [100] vi .

viThese three systems share the same low-temperature tetragonal crystal structure, exhibit similar ther-
mopower [101, 102], as well as the same spin/charge stripe structure [78, 79, 80, 81], and superconductivity
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The order parameter Δch appears to have a sharp maximum at 1/8-doping. Increasing hole

content from x =0.12 to 0.15, leads to a value of Δch which is five time smaller, in zero field. At

x = 0.20 it is therefore reasonable to assume that Δch is negligibly small and does not affect

the lineshape. At this doping, the normal state gap can be studied without influence from

charge order or superconductivity. The charge order on set temperature on the other hand is

found to have a smooth doping dependence, see figure 3.9. It follows that, although charge

order is present at various dopings, it is expected to have the strongest influence on spectra

recorded at hole content x = 0.12. In this doping regime however, the lineshape is also possibly

affected by superconductivity, pseudogap and spin-freezing phenomena [103, 104]. Choosing

La1.6−x Nd0.4Srx CuO4 simplifies the problem by removing possible influences from supercon-

ductivity (since low temperature studies can be performed in the normal state). Furthermore,

since spin and charge density waves are coupled [71], they can be treated as manifestations of

the same phenomena.

Pseudogap and charge order

Dynamical mean-field theory (DMFT) calculations for the Hubbard model predict a positive

correlation between scattering and spectral gap [105], consistently with our observations on

La1.4Nd0.4Sr0.2CuO4. Within the DMFT approach [106, 107, 108, 109], electron correlations

directly produce the opening of the pseudogap, which, as a secondary effect, enhances the

system tendency towards further instabilities which then produce the superconducting and

charge order ground states. However, charge density instabilities, unlike superconductivity,

have not been directly found in DMFT calculations.

A different approach looks at the pseudogap as a precursor either to superconductivity [92,

96, 110] or to an order competing with superconductivity [15, 111, 112, 113], which could

be identified with the charge order. As an example, the charge ordering onset temperature

is comparable to the pseudogap temperature scale in Bi2Sr2CuO6+x [15], and a connection

between the charge ordering vector and the vector nesting the tips of the Fermi arcs was

found [15]. Therefore, a cooperative relation between the pseudogap and fluctuating charge

density order was suggested [114, 115].

Charge order is expected to open a spectral gap [116, 117]. In two-dimensional charge density

wave systems (such as transition metal dichalcogenides), anisotropic spectral gaps have in-

deed been reported above the charge order onset temperature [117, 118]. In cuprates, however,

photoemission experiments have not clearly identified the single-particle gap originating

from charge order.

With this in mind, the lineshape evolution of La1.48Nd0.4Sr0.12CuO4 assumes particular rele-

vance, since the charge order parameters seems to peak at 1/8 doping (see panel 3.8(a)). In

is strongly suppressed at 1/8 doping.
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La1.6−x Nd0.4Srx CuO4, La1.8−x Eu0.2Srx CuO4 and La2−x Bax CuO4 at x = 0.12, strong low energy

spectral weight suppression has been reported in the anti-node [66, 119, 120, 82], for which dif-

ferent interpretations have been suggested [66, 119]. One study, performed on La2−x Bax CuO4,

speculated that the pseudo gap exhibits a d-wave character with maximum amplitude at 1/8

doping [66]. Later experiments however reported strong corrections to the proposed d-wave

symmetry [121, 122, 123], and a two-gap scenario was introduced [119]. The origin of the

supposed additional anti-nodal gap was not identified.

The opening of a spectral gap depletes the states near the Fermi level, causing either sup-

pression or redistribution of low energy spectral weight. For example, in Bi2Sr2CaCu2O8+x

a pronounced redistribution of spectral weight if found in the pseudogap phase [124], in an

energy range extending beyond 200 meV.

The opening of the normal state gap can be observed on La1.4Nd0.4Sr0.2CuO4, in absence

of charge order influences. As the temperature is lowered and the systems enters the pseudo-

gap phase, a gap opens in the anti-node and spectral weight is transferred at higher energies,

within a range of 2-3Δ<100 meV, see panels 3.17(b,d). The total amount of spectral weight

found at the (underlying) Fermi momentum appears to be conserved.

The anti-nodal lineshape evolution in La1.48Nd0.4Sr0.12CuO4 (shown in panels 3.17(a,c) for the

same temperature and energy range) appears very different. Cooling the sample inside the

charge order phase produces an apparent net suppression of spectral weight in a 100 meV

range. The momentum dependence, see panels 3.16(c,i) does not suggest a redistribution

of this "missing" spectral weight in momentum space. It seems that, either the weight is

transferred to much deeper energies (in a range larger than 5Δ) or it is not conserved.

Non conservation of spectral weight is a possible effect of a phase transition. One can in

fact imagine that a different ground state might correspond to a substantially different spec-

tral function. The appearance of charge order could therefore produce an effective loss of

spectral weight. Within this hypothesis, we notice that charge order seems to affect mainly the

anti-nodal region, within a 100 meV energy range.

3.2.4 Summary of results

The systematic ARPES study of the normal state of La1.6−x Nd0.4Srx CuO4 has yielded insights

into both the pseudogap and the charge-spin order phases. Anti-nodal spectra were recorded

as a function of doping and temperature.

In the over-doped regime, the antinodal lineshape appears gapless. At hole content x = 0.20,

a spectral gap opens in the anti-nodal region and spectral weight is re-distributed to deeper

states, but conserved. A positive correlation between electron scattering Γ and single particle

gap Δ is observed. This effect is predicted by dynamical mean-field theory calculations for the
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Hubbard model.

In the under-doped regime, where charge order is fully developed, x = 0.12, spectral weight

appears to be lost when cooling the sample inside the charge order phase. Furthermore,

a similar ratio of Δ/Γ is found on spectra recorded outside the anti-node. Therefore, our

observations on La1.48Nd0.4Sr0.12CuO4 are consistent with an additional source of anti-nodal

spectral weight suppression, and suggest charge order could be at the origin of the apparent

coherence loss observed in anti-nodal spectra at temperatures below Tc−o .
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4 Orbital structure of single-layer
ruthenates

In chapter 3 are presented the results of our investigation on different members of the family

of cuprates. In this chapter our attention will shift to another family of transition metal oxides

with a similarly rich phase diagram to that of the cuprates, see figure 4.1. Notably, both families

present coexistence of Mott insulation (Ca2RuO4) and superconductivity (Sr2RuO4 ). It should

be emphasized however that these phases present differences from those of cuprates. The

cuprates superconducting gap has a d wave symmetry. Sr2RuO4 has been proposed as an elec-

tronic equivalent of superfluid He3, which would require a p wave superconducting gap [8].

Figure 4.1 – Ca2RuO4 to Sr2RuO4 phase diagram | Phase diagram of single layered ruthenates,
evolving from an anti-ferromagnetic insulator, at strontium content x=0, to an unconventional
superconductor, at x=2. Strontium substitution doesn’t affect the carrier density, but rather
increases the electron bandwidth [125]. On the right, the inset shows a sketch of the crystal
structure of Sr2RuO4 and La2−x Bax CuO4. The directions of the tetragonal principal axes are
indicated (where b=a). The transition metal atoms, TM=(Ru,Cu), form a square lattice in the
TM-O2 plane. The directions of interest in this plane are the TM-O-TM bond (referred to as
π−0), corresponding to a, and the TM-TM bond directions (referred to as π−π) [126].
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In cuprates, the half-filled single 3d band is separated into an upper and a lower Hubbard

band by strong coulomb repulsion U. In Ca2RuO4, the valence band has 2/3 occupancy in

the 4d-t2g states, as will be discussed in the following sections, and the Mott gap has been

proposed to be orbital dependent [11, 12].

From a structural point of view, Sr2RuO4 has a distortion-free crystal structure and is iso-

structural to the textbook perovskite example of La2−x Bax CuO4 (in its high temperature

tetragonal phase), as illustrated in figure 4.1. Ca2RuO4 on the other hand presents rotation

and tilting of the oxygen octahedra, introduced by the smaller size of calcium with respect

to strontium. Interestingly, it has been reported [127] that, upon application of pressure,

Ca2RuO4 undergoes a transition from an AF Mott insulator to a ferromagnetic metal. At the

same time, pressure strongly affects the the crystal structure of Ca2RuO4, with the progressive

suppression of compression, rotation and finally tilting. Above ∼90 kbar, all structural defor-

mation deformations are suppressed. At this pressure, Ca2RuO4 exhibits superconducting

behavior (corroborated by ac susceptibility and electrical resistivity measurements)[127].

A reasonable question therefore arises as to the link between spin-orbit coupling, crystal

structure deformations and electronic properties, which was addressed in this work by per-

forming a combined XAS and RIXS investigation on Sr2RuO4 and Ca2RuO4.

The experimental conditions relevant for the XAS experiment are described in section 4.1, and

complemented in section A.3. The observations derived from the XAS and RIXS experiments

are discussed in sections 4.2 and 4.3 respectively. We adopted a simple model Hamiltonian,

presented in section 4.4, to interpret the results.
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4.1. Experimental conditions

4.1 Experimental conditions

Figure 4.2 – Laue pattern and image of a typical sample of Ca2RuO4 | From the relative
orientation of the higher-order diffraction pattern with respect to the first order double cross
(indicated in red and blue), we can recognize the orientation of the sample on the right. In
this case, the sample is oriented with the Ru-O-Ru bonds aligned parallel to the frame of the
picture, and the Ru-Ru bonds at 45 deg.

Figure 4.3 – Schematics of the experimental geometry | A photon beam of momentum ki n

hits the sample surface with angle θ from the surface normal (parallel to the c-axis of the sam-
ple). The polarization of the beam was systematically switched between linear horizontal (LH),
parallel to the scattering plane (defined by ki n and the surface normal in our configuration),
and linear vertical (LV), orthogonal to the scattering plane.

In figure 4.2 a typical Laue pattern is reproduced, with an image of the relative sample on

its side. The samples were mounted with the c-axis pointing in the direction normal to the

sample holder, i.e. parallel to the X-ray beam generating the Laue diffraction pattern. The

pattern observed is typical of perovskites structures and allows to discern the Ru-Ru (or π−π,

in a tetragonal unit cell) direction from that of the Ru-O-Ru bonds (or π-0).

The angle θ between the c-axis of the sample (out of plane) and the incident direction of

the photon beam could be varied as illustrated in figure 4.3. The sign of θ is defined positive

as in the figure, and will be relevant for the discussion of the RIXS results (section 4.3). In
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Chapter 4. Orbital structure of single-layer ruthenates

this section, the quantity of interest is its absolute value |θ|. The in-plane orientation of the

sample was fixed so that the scattering plane contained both the c-axis (z direction in the

figure) and Ru-O-Ru bond direction (x in the figure), for all values of θ. In other words, the

oxygen p orbitals were alined along the x, y or z direction.

4.1.1 Choice of the absorption resonance

Ruthenium is a 4d transition metal, with ground state chemically described as [Kr] 4d7 5s1,

which changes to [Kr] 4d4 5s0 within the oxide compounds studied - in which ruthenium

has valence state +4. An isolated Ru+4 ion would therefore possess 4 electrons in the 10-fold

degenerate 4d orbitals, see figure 4.4. The presence of the oxygen atoms at the vertexes of a

perovskite octahedra however remove the spacial isotropy, lifting the initial degeneracy. In

fact, for an electron to occupy the orbitals pointing directly in the direction of the oxygen

atoms (along which are distributed the oxygen p electrons) will require an higher energy. We

label these orbitals (dx2−y2 , dz2 ) as eg and those directed away from the oxygen atoms (dx y ,

dxz , dy z , whose energy level is lowered by the crystal field) as t2g . Furthermore, if the axes of

the octahedra are not identical - as in the cases that we will discuss - energy differences are

expected within the eg and t2g orbitals, since the choice of a ẑ direction is no longer arbitrary.

Finally, we should not forget the effect of the spin-orbit coupling, which mixes the atomic

orbitals and contributes to lifting the degeneracy. However, we will keep referring to the eg

and t2g states, that can be used as a basis for the spin-orbit mixed electronic states.

We performed a XAS and RIXS combined study on Sr2RuO4 and Ca2RuO4. To excite a core

electron from the ruthenium 2p states to the partially-empty 4d valence states (corresponding

to the LI I ,I I I absorption edges) one needs an energy of ∼2.8-3 keV. For technical reasons, at

the time of our investigations such an energy was not accessible, with sufficient energy resolu-

tio, at any RIXS instrument (or synchrotron facility, more generally). In fact, the wavelength

of photons in this energy range (∼ 5 Å) is too large to match inter-plane spacing in crystal

monochromators and too small for the groove spacing of grating monochromators.

As a consequence, our attention moved to the oxygen K absorption edge, given that to excite

a core electron from the oxygen 1s states into the 2p valence states requires "only" ∼530 eV,

an energy range which is far more accessible. Since these states are strongly hybridized with

the 4d ruthenium valence states, we could still draw some conclusions on these latter, as

summarized in section 4.5. Since we were operating at the oxygen absorption edge K (O-K

edge), clean surfaces were created in-situ to reduce oxygen contamination.

4.1.2 Orbital tuning

The 1s initial state of the excited electron has spherical symmetry, therefore it doesn’t introduce

any geometrical selection rule. The polarization of the incoming beam was switched between

linear horizontal (LH), parallel to the scattering plane, and linear vertical (LV), perpendicular
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4.1. Experimental conditions

Figure 4.4 – Schematics of degeneracy lifting of the 4d orbitals | Illustration of the various
effects which lift the degeneracy of 4d states in a Ru4+ ion within a ruthenate compound. An
isolated Ru4+ ion would have a 5-fold degeneracy in the 4d orbitals, 10-fold if one considers
the spin degree of freedom of the electrons. The presence of the oxygens, arranged in an
octahedra, introduces an energy difference between the eg orbitals (dx2−y2 ,dz2 ) which point
directly against the O2− ions (electrons in such orbitals would feel a stronger repulsion due to
the presence of the electrons in the oxygen 2p orbitals) and those - the t2g orbitals (dx y ,dy z ,dxz )
- which point diagonally. Distortions in the O octahedra can further differentiate the energy
levels, so that a splitting is produced also within the eg and the t2g orbitals. Taking into
account the spin-orbit interaction produces a mixing of the orbitals, that can no longer be
directly identified with the eigenstates of the orbital moment. However, we will continue to use
dx y ,dy z ,dxz as a base, on to which we project the electronic states ψ1,ψ2,ψ3. It is also worth
to note that the oxygen sites are not equivalent. The O atoms in the apical sites experience a
different chemical environment than those in planar positions. This translates in a different
energy resonance in X-ray absorption processes.

to the scattering plane. This implies that the oscillating electric field of the beam was aligned

along y (and hence py ) for LV polarization, but along either x (at normal incidence, θ=0deg) or

along z (grazing incidence, θ=±90deg) in the case of LH polarization. As a consequence, by

varying incident angle and/or polarization of the X-ray beam, it was possible to selectively

enhance transitions into specific p-orbitals, as represented in figure 4.5.

At this point it should be emphasized that the O atoms in apical or planar positions experience

a different chemical environment which changes the respective absorption resonances, in

our case by ΔE∼1 eV. Changing the energy of the photon beam therefore allows to select at

which oxygen site (apical or planar) will occur the promotion of a 1s core electron to a 2p

valence state. Furthermore, the Ru d-orbitals hybridize differently with the p orbitals of apical
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Chapter 4. Orbital structure of single-layer ruthenates

Figure 4.5 – p-orbital selection | By varying incident angle and polarization of the photon
beam, coupling with orbitals directed along x, y or z direction is enhanced.

Figure 4.6 – O2p-Ru4d hybridization | Illustration of the main hybridization between the
(top) eg or (bottom) t2g orbitals of ruthenium with the 2p orbitals of oxygen in apical or planar
sites, as indicated. While other d states mainly hybridize with p orbitals originating from either
apical or planar sites, the dxz/y z states hybridize with the pz orbital of in-plane oxygen atoms,
but also with the px/y orbitals of apical oxygen. A similar situation occurs for the dz2 orbital,
that presents both out of plane and in-plane charge distribution.

or planar oxygen atoms, as depicted in figure 4.6.

The eg states, pointing directly towards the vertex of the O octahedra, mainly hybridized either

with the px/y orbitals of oxygen atoms within the RuO2 planes (case of dx2−y2 ) or with the pz

orbital of oxygen atoms in apical sites. It should be noted that dz2 orbital have some in-plane

charge distribution which can be picked up through its hybridization with in-plane O orbitals.

The t2g states, separated in energy from the eg by ∼2-4 eV, on the other hand point away from

the O atoms and hybridize mainly with orbitals originating from both sites, as visualized in

the bottom panels of figure 4.6, with the exception of dx y which has a pronounced planar

character.

From these considerations, one can for example infer that in grazing incidence geometry with
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4.2. XAS results

LV(LH) polarization - which aligns the X-ray electric field with Opy(z) orbitals - absorption from

apical oxygen atoms is related to the occupancy of Rudy z (Rudz2 ). In the same conditions,

absorption from the in-plane O atoms gives mostly information about the occupancy of

Rudx2−y2 and Rudx y (Rudy z and Rudxz ).

More generally, we have identified three parameters through which control (to some extent)

the absorption process: (1) site-dependent energy resonance, (2) beam polarization and (3)

angle of incidence. In table 4.7 the different configurations are summarized, and a green tick

explicates to which Rud orbital one gains enhancement of experimental sensitivity.

Figure 4.7 – Selective tuning of XAS sensitivity | Summary of the experimental configurations
and ability to tune the experimental sensitivity to the occupancy of different Ru4d orbitals,
mediated by hybridization with the O2p orbitals. The smaller ticks indicate access to the dz2

orbital through its in-plane spatial distribution.

In the next section, we will present XAS results on Ca2RuO4and Sr2RuO4 , interpreted in light

of the considerations described in this section.

4.2 XAS results

4.2.1 O K-edge absorption spectra of Ca2RuO4

Figure 4.8 shows the absorption spectra recorded on Ca2RuO4at the O K-edge for both LV and

LH polarization, for two angle of incidence θ =−5deg,35deg. A linear background was sub-

tracted and spectra were normalized to the average intensity at photon energies > 546 eV. This
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holds true for all XAS spectra shown in this chapter. The normalization procedure is illustrated

in figure A.1 of appendix A.1. Close to normal incidence (top panel), LV and LH data - probing

the py and px orbitals - superpose extremely well, which is not surprising since the x and y

direction in the crystal are ∼ equivalent. Moving towards grazing incidence, LH polarization

worsens its coupling with px , but acquires some component along pz . This is reflected by

the data. Consistently with our assumptions, LV data shows no angular dependence (probing

the same orbitals at all angles). The spectra recorded with LH polarization on the other hand

exhibit a continuous evolution.

Already at an incident angle θ = 35deg (bottom panel), LV and LH data deviates from one

another, particularly for photon energies below 536 eV. A shoulder develops into a well defined

peak around 530 eV, while the strong peaks at ∼529 eV and ∼534.5 eV loose intensity. Also

the peak at ∼531.5 eV slowly grows with |θ|, seemingly at the expenses of the one at ∼532.5

eV. These features are labeled in the more detailed angle dependence shown in figure 4.9,

separately for LV and LH spectra. Features A, D and E appear stronger when probed with

LV (at all incident angles) or LH polarization in normal incidence, while features B and C

are enhanced in grazing geometry with LH polarization. Using table 4.7, we can identify the

orbitals of origin of the different features observed in figure 4.9.

In normal incidence, or using LV polarization, the 1s core electron is promoted to 2px/y

orbitals in planar or apical oxygen sites. We interpret the peak at the lowest energy, A in the

figure (at ∼529 eV), as the absorption resonance of apical p orbitals hybridized with the t2g

states, dxz and dy z . As coupling is shifted towards transitions to pz , this peak doesn’t gain any

additional contribution, since the pz orbital of apical oxygen doesn’t hybridize to any of the

t2g states. The two peaks at highest photon energy, D and E (at ∼532.5 eV and ∼534.5 eV),

are compatible with absorption into the planar px , py orbitals hybridized with the eg states.

More specifically, we assume a main px/y -dx2−y2 character for E and mostly px/y -dz2 for D.

Also these two peaks loose intensity when coupling to pz is improved, since planar pz orbitals

don’t hybridize significantly with the eg states. The two remaining peaks, B at ∼530 eV and

C at ∼531.5 eV, on the contrary visibly increase in intensity with |θ|. We assign peak B to the

transition into the valence states originating from planar p orbitals hybridized with t2g Ru

states. With LV polarization or in normal incidence, one probes the hybridization px/y -dx y .

Moving towards grazing incidence (i.e. increasing |θ|) and using LH polarization, the coupling

to px worsens while that to pz improves. Planar pz hybridizes with both dxz and dy z , so the

geometrical change implies an increase of the planar p-t2g resonance, as observed. Finally,

peak C is associated with the transition from O1s to pz -dz2 in the apical site.

Notice that the energy difference between the apical and planar resonance is ∼1eV both

for the p-t2g (peaks B and A) and the p-dz2 states (peaks C and D), which is consistent

with the chemical shift introduced by the covalent bonds apical oxygen shares with cal-

cium [128, 129, 130, 131, 132]. Both our data and interpretation are in agreement with previ-

ous XAS work on Ca2RuO4[128, 133]. It is convenient at this point to re-label the the features
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Figure 4.8 – Full range O K-edge XAS on Ca2RuO4| Unless specified, XAS spectra were
recorded in total fluorescence yield.
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Figure 4.9 – Angle dependence of LV and LH XAS on Ca2RuO4| While LV data shows no angle
dependence, LH spectra exhibit a progressive evolution .

77



Chapter 4. Orbital structure of single-layer ruthenates

observed in a way more directly related to their interpretation: tA (apical resonance A), tP

(planar resonance B), z2
A (apical resonance C), z2

P (planar resonance D) and x2 − y2
P (planar

resonance E).

4.2.2 O-K edge absorption spectra of Sr2RuO4

We are now ready to discuss the XAS spectra of Sr2RuO4 . In figure 4.10 the full O K-edge

absorption spectrum is compared to that of Ca2RuO4. At first sight, the two materials present

very different oxygen absorption edges. On a more careful observation however, there is a

clear correspondence between the feature observed, although these are present with different

relative intensities, and shifted in energy. This parallelism is particularly interesting in the

energy range below 536 eV, reproduced in figure 4.11 for LV and LH polarization and different

values of θ.

As expected, probing Sr2RuO4 with LV polarization produces the same XAS spectrum at all

angles. In agreement with our previous discussion, when using LH polarization the signal

undergoes a clear evolution as a function of |θ|. The different features observed are in corre-

spondence with the ones discussed from the Ca2RuO4 XAS signal, and are labeled accordingly,

in agreement with literature reports[128, 130, 134, 135, 136].

Also in the case of Sr2RuO4 we observe a consistent chemical shift or ∼1 eV between apical

and planar sites in both the eg (peaks z2
A-z2

P ) and t2g (peaks t2g A-t2g P ) absorption resonances.

It is worth to highlight that in Sr2RuO4 the apical absorption resonance corresponding to

promotion of the core electron into the pz -Rudz2 states (feature z2
A) falls very close to the

planar t2g P . This explains the experimental observation of the peak around 530 eV significantly

broadening with |θ| (in LH polarization, see appendix A.2). For this reason, we restricted our

analysis on the relative intensities of features tA and tP on LV data.

To convince ourselves that the broad peak reported around 530 eV, in grazing incidence

and with LH polarization, is due not only to planar oxygen orbitals hybridized with Ru t2g

states, but gains a significant contribution from apical pz -Rudz2 hybridization, it is useful to

refer to the work of Noh et al. on Ca2−x Srx RuO4, x=0.9-2, reproduced in figure 4.12. Noh et

al. have followed the evolution of the XAS signal with Sr content, in both normal (solid line)

and grazing (open dots) incidence, with LH polarization. Full diamond markers indicate the

energies corresponding to transitions to states originated from the indicated Ru4d orbitals,

where the subscript A or P refers to hybridization with either apical or planar O2p orbitals.

The markers of the resonance of interest, z2
A , have been highlighted in red. Starting with the

second spectra from the bottom of figure 4.12, we see that in Ca1.85Sr0.15RuO4 the z2
A resonance

is well separated from the planar px/y -t2g one (t2g P ), and is not observed in normal incidence.

Changing the Sr content initially doesn’t affect these observations. When Sr has substituted
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Figure 4.10 – Full range O K-edge XAS on Sr2RuO4 | XAS spectrum of Sr2RuO4 recorded in
normal incidence and LV polarization (red diamonds), compared to that of Ca2RuO4 (blue
squares).
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Figure 4.11 – Angle dependence of LV and LH XAS on Sr2RuO4 | As observed on Ca2RuO4, data
collected with LV polarization has no dependence on θ, while LH spectra evolve progressively
with it.
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Figure 4.12 – Ca2−x Srx RuO4 XAS from literature | XAS spectra of Ca2−x Srx RuO4, with x=0.09
(bototm) to x=2 (top). The red marker indicates the apical pz -Rudz2 absorption resonance
observed in grazing incidence geometry. Spectra were recorded with LH polarization and
arbitrarily shifted to improve visibility. Adapted from [128].

about half the Ca atoms, the peaks grow closer together until they merge in Sr2RuO4 . However,

at all values of x the z2
A feature is absent in normal incidence spectra. Furthermore, the

width of the tP resonance in normal incidence is conserved across all values of Sr content.

These combined observation reassure us that the relative intensity of features tA and tP in LV

polarization are not influenced by the vicinity of the z2
A resonance.

4.2.3 Estimation of crystal field splitting

Having identified the main character of the resonances labeled in figures 4.9 and 4.11, we can

now extract an experimental estimation of the crystal field splitting in Sr2RuO4 and Ca2RuO4.
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By comparing the energy of the planar resonances tP , z2
P and x2−y2

P , we estimate a crystal field

splitting of ∼2.5 eV between the t2g states and the eg state with prevalent dz2 character and

∼4.5 eV to the one dominated by dx2−y2 in Ca2RuO4. In Sr2RuO4 these splitting are reduced to

∼1.3 eV and ∼3.8 eV, respectively.

It is interesting to note that the resonance tP is peaked around ∼529.85 eV in both Sr2RuO4 and

Ca2RuO4. The apical resonance tA is instead lowered by ∼0.3 eV when Sr atoms substitute Ca

ones. If we use this difference to estimate the chemical shift introduced by the substitution, it

is clear that to explain the differences observed in features z2
P and x2−y2

P (which shift by ∼1 eV)

it is necessary to refer to their different crystal structure. The compression of the O octahedra

in Ca2RuO4 rises the energy of the dz2 orbital, which is reflected in the states originating from it.

The experimental evaluation of the crystal field splitting represents our first conclusion,

summarized in table 4.1. Next, the apical and planar t2g resonances are analyzed in greater

detail, and their relative intensity is discussed.

Table 4.1 – Crystal field splitting evaluation | The values were extracted solely based on the
position of the peaks - and their evolution as function of the beam polarization and angle of
incidence.

eg ,1-t2g eg ,2-t2g

Ca2RuO4 2.5 ±0.25 eV 4.5 ±0.5 eV
Sr2RuO4 1.3 ±0.25 eV 3.8 ±0.5 eV

4.2.4 Self-absorption

X-ray absorption spectra can be recorded in total fluorescence yield (TFY), or total electron

yield (TEY). We performed our experiment with the samples at ∼16 K, at which temperature

Ca2RuO4is an AF Mott insulator, and produces no signal in TEY mode. Instead, we used TFY

data for both compounds. TFY signal can be affected by self-absorption, the process in which

photons emitted due to the relaxation of the excited state (following the absorption process)

are re-absorbed in their way out of the material, therefore potentially influencing the relative

intensities.

The cross section for self absorption increases with the length of the path of the escaping pho-

tons within the material, meaning that it has a minimum at normal emission and maximizes

in grazing emission. Our LV data show no significant angle dependence, which points towards

little to no self absorption issues. To further ensure that the relative intensities aren’t affected

by self absorption in our data set, in figure 4.13 we produce a direct comparison between TFY

and TEY signal, for both Sr2RuO4 and Ca2RuO4. In order to record TEY data, Ca2RuO4 was

warmed to ∼125 K (a temperature above the AF ordering transition TAF =110 K, corresponding

to a sharp decrease in the resistivity of Ca2RuO4[137] which makes it possible to record TEY
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Figure 4.13 – TFY vs TEY | (a,b) Sr2RuO4 and Ca2RuO4 TFY compared to TEY spectra. In the
case of Ca2RuO4, it was necessary to warm the sample, so the TFY is shown both at base
temperature (T�16 K) and above the AF ordering temperature, at T�125 K.

signal). The angle and polarization evolution of Sr2RuO4 TEY data follows that observed on

TFY spectra. The remarkable agreement between TFY and TEY results in both compounds

(top panels of figure 4.13) reassures us on the negligibility of self-absorption effects.

4.2.5 Estimation of orbital occupancy

Recent works based on first principle calculations[134, 135] have raised concerns over the

non-negligible contribution of the Sr/Ca orbitals to the origin of states ∼2 eV above thresh-

old. This would invalidate, or at least compromise, conclusions on the Ru states drawn from

analysis of these features. However, in the following we focused on the pre-edge features

- at energies below 531 eV - to extract information on the t2g orbitals occupancy. General

consensus[128, 133, 134, 135, 130, 136] attributes these states to apical and planar O2p-Rut2g

hybridization. We can therefore move on to a more detailed analysis of TFY spectra in the

range 527-531.5 eV. We are interested in an experimental estimation of the hole-occupancy in

states originating from the t2g orbitals, hence we focused on the tA,P absorption resonances.

According to our analysis, summarized in table 4.7, at the p-t2g absorption resonances probed

with LV polarization, apical and planar oxygen sites provide complementary information. In

fact, at each oxygen site absorption is mostly sensitive to the occupation of either the out of

plane dy z (case of apical site) or the planar dx y orbital (probed via its hybridization with py

oxygen orbitals). As explained in the previous paragraphs, LH data have a pronounced angle

dependence and can probe states with both dxz and dx y symmetry. Another complication

in the case of Sr2RuO4 comes from the close vicinity to tP of the z2
A resonance, see paragraph

4.2.2, which is observed with LH polarization only and increases in intensity with the incident
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Figure 4.14 – XAS fit | (a,b) fit of Ca2RuO4 and Sr2RuO4 XAS spectra. The fitting function (thick
solid line) is the sum of the three Gaussian shown, in solid thinner lines for the apical and
planar tA,P absorption resonances, dashed for the next absorption peak, which constitutes a
background.

angle θ, see appendix A.2. For these reasons, we focused on the data collected with LV polar-

ization.

Figure 4.14 illustrates the fitting procedure, in the case of θ=35deg for both materials. The

apical and planar resonances - tA and tP - are indicated. The fitting function, equation 4.1 and

thick solid line in figure 4.14, is the sum of three Gaussian functions, one for each absorption

resonance observed in the fitting range 527-531.5 eV. The first two curves, thin solid lines

in figure 4.14, correspond to the p-t2g absorption resonances in apical (tA) and planar (tP )

site, the third, dotted lines in the figure, corresponds to the next resonance (z2
A in the case

of Ca2RuO4, z2
P for Sr2RuO4 ), which, in the context of the current analysis, constitutes a

background (B):

F (x) = I Ae
− (x−cA )2

2σ2
A + IP e

− (x−cP )2

2σ2
P + IB e

− (x−cB )2

2σ2
B . (4.1)

With x= photon energy, cA,P,B center of the relative absorption resonances of intensity I A,P,B

and full width at half maximum (FWHM) given by 2
�

2ln2σA,P,B . The parameters extracted

from fitting LV spectra to function 4.1 are plotted against |θ| in figure 4.15(a-c).

In panel 4.15(a), the center of the apical and planar resonances are compared for Ca2RuO4 (Ca214)

and Sr2RuO4 (Sr214). As expected, the planar resonance tP appears at the same energy in the

two compounds, while the apical tA is lowered by ∼0.3 eV by the Sr-substitution of Ca. These

resonances all have FWHM of ∼ 0.6-0.7 eV ( ∼ 0.25−0.3•2
�

2ln2, see figure 4.15(b)), contrarily

to what observed in LH data (see appendix A.2). The intensities also appear quite stable across

the different angle of incidence (figure 4.15(c)). Panel 4.15(d) shows the ratios of apical to
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Figure 4.15 – XAS fit results | (a-c) Open markers indicate fitting parameters extracted from
Ca2RuO4 (Ca214) and Sr2RuO4 (Sr214) for the apical (A) and planar (P) resonances. Panel (d)
shows the intensity ratio, I A/IP in full squares for Ca214 and IP /I A in full diamonds for Sr214.
The relative intensity is almost perfectly reversed. Color-coded dotted lines mark the average
values of the relative quantities.

planar intensity for Ca2RuO4, RC a , and planar to apical for Sr2RuO4 data, RSr . IP is found to be

∼ 1/3I A for Ca2RuO4 but ∼ 2.5I A in the case of Sr2RuO4 across all θ. At higher |θ|, some minor

variations are observed both in terms of width and intensity, which reflect in the intensity

ratios and the propagated error. However, removing these last points from our measure doesn’t

significantly affect the average values of RC a and RSr or their weighted averages (which take

into account the different confidence assigned to each measure). We conclude RC a = 2.9±0.1

and RSr = 2.4±0.1.

We assume I A ∝ ny z • HA , hole-occupancy of the state with dy z symmetry times the hy-

bridization strength to the apical O, and similarly IP ∝ nx y •HP . Furthermore, ny z ≡ nxz since

the two directions are indistinguishable in Sr2RuO4 and practically equivalent in Ca2RuO4.

From figure 4.14 and panels (c) and (d) in figure 4.15, it is evident that I A and IP have opposite

relative intensities in the two compounds, suggesting that the hole probed via XAS is mostly

delocalized in states at different symmetry (dxz/y z vs dx y in Ca2RuO4 and Sr2RuO4 respec-
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4.3. RIXS results

tively). This is consistent with the crystal structure deformations, that lift the energy of the

dxz/y z states in Ca2RuO4 (as observed on the eg states, see paragraph 4.2.3).

We have RC a = I A/IP
∼= ny z

nx y
• HA

HP
, and RSr = IP /I A

∼= nx y

ny z
• HP

HA
. To estimate the hybridization

strength we assume a power-law dependence on the Ru-O bond length r , with HP (A) ∝ r−3.5
P (A)

[138], as done on iridates [132]. The lengths of the Ru-O bonds for apical and planar oxygen

change in the two compounds, so that HA
HP

∼= r A
rP

−3.5 = 1.972
2.016

−3.5 ≈ 1.08 for Ca2RuO4 [137], and
HP
HA

∼= rP
r A

−3.5 = 1.933
2.059

−3.5 ≈ 1.25 for Sr2RuO4 [139]. We can therefore extract experimental estima-

tion of upper and lower boundaries (with or without corrections to the hybridization strength)

for the ratio in hole-occupancy of the states originating from dx y , dxz and dy z :

0.15 ≤
(

nx y

ny z +nxz

)
C a2RuO4

≤ 0.20

1.00 ≤
(

nx y

ny z +nxz

)
Sr2RuO4

≤ 1.25
(4.2)

This represents the second conclusion drawn from the analysis of the XAS spectra.

4.3 RIXS results

4.3.1 Momentum transferred along the sample surface

The RIXS process can be discussed as an inelastic scattering event. Photons of energy hνi n and

momentum Kin were directed to the sample and photons of energy hνout and momentum

Kout emerge. The angle between the in-coming and out-coming photon momenta is the

scattering angle α, fixed to 50 deg by our experimental geometry. The plane identified by the

directions of Kin and Kout is the scattering plane, which in our geometry contains the c-axis

and cuts the samples along the Ru-O-Ru bonds, aligned along the direction of x̂.

The momentum transferred in the scattering event, Q = Kout −Kin, has the direction of the

bisector of α and modulus |Q| � 0.49 Å−1, for hνi n= 528-532 eV (see section 2.2.5). By varying

the angle of incidence to the sample surface, θ, the component of momentum transferred into

the sample plane is modified: Q// = 0.49sin(α/2−θ)x̂ Å−1. For a more direct understanding

of this value, it is convenient to refer to the size of the Brillouin zone vector in the relevant

direction, qx
BZ.

The tetragonal unit cell of Sr2RuO4 aligns along the Ru-O-Ru bonds so that x̂ corresponds to

the a axis. The orthorombic unit cell of Ca2RuO4 is misaligned by ∼45 deg with respect to x̂.

Therefore, we adopt the following convention:
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Chapter 4. Orbital structure of single-layer ruthenates

Q// ≡ h qx
BZ, with h � 0.6sin

(
25 deg−θ)

for Sr2RuO4 samples, where qx
BZ = qa

BZ.

Q// ≡ h′ qx
BZ, h′ � 0.6sin

(
25 deg−θ)

for Ca2RuO4 samples - where the prime is to indicate that

in this case qx
BZ does not coincide with any of the Brillouin zone primitive vectors.

For both compounds, q x
B Z = π

at
∼ 0.8 Å−1, with at size of the tetragonal unit cell. A detailed

derivation is found in appendix A.3.

In the next sections the RIXS data recorded on Ca2RuO4 and Sr2RuO4 samples, kept at a

temperature of ∼ 16 K, is presented and discussed.

4.3.2 Dependence on incident energy

For the investigation of both compounds, the incident energy hνi n was varied between ∼ 528

and ∼ 531 eV at incident angle θ= 75 deg, so to explore the apical and planar tA,P absorp-

tion resonances observed in the XAS data. These absorption resonances correspond to the

promotion of 1s core electron to the 2p valence states, hybridized with the t2g ruthenium

states (section 4.2). The direction of the oscillating electric field enhances absorption into

specific states, summarized in table 4.2 for the three absorption resonances at lower energy,

discussed in greater detail in section 4.2. The two explored polarizations, linear horizontal

(LH) and linear vertical (LV), are taken in consideration in different incidence geometries,

normal incidence (N.I.) and grazing incidence (G. I.).

When θ= 75 deg, the electric field E(t ) of LH polarized in-coming photons aligns mostly with

pz , with projection along z of Ez (t) = sinθ|E(t)| = 0.96|E(t)|. However, coupling to px is not

Table 4.2 – Tuning of the absorption process with incident polarization and angle | Sum-
mary of the coupling enhancement to the valence states originating from the O2p-Ru4d
hybridization, for the absorption resonances at lower energy (see section 4.1). The apical
absorption resonance to the p−t2g hybridized state (tA) has energy of ∼ 528.85 eV in Sr2RuO4

and ∼ 529.15 eV in Ca2RuO4. The planar p−t2g resonance (tP ) appears at ∼ 529.85 eV in
both samples. The next resonance, z2

A is associated to the promotion of the 1s core electron
to a p−eg state with prevalent dz2 character, in an apical oxygen atom. In Sr2RuO4 z2

A lies
at ∼ 530.15 eV and is not probed through the px/y orbitals, but is only observed in linear
horizontal (LH) polarization and away from normal incidence. In Ca2RuO4, z2

A is observed at
∼ 531.5 eV and is probed with both linear horizontal and vertical (LV) polarization and at all
angle of incidence, but with varying intensity. The angle of incidence θ equals 0 deg in normal
incidence (N.I.) and 90 deg in grazing incidence (G. I.).

tA tP z2
A

LH θ = 0 deg; N.I. px −dxz px −dx y px −dz2

θ = 90 deg; G.I. pz −dxz/y z pz −dz2

LV all θ py −dy z py −dx y py −dz2
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4.3. RIXS results

completely inhibited, since Ex (t ) = cosθ|E(t )| = 0.25|E(t)|. Therefore, in the energy range of

interest, the core electron is preferentially sent into the hole states pz −dxz/y z of the planar

oxygen atoms (tP resonance). In the case of Sr2RuO4 samples, in the explored energy range

LH polarization can also select pz −dz2 states of the apical oxygen ones (z2
A resonance, which

lies at a higher energy - outside of the range considered - in Ca2RuO4). The states px −dxz of

the apical O (resonance tA) or the px −dx y in the planar sites (tP resonance) can also be filled,

with smaller cross section (reflected in the variation of the relative XAS intensity of the tA,P

resonances). LV polarization on the other hand selects py and the holes states to be preferably

filled are the py −dy z in the apical oxygens (resonance tA) or the py −dx y in the planar ones

(tP resonance).

In Ca2RuO4, we find that the hole occupancy of the states with dx y symmetry is much lower

than that of dy z/xz symmetry, see section 4.2.5 and equation 4.2. As a consequence, the

planar resonance is probed more effectively through the pz −dxz/y z states, accessed with

LH polarization and grazing incidence. For this reason, we expect data collected with LH

incident polarization to be more convenient to discuss our results on Ca2RuO4. On the other

hand, in the case of Sr2RuO4 it is LV data that we expect to be more useful. In fact, the z2
A

resonance of Sr2RuO4 falls in close vicinity to the tP one. This explains the observed broad-

ening of the features observed in LH RIXS data of Sr2RuO4 at the tP resonance, compared

to that recorded with LV polarization (where z2
A is suppressed, see section 4.2.2 and figure 4.12).

In figures 4.16 and 4.17 are shown RIXS intensity maps taken at incident angle θ=75 deg on

Ca2RuO4 and Sr2RuO4 respectively, as function of incident energy (in the range 528.5-530.65

eV) and energy loss, for linear horizontal ( panels (b) in the two figures) and vertical ( panels

(d)) incident polarization. At this incident angle, h′ � 0.6sin
(−50 deg

)�−0.5 so that the mo-

mentum transferred along the Ru-O-Ru bond direction values Q// �−0.5 qx
BZ, with q x

B Z = π
at

.

In panels 4.16(a) and 4.17(a) are shown RIXS intensity profiles taken at a specific incident

energy and polarization, indicated by horizontal dotted lines in panels 4.16(b,c) and 4.17(d,e)

respectively. All of the different excitations observed can be identified in these two spectra,

and are labeled according to their dependence on energy loss and energy of the out-coming

photons. The RIXS intensity in panels (b, d) was normalized to the intensity of the XAS signal

at the corresponding incident energy, angle and polarization, reproduced in panels (c) and (e).

The vertical dashed lines in panels (b, d) serve as a guide to the eye for excitations with

constant energy loss (which have a Raman-like behaviour), while the oblique dash-dotted

lines indicates the dispersion of constant out-coming energy, typical of fluorescent excitations.

At zero energy loss we observe the narrow peak due to the elastic process (el), whose full width

at half maximum (FWHM = 0.06 eV) is defined by the experimental resolution. Between 0.3

and 0.4 eV we find an excitation which doesn’t disperse in energy loss, in both compounds.

We label this excitation, at Raman character, as R1. Next, in Ca2RuO4 around the planar tP

87



Chapter 4. Orbital structure of single-layer ruthenates

Figure 4.16 – RIXS energy dependence of Ca2RuO4 | taken at θ=75 deg, corresponding to a
momentum transfer of -0.5 qx

BZ, with q x
B Z = π

at
. a) RIXS spectrum recorded with linear horizon-

tal (LH) polarized incident beam of energy hνi n=529.9 eV. Dashed lines indicate peaks with a
Raman character (R1-3), as opposed to fluorescent (f) features (dash-dotted line). The elastic
peak (el) is indicated by the gray vertical line. The broad peak at high energy loss is attributed
to charge transfer (CT). b) RIXS intensity map per incident photon energy, hνi n , versus energy
loss, for LH incident polarization. The vertical dashed line and oblique dash-dotted one are
guides to the eye for Raman-like and fluorescent-like dispersions. The blue horizontal dotted
line indicates the hνi n of the spectrum in panel (a). c) XAS Spectrum recorded at same θ, in
LH polarization. The blue dotted line indicates the hνi n of the spectrum in panel (a). d) RIXS
intensity map recoded with linear vertical (LV) polarization, as function of the hνi n vs energy
loss. The Raman-like and fluorescent-like evolutions are indicated for guidance by the vertical
dashed and the dash-dotted oblique lines, respectively. e) XAS intensity in LV polarization and
same geometry, with tA,P indicated. RIXS spectra are normalized to the XAS intensity at the
corresponding incident energy and polarization.
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Figure 4.17 – RIXS energy dependence Sr2RuO4 | taken at θ=75 deg, corresponding to a
momentum transfer along the Ru-O-Ru bond direction of -0.5 qx

BZ, with q x
B Z = π

at
. a) RIXS

spectrum recorded in linear vertical (LV) polarization at incident energy hνi n= 529.5 eV. As
in figure 4.16, dashed lines indicate peaks with a Raman character (R1, R3), as opposed to
fluorescent (f) features (dash-dotted line). The elastic peak (el) is indicated by the gray vertical
line. The broad peak at high energy loss is attributed to charge transfer (CT). b) map of the
RIXS intensity per hνi n versus energy loss, recorded with linear horizontal (LH) incident
polarization. The vertical dashed line and oblique dash-dotted line are guides to the eye for
Raman-like and fluorescent-like dispersions. c) XAS Spectrum at the same incident angle
and polarization. The tA,P and z2

A absorption resonances are indicated. d) RIXS intensity
map as function of hνi n versus energy loss, in LV incident polarization. The Raman-like and
fluorescent-like evolutions are indicated for guidance by the vertical dashed and the dash-
dotted oblique lines, respectively. The red horizontal dotted line indicates the hνi n of the
spectrum in panel (a). e) XAS Spectrum at same θ, in LV polarization, with indication of the
value of hνi n for the RIXs spectrum in panel (a). RIXS data at each incident photon energy
were normalized to the XAS intensity at the corresponding energy and polarization. 89



Chapter 4. Orbital structure of single-layer ruthenates

resonance with incident LH polarization, we observe a non-dispersive excitation, around

2.25 eV. This excitation is labeled R2. Between 3 and 4 eV is observed in both compounds a

broad and intense peak which seems to be composed of two components, one non dispersive

and one which appears to follow a fluorescent dispersion. We therefore assign two labels to

this peak, R3 and f . The broad excitations at fluorescent character observed in both samples

at large energy loss (>5 eV) are assigned to charge transfer (CT), described in section 2.2.4.

Charge transfer excitations in a similar energy loss range (∼4-8 eV ) have been reported on

cuprates [36, 140, 141].

Figures 4.18 and 4.19 compare the hνout dependence of RIXS spectra at different incident

energy, and confirm the Raman character of excitations R1,2 (their dispersion is marked by

color-coded vertical lines, and corresponds to constant energy loss). The following excitation,

R3-f, exhibits a mixed Raman-fluorescent character and it could be considered as originating

from 2 separate resonances, expressions of two competing relaxation processes. However, it is
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Figure 4.18 – RIXS incident energy dependence on Ca2RuO4 | plotted versus the energy of
the out-coming beam, in decreasing order for ease of comparison with figure 4.16. The spectra
were taken with incident energy hνi n as indicated, at θ=75 deg and LH polarization. The color
coded vertical dotted, dashed and solid lines on the top of the graph track the value of hνout at
which the excitations R1, R2 and R3 are observed, respectively. The black vertical dash-dotted
line indicates the position of the fluorescent resonance (f). In the inset is reproduced the XAS
spectrum recorded with same incident angle and polarization. The color-coded vertical bars
in the inset indicate the value of hνi n at which the RIXS spectra were recorded. RIXS spectra
were normalized to the intensity at 525.7 eV and arbitrarily shifted to improve visibility.
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4.3. RIXS results

hard to disentangle the one from the other, especially in Ca2RuO4.

The observed excitations do not exhibit the same relative intensity, but on the contrary appear

to be enhanced or weakened depending on the incident energy and polarization, as outlined

in table 4.3 with bold (gray) to indicate an enhanced (weak) resonance. The evaluation of

the relative intensity is based on spectra normalized to the intensity of the XAS signal, as in

figures 4.16 and 4.17 (see appendix A.5). However, the relative intensities of the spectra remain

similar to that recorded by the spectrometer ("raw" intensities), so that table 4.3 applies as

well to not-normalized spectra (plotted with their "raw" intensities). Note that the observed

excitations are best resolved in the planar tP resonance and with LH in the case of Ca2RuO4,

but LV for Sr2RuO4 samples.

We have assigned the broad excitation at large energy loss to charge transfer, whose intensity

is a measure of the hybridization strength to the neighboring atoms (see section 2.2.4). The

observation of a strong enhancement of this excitation at the planar absorption resonance is
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Figure 4.19 – RIXS incident energy dependence on Sr2RuO4 | plotted versus the energy of the
out-coming beam, in decreasing order for ease of comparison with figure 4.17. The spectra
were taken with incident energy hνi n as indicated, at θ=75 deg and LV polarization. The
color coded vertical dotted and solid lines on the top of the graph track the value of hνout at
which the excitations R1 and R3 are observed, respectively. The black vertical dash-dotted
line indicates the position of the fluorescent resonance (f). In the inset is reproduced the XAS
spectrum recorded with same incident angle and polarization. The color-coded vertical bars
in the inset indicate the value of hνi n at which the RIXS spectra were recorded. RIXS spectra
were normalized to the intensity at 525.8 eV and arbitrarily shifted to improve visibility.
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Chapter 4. Orbital structure of single-layer ruthenates

consistent with the expected stronger hybridization of planar O atoms. To assign the remaining

observed peaks, it is useful to compare their value with the energy difference of the features ob-

served in the XAS spectra, see figure 4.20. We choose the spectra recorded with incident angle

θ=35 deg, where the apical and planar resonances are both easily distinguishable in Ca2RuO4,

using LH polarization. For Sr2RuO4 we refer to LV data. The horizontal bars, starting from the

tA/P resonances in panels 4.20(a,b), have width corresponding to the value, in energy loss, of

the excitations observed in the RIXS spectra (taken at incident energy hνi n =tA/P , respectively).

The energy difference between the apical (planar) absorption peak at prevalent z2 symme-

try, z2
A(P ), to the absorption resonance associated to the p−t2g hybridization, tA(P ), roughly

corresponds to the energy loss of the RIXS excitation R2. Also the R3-f excitation appears in

correspondence with the energy difference between the absorption resonances of p−t2g and

p −eg states. Therefore, we associate R2 and R3 to a relaxation process that leaves, in the final

state, an electron in the p − eg valence states and a hole in those, at lower energy, of p−t2g

origin. Which is to say that we interpret R2 and R3 as d −d excitations.

The R1 excitation has magnitude of ∼ 0.3-0.4 eV and fall within the width of the tA,P absorption

resonances. It could be associated to excitations within the p−t2g states (intra-t2g excitations).

Raman excitations at energy loss below the eV could be related to collective modes, in which

the energy lost by the scattered photons is used to create a quasi-particle such as a phonon

(lattice excitation), a plasmon (charge excitation) or a magnon (spin excitation). We can rule

out the phonon scenario, since they carry energy in a smaller range, not compatible with the

observed energy loss. A plasmon scenario could be plausible in the metallic Sr2RuO4 but

cannot be observed in the Mott insulator Ca2RuO4. Since R1 is observed in the same energy

range in the two compound it is reasonable to assume it has the same origin in both. Therefore,

also the plasmon hypothesis is rejected. Spin excitations have a marked dependence on the

transferred momentum (absorbed by the magnon), so that the energy loss associated with R1

would change as function of the angle of incidence. The energy loss due to intra-t2g excitations,

on the opposite, is not expected to vary with the transferred momentum.

The dependence on the angle of incidence, which allows to follow the momentum dispersion,

is presented in the next section.

4.3.3 Dependence on incident angle

The different excitations observed are best resolved, in both compounds, at the planar absorp-

tion resonance tP (see figures 4.16-4.17). Figure 4.21 presents the momentum dependence

recorded with incoming energy hνi n ∼tP , on Ca2RuO4 (panel (a)) and Sr2RuO4 (panel (b)),

versus energy loss. The elastic peak is indicated by a vertical gray line crossing zero energy

loss, while the features identified in the previous section are indicated by vertical dashed lines
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4.3. RIXS results

Table 4.3 – Recapitulation of the excitations observed in RIXS spectra and their relative in-
tensity at incident angle θ=75 deg | To give a comprehensive scheme, we consider the apical
and planar absorption resonances, tA ,P with both incident polarization adopted, linear hori-
zontal (LH) and vertical (LV). For ease of comparison, we report the energy loss of excitations
at Raman character, but the energy of the out-coming photons for fluorescent excitations.
Bold and gray indicates strong and weak peaks, respectively. The comparison of relative
intensities is based on spectra normalized to the corresponding XAS intensity, see figure A.6 of
appendix A.5. Note that R3 and f appear in close vicinity, to the point that cannot always be
distinguished the one from the other (see figures 4.16-4.19)

Raman Fluorescence
energy loss (eV) hνout (eV)

R1 R2 R3 f CT

Ca2RuO4 LH tA ∼0.35 ∼2.25 ∼3.4 ∼525.7 ∼522-525
tP ∼0.35 ∼2.25 ∼3.4 ∼525.7 ∼522-525

LV tA ∼0.35 ∼2.25 ∼3.4 ∼525.7 ∼522-525
tP ∼0.35 ∼2.25 ∼3.4 ∼525.7 ∼522-525

Sr2RuO4 LH tA ∼0.35 ∼3.2 ∼525.8 ∼521-525
tP ∼0.35 ∼3.2 ∼525.8 ∼521-525

LV tA ∼0.35 ∼3.2 ∼525.8 ∼521-525
tP ∼0.35 ∼3.2 ∼525.8 ∼521-525
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Figure 4.20 – Comparison of the energy scale of RIXS excitations and XAS features | a) XAS
spectrum recorded with linear horizontal (LH) incident polarization at incident angle θ=35 deg
on Ca2RuO4. b) XAS spectrum of Sr2RuO4 , taken in linear vertical (LV) incident polarization, at
θ=35 deg. The horizontal bars, starting from the apical or planar resonances tA/P , indicate the
value, in energy loss, of the excitations R1-3 and f, as observed in RIXS spectra taken at incident
energy hνi n =tA/P , respectively. At the apical resonance, R3 and f appear at approximately
the same energy loss. At the planar resonance, they separate by ∼ 0.6-0.8 eV.
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Figure 4.21 – Dependence on transferred momentum | (a) RIXS spectra recorded on
Ca2RuO4 at incident energy hνi n as indicated and linear horizontal (LH) incident polar-
ization. The value of the transferred momentum if given in units of qx

BZ, with Q// � h′ qx
BZ

(b) Sr2RuO4 spectra taken with linear vertical (LV) incident polarization. the value of h gives
the transferred momentum in units of qx

BZ: Q// � h qx
BZ, with q x

B Z = π
at

. Dashed lines indicate
peaks with a Raman character (R1-3), as opposed to fluorescent (f) features (dash-dotted line).
The elastic peak (el) is indicated by the gray vertical line. The broad peak at high energy loss is
attributed to charge transfer (CT). All spectra were normalized to the intensity at the energy
loss corresponding to the feature f and arbitrarily shifted, to improve visibility.
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Figure 4.22 – Zoom at low energy loss | of RIXS spectra taken at the tP resonance as function of
the transferred momentum on (a) Ca2RuO4 (with linear horizontal incident polarization and
(b) Sr2RuO4 (with linear vertical incident polarization). The value of h’, h gives the transferred
momentum in units of qx

BZ, with q x
B Z = π

at
. The elastic peak (el) is indicated by the gray vertical

lines while the black dashed lines mark the position of feature R1. To improve visibility, all
spectra were arbitrarily shifted and the color coded horizontal lines indicate zero intensity for
the corresponding spectrum. The intensity is presented as recorded by the RIXS spectrometer.

(R1-3) or dash-dotted lines (f), at the energy loss observed for h’,h=-0.5. At large energy loss are

found the charge transfer (CT) features. The spectra were normalized to the intensity of the

fluorescent feature f (at energy loss of 4.05 eV for Ca2RuO4 and 4.12 eV for Sr2RuO4 samples),

and arbitrarily shifted to improve visibility.

At first sight, none of the features display an obvious dispersion as function of the transferred

momentum. However, the relative intensities vary with the angle of incidence. It is interesting

to note that the fluorescent excitation f seems to scale with the charge transfer intensity,

while the relative intensity of excitation R3 increases with h,h’. This observation supports

the hypothesis that R3 and f are manifestations of two competing relaxation processes. In
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combination with the observed energy dependence, see figures 4.16-4.19, which clarifies the

Raman character of R3 and the fluorescent one of f. It therefore appears justified to assign

R3 to a d −d excitation. Feature f, being of fluorescent character and exhibiting an intensity

evolution similar to the CT broad feature, can be associated to charge transfer processes. The

interpretation of feature R2 as due to a d −d excitation is consistent with the non-dispersive

behavior observed. Feature R1 does not show significant momentum dependence, even when

examined in a restricted range of energy loss, see figure 4.22. The non-dispersive character,

both as function of incident energy and transferred momentum, supports the hypothesis of

an intra-t2g process and contradicts the scenario of a magnon excitation, which would require

the absorption of different amount of energy at different values of transferred momentum.

In order to extract further information from the recorded data, a simple model is applied to

the problem, described in the next section.

4.4 Model

As illustrated in figure 4.4, the electronic structure of perovskite materials is influenced by

the crystal field, which introduces an energy difference between eg and t2g states but also

between t2g (or eg ) states. We indicate the energy difference introduced between eg and t2g as

the crystal field splitting, and that between different t2g orbitals as the intra-t2g crystal field

splitting, Δi−t - defined positive if it lifts the energy level of the dx y orbital above that of dxz

and dy z . The effect of the spin-orbit interaction λSO , found to be significant in ruthenates [133,

142, 143, 144, 145], can be thought as a mixing of the eg and t2g orbitals. Neglecting the Hund’s

coupling [132, 133, 142, 143, 144, 145, 146, 147, 148], the Hamiltonian of the system can be

written as:

H =λSOL ·S+ Δi−t

3
L2

z (4.3)

where S = (Sx,Sy,Sz) and L = (Lx,Ly,Lz) are the spin and orbital momentum operators. Such

effective model represent a strong simplification, while a more sophisticated model, which

keeps into account the Coulomb interaction, is presented in reference [149]. Since we are

interested in understanding the feature R1, observed well below 1 eV, we further neglect

the eg states and consider the orbitals | x y〉, | xz〉, | y z〉 as our base for the description of

the t2g electronic states ψ1,ψ2,ψ3 [146, 147], as detailed in in appendix A.6. Including the

spin degree of freedom, the Hamiltonian 4.3 can be expressed in its matrix form in the basis

B1
t2g

= (| x y,+〉, | y z,−〉, | xz,−〉, | y z,+〉, | xz,+〉) (see section A.6.4):
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Figure 4.23 – Expected occupation ratio of the eigenstates of Hamiltonian H | given in
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Chapter 4. Orbital structure of single-layer ruthenates

where δ = Δi−t
λSO

. In this form, it is evident that H is exactly diagonalizable. The analytical

solution to the eigenvalue problem of H yields the doubly degenerate eigenvalues:

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

E1 =λSO

4

(
1+ 10

3
δ−C

)

E2 =λSO

2

(
2

3
δ−1

)

E3 =λSO

4

(
1+ 10

3
δ+C

) (4.5)

relative to the eigenstates:

⎧⎪⎪⎨
⎪⎪⎩
ψ±

1 ≈√
nx y,1 | x y,±〉+�

nxz,1 | xz,∓〉± i
√

ny z,1 | y z,∓〉= (
�

n −C ) | x y,±〉+ | xz,∓〉± i | y z,∓〉
ψ±

2 ≈√
nx y,2 | x y,±〉+�

nxz,2 | xz,∓〉∓ i
√

ny z,2 | y z,∓〉=| xz,±〉∓ i | y z,±〉
ψ±

3 ≈√
nx y,3 | x y,±〉+�

nxz,3 | xz,∓〉± i
√

ny z,3 | y z,∓〉=�
n | x y,±〉+ | xz,∓〉± i | y z,∓〉

(4.6)

with C =�
9+4δ(δ−1) and n = (−1+2δ+C )2

4 . The second eigenstate, ψ±
2 , originates from the

mixing of dxz and dy z orbitals and has no component along | x y,±〉, nx y,2 = 0. All eigenstates

have nxz = ny z , and we have written nxz,i = ny z,i = 1, for i =1,2,3. In this way, we extract only

nx y,i and for the occupancy ratio we simply have: Ri = nx y,i

nxz,i+ny z,i
= nx y,i

2 , for i =1,2,3. Notice

that the occupancy of states at different symmetry is fully determined by the ratio between

our two parameters δ= Δi−t
λSO

, i.e. Ri ≡F (δ), represented in figure 4.23. The orbital character

described in figure 4.23 gives an indication on the favored symmetry as the value of δ changes.

As an example, for δ<−1 - i.e. Δi−t <0 and |Δi−t | >λSO - E1 is much lower than E2,3 and states

at dx y symmetry are strongly preferred, consistently with our understanding of the crystal

field effects.

From the expression of the eigenvalues given in equation 4.5, it can be derived that E3 is larger

than both E2 and E1, for all values of δ and λSO �=0. If the number of electrons occupying the

states are 4, as is the case for the ruthenates materials consideredi, R1,2 give the electron

occupation of states ψ±
1,2, while R3 expresses the hole occupancy, which can be probed by

XAS. Furthermore, the RIXS technique is sensitive to the energy differences between the

derived eigenvalues, which (in addition to their dependence on δ) depend explicitly on the

iMore exactly, in the cases considered in this section, the hybridized states p−t2g are occupied by 6 electrons
which are primarily localized around the oxygen atoms, and 4 electrons which spend most of their time around
the ruthenium atom (for a total of 10 electron distributed in the 6 p−t2g orbitals, that, taking the spin degree of
freedom into account, can host 12 electrons). In this picture, the states p −ψ±

1,2 are fully occupied, while two

vacancies (holes) are left in the p −ψ±
3 states.
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4.4. Model

the spin-orbit coupling λSO , ΔEi , j ≡F (λSO ,δ):

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ΔE3,1 =λSO

2
C

ΔE3,2 =λSO

4
(2δ+3+C )

ΔE2,1 =λSO

4
(−2δ−3+C ) .

(4.7)

Therefore, combining the observation made in the previous sections would allow a full deter-

mination of our problem and lead to an experimental estimation of both the intra-t2g crystal

field splitting and the spin-orbit coupling. This effort is presented in the next section.

4.4.1 Model application

In figure 4.24 are presented the expected values extracted from the analytical solution to the

problem to the eigenvalues of H . In panel 4.24(a) the energy of the eigenstates ψ1−3 are ex-

pressed in units of the spin-orbit strength λSO (solid lines), while the energy levels in absence

of spin-orbit interaction are reported for comparison in dashed lines. The color indicates the

orbital character of the relative eigenstates, with blue indicating a main dx y character and red

a state of main dxz/y z origin. The topology of the unoccupied ψ±
3 eigenstates is explicated in

the top panels for various values of δ, while its ratio between the dx y and dxz/y z components,

R3, is plotted in panel 4.24(b).

X-ray absorption spectroscopy (XAS) gives experimental access to the hole occupancy ratio

between the states at dx y symmetry versus those of dxz/y z origin (see section 4.2.5). In other

words, we have derived an experimental estimate of the ratio R3, expressed in equation 4.2

and reproduced in panel 4.24(b), together with hole occupancy ratios measured on iridate

materials - extracted from references [132, 147, 150, 151]. In the limit δ→ 0 (as is the case for

{Ba,Sr}2IrO4 [132, 150, 151]), the states ψ±
1,2 are degenerate and Δ3,2/1 = 1.5λSO . In the opposite

limit, λSO → 0, ψ±
1,2 are again degenerate and the splitting is determined by the intra-t2g crystal

field alone: Δ3,2/1 =Δi−t , see section A.6.3. In all other case, both λSO and Δi−t contribute, in

varying measure, to the splitting of the ψ1−3 eigenstates of H .

Since Ri =F (δ), from the estimated values of R3 we can derive an experimental estimate on

δ, see panel 4.24(b). Keeping into account the indetermination in the values of R3, we find:

0.15 ≤ (R3)C a2RuO4
≤ 0.2 ⇔ δ�−0.9±0.1

1 ≤ (R3)Sr2RuO4
≤ 1.25 ⇔ δ� 0.6±0.1.

(4.8)
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Figure 4.24 – Analytical solution of the model Hamiltonian H | given in equation 4.3. (a)
Expectation values, in units of the spin-orbit coupling λSO , for the eigenvalues E1−3 as a
function of Δi−t /λSO , where Δi−t is the intra-t2g crystal field splitting. Dashed (solid) lines
indicate the expected values of E1−3 in absence (presence) of the spin-orbit interaction, see
section A.6.3. Color indicates the orbital character of the corresponding eigenstates, with
blue (red) marking a dx y (dxz/y z ) character. The orbital topology of the eigenstates ψ±

3 is
illustrated in the top panels. (b) Model expectation for the orbital hole occupation ratio
R3(Δi−t

λSO
) = nx y,3

nxz,3+ny z,3
of the eigenstate ψ±

3 , compared with values extracted from Ca2RuO4 and

Sr2RuO4 as well as iridate materials [132, 147, 150, 151]. The vertical dashed line marks
the value of R3 corresponding to even occupation of the dx y and dxz/y z orbitals. The inset
schematically illustrates how spin-orbit interaction and crystal field partially remove the t2g

degeneracy. Adapted from reference [152].100



4.5. Summary of Results

Which implies, for Ca2RuO4:

⎧⎪⎪⎨
⎪⎪⎩
ΔE3,1 �(2.0±0.1)λSO

ΔE3,2 �(1.3±0.1)λSO

ΔE2,1 �(0.7±0.1)λSO

(4.9)

and for Sr2RuO4 :

⎧⎪⎪⎨
⎪⎪⎩
ΔE3,1 �(1.42±0.05)λSO

ΔE3,2 �(1.76±0.05)λSO

ΔE2,1 �(−0.35±0.05)λSO .

(4.10)

In principle, we would therefore expect to observe three distinct features in the RIXS spectra,

corresponding to the energy differences between the derived eigenstates. However, the states

ψ±
1,2 are generally close in energy, so that in both compounds ΔE2,1 is found to be ∼ 2-4 times

smaller than the average of ΔE3,2 and ΔE3,1, resulting to be comparable to the experimental

resolution. We speculate that the corresponding feature, falling below the observed R1 peak

and close to the elastic line, is not resolved by our experiment. Furthermore, following the

same reasoning, since ΔE3,2 and ΔE3,1 are comparable in size - with difference expected in the

order of the experimental resolution - the observed R1 feature is interpreted as corresponding

to the average of the two excitations, ΔE 3,2−1 � (1.6 ± 0.1) λSO .

Under these assumptions, we can extract an experimental evaluation of λSO from the recorded

RIXS spectra, as illustrated by way of example on the RIXS spectra taken at incident angle

θ = 55 deg, in figure 4.25. Since feature R1 is observed in both compounds at energy loss of

∼ 0.35 eV, we find ΔE 3,2−1 � (1.6 ± 0.1) λSO �0.35 ± 0.03 ⇒ λSO ∼ 0.21 ± 0.02 eV. From the

estimated value of the ratio δ = Δi−t
λSO

, see equation 4.8, we can now extract the value of the

intra-t2g crystal field to be Δi−t � -0.19 ± 0.04 eV for Ca2RuO4, and Δi−t � -0.13 ± 0.03 eV in

the case of Sr2RuO4 .

4.5 Summary of Results

We have performed a XAS and RIXS combined study on Ca2RuO4and Sr2RuO4 samples, as

function of incident angle, polarization and energy. The results of this analysis were published

in PRB 91, 155104 (2015), reference [152], and are summarized in table 4.4.

After identifying the main character of the features observed in the XAS spectra, we estimated

the energy difference between the states at eg and t2g origin. Furthermore, from an intensity
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Figure 4.25 – Interpretation of the low energy RIXS feature | through the adopted model. The
expected excitations (of value indicated by thick horizontal bars) are compared, as an example,
with RIXS spectra recorded with incident angle θ=55 deg, corresponding to a momentum
transfer of Q// �−0.3 qx

BZ, in linear horizontal incident polarization for Ca2RuO4, panel (a),
and linear vertical for Sr2RuO4 , panel (b). Vertical bars indicate the errors. The spectra were
taken at the planar tP absorption resonance. Solid lines are fits to a Gaussian (corresponding
to the elastic process), an antisymmetric Lorentzian (reproduced separately with dotted gray
lines), and a quadratic background. Thin horizontal bars around zero indicate the full width at
half maximum of the elastic Gaussian, corresponding to the effective experimental resolution.

study of the pre-edge features observed below 530 eV - the apical and planar absorption

resonances tA,P - the hole occupancy ratio Rh between states at dx y and dxz,y z symmetry

was extracted. The features observed in the RIXS spectra were classified according to their

dispersive behavior (as function on the energy lost by the scattered photons) and associated to

fluorescent or Raman relaxation processes. The fluorescent component, at energy loss larger

than 4 eV, is attributed to charge transfer interactions. The Raman-like features at energy

loss greater that 1 eV are compatible with relaxation processes in which the core electron is

promoted to states at p −eg character while an electron in the p−t2g valence states fills the

core hole. These processes are referred to ad d −d excitations. The low energy Raman features
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4.5. Summary of Results

in the RIXS spectra was attributed to intra-t2g processes, intra-t2g ΔE . In order to interpret

this feature, we adopted a simple model Hamiltonian H , whose exact solutions -eigenvalues

E1−3 and eigenstates ψ1−3- are univocal functions of two parameters, the intra-t2g crystal

field Δi−t and the strength of the spin-orbit coupling, λSO . Notice that the mixing of orbitals

observed cannot be explained as a result of crystal field alone but, on the contrary, requires a

non-negligible spin-orbit coupling.

The ratio between dx y and dxz,y z components of the extracted eigenstate ψ±
3 represent one

observable physical quantity, the hole occupancy ratio Rh=R3, probed via XAS. Our results

suggest that the unoccupied state is strongly dominated by dxz,y z orbitals in Ca2RuO4, while

has a main dx y character in Sr2RuO4 . A second physical quantity which can be experimentally

observed is the splitting between the ψ±
3 and ψ±

1,2 eigenstates, intra-t2g ΔE=ΔE 3,2−1, which

is accessed with RIXS. In other words, we derived a system of two equation in two unknown,

whose solution yields an experimental estimate of both model parameters, λSO and Δi−t .

Within the model adopted, λSO was estimated to value ∼ 0.2 eV in both compounds. The value

of Δi−t was found to be ∼-0.2 eV in Ca2RuO4 and ∼0.1 eV in Sr2RuO4 samples. The sign flip of

the intra-t2g crystal field Δi−t between the two compounds is consistent with the compression

of the oxygen octahedra in the crystal structure of Ca2RuO4, opposed to the elongation in that

of Sr2RuO4 .

Table 4.4 – Summary of results | extracted from the XAS-RIXS combined study on
(Ca,Sr)2RuO4. The results are listed according to the specific mean employed for the ex-
traction: X-ray absorption spectroscopy, resonant inelastic X-ray spectroscopy or application
of the model Hamiltonian H =λSOL ·S+ Δi−t

3 〈Lz〉2.

XAS RIXS Model application
eg ,1-t2g eg ,2-t2g Rh intra-t2g ΔE λSO Δi−t

(eV) (eV) (eV) (eV) (eV)

Ca2RuO4 ∼2.5 ∼4.5 0.15-0.20 ∼0.35 ∼0.2 ∼-0.2
Sr2RuO4 ∼1.3 ∼3.8 1.00-1.25 ∼0.35 ∼0.2 ∼0.1
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5 Conclusions

This doctoral project has investigated the role of electron correlations through synchrotron-

based spectroscopic techniques: angle resolved photoemission spectroscopy and resonant

inelastic X-ray scattering. The main results obtained are summarized here.

Our high quality nodal spectra of La1.77Sr0.23CuO4 [53] allowed a careful self-consistent analy-

sis, through which we could verify the fulfillment of the mathematical conditions for coherent

Landau quasi-particles. Enforcing Kramers-Kronig consistency, we could provide an experi-

mental ARPES proof that low energy excitations in the strange-metal phase of cuprates are

true Landau Fermi liquid quasi-particles [48].

On the other side of the superconducting dome, the observed quasi-particles exhibit a

momentum-dependent gap of unknown origin, the pseudogap. The systematic ARPES study

performed on La1.6−x Nd0.4Srx CuO4 enabled identification of a doping regime in which the

pseudogap can be investigated without influences from charge-order. Our investigation found

that the magnitude of the single particle gap in this regime is correlated to single-particle

scattering, with larger scattering implying a larger pseudogap [67]. This experimental ob-

servation taps into the on-going dispute on the origin of the pseudogap and its relation to

superconductivity and charge order, and suggests competition between these phenomena.

Interestingly, a pseudogap has been reported in Mott insulator Sr2IrO4 [13] – a transition

metal oxide with much stronger spin-orbit coupling than the cuprates – along with hints to

superconductivity [153], although an unambiguous experimental proof (such as transport

measurements) remains lacking. These considerations raise the question on the relevance

of spin-orbit coupling and orbital physics in the determination of electronic properties in

strongly correlated systems and lead us to the last chapter of this thesis, where the experiments

performed on ruthenate compounds are discussed.

We identified in (Ca,Sr)2RuO4 an intermediary system, given its electronic configuration

– similar to that of the iridates – and the display of both Mott insulating and superconducting
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ground states, as is the case of the cuprates. Our combined RIXS and XAS investigation resulted

in a consistent description of the low energy electronic excitations, within a simple model

Hamiltonian [152]. Our findings suggest that both the spin orbit coupling and the structural

distortions in the perovskite crystal structure of these systems play a major role in defining

their electronic properties. Our subsequent ARPES study of Ca2RuO4[149], reproduced in

appendix B, confirmed the importance of the crystal field, and further identified in the Hund’s

coupling a crucial element to the shaping of the band structure. Ca2RuO4 was also the object

of explorative spin resolved ARPES experiments, carried out at the COPHEE beamline of the

Swiss Light Source. The results of these investigations are in the process of being analyzed.

‘We’re all stories, in the end.

Just make it a good one, eh?’

— Steven Moffat

Doctor Who Season 5, Episode 13
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A Additional information

Section A.1: normalization procedure adopted for the XAS data presented in section 4.2.

Section A.2: discussion of the fit of LH XAS data on Sr2RuO4 .

Section A.3: RIXS experimental geometry and derivation of the momentum transferred along

the sample surface.

Section A.4: the same RIXS spectra are plotted in function of their energy loss as well as the

energy of the out-coming photons.

Section A.5: RIXS spectra relevant for the relative intensity summary presented in table 4.3, in

section 4.3.3.

Section A.6: analytical solution of the model Hamiltonian introduced in section 4.4.
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A.1. XAS: data normalization

A.1 XAS: data normalization

Linear fit of raw XAS spectra (in the energy region below 528 eV for Ca2RuO4, 527.7 eV for

Sr2RuO4 corresponding to ∼1 eV below the first absorption peak in the two compounds)

constitute a background signal, due to the off-resonance tails of absorption peaks at lower

energies. These linear backgrounds were extrapolated to the fullenergy range and subtracted

from the spectra, which were then normalized to the background-free spectral weight at high

energy (between 546 and 550 eV). The normalization procedure is illustrated in figure A.1 as

an example in the case of the spectra shown in figure 4.8.
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Figure A.1 – XAS data normalization | (a) Raw XAS spectra recorded on Ca2RuO4at Θ -5o and
35o with LV and LH polarizations, as indicated. Solid (dashed) lines indicate the background,
estimated from fit of LV (LH) spectra in the energy region below 528 eV (dotted vertical line)
and extrapolated between 528 and 550 eV. (b) Normalized data. After subtraction of a linear
background and normalization (to the average intensity at energies higher that 546 eV), LV
data at different angle superpose across the full energy range. LH data also overlap in some
energy ranges, but the intensity of the most relevant features changes with Θ.
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Data normalized in such way overlaps across the full energy range in case of LV polarization,

as expected. LH spectra instead show changes in the relative intensity of the peaks consistent

with our expectations, detailed in section 4.1.
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A.2 XAS: fit of LH spectra

To fit the LH spectra, the center and width of the tA and background resonances were fixed to

the values extracted from the fit to 4.1 on LV data taken at the same incident angle. The free

parameters in the LH fit hence were I A , IB and intensity, center and width of the tP resonance,

IP , cP and σP :

FLH (x) = I Ae
− (x−cA,LV )2

2σ2
A,LV + IP e

− (x−cP )2

2σ2
P + IB e

− (x−cB ,LV )2

2σ2
B ,LV . (A.1)

With x=photon energy. In figure A.2 is shown a fit to function A.1 of XAS data taken on Sr2RuO4

with LH polarization and incident angle Θ=35o .
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Figure A.2 – XAS fit | (a) fit of Sr2RuO4 XAS spectra recorded at Θ=35o with Lh polarization.
The fitting function (thick solid line) is the sum of the three Gaussian shown, in solid thinner
lines for the apical and planar tA,P absorption resonances, dashed for the next absorption
peak, which constitutes a background. See equation 4.1. (b) Standard deviation of the second
Gaussian function, corresponding to the tP resonance, extracted from LH (black triangles) or
LV (red diamonds) data.

Fitting only one Gaussian function around 530 eV leads to a poor agreement to the data.

Moreover, the standard deviation of this Gaussian function considerably increases with |Θ|

(corresponding to an increase in the FWHM of ∼50%), further supporting the hypothesis of

a second absorption peak arising around 530 eV, in LH spectra at large incident angle (see

paragraph 4.2.2 and figure 4.12). The FWHM of the Gaussian fit to tP , within function A.1,

increases from ∼0.7 eV to ∼1 eV going from 5o to 75o .
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A.3 RIXS: momentum transfer

The experimental geometry is illustrated in figure A.3. As discussed in section 4.1, the samples

were aligned with the c-axis normal to the surface, directed along z in the figure. The in-plane

orientation was such that the Ru-O-Ru bonds align with x and y in the figure. The samples can

be rotated around the y direction to vary the angle of incidence θ. As discussed in section 4.1,

the linear polarizations adopted align the oscillating electric field either along the y direction

(linear vertical, LV) or on the x − z plane (linear horizontal, LH).

The RIXS process can be treated as a scattering event, where photons of energy hνi n and

momentum Kin are directed to the sample and photons of energy hνout and momentum

Kout emerge. The incident energy was varied within a few eV around the oxygen K-shell

absorption edge. The scattering plane, defined by Kin and Kout, contains the c-axis and

cuts the samples along the Ru-O-Ru bonds. The direction of the RIXS spectrometer (see

figure 2.12 in section 2.2.3) determines the scattering angle α by fixing the direction of Kout.

The transferred momentum Q = Kout −Kin is therefore completely determined, having the

direction of the bisector of α and modulus |Q| � 0.49 Å−1, for hνi n= 528-532 eV (see section

2.2.5). The quantity of interest, the component of momentum transferred into the sample

Figure A.3 – Scattering geometry of the RIXS process | The coordinate system is chosen
integral with the sample, represented here as a square plane. The scattering angle α is fixed to
50deg by the direction of incidence ( Kin) and the direction of the RIXS spectrometer (which
fixes the direction of the measured beam of momentum Kout). The sample can be rotated
around the y direction, so to change the angle θ between Kin and the normal to the sample
surface, i .e. the z direction. The scattering plane, defined by Kin and Kout, cut the sample along
x. The polarization of the incident beam was systematically switched during the experiment,
between linear horizontal (LH, which lies on the scattering plane) and linear vertical (LV,
always directed along y and perpendicular to the scattering plane).
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plane, changes with θ:

Q// = |Q|sin
(
25 deg−θ)�0.49sin

(
25 deg−θ)≡ q(θ) Å−1. (A.2)

Given the geometry of our experiment, Q// = q(θ)x̂ Å−1. For a more direct understanding

of the meaning of Q//, it is useful to express its value in unit of the Brillouin zone vector:

Q// = q(θ)
q x

B Z
qx

BZ, with qx
BZ Brillouin zone vector along the x direction, indicated in figure A.4.

Sr2RuO4 has a tetragonal unit cell, with sides a=b=3.870 Å along the Ru-O-Ru bond direc-

tions [139], i .e. our x and y directions. Therefore qa
BZ = qx

BZ = π
a x̂ ∼ 0.81 Å−1 and Q// �

0.6sin
(
25 deg−θ)

qx
BZ.

Ca2RuO4 has a larger orthogonal unit cell, corresponding to a smaller Brillouin zone - exper-

imentally observed during our ARPES study on Ca2RuO4 [149]. The unit cell vectors in the

Ru-O2 plane have modulus: a=5.410 Å and b= 5.492 Å [137], and are directed approximately

along the first and second bisector of x and y directions in our geometry. In we take the average

value, ā = 5.45 Å, we can define the Brillouin zone vector q a
B Z = π

ā ∼ 0.6 Å−1, not parallel to

x̂. To find q x
B Z , is sufficient to consider that it lies along the diagonal of the orthorhombic

Brillouin zone: q x
B Z =�

2 q a
B Z � 0.8 Å−1. Alternatively, one can consider the average value of

the Ru-O-Ru bonds in the Ru-O2 planes, a′ = 3.972+3.986
2 � 3.98 Å [137], and use this value to

find the Brillouin zone vector along the x direction: q x
B Z = π

a′ ∼ 0.8 Å−1, consistently with our

previous estimate. To conclude, for Ca2RuO4 we find the in-plane transferred momentum to

be Q// � 0.6sin
(
25 deg−θ)

qx
BZ, along the diagonal of the Brillouin zone.

Figure A.4 – Orthorhombic and tetragonal unit cell and Brillouin zone | a) Schematics of the
Ru-O2 planes, with the orthorhombic and tetragonal unit cells drawn with blue dash-dotted
and red dashed lines, respectively. b) Orthorhombic (blue dash-dotted line) and tetragonal
(red dashed line) Brillouin zone. In black is indicated the Brillouin zone vector along x̂, qx

BZ.
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A.4 RIXS: energy loss vs out-coming energy

Here we present a direct comparison of the two plotting options for RIXS spectra. As an

example, we choose spectra recorded at incident energy hνi n corresponding to the apical and

planar t2g -p absorption resonances and at an off-resonance energy, as indicated in figure

A.5. The three spectra are plotted versus the energy of the out-coming photons, hνout , or the

energy loss, hνi n-hνout .
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Figure A.5 – Comparison of RIXS spectra plotted versus out-coming energy or energy loss
| taken at θ=75o on Ca2RuO4, with incident energy as indicated and linear horizontal (LH)
polarization. a) RIXS intensity versus energy loss. b) RIXS intensity versus energy of the
out-coming photons, in decreasing order to better compare with panel (a). Intensity of the
spectra as recorded by the spectrometer. In both panels dashed vertical lines indicate peaks
with a Raman character (R1-3), as opposed to fluorescent (f) features (dash-dotted line). The
elastic peak (el) is indicated by the gray vertical line. The broad peak at high energy loss is
attributed to charge transfer (CT).

For a more comfortable comparison, the x axis of panel A.5(b) is reversed (since smaller hνout

corresponds to higher energy loss). The character of the observed excitations can be classified
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based on their dependence on the energy loss and hνout . Excitations with a Raman character

correspond to the energy difference of discreet levels, which manifest at constant energy loss.

Fluorescent excitations of the other hand appear at constant hνout .
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A.5 RIXS: direct comparison of apical and planar spectra

Figure A.6 presents a direct comparison of RIXS spectra recorded in the apical and planar

resonances for Ca2RuO4 and Sr2RuO4 :
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Figure A.6 – Direct comparison of RIXS spectra | taken at θ=75o . a,b) Spectra taken on
Ca2RuO4 with incoming LH and LV polarized photons at 529.15 eV (tA absorption reso-
nance, panel (a)) and 529.9 eV (tP , (b)). c,d) Sr2RuO4 data recorded at 528.9 eV (tA , (c)) and
529.8 eV (tP , (d)). Spectra are normalized to the corresponding XAS intensity (see figures 4.16
and 4.17). If indicated, spectra were amplified for visibility. In all panels, dashed lines indicate
peaks with a Raman character (R1-3), as opposed to fluorescent (f) (dash-dotted). Gray lines
indicate the elastic peak (el). Charge transfer (CT) excitations are observed at high energy loss.
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The spectra presented were normalized to the intensity of the XAS signal at the same incident

angle polarization and energy (XAS-normalized), as done in figures 4.16 and 4.17. To improve

the visibility, the intensity of LV spectra in panels (b) and (c) was doubled, while the LH spec-

trum of panel (d) was tripled.

Comparing the same spectra in their "raw" intensities (as recorded by the RIXS spectrometer)

leads to similar conclusion, with the major relative change in the LH data of panel (d). In this

case, it would suffice to double this spectrum to obtain the same visibility for the different

features. In other words, table 4.3 is representative of the relative intensities in the RIXS spectra

at these incident energies, both for the XAS-normalized and the "raw" case.
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A.6 Solution of model Hamiltonian

A.6.1 Definitions and useful relations

The hamiltonian to solve in the t2g sub-space is, from eq.1 in PRB 91, 155104 (2015) [132, 133,

142, 143, 144, 145, 146, 147, 148]:

H =λSOL ·S+ Δi−t

3
L2

z (A.3)

where S = (Sx,Sy,Sz) and L = (Lx,Ly,Lz) are the spin and orbital momentum operators and

λSO is the spin-orbit coupling constant. The intra-t2g crystal field splitting Δi−t is defined so

that Δi−t > 0 lifts dx y above dxz and dy z . Notice that in the cubic orbital basis, restricted to t2g

states, L2
z is a diagonal operator, so that Lz

2 = 〈Lz〉2, as shown explicitly in section A.6.2. Here,

the expressions for the 5d states:

| z2〉 =dz2 = Y2
0

| x2 − y2〉 =dx2−y2 = i�
2

(
Y2

−2 +Y2
2)

⎫⎪⎬
⎪⎭ eg states (A.4)

| x y〉 =dx y = 1�
2

(
Y2

−2 −Y2
2)

| xz〉 =dxz = 1�
2

(
Y2

−1 −Y2
1)

| y z〉 =dy z = i�
2

(
Y2

−1 +Y2
1)

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

t2g states (A.5)

where Yl
m indicate the well known spherical harmonics. The spherical harmonics can there-

fore be written as:

Y2
0 = | z2〉

Y2
1 =−1�

2
(| xz〉+ i | y z〉)

Y2
−1 = 1�

2
(| xz〉− i | y z〉)

Y2
2 =−1�

2
(| x y〉+ i | x2 − y2〉)

Y2
−2 = 1�

2
(| x y〉− i | x2 − y2〉)

(A.6)

For the solution of the hamiltonian is convenient to make use of the operators of creation and
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annihilation of the spin and orbital moment:

L+ = Lx + i Ly

L− = Lx − i Ly

S+ = Sx + i Sy

S− = Sx − i Sy

(A.7)

With L±Yl
m =�

l (l +1)−m(m ±1)Yl
m±1, S± | ±〉 = 0 and S± | ∓〉 =

√
3
4 ± 1

2 (±1
2 ) | ±〉 =| ±〉.

Also, please note the relations:

L++L− =2Lx

L+−L− =2i Ly

S++S− =2Sx

S+−S− =2i Sy

(A.8)

Below we compute how the operators L± act on the t2g states, using eq.A.5 and A.6:

L+ | x y〉 = 1�
2

L+
(
Y2

−2 −Y2
2)= 1�

2

(√
2(2+1)+2(−1)Y2

−1+ | 0〉
)
=�

2Y2
−1 =

=
�

2
1�
2

(| xz〉− i | y z〉) =| xz〉− i | y z〉

L− | x y〉 = 1�
2

L−
(
Y2

−2 −Y2
2)= 1�

2

(
| 0〉−

√
2(2+1)−2(+1)Y2

1
)
=−�2Y2

1 =

=−�
2
−1�

2
(| xz〉+ i | y z〉) =| xz〉+ i | y z〉

L+ | xz〉 = 1�
2

L+
(
Y2

−1 −Y2
1)= 1�

2

(√
2(2+1)+1(−1+1)Y2

0 −
√

2(2+1)−1(1+1)Y2
2
)
=

= 1�
2

(�
6Y2

0 −�
4Y2

2
)
=�

3 | z2〉−�
2
−1�

2
(| x y〉+ i | x2 − y2〉) =

=�3 | z2〉+ | x y〉+ i | x2 − y2〉
L− | xz〉 = 1�

2
L−

(
Y2

−1 −Y2
1)= 1�

2

(√
2(2+1)+1(−1−1)Y2

−2 −
√

2(2+1)−1(1−1)Y2
0
)
=

= 1�
2

(�
4Y2

−2 −�
6Y2

0
)
=−�3 | z2〉+�

2
1�
2

(| x y〉− i | x2 − y2〉) =

=−�
3 | z2〉+ | x y〉− i | x2 − y2〉

(A.9)
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L+ | y z〉 = i�
2

L+
(
Y2

−1 +Y2
1)= i�

2

(√
2(2+1)+1(−1+1)Y2

0 +
√

2(2+1)−1(1+1)Y2
2
)
=

= i�
2

(�
6Y2

0 +�
4Y2

2
)
=�

3i | z2〉+�
2i

−1�
2

(| x y〉+ i | x2 − y2〉) =

=�3i | z2〉− i | x y〉+ | x2 − y2〉

L− | y z〉 = i�
2

L−
(
Y2

−1 +Y2
1)= i�

2

(√
2(2+1)+1(−1−1)Y2

−2 +
√

2(2+1)−1(1−1)Y2
0
)
=

= i�
2

(�
4Y2

−2 +�
6Y2

0
)
=�

3i | z2〉+�
2i

1�
2

(| x y〉− i | x2 − y2〉) =

=�3i | z2〉+ i | x y〉+ | x2 − y2〉
(A.10)

i.e. :

L± | x y〉 = | xz〉∓ i | y z〉
L± | xz〉 =(±�3 | z2〉± i | x2 − y2〉)+ | x y〉
L± | y z〉 =(

�
3i | z2〉+ | x2 − y2〉)∓ i | x y〉

(A.11)
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A.6.2 Proof of Lz
2 = 〈Lz〉2

Let’s start with writing the matrix representation of L2
z , in the t2g subspace.

First, we calculate Lz explicitly:

Lz | x y〉 = 1�
2

Lz
(
Y2

−2 −Y2
2)= 1�

2

(−2Y2
−2 −2Y2

2)= −2�
2

(
Y2

−2 +Y2
2)

Lz | xz〉 = 1�
2

Lz
(
Y2

−1 −Y2
1)= 1�

2

(−1Y2
−1 −1Y2

1)= −1�
2

(
Y2

−1 +Y2
1)= −1�

2

�
2

i
| y z〉 = i | y z〉

Lz | y z〉 = i�
2

Lz
(
Y2

−1 +Y2
1)= i�

2

(−1Y2
−1 +1Y2

1)= −i�
2

(
Y2

−1 −Y2
1)= −i�

2

�
2

1
| xz〉 =−i | xz〉

(A.12)

i.e.:

Lz | x y〉 =−2�
2

(
Y2

−2 +Y2
2)

Lz | xz〉 =i | y z〉
Lz | y z〉 =− i | xz〉

(A.13)

Now, we can compute L2
z :

L2
z | x y〉 =Lz(Lz | x y〉) = −2�

2
Lz

(
Y2

−2 +Y2
2)= −2�

2

(−2Y2
−2 +2Y2

2)= +4�
2

(
Y2

−2 −Y2
2)= 4 | x y〉

L2
z | xz〉 =Lz(Lz | xz〉) = i Lz | y z〉 = i (−i | xz〉) =| xz〉

L2
z | y z〉 =Lz(Lz | y z〉) =−i Lz | xz〉 =−i (i | y z〉) =| y z〉

(A.14)

i.e.:

L2
z | x y〉 =4 | x y〉

L2
z | xz〉 = | xz〉

L2
z | y z〉 = | y z〉

(A.15)

Hence, the matrix rapresentation of L2
z in the t2g basis=(| x y〉, | xz〉, | y z〉) is:

L2
z =

⎛
⎜⎜⎝

4 0 0

0 1 0

0 0 1

⎞
⎟⎟⎠ (A.16)
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Now, we want to calculate 〈Lz〉2 in the t2g sub-space. As evident from eq.A.13, L2
z projects the

| x y〉 state out of the sub-space we are interested in. Therefore, in order to derive 〈Lz〉2, we will

initially consider the full 5d space.

Lz | z2〉 =LzY2
0 =| 0〉

Lz | x2 − y2〉 = i�
2

Lz
(
Y2

−2 +Y2
2)= i�

2

(−2Y2
−2 +2Y2

2)= −2i�
2

(
Y2

−2 −Y2
2)=−2i | x y〉

Lz | x y〉 =−2�
2

(
Y2

−2 +Y2
2)= 2i | x2 − y2〉

(A.17)

i.e. :

Lz | z2〉 = | 0〉
Lz | x2 − y2〉 =−2i | x y〉

Lz | x y〉 =2i | x2 − y2〉
Lz | xz〉 =i | y z〉
Lz | y z〉 =− i | xz〉

(A.18)

We can therefore write 〈Lz〉 in the full 5d space using the results of eq.A.18:

〈Lz〉 =

⎛
⎜⎜⎜⎜⎜⎜⎝

〈z2 | Lz | z2〉 〈z2 | Lz | x2 − y2〉 ...

〈x2 − y2 | Lz | z2〉 〈x2 − y2 | Lz | x2 − y2〉 ...

〈x y | Lz | z2〉 〈x y | Lz | x2 − y2〉 ...

〈xz | Lz | z2〉 〈xz | Lz | x2 − y2〉 ...

〈y z | Lz | z2〉 〈y z | Lz | x2 − y2〉 ...

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

... 〈z2 | Lz | x y〉 〈z2 | Lz | xz〉 〈z2 | Lz | y z〉

... 〈x2 − y2 | Lz | x y〉 〈x2 − y2 | Lz | xz〉 〈x2 − y2 | Lz | y z〉

... 〈x y | Lz | x y〉 〈x y | Lz | xz〉 〈x y | Lz | y z〉

... 〈xz | Lz | x y〉 〈xz | Lz | xz〉 〈xz | Lz | y z〉

... 〈y z | Lz | x y〉 〈y z | Lz | xz〉 〈y z | Lz | y z〉

⎞
⎟⎟⎟⎟⎟⎟⎠
=

=

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0

0 0 〈x2 − y2 | Lz | x y〉 0 0

0 〈x y | Lz | x2 − y2〉 0 0 0

0 0 0 0 〈xz | Lz | y z〉
0 0 0 〈y z | Lz | xz〉 0

⎞
⎟⎟⎟⎟⎟⎟⎠
=

=

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0

0 0 2i 0 0

0 −2i 0 0 0

0 0 0 0 i

0 0 0 −i 0

⎞
⎟⎟⎟⎟⎟⎟⎠

(A.19)

123



Appendix A. Additional information

We can now compute 〈Lz〉2, in the full 5d space:

〈Lz〉2 =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0

0 0 2i 0 0

0 −2i 0 0 0

0 0 0 0 −i

0 0 0 i 0

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0

0 0 2i 0 0

0 −2i 0 0 0

0 0 0 0 i

0 0 0 −i 0

⎞
⎟⎟⎟⎟⎟⎟⎠
=

=

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0

0 −4i 2 0 0 0

0 0 −4i 2 0 0

0 0 0 −i 2 0

0 0 0 0 −i 2

⎞
⎟⎟⎟⎟⎟⎟⎠
=

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0

0 4 0 0 0

0 0 4 0 0

0 0 0 1 0

0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎠

(A.20)

restricting ourselves to the t2g subspace, we find:

〈Lz〉2
t2g

=

⎛
⎜⎝

4 0 0

0 1 0

0 0 1

⎞
⎟⎠= L2

z t2g
(A.21)

As anticipated in the previous section.
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A.6.3 Spin orbit coupling

We want to evaluate L ·S, making use of the relations presented in eq.A.8:

L ·S = LxSx +LySy +LzSz = LzSz + L+S−+L−S+
2

(A.22)

The complete basis in the t2g sub-space includes the spin orientation: Bt2g = (| x y,+〉, | xz,+〉, |
y z,+〉, | x y,−〉, | xz,−〉, | y z,−〉). Using the results presented in eq.A.11 and A.13, we want to

write the matrix expression for L ·S in this basis:

L ·S | x y,+〉=
(

LzSz + L+S−+L−S+
2

)
| x y,+〉=| 0〉+ | xz,−〉− i | y z,−〉+ | 0〉

2
=

=1

2
(| xz,−〉− i | y z,−〉)

L ·S | xz,+〉=
(

LzSz + L+S−+L−S+
2

)
| xz,+〉= i

2
| y z,+〉+ | x y,−〉+ | 0〉

2
=

=1

2
(i | y z,+〉+ | x y,−〉)

L ·S | y z,+〉=
(

LzSz + L+S−+L−S+
2

)
| y z,+〉= −i

2
| xz,+〉+ −i | x y,−〉+ | 0〉

2
=

=−i

2
(| xz,+〉+ | x y,−〉)

L ·S | x y,−〉=
(

LzSz + L+S−+L−S+
2

)
| x y,−〉=| 0〉+ | 0〉+ | xz,+〉+ i | y z,−〉

2
=

=1

2
(| xz,+〉+ i | y z,+〉)

L ·S | xz,−〉=
(

LzSz + L+S−+L−S+
2

)
| xz,−〉= −i

2
| y z,−〉+ | 0〉+ | x y,+〉

2
=

=1

2
(−i | y z,−〉+ | x y,+〉)

L ·S | y z,−〉=
(

LzSz + L+S−+L−S+
2

)
| y z,−〉= i

2
| xz,−〉+ | 0〉+ i | x y,+〉

2
=

= i

2
(| xz,−〉+ | x y,+〉)

(A.23)

From these relations, the matrix expression for L ·S results in:

L ·S = 1

2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 1 −i

0 0 i 1 0 0

0 −i 0 −i 0 0

0 1 i 0 0 0

1 0 0 0 0 −i

i 0 0 0 i 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(A.24)
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A.6.4 Solution

We can now write our Hamiltonian in its matrix form:

HBt2g
=λSOL ·S+ Δi−t

3
〈Lz〉2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

4Δi−t
3 0 0 0 λSO

2 −i λSO
2

0 Δi−t
3 i λSO

2
λSO

2 0 0

0 −i λSO
2

Δi−t
3 −i λSO

2 0 0

0 λSO
2 i λSO

2 4Δi−t
3 0 0

λSO
2 0 0 0 Δi−t

3 −i λSO
2

i λSO
2 0 0 0 i λSO

2
Δi−t

3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(A.25)

This matrix is almost in a block-diagonal form. Changing the order in the basis to B1
t2g

= (|
x y,+〉, | y z,−〉, | xz,−〉, | y z,+〉, | xz,+〉) transforms the hamiltonian in:

HB1
t2g

= λSO

2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

8
3δ −i 1 0 0 0

i 2
3δ i 0 0 0

1 −i 2
3δ 0 0 0

0 0 0 8
3δ i 1

0 0 0 −i 2
3δ −i

0 0 0 1 i 2
3δ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(A.26)

where δ= Δi−t
λSO

.

We can now derive the eigenvalues and eigenvectors of our diagonizable Hamiltonian:

T −1HB 1
t2g

T = λSO

2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

A 0 0 0 0 0

0 A 0 0 0 0

0 0 1
2 (B −C ) 0 0 0

0 0 0 1
2 (B −C ) 0 0

0 0 0 0 1
2 (B +C ) 0

0 0 0 0 0 1
2 (B +C )

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(A.27)

With A = ( 2
3δ−1), B = ( 10

3 δ+1), C =�
9+4δ(δ−1) and T approximately given by:

T ≈

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0
�

n −C 0
�

n

0 −i 0 i 0 i

0 1 0 1 0 1

0 0
�

n −C 0
�

n 0

i 0 −i 0 −i 0

1 0 1 0 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(A.28)

where n = (−1+2δ+C )2

4 . In other words, we found the doubly degenerate eigenvalues E1,E2,E3
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A.6. Solution of model Hamiltonian

and eigenstates (not normalized) of our simple model:

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

E1 =λSO

4
(B −C ) = λSO

4

(
1+ 10

3
δ−

√
9+4δ(δ−1)

)

E2 =λSO

2
A = λSO

2

(
2

3
δ−1

)

E3 =λSO

4
(B +C ) = λSO

4

(
1+ 10

3
δ+

√
9+4δ(δ−1)

) (A.29)

⎧⎪⎪⎨
⎪⎪⎩
ψ±

1 ≈(
�

n −C ) | x y,±〉+ | xz,∓〉± i | y z,∓〉
ψ±

2 ≈ | xz,±〉∓ i | y z,±〉
ψ±

3 ≈�n | x y,±〉+ | xz,∓〉± i | y z,∓〉
(A.30)

Since we are interested in the occupancy ratio, we implicitly write for the orbital hole oc-

cupation nxz = ny z = 1. In this way, we extract only nx y and for the ratio we simply have

R = nx y /(nxz +ny z ) = nx y /2.

A.6.4.1 Limit cases

If Δi−t =0, δ=0 and we find A=-1, B=1, C=3 and n=1:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

E1 =λSO

4
(B −C ) =−λSO

2

E2 =λSO

2
A =−λSO

2

E3 =λSO

4
(B +C ) =λSO

(A.31)

⎧⎪⎪⎨
⎪⎪⎩
ψ±

1 ≈(
�

n −C ) | x y,±〉+ | xz,∓〉± i | y z,∓〉=−2 | x y,±〉+ | xz,∓〉± i | y z,∓〉
ψ±

2 ≈ | xz,±〉∓ i | y z,±〉
ψ±

3 ≈�n | x y,±〉+ | xz,∓〉± i | y z,∓〉=| x y,±〉+ | xz,∓〉± i | y z,∓〉
(A.32)

With states ψ±
1 and ψ±

2 degenerate, and the holes in state ψ±
3 occupying evenly the | x y,±〉,

| xz,∓〉 and | y z,∓〉 orbitals, as reported in the literature [132]. In absence of distortions, the

t2g orbitals are expected to mix evenly into the ψ±
1,2 and ψ±

3 states, with a difference in energy,

introduced by the spin orbit coupling, of E3 −E1,2=1.5λSO .
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Appendix A. Additional information

If we assume λSO=0, we find:

⎧⎪⎪⎪⎪⎪⎪⎪⎨
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E1 =1

4
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3
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�
4Δi−t
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= Δi−t

3

E2 =1

2

(
2

3
Δi−t

)
= Δi−t

3

E3 =1

4

(
10

3
Δi−t +

�
4Δi−t

)
= 4

3
Δi−t

(A.33)

For the eigenstates:

⎧⎪⎪⎨
⎪⎪⎩
ψ±

1 = | y z,±〉
ψ±

2 = | xz,±〉
ψ±

3 = | x y,±〉
(A.34)

With states ψ±
1 and ψ±

2 degenerate, and the state ψ±
3 of purely | x y,±〉 character. In absence of

spin-orbit coupling, the t2g splitting is given by the crystal field: E3 −E1,2 =Δi−t .

A.6.5 Summary

In conclusion, the eigenstates in the t2g sub-space can, within this simple model, be ap-

proximately described by the three so-called Kramers doublets (ψ±
1 , ψ±

2 , and ψ±
3 ), that are

superpositions of d±
x y , d±

y z , and d±
xz [146, 147]:

ψ±
1 = (

�
nx y −C )d∓

x y +d∓
xz±i d±

y z ; ψ±
2 =d±

xz∓i d±
y z and ψ±

3 =�
nx y d±

x y +d∓
xz±i d∓

y z ˙

With hole occupancy:

nx y = [2δ−1+C ]2

4
(A.35)

where δ=Δi−t /λSO and C =�
9+4δ(δ−1) – see PRB 91, 155104 (2015). The Eigenenergies

(E3,E2 and E1) are split by:

E3 −E1 = λSOC

2
and E3 −E2 = λSO

4
(C +3+2δ). (A.36)

The orbital hole occupancies (nx y , nxz = ny z ) and the level splittings are given (within

this simple model) solely by the parameters λSO and Δi−t , in the limit δ → 0 (the case of

{Ba,Sr}2IrO4 [132, 150, 151]), then E2 = E1 are four time degenerate and E3 −E1,2 = 1.5λSO .
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B Other published results

In this section are reproduced additional published results to which the author contributed.
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5 Centre de Physique Théorique, Ecole Polytechnique, CNRS, Univ Paris-Saclay, Palaiseau 91128, France. 6 CNR-SPIN, Fisciano, Salerno I-84084, Italy.
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E
lectronic instabilities driving superconductivity, density
wave orders and Mott metal–insulator transitions produce
a characteristic energy scale below an onset temperature1–3.

Typically, this energy scale manifests itself as a gap in the
electronic band structure around the Fermi level. Correlated
electron systems have a tendency for avalanches, where one
instability triggers or facilitates another4. The challenge is then to
disentangle the driving and secondary phenomena. In many Mott
insulating systems, such as La2CuO4 and Ca2RuO4, long-range
magnetic order appears as a secondary effect. In such cases, the
energy scale associated with the Mott transition is much larger
than that of magnetism. The Mott physics of the half-filled single-
band 3d electron system La2CuO4 emerges due to a high ratio of
Coulomb interaction to band width. This simple scenario does
not apply to Ca2RuO4. There the orbital and spin degrees of
freedom of the 2/3-filled (with four electrons) t2g-manifold
implies that Hund’s coupling enters as an important energy
scale5. Moreover, recent studies of the antiferromagnetic ground
state of Ca2RuO4 suggest that spin–orbit interaction also plays a
significant role in shaping the magnetic moments6–8, as well as
the splitting of the t2g states9.

Compared to Sr2RuO4 (refs 10,11), which may realize a chiral
p-wave superconducting state, relatively little is known about the
electronic band structure of Ca2RuO4 (ref. 12). Angle integrated
photoemission spectroscopy has revealed the existence of
Ru states with binding energy 1.6 eV (ref. 13)—an energy
scale much larger than the Mott gap B0.4 eV estimated from
transport experiments14. Moreover, angle-resolved photoemission
spectroscopy (ARPES) experiments on Ca1.8Sr0.2RuO4—the critical
composition for the metal–insulator transition—have led to
contradicting interpretations15,16 favouring or disfavouring the
so-called orbital-selective scenario where a Mott gap opens only on
a subset of bands17,18. Extending this scenario to Ca2RuO4 would
imply orbital-dependent Mott gaps18. The electronic structure
should thus display two Mott energy scales (one of dxy and another
for the dxz, dyz states). A different explanation for the Mott state of
Ca2RuO4 is that the c-axis compression of the S-Pbca insulating

phase induces a crystal field stabilization of the dxy orbital, leading
to half-filled dxz, dyz bands and completely filled dxy states19,20. In
this case, only one Mott gap on the dxz, dyz bands will be present
with band insulating dxy states. The problem has defied a solution
due to a lack of experimental knowledge about the low-energy
electronic structure.
Here we present an ARPES study of the electronic structure in

the paramagnetic insulating state (at 150K) of Ca2RuO4. Three
different bands—labelled A, B and C band—are identified and
their orbital character is discussed through comparison to first-
principle Density Functional Theory (DFT) band structure
calculations. The observed band structure is incompatible with
a single insulating energy scale acting uniformly on all orbitals.
A phenomenological Green’s function incorporating an enhanced
crystal field and a spectral gap in the self-energy is used to
describe the observed band structure on a qualitative level.
Further insight is gained from Dynamical Mean-Field Theory
(DMFT) calculations including Hund’s coupling and Coulomb
interaction. The Hund’s coupling splits the dxy band allowing
quantitative estimate of this parameter. The Coulomb interaction
is mainly responsible for the insulating behaviour of the dxz, dyz
bands. The experimental results, together with our theoretical
analysis, clarify the origin of the Mott phase in the multi-orbital
system Ca2RuO4. Furthermore, they provide a natural explana-
tion as to why previous experiments have identified different
values for the energy gap.

Results
Crystal and electronic structure. Ca2RuO4 is a layered
perovskite, where the Mott transition coincides with a structural
transition at TsB350K, below which the c-axis lattice constant is
reduced. We study the paramagnetic insulating state (T¼ 150K)
of Ca2RuO4 with orthorhombic S-Pbca crystal structure
(a¼ 5.39Å, b¼ 5.59Å and c¼ 11.77 Å). It is worth noting that
due to this nonsymmorphic crystal structure, Ca2RuO4 could not
form a Mott insulating ground state at other fillings than 1/3
and 2/3 (ref. 21). In Fig. 1, the experimentally measured electronic
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Figure 1 | Oxygen band structure of Ca2RuO4. ARPES recorded with right-handed circularly polarized (Cþ ) 65 eV photons in the paramagnetic (150K)

insulating state of Ca2RuO4, compared to DFT band structure calculations. Incident direction of the light is indicated by the blue arrow. Dark colours

correspond to high intensities. (a) Constant energy map displaying the photoemission spectral weight at binding energy E¼ E� EF¼ � 5.2 eV. Solid and

dashed lines mark the in-plane projected orthorhombic and tetragonal zone boundaries, respectively. Gi with i¼ 1, 2, 3 label orthorhombic zone centres.

S and X label the zone corners and boundaries, respectively. (b) Spectra recorded along the zone boundary (blue line in a) Oxygen-dominated bands are

found between E¼ � 7 and � 3 eV, whereas the ruthenium bands are located above � 2.5 eV. (c) First-principle DFT band structure calculation. Within an

arbitrary shift, indicated by the dashed line, qualitative agreement with the experiment is found for the oxygen bands.
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structure is compared to a first-principle DFT calculation of the
bare non-interacting bands. We observe two sets of states:
near the Fermi level the electronic structure is comprised of
Ru-dominated bands, while oxygen bands are present only for
E¼E� EFo� 2.5 eV. Up to an overall energy shift, good
agreement between the calculated DFT and observed Ca2RuO4

oxygen band structure is found.

Non-dispersing ruthenium bands. The structure of the
ruthenium bands near the Fermi level is the main topic of this
paper, as these are the states influenced by Mott physics.
A compilation of ARPES spectra, recorded along high-symmetry

directions, is presented in Figs 2 and 3a. In consistency with
previous angle-integrated photoemission experiments13, a broad
and flat band is found around the binding energy E¼ � 1.7 eV.
However, we also observe spectral weight closer to the Fermi
level (EB� 0.8±0.2 eV), especially near the zone boundaries (see
Fig. 2a,d). These two flat ruthenium bands (labelled A and B) are
revealed as a double peak structure in the energy distribution
curves—Fig. 2c,f. Between the A band and the Fermi level,
the spectral weight is suppressed. In fact, complete suppression
of spectral weight is found for � 0.2 eVoEo0 eV (see Fig. 2c).
This energy scale is in reasonable agreement with the activation
energy B0.4 eV extracted from resistivity experiments14.
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Figure 2 | Ruthenium band structure. (a,b) Photoemission spectra recorded along the high-symmetry direction G1� S for incident circularly polarized

light with photon energies hn as indicated. Dark colours correspond to high intensities. Blue points in a show the momentum distribution curve at the

binding energy indicated by the horizontal dashed line. The double peak structure is attributed to the C band. (c) Energy distribution curves (EDCs) at the

S point, normalized at binding energy E¼ E� EF¼ � 1.8 eV. (d,e) Linear light polarization dependence along the S�G2 direction at hn¼ 65 eV. (f) EDCs at

the momentum indicated by the vertical dashed lines. In both (c,f), the A and B bands are indicated by red and grey shading, respectively.
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Fast dispersing ruthenium bands. In addition to the flat A
and B bands, a fast dispersing circular-shaped band is observed
(Fig. 3b) around the G-point (zone centre) in the interval
� 2.5 eVoEo� 2 eV—see Figs 2a,b and 3a. A weaker replica of
this band is furthermore found around G2 (Fig. 3a,b). The band
velocity, estimated from momentum distribution curves (Fig. 2a),
yields v¼ (2.6±0.4) eVÅ. As this band, which we label C,
disperses away from the zone centre, it merges with the most
intense flat B band. From the data, it is difficult to conclude with
certainty whether the C band disperses between the A and B
bands. As this feature is weak in the spectra recorded with
78 eV photons (Fig. 2b), it makes sense to label A and C as
distinct bands.

Orbital band character. Next we discuss the orbital character
of the observed bands. As a first step, comparison to the
band structure calculations is made. Although details can vary
depending on exact methodology, all band structure calculations
of Ca2RuO4 find a single fast dispersing branch22–25. Our
DFT calculation reveals that the fast dispersing band has
predominantly dxy character (Fig. 4a). We thus conclude that
the in-plane extended dxy orbital is responsible for the C band.
Within the DFT calculation, the dxz and dyz bare bands are
relatively flat throughout the entire zone. This is also the
characteristic of the observed B band. It is thus natural to assign a
dominant dxz, dyz contribution to this band. The orbital character
of the A band is not obviously derived from comparisons to DFT

calculations. In principle, photoemission matrix element effects
carry information about orbital symmetries. As shown in Fig. 2,
the A band displays strong matrix element effects as a function of
photon energy and photon polarization. However, probing with
65 eV light, the spectral weight of the A band is not displaying
any regularity within the (kx, ky) plane—see Supplementary Fig. 1.
The contrast between linear horizontal and vertical light therefore
vary strongly with momentum. This fact precludes any simple
conclusions based on matrix element effects.

Discussion
Having explored the orbital character of the electronic states, we
discuss the band structure in a more general context. Bare band
structure calculations, not including Coulomb interaction, find
that states at the Fermi level have dxy and dxz/dyz character
(see Fig. 4a). Including a uniform Coulomb interaction U results
in a single Mott gap acting equally on all orbitals. Generally,
this produces one single flat band inconsistent with the
observation of two distinct flat bands (A and B). Adding in a
phenomenological manner orbital-dependent Mott gaps to the
self-energy produces two sets of flat bands. For example, one can
introduce Dxy¼ 0.2 eV and Dxz,yz¼ 1.5 eV to mimic the A and B
bands. However, such Mott gaps are not shifting the bottom of
the fast V-shaped dispersion to the observed position. Better
agreement with the observed band structure is found, when a
Mott gap Dxz,yz¼ 1.55 eV is added to the self-energy of the dxz, dyz
states and a crystal field-induced downward shift DCF¼ 0.6 eV of
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the dxy states is introduced. As shown in Fig. 3c, this reproduces
two flat bands and simultaneously positions correctly the fast
dispersing C band. From the fact that the bottom of the C band is
observed well below the B band, we conclude that an—interaction
enhanced—crystal field splitting is shifting the dxy band below the
Fermi level.
A similar structure emerges from DMFT calculations26

including U¼ 2.3 eV and Hund’s coupling J¼ 0.4 eV. The
obtained spectral function (Fig. 3d) is generally in good
agreement with the experimental observations (Fig. 3a). Both
the C and B bands are reproduced with the previously assigned
dxy and dxz, dyz orbital character (Fig. 4b,c). The A band is also
present in the DMFT calculation around � 0.5 eVoEo0 eV.
Even though it is not smoothly connected with the C band,
it has in fact dxy character (Fig. 4b). By analysing the multiplet
eigenstates (Fig. 4d) and electronic transitions in the atomic limit
of an isolated t2g shell, we can provide a simple qualitative picture
of both observations: (i) the energy splitting between the A and C
bands having dxy orbital character, which we find to be of order
3J, and (ii) the dxz and dyz orbital-driven B band splitting across
the Fermi level, found to be of order Uþ J. Within this
framework, the atomic ground state has a fully occupied dxy
orbital, while the dxz, dyz orbitals are occupied by two electrons
with parallel spins (S¼ 1) and thus effectively half-filled. The
Mott gap developing in the dxz, dyz doublet is thus Uþ J in the
atomic limit5, corresponding to the electronic transition where
one electron is either removed from this doublet or added to this
doublet (leading to a double occupancy). In contrast, there are
two possible atomic configuration that can be reached when
removing one electron out of the fully filled dxy orbital (Fig. 4d).
One of these final states (high spin) has S¼ 3/2, L¼ 0
(corresponding pictorially to one electron in each orbital all
with parallel spins), while the other (low spin) has S¼ 1/2, L¼ 2
(corresponding to the case when the remaining electron in the dxy
orbital has a spin opposite to those in dxz, dyz). The energy
difference between these two configurations is 3J, thus accounting
for the observed ARPES splitting between the two dxy removal
peaks. Furthermore, this analysis allows to assess, from the
experimental value of this splitting B1.2 eV, that the effective
Hund’s coupling for the t2g shell is of the order of 0.4 eV. This is
consistent with previous theoretical work in ruthenates27,28 and
provides a direct quantitative experimental estimate of this
parameter. Because the high spin state is energetically favourable
with respect to the low spin state (by B3J), it can be assigned to
the A band near the Fermi level, while the low spin state can be

assigned to the C band (See ref. 5 for a detailed description of the
atomic multiplets of the t2g Kanamori Hamiltonian). The
Hund’s coupling has thus profound impact on the electronic
structure of the paramagnetic insulating state of Ca2RuO4.
The fact that Hund’s coupling mainly influence the dxy
electronic states highlights orbital differentiation as a key
characteristic of the Mott transition. Moreover, our findings
emphasize the importance of the crystal field stabilization of
the dxy orbital19,20. To further understand the interplay between
U and J, detailed experiments through the metal–insulator
transition of Ca2� xSrxRuO4 would be of great interest.

Methods
Experimental. High-quality single crystals of Ca2RuO4 were grown by the
flux-feeding floating-zone technique29,30. ARPES experiments were carried out at
the SIS, I05 and MAESTRO beamlines at the Swiss Light Source, the Diamond
Light Source and the Advanced Light Source. Both horizontal and vertical electron
analyser geometry were used. Samples were cleaved in situ using the top-post
cleaving method. All spectra were recorded in the paramagnetic insulating phase
(T¼ 150K), resulting in an overall energy resolution of approximately 50meV.
To avoid charging effects, care was taken to ensure electronic grounding of the
sample. Using silver epoxy (EPO-TEK E4110) cured just below T¼ 350K (inside
the S-Pbca phase—space group 61) for 12 h, no detectable charging was observed
when varying the photon flux.

DFT band structure calculations. We computed electronic structures using the
projector augmented wave method31,32 as implemented in the VASP33,34 package
within the generalized gradient approximation35. Experimental lattice constants
(a¼ 5.39Å, b¼ 5.59Å and c¼ 11.77 Å) and a 12� 10� 4 Monkhorst-Pack k-point
mesh was used in the computations with a cutoff energy of 400 eV. The spin–orbit
coupling effects are included self-consistently. In order to model Mott physics, we
constructed a first-principles tight-binding model Hamiltonian, where the Bloch
matrix elements were calculated by projecting onto the Wannier orbitals36,37,
which used the VASP2WANNIER90 interface38. We used Ru t2g orbitals to
construct Wannier functions without using the maximizing localization procedure.
The resulting 24-band spin–orbit coupled model with Bloch Hamiltonian matrix
Ĥ0

k reproduces well the first-principle electronic structure near the Fermi energy.
To model the spectral function, we added a gap with a leading divergent 1/o term
to the self-energy �̂ðoÞ ¼ P̂xz;yzD

2
xz;yz=oþO o0ð Þ. To the Hamiltonian, we added a

shift Ĥk ¼ Ĥ0
k � P̂xyDCF. P̂xy and P̂xz;yz are projectors on the dxy and dxz, dyz

orbitals, respectively, while Dxz,yz is the weight of the poles and DCF mimics an

enhanced crystal field. From the imaginary part of the Green’s function Ĝðk;oÞ ¼
o� Ĥk � �̂ðoÞ� �� 1

with the two adjustable parameters DCF and Dxz,yz, we
obtained the spectral function A(k, o) by taking the trace over all orbital and spin
degrees of freedom.

DFTþDMFT band structure calculations. We calculate the electronic structure
within DFTþDMFT using the full potential implementation39 and the TRIQS
library40,41. In the DFT part of the computation, the Wien2k package42 was used.
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Figure 4 | Calculated orbital band character. (a) DFT calculation of the bare band structure. dxy and dxz, dyz characters are indicated by blue and

red colours, respectively. (b,c) Are the spectral function calculated within the DMFT approach and projected on the dxy and dxz, dyz orbitals, respectively.

Dark colours correspond to high intensities. The indicated energy splittings stem from a t2g multiplet analysis in the atomic limit.

(d) Ground-state multiplet defined by the crystal field and Hund’s coupling J. (e) dxy electron removal configurations split by 3J (see main text for

explanation). (f) Representation of the twofold degenerate dxz, dyz electron addition and removal states, split by Uþ J.
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The local-density approximation (LDA) is used for the exchange-correlation
functional. For projectors on the correlated t2g orbital in DFTþDMFT, Wannier-
like t2g orbitals are constructed out of Kohn–Sham bands within the energy
window (� 2, 1) eV with respect to the Fermi energy. We use the full rotationally
invariant Kanamori interaction in order to ensure a correct description of atomic
multiplets5. To solve the DMFT quantum impurity problem, we used the strong-
coupling continuous-time Monte Carlo impurity solver43 as implemented in the
TRIQS library44. In the U and J parameters of the Kanamori interaction, we used
U¼ 2.3 eV and J¼ 0.4 eV, which successfully explains the correlated phenomena of
other ruthenate such as Sr2RuO4 and ARuO3 (A¼Ca, Sr) within the DFTþDMFT
framework27,28.

Data availability. All relevant data are available from the authors.
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A resonant inelastic x-ray scattering (RIXS) study of overdamped spin-excitations in slightly
underdoped La2−xSrxCuO4 (LSCO) with x = 0.12 and 0.145 is presented. Three high-symmetry
directions have been investigated: (1) the anti-nodal (0, 0) → (1/2, 0), (2) the nodal (0, 0) → (1/4, 1/4)
and (3) the zone boundary direction (1/2, 0) → (1/4, 1/4) connecting these two. The overdamped
excitations exhibit strong dispersions along (1) and (3), whereas a much more modest dispersion is
found along (2). This is in strong contrast to the un-doped compound La2CuO4 (LCO) for which
the strongest dispersions are found along (1) and (2). The t − t′ − t′′ − U Hubbard model used to
explain the excitation spectrum of LCO predicts – for constant U/t – that the dispersion along (3)
scales with (t′/t)2. However, the diagonal hopping t′ extracted on LSCO using single-band models
is low (t′/t ∼ −0.16) and decreasing with doping. We therefore invoked a two-orbital (dx2−y2 and
dz2) model which implies that t′ is enhanced and that the Coulomb interaction U is renormalized.
Both these effects act to enhance the zone boundary dispersion within the Hubbard model. We thus
conclude that hybridization of dx2−y2 and dz2 states has a significant impact on the zone boundary
dispersion in LSCO.

I. INTRODUCTION

Considerable research is being undertaken in the
quest to reach consensus on the mechanism of high-
temperature superconductivity1 and the associated pseu-
dogap phase2 in copper-oxide materials (cuprates). The
energy scales governing the physical properties of these
layered materials therefore remain of great interest. It
is known that these materials are characterized by a
strong super-exchange interaction J1 = 4t2/U where t
is the nearest-neighbor hopping integral and U is the
Coulomb interaction. To first order, this energy scale
sets the band-width of the spin-excitation spectrum.
Resonant inelastic x-ray scattering (RIXS) experiments3

have demonstrated that this band-width stays roughly
unchanged across the entire phase diagram4,5 of hole
doped cuprates. It has also been demonstrated that the
cuprates belong to a regime (of t and U) where the sec-
ond order exchange-interaction J2 = 4t4/U3 contributes
to a spin-excitation dispersion along the antiferromag-
netic zone boundary (AFZB)6–9. Moreover, it is known
from band structure calculations and experiments that
the next nearest-neighbor (diagonal) hopping integral
t′ constitutes a non-negligible fraction of t10. Empiri-
cally11, the superconducting transition scales with the
ratio t′/t whereas Hubbard type models predict the op-
posite trend12,13. As a resolution, a two-orbital model
– in which hybridization of dz2 and dx2−y2 states sup-
presses Tc and enhances t′ – has been put forward14.

Here, we address the question as to how t′ influences

the spin-excitation spectrum at, and in vicinity to, the
antiferromagnetic zone boundary. We have therefore
studied – using the RIXS technique – slightly underdoped
compounds of La2−xSrxCuO4 (LSCO) with x = 0.12
and 0.145. Even though the system is not antiferromag-
netically ordered at these dopings, we quantify the zone
boundary dispersion ω(q) by EZB = ω(1/2, 0)−ω(1/4, 1/4).
In doped LSCO a strongly enhanced zone boundary dis-
persion is observed. As will also be shown, within the
t− t′− t′′−U Hubbard model, one generally expects that
the zone boundary dispersion scales with t′/t with a pref-
actor that depends on U/t. The Fermi surface topology
of LSCO, obtained from photoemission spectroscopy and
analyzed with a single-band tight binding model, sug-
gests that t′ decreases with increasing doping10,15. The
Hubbard model is thus within a single-band picture not
consistent with the experiment. However, using a two-
orbital model, in which hybridization between dz2 and
dx2−y2 states enhances t′14 and yields a lower effective
Coulomb interaction U . Combined this provides ingre-
dients to a satisfactory description of the zone bound-
ary dispersion. We thus conclude that the two-orbital
model14 is necessary to understand the spin-excitation
spectrum of doped LSCO.

II. METHOD

The RIXS experiment was carried out at the ADvanced
RESonant Spectroscopies (ADRESS) beamline17,18 at
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FIG. 1. (Color online) RIXS spectra versus momentum recorded on La2−xSrxCuO4 with x = 0.12 under grazing exit conditions
and displayed in false color scale for different light polarizations. (a,d) RIXS intensity maps along the anti-nodal direction
for linear-horizontal and linear-vertical incident light polarizations. (c,f) similar maps but along the nodal direction. (b,e)
azimuthal RIXS maps connecting nodal and anti-nodal directions as shown schematically in (g). Consistent with what has
previously been shown the spin-excitation matrix element is strongest for the LH polarization. By contrast, the charge-density-
wave reflection at QCDW = (±δ1, δ2) with δ1 ∼ 0.23 and δ2 ∼ 0.01 is about three times more intense with LV polarization.
(g) - (h) displays the scattering geometry (side and top view respectively) where θi indicates the incident angle and φ is the
azimuthal angle. Varying these angles allows to scan the in-plane momentum Q//. In (g) scan directions, with respect to the
antiferromagnetic zone boundary are shown.

the Swiss Light Source (SLS) with the geometry shown
in Fig. 1(h). The newly installed CARVING RIXS ma-
nipulator allowed to probe the full kinematically accessi-
ble reciprocal space q = (h, k) with a scattering angle of
130◦. Incident photons with an energy of 933 eV (at the
Cu L3-edge resonance) gave an instrumental energy and
momentum resolution of 132 meV and 0.01 Å−1 respec-
tively. Both the linear horizontal (LH) and linear verti-
cal (LV) light polarizations were applied to probe high
quality single crystals of La2−xSrxCuO4 with x = 0.12
and 0.145 (Tc = 27 and 35 K respectively). These crys-
tals were grown by the traveling floating zone method19

and previously characterized in neutron20–22 and μSR23

experiments. Ex-situ pre-alignment of the samples was
carried out using a Laue diffractometer. The samples
were cleaved in-situ using a standard top-post technique
and all data were recorded at T = 20 K. Although be-
ing in the low temperature orthorhombic (LTO) crystal
structure, tetragonal notation a∼=b ≈ 3.78 Å(c ≈ 13.2 Å)
is adopted to describe the in-plane momentum (h, k) in
reciprocal lattice units 2π/a.

III. RESULTS

Fig. 1(a-c) displays grazing exit RIXS spectra of
La1.88Sr0.12CuO4 recorded with incident LH light polar-

ization along three trajectories as indicated in (g). Data
along the same directions but measured with incident LV
polarization are shown in (d-f). Besides the strong elastic
scattering found at the specular condition [Q = (0, 0)],
an elastic charge-density-wave (CDW) reflection is found
– consistent with existing literature24,25 – along the (h, 0)
direction at QCDW = (δ1, δ2) with δ1 = 0.23(3) and
δ2 � 0.01. The charge order reflection serves as a refer-
ence point, demonstrating precise alignment of the crys-
tal.

For grazing exit geometry, it has previously been
demonstrated that spin-excitations are enhanced in the
LH-channel4. In Fig. 2(a,b), selected raw RIXS spectra
recorded with LH polarization are shown for momenta
near the (1/2, 0) and (1/4, 1/4) points. The low-energy part
of the spectrum consists of three components: a weak
elastic contribution, a smoothly varying background and
a damped spin-excitation. It is immediately clear that
the excitations near (1/4, 1/4) are significantly softened
compared to those observed around the (1/2, 0)-point (see
Fig. 2(a,b)).

For a more quantitative analysis of the magnon dis-
persion, we modeled the elastic line with a Gaussian for
which the standard deviation σ = 56 meV was set by the
instrumental energy resolution. A second order polyno-
mial function is used to mimic the background. Finally,
to analyze the spin-excitations we adopted the response
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FIG. 2. (Color online) RIXS spectra for anti-nodal (a) and nodal (b) directions with the indicated in-plane momentum. The
fit (solid green curve) is composed of three components: elastic line (purple), spin-excitation (orange) modeled by an anti-
symmetric Lorentzian function and a quadratic background (grey) – see text for more detailed information. Vertical bars
indicate the obtained poles of the Lorentzian function. (c)-(e) dispersion of the magnetic excitations in La2CuO4 observed by
neutron scattering (open blue squares – Ref. 7) and RIXS (filled blue circles – Ref. 16) and La2−xSrxCuO4 with x = 0.12 (red
circles) measured by RIXS (this work). Green circles in (c) are extracted from La2−xSrxCuO4 with x = 0.145 data. Within
the antiferromagnetic zone scheme (indicated by the dashed line in the insert), red and blue cuts c and e are the equivalent
anti-nodal and nodal directions. Solid lines in (c)-(e) are fits using a Heisenberg model, see text for further explanation. In
(d) thin dashed line is the correspective azimuthal scan, for La2CuO4, extracted from the above mentioned model. (f)-(g)
schematic illustration of the spin-excitation dispersion in La2−xSrxCuO4 with x = 0 and x = 0.12, as indicated. In the doped
compound, the spin-excitation dispersion is strongly renormalized along the diagonal (nodal, Γ-M) direction. Blue and red
patterns indicate the experimentally measured high-symmetry directions.

function of a damped harmonic oscillator4,26,27:

χ′′(ω) = χ′′
0

γω

(ω2 − ω2
0)

2
+ ω2γ2

=
χ′′
0

2ω1

[
γ/2

(ω − ω1)2 + (γ/2)2
− γ/2

(ω + ω1)2 + (γ/2)2

]
,

where the damping coefficient γ/2 =
√

ω2
0 − ω2

1 . The
RIXS intensities are modeled by [nB(ω) + 1] · χ′′(ω),
where nB(ω) = [exp(�ω/kBT )− 1]

−1
is the Bose factor.

As shown in Fig. 2(a-b), fitting to this simple model pro-
vides a good description of the observed spectra. In this
fashion, we extracted the spin-excitation pole dispersion
ω1(q) (Fig. 2(c-e)) along the three trajectories shown in
the insert. To avoid the influence of CDW ordering on
the spin-excitation dispersion28, we analyzed around the
charge ordering vector spectra of LSCO x = 0.145 where
charge order is absent.

The extracted spin-excitation dispersion of LSCO x =
0.12 and 0.145 is to be compared with the magnon dis-
persion of the parent compound La2CuO4

6,7,16,29. Along

the anti-nodal (1/2, 0)-direction comparable dispersions
are found. This is consistent with the weak doping de-
pendence reported on LSCO5 and the YBa2Cu3O7−δ

(YBCO) system4. For the nodal (1/4, 1/4)-direction, the
dispersion of the doped compound is, however, strongly
softened compared to La2CuO4. Whereas this effect has
been reported for Bi-based30,31 and overdoped LSCO26,
we demonstrate directly by an azimuthal scan how ex-
actly this softening appears. Notice that the azimuthal
dependence is closely related (but not exactly identical)
to the scan along the antiferromagnetic zone boundary.

IV. DISCUSSION

A recent systematic study32 of un-doped cuprate com-
pounds concluded that the zone boundary dispersion
scales with the crystal field splitting Ez2 of the dx2−y2

and dz2 states. Exact numerical determination of Ez2

is still a matter of debate14,33. For a tetragonal system,
Ez2 generally depends on the ratio between copper to
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apical and planar oxygen distances34. The crystal field
splitting Ez2 can in principle be accessed by measuring
the dd-excitations. For LCO, interpretations of the
dd-excitations have consistently placed the dz2 level
above (i.e. closer to the Fermi level) both the dxz,yz
and dxy states32,34. This is also consistent with density
functional theory (DFT)14 and ab initio33 calculations
of the electronic band structure that find the dz2 -band
above the t2g states. In doped LSCO x = 0.12, the
spectral weight of the dd-excitations is redistributed
and the ”center-of-mass” is shifted to lower energies
(see Fig. 3). The dxy states are expected to be the
least sensitive to crystal field changes34. Therefore, it is
conceivable that the dxz,yz and dz2 states are shifting
to lower energies. Again from DFT calculations (see
Appendix C), we expect the dz2 states to appear above
those of dxz,yz. Our experimental results thus (Fig. 3)
suggest that the crystal field splitting Ez2 in doped
LSCO x = 0.12 is smaller compared to LCO. Yet, the
zone boundary dispersion is larger in LSCO x = 0.12
(Fig. 2). The present experiment is therefore not lending
support for a correlation between the zone boundary
dispersion and the crystal field splitting Ez2 .

The spin-excitation dispersion of doped LSCO is ana-
lyzed using an effective Heisenberg Hamiltonian derived
from a t− t′− t′′−U Hubbard model7–9. This discussion
has three steps. First, an approximative analytical
expression for the zone boundary dispersion is derived.
Next, we compare to the experimentally obtained results
using the known single-band tight-binding values of t, t′
and t′′. It is shown that this approach is leading to
unrealistically low values of the Coulomb interaction U .
The dz2 band is therefore included. This two-orbital
scenario allows to describe the zone boundary dispersion
with realistic input parameters, as presented in the last
part of the discussion.

The simplest version of the Hubbard model contains
only three parameters: the Coulomb interaction U , the
band width (4t) and a renormalization factor Z – known
to have little momentum dependence. To lowest order in
J1 = 4t2/U , no magnon dispersion is expected along the
zone boundary. Therefore, to explain the zone bound-
ary dispersion – first observed on La2CuO4 – higher or-
der terms J2 = 4t4/U3 were included6,7 to the model.
Later, it has been pointed out that higher order hop-
ping terms t′ and t′′ can also contribute significantly8,9.
Generally, the effective Heisenberg model yields a disper-
sion8,9 ω(q) = Z

√
A(q)2 −B(q)2 where A(q) and B(q)

– given in the Appendix A – are depending on U, t, t′
and t′′. The zone boundary dispersion can be quantified
by EZB = ω(1/2, 0) − ω(1/4, 1/4). Using the single-band
Hubbard model with realistic parameters8,10,11 (U/t ∼ 8,
|t′| ≤ t/2 and t′′ = −t′/2) for hole doped cuprates, we

FIG. 3. (Color online) RIXS spectra showing the dd-
excitations for La2CuO4 (a) (adopted from Ref. 32) and
La1.88Sr0.12CuO4 (b) (this work). The grey shaded areas in-
dicate schematically different orbital contributions. Vertical
dashed lines display the onset of dd-excitations.

find (see Appendix A):

EZB

12ZJ2
≈ 1 +

1

12

[
112−

(
U

t

)2
](

t′

t

)2

. (1)

A key prediction is thus that EZB scales as (t′/t)2 with
a pre-factor that depends on (U/t)2.

This effective Heisenberg model is in principle not
applicable to doped and hence antiferromagnetically
disordered cuprates. For an exact description of the
data, more sophisticated numerical methods has been
developed35. However, in the absence of analytical
models, the Heisenberg model serves as a useful ef-
fective parametrization tool to describe the damped
spin-excitations. Within a single-band tight-binding
model, angle resolved photoemission spectroscopy
(ARPES) experiments have found that t′ decreases
slightly with increasing doping10,15. The stronger zone
boundary dispersion can thus not be attributed to an
increase of t′. Parameterizing the doping dependent
zone boundary dispersion would thus imply a strong
renormalization of U with increasing doping. For
example, if we set 4t = 1720 meV (obtained from LDA
and ARPES11,36,37) and t′/t = −0.16 and t′′ = −t′/2,
a fit yields U/t ∼ 4.7 eV and Z ∼ 0.8. Although these
parameters provide a satisfactory description of the
dispersion, the values of U and Z are not physically
meaningful.
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FIG. 4. (Color online) Experimentally obtained zone bound-
ary dispersion EZB , normalized to 12ZJ2 – the expected the-
oretical value for t′ = t′′ = 0. To obtain J2 the spin-excitation
dispersion is fitted with U/t and t′/t as open parameters while
keeping t = 0.43 eV, t′′ = −t′/2 and Z = 1.219 fixed. Data
points are obtained from fitting data on LSCO presented here
(red circle) along with already published spin-excitation dis-
persions on LCO6,7 (blue square) and Bi220132 (green tri-
angle). Error bars stem from the standard deviations of the
fitting parameters U/t and t′/t. The solid line is the predicted
dependence of the t−t′−t′′−U Hubbard model with U/t = 8.

This failure combined with the observation of a re-
duced level splitting between the dz2 and dx2−y2 states
(Fig. 3) motivates a two-band model. It has been
demonstrated that dz2 states contribute to effectively in-
crease the t′ hopping parameter14. Furthermore, with
hybridization of dz2 and dx2−y2 states, a renormalized
Coulomb interaction U is expected. Keeping Z = 1.219
as in La2CuO4

8 and t′′ = −t′/2, a satisfactory descrip-
tion (solid line in Fig. 2) of the spin-excitation dispersion
is obtained for t′/t = −0.38 and U/t = 6.5. Notice that a
similar ratio of t′/t has previously been inferred from the
rounded Fermi surface topology of Tl2Ba2CuO6+x,

38,39 a
material for which the dz2 states are expected to be much
less important40. It could thus suggest that t′/t ≈ −0.4
is common to single layer cuprates but masked in LSCO
due to the repulsion between the dx2−y2 and dz2 bands
that pushes the van Hove singularity close to the Fermi
level and effectively reshapes the Fermi surface topol-
ogy14. The more realistic values of U and Z, suggest
that – for LSCO – the two-orbital character of this sys-
tem is an important ingredient to accurately describe the
spin-excitation spectrum.

Once having extracted U/t and t′/t by fitting
the experimental spin-excitation spectrum, we plot
– in Fig. 4 – the normalized zone boundary dis-

persion EZB/(12ZJ2) versus 1
12 (t

′/t)2
[
112− (U/t)

2
]
.

The same parameters were extracted (see Table I
in the Appendix) from published RIXS data on
La2CuO4 and Bi2Sr0.99La1.1CuO6+δ

32 and plotted in
Fig. 4. All three compounds follow approximately
the predicted correlation between EZB/(12ZJ2) and
1
12 (t

′/t)2
[
112− (U/t)

2
]
. This suggests that the zone

boundary dispersion is controlled by the diagonal hop-
ing t′ and the coulomb interaction U . It would be inter-
esting to extend this parametrization to include higher
doping concentrations of LSCO. However, from existing
RIXS data on overdoped single crystals of LSCO it is not
possible to perform the analysis presented here26,41. For
LSCO x = 0.23, for example, the zone boundary disper-
sion has not been measured26.

Finally, we notice that recent RIXS experiments on
LSCO thin films using SrLaAlO4 (SLAO) substrates
found a much less pronounced softening of the spin-
excitation dispersion around the (1/4, 1/4)-point42. A pos-
sible explanation is that LSCO films on SLAO have a
larger c-axis lattice parameter and hence also a larger
copper to apical-oxygen distance than what is found in
bulk crystals43,44. As a consequence, the dz2 states are
less relevant and a larger value of U is expected. This
in turn would lead to a less pronounced zone boundary
dispersion.

V. CONCLUSIONS

In summary, a comprehensive RIXS study of under-
doped LSCO x = 0.12 and 0.145 were presented. The
spin-excitation dispersion was studied along three high-
symmetry directions and a strong zone boundary dis-
persion is reported. The spin-excitation dispersion was
parametrized and discussed using a Heisenberg Hamil-
tonian derived from a Hubbard model including higher
order hopping integrals. Within this model, the zone
boundary dispersion scales with next nearest-neighbor
hopping integral t′2. We argue that hybridization be-
tween dz2 and dx2−y2 , which is especially strong in LSCO,
leads to an enhanced t′ and a renormalization of the
Coulomb interaction U . Both these effects – consistent
with the observations – lead to a stronger zone boundary
dispersion within the t− t′ − t′′ − U Hubbard model.
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37 J. Chang, M. Månsson, S. Pailhès, T. Claesson, O. J. Lip-
scombe, S. M. Hayden, L. Patthey, O. Tjernberg, and J.
Mesot, Nature Communications 4, 2559 (2013).
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VII. APPENDIX A

Here we describe the spin-excitation dispersion of the
Heisenberg Hamiltonian derived from the t − t′ − t′′ −
U Hubbard model in two steps. We first consider the
simplest model where t′ = t′′ = 0 before including higher
order hopping terms.

Generally the dispersion takes the form:

ω(q) = Z
√

A(q)2 −B(q)2

where Z is a renormalization factor and q = (h, k). When
the Hubbard model contains only the nearest-neighbor
hopping integral t, we expand A(q) and B(q) to second
order in t:

A(q) = A0 +A1 + . . . & B(q) = B0 +B1 + . . . (2)

To express Ai and Bi, we define: J1 = 4t2

U and J2 = 4t4

U3 .
Moreover we set:

Pj(h, k) = cos jha+ cos jka (3)

Xj(h, k) = cos jha · cos jka (4)

X3a(h, k) = cos 3ha · cos ka+ cosha · cos 3ka, (5)

where j = 1, 2, 3, or 4. With this notation we have:

A0 = 2J1 & B0 = −J1P1 (6)

and

A1 = J2 (−26− 8X1 + P2) & B1 = 16J2P1 (7)

When the zone boundary dispersion is defined by
EZB = ω(1/2, 0) − ω(1/4, 1/4), one finds EZB = 12ZJ2.
Therefore, a zone boundary dispersion is only found when
second order terms J2 are included. Notice also that
since P1(1/2, 0) = P1(1/4, 1/4) = 0, the B-terms are not
contributing to the zone boundary dispersion.

Now let us include second-nearest- t′ and third-nearest-
neighbor t′′ hopping integrals. This involves several ad-
ditional contributions to A(q) and B(q):

A(q) = A0 +A1 +A′
0 +A′′

0 +A′
c +A′

1 +A′′
c +A′′

1 (8)

B(q) = B0 +B1 +B′
c. (9)

To express these new terms, we introduce the following

notation J ′
1 = 4t′2

U , J ′
2 = 4t′4

U3 , J
′′
1 = 4t′′2

U and J ′′
2 = 4t′′4

U3 .
Geometrically the following contributions correspond to
different hoping path combinations including the cyclic
ones.

A′
0 = 2J ′

1(X1 − 1) & A′′
0 = J ′′

1 (P2 − 2) (10)

A′
c = −8J1

U2

(−t′ 2 + 4t′t′′ − 2 t′′ 2
)
(P2 − 2) (11)

143



8

0 0.2 0.4 0.6 0.8 1 1.2
1

1.2

1.4

1.6

1.8

2

2.2

U/t=6

U/t=7

U/t=8

U/t=9

U/t=10

FIG. 5. (Color online) Zone boundary dispersion EZB nor-
malized to 12ZJ2 and plotted versus 1

12
(112− J1/J2) (t

′/t)2.
Data points are exact numerical solutions of the Hubbard
model for values several of U/t (as indicated) and t′′ = −t′/2.
The solid line is the approximated analytical solution for
U/t = 8.

B′
c = −4J1

U2

[(
6 t′ 2 − 4 t′t′′

)
(X1 − 1) + 3 t′′ 2(P2 − 2)

]
P1

(12)

A′
1 = 2J ′

2(X2 + 4X1 − 2P2 − 1) (13)

A′′
c =

2J ′
1J

′′
1

U
(−3X2 + 2X1 + 5P2 −X3a − 7) (14)

A′′
1 = J ′′

2 (P4 − 8X2 + 4P2 − 2) (15)

As B′
c scales with P1, it is again found that B(q) does

not contribute to the zone boundary dispersion. In Fig. 5,
we show the numerical evaluation of EZB for realistic

La2−xSrxCuO4 U (eV) U/t t′/t t′′/t Z Ref.

x = 0 2.2 7.4 0 0 1.18 6 and 7

x = 0 3.6 8.3 -0.313 0.167 1.219 8

x = 0 3.9 9.1 -0.308 0.154 1.219 �

x = 0.12 2.8 6.5 -0.389 0.195 1.219 �

Bi2201

x = 0 3.4 8.0 -0.352 0.176 1.219 �

TABLE I. Parametrization – using the Hubbard model – of
the spin-excitation dispersion of LCO6,7, LSCO x = 0.12 (this
work) and Bi220132. (�) Values obtained from the fit using
the same procedure as described in this Appendix, which thus
can be directly compared.
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FIG. 6. Spin excitation spectrum of Bi2201 from Ref. 32. The
solid line is a fit to the t− t′ − t′′ − U Hubbard model.

values of U/t, t′/t and with t′′ = −t′/2. When neglecting
terms scaling with J ′

2, J ′′
2 and J ′

1J
′′
1 , only Eq. 10 and

11 contribute. Using P2(1/2, 0) = 2, P2(1/4, 1/4) = −2,
X1(1/2, 0) = −1 and X1(1/4, 1/4) = 0, we find:

EZB

12ZJ2
≈ 1 +

1

12

(
112− J1

J2

)(
t′

t

)2

. (16)

This approximation is valid as long as:

U

t
≥

√√√√28 + 112
(
t′
t

)2
2 + 3

(
t′
t

)2 , and

∣∣∣∣ t′t
∣∣∣∣ � 0.686. (17)

As shown in Fig. 5, this analytical expression is a good
approximation to the full numerical calculation. Thus it
is justified to neglect terms scaling with J ′

2, J
′′
2 and J ′

1J
′′
1

for a realistic cuprate values of U/t and t′/t.

VIII. APPENDIX B

Now, having derived the spin-excitation dispersion
within the t − t′ − t′′ − U Hubbard model, it is possi-
ble to fit the experimentally observed dispersion. A final
comment goes to the prefactor Z. It is found that, in-
cluding higher order hopping integrals t′ and t′′, Z has a
slowly varying momentum dependence. To simplify our
analysis we used the mean value obtained8 in the first
Brillouin zone for the half filled compound La2CuO4. We
thus have Z = 1.219 constant. From ARPES36,37 exper-
iments and LDA calculations11 we have that t = 0.43 eV
and t′′ = −t′/2. Our fitting parameters are thus U and
t′. In this fashion we obtain a good description of the
spin-excitation dispersion of LCO and LSCO x = 0.12
(see Fig. 2 in the main text). The obtained values are
given in Table I. In Fig. 6 and Table I, we display in
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addition our fit and associated fit parameters from the
spin-excitation spectrum measured on Bi2201 (Ref. 32).
With these values of U and t′, the relation – shown in
Fig. 4 – between EZB and t′ is established.

IX. APPENDIX C

To guide our intuition of how the dz2 states evolve as
a function of doping, we have carried out DTF calcula-
tions of the LSCO band structure as a function of doping.
These calculations were performed using the WIEN2K
package46 in the LTO crystal structure. The doping de-
pendence of the electronic structure for LSCO was ap-
proximated by a rigid band shift of all Cu d orbitals in
order to obtain the correct d-shell filling. For every cal-
culated doping value, the experimentally derived crys-
tal structure has been used45. In the calculation, the
Kohn-Sham equation is solved self-consistently by using
a full-potential linear augmented plane wave (LAPW)
method on a uniform grid of 12× 12× 12 k-points in the

Brillouin zone. The exchange-correlation term is treated
within the generalized gradient approximation (GGA) in
the parametrization of Perdew, Burke and Enzerhof
(PBE)47. The planewave cutoff condition was set to
RKmax = 7 where R is the radius of the smallest LAPW
sphere (i.e. 1.63 bohr) and Kmax denotes the planewave
cutoff. Fig. 7 shows the orbital and atomic resolved band
structure and density of states (DOS) of LSCO in the
tetragonal crystal structure. As shown in panel (a), the
dz2 derived band disperses in a binding energy range of E
− EF = −1.3 eV close to Γ and E − EF = −0.3 eV at M .
The orbital resolved DOS of the dz2 band has a peak at E
− EF=−0.5 eV , while closer to EF the dz2 -DOS is rapidly
decaying. This peak originates from the flat shape of the
dz2 band close to M . Therefore to track the doping
dependence of the dz2 energy level, the position of the
band at theM point is plotted as a function of doping x in
Fig. 7(c). With increasing doping x the dz2 energy level
approaches the Fermi energy. Note that our DFT
calculation agrees with recently published results
obtained by ab initio calculations14.

�

�

� �

FIG. 7. (Color online) Density functional theory calculations of La2−xSrxCuO4. (a) calculated bandstructure along high
symmetry directions (see inset of panel(c)) in the tetragonal crystal structure for x = 0.225 (Ref. 45). (b) density of states
derived by the different Cu 3d orbitals. The electronic structure has been shifted such that the overall 3d-shell filling reflects
the doping x. (c) doping dependence of the dz2 band derived at the M point.
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