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Abstract
Virtual memory (VM) is a crucial abstraction in modern computer systems at any scale, from

handheld devices to datacenters. VM provides programmers the illusion of an always sufficiently

large and linear memory, making programming easier. Although the core components of VM have

remained largely unchanged since early VM designs, the design constraints and usage patterns

of VM have radically shifted from when it was invented. Today, computer systems integrate

hundreds of gigabytes to a few terabytes of memory, while tightly integrated heterogeneous

computing platforms (e.g., CPUs, GPUs, FPGAs) are becoming increasingly ubiquitous. As there

is a clear trend towards extending the CPU’s VM to all computing elements in the system for an

efficient and easy to use programming model, the continuous demand for faster memory accesses

calls for fast translations to terabytes of memory for any computing element in the system.

Unfortunately, conventional translation mechanisms fall short of providing fast translations as

contemporary memories exceed the reach of today’s translation caches, such as TLBs.

In this thesis, we provide fundamental insights into the reason why address translation sits on the

critical path of accessing memory. We observe that the traditional fully associative flexibility to

map any virtual page to any page frame precludes accessing memory before translating. We

study the associativity in VM across a variety of scenarios by classifying page faults using

the 3C model developed for caches. Our study demonstrates that the full associativity of VM

is unnecessary, and only modest associativity is required. We conclude that capacity and

compulsory misses—which are unaffected by associativity—dominate, while conflict misses

rapidly disappear as the associativity of VM increases. Building on the modest associativity

requirements, we propose a distributed memory management unit close to where the data resides

to reduce or eliminate the TLB miss penalty.

Keywords: Virtual memory, address translation, die-stacked memory, near-memory processing,

MMU, TLB, page table, DRAM, servers
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Résumé
La mémoire virtuelle (VM) est une abstraction cruciale dans les systèmes informatiques modernes

à n’importe quelle échelle, des appareils portatifs aux centres de données. VM fournit aux

programmeurs l’illusion d’une mémoire toujours suffisamment grande et linéaire, facilitant ainsi

la programmation. Bien que les composants principaux de VM restent largement inchangés

depuis les premières versions de VM, les contraintes de conception et les modes d’utilisation

de VM ont radicalement changé depuis leur invention. Aujourd’hui, les systèmes informatiques

intègrent des centaines de gigaoctets à quelques téraoctets de mémoire, tandis que les plateformes

informatiques hétérogènes étroitement intégrées (ex., CPU, GPU, FPGA) sont de plus en plus

omniprésentes. Comme il existe une tendance évidente à étendre la VM de la CPU à tous

les éléments informatiques du système pour un modèle de programmation efficace et facile à

utiliser, la demande continue d’accès à la mémoire plus rapide nécessite des traductions rapides

de téraoctets de mémoire pour tout élément informatique du système. Malheureusement, les

mécanismes de traduction conventionnels ne permettent pas de traduire rapidement car les

mémoires contemporaines dépassent la portée des mémoires caches de traduction d’aujourd’hui

comme les TLB.

Dans cette thèse, nous fournissons des notions substantielles sur la raison pour laquelle

la traduction d’adresse se situe sur la voie critique d’accès à la mémoire. Nous observons

que la flexibilité traditionnelle entièrement associative pour mapper n’importe quelle page

virtuelle sur n’importe quel cadre de page empêche l’accès à la mémoire avant de traduire.

Nous étudions l’associativité des VM dans différents scénarios en classifiant les défauts de

page à travers le modèle 3C développé pour les mémoires caches. Notre étude démontre

que l’associativité complète de VM est inutile, et seule une associativité partielle est requise.

Nous concluons que la capacité et les manquements obligatoires—qui ne sont pas affectés par

l’associativité—dominent, alors que les manquements des conflits disparaissent rapidement

au fur et à mesure que l’associativité de VM augmente. En s’appuyant sur les exigences

partielles d’associativité, nous proposons une unité de gestion de la mémoire distribuée proche

de l’endroit où résident les données pour réduire ou éliminer la pénalité des manquements du TLB.

Mots clefts : Mémoire virtuelle, traduction d’adresse, couches empilées de mémoire, traitement

en mémoire-proche, MMU, TLB, table des pages, DRAM, serveurs
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1 Introduction

Virtual memory is a crucial abstraction in any modern computer system, from handheld devices

to datacenters. Virtual memory provides programmers the illusion of an always sufficiently large

and linear memory, making programming easier. Virtual memory abstracts the programmer from

the system’s available memory capacity and explicit managing the allocation between storage

and memory. Furthermore, virtual memory enforces isolation among applications, allowing them

to access their own memory only, and thus preventing applications to overwrite one another’s

content. In summary, virtual memory is a fundamental abstraction to programmability, code

portability, and memory protection, and a key part of any modern computer system.

The hardware and the operating system (OS) manage the relation between the virtual addresses

employed by the software and their actual location in the physical memory. With virtual memory,

every memory operation in the software has to be translated from a virtual to a physical address

before accessing memory. Remarkably, the core components of the address translation mechanism

have remained largely unchanged since early virtual memory designs of the 1960s. The OS

manages the virtual-to-physical map in a data structure while a dedicated hardware cache, the

translation look-aside buffer (TLB), caches frequently used translations. The virtual memory

subsystem achieves high performance when most of the translations of the memory accesses are

served by the TLB.

However, the design constraints and usage of virtual memory are nowadays greatly different

from its original invention. One of the first machines to support virtual memory, the General

Electric GE-645, integrated 2MB of physical memory. In contrast, modern systems integrate

hundreds of gigabytes to a few terabytes of memory, as the cost of physical memory has been

decreasing at a rate similar to Moore’s law [69]. For instance, HP DragonHawk [84] integrates

up to 6TB of physical memory and Huawei KunLun [133] supports physical memories of up to

32TB. Furthermore, emerging non-volatile memory (NVM) technologies such as Intel-Micron 3D

XPoint [1] will further increase the pressure on the virtual memory subsystem. The continuous

demand for fast memory accesses calls for a virtual memory subsystem that can provide fast

translations to terabytes of memory.
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Unfortunately, while integrated memory capacity per computer system has been growing expo-

nentially, the reach of the TLB has grown at a much modest rate; the fraction of physical memory

covered by the TLB has decreased over time. This problem is commonly known as the limited

TLB reach. Two decades ago, an Intel Pentium Pro server included a TLB of 64 entries and

up to 2GB of physical memory [24, 49]. Today, a commodity server using the Intel Haswell

architecture integrates a TLB hierarchy of 1124 entries and 256GB of physical memory [131].

In two decades, the size of the TLB has only increased by a factor of 18, whereas the size

of the physical memory has scaled 128 times. The scaling gap between TLBs and physical

memory is even larger for large-memory servers (e.g., Huawei KunLun) or with the integration of

emerging non-volatile memory as part of the physical memory. The end result is that the primary

component used to achieve high performance address translations is no longer as effective.

Furthermore, to accommodate for larger memory capacities, the architecture of memory systems

has become more complex over time. The building block of commodity memory is the dual

in-line memory module (DIMM), which encompasses a set of DRAM chips integrated on a PCB.

Each DIMM connects to a DDRx bus through a physical slot in the motherboard. A few DIMMs

share the same DDRx bus which usually connects to a CPU chip through a memory channel.

Unfortunately, as DDRx buses operate at higher speeds to keep up with faster logic chips like

CPUs, other issues arise such as poor signal integrity due to signal reflexion and cross-talk. This

issue is exacerbated as more DIMMs are placed in the same DDRx bus. As an example, the

original DDR SDRAM specification allowed four DIMMs in a single channel, while modern

DDR4 specifications only allow two DIMMs. The end result is that as the frequency of DDRx

buses increase, system architects have to reduce the number of DIMMs allowed per memory

channel [45], reducing its memory capacity.

At the same time, limited pin counts of logic chips has limited the number of memory channels

that can be supported on a single package. Consequently, system designers are scaling memory

capacity by either integrating more CPU chips or placing logic between the CPUs and DRAM

(e.g., Buffer-on-board [45]). The logic chips are interconnected with narrow and high-speed serial

interfaces (e.g., Intel QuickPath Interconnect or AMD HyperTransport) which involve costly

latencies of tens of nanoseconds per hop [87, 106, 165]. For instance, HP DragonHawk contains

16 CPU chips and Huawei KunLun integrates 32 CPU chips. In such systems, a memory access to

a remote location can incur in a round-trip time of hundreds of nanoseconds. In summary, though

memory clocks have increased to keep up with the requirements of modern CPUs, the distributed

architecture of modern memory systems has considerably increased the memory access latency.

Long memory latencies affect the performance of the virtual memory subsystem. A TLB miss

requires walking the data structure used by the OS to store the virtual-to-physical map. This

data structure is called the page table. This overhead is known as the TLB miss penalty and the

walking operation is called the page walk. In current systems, the page walk can take several

memory accesses, for instance, up 4 memory accesses in x86_64 [47], while up to 5 memory

accesses will be required in the near future [70]. Therefore, a page walk can incur a latency

overhead of several hundreds of nanoseconds in large memory systems. As a result, TLB misses
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are a severe virtual memory performance bottleneck, and consequently, a system performance

bottleneck today.

Computing architecture has also incurred profound changes from when virtual memory was

invented. However, not only the memory architecture has had profound changes from when

virtual memory was invented, the computing architecture has also dramatically shifted away.

The contradictory trends of the increase in computing demands and the end of Dennard and

slowdown of silicon density scaling has pointed system architects toward specialized architectures

to maximize computing density and efficiency. Modern computer systems integrate not only

several CPUs, but also GPUs for tasks such as deep learning, analytics, and high-performance

computing. ASICs are now ubiquitous for accelerating cryptography, video and signal processing,

and compression/decompression, and FPGAs are becoming more and more popular to accelerate

applications amenable to spatial computation. The end result is that contemporary computer

systems are comprised of a distributed network of heterogeneous computing elements and not a

single computing building block.

For efficiency and programmability, system architects are advocating for tight integration of

all the computing elements in the system [64, 85, 132, 142], which means these elements must

actively interact with each other and operate on the vast datasets available in the system. Hence,

all of the distributed and heterogeneous computing elements in the system require fast address

translations to share access to terabytes of memory. Any approach for an efficient address

translation mechanism appears to be challenging as one can see the computation elements and the

translation information as a fully connected bipartite matching, making any approach to localize

translations challenging. Furthermore, a translation mechanism has to be robust across largely

different computing elements each of which with very different idiosyncrasies and characteristics.

To make matters worse, many modern applications exhibit a lack of data locality due to their

abundant use of dynamic data structures (e.g., hash tables, skip lists). A few examples are graph

processing, key value stores, online transaction processing (OLTP), online analytical processing

(OLAP), and Web search. Processing on a graph involves chasing pointers over a large and

irregular data structure [10]. Modern key value stores manage the data in either a hash table

or skip list to avoid linear search times [65]. OLTP database management systems employ

indexes such as B+ trees and skip lists for fast accesses to the database [180]. OLAP database

management systems use hash tables for the ubiquitous join relational operator [114]. Last, web

search engines provide a mapping between terms and inverted lists through a hash table or B+

tree [34]. All these pervasive applications exhibit frequent pointer chasing over hundreds of

gigabytes to a few terabytes of data, stressing not only the hardware data caches but also the

hardware translation caches (i.e., the TLB hierarchy). In such scenarios, TLB misses can incur

up to 50% of the total execution time of an application [22, 107].

In summary, both design constraints and usage patterns of virtual memory have largely changed

from when it was invented. Profound changes in the computing and memory architectures, along

with the lack of data locality of modern and ubiquitous applications are stressing the traditional
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virtual memory architecture. In this thesis, we identify TLB misses as a critical performance

bottleneck and propose mechanisms to either reduce or eliminate its overhead.

1.1 Computer System Trends

Large IT services deployed by technology giants such as Microsoft or Amazon are often hosted

in large datacenters, comprised of hundreds of thousands of servers and referred to as warehouse-

scale computers (WSCs) [21]. With both data volumes and user request rates growing at a pace

comparable to Moore’s Law [3, 64], server computing platforms are under constant pressure to

keep up with the increase in service demands.

While the demand for server performance continues to grow, the end of Dennard scaling (i.e.,

the ability to increase performance per area unit at the same power density) has made the task of

increasing performance with each technology node difficult. Hence, continued transistor density

increases results in the inability to power up the whole chip at the maximum performance point.

As a result, the growing demand for IT services has led to an era of ever-larger and power-hungry

datacenters. The power draw of top-of-the-line datacenters has increased 10-fold over the last

decade, from around 5MW per datacenter in 2005 to 50MW in 2015 [129].

At the same time, scaling transistors to smaller technology nodes is becoming increasingly com-

plex [163]. This complexity translates into higher costs for fabrication and lower device yields,

both increasing the cost per chip across transistor generations. For example, Intel has already

ended the "tick-tock" development model, extending the life of each process technology [14].

Intel Skylake, the first microarchitecture in the 14nm technology, was succeeded by Intel Kaby

Lake in the same technology node (instead of the expected 10nm). Additionally, feature sizes

below a few nanometers are reaching physical limitations. For instance, premium fabs such as

Intel and TSMC have not yet disclosed a road map below 5nm. As a result, the compute density

of future chips across technology nodes is likely to stagnate.

The confluence of the slowdown of Dennard and transistor density scaling and the increase

in computing demands points system designers towards specialized architectures to maximize

processing efficiency and density. In fact, specialized computing elements have already been

deployed in datacenters at reasonable large scales [13, 36, 61, 101]. Facebook deploys GPUs

for machine learning algorithms [61], Microsoft integrates FPGAs in their Bing servers [36],

Google deploys ASICs for neural networks [101], and Amazon AWS has started offering server

instances with FPGAs and GPUs [13]. The conflicting trends of technology scaling and computing

demands will drive the shift from traditional general-purpose computing towards more specialized

architectures in the datacenter.

Memory is not oblivious to the problems associated with smaller technology nodes. The rate at

which the capacity of a DIMM increases has slowed down in recent years due to the difficulty

in decreasing the size of a cell’s capacitors [45]. As a result, memory manufacturers have
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turned to novel technologies that will allow them to scale memory capacity beyond traditional

two-dimensional DRAM chips. Recent advances in three-dimensional integrated circuits have

enabled several memory vendors such as Hynix and Micron to stack multiple DRAM dies

on top of a logic chip within a single package [95, 127, 162], scaling capacity by utilizing

the third dimension. The ample benefits in bandwidth and proximity to data has triggered

a research wave of custom memory-side processing units (MPUs) implemented in the logic

layer [10, 71, 111, 130, 145, 146, 176]. Along with the inclusion of die-stacked memories in

industry products [68, 149], there is substantial evidence suggesting that future server systems

may integrate MPU-capable memory chips.

Overall, computer systems are steadily moving towards an architecture of a distributed network

of heterogeneous computing and memory chips interconnected with narrow and high-speed serial

interfaces [153].

1.2 Unified Virtual Memory

Computer systems with heterogeneous computing and memory chips must offer an efficient and

simple programming model to ensure widespread adoption. Initiatives in industry such as the

Heterogeneous System Architecture (HSA) Foundation, a consortium founded by AMD, ARM,

Qualcomm and Samsung among others, are proposing a shift towards unified virtual memory

(VM) between CPUs and any other computation element in the system [85]. Unified VM has

many benefits: pointers are equally valid in any computation element, simplifying data sharing,

eliminating redundant data copies, and manually maintaining data consistency. Additionally,

VM enables efficient fine-grained memory accesses and transparent memory allocation and

protection. Essentially, VM provides a familiar and powerful abstraction to programmers and

operating systems alike. All these benefits have led commercial GPUs to adopt an HSA-compliant

unified virtual memory, beginning with AMD’s Carrizo chip [174]. Given the benefits of HSA-

style unified virtual memory and its early adoption into commercial products, we expect future

computation units to also follow this path.

The programmability benefits provided by virtual memory are further amplified at the scale of

large IT services. Specifically, Google has reported that shifting the burden of managing complex

interactions away from the programmer to the operating system makes the code base notably

simpler [20]. Simplifying the codebase is of great importance in warehouse-scale environments

where source code is touched by thousands of developers, with significant software releases on a

daily basis.

Unfortunately, the benefits of VM currently come at a significant performance overhead. A simple

approach consists of offloading address translation to the CPU cores on behalf of the execution

elements (e.g., GPU, ASIC, MPUs) [71, 153]. Though this only registers simple hardware, the

execution elements and CPUs reside on different chips, resulting in frequent and time-consuming

cross-chip traffic and valuable CPU time lost. Similarly, the execution elements can offload
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address translation to I/O memory management units (IOMMUs), introduced in commercial

CPUs to allow devices to translate virtual addresses [166]. As IOMMUs also reside in the CPU,

they require frequent and costly cross-chip communication which compromises performance. A

more sound approach is to integrate a memory management unit (MMU) per execution element,

just like the CPU cores, each having a TLB hierarchy and page walker. However, such MMUs

suffer from the same performance overheads that the CPUs do, limited TLB reach and high TLB

miss penalty. Although translations provided by the TLBs achieve low overhead, page walks

are frequent as contemporary memory sizes exceed the reach of modern TLBs [22, 139, 140].

Furthermore, due to the arbitrary distribution of page table entries across all the memory chips

in the system, page walks may involve several cross-chip transfers of tens of nanoseconds per

hop [87, 106, 165] for each level of the page table [70], resulting in unacceptable overheads

which diminish the gains of specialization.

In summary, as computer systems are becoming more heterogeneous, there exists a call for

an efficient and easy to use programming model. Extending the CPU’s virtual memory to

all computing elements in the system is a crucial step in this direction. Unfortunately, the

implications are that any computing element in the system has to efficiently translate addresses

spanning a distributed physical memory of hundreds of gigabytes to a few terabytes. This thesis

identifies TLB misses—page walks—as a critical performance bottleneck in virtually addressed

execution units such as CPUs, GPUs, or MPUs and proposes mechanisms to eliminate the page

walk overhead based on the novel observation that the conventional full associativity of VM is

unnecessary.

1.3 A Case Study with Memory-side Processing Units

In this thesis, we illustrate and evaluate the benefits of our novel virtual memory subsystem in the

context of memory-side processing units (MPUs). Though we can evaluate our VM subsystem in

any context (e.g., CPUs), we believe MPUs stress the address translation mechanism the most and

hence are the most challenging scenario for the following three reasons. First, MPUs are scattered

across a large number of memory chips, making cross-chip memory traffic common. For instance,

modern proposals consider memory networks of 4 to 16 memory chips [68, 71, 146, 149]. This

memory traffic behavior is exactly the same as in multi-socket CPUs (e.g., Huawei’s KunLun 32

CPU machine). As page table entries are arbitrarily distributed across the memory chips, page

walks require expensive cross-chip traffic. Second, unlike modern CPUs, MPUs leverage the

reduced physical distance to data stored in memory and integrate either shallow cache hierarchies

or no cache at all [64]. In contrast, CPUs usually integrate deep cache hierarchies of multiple

megabytes. These caches may store parts of the page table [108], avoiding accessing the memory

for page walks that hit in the cache hierarchy. Third, tight area and power constraints in the

logic layer of the memory chip [154] preclude aggressive computation units such as OoO cores

with large instruction windows and speculative execution. These large instruction windows and

speculative execution can help latency by overlapping page walks with useful work. In contrast,

because MPU cores provide from little to no overlapping, they expose all of the page walk time.
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As a result, we focus on memory-side processing units (MPUs) for the rest of this thesis, although

our insights and translation mechanisms are widely applicable to any other context.

1.4 Thesis and Dissertation Goals

Given the large programmability benefits of unified virtual memory between all execution units

in the system, the next logical step towards a flexible and efficient implementation is to tackle

the performance bottleneck of page walks. Therefore, the goal of this dissertation is to provide

fundamental insight into the reason why address translation in general and page walks in particular

sit on the critical path of accessing physical memory. Then, we build on the novel observation

that the conventional full associativity of virtual memory is a largely unnecessary feature, to build

an efficient VM system with no compromises.

The thesis statement is as follows:

Reducing the associativity of virtual memory nearly eliminates the translation overhead enabling
a scalable unified virtual address space.

1.5 Associativity in Virtual Memory

In this chapter, Chapter 3, we perform an associativity study of virtual memory—the number

of distinct page frames that a virtual page can map to—and conclude that the conventional

full associativity of VM is unnecessary, and only modest associativity is required. For our

study, we classify across a wide range of scenarios page faults by employing the classic 3C

model originally developed for caches [83]. Our study demonstrates that the full associativity of

VM is unnecessary, and only modest associativity is required. We conclude that capacity and

compulsory misses (which are unaffected by associativity) dominate, while modest associativity

is sufficient to eradicate conflict misses. More specifically, for working sets that are memory

resident, compulsory misses dominate when the VM associativity equals the number of processes

executing in the system. For working sets that exceed the memory size, capacity misses dominate

and grow as a function of the working set size. In contrast, conflict misses become scarce once

the associativity of virtual memory matches the number of processes in the system, and virtually

disappear after the first few additional ways.

Essentially, we make the observation that one can think of memory as simply a fully associative

software-managed virtually addressed cache, where the tags are the page table entries and the

data are the page frames. In fact, our associativity trends for VM match seminal work on set-

associative caches [35, 83]. To provide nearly all the flexibility benefits of full associativity

with much faster translation times architects could exploit the modest associativity requirements.

Though in a completely different context, our work is in spirit similar to that of three decades old

work on caches [81]; showing that set-associative or direct-mapped caches can provide nearly all
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the flexibility benefits of full associativity with much faster cache access times.

1.6 Set-Associative Virtual Memory

This chapter, Chapter 4, proposes SAVAgE (Set-Associative VirtuAl mEmory), an efficient

translation mechanism for MPUs that eliminates most of the overhead of page walks. Our

translation mechanism builds on the modest associativity requirements and characteristics of our

network of memory chips. SAVAgE restricts the associativity of VM so that a virtual address

uniquely identifies a memory chip and memory partition. This design allows the MPUs to access

memory as soon as the virtual address is known. Each memory partition integrates an MMU,

which includes a TLB hierarchy and page table, that translates the virtual address and fetches the

data, both of which are always located in the MMU’s local memory partition. Translation is fast

due to four reasons: First, the translation is completely localized in the partition where the page

frame resides, which allows the data fetch request and its translation to always target the same

partition and completely overlap. Second, a memory access within a memory partition is faster

than accessing remote memory partitions, therefore achieving lower latency page walks. Third,

as the page frame resides in the same partition as data, the data fetch can immediately start after

translation finishes. Last, as a memory partition offers associativity on the order of a hundred

thousand ways, the number of page faults due to conflicts is virtually identical to full associative

virtual memory. SAVAgE achieves low-overhead page walks as the page walk and data fetch

operations overlap almost entirely.

Essentially, SAVAgE turns memory into a virtually addressed software-managed cache, just that

the memory is set-associative as opposed to fully associative. Again, one can think of memory as

a cache, where the data array is the set of page frames, and the tag array is the page table.

1.7 Eliminating Associativity in Virtual Memory

Large-scale IT services are increasingly migrating from storage to memory because of massive

data consumption rates [16, 53, 179]. Online services such as web search, social connectivity, and

media streaming exhibit stringent response time requirements which mandate memory-resident

data processing. Similarly, business intelligence over analytical pipelines is increasingly memory

resident to minimize query response times. Furthermore, first-party workloads deployed by IT

giants such as Microsoft and Google often run on dedicated servers, taking up all the system

resources to ensure performance isolation and predictability [22, 79]. The end result is that

memory has become pivotal to server design, which aims to maximize the throughput per server

and therefore minimize the total cost of ownership of datacenters.

This chapter proposes DIPTA (Distributed Inverted Page Table), an address translation mechanism

that completely eliminates the overhead of page walks. Our translation mechanism builds on the

observation that the associativity of VM can be virtually eliminated for in-memory workloads.
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DIPTA restricts the associativity so that a page can only reside in a few number of physical

locations which are physically adjacent—i.e., in the same memory chip and DRAM row. Hence,

all but a few bits remain invariant across the virtual-to-physical mapping, and with a highly-

accurate way predictor, the unknown bits are predicted so that address translation and data

fetch are completely independent. Furthermore, to ensure that the data fetch and translation are

completely overlapped, we place the page table entries next to the data in the form of an inverted

page table, either in SRAM or embedded in DRAM. Hence, DIPTA achieves zero-overhead page

walks for in-memory workloads.

Essentially, DIPTA turns memory into a virtually addressed hardware-managed cache. This

cache’s tag array is implemented as a distributed inverted page table and is accessed in parallel

with the data array [96, 147].

1.8 Contributions

In this thesis, we explore and propose techniques to eliminate the overhead of page walks. We

begin by studying the associativity of virtual memory and concluding that the conventional full

associativity of virtual memory is unnecessary. Based on its modest associativity requirements,

we propose two techniques to eliminate the overhead of page walks, attaining almost all the

flexibility of a fully associative VM with much faster translation.

Through a combination of trace-driven functional and cycle-accurate simulation, we demonstrate:

• Address translation forms a significant fraction of the execution time when using
MPUs. We demonstrate that because of the limited reach of conventional TLBs, page

walks occur frequently. Due to the particularly high TLB miss penalty in systems with

MPU-capable memory chips, the execution time can increase by more than 3× due to

translation.

• Associativity study of VM on modern server workloads. We study VM associativity

using the 3C model to classify misses (i.e., page faults). We show that full VM associativity

is a largely unnecessary feature, as the majority of misses are either classified as compulsory

or capacity, hence insensitive to associativity. Consequently, only modest associativity

is required. Our study covers all following scenarios: memory-resident and larger-than

memory working sets, single-process, and multi-programmed workloads.

• Set-Associative Virtual Memory (SAVAgE). We propose SAVAgE, a translation mecha-

nism for MPUs that eliminates most of the overhead of page walks. SAVAgE builds on

modest associativity requirements of VM. SAVAgE restricts the associativity so that a

virtual address identifies a memory chip and partition uniquely. An MMU in the memory

partition, translates the virtual address and fetches the data. SAVAgE achieves low-overhead

page walks as the page walk and data fetch operation overlap almost entirely.

9
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• Distributed Inverted Page Table (DIPTA). We propose DIPTA, a translation mechanism

that completely eliminates the overhead of page walks for in-memory workloads. This

mechanism builds on the observation that the associativity of VM can be virtually elimi-

nated for memory-resident workloads. DIPTA restricts the associativity so that a page can

only reside in a few number of physically adjacent locations—i.e., same memory chip and

DRAM row. Hence, all but a few bits remain invariant in the virtual and physical addresses,

and we speculatively predict the rest using a highly-accurate way predictor, decoupling

address translation with data fetch. To ensure that data fetch and address translation fully

overlap, we place the page table entries next to the data. DIPTA completely eliminates the

overhead of page walks for in-memory workloads.

1.9 Takeaway Message

One of the main takeaway messages of this thesis is that one can think of memory as a software-

managed fully associative cache, where the tags are the page table entries and the data are the page

frames. Though in a different context, the results of our work consistently corroborate seminal

work on caches [35, 83]. Our results demonstrate that the conventional full associativity of virtual

memory is largely unnecessary. The trends clearly indicate that compulsory and capacity misses

dominate, and conflict misses, which associativity alleviates, drop rapidly as the associativity

increases.

Another important takeaway message of this thesis is that just as set-associative or direct-mapped

caches provide nearly all the benefits of full associativity with much faster access times [81],

a set-associativity or direct-mapped virtual memory can provide nearly all the benefits of full

associativity with much faster translations. Again, though in a different context, our work is in

spirit similar to that of three decades old work.

1.10 Organization

The rest of this thesis is organized as follows. Chapter 2 introduces background on virtual

memory and memory-side processing units. In Chapter 3, we perform an associativity study of

virtual memory across a variety of scenarios. In Chapter 4, we propose SAVAgE, an efficient

translation mechanism that builds on the modest associativity requirements of VM. In Chapter 5,

we propose DIPTA, an efficient translation mechanism for in-memory workloads that builds on

the observation that the associativity can be virtually eliminated for memory-resident workloads.

We discuss related and future work in Chapter 6 and Chapter 7, respectively. We conclude the

thesis in Chapter 8.
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Virtual memory is one of the most crucial abstractions in the history of computing. Back in

1960s, virtual memory became a standard feature of nearly every mainframe. In the 1990s, it

also became a standard feature in personal computers (PCs). Interestingly, while virtual memory

generated a huge controversy after its introduction in the late 1950s, today, nearly all computer

systems at any scale, ranging from handheld devices to datacenters rely on virtual memory and it

became such an ordinary feature that few people think about it.

In the early days of computing, programmers had to solve a memory overlay problem as part of

their programming work. Computer systems were organized hierarchically, with a small amount

of expensive random access memory (RAM) and a larger secondary storage, a drum. Back then,

programmers not only had to slice their programs into blocks, called overlays, that fit in memory,

but also decide which overlays to bring to RAM and which overlays to replace. The process of

moving overlays back and forth from memory to secondary storage was called overlaying. It was

commonly assumed that programmers spent more than half of the time planning the overlaying

control flow.

Virtual memory was invented as a way to automate a solution to the error-prone and time-

consuming overlay problem. The first machine to support virtual memory was the Atlas Com-

puter [110], designed by a group of researchers from the University of Manchester in 1959.

Their virtual memory subsystem was called a "one-level storage system". The Atlas Operating

System simulated a memory sufficiently large to hold the whole program. Addresses from this

virtual memory were translated to their physical location in RAM. If an address was not in

RAM, the operating system moved a fixed-size page from the drum to the small RAM. From the

programmer perspective, the Atlas Machine’s memory appeared as a large and slower RAM.

Commercial vendors of the large mainframes of the 1960s (e.g., Burroughs, IBM) rapidly noticed

the huge potential of the virtual memory abstraction. Interestingly, as these commercial systems

integrated large RAMs which allowed many individual programs to be entirely loaded, avoiding

the overlay problem was not virtual memory’s main advantage. Instead, the virtual memory

abstraction showed to be useful to support other features such as multiprogramming, time-sharing
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computing, and fault tolerance. Virtual memory allowed user programs to be isolated from each

other, dynamic relocation of program addresses, and read-write access control to the program’s

memory. In summary, the virtual memory abstraction provided larger benefits than just automatic

storage allocation, it also provided memory protection, and program reuse and sharing, explaining

its rapid adoption in early computer systems [55].

2.1 Early Virtual Memory Designs

Even in the early days of computing, system designers realized that fast access to a large amount

of storage is hard and expensive, and therefore computer memories have to be organized as a

hierarchy. Traditionally, the memory hierarchy comprises two levels, main memory and secondary
memory.

• Main memory: The main memory, often called random access memory (RAM), is directly

connected to the central processing unit (CPU). A program’s content (e.g., code, data) can

only be referenced if it resides in main memory. RAM is a relatively fast and expensive

storage medium. Furthermore, RAM is volatile; a power loss of the machine erases all the

RAM’s content.

• Secondary memory: The secondary memory, originally a drum and today a hard- disk drive

(HDD) or solid-state drive (SSD), is connected to RAM by a subsystem that moves blocks

of data. The secondary memory is a much slower and cheaper than RAM. Furthermore,

the secondary memory is persistent; data remains in it until is it explicitly deleted.

The unit of storage in RAM and disk is the block. A block is a group of spatially contiguous bytes.

Furthermore, a block is also the granularity of transfers between the two levels of the memory

hierarchy. In computer systems where all the blocks have a fixed size, the blocks are called pages.

In computer systems that allow variable-sized blocks, the blocks are called segments.

As shown in Figure 2.1, the processor can only execute a program from the main memory.

Consequently, although the entire program is stored in the secondary memory, blocks of the

program’s content have to be copied to the main memory. Obviously, the challenge is to partition

the program into chucks of data, overlays, which are composed of blocks of data, and orchestrate

the scheduling of moving overlays back and forth between the two levels of hierarchy. It was

assumed that programming time doubles with overlaying with respect to a programming model

where no overlays are needed.

2.1.1 Virtual Addressing

Virtual memory was originally invented the solve the overlaying problem by automating the

migration of pages between the levels of the memory hierarchy. The first machine to support
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Figure 2.1 – Example of a two-level memory hierarchy with RAM and disk.

virtual memory was the Atlas Computer at the University of Manchester in 1959 [110]. The

core of this memory subsystem is to create a level of abstraction in the addresses employed

by a program. This abstraction created a distinction between an address in a program and its

actual physical location in memory. The memory subsystem of the Atlas Computer provided

programmers the illusion of a large and linear address space, even when the amount of RAM was

scarce. Programmers could then write their applications as if all the code and data fit into a single

and contiguous memory, avoiding managing overlays and increasing productivity.

The virtual memory abstraction pushed the designers of the Atlas Computer to architect a set of

hardware and software mechanisms. First, the Atlas Computer had a hardware address translation
mechanism to automatically translate each address in the program to its location in main memory.

RAM was organized in pages and there was a register for each page storing the program address

allocated in that page. In the Atlas Computer, RAM was scarce and a few tens of registers sufficed

to cover main memory, all of which were associatively searched on every memory reference.

Second, the Atlas Operating System featured demand paging, a mechanism that moved missing

pages from secondary memory to main memory on demand. Upon a missing translation, the

address translation mechanism triggered an interrupt to the CPU to run an OS handler to move

the missing page from secondary memory to RAM. Third, a replacement policy to migrate

non-useful pages back to secondary storage. The memory subsystem associated a "use" bit with

each page in main memory, which was set when the processor issued a memory reference to a

page. Periodically, an operating system program cleared out all the "use" bits. This information

was employed to select a candidate page to move back to secondary memory (upon requiring

making space for a new page in main memory).

In summary, decoupling the addresses of a program from their actual location in main memory is

the core idea behind virtual memory. Implementing such abstraction led to a set of hardware and

software mechanisms that has remained largely unchanged until today.
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2.1.2 Multiprogramming

The major commercial vendors of the 1960s quickly realized the huge potential of virtual memory

and included it in their most popular mainframes of the time, such as IBM 360/67, Burroughs

B5000, CDC 7600, and General Electric GE645. All these mainframes time shared resources

among different users and thus heavily relied on multiprogramming. Operating systems that

support this feature allow several programs to simultaneously reside in main memory, and when

the program executing in the CPU stalls due to waiting for a long-latency event (e.g., an input

output operation), the CPU would switch to executing another program. Multiprogramming

allowed to increase the CPU utilization and the machine’s overall throughput.

Commercial vendors discovered that the virtual memory abstraction would simplify multipro-

gramming considerably, as it would provide an elegant way of sharing the memory. The operating

system would organize a different mapping table of addresses and their physical location for each

program. Hence, each program would only be allowed to access its own address space. Further-

more, virtual memory allows to define permissions for addresses (e.g., read only, read-write),

providing fault tolerance by preventing the program from overwriting code sections.

2.1.3 Thrashing

Unfortunately, the early commercial systems that provided support for virtual memory were

plagued with an unforeseen problem: thrashing. A computer system experiencing thrashing

essentially makes no forward progress when the multiprogramming level reaches a certain

point [54]. Preliminary analysis on such systems concluded that a thrashing behavior on a

relatively well performing system starts with the activation of one additional program. Activating

that additional program leads the system into a state of near-zero throughput. More thorough

analysis revealed that the root cause of thrashing was that all active programs in the system were

waiting for a page to be moved from disk to main memory. Soon after the page was in main

memory, each program will again reference a disk-resident page, waiting once more for the page

to be moved to main memory. In other words, the system enters into a state where it is paging

forever, dramatically hindering throughput.

The thrashing problem pushed system designers to come up with new resource allocation tech-

niques for main memory. In 1968, Peter Denning developed a new model, the working set
model [54]. This model dictates that every process has a working set (WS), the collection of its

most-recently used pages which the process requires in RAM to execute efficiently. Furthermore,

the WS varies little between consecutive references to pages. Essentially, a computer system

cannot enter into a thrashing state as long as every active program in the system has its working set

in main memory. Interestingly, not only early experiments confirmed the WS model in programs

but it stimulated research on the principle of locality, the underlying program behavior behind

idea of a working set.
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2.1.4 Cache Memory

Virtual memory’s illusion of a computer system with a single memory with the capacity of a

secondary memory and the speed of main memory stimulated system designers. In 1965, Maurice

Wilkes proposed a two-level hierarchy for main memory, the slave and core memory [175]. The

slave memory will later be known as a cache memory. In his paper, Wilkes proposes moving

words of data, instead of pages, from the core memory to the slave memory due to smaller access

latency differences between the two RAM memories; much smaller than between a disk and

RAM. Furthermore, the principle of locality allowed for a small slave memory to filter many of

the memory references, allowing the CPU to operate at the speed of the slave memory with the

cost of the core memory.

The idea of integrating a small and fast memory between main memory and the CPU rapidly

materialized in commercial products. In 1968, IBM released its 360/85 mainframe, which

integrated a cache memory between main memory and the processor. Today, cache memories

have become a standard feature in any computer system at any scale, from datacenters to handheld

devices; all of these computer systems integrate several levels of cache memory.

2.1.5 Object-Oriented Virtual Memory

In the early 1960s, virtual memory was a common abstraction to avoid overlays and allow sharing

the memory across multiple programs without interference. Nevertheless, system designers

quickly realized that virtual memory could offer even more features to increase programmability.

In the context of interactive time-sharing systems, designers believed that a powerful feature

would be to share, reuse, and modularize parts of a program, such as arrays, procedures, structures.

All these individual modules, program objects, would be accessible from anywhere in the system

and linked together on demand. In other words, a program would be composed of a set of bricks,

program objects, with explicit names, which simplifies reuse, sharing, and protection. These

virtual memory systems were called object-oriented virtual memories.

The first example of object-oriented virtual memory appeared in the Burroughs B5000 in 1961.

This virtual memory implementation presented the address space as a collection of multiple

address spaces of variable size, segments. Each segment was the placeholder of a program object.

Burroughs B5000’s Algol compiler generated program segments containing procedures and data

segments containing arrays of data. The program’s virtual addresses were of the form (i,x),
which indicated segment i and line address x. A mapping table was employed to locate the

physical location of the segment’s base address in main memory, while the size of the segment

was explicitly stored in the aforesaid table to prevent out-of-bound accesses for the line address x.

In 1965, the Multics project at MIT went further than the Burroughs compiler. Multics allowed

the programmer to define logical segments. In a Multics program, referencing for the first time a

variable X in segment S would trigger a linkage fault interrupt. The fault handler would convert

the symbolic segment S into a segment number s and line address X to an offset x. An address in
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the Multics CPU was a pair (s,x), indicating segment s and line offset x. This link-on-demand

procedure was a radical departure from the common practice of using a linking loader at run time

to bind program objects together into a single address space. Interestingly, Multics implemented

segmentation on top of paging, comprising a two-level mapping. The main reason of this design

choice is that paging simplifies the virtual memory subsystem as memory is managed in chunks—

pages—of equal size. The segment number s would select an entry in the segment mapping table

(as in the Burroughs B5000 machine). Then, the aforesaid entry would point to a per-segment

page mapping table, decomposing the line offset x into a page number and line number.

Though the Multics project produced a myriad on innovative ideas on sharing, reuse, and access

protection of program objects, little of these ideas remained in future virtual memory subsystems.

Programmers were satisfied with a single and large address space and a moderate number of

program objects binded to it. The single and large address space provided by paging has become

mainstream in today’s virtual memory implementations.

2.1.6 From PCs until Today

Though virtual memory became a standard feature in mainframes from the early 1960s and

firmly settled in the 1970s, the first personal computers (PCs) did not include features such as

multiprogramming and virtual memory. For example, the operating system of the original Apple

Macintosh personal computer employed physical addressing. Similarly, the first operating system

for the IBM personal computer, DOS, did not support virtual memory or multiprogramming. It is

not clear the main reason why early PC designs distanced themselves from the concepts that had

worked so well in mainframes. Nevertheless, system designers of personal computers quickly

encountered the same issues that resulted in the creation of the virtual memory abstraction,

making it increasingly more appealing.

Ultimately, PC manufacturers such as Apple and IBM included virtual memory and multipro-

gramming in their operating systems. Adding virtual memory was possible because major chip

vendors included virtual memory support in their processors. For instance, Intel added support for

virtual memory starting with its 80286 chip in 1982, and Motorola extended the ISA of its 68000

chip to support virtual memory in the same year. Apple included multiprogramming in System 5,

while virtual memory came in System 7. IBM offered the features of both multiprogramming

and virtual memory in OS/2. Similarly, Microsoft delivered multiprogramming in Windows 3.1

and virtual memory in Windows 95 (though the first operating system from Microsoft to support

virtual memory was Windows NT).

Today, nearly all computer systems rely on the virtual memory abstraction. From any sort of

personal computer such as a desktop, laptop, or smartphone, to largest and greatest datacenter, all

include virtual memory as a standard feature. It has become so ubiquitous that programmers do

not think about it anymore when writing code. Abstracting the programmer from the available

memory capacity, enforcing isolation among processes, and enabling portable codebases, are
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desired features that seem to stand well the test of time, making virtual memory a key part of any

modern computer system.

2.2 Virtual Memory Usage

The virtual memory abstraction arised as a way of avoiding programming overlays and automating

solutions to the problem of migrating data blocks between the levels of the memory hierarchy.

However, virtual memory has also been used to provide a large number of other features:

• Automatic storage allocation: Virtual memory creates the illusion of an always sufficiently

large memory regardless of the available capacity of main memory, avoiding programming

with overlays. It transparently automates the movement of blocks of data from secondary

memory to main memory. Taken away from the programmer the burden of managing

the allocation of data between the levels of the memory hierarchy greatly increased pro-

grammability. The feature of automating the storage allocation was the inception of the

virtual memory abstraction.

• Process isolation: Virtual memory exposes a private memory address space to each process.

Only the program objects mapped in the process’ address space are accessible, guaranteeing

that programs do not overwrite each other’s content. Virtual memory proved to be an

elegant solution to share the memory in multiprogramming environments.

• Access control: Within a process’s address space, the program objects can be restricted to

allow only certain reference types (e.g., read-only, read-write). An attempt to write to a

read-only object will cause a fault in the program. This feature provides fault tolerance by

for instance preventing a program to overwrite its procedures.

• Relocation: The core insight behind the virtual memory abstraction is the distinction

between an address in the program and its physical location in memory. This distinction

allows programmers to create independent program modules as tool chains (e.g., compilers,

linkers) generate code employing virtual addresses. Programmers are relief of any prior

knowledge of the system’s memory organization or manually linking all the modules within

an address space; enabling programs to be composed of reusable and sharable program

modules.

• Sharing: Virtual memory allows for sharing a program’s objects such as procedures and

data arrays among multiple processes. Sharing is simply done by mapping the object’s

virtual addresses to the same physical memory location in all the processes. The sharing

feature has been widely exploited to share libraries.

• Metadata: The virtual memory subsystem collects reference statistics per virtual memory

allocation unit (e.g., dirty and recently referenced metadata). This information is employed

by the operating system for evicting non-useful blocks back to secondary storage or by

high-level languages to help at garbage collection.
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Figure 2.2 – Overview of the virtual memory abstraction.

In summary, the virtual memory subsystem provides far more features than its original purpose,

making it an indisputable component of any contemporary computer system.

2.3 Structure of Virtual Memory

In this section, we will detail the internals of the virtual memory subsystem. Virtual memory’s

core insight is the distinction between an address in the program and its physical location in

the memory. Figure 2.2 presents an diagram of the virtual memory abstraction. There are two

different mechanisms to implement virtual memory, paging and segmentation. In paging, the

virtual address space is split into fixed-size blocks of data, called pages, which are ISA dependent.

For instance, the ubiquitous x86_64 employs pages of 4KBs, while SPARCv9 uses 8KB pages.

In contrast, in segmented systems the virtual address space is comprised of a collection of

address spaces of variable size, called segments. An example of a segmented system is the

Burroughs B5000 machine. As having memory allocation units of a fixed size simplifies the

storage allocation problem (e.g., by avoiding external fragmentation [55]), segmentation is usually

implemented on top of paging. These systems implement a two-dimensional virtual address

space where each of the segments is then split into pages. The protected mode of x86 (32 bits) is

an example of a system that implements segmentation on top of paging.

2.3.1 Paging

Although there exist many combinations of operating system and processor architecture that

implement paging, we will describe paging in the context of the ubiquitous x86_64 architecture

and the Linux operating system.
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Address Space

Every program must fit all its procedures and data inside the virtual address space. Assuming the

addresses are k bits, the address space consists of 2k bytes, comprised of the following range of

address {0,2k−1}. Although the theoretic limit of the x86_64 is 64-bit virtual addresses, current

implementations support up to 48 bits [47], while 57-bit implementations are on the way [70].

The most popular operating systems such as Linux and Microsoft Windows split the virtual

address space into user- and kernel-space. In Linux, the virtual address space of 248 (i.e., 256

TB) is partitioned into two halves of 128TB each. Hence, all the kernel’s code and data structures

must fit into its partition. Similarly, each process’s code and data structures must also fit into the

128TB of virtual memory available for the user.

The size of the physical addresses dictates the maximum capacity for main memory in a computer

system. Current x86_64 machine implementations support up to 48-bit physical addresses.

Therefore, a machine could theoretically integrate 256TB of physical memory.

Memory Management Unit

The memory-management unit (MMU) is a hardware block in the CPU in charge of translating

the virtual addresses employed by the software into their physical location in main memory.

Though the MMU is a hardware block, it also interacts with several software components of the

operating system. We describe all the hardware and software components involved in the address

translation process below.

Page Table: The page table is a software mapping table that holds the translation information

between the virtual and physical address spaces. The page table stores the translation information

at the granularity of a page, which in x86_64 is of 4KB in size. A virtual address contains two

parts, the virtual page number (VPN) and the page offset. The page offset of the virtual address

indicates the byte within the page. As a virtual page is 4KB, the page offset is the 12 least

significant bits of the virtual address. The rest of the bits of the virtual address compose the

virtual page number. As x86_64 employs 48-bit virtual addresses, the virtual page number are

the 36 most significant bits of the virtual address. The physical address space (i.e., the physical

memory) is also divided into pages, called physical pages or page frames, of 4KB. Similar to a

virtual address, a physical address is composed of two parts, the page frame number (PFN) and

the page offset.

A page table stores the mapping between virtual page numbers and page frame numbers. Note

that between a virtual address and its physical address the page offset bits remain unchanged.

A page table contains entries, called page table entries (PTE), one entry per virtual page. Each

page table entry holds at least the following information: (1) a present bit set to 1 when the page

is in main memory, (2) a read/write bit for access control to the page, set to 1 when the page

allows reads and writes (otherwise the page is read-only), (3) a user/supervisor bit set to 0 when

a virtual page only allows accesses in the supervisor mode (otherwise the page can be accessed
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Figure 2.3 – Page walk operation in x86_64.

in any mode), (4) an accessed bit set to 1 when the program references the page, and (5) a dirty
bit set to 1 when the program writes to the virtual page. The size of a page table entry (PTE) in

x86_64 is 8 bytes.

There are many page table implementations in the literature, although the x86_64 employs a

hierarchical page table of four levels; there exists a page table per process. Each level of the tree

is indexed using a fixed set of bits of the virtual page number. The last level stores the page table

entries, while the intermediate levels store pointers to the next levels. Hierarchical pages tables

can be sparsely populated and therefore are space-efficient under any scenario, either in densely

or sparsely populated virtual address spaces. The main drawback is that locating the mapping

information takes multiple memory references (4 in x86_64). However, we will later explain

techniques to reduce this overhead.

Page-Table Walker: Figure 2.3 presents the structure of the hierarchical page table employed

in the x86_64 instruction set architecture. As explained above, all the levels of the hierarchy

are traversed to locate the page table entry (PTE) that holds the translation information (e.g.,

the page frame number). The operation of traversing the page table is called a page table walk.

The page table walk operation is done in either software or hardware. The software approach

involves executing an operating system handler that walks the page table. For instance, the MIPS

and DEC Alpha instruction set architectures adopted this approach. In contrast, the hardware

approach integrates a finite-state machine in the MMU which performs the walking operation.

Most of the contemporary ISAs such as x86_64 or ARMv8 employ a hardware page table walker.

Let us now discuss the page walk operation in more detail. A virtual address is split into different

sections: Page Offset, Page Table, Page Directory, Page Directory Pointer, and Page Map Level

4. The rest of the virtual address is sign extended up to the bit 63. Each of the address section

(except the Page Offset) is employed to index a different level of the page table. Each section is
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of 9 bits because each page is 4KB and each entry is 8B, and therefore there could be at most 512

valid entries per page. First, the hardware page table walker (PTW) must know the location of the

root page table, the Page Map Level 4 (PML4). A control register called CR3 in the CPU holds

the page frame number of the PML4. Note that the CR3 register must hold a physical address;

otherwise the address would require a translation. Linux is in charge of updating the content of

CR3 when switching process contexts. Then, the page walker references an entry in the PML4

by adding the PML4 bits of the virtual address to the page frame number stored in CR3. The

PML4 entry is examined, it could either be invalid or contain the page frame number of a Page

Directory Pointer (PDP) page. If the entry is valid, the PTW references a PDP page by adding the

PDP bits of the virtual address. This procedure repeats recursively until an invalid entry is found

or until the last level of the page table is reached and the Page Table Entry (PTE) is referenced. If

the PTE contains a valid entry, the Page Offset bits are added to the page frame number to create

the full physical address.

Overall, a page walk operation involves four memory references in the x86_64 hierarchal page

table design. Furthermore, larger virtual address spaces, for example 57 and 64 bits would require

5 and 6 memory references respectively. However, there are techniques to avoid walking the page

table for every translation operation or skipping levels of the page table walk. We will discuss

such optimizations in later parts of this section.

Page Fault: It is possible that the page table walker references entries that are invalid. An invalid

entry means that the following levels of the hierarchy are not instantiated or the reference violates

the access control bits (e.g., a store operation to a read-only page). In such cases, the memory

management unit raises a synchronous interrupt or exception called page fault, and stores the

virtual address causing the page fault in the control register CR2. The exception triggers the

execution of a Linux software handler in the CPU to resolve the page fault. There could be many

possible actions. The page fault handler may allocate a page frame and populate the following

levels of the hierarchy. If allocating the page frame does not involve a disk access, the page fault

is called minor. For example, the first access to a page in the program or when the page frame

is already in main memory. If the allocated page frame required reclaiming a page from the

secondary store, the page fault is called major. The page fault handler may also send a signal

to terminate the program in cases where there is an access right violation or when the faulting

virtual address is not part of the process’ virtual address space. If the page fault is successfully

resolved, the CPU returns to executing the program and the MMU retries the translation.

Translation Look-aside Buffer: The memory management unit integrates another hardware

block besides the page table walker, the translation look-aside buffer or TLB. The TLB is a small

high-speed memory to cache the most recently used translations from the page table walker.

Without a TLB, every translation would require a page table walk. An entry in the TLB contains

the virtual page number and its corresponding page table entry. On each memory reference,

the MMU checks its TLB. Upon a hit, the page table entry is used to generate the full physical

address. Upon a TLB miss, the page table walker traverses the page table. Furthermore, modern

TLBs also tag the entries with the address space identifier (ASID) bits of the process to avoid

21



Chapter 2. Virtual Memory 101

(a) Page walk example

(b) Intel’s paging-structure caches (c) AMD’s page walk cache

Figure 2.4 – Example of a page walk and the populated page table caches for Intel and AMD.

flushing the TLBs on context switches. Contemporary CPUs usually integrate MMUs with a

TLB hierarchy of two levels. The first-level TLB usually contains several tens of entries while

the second level holds from several hundreds to a few thousand entries. For instance, a modern

CPU of the x86_64 ISA, Intel Broadwell, integrates a 64-entry first-level TLB and a 1536-entry

second-level TLB. Though translations that hit in the TLB hierarchy are fast, walking the page

table adds a significant overhead.

Page-Structure Caches: To reduce the overhead of page walks, commercial vendors integrate

dedicated caches for the rest of the levels of the page table (besides the TLBs which hold entries

of the first level only). The observation is that the temporal locality in page walks is higher for

the upper levels of the page table. For example, a page walk to two consecutive pages in the

virtual address space will likely share the same three entries of the upper levels (i.e., PML4, PDP,

and PD). If we could cache these entries, the second page walk would skip the first three levels,

requiring a single memory access for the last level to locate the page table entry (which would be

cached in the TLB). Hence, the two major chip vendors of the x86_64 instruction set architecture,

Intel and AMD, integrate dedicated caches for the upper levels of the page table. We explain both

designs below.

Intel’s terminology for these caches is paging-structure caches (PSCs). Just like the TLBs, these

caches are accessed with virtual addresses. There is a dedicated PSC for each upper level of the

page table (i.e., PML4, PDP, and PD). A PSC for the last level, PML4, contains entries of the
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PML4 page, whereas a PSC for the second level, PD, contains entries of PD pages. Figure 2.4a

shows an example of a page walk operation. The content of the PSCs after the walk is shown

in Figure 2.4b. Each entry in the cache contains a tag, colored in white, and its associated data,

colored in blue. The tags are required to uniquely identify an entry in the page table, which varies

depending on the page table level. For instance, only the PML4 bits are needed for the PML4

cache as there is a single PML4 page. In contrast, a PD page requires all three sections of the

virtual address (i.e., PML4, PDP, and PD bits) to uniquely identify a PD entry. The data of a PSC

entry is the page entry (e.g., a PD entry) identified by the tag.

Upon a TLB miss, prior to the page walk operation, the MMU checks all three PSCs. The MMU

then selects the entry from the cache hit with the longest tag. For example, if there is a hit in

both the PML4 and PD caches, the MMU prioritizes the page entry from the PD cache. A hit in

a paging-structure cache provides the physical address of the next level, starting the page walk

operation from aforesaid level and skipping all previous levels. A page walk that hits in the PD

cache requires a single memory reference, instead of the initial four. Similarly, page walks that

hit in the PDP and PML4 caches require two and three memory references respectively.

AMD CPUs implement a page-walk cache (PWC). A PWC tags its entries with physical addresses.

In this design, all the three upper levels of the page table share the same PWC. The content of a

page-walk cache after the page walk operation (of Figure 2.4a) is show in Figure 2.4c. The tag

of a PWC entry, colored in white, is the full physical address of its associated page entry. For

example, the first valid entry’s tag contains the physical address of the PML4 entry. The physical

address is composed by adding the PML4 bits 0b3 to the page frame number of the root page

(stored in CR3). The data content of the entry, colored in blue, points to the page frame number

of the page in the next level (i.e., a PDP page).

In AMD’s implementation, the page walk operation starts from the root page as in the original

page walk. The reason is that the PWC is tagged with physical addresses. Upon a TLB miss, the

MMU generates the physical address of the target PML4 entry. Instead of accessing the memory,

the MMU first check the page-walk cache. Upon a hit, the page frame number of the next level is

obtained from the cache. The physical address of the next level is subsequently composed by

adding the aforesaid page frame number the bits of the PDP bits. The MMU checks again the

PWC before accessing the memory. This operation continues recursively until the page frame

number of the page table entry is generated or a miss in the PWC arises, falling back to the

conventional page walk and issuing a reference memory. In the ideal, all the entries of the upper

levels of the page table reside in the PWC, requiring a single memory reference to resolve the

page walk.

In short, both major x86_64 chip vendors integrate dedicated caches for the upper levels of the

hierarchical page table. Intel integrates page-structure caches (PSCs), which are partitioned per

level and are accessed with virtual addresses. Therefore, one could look at the PSCs as TLBs

for the upper levels of the page table. In contrast, AMD integrates a page walk cache (PWC),

which is shared among all the upper levels and is accessed with physical addresses. Therefore,
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one could look at a PWC as a dedicated data cache; much like an L1 data cache for translations.

Huge Pages: A memory management unit probes the translation look-aside buffer (TLB) on

every memory reference. Hence, TLBs are usually kept small to ensure fast access and affordable

power dissipation levels. To increase the translation coverage of the TLB or TLB reach (i.e., the

number of entries times the page size), commercial chip vendors have introduced huge pages.

For instance, x86_64 and ARMv8 ISAs support 2MB and 1GB pages in addition to the 4KB base

page size. A single TLB entry of a 2MB page can potentially provide the same reach as a TLB

of 512 entries of 4KB pages. Hence, huge pages increase the TLB reach without increasing the

number of the TLB entries. Furthermore, using huge pages decreases the number of memory

references of page walks. The reason is that huge pages are generated by allocating contiguous

base page sizes. For example, a 2MB page requires a Page Table page (PT), fully populated of

PTEs pointing to a contiguous range of physical addresses. Because the page frame pointed by

the PTEs are contiguous, the physical address of the page can be obtained from a single PTE.

Therefore, the page of the previous level (i.e., page directory or PD) can directly point to the

page frame stored in the first PTE (which points to a contiguous page of 2MB), skipping the last

level and achieving a page walk of three memory references. Similarly, a 1GB page requires a

PD page fully populated of entries pointing to a contiguous range of 2MB pages. In this case, the

previous level (i.e., page directory pointer or PDP) can directly point to the page frame stored in

the first PD entry (which points to a contiguous page of 1GB), skipping the last two levels and

achieving a page walk of two memory references.

Furthermore, the existence of multiple page sizes complicates the design of the TLB. TLBs are

tagged with the virtual page number, which depends on the size of the page. Unfortunately, the

MMU does not know a priori the size of the virtual page, making the standard set-associative

indexing of memory structures hard. Computer systems have traditionally solved this problem by

either integrating an TLB per page size or by implementing a fully associative TLB. For instance,

Intel CPUs (x86_64) integrate a TLB per page size, whereas Oracle SPARC CPUs (SPARCv9)

implement a fully associative TLB. Alternatively, one can virtualize different page sizes in the

same set-associative TLB by probing the cache with multiple virtual page numbers (one per

page size). However, this approach significantly increases the TLB hit latency as the virtual

page numbers have to be probed sequentially. An example of such design is the second-level

TLB in the Intel Haswell and Intel Broadwell processors, which stores pages of 4KB and 2MB

simultaneously. Nevertheless, both processors still integrate a TLB per page size for the first

level of their TLB hierarchy.

Overview: Figure 2.5 presents an overview of all the hardware components of the MMU and its

interaction with the OS data structures (i.e., the page table). In summary, a address translation

process involves the following workflow. when the process running on a CPU core references a

memory address, the core sends the virtual address to the memory management unit. The MMU

then probes the first level TLB. Upon a hit, the page frame number is appended to the page offset

bits to form the full physical address which is then returned to the core. A TLB miss triggers a

probe operation in the second-level TLB, the S-TLB. An S-TLB hit results in the same action
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Figure 2.5 – Overview of the address translation process.

as a TLB hit. Upon an S-TLB miss, a page walk operation begins. First, the MMU probes the

page-structure caches (PSCs). Upon a hit in the any of the levels, the page walker starts walking

the page table from the appropriate level (the level of the PSC that returns a hit), and skipping

the previous levels. In the case that probing the PSCs results in no hits, the page walk operation

starts from the root page of the page table. The bits of the virtual address that index the root page

are added to the the content of the CR3 register. Then, the page table walker (PTW) references

an entry of the root page or PML4. The PTW recursively performs the same operation in all

the levels of the page table until an invalid entry is found, or the last level is reached and the

PTE is obtained. If the PTE entry is valid, the page frame number stored in it is appended to the

page offset bits to form the physical address. Then, the MMU returns the physical address to the

core. As shown in the workflow, translating an address involves a significant overhead when the

translation information is not found in the TLBs.

2.3.2 Segmentation

As nearly all computer systems today employ paging, we will briefly explain the other implemen-

tation of virtual memory, segmentation.

In a system that implements segmentation, the virtual address space comprises a collection

of variable-sized address spaces called segments. Different segments usually accommodate

semantically disparate parts of a program such as procedures, heap, stack, etc. For example,

the Algol compiler of the Burroughs B5000 generated segments containing procedures and data

25



Chapter 2. Virtual Memory 101

arrays. In segmented systems, a virtual address is a pair of the form (i,x), where i indicates the

segment identifier and x is the line address within the segment. Analogous to the page table in

paged virtual memory, the translation information is stored in a segment table. The segment

table is indexed with the segment identifier. Each entry is the segment table contains the physical

address of the start of the segment, called base, the maximum value of the line address within

the segment, called limit, and control access information. Upon a memory access, the memory

management unit references the segment entry. If the line address x is within the limit value, the

full physical address is generated by adding the line address bits to the base address. Instruction

set architectures that support segmentation usually provide hardware registers to store segment

entries and avoid referencing the segment table.

Segmentation simplifies the task of sharing modularized program components (e.g., procedures)

across different programs, by simply mapping a segment into a program’s address space. In

contrast, paged-based virtual memory exposes a single address space broken down into pages,

which lack any semantic information of the program, making the sharing of components harder.

Unfortunately, managing the physical memory at variable-size granularity complicates the storage

allocation problem. Indeed, segmentation has shown to exhibit the external fragmentation

problem [55]; where though there is enough physical memory available, there is no single

contiguous chunk of physical memory of the segment’s size. In turn, though early systems

implemented pure segmentation, such as Burrough’s B5000, current ISAs (e.g., PowerPC, x86)

only support segmentation on top of paging. We will now explain the x86 (32 bit) ISA virtual

memory implementation.

x86 Segmentation

Intel’s segmentation on top of paging implementation first appeared in the Intel 80386 processor.

The x86 (32 bit) ISA supports two different modes of operation: real mode and protected mode.

The real mode does not support virtual memory and is used at early boot time or to support legacy

code. This mode allows for a linear physical address space of 20 bits (up to 1MB of addressable

memory). The 20-bit virtual addresses are stored in segment registers. The 16 most significant

bits of the 20-bit address space is the segment identifier. Each segment in real mode is of 64KB

in size. Hence, to compute the linear physical address, a 16-bit offset is always added to the

segment identifier.

The protected mode implements segmentation on top of paging. In this mode, a virtual address

consists of a 16-bit segment identifier and a 32-bit segment offset (up to 4GB of addressable

memory). Segment identifiers are stored in the segment registers. Starting from Intel 80386,

the x86 ISA integrates six segment registers: CS, DS, ES, SS, FG, and GS. Although segment

registers can be explicitly referenced in the program, the ISA selects registers by default (unless

other registers are explicitly referenced). For example, for an instruction fetch the code segment

(CS) is selected by default, while any stack operation automatically selects the stack register (SS).
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In x86, there are two segment tables, a local descriptor table (LDT) and a global descriptor table

(GDT). The LDT is supposed to contain segments which are private to a program, while the GDT

usually contains global segments. The 13 most significant bits of the bit segment identifier are

used to index the segment tables. The 2nd bit of the segment identifier is used to decide which

of the two segment descriptor tables to index. The entries in the descriptor tables contain the

segment’s linear base address as well as the limit and access control information. The segment

registers contain both the segment identifier as well as its descriptor table entry for fast access.

The segment base address is added to the segment offset to generate the virtual address. Then,

the virtual address is translated using paging as explained in the previous section.

In Intel’s x86 64-bit ISA, x86_64, a virtual address consists of a 16-bit identifier and a 64-bit

segment offset. However, the ISA exposes a flat virtual address space by hardwiring to zero the

segment registers CS, SS, DS, and ES. Essentially, the virtual address is the 64-bit segment offset,

which is then translated using paging. Hence, in the x86_64 instruction set architecture paging is

the only translation mechanism.

2.3.3 Virtual Memory in other ISAs

Though we have explained the virtual memory implementations of today’s most ubiquitous ISA,

x86_64. However, other instruction set architectures such as ARMv8 and SPARCv9 exhibit

significant implementation differences of virtual memory. In this subsection, we will briefly

discuss the aforesaid differences.

MIPS

The 64-bit MIPS instruction set architecture implements virtual memory with paging. The MIPS

R10000 processor implemented this ISA. Though program binaries use 64-bit virtual addresses,

only the 44 least significant bits are used during the translation. The top five most significant

bits of a 64-bit virtual address divide the address space into regions. The top two bits idenfity

user, supervisor, and kernel regions. The other three bits further divide the regions into cached,

uncached, mapped, and unmapped, each with different semantics and behavior. MIPS employs a

linear page table of two or three levels (depending on the operating system). The MMU does

not integrate a hardware page walker. In MIPS, a TLB miss raises an exception in the processor

and an OS handler traverses the table and resolves the translation. The MIPS instruction set

architecture supports multiple page sizes, from 4KB up to 16MB by multiples of four.

Alpha

DEC’s 64-bit Alpha instruction set architecture supports page-based virtual memory. The DEC

Alpha 21164 processor implemented this ISA. Though programs generate 64-bit virtual addresses,

Alpha only supports a 43-bit virtual address space and employs a 3-level hierarchical page table.
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Furthermore, the ISA can address up to 1TB of memory as physical addresses are 40-bit long.

Like MIPS, the MMU does not integrate a hardware page table walker. Instead, a TLB miss

raises an exception in the processor and an OS handler walks the page table and fills the page

table entry in the TLB. Alpha supports huge pages of 64KB, 512KB, and 4MB sizes.

Power

IBM’s 64-bit Power instruction set architecture implements virtual memory with segmentation

on top of paging. An example of such ISA is found in the recent IBM Power8 processor. The

ISA exposes a 64-bit segmented address space where each segment is of 256MB or 1TB in size.

For 256MB segments, the 36 most significant bits of the segment address (the segment address

contains both the segment identifier and offset), are used to index a segment descriptor table.

Similarly, for 1TB segments, the 24 most significant bits of the segment address are used to index

the segment table. To ensure fast access to segment descriptor entries, the processor integrates

a fully associative segment look-aside buffer (SLB). The segment descriptor entry contains the

base virtual address of the segment and the limit, which the memory-management unit uses to

generate a 78-bit linear virtual address.

Virtual addresses are translated to 50-bit physical addresses using paging. The MMU walks the

page table in a two-step process. First, the page table walker traverses a software cache of the full

page table. The software cache is implemented as an eight-way set-associative inverted page table.

Upon a miss in the software cache, an exception is then raised in the processor and an OS handler

walks the full page table and resolves the translation. The Power ISA supports multiple page

sizes: 4KB, 64KB, 16MB, and 16GB. Furthermore, the MMU integrates a translation look-aside

buffer to cache frequently referenced page table entries.

SPARCv9

Oracle’s 64-bit SPARC instruction set architecture called SPARCv9 implements page-based

virtual memory. Oracle SPARC M7 processor implements this ISA. Similarly to x86_64, SPARC

v9 supports a 54-bit subset of the 64-bit for virtual and physical addresses. Page walks are

performed in two steps as in the Power ISA. First, the page table walker traverses a software

cache, called Translation Storage Buffer (TSB), which is a cache of the full page table. The TSB

is implemented as a direct-mapped inverted page table. Then, and upon a miss in the TSB, an

exception is raised in the processor and an OS handler resolves the translation by traversing the

full page table. The SPARCv9 instruction set architecture supports multiple page sizes: 8KB,

64KB, 4MB, 256MB, 2GB, and 16GB.
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ARMv8

ARM’s 64-bit ARM instruction set architecture called ARMv8 supports virtual memory with

paging. ARM Cortex A57 is a processes that implements such ISA. ARMv8 supports two

different subsets of the 64-bit virtual address spaces and two different base page sizes, 4KB

and 64KB. When using the conventional 4KB base pages, ARMv8 supports 39-bit and 48-bit

virtual address spaces. The 39-bit virtual address space employs a 3-level hierarchical page

table, whereas the 48-bit virtual address space uses the same page table as that of x86_64 (a

4-level hierarchical page table). With 64KB base pages, ARMv8 supports 42-bit and 48-bit

virtual address spaces. The 42-bit and 48-bit virtual address spaces use a 2-level and 4-level

hierarchical page table respectively. Similar to x86_64, when using 4KB pages, ARMv8 supports

huge pages of 2MB and 1GB. When using 64KB as the base page size, ARMv8 support a single

huge page size of 512MB. The ARMv8 ISA also integrates hardware cache for the upper levels

of the hierarchical page table. For instance, the ARM Cortex A57 processor includes a page walk

cache per CPU core (similar to AMD’s page-walk cache).

2.4 Unified Virtual Memory

Computer systems with heterogeneous computation units must offer an efficient and familiar

programming model to ensure widespread adoption. A key aspect of the programming model

is the way the memory is exposed between CPUs and the rest of the execution elements in the

system (e.g., GPUs, ASICs). An easy to use and efficient view of the memory is fundamental to

exploit the full potential and maximize the computing efficiency of these heterogeneous systems.

Traditionally, CPUs and specialized computation units (e.g., GPUs, MPUs) have resided in

separate address spaces [141, 144]. In this programming model, data needs to be explicitly

copied with custom APIs, not only generating redundant data but also requiring manual data

consistency maintenance. Although copying array-based data structures is trivial, pointer-based

data structures (e.g., linked lists, trees) require error-prone and explicit pointer transformations.

Additionally, for conventional physically addressed computation units, data needs to be pinned in

memory, which can lead to poor performance [144]. Furthermore, expensive OS intervention is

inevitable and may even diminish the gains of specialization [43]. In short, a separate address

space and physical addressing do not provide an efficient and simple to use programming model.

Initiatives in industry such as the Heterogeneous System Architecture (HSA) Foundation, a

consortium founded by AMD, ARM, Qualcomm and Samsung among others, are proposing

a shift towards unified virtual memory between any computation unit in the system [85]. In

this programming model, a pointer is equally valid on the CPU and on the other computation

units, simplifying data sharing and avoiding multiple data copies. Furthermore, virtual memory

allows for efficient fine-grained memory accesses (e.g., pointer chasing) and transparent storage

allocation and protection mechanism. The end result is that virtual memory provides a familiar

and powerful abstraction to programmers and operating systems alike. All these benefits have led
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commercial GPUs to adopt an HSA-compliant unified virtual memory, beginning with AMD’s

Carrizo chip [174]. Given the benefits of HSA-style unified virtual memory and its early adoption

into commercial products, we expect future computation units to also follow this integration path.

The implication of unified virtual memory is that any computation element in the system has to

efficiently translate addresses spanning a distributed physical memory of hundreds of gigabytes

to a few terabytes.

As explained in earlier parts of this chapter, CPUs support virtual memory by integrating per-core

memory-management units. Though translations served by the TLBs achieve good performance,

a miss in the TLB incurs in an expensive page table walk. Unfortunately, as large memories are

beyond the reach of contemporary TLBs [22, 107], a significant fraction of translations require a

page walk. As page table entries are arbitrarily scattered across memory chips, page table walks

require expensive cross-chip traffic for each of the levels of the page table [70], making page

walks a severe performance bottleneck.

Specialized computation units currently support virtual memory differently. For instance, the most

recent integrated GPUs [174] are fully compliant with the HSA specification and therefore support

virtual memory. Integrated GPUs reside in the CPU chip and translate virtual addresses through a

centralized I/O memory management unit (IOMMU), recently introduced in commercial CPUs to

allow devices to translate addresses. These IOMMUs integrate IOTLBs and a hardware page table

walker. Although hits in the IOTLBs achieve a relatively low translation overhead, a page walk is

an order of magnitude higher than in the CPU cores [166]. The reason is that the IOMMU’s page

walker cannot access the CPU’s cache hierarchy when walking the page table. As every memory

reference during a page walk involves an access to main memory, page walks are an even more

severe performance bottleneck than in CPUs.

Other specialized architectures such as FPGAs have a basic form of virtual memory support.

The recent prototype of Intel-Altera’s Heterogeneous Architecture Research Platform (HARP)

employs a static 1024-entry TLB with 2MB pages (up to a TLB reach of 2GBs) to support virtual

memory for user-defined logic blocks [153]. Such a static TLB approach requires pinning pages

in memory, while TLB refills mandate running an expensive kernel driver in the CPU. This

approach performs poorly when the TLB reach does not cover the entire memory. Alternatively,

and similarly to the integrated GPUs mentioned above, FPGAs (or ASICs) could employ the

IOMMU of the CPU to walk the page table. While this approach removes the overhead of running

the kernel driver and avoids the need for a custom API, page walks would still be expensive (due

to the reasons explained above). Furthermore, specialized computation units residing outside

of the CPU chip (i.e., discrete computing elements) would require expensive cross-chip traffic,

further increasing the overhead of page walks.

A more sound approach to support virtual memory is to integrate a complete memory management

unit (MMU) per specialized computation unit. Each MMU with its own hierarchy of TLBs, a

page walker, and page table caches. Though an improvement over the previous approaches, its

performance is still limited by the frequency of page walks. Unfortunately, as large memories are
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beyond the reach of contemporary TLBs [22, 107], a significant fraction of translations require

a page walk. The distributed nature of modern large memory systems, makes page table walks

require costly cross-chip traffic for each of the levels of the page table [70].

In summary, unified virtual memory provides a global view of a large memory across all the

computing elements in the system, offering an efficient and familiar programming model. Unfor-

tunately, modern memory capacities along with the distributed nature of the memory are stressing

the traditional virtual memory mechanisms that have served us so well in the past. Therefore,

we identify page walks as the critical performance bottleneck in computer systems that support

unified virtual memory.

2.5 This Thesis

In this thesis, we identify page walks as a critical performance bottleneck in virtually addressed

execution units such as CPUs, GPUs, or MPUs, and propose mechanisms to eliminate the page

walk overhead. We focus on page-based virtual memory as nearly all the systems implement it,

and the x86_64 instruction set architecture as it is the de facto ISA in datacenters. Furthermore,

the evaluation of our translation mechanisms focus on memory-side processing units (MPUs)

as MPU-capable systems stress the conventional translation mechanisms the most; though our

translation mechanisms are widely applicable to any other context such as CPUs.
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Page-based virtual memory splits the address space into fixed-size virtual pages. Each virtual

page is mapped on demand into a page frame in physical memory. The process of figuring out

the page frame that a given virtual page maps to is called address translation. A priori, there

is no restriction on the virtual to physical mapping; a virtual page can potentially map to any

page frame. In the 1960s, when virtual memory was invented, a machine could integrate a few

MBs of memory. For instance, in a machine integrating 2MB of physical memory (e.g., the

General Electric GE645) and assuming 4KB base pages, a virtual page could be found in any

of the 512 possible locations. Today, as DRAM has continuously improved in density and cost

at a rate similar to Moore’s law [69], a computer system today can perfectly integrate few TB

of physical memory (e.g., HP DragonHawk integrates 6TB). For example, in a 2TB computer

system, a virtual page can be found in any of 512 million possible locations! Though the number

of possible locations has increased by 6 orders of magnitude, we still use the same extreme

mapping flexibility as when virtual memory was invented back in the 1960s.

Though extremely flexible, this fully associative mapping places translation on the critical path

of every memory access. As any mapping is possible, a memory access cannot begin until

the translation finishes. Interestingly, several studies have recently exploited operating system

facilities such as huge pages, buddy allocators, and memory compactors that by construction

allocate contiguous page frames to contiguous virtual pages [139, 140]. The existence of natural

contiguity generated by the OS is a first indication that the page placement flexibility provided by

full associativity is not fully employed. Hence, we believe that the traditional full associativity of

virtual memory should be revisited.

The other end of the spectrum is to completely eliminate the associativity of virtual memory

and enforce a direct mapping between virtual pages and page frames. Since now a virtual page

can only map to a single page frame, the address translation and data fetch are independent

and can proceed in parallel. Unfortunately, conventional wisdom dictates that using a direct

mapping creates an excess of page faults, due to multiple virtual pages mapping to the same page

frame. However, this belief is merely intuition, as until this date there exists no study on VM
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Table 3.1 – Workload description.

Workload Description

Cassandra NoSQL data store running Yahoo’s YCSB.

Memcached Cache store running Twitter-like workload [121].

TPC-H TPC-H on MonetDB column store (Q1-Q21).

TPC-DS TPC-DS on MonetDB column store (Queries of [114]).

MySQL SQL DBMS running Facebook’s LinkBench [62].

RocksDB Store engine running Facebook benchmarks [63].

associativity, unlike caches, which share some organization aspects and for which such a study

has existed for three decades [83]. Hence, it is clear that a study of VM’s associativity has the

potential to uncover significant insights and optimization opportunities for address translation.

In this chapter, we perform an associativity study of VM (i.e., the number of locations that a

virtual page can map to in the physical memory) across a variety of scenarios by classifying

the page faults using the classic 3C model originally developed for caches [83]. The study

demonstrates that the full associativity of VM is unnecessary, and only a significantly modest

associativity is required. We conclude that capacity and compulsory misses—which are unaffected

by associativity—dominate, while modest associativity is sufficient to eradicate conflict misses.

More specifically, for working sets that are memory resident, compulsory misses dominate when

the VM associativity equals the number of processes executing in the system. For working sets

that exceed the memory size, capacity misses dominate and grow as a function of the working set

size. In contrast, conflict misses become scarce once the associativity of virtual memory matches

the number of processes in the system, and virtually disappear after the first few additional ways.

Essentially, we make the observation that one can think of memory as just a fully associative

software-managed virtually addressed cache, where the tags are the page table entries and the

data are the page frames. Fundamentally, our associativity trends for VM match prior work on

set-associative caches [35, 83]. To provide much faster translation times architects could exploit

the modest associativity requirements of virtual memory. Though in a completely different

context, our work is in spirit similar to that of three decades old work on caches [81]; showing

that set-associative or direct-mapped caches can provide nearly all the flexibility benefits of full

associativity with much faster cache access times.

The rest of this chapter is organized as follows. Section 3.1 introduces the methodology of

our VM associativity study. Section 3.2 presents the associativity results. We then discuss the

implications of the results in Section 3.3 and finally conclude with a summary of the chapter in

Section 3.4.
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3.1 Methodology

3.1.1 3C Model

In this chapter, we employ the 3C model—initially developed for caches [83]—to study VM

associativity. In this context, associativity means the number of possible locations—page frames—

a given virtual page can map to. This model classifies misses (i.e., page faults) into three

categories: conflict misses, capacity misses, and compulsory misses. Conflict misses arise due to

too many active pages mapping to a fraction of the memory sets. Capacity misses arise due to a

fixed memory size. Compulsory misses inevitably occur on the very first access to a page.

We calculate the contribution of each of these components as follows. First, the conflict miss

rate is the memory’s miss rate less the miss rate of a fully associative memory of the same size.

Second, the capacity miss rate is the fully associative memory’s miss rate less the miss rate of an

infinite memory (one that never replaces a page). Finally, the compulsory miss rate is the infinite

memory’s miss rate, which is never zero because the first reference to a page still generates a

miss (i.e., a page fault).

We assume virtual pages and page frames of 4KBs (like in x86_64), LRU replacement policy, and

the standard method of computing the index by selecting the least significant bits of the virtual

page number. We employ this methodology for the results of Section 3.2.

3.1.2 Workloads

To simulate real-world scenarios in our study, we select a set of representative server workloads,

summarized in Table 3.1. We include two cloud workloads from CloudSuite [66], Cassandra

and Memcached, an online transaction processing (OLTP) workload [62], MySQL, two online

analytical processing (OLAP) workloads [29], TPC-H and TPC-DS, and a widely-used storage

system workload [57], RocksDB.

3.1.3 Traces

We collect memory traces using the Pin binary instrumentation tool [124]. For workloads

with fine-grained transactions (i.e., Memcached, RocksDB, MySQL, and Cassandra), the traces

contain the same number of instructions as the application executes in 60 seconds without Pin. For

analytics workloads (i.e., TPC-H and TPC-DS), we instrument the entire execution. We extract

the ASID bits and the virtual address of each memory reference, concatenate both [23, 178],1

and use it to probe a set-associative memory structure, to observe and classify the misses.

For the associativity experiments in Section 3.2, we tune all the workloads to have a resident

set size (RSS) of 8GB. In other words, the allocated physical memory for all the processes of

1The final virtual address consists of: ASID ⊕ VPN ⊕ Page Offset.
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a given workload is 8GB. For single-process runs, a single process has an RSS of 8GBs. For

two-process runs, each of the processes has an RSS of 4GB. The same scaling applies for the

runs with four and eight processes. This way we guarantee that only the increase in the number

of processes impacts the miss rate. To vary the memory size to dataset size ratio, we vary the size

of the set-associative memory structure. The reason the datasets are not larger than 8GBs is to

make sure that the workloads have enough time to touch a significant fraction of the memory

throughout the trace.

We collect the traces on a dual-socket server CPU (Intel Xeon E5-2680 v3) with 256GB of

memory, using the Linux 3.10 kernel and Google’s TCMalloc [75]. Address space randomization

(ASLR) is enabled in all experiments.

3.2 Evaluating Associativity

We now study the associativity in virtual memory across a wide range of scenarios. First, we

consider the case where there is a single process taking up all the available physical memory [22,

79]. This scenario is typical of deployments for first-party workloads with tight latency constraints.

We refer to this scenario as single-process in-memory. Then, we examine an scenario where there

is a single process whose working set is larger than the physical memory [56, 57, 113]. This

scenario is typical of the backends of first-party workloads. For example, Facebook employs

an RDBMS with a storage engine optimized for SSDs [57]. We refer to this scenario as single-
process out-of-memory. We then consider the case where there are multiple processes sharing the

physical memory. This scenario is typical of cloud server systems executing third-party workloads

(e.g., Amazon AWS). The aggregated working sets of the third-party workloads can either be

memory-resident or larger than memory. We refer to these two scenarios as multi-programming
in-memory and multi-programming out-of-memory respectively.

3.2.1 Single-Process In-Memory

Fig. 3.1 shows the associativity study’s results for three single-process workloads: Memcached,

RocksDB, Cassandra, TPC-H, TPC-DS, and MySQL. The y-axis breaks down the total misses

into the three distinct miss classes. Each category on the x-axis corresponds to the ratio between

the size of the physical memory and the size of the application’s working set. For example, 8×
indicates that the memory is eight times larger than the application’s working set. Similarly, 1/2×
means that the application’s working set is twice the size of the memory. In this study, we collapse

the results for 8× to 1× because their high similarity results in visually identical representations;

each case represents a fully in-memory scenario. Furthermore, within each working set category,

the x-axis sweeps through different VM associativities, from direct-mapped (i.e., one way) to

32-way associative.

Even with a simple direct-mapped translation, compulsory misses represent 99.9% of all the
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Figure 3.1 – Overall miss ratio broken down into compulsory, capacity, and conflict misses.

misses (except for MySQL which is 95%). There are naturally no capacity misses as the working

set fully fits in memory. Conflict misses are extremely scarce. For example, Memcached using

the direct-mapped configuration achieves a conflict miss rate in the order of one miss per 108

memory accesses. Additionally, using 2 ways removes all Memcached’s conflicts for the 8×, 4×,

and 2× cases, while 4 ways are required for the 1× case (where the memory size is equal to the

size of the working set).

For in-memory scenarios, page conflicts arise because the virtual address space of server applica-

tions is particularly sparse; there are many virtual segments scattered all over the address space.

For example, Java processes exhibit many virtual segments due to the dynamic nature of the JVM.

This behavior is best observed in the case of Cassandra, which exhibits direct-mapped miss rates

in the order of one miss per 107 and 106 memory accesses for the 8×–2× cases and the 1× case

respectively. However, Cassandra’s conflict misses drop rapidly as associativity increases and

using 4 ways removes all the conflicts for the 8× and 2× cases, while 8 ways are required for the

1× case. MySQL also exhibits a slighly higher fraction of conflict misses with direct-mapped as

it heavily references several virtual segments (e.g., heap, buffer pool). MySQL’s conflict miss

rates are in the other of one miss per 108 and 106 memory accesses for the 8×–2× cases and the

1× case respectively. However, the conflict rates of MySQL drop fastly as 2 ways removes all

the conflicts for the 8× and 2× cases, while 8 ways are required for the 1× case.

Overall, for single-process in-memory scenarios, compulsory misses clearly dominate all the

misses even with the direct-mapped VM configuration. More specifically, direct-mapped makes

compulsory misses represent 99.9% (95% for MySQL) of all misses. Furthermore, conflict misses

become negligible with the addition of the first few ways, achieving with 4 ways a virtually zero

conflict miss rate in the order of one miss per 108 memory accesses in the worst case across all

workloads. The observation that conflict misses drop rapidly with associativity has also been

shown for caches [35, 83].
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3.2.2 Single-Process Out-of-Memory

In contrast to the in-memory scenarios, when the working sets do not fit in memory (1/2×, 1/4×,

1/8× cases) capacity misses grow with the dataset size. Naturally, the fraction of compulsory

misses becomes less significant and its contribution to the miss ratio drop. Although conflict

misses are more significant than in the in-memory scenarios, conflicts drop sharply after the

addition of 2-4 ways, and become generally less significant as the dataset size increases—when

capacity misses grow.

For Memcached and RocksDB, though more significant than in the in-memory scenarios, conflict

misses drop fast after 2-4 ways, while the contribution of conflict and compulsory misses drop

as the dataset sizes increases. Naturally, when the ratio between dataset size and memory size

significantly grows, pages do not fit in memory with any associativity. Cassandra and MySQL

follow similar trends: The contribution of compulsory misses drops as capacity misses arise,

while conflict misses drop sharply after the addition of few ways, 2-8 ways in this case. The only

difference with Memcached and RocksDB is that the contribution of conflict misses increases as

the dataset size grows. Nevertheless, the reason is that each transaction in Cassandra and MySQL

is an order of magnitude longer, due to the more complex software stacks, and therefore only a

fraction of the total dataset is referenced during the simulated memory trace. In the impractical

case of simulating a longer trace, all the pages would be touched, triggering capacity misses and

making the trends look exactly the same as for Memcached and RocksDB. In any case, the trace

is long enough to show that conflict misses drop sharply with the addition of a few ways.

TPC-H and TPC-DS, the only analytics workloads, show similar trends: The contribution of

compulsory misses drops as capacity misses arise, while conflict misses drop sharply after the

addition of few ways, 2-4 ways in this case. Furthermore, the contribution of conflict misses

drops as the dataset size grows. Interestingly, TPC-H and TPC-DS, both running on MonetDB,

exhibit an anti-LRU behavior: Conflict misses tend to slightly grow as associativity increases. In

our case, we classify capacity misses as the increase in misses with respect of the best performing

case (which is full associative for almost all cases). For example, 2 ways for TPC-H in the 1/4×
case and 4 ways for TPC-DS in the 1/8× case. Nevertheless, these results also confirm that full

associativity is not beneficial. Note that the results for the conflict misses are conservative as

we run the TPC-H and TPC-DS queries once. Hence, all the database tables referenced a single

time during the memory trace that end up being evicted from the memory, will be classified as

capacity misses the next time the aforesaid tables are accessed. Lowering the contribution of

conflict misses even more.

Overall, although conflict misses are more significant than in the in-memory scenarios, conflicts

drop sharply after the addition of 2-4 ways and become less significant as capacity misses grow.

With 16 ways, conflict misses represent ∼ 1% of all the misses in the worst case across all

workloads. Fundamentally, all these results corroborate seminal work on caches [83].
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Figure 3.2 – Overall miss ratio broken down into compulsory, capacity, and conflict misses.
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3.2.3 Multi-programming In-Memory

Fig. 3.2 presents the associativity results for multi-programming scenarios. We take each of

the workloads, Memcached, RocksDB, TPC-H, TPC-DS, MySQL, and Cassandra, and vary

the number of processes, from 2 to 8, while keeping the aggregate dataset size the same with

respect to the single process scenarios. For example, for the 1× case in Fig. 3.1, the dataset of a

single process equals the size of the memory. In Fig. 3.2, for two processes, each of them shares

the same physical memory, and hence the working set of each process is half the size of the

physical memory. The same applies with four processes, each of their working sets consumes

only a quarter of the physical memory. We thus guarantee that only the increase in the number of

processes has an impact on the associativity.

For the in-memory scenarios (8×–1× cases), once the associativity equals the number of pro-

cesses, compulsory misses represent 99.9% of all the misses for Memcached, RocksDB, Cassan-

dra, and MySQL. For TPC-H and TPC-DS, 2 ways per process make compulsory misses 99.9%

of all the misses. Hence, 1 or 2 ways per process (depending on the workload) makes conflict

rates match that of the single process workloads in a direct-mapped configuration. Increasing the

associativity further makes conflicts virtually disappear after the first few additional ways. For

instance, for Memcached, with 8, 16, and 32 ways, the conflicts are in the order of a single miss

per 109 accesses for 2, 4, and 8 processes, respectively. Cassandra requires 4, 8, and 8 ways to

achieve a miss conflict rate of one miss per 109 accesses for 2, 4, and 8 processes, respectively.

The trends are similar for TPC-H, TPC-DS, and MySQL. For example, even though two ways are

required for TPC-H to make compulsory misses 99.9% of all the misses, similarly to Memcached

and Cassandra, 4, 16, and 32 ways achieve a miss conflict rate of one miss per 109 accesses for 2,

4, and 8 processes, respectively. To put these miss rates into perspective, the time required to

execute a billion memory accesses is in the order of seconds.

Although Fig. 3.1 and 3.2 show results that use the standard method of computing the index by

using the least-significant bits of the VPN, we also studied an alternative proposal whose strength

is distributing address more evenly over sets [147]. It did not reduce conflicts significantly

due to the fact that page conflicts arise when many pages map to the same memory set, even

when assuming a uniform page distribution. Changing the index function uniformly changes the

distribution, and therefore does not mitigate the issue. Once again this behavior corroborates

prior work on caches [83].

Overall, once the associativity equals the number of processes, compulsory misses vastly domi-

nate. More specifically, a direct-mapped configuration (for Memcached, RocksDB, Cassandra,

and MySQL) or 2 ways (for TPC-H and TPC-DS) makes compulsory misses represent 99.9%

of all misses. Furthermore, conflict misses become negligible with the addition of the first few

ways, achieving with 4 ways per process a virtually zero conflict miss rate in the order of one

miss per 108 memory accesses in the worst case across all workloads.
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3.2.4 Multi-programming Out-of-Memory

For the cases where the datasets do not fit in memory, the trends are similar to the single-process

out-of-the memory scenarios. Capacity misses become more significant as the datasets grow,

making the contribution of conflict and compulsory misses less significant. Furthermore, similarly

to the multi-programming in-memory scenarios, once the associativity equals the number of

processes, the contribution of conflict misses to the total becomes marginal. More specifically,

a single way per process for Memcached, RocksDB, Cassandra, and MySQL, and 2 ways for

TPC-H and TPC-DS, make the contribution of page conflicts similar to the direct-mapped single

process cases. Again, conflicts drop rapidly as in the other cases and with 4 ways per process,

conflict misses are within 1% of the total misses in the worst case for all the workloads.

Interestingly, though single-process out-of-memory scenarios require 16 ways in the worst case,

the multi-programming ones require 4 ways per process only. The reason is that 16 ways are

required for the worst-case scenario, which is MySQL in the 1/8× case. As explained earlier,

MySQL exhibits a large number of compulsory misses even when the workload’s dataset is larger

than the physical memory. This behavior arises due to the complex software stack that each

transaction needs to traverse, which precludes MySQL to touch all its dataset within the duration

of the trace. In the multi-programming scenarios, each MySQL process is concurrently accessing

its dataset and the memory, increasing the contribution of capacity misses to the total miss ratio.

Hence, 4 ways per process are enough to keep conflict misses within 1% of the misses in the

worst case.

Additionally, TPC-H and TPC-DS present an increase in capacity misses with respect to the

single-process scenarios. We have observed that the size of the dataset touched by the queries

increases with respect to the total dataset size as the scale factor of the database drops. Hence,

the aggregated dataset referenced by the TPC-H and TPC-DS queries increases as the number

of processes grow. One of the reasons is that MonetDB uses dictionary compression for strings,

which compresses better for larger scale factors [60].

Overall, similarly to the in-memory case, once the associativity equals the number of processes,

the contribution of conflict misses to the total becomes marginal. More specifically, direct-mapped

or two ways per process (depending on the workload) makes the fraction of conflict misses match

the single-process out-of-memory cases. Conflict misses drop rapidly as in the other cases, and

with 4 ways per process, conflict misses remain within 1% of the total in the worst case for all

the workloads.

3.3 Observations and Implications

Overall, the results demonstrate that the full associativity of virtual memory is unnecessary. Most

importantly, this insight holds across scenarios that span single process, multi-programming,

in-memory and out-of-memory datasets. The trends clearly indicate that compulsory and capacity
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misses dominate, and conflict misses, which associativity alleviates, drop rapidly as the associa-

tivity increases. More specifically, for in-memory scenarios, compulsory misses dominate when

associativity equals the number of processes in the system. For out-of-the-memory scenarios,

capacity misses dominate and become more important as dataset sizes increase. In this case,

conflict misses become scarce once associativity matches the number of processes, and virtually

disappear after the first few additional ways.

To understand how modest the associativity requirements are, we should take a look at what

modern systems provide. For instance, the latest server specification from the Open Compute

Project [164] stipulates 128GB as the minimum memory capacity. Assuming 4KB pages, a fully

associative VM would provide 32M ways. As conventional systems are reported to have around

100 processes concurrently running after booting [9], assuming a system with 128 processes and

an associativity of 16 per process—which is extreme as we have seen that an associativity of 2–4

is sufficient—the total associativity requirements will not exceed 2K ways. Even for a server

with a small amount of memory, the 2K requirement is 16K× less than what full associativity

provides. We expect this associativity gap between what is needed and what is provided to widen

in the future as servers with TBs of memory are becoming ubiquitous [69], while emerging NVM

technologies [1] are expected to be exposed as part of virtual memory (instead of using the IO

block layer) [105].

In this work, we observe memory as just a fully associative software-managed virtually addressed

cache (where the tags are the page table entries and the data are the page frame). While the

context is completely different, our associativity trends fundamentally match prior literature on

caches [35, 81, 83]. In spirit, this part of our work is similar to that of Mark Hill three decades

ago [81]. Just as the set-associative or direct-mapped caches provide nearly all the flexibility

benefits of full associativity with much faster access times, a set-associative VM can provide all

the benefits of full associativity with much faster translation times.

3.4 Summary

This chapter presented an associativity study of VM across a variety of scenarios. The study

demonstrates that the full associativity of virtual memory is unnecessary, and only a significantly

modest associativity is required. By classifying the page faults using the classic 3C model, we

conclude that capacity and compulsory misses—which are unaffected by associativity—dominate,

while modest associativity is sufficient to eradicate conflict misses. More specifically, for working

sets that are memory resident, compulsory misses dominate when the VM associativity equals

the number of processes executing in the system. For working sets that exceed the memory size,

capacity misses dominate and grow as a function of the working set size. In contrast, conflict

misses become scarce once the associativity of virtual memory matches the number of processes

in the system, and virtually disappear after the first few additional ways. Much like seminal work

on set-associative caches, the modest associativity requirements could be exploited to provide

nearly all the flexibility benefits of full associativity with much faster translation times.
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In this chapter, we exploit the modest associativity requirements in virtual memory to design an

efficient translation mechanism in the context of memory-side processing units (MPUs).

In light of computing demands growing at a pace comparable to Moore’s law, the end of Dennard

scaling, and the slowdown of increasing silicon density have pushed system designers towards

specialized architectures to boost computing efficiency and density. At the same time, the

complexity of increasing the density of conventional DRAM chips, has made memory vendors

to leverage three-dimensional integrated circuits and stack DRAM dies on top of logic. Two

well-known commercial products of such 3D memory technology are Micron’s Hybrid Memory

Cube [127] and Hynix’s High Bandwidth Memory [95]. The combination of substantial benefits

in bandwidth and immense reductions in data movement has created a huge traction with a

myriad of proposals of custom memory-side processing units (MPUs) for various computations

types [10, 71, 111, 130, 145, 146, 176]. Along with the existence of an economic driver for more

efficient processing, there is evidence pointing towards the future adoption of architectures with

MPU-capable memory chips.

A key challenge in exploiting the full potential of these heterogeneous systems is the memory

management between CPUs and MPUs. Industry initiatives such as the Heterogeneous System

Architecture (HSA) Foundation are proposing to unify virtual memory (VM) between CPUs

and any other processing unit in the system [85]. In this model, a pointer is equally valid on the

CPU and MPU, simplifying data sharing and eliminating the need for explicit data copying and

manual data consistency maintenance. In addition, VM enables efficient fine-grained memory

accesses and transparent memory allocation and protection. Essentially, VM provides a familiar

and powerful abstraction to programmers and operating systems alike. All these benefits have led

HSA to adopt unified virtual memory into commercial GPUs, beginning with AMD’s Carrizo

chip [174]. Given the benefits of HSA-style unified virtual memory and its early adoption and

appearance in commercial products, we expect future computation units such as MPUs to also

follow this integration path.

Unfortunately, the benefits of VM come at a significant performance cost. Hardware support for
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address translation in commercial CPUs encompasses both per-core MMUs [47] and centralized

IOMMUs for devices [90], which rely on TLB hierarchies to achieve low translation overhead.

However, large modern memories are beyond the reach of today’s TLBs [22, 139, 140], resulting

in frequent long-latency page walks and valuable CPU time lost. Due to the arbitrary distribution

of page table entries across all the memory chips, page walks involve several chip-to-chip transfers

of tens of nanoseconds per hop [87, 106, 165] for each level of the page table [70], resulting in

unacceptable page walk overheads.

This chapter proposes SAVAgE (Set-Associative VirtuAl mEmory), an efficient translation

mechanism for MPUs that eliminates most of the overhead of page walks. Our translation

mechanism builds on the modest associativity requirements and characteristics of our network

of memory chips. SAVAgE restricts the associativity of VM so that a virtual address uniquely

identifies a memory chip and partition. This characteristic allows MPUs to access the memory as

soon as the virtual address is known. Each memory partition integrates an MMU, which includes

a TLB hierarchy and page table, that translates the virtual address and fetches the data—both

the translation and data are always located in the MMU’s local memory partition. Translation is

fast due to four reasons: First, the translation is completely localized in the partition where the

page frame resides, which allows the data fetch request and its translation always target the same

partition and completely overlap. Second, a memory access within a memory partition is faster

than accessing remote memory partitions, therefore achieving low-overhead page walks. Third,

as the page frame resides in the same partition as data, the data fetch can immediately start after

translation finishes. Last, as a memory partition offers an associativity in the order of hundred

of thousand ways, the number of page faults is virtually identical to full associativity. SAVAgE

achieves low-overhead page walks as the page walk and data fetch operations overlap almost

entirely.

Essentially, SAVAgE turns memory into a virtually addressed software-managed cache, just that

the memory is set-associative as opposed to fully associative. Again, one can think of memory as

a cache, where the data array is the set of page frames, and the tag array is the page table.

The rest of this chapter is organized as follows. Section 4.1 presents background on MPU-capable

memory chips. Section 4.2 introduces the architecture of SAVAgE and Section 4.3 discusses

further considerations. We then describe our methodology in Section 4.4 and evaluate SAVAgE

in Section 4.5. We conclude with a summary of SAVAgE in Section 4.6.

4.1 MPU-capable Memories

3D memory is an emerging promising technology for the memory system. This memory technol-

ogy that vertically stacks multiple DRAM dies on top of a logic layer within a single package,

by leveraging low-latency/high-bandwidth through-silicon vias (TSVs). Two well-known in-

carnations of such 3D memory technology are Micron’s Hybrid Memory Cube (HMC) [127]

and JEDEC’s High Bandwidth Memory (HBM) [95]. Fig. 4.1a illustrates the anatomy of a 3D
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Figure 4.1 – Overview of a 3D memory architecture (a), and proposed and existing memory

network topologies (b), (c), and (d).

memory chip. The chip consists of multiple vertical memory partitions, called vaults. Each vault

is similar to a conventional DDR channel, with its own DRAM controller and signals, and hence

can be accessed independently. Each DRAM controller connects to all the DRAM dies through a

TSV bus. Similar to previous studies, the memory-side processing units (MPUs) are scattered

across the vaults [10, 71, 111, 146], while a network-on-chip (NoC) connects all the vaults to

each other and to the off-package links.

Architectures that deploy 3D memories consist of a pool of CPUs and memory chips.

Fig.s 4.1b, 4.1c, and 4.1d show the memory organizations considered in this paper. The CPU is

connected to multiple memory chips using high-speed point-to-point SerDes links and a packet-

based communication protocol. Fig. 4.1b depicts a star topology where the CPU is connected to a

small number of memory chips [68, 149]. Larger memory systems interconnect dozens of chips

in a daisy chain (Fig. 4.1c), which minimizes the number of links [71, 146], or a mesh (Fig. 4.1d),

which minimizes the number of hops [10, 112].

In these systems, a memory access from an MPU within its memory partition is much cheaper

than accessing a remote one, as the latter involves traversing expensive NoC and cross-chip

interconnects. Fig. 4.2 compares the average end-to-end memory access latency depending on the

target data’s location: 1) same partition, 2) different partition, same chip, and 3) any chip in the

network. The three cases are labeled as Partition, Chip, and Network respectively. Unsurprisingly,

the location of the data significantly affects latency. Data access in the local partition is the fastest;

accessing a remote partition within the same chip is around 1.4× slower, while accessing remote

memory chips increases the latency by 3.5–10×, depending on the network and memory chip

count. In summary, these results indicate that optimizing for memory access latency requires

MPUs to localize memory accesses within their partitions.

In this thesis, we illustrate and evaluate the benefits of our novel virtual memory subsystem in the

context of memory-side processing units (MPUs). Though we can evaluate our VM subsystem in

any context (e.g., CPUs), we believe MPUs stress the address translation mechanism the most

and hence are the most challenging scenario for the following three reasons. First, the large

number of memory chips and the arbitrary distribution of page table entries make page walks

involve expensive cross-chip traffic. Second, the lack of deep cache hierarchies limits the caching
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Figure 4.2 – End-to-end latency of memory accesses.

of page table entries close to the MPUs. Third, the lean nature of the MPU cores (due to the tight

power and area constraints) precludes integrating expensive hardware to overlap page walks with

useful work. All these aforesaid characteristics of MPU architectures contributes for making

page walks a severe performance bottleneck. As a result, we focus on memory-side processing

units (MPUs) for the rest of this thesis, although our insights and translation mechanisms are

widely applicable to any other context.

4.2 The SAVAgE Architecture

In this section, we investigate the design space for providing an efficient translation mechanism

for the MPUs, given the modest associativity requirements and the characteristics of our network

of memory chips. Then, we propose and describe our solution, SAVAgE.

4.2.1 Placement

As explained before, virtually addressed MPUs require hardware support for virtual-to-physical

address translation. A conventional design integrates an MMU in each MPU, each MPU probes

its MMU on each memory access, and upon a miss in its TLBs, a page walk process beings.

Fig. 4.3a shows a page walk that references a page table entry which resides in another memory

chip and partition. In a system with multiple chips and partitions, this will be the common case.

Blue arrows indicate memory messages related to translation, whereas red arrows are part of the

data fetch. In other words, memory accesses to page table entries are colored in blue, whereas

memory accesses to page frames are red.

There are several problems with the baseline. First, the page table entry that contains the physical

address can be anywhere in the system, involving expensive interconnect traversals that make

page walks costly. Second, the data fetch cannot begin until the translation operation finishes,

adding the translation latency to the data fetch latency. Third, the translation process does not

finish until the page table entry returns to the MPU, even if the page table entry and the target
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(a) Baseline.

(b) Per-Chip MMU.

(c) Per-Partition MMU.

Figure 4.3 – Different translation schemes on 4-chip floor plans. Large squares represent memory

chips. Small gray squares are memory partitions. Translation and memory access messages

appear in blue and red, respectively.

page frame were in the same chip or memory partition. The fundamental problem is that there is

no direct relation between virtual page numbers and page frames, something inherent to fully
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associative virtual memory. The consequence is that there is no expected correlation between the

location of page table entries and page frames, precluding fetching the data before the page table

entry returns to the MPU. Although this design makes sense for fully associative VM, it is not

optimal for a system where VM is set associative.

We now exploit the insight of low-associativity requirements and consider that the memory set

only spans a memory chip. In other words, a virtual address identifies a memory chip uniquely,

and hence we know that the target page frame is somewhere in that chip. Under this constraint,

we can utilize a centralized per-chip MMU, along with a page table and a set of TLBs, as shown

in Fig. 5b. Upon a page walk operation from an MPU, the virtual address is used to access

the per-chip MMU. If the translation is not in the per-chip TLBs, a page walk in the memory

chip begins. When the page walk finishes, the MMU in the memory chip starts the data fetch

immediately, referencing the page frame (which can reside in any of the partitions in the chip).

When the data returns to the centralized MMU, both the page table entry and the data return to

the MPU.

This method is an improvement over the baseline for the following two reasons. First, the

translation and data fetch operations overlap the latency on the interconnect to reach the target

memory chip, as only the virtual address is used to locate the memory chip. Second, the translation

process finishes as soon as the page walk within the memory chip finishes. However, there is

room for improvement. As the virtual address only identifies the memory chip, page frames and

page table entries can be in any memory partition. This placement creates two problems. First,

the centralized per-chip MMU can be located anywhere in the chip, and upon a page walk, the

page table entry could be located in a different partition. Second, the target page frame might

be located in any other partition. Based on the latency results of Fig. 4.2, the overhead could be

significant.

A step further in designing an address translation mechanism tailored to the characteristics of our

system is to co-locate the page table entries and the page frames in the same memory partition,

where memory accesses are faster. In this case, shown in Fig. 5b, a memory set only encompasses

a memory partition. The locality-aware placement of the MMU delivers the best performance

among all the cases. First, the translation and data fetch operation overlap the latency to reach

the memory partition—because both requests go to the same location. Second, the translation

finishes as soon as the page walk finishes (or upon a TLB hit), and since the target page frame is

within the same partition, the data fetch can begin immediately.

Now that we have decided upon the placement of the memory-side MMUs, we need to decide on

what page table structure and TLB hierarchy to employ.

4.2.2 Page Table

Now that we know the location of the memory-side MMUs, the next step is to decide on the page

table structure. There are many types of page tables in the literature, although there are many, the
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Figure 4.4 – Inverted page table performance.

most popular ones are hierarchical and inverted [177]. We choose to use an inverted page table

for the four following reasons. First, inverted page tables do not need to be dynamically resized,

so they are allocated once and pinned contiguously in memory [93]. Second, all the processes

whose pages map to the partition share the same page table. Third, inverted page tables avoid the

need for page walk caches [177]. Finally, when there are no collisions in the inverted page table,

page walks only require a single memory reference.

One of the key parameters of an inverted page table is the ratio of page table entries to the total

number of page frames, also called the load factor [46]. The load factor directly dictates the rate

of collisions (i.e. two virtual page numbers mapping to the same page table entry). Importantly,

given a load factor, the collision rate is not affected by the working set size or access patterns,

assuming uniform hashing [46]. In Fig. 6a, we compare a conventional modulo hash to a stronger

k-bit XOR folding [147], to demonstrate the effects of hashing on page table collisions. As we

have not seen significant differences in workloads, process counts, and memory size to dataset

size ratios, we present an average of all the results. The results indicate that an inverted page

table with a load factor of 1/4 and the fold hash faction practically removes all page conflicts.

To achieve similar conflicts with the modulo hash function we would need a load factor of 1/8.

Therefore, our design uses inverted page table with a k-bit XOR folding hash function and a load

factor of 1/4.

Fig. 6b shows the page walk latency normalized to the latency of a single DRAM access. For our

configuration, the page walk latency is within 1.005× of a DRAM access. The reason the page

walk latency does not directly correlate with the number of memory references per walk is that

we use open addressing for resolving conflicts [177]. In open addressing, upon a collision, we

probe the next entry in the inverted page table, rather than dereferencing a pointer to a new page

table entry, exploiting the locality in the DRAM row buffer [147], and thus reducing the latency

overhead of collisions. Additionally, open addressing removes the pointer per page table entry

required to resolve collisions. Each entry in our page table holds a 36-bit virtual page number

(VPN), a 12-bit address space identifier (ASID), the 36-bit page frame number (PFN), and 12
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Figure 4.5 – Inverted page table structure and the page walk operation.

bits for page flags, fitting in 16-byte entries. We assume 48-bit virtual and physical address as

in today’s mainstream architectures, x86_64 and ARMv8. As we allocate four 16B entries for

each 4KB page, due to the 1/4 load factor, the inverted page table consumes a modest 1.6% of

the physical memory.

Figure 4.5 shows the structure of the inverted page table and page walk operation. At the

beginning, the concatenated ASID and VPN bits are hashed to calculate an index in the inverted

page table 1 . The index is employed to locate an entry in the inverted page table 2 . Upon a

match (otherwise the next index in the page table is accessed) the page frame number is extracted

3 and concatenated with the page offset bits to generate the physical address 4 . The physical

address points to a location in the memory partition.

4.2.3 TLB Hierarchy

Although address translation requires a single memory access in the common case, architects still

want to minimize memory accesses as a matter of principle and therefore conventional MMUs

incorporate a hierarchy of TLBs to cache frequently used page table entries. Fig. 4.6 shows how

the TLB hit ratio scales as the number of entries increase across different process counts. As

our translation performance is less dependent on the TLB’s hit ratio, due to the reduced cost of

page walks, we average the results across all workloads and scenarios, i.e., in-memory resident

and larger than memory working sets. However, we do break down the average results across

process counts as all the processes with pages mapping to the same partition would share the

same MMU (more details on the methodology are found in Section 4.4). Although we expect way

less than 8 processes running concurrently on the MPUs,1 we see that even with eight different

processes, a TLB with 64 entries, which is the usual size of a first-level TLB, achieves a hit

ratio in excess of than 80%. Additionally, increasing the number of entries beyond 1024 gives

1All MPUs running in the same address space are a single process.
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diminishing results, which again matches the size of a conventional second-level TLB. Therefore,

a conventional two-level TLB hierarchy, a first level with 64 entries and a second level with 1024

is a sound approach. As we distribute the TLBs across MMUs, each MMU has its own, the TLB

performance of an MMU is not affected by accesses to other partitions or chips. Hence, the TLB

performance is robust across any memory chip and partition counts.

4.2.4 Putting Everything Together

Now that we have defined the placement of the MMUs, the page table, and the TLB hierarchy,

we provide a walkthrough of the memory-side MMU’s operation in Fig. 4.7, for both TLB hits

and page walks.

In Fig. 4.7a, we look at the case where the TLBs in the memory-side MMU experience a hit. A

request from an MPU arrives at the router of the target partition which forwards it to the MMU

1 . A multiplexer checks whether the message uses virtual or physical addresses 2 . Memory

requests that use physical addresses either come from a CPU core, DMA, or MPU that hit in

its TLB hierarchy.2 In the case of physical addresses, the request is sent directly to the DRAM

controller. In this example, the request uses virtual addresses, hence arriving at the MMU, and

the TLB hierarchy is probed, resulting in a TLB hit 3 . Note that the hit requires both the VPN

and ASID bits to match, which are in the requests. The MMU then appends the offset bits to

the page frame number to create the physical address, creates an MSHR entry tagged with this

physical address, and sends a request to the DRAM controller 4 . When the DRAM controller

finds the address, it sends DRAM commands to fetch the appropriate cache block 5 . When the

reply comes back 6 , the DRAM controller forwards the reply to the MMU. The MMU checks

the MSHRs to see if there is a match 7 , as it might be a reply to a request that used physical

addresses, and then sends the reply back to the MPU, which contains both the data and translation

2MPUs tag requests that use virtual addresses with a cookie.
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(a) TLB hit operation.

(b) TLB miss operation.

Figure 4.7 – Operation flow of memory-side MMUs.

information 8 .

In Fig. 4.7b, the memory-side MMU experiences a miss in its TLB hierarchy, triggering a page

walk. A virtual request from an MPU arrives at the multiplexer 1 and gets forwarded to the

memory-side MMU 2 . The MMU probes its TLB hierarchy, but the page table entry is not

cached 3 . The MMU generates the physical address of the page table entry by adding the output

of the hashing function on the request’s virtual address to the base address of the inverted page

table. The MMU then creates an MSHR entry tagged with this physical address and sends the

request (for the page table entry) to the DRAM controller 4 . When the DRAM controller finds

the address, it sends DRAM commands to fetch the appropriate page table entry 5 . When the

reply comes back 6 , the DRAM controller forwards the reply to the MMU. The MMU checks

the MSHRs for a match 7 . The matching MSHR entry indicates that it was a page walk, and

therefore the MMU generates the request for the actual cache block 8 , and repeats the steps

shown for the TLB hit operation: 9 , 10 , and 11 . Finally, it sends the reply back to the MPU

with the data and translation 12 .

Note that most of the functionality of the MSHRs in the MMU is performed by the request

queues at the memory controller. We could extend the state of the queues and provide the

same functionality. However, we avoid the complexity of extending the memory controller

due to the modest hardware requirements for the MSHRs, 64 to 128 entries [119] assuming

overprovisioning for the worst case, we prefer to avoid the complexity of modifying the memory
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controller. Additionally, to further reduce the already low memory bandwidth requirements of

the page walks, as the TLBs achieve high hit ratios, we indicate to the the memory controller

that the request for the page table entry is 16 bytes, instead of the conventional 64-byte requests.

Current memory controllers of 3D memories already support different request sizes [128].

4.3 Discussion

In this section, we discuss possible concerns and further considerations regarding our translation

mechanism.

4.3.1 Page faults

Upon a page fault triggered by an MPU, we choose to interrupt the CPU to run a handler, as

MPUs may not be capable of running an OS. The memory-side MMU notifies the MPU of the

fault, and then the MPU places a request in a memory-mapped queue indicating the faulting

virtual address and MPU’s id. Then, it raises an interrupt on the CPU. The handler running on the

CPU resolves the page fault and updates both the CPU’s and memory-side MMU’s page table.

All MMU state is exposed through memory-mapped IO with an uncacheable memory policy.

Once the fault is serviced, the handler notifies the appropriate MMU, which resumes execution

and retries the faulting address. Such page fault processing is also employed in today’s integrated

GPU processors [166].

4.3.2 TLB shootdowns

Many ways exist to maintain the memory-side page tables coherent upon TLB shootdowns

initiated by the CPU. Our approach is similar to those used in integrated GPUs: an OS driver

monitors any changes on virtual address spaces shared with MPUs, triggering update operations

for the affected page table entries. Note that the inverted nature of the page tables eliminates any

global coherence activity in the memory network as a virtual page maps to only one partition, and

consequently, page table. Additionally, modifying the desired page table entry requires a single

memory access in the common case, accounting for at most a few hundred nanoseconds. This

additional overhead is not as significant as the TLB shootdown operation itself, which removes the

stale entries in the TLBs of MPUs and CPU cores, and already takes tens of microseconds [135].

4.3.3 Cache hierarchy

In this work, we assume MPUs look like conventional cores, integrating physical caches and an

MMU with TLBs. Upon a TLB miss, the memory-side MMUs reply with the page table entry

and cache block. Then, the MPU stores them in the TLB and data cache respectively. However,

a more natural design, which also avoids TLBs and TLB shootdowns [167] is to use virtual
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caches. Recent practical designs for virtual cache hierarchies [138, 178] would be a perfect fit for

the memory-side MMUs. In this approach, MPUs access the cache with virtual addresses, and

upon a cache miss, the request is propagated to the memory-side MMUs to translate and fetch

the corresponding block. The memory-side MMU would only reply with the data cache block,

without the page table entry, simplifying our design.

4.3.4 Synonyms

In our current design, all the synonyms of a particular page frame need to map to the same

memory set or partition. We believe this is not a significant limitation as it has been already

included in commercial systems [41]. Nevertheless, our page table entries contain the whole page

frame address, and hence with a slight modification in our design, we could enable synonyms

to map anywhere. The only potential consequence is a drop in performance as a synonym page

might map to a page frame residing in another memory partition. However, prior work has already

shown that synonyms are both scarce and infrequent [23, 138, 178], and therefore this overhead

should be negligible.

4.3.5 Multi-level memories

Although prior work on memory-side processing assumes a single level [10, 11, 71, 146], memory

can be organized as a hierarchy, with a die-stacked cache [149, 168] backed up by planar memory.

For hardware-managed caches, the memory-side MMU performs the translation and accesses the

partition, and in case the page frame is not there, the page is fetched from planar memory as part

of the standard cache miss operation. Once the page arrives into the partition, the data is sent

back to the MPU. Note that moving the page from planar memory to the 3D memory does not

affect the page table entry. In software-managed hierarchies [149], MPUs rely on the software

API for explicit migration of pages into the die-stacked memories, as MPUs cannot access planar

memory directly.

4.3.6 Kernel memory

Our simulation infrastructure captures user-level instructions, although we argue that MPUs will

accelerate only user-level not kernel-level code, like all existing custom hardware (e.g., GPU,

FPGA). Nevertheless, our technique should be a great fit for the kernel, as Linux’s memory usage

is almost entirely direct-mapped [126] and memory resident. The tag matching logic of the TLBs

would then require the following simple change. As all the processes share the same kernel

virtual addresses, the logic needs to ignore the ASID bits. This modification is trivial as Linux

partitions the address space into two halves, and hence the tag matching logic just needs to check

the virtual address’s MSB.
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4.3.7 OS support

The OS only needs to guarantee that the virtual page number and the page frame number map

to the same memory set. OSs that support virtual caches already provide this capability (e.g.,

Solaris [41] and MIPS OS [161]). MIPS OS traverses the free list of pages and returns a page

frame that resides in the same memory set as the virtual page. Alternatively, one can associate a

separate free list of pages per memory set, similarly to the facilities that Linux implements for its

libnuma support.

4.4 Methodology

Like most recent work on VM [19, 22, 25, 137, 139, 140, 152], we use trace-driven functional

and cycle-accurate simulation.

4.4.1 Performance

This study does not cover the problem of partitioning applications into CPU-side and memory-

side execution, or specializing the latter in hardware, or interfacing and synchronizing the two

executions [10, 17, 71]. Such problems are out of the scope. To avoid such problems we evaluate

the applications running entirely on the MPUs.

Full-system simulation for events such as TLB misses and page faults is not practical, as these

events occur less frequently than other micro-architectural events (e.g., branch mispredictions).

Hence, we resort to the CPI models often used in VM research [27, 137] to sketch the performance

gains. These prior studies report performance as the reduction in the translation-related cycles per

instruction. As CPI components are additive, this metric is valid irrespective of the workload’s

baseline CPI. We further strengthen this methodology by studying the CPI savings on all memory

cycles, not only on translation stalls (as we overlap translation and data fetch operations). Our

model thus captures both the translation cycles and data fetch cycles, which together constitute

the largest fraction of the total CPI in server workloads [66]. Hence, our results are more

representative of the end-to-end benefits of each technique. The CPI is measured by feeding the

memory traces into our cycle-accurate simulator.

4.4.2 Traces

We collect memory traces using the Pin binary instrumentation tool [124]. For workloads

with fine-grained transactions (i.e., Memcached, RocksDB, MySQL, and Cassandra), the traces

contain the same number of instructions as the application executes in 60 seconds without Pin.

For analytics workloads (i.e., TPC-H and TPC-DS), we instrument the entire execution. We

extract the ASID bits and the virtual address of each memory reference, and concatenate both to

form the final virtual address [23, 178].
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The traces are used for the page table experiments of Section 4.2. We feed the traces into

our inverted page table modeling tool, which allows us to model different load factors and

hash functions. For the TLB experiments of Section 4.2.3 and the performance experiments of

Section 4.5, we tune the workloads to employ datasets of size 32GB and 64GB, depending on the

size of the network. We use 32GB for 4- and 8-chip configurations, and 64GB when using 16

memory chips.

We collect the traces on a dual-socket server CPU (Intel Xeon E5-2680 v3) with 256GB of

memory, using the Linux 3.10 kernel and Google’s TCMalloc [75]. Address space randomization

(ASLR) is enabled in all experiments.

4.4.3 Simulation Parameters

We use the Flexus cycle-accurate simulator [172], with detailed core, MMU, memory hierarchy,

and interconnect models. Following prior work on memory-side processing, which assumes

single-issue in-order cores [10, 71, 146], we model the MPU cores after ARM Cortex A7 [15].

We provision the baseline with a high-end MMU similar to Intel Xeon Haswell [47, 77], with

multi-level TLBs and MMU caches [18, 25]. We assume a 4-level hierarchical radix tree page

table [93] with 48-bit virtual and physical addresses (as in ARMv8 and x86_64). The MMU

supports 4KB, 2MB, and 1GB pages. Page table entries are transparently allocated in the L1-D

cache like in commercial systems [89]. For simplicity, we probe the cache with physical addresses

for the baseline and with virtual addresses when using SAVAgE. We verify that TLB misses never

reference a cache-resident block, and therefore virtual and physical caches behave identically.

Without loss of generality, we model our 3D memory stack as following the organization of the

Micron Hybrid Memory Cube with eight 8Gb DRAM layers and 16 vaults [128], totalling 8GB

of memory per chip. We conservatively estimate the die-stacked memory timing parameters

from publicly available information and research literature [71]. For SAVAgE, we employ a

conventional two-level TLB hierarchy. The SRAM overhead per memory chip is less than 256KB

(partitioned across vaults) for an area of 0.3mm2 in 22nm, corresponding to less than 0.2% of

the area of an 8Gb DRAM die (e.g., 226mm2 [154]). As there are 16 partitions, 512MB each,

SAVAgE provides a VM associativity of 128K ways.

Last, we conservatively assume that page conflicts always generate a page fault to an SSD, taking

32μs to resolve [44]. Table 4.1 summarizes the used system parameters.

4.5 Evaluation

In this section, we perform a quantitative study of the performance of different translation

mechanisms. Additionally, we provide a qualitative discussion on how our translation mechanism

compares with other prior proposals.
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Table 4.1 – System parameters.

MPU logic Description

Cores Single-issue, in-order, 2GHz

L1-I/D 32KB, 2-way, 64B block, 2-cycle load-to-use

MMU Description

TLB

4KB pages: 64-entry, 4-way associative

2MB pages: 32-entry, 4-way associative

1GB pages: 4-entry, fully associative

STLB 4KB/2MB pages: 1024-entry, 8-way associative

Caches

L4: 2-entry, fully associative [25]

L3: 4-entry, fully associative [25]

L2: 32-entry, 4-way associative [25]

Memory Description

MPU chip 8GB chips, 8 DRAM layers x 16 vaults

Networks 4, 8, 12, and 16 chips in daisy chain and mesh

DRAM
tCK 1.6ns, tRAS 22.4ns, tRCD 11.2ns

tCAS 11.2ns, tWR 14.4ns, tRP 11.2ns

Serial links 2B bidirectional, 10GHz, 30ns per hop [106, 165]

NoC Mesh, 128-bit links, 3 cycles per hop

SAVAgE Description

TLB 4KB pages: 64-entry, 4-way associative

STLB 4KB pages: 1024-entry, 8-way associative

4.5.1 Performance Analysis

The paper discusses many different workload scenarios and system configurations. As there

are way too many performance points, we will show only the scenarios that have significant

performance differences. First, we will show two workload scenarios, in-memory, where the

memory size is equal to the dataset size (i.e., the 1x ratio), and out-of-memory, where the dataset

is eight times larger than the memory size (i.e., the 1/8x ratio). Second, as the performance

across different process counts does not vary significantly, we are showing the average across

runs. Third, the two topologies, daisy chain and mesh, behave similarly in terms performance,

and therefore we also present the average across both topologies. Last, we present the results for

different memory chip counts, 4, 8, and 16.

Fig. 4.8a shows the speedup of four translation mechanisms over the conventional MMU using

4KB pages, for the in-memory scenario. The techniques are the conventional MMU using 2MB

and 1GB pages, SAVAgE, and an ideal translation with zero overhead. We label the techniques

as 2MB, 1GB, Savage, and Ideal. First, we see that SAVAgE clearly outperforms 4KB, 2MB,

and 1GB pages. In some cases by a large margin, up to 25% over 4KB, 2MB, and 1GB for

TPC-H. In other cases more moderately, down to 3%, 2%, and 5% over 4KB, 2MB, and 1GB

pages respectively for MySQL. Most importantly, SAVAgE is consistently on par with the ideal

translation that incurs zero overhead for translation. Overall, SAVAgE improves the performance

by 17% on average over 4KB pages and stays within 1.5% of the ideal translation on average.
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(a) In-memory scenario.
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(b) Out-of-memory scenario.

Figure 4.8 – Speedup over conventional MMU with 4KB pages for 2MB and 1GB pages, SAVAgE,

and ideal translation.

Fig. 4.8b presents the speedups for the out-of-memory scenario. As expected, the speedups are

less significant that in the in-memory case. The reason is that all the cases incur the slowdown

of resolving page faults, and therefore there are fewer accesses that can be accelerated. Still,

SAVAge systematically performs better than the conventional MMU, 6% on average over 4KB

pages, and stays within 1.5% of the ideal translation mechanism on average.

We model a greatly optimistic case when using huge pages as we assume all pages are huge, with

no generation overhead or fragmentation in any scenario. Additionally, we do not account for

the excess in IO traffic generated by writing back dirty huge pages. Therefore, we expect further

improvements with realistic overhead. Furthermore, we are conservatively assuming that all page

faults are major, and hence involve an access to secondary storage, which might not always be

the case (in cases of minor page faults). Hence, in a real system, our speedups would likely be

significantly higher.
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4.5.2 Comparison with Other Proposals

As explained in Section 2.4, there are a myriad of recent proposals on address translation

for CPUs [22, 107, 139, 140]. All these techniques aim to enhance the reach of TLBs by

exploiting the contiguity available in the virtual and physical address spaces. These techniques

are orthogonal to our focus on the memory-side MMUs as we reduce the page walk overhead,

and consequently, the TLB miss penalty.

Nevertheless, we believe that these techniques would be only effective for in-memory scenarios,

and perform poorly when the datasets do not fit in memory. In out-of-memory scenarios, direct

segments [22] would not perform well as a single virtual segment is mapped contiguously in

physical memory at start up, precluding the most frequently used pages from staying in memory.

Redundant Memory Mappings (RMMs) [107] would likely not be able to allocate contiguous

chunks of physical memory, as the system is under heavy memory pressure. CoLT [140] and

Clustered TLBs [139] would probably achieve similar performance to the conventional translation,

given the limited contiguity available in memory.

4.6 SAVAgE Summary

This chapter proposed the Set-Associative VirtuAl mEmory (SAVAgE), a new translation mech-

anism that eliminates most of the overhead of page walks. Our translation mechanism builds

on the modest associativity requirements and characteristics of our network of memory chips.

SAVAgE restricts the associativity of VM so that a virtual address uniquely identifies a memory

chip and partition. This characteristic allows MPUs to access the memory as soon as the virtual

address is known. Each memory partition integrates an MMU, which includes a TLB hierarchy

and page table, that translates the virtual address and fetches the data—both the translation and

data are always located in the MMU’s local memory partition. SAVAgE achieves low-overhead

page walks as the page walk and data fetch operations overlap almost entirely.
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5 Eliminating Associativity in Virtual
Memory

In this chapter, we exploit the lack of associativity requirements in virtual memory when there is

a single process taking up all the physical memory in the system. This case is typical of first-party

workloads with tight latency constraints [22, 79].

Large-scale IT services are increasingly migrating from storage to memory because of massive

data consumption rates [16, 53, 179]. Online services such as web search, social connectivity, and

media streaming exhibit stringent response time requirements which mandate memory-resident

data processing. Similarly, business intelligence over analytical pipelines are increasingly memory

resident to minimize query response times. Furthermore, first-party workloads deployed by IT

giants such as Microsoft and Google often run in dedicated servers, taking up all the system

resources to ensure performance isolation and predictability [22, 79]. The end result is that

memory has become pivotal to server design, which aims to maximize the throughput per server

to minimize the total cost of ownership of datacenters.

The slowdown in Dennard scaling has further pushed server designers towards memory access

efficiency. A large spectrum of IT services exhibit modest computational requirements but vast

energy footprints due to moving data from memory all the way to the processor cores [50]. For

instance, the energy cost of fetching a word of data from off-chip DRAM is almost four orders

of magnitude (i.e., 10000×) more expensive than the processing cost [78]. To increase memory

density, several memory vendors such as Hynix and Micron are vertically stacking multiple

DRAM dies on top of a logic layer within a single package [95, 127]. The ample benefits in

bandwidth and the proximity to the data—which minimizes time-consuming and energy-hungry

data movement—have stimulated the emergence of custom memory-side processing units (MPUs)

on the logic chip for many different types of computation.

To follow the expected integration path of a unified virtual memory between CPUs and MPUs

(HSA-style) [85], MPUs must integrate an address translation mechanism. Unfortunately, the

programmability benefits of VM come at a significant performance cost. Conventional hardware

support for address translation relies on TLB hierarchies to achieve low translation overhead.

Unfortunately, modern memory sizes are beyond the reach of today’s TLBs [22, 139, 140],
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resulting in frequent long-latency page walks and valuable CPU time lost. Due to the arbitrary

distribution of page table entries across all the memory chips, page walks incur in overheads of

hundreds of nanoseconds. Furthermore, SAVAgE, a novel technique to eliminate the overhead

of page walks (presented in the previous chapter) provides close to ideal average performance,

but leaves significant room for improvement on the table in certain scenarios (i.e., single-process

in-memory workloads). As we focus on an important class of workloads—first-party IT services—

maximizing the per-server throughput has the potential to bring large benefits back in the total

cost of ownership of datacenters.

This chapter proposes DIPTA (Distributed Inverted Page Table), an address translation mechanism

that completely eliminates the overhead of page walks. Our translation mechanism builds on the

observation that the associativity of VM can be virtually eliminated for in-memory workloads.

DIPTA restricts the associativity so that a page can only reside in a few number of physical

locations which are physically adjacent—i.e., in the same memory chip and DRAM row. Hence,

all but a few bits remain invariant across the virtual-to-physical mapping, and with a highly-

accurate way predictor, the unknown bits are figured out so that address translation and data

fetch are completely independent. Furthermore, to ensure that the data fetch and translation are

completely overlapped, we place the page table entries next to the data in the form of an inverted

page table, either in SRAM or embedded in DRAM. Hence, DIPTA completely eliminates the

overhead of page walks for in-memory workloads.

Essentially, DIPTA turns memory into a virtually addressed hardware-managed cache. This

cache’s tag array is implemented as a distributed inverted page table and is accessed in parallel

with the data array [96, 147].

The rest of this chapter is organized as follows. Section 5.1 presents an in-depth study on VM

associativity for in-memory scenarios. Section 5.2 introduces the architecture of DIPTA, and

Section 5.3 discusses further considerations. We describe our methodology in Section 5.4 and

evaluate DIPTA in Section 5.5. We conclude the chapter with a summary of DIPTA in Section 5.7.

5.1 Revisiting Virtual Memory

Page-based virtual memory (VM) is an essential part of computer systems. At the time of its

invention, the memory requirements of all active processes in the system exceeded the amount

of available DRAM by orders of magnitude. A page table, which is a fully-associative software

structure, was employed to maximize allocation flexibility by allowing any virtual page to map

to any available page frame. Interestingly, this architecture has barely changed and has only

incorporated hardware structures to cache page table entries like TLBs [48] and multi-level MMU

caches [18, 25].

With storage devices in recent decades dramatically lagging behind processors and memory in

performance, and DRAM continuously improving in density and cost, many online services and
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Table 5.1 – Workload description.

Workload Description

Cassandra NoSQL data store running Yahoo’s YCSB.

Memcached Cache store running a Twitter-like client workload [121].

TPC-H TPC-H on MonetDB column store (Q1-Q21).

TPC-DS TPC-DS on MonetDB column store (Queries of [114]).

MySQL SQL DBMS running Facebook’s LinkBench [62].

Neo4j Graph DBMS running neighbor search on MusicBrainz [4].

RocksDB Store engine running Facebook benchmarks [63].

analytic engines are carefully engineered to fit their working set in memory [5, 6, 22, 32, 66,

79, 117, 136, 145, 179]. Due to rare page swapping, contiguous virtual pages are often mapped

to contiguous physical pages [139, 140], and hence the conventional page placement flexibility

provided by full associativity remains largely unused. As such, we believe that the traditional full
associativity of virtual memory (i.e., the flexibility to map any virtual page to any page frame)

should be revisited in search for a simpler and more efficient mapping.

5.1.1 Revisiting Associativity

Limiting associativity means that a page cannot reside anywhere in the physical memory but only

in a fixed number of locations. For instance, a direct-mapped configuration maps each virtual

page to a single page frame. Note that multiple virtual pages could map to the same physical

frame, resulting in page conflicts. Increasing the associativity adds more flexibility to the page

mapping and reduces conflicts. To simulate real-world scenarios in our study, we select a set

of representative server workloads, summarized in Table 5.1. We include two cloud workloads

from CloudSuite [66], Cassandra and Memcached, an online transaction processing (OLTP)

workload [62], MySQL, two online analytical processing (OLAP) workloads [29], TPC-H and

TPC-DS, a neighbor search workload on a graph DBMS, Neo4j, and a widely-used storage

system workload [57], RocksDB. We collect long memory traces of the server workloads using

Pin [124]. We extract the virtual address and address space identifier (ASID) of each memory

reference and use it to probe a variably associative memory structure, to observe and classify the

misses. A detailed description of our methodology is found in Section 5.4.

Table 5.2 (left) shows the page conflict rate as associativity varies. As shown, little associativity

is enough to eliminate all page conflicts and match a fully-associative VM. On the one hand,

Memcached and RocksDB do not exhibit frequent conflicts due to great contiguity in their

virtual address space, as subsequent virtual pages are mapped to subsequent sets, never causing

conflicts within a segment. Memcached maps the majority of its dataset into a single virtual

segment, and hence a few extra ways eliminate all the conflicts. In contrast, RocksDB maps

hundreds of memory-mapped files, each mapping to its own segment. Although there is high

63



Chapter 5. Eliminating Associativity in Virtual Memory

Table 5.2 – Impact of associativity on page conflict rate and page conflict overhead.

Page conflict rate Page conflict overhead norm. to memory latency
(page conflicts per million accesses) (rate× penalty/memorylatency)

DM 2-Way 4-Way 8-Way 16-Way DM 2-Way 4-Way 8-Way 16-Way

RocksDB 8.4×10−2 3.0×10−2 2.5×10−2 2.2×10−2 0 2.8% 0.98% 0.83% 0.73% 0
TPC-H 1.0 1.6×10−1 1.7×10−3 0 — 33.68% 5.2% 0.06% 0 —

TPC-DS 1.4×10−1 2×10−4 0 — — 4.71% 0.01% 0 — —

Cassandra 1.1 3.7×10−2 3×10−4 0 — 37.2% 1.22% 0.01% 0 —

Neo4j 3.9×101 2.8×10−2 0 — — 1300.8% 0.93% 0 — —

MySQL 2.4 1.7×10−3 0 — — 80.48% 0.06% 0 — —

Memcached 5.0×10−2 7.8×10−3 0 — — 1.65% 0.26% 0 — —

contiguity across these segments, it creates conflicts, requiring 16 ways to completely eliminate

page conflicts. Neo4j and Cassandra exhibit a large number of conflicts for a direct-mapped

configuration because of their numerous randomly-placed JVM segments which conflict with each

other. However, conflicts drop fastly, and 4 and 8 ways eliminate all the page conflicts for Neo4j

and Cassandra respectively. Last, MySQL exhibits significant conflicts for the direct-mapped

configuration as it heavily references the heap and buffer pool virtual segments. However, with a

2-way configuration the conflicts become seldom. The reason for page conflicts is two-fold: (i)

the virtual space is not fully contiguous, and (ii) the software is unaware of the set-associative

organization. Fortunately, the virtual space exhibits enough contiguity so that even unmodified

software stacks can tolerate limited associativity.

Figure 5.1 plots the number of page conflicts as a function of associativity, normalized to the

direct-mapped case. For most workloads, 2-way associativity provides the highest drop in the

number of conflicts, a behavior also seen in caches [82]. Nevertheless, higher associativity may

still be needed to avoid all conflicts for certain workloads, such as RocksDB and TPC-H, which

heavily use memory-mapped files. Page conflicts decrease rapidly beyond a few ways, making

an associativity larger than 8 exhibit marginal reductions in conflicts, which corroborates prior

work on set-associative caches [35, 82].

Table 5.2 (right) estimates the average memory access time (AMAT) increase due to page conflicts.

Here we conservatively assume that MPU’s DRAM accesses are always local (the lower the

memory latency, the higher the relative overhead of page conflicts). We also conservatively

assume that page conflicts generate a page fault to an HDD, taking 10ms [2]. Overall, limiting

the VM associativity to 4 ways introduces virtually zero overhead (e.g., adding less than 0.1%

to the AMAT in the worst case). This overhead and the required associativity would further

decrease in the presence of faster SSD storage or a small fully-associative software victim cache

(as proposed before in the context of direct-mapped hardware caches [100]).

5.2 DIPTA

We exploit limited associativity to design a novel and efficient near-memory address translation

mechanism. We first present simple SRAM-based implementations of DIPTA and show how to

organize memory pages into DRAM rows to enable efficient address translation. We then present
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Figure 5.1 – Impact of associativity on page conflict rate.

scalable implementations where the translation information is embedded in memory. Finally, we

conclude with a discussion of implementation costs and overheads.

5.2.1 SRAM-based DIPTA

To remove address translation completely from the critical path, it is necessary and su f f icient to

ensure that translation never takes more time than data fetch. Conventional hardware translation

does not meet this requirement, as it can take an unpredictable amount of time, and the translation

and data fetch latencies are rarely balanced.

As an effective way to ensure that the translation time never exceeds the data fetch time, we

propose to distribute the translation information and co-locate it with the data, fetching them

together so as to not expose the translation latency. In the proposed architecture each DRAM

vault keeps the information about the virtual pages it contains in an SRAM structure, in the form

of an inverted page table. The resulting Distributed Inverted Page Table (DIPTA) is looked up in

parallel with the data fetch.

The inverted page table entries (per vault) can reside in a cache-like SRAM structure which is

either direct-mapped or set-associative, depending on the associativity of VM. Assuming a 2GB

MPU chip and 4KB pages, DIPTA would contain 512K entries; one entry per page frame. Each

entry would hold the VPN of the page residing in the corresponding frame (36 bits) and the rest

of the metadata, including 12 bits for the address space identifier (ASID) and 12 bits for page

flags, totaling less than 8B for 48-bit virtual addresses (e.g., x86_64, ARMv8).1. The size of the

table would be 4MB per MPU chip. Assuming 16-32 vaults [127, 162], the per-vault SRAM

storage overhead totals 128KB-256KB. For illustration purposes we assume 4KB DRAM rows.

A direct-mapped implementation is trivial as the DIPTA SRAM lookup can proceed in parallel

with the data fetch. The reason is that the virtual address enables direct indexing of both DIPTA

and DRAM, as the address uniquely identifies the DRAM row and column of the target cache

1Note that memory requests coming from MPUs contain both the VPN and ASID bits.
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Figure 5.2 – Data layout of two consecutive DRAM rows.

block. To illustrate how data fetch and translation complete together, let us assume an MPU

issues a load operation to virtual address VAi. With direct mapping, both the physical address PAi

and the location of the corresponding DIPTA entry are immediately determined to be in Vaulti.
A request for both data and translation is issued to Vaulti. It may take many cycles to reach the

target vault through the memory network, after which the data fetch and translation can be issued

independently and in parallel, the former to the vault’s DRAM and the latter to its SRAM DIPTA

partition. As the per-vault SRAM structure is small, fetching the translation is always faster than

fetching the data from DRAM. By the time the cache block arrives, the translation metadata has

already been fetched, and checked against the memory request, taking translation off the critical

path.

Supporting associativity is not trivial because data from different ways in a set could reside in

different DRAM rows, and the actual way is not known a priori. A set-associative DIPTA lookup

and VPN/ASID comparison is required prior to data fetch to identify the row where the data

resides. Once the row is determined, the page offset is used to access the data within the row.

Unfortunately, while such a solution is simple, the serial DIPTA lookup puts the translation back

on the critical path, which particularly hurts local accesses and does not scale with the chip

capacity.

We address the set-associative DIPTA lookup bottleneck in two ways. First, to perform DRAM

row activation in parallel with the DIPTA lookup, we propose to interleave memory pages within

DRAM rows. Figure 5.2 illustrates one possible data placement for two 4KB page frames into

two 4KB DRAM rows for a 2-way set-associative DIPTA. Because a DRAM row of 4KB cannot

store two 4KB page frames, we strip the data across DRAM rows by splitting each page into two

parts. Even rows store the first half of each way, whereas odd rows store the second half. The

target DRAM row is determined by the highest order bit of the page offset, and the position of

the block within that row is determined by the rest of the offset bits. Besides keeping both ways

for each block in the same row, the proposed placement also preserves spatial locality by keeping

consecutive blocks together. This example can be easily generalized to any associativity, page

frame size, or DRAM row size.

While stripping pages allows for a single row activation (the page offset determines the target

row), each row now contains multiple ways and the page offset cannot identify which block to

access. To avoid waiting for translation, a naive solution would read all the ways from DRAM at

once and in parallel with translation, which would waste bandwidth and energy proportional to
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Row Bank Column Block Offset

Figure 5.3 – DRAM mapping interleaving policy.

the associativity [96, 147]. To avoid such overheads, we employ lightweight but highly accurate

near-data way prediction. This approach eliminates the need to fetch all the ways in parallel,

while ensuring translation and data fetch happen independently, yet in a single DRAM access.

We employ a simple way predictor per vault integrated within each memory controller. We design

an address-based predictor as they have been shown to achieve high accuracy for pages [96, 33,

143]. Our way predictor exploits both spatial and temporal locality, and is organized as a tagless

array of 2k entries indexed by a k-bit XOR hash of those VPN bits that determine the set within

the vault (i.e., the bits that determine the vault are excluded). In the case of a 4-way associative

system with 2GB 16-vault chips and 4KB page frames, there are 13 bits that determine the set

within each vault. For a way predictor of 32 entries, we construct a 5-bit XOR hash (k=5) for

indexing. Each entry encodes the last accessed way in the set with two bits. In this case, the

total storage for way prediction is only 4B per vault, and covers 32 sets or 128 local pages in

each vault. Because way prediction can be done during the row address strobe (RAS) phase, it is

always off the critical path.

The combination of page stripping and way prediction allows for fully overlapping the translation

in the common case of a predictor hit. Interleaving also minimizes the misprediction penalty;

a second column address strobe (CAS) command to an already opened DRAM row. Moreover,

with a distributed predictor, the prediction accuracy in one vault is not affected by accesses to

other vaults (unlike TLBs), boosting the spatial and temporal locality within vaults.

Figure 5.3 shows the DRAM mapping interleaving policy we assume; essentially how a physical

address maps into DRAM. For a direct-mapped configuration, the DRAM mapping interleaving

policy is the same as the widely-used page-based policy, in which pages are split across different

banks [158]. The page-based policy performs well for workloads that either stream often or

exhibit high locality at the page level. However, this policy can sometimes limit parallelism and

create unfairness across different threads as memory controllers prioritize requests to already

opened DRAM rows [109]. For a 4-way configuration, as a DRAM page is split across 4 different

banks, the DRAM mapping policy is similar to a recently proposed policy which aims to balance

locality and parallelism [109]. In this last configuration, there are 16 cache blocks for each of

the 4 DRAM pages that occupy the DRAM row. Overall, a myriad of address-mapping schemes

exist, none of which is optimal across all workloads. Our mapping schemes are similar to recently

proposed techniques, and therefore are expected to perform similarly to them in terms of average

latency and bandwidth.
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5.2.2 In-Memory DIPTA

The SRAM solution is simple, but requires 4MB (16MB) of SRAM for a 2GB (8GB) memory

stack. The area overhead is higher than conventional translation hardware, and grows quickly

with the chip capacity, leaving less space for MPUs. Dedicating a small fraction of a vault’s

DRAM to store DIPTA could completely eliminate the SRAM overhead. However, arbitrarily

storing DIPTA in DRAM can make DIPTA lookups unpredictably long and difficult to overlap

with the data fetch. Moreover, DIPTA lookups would contend for bandwidth with data fetches.

A recent die-stacked DRAM cache proposal [96] solves the tag-data co-location problem by

dedicating the first 64-byte block in each DRAM row to store the tag metadata for the page

residing in that row and fetches the tag information and the data block in a single access. Thanks

to the limited associativity, the data location is independent of the tag content, hence the tag and

read can be overlapped on cache hits [96, 147] by pipelining two separate back-to-back column

address strobes (CAS), one for the tag and the other for the data. Unfortunately, such a solution

has an impact on the page size. Assuming a 4KB DRAM row, reserving 64B for metadata leaves

4032B for the data, which may be acceptable for hardware DRAM caches, but it is certainly not

acceptable for OS pages.

Instead, we propose a novel DRAM data layout illustrated in Figure 5.4, where 63 4KB page

frames are stored in 64 consecutive DRAM rows. For simplicity, we assume 4KB DRAM rows,

although the solution can be trivially generalized to any page frame and DRAM row size. Because

the first 64B in each row are reserved for metadata for all pages residing in that row, the last block

of the first page cannot fit and is stored in the subsequent row. In this example, each page spans

exactly two DRAM rows, and each DRAM row contains blocks from at most two different pages.

In Figure 5.4, the first block of Page 0 is placed in the second block of Row 0; we denote its

position as Offset 1, while the first block (Offset 0) holds the metadata. The first half of the

metadata block contains metadata of the page that ends in the current row (i.e., the page that

could not fit in the previous row), whereas the second half contains metadata of the page that

starts in the current row. Because Row 0 contains only one page, the first part of the metadata

block is empty (denoted as X). The last block (B63) of Page 0 also occupies the first available

data slot (Offset 1), but in the subsequent row (Row 1). The first block of the next page, Page
1, occupies the block at Offset 2 in Row 1, whereas the last block occupies the same position in

the subsequent row, and so on. Page 62 starts at the very end of Row 62, and occupies the entire

Row 63. Because no page starts in Row 63, the second metadata slot in this row is empty. The

layout of Row 64 is identical to the layout of Row 0; rows 0-63 form a cycle. This solution incurs

no SRAM overhead and requires dedicating 64B per DRAM row for metadata. The DRAM

overhead is data_line_size/DRAM_row_size and decreases with the DRAM row size. For a 4KB

DRAM row the overhead is 1/64 or ∼1.5% of DRAM capacity.

The target DRAM row for a given address is computed with minimal logic as: block_address/(k−
1), where k is the number of 64-byte blocks per row, in this example 64. The exact position of the

68



5.2. DIPTA

X

X

X

0

1

2

3

62

63

64

V0 B0 PAGE 0

V0 B63V1

V1

B0

B63

PAGE1

V3 B0 PAGE 3

V2

V2

B0

B63

PAGE 2

V61 B63PAGE 61V62

V62

B0

B63PAGE 62

V63 B0 PAGE 63

…

…
…

metadata data blocks

offset 0 offset 1 offset 2

row #

Figure 5.4 – Metadata integration with 4KB pages & rows.

requested data block is given by block_address mod (k−1) + 1. Both formulas can be computed

by a single and fairly simple hardware unit [147].

Much as in SRAM DIPTA, the set-associative implementation follows the layout in Figure 5.2.

The first block in each row contains the metadata belonging to all the ways. The drawback of sup-

porting high associativity in the DRAM-based implementation is that the storage overhead grows

with associativity. For example, dedicating one block for metadata in a 2-way associative organi-

zation leaves an odd number of blocks for the data to store two ways, wasting a block to ensure

symmetry, resulting in a DRAM overhead of associativity× data_line_size/DRAM_row_size.

However, the unused blocks could be used for more functionality (e.g., to store coherence

directory entries, or to tag memory [134]).

Co-locating and fetching translations and data from the same DRAM row minimizes bandwidth,

latency, and energy overheads, similar to DRAM caches [96, 147]. Translations require 8B×
associativity to be transferred (locally) from DRAM to the vault controller. Assuming a 16B

internal bus and a 4-way associative DIPTA, the transfer latency overhead is two bus cycles,

during which the VPN/ASID comparison is performed. Though the bandwidth overhead of

fetching the page table entries can reach up to 50% (as fetching a 64B cache block takes 4

bus cycles), the effective overhead tends to be rather small. The reason is that, due to DRAM

timing constraints, the DDRx data bus is often underutilized, even during periods in which many

pending requests are queued at the memory controller [51, 91, 92, 125, 150, 151]. This behavior

translates into many idle cycles in the data bus between memory transactions, even in cutting-edge

DDR4 interfaces [157]. As a result, DIPTA utilizes the otherwise idle data bus cycles, without

compromising the application’s effective bandwidth. The energy overhead—a second column

69



Chapter 5. Eliminating Associativity in Virtual Memory

address strobe (CAS) command to an already open DRAM row—is negligible as most of the

DRAM access energy goes into opening the DRAM row [73, 169]. In contrast, conventional

translation incurs significant energy overheads due to more frequent off-chip link traversals and

DRAM accesses upon TLB misses; traversing a single off-chip link can be as expensive energy

wise as a DRAM access [12].

5.3 Discussion

In this section, we discuss possible concerns and further considerations regarding our translation

mechanism.

5.3.1 Page faults

Although infrequent, the system must handle page faults triggered by MPU memory accesses.

We choose to interrupt the CPU to run a handler, as MPUs may not be capable of running the OS.

Upon a page fault, DIPTA responds to the MPU, notifying it of the fault. The MPU then places a

request in a memory-mapped queue indicating the faulting virtual address and the responsible

MPU’s ID, and interrupts the CPU. After the missing page is brought into the memory, the

handler updates the affected DIPTA entry with the new translation information. The DIPTA

state can either be mapped in memory, or accessed through custom logic in the memory chips,

configurable through a set of memory-mapped registers. Once the fault is serviced, the handler

notifies the appropriate MPU, which resumes its execution and retries the faulting address. Such

page fault processing is also employed in today’s integrated GPUs [166].

5.3.2 TLB shootdowns & flushes

There are many ways of maintaining DIPTA entries coherent upon TLB shootdown and flush

operations (initiated by the CPU). Our solution is similar to those used in integrated GPUs [166]:

an OS driver monitors any changes on virtual address spaces shared with the MPUs, triggering

update operations on DIPTA for the affected entries. Note that the inverted nature of DIPTA

eliminates any global coherence activity in the memory network, because updates to DIPTA

are fully localized to a single entry in the affected vault. In contrast, conventional translation

hardware would extend the coherence domain to include all MPU units, in which case the

coherence overhead would scale not only with the number of CPUs [167], but also with the

number of memory chips. Moreover, because DIPTA entries include the address space identifier

(ASID) bits, requests to flush all entries of a given address space are never received.
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5.3.3 Memory-mapped files

Limiting associativity does not prevent a process from mapping files in its address space. On

demand, the OS would bring page-size chunks of the file to its page cache [126]. As with memory

allocation, the OS would only need to guarantee that the page frames are mapped to the same set

as their virtual page counterpart. The OS would then populate the CPU page tables and DIPTA to

make the file pages available to the user process.

5.3.4 Synonyms

As with any inverted page table, synonyms are not straightforward to handle [94]. A trivial

approach would enforce synonyms to either have the same virtual addresses or to map to the same

set [41], and extend each DIPTA entry with extra storage. A more clever approach, inspired by

Yoon and Sohi’s work [178], would add a small per-vault structure populated by the OS to remap

synonym pages to a single leading virtual page, and consequently to a single page frame. Because

synonym accesses are infrequent [23, 178, 138], the overhead would be negligible even if the

leading virtual address is in a different vault or different chip. In this work, we do not extend

DIPTA to support synonyms because we do not expose shared libraries or the kernel address

space, which are the sources of synonyms [23, 178].

5.3.5 Cache hierarchy

In case MPUs integrate physical caches, a naive approach would add a TLB to cache frequently-

used page table entries, while TLB misses—page walks—would be accelerated by DIPTA. Upon

a TLB miss, the page table entry (in DIPTA) and data cache block are accessed in parallel (as part

of the normal DIPTA operation), and cached in separate structures; the page table entry and the

cache block are cached in the MPU’s TLB and cache, respectively. Nevertheless, a more natural

design, which also avoids TLBs and TLB shootdowns [167], is to integrate virtual caches. In this

approach, MPUs access its cache with virtual addresses, and upon a cache miss, the request is

propagated to DIPTA to translate and fetch the corresponding block. Recent practical designs for

virtual cache hierarchies would be a perfect fit for DIPTA [138, 178].

5.3.6 CPU and DMA accesses

The conventional CPU address translation remains untouched. The address mapping does not

affect the way CPUs or DMAs access memory—it is just an internal mapping that the vault

controller uses to map cache blocks into DRAM banks. The controller is aware of the source

of the memory requests and hence can treat them accordingly. Virtual addresses from MPUs

identify the memory set and use the way predictor to generate a complete physical address.

Physical addresses from CPU/DMA have all the bits required to identify the block. Furthermore,

as DIPTA is agnostic to the execution units (DIPTA is just aware of memory requests), CPUs
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can use DIPTA to eliminate the overhead of page walks for the part of the memory covered by

DIPTA. While the focus of this work is on MPUs, it is an interesting direction.

5.3.7 Multi-level memories

Although prior work on memory-side processing assumes a single level [10, 11, 71, 146], memory

can be organized as a hierarchy, with a die-stacked cache [149, 168] backed up by planar memory.

For hardware-managed caches, DIPTA performs the translation and accesses the page frame

speculatively, and in case the page frame is not in the cache, it is fetched from planar memory

as part of the standard cache miss operation. Once the page frame is in the appropriate DRAM

row, the data is sent back to the MPU. The DIPTA page table entries have to be embedded in

both planar and die-stacked DRAM, and move with the page frame. Note that caching a page

frame from planar memory into the die-stacked memory does not affect its page table entry. In

software-managed hierarchies [149], MPUs rely on the software API for explicit migration of

pages into the die-stacked memories, as MPUs cannot access planar memory directly. As part of

the page migration operation, the DIPTA page table entries are populated accordingly.

5.3.8 Kernel memory

Our simulation infrastructure captures user-level instructions, although we argue that MPUs will

accelerate only user-level not kernel-level code, like all existing custom hardware (e.g., GPU,

FPGA). Nevertheless, our technique should be a great fit for the kernel, as Linux’s memory usage

is almost entirely direct-mapped [126] and memory resident. The tag matching logic of DIPTA

would then require the following simple change. As all the processes share the same kernel

virtual addresses, the logic needs to ignore the ASID bits. This modification is trivial as Linux

partitions the address space into two halves, and hence the tag matching logic just needs to check

the virtual address’s MSB.

5.3.9 Operating system support

The operating system only needs to guarantee that the virtual page number and the page frame

number map to the same memory set. OSs that support virtual caches already provide this

capability (e.g., Solaris [41] and MIPS OS [161]). MIPS OS traverses the free list of pages and

returns a page frame that resides in the same memory set as the virtual page. Alternatively, one

can organize the allocation of memory similarly to Linux’s memboot memory allocator. Linux

could employ a set-associative array, storing on each set a single bit per way indicating whether

the page frame is free or occupied. The virtual page causing the fault could be simply hashed

to locate its location in the array; avoiding the linear search for free pages that the memboot

memory allocator requires.
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5.4 Methodology

Like the recent work on virtual memory [19, 22, 25, 137, 139, 140, 152], we use a combination

of trace-driven functional and full-system cycle-accurate simulation.

5.4.1 Performance

This study does not cover the problem of partitioning applications into CPU-side and memory-

side execution, or specializing the latter in hardware, or interfacing and synchronizing the two

executions [10, 17, 71]. While important, such problems are out of the scope of this paper and

would cloud the key address-translation tradeoffs in near-memory processing. To avoid such

problems we evaluate the applications running entirely on the memory network.

Full-system simulation for the server workloads listed in Table 5.1 is not practical. Hence, we

resort to the CPI models often used in VM research [27, 137, 152] to sketch the performance

gains. These prior studies report performance as the reduction in the translation-related cycles per

instruction. As CPI components are additive, this metric is valid irrespective of the workload’s

baseline CPI. We further strengthen this methodology by studying the CPI savings on all memory

cycles, not only on translation stalls (as we overlap translation and data fetch operations). Our

model thus captures both the translation cycles and data fetch cycles, which together constitute

the largest fraction of the total CPI in server workloads [66]. Hence, our results are more

representative of the end-to-end benefits of each technique. The CPI is measured by feeding the

memory traces into our cycle-accurate simulator.

Furthermore, we evaluate a set of data-structure traversal kernels—ASCYLIB [52]—in full-

system cycle-accurate simulation. ASCYLIB contains state-of-the-art multi-threaded hash tables,

binary trees, and skip lists. For clarity, we present results for four representative implementations:

the Java Hash Table (Hash Table), Fraser Skip List (Skip List), Howley Binary Search Tree

(BST Internal), and Natarajan Binary Search Tree (BST External). We choose this specific suite

because dynamic data structures are the core of many server workloads (e.g., Memcached’s hash

table, RocksDB’s skip list), and are a great match for near-memory processing [86, 114]. The

poor locality and the abundance of pointer chasing in data-structure traversals allow us to stress

the translation and way prediction operations.

5.4.2 Traces and Workloads

For the associativity experiments in Sections 5.1 and 5.5.4, we collect long memory traces

using Pin [124]. For workloads with fine-grained transactions (i.e., Memcached, RocksDB,

MySQL, and Cassandra), the traces contain the same number of instructions as the application

executes in 60 seconds without Pin. For analytics workloads (i.e., TPC-H, TPC-DS, and Neo4j),

we instrument the entire execution. We feed the collected traces into a tool that models a set-

associative memory of 8GB, 16GB, and 32GB. To stress the associativity requirements, all the
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workloads are tuned to employ all the available physical memory; 8GB of physical memory for

the experiments of Section 5.1, and up up to 16GB and 32GB for Section 5.5.4’s experiments.

The traces are collected on a dual-socket server CPU (Intel Xeon E5-2680 v3) with 256GB of

memory, using the Linux 3.10 kernel and Google’s TCMalloc [75]. Address space randomization

(ASLR) is enabled in all experiments.

For the performance experiments of Section 5.5, we employ the server traces of 32GB and 64GB,

depending on the size of the network. We use 32GB and 64GB for the 4-chip and 16-chip

configurations, respectively. For the data-structrue kernels, each workload performs uniformly

distributed key lookups on its in-memory data-structure. The datasets range from 16GB to 20GB

(depending on the workload) across all network configurations.

Simulation Parameters

We use the Flexus cycle-accurate simulator [172], with detailed core, MMU, memory hierarchy,

and interconnect models. Following prior work on near-memory processing, which assumes

single-issue in-order cores [10, 71, 146], we model the MPU cores after ARM Cortex A7 [15].

Table 5.3 – System parameters.

MPU logic Description

Cores Single-issue, in-order, 2GHz

L1-I/D 32KB, 2-way, 64B block, 2-cycle load-to-use

MMU Description

TLB

4KB pages: 64-entry, 4-way associative

2MB pages: 32-entry, 4-way associative

1GB pages: 4-entry, fully associative

STLB 4KB/2MB pages: 1024-entry, 8-way associative

Caches

L4: 2-entry, fully associative [25]

L3: 4-entry, fully associative [25]

L2: 32-entry, 4-way associative [25]

Memory Description

MPU chip 8GB chips, 8 DRAM layers x 16 vaults

Networks 4, 8, 12, and 16 chips in daisy chain and mesh

DRAM
tCK 1.6ns, tRAS 22.4ns, tRCD 11.2ns

tCAS 11.2ns, tWR 14.4ns, tRP 11.2ns

Serial links 2B bidirectional, 10GHz, 30ns per hop [106, 165]

NoC Mesh, 128-bit links, 3 cycles per hop

SAVAgE Description

TLB 4KB pages: 64-entry, 4-way associative

STLB 4KB pages: 1024-entry, 8-way associative

DIPTA Description

Configuration SRAM, 4-way associative, 1024-entry WP

74



5.5. Evaluation

We privilege the baseline with a high-end MMU similar to Intel Xeon Haswell [47, 77], with

multi-level TLBs and MMU caches [18, 25]. We assume a 4-level hierarchical radix tree page

table [93] with 48-bit virtual and physical addresses (as in ARMv8 and x86_64). The MMU

supports 4KB, 2MB, and 1GB pages. Note that page table entries are transparently allocated in

the L1-D cache. We probe the cache with physical addresses for the baseline and with virtual

addresses for DIPTA. We verify that TLB misses never reference a cache-resident block, and

therefore virtual and physical caches behave identically.

Without loss of generality, we assume the Hybrid Memory Cube organization with eight 8Gb

DRAM layers and 16 vaults [128]. We conservatively estimate the die-stacked memory timing

parameters from publicly available information and research literature [71]. For SAVAgE,

we employ a conventional two-level TLB hierarchy. The DIPTA implementation is 4-way

set-associative in SRAM, with a way-predictor of 1024 entries per vault. The DRAM and

SRAM implementations of DIPTA provide almost identical results, with the tradeoff being

between SRAM area and DRAM capacity. The DRAM implementation has practically no SRAM

overhead (except for tiny way predictors) but occupies space in DRAM for translations. The

SRAM overhead for 8GB chips is 16MB (partitioned across vaults) for an area of 20mm2 in

22nm, corresponding to only 9% of the area of an 8Gb DRAM die (e.g., 226mm2 [154]). Its

access latency of 8 cycles guarantees that the memory and DIPTA accesses are overlapped. The

system parameters are shown in Table 5.3.

5.5 Evaluation

In this section, we perform a quantitative study of the performance of different translation

mechanisms across the set of server workloads and a set of microkernels. In the study, we vary

the topology and scale of the memory network, as well as the amount of data locality within the

memory chips.

5.5.1 Way Prediction Accuracy

To better stress the way predictor, we first study its accuracy on ASCYLIB, which is a worst

case scenario due to the limited temporal and spatial locality (e.g., the behavior of Skip Lists is

very similar to GUPS). Figure 5.5a shows the way prediction accuracy for an 8-way associative

organization as the number of entries increases. With only 1024 entries, the way predictor yields

very high accuracy, 69%-91%. This high accuracy comes at tiny storage cost as a single entry

requires only 2 bits (for 4 ways), requiring in total only 256B per vault and 4KB per chip of

storage overhead. Figure 5.5b shows the accuracy of the server workloads of Table 3.1. The

temporal and spatial locality is higher in the server workloads, achieving a way predictor accuracy

of 96%-99% with only 64 entries. The modest storage requirement is 16B per vault and 256B

per memory chip.
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(a) Data-structure kernels (b) Server workloads

Figure 5.5 – Sensitivity study on the accuracy of the way predictor.

Besides leveraging the spatial locality, the way predictor’s distributed nature also boosts the

temporal locality. Unlike TLBs, which centralize translations, each predictor holds the entries for

its share only; the accuracy in one vault is not affected by accesses to others. To overprovision

for the worst case, we assume in this work a 1024-entry way predictor per vault.

5.5.2 Where Does Time Go?

Figure 5.6 shows the execution time breakdown and CPI of the data-structure kernels for the

conventional address translation with 4KB pages. We perform this experiment for 4- and 16-chip

daisy chain topologies to see the impact of the network size. We also control the fraction of local

data accesses—data accesses that remain within the memory chip, varying it from 25% to 100%.

An application that perfectly partitions its dataset across the memory chips exhibits 100% data

locality. As the figure shows, improving data locality reduces the CPI due to fewer high-latency

cross-chip data accesses, but also increases the relative contribution of address translation to the

total execution time—measuring up to 80% with 100% locality. This behavior is expected as the

locality cannot be enforced for the page table entries, which are arbitrarily distributed across the

memory chips. Hence, as locality increases, data accesses become cheaper, while the latency

overhead of page walks remains the same.

The Hash Table and Skip List kernels exhibit the highest translation time as the locality in the

data structures is significantly low. The tree data structures (i.e., BST Internal/External) show

slightly better TLB locality compared to the Hash Table and Skip List kernels. This locality arises

due to the reuse of the top tree levels across different data-structure traversals. Such locality is

not present in the hash table and skip list data structures, where probes for different keys will

likely access distinct pages. Additionally, given a data locality point, the translation overhead

significantly increases with the network size for all the kernels, as expected.

Similarly, Figure 5.7 shows the execution time breakdown and CPI of the server workloads. As

showed in the way prediction results, the temporal and spatial locality of the server workloads is
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Figure 5.6 – Time breakdown and CPI for different data locality and network topologies.

higher than in the data-structure kernels, and hence the contribution of address translation to the

execution time in smaller—measuring up to 42% with 100% locality. Memcached and RocksDB

show similar trends to that of the data-structure kernels, the CPI reduces as the locality increases

and the fraction of time spent in translation increases. In contrast, TPC-H and TPC-DS show

little sensitivity to the fraction of data locality. The reason is that these data analytics benchmarks

run on MonetDB, a state-of-the-art column-oriented RDBMS, which exhibit significant spatial

cache locality [30]. Hence, the overhead of bringing a cache block from a remote memory chip

is amortized with several accesses to the same cache block. As there is little sensitivity to the

fraction of data locality (and the locality does not affect the location of the page table entries),

the time breakdown remains invariant across all the locality points and memory chip counts.

MySQL exhibits poor cache locality, as the CPI dramatically drops as the data locality increases.

In fact, the cycles spent in data fetches greatly dominate the execution time. The reason is that

MySQL organizes tables (which are comprised of tuples) in database pages stored in its buffer

pool. The database pages are usually smaller than the base page size (e.g., 2KB). On every

tuple access, the buffer pool page header and tuple slot index are consulted [156], which turn in

high translation but low data locality. Last, Cassandra also exhibits poor cache locality, though

lower than MySQL, due to compulsory cache misses as Cassandra manages large objects of 1KB.

However, Cassandra also maintains a cache, as a dynamic data structure, of recently-referenced

keys, which gets probed fairly frequently as the workload models a skewed key distribution.

Accesses to this cache increase the contribution of translation to the total execution time.

Overall, both the data-structure kernels and server workloads exhibit significant translation time,

which usually increases with the fraction of data locality and memory chip count. Therefore,

reducing the cycles spent in translation has the potential to bring great performance benefits to all

the workloads.

5.5.3 Performance

Figure 5.8 shows the speedups over 4KB pages with 1GB pages, SAVAgE, and DIPTA, for 4- and

16-chip mesh and daisy chain topologies, for the data-structure kernels. For clarity, we present

the results only for the extreme locality points: 25% and 100%; As expected, the speedups grow

as locality increases and with the size of the memory network. Furthermore, the speedups on the
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Figure 5.7 – Time breakdown and CPI for different data locality and network topologies.

daisy chain are more pronounced as the average hop count is larger than in the mesh. In the Hash

Table and Skip List kernels, which exhibit the lowest TLB locality, translation cycles account

for the largest fraction of the execution time among all benchmarks, which is reflected on the

speedups. In contrast, the tree-based data structures exhibit better data and TLB locality, and

consequently, lower speedups. DIPTA’s speedups over 4KB pages range between 1.58× and

3.81×, with an average speedup of 2.11×, whereas the baseline with 1GB pages improves the

performance from 1.20× to 2.02×, with an average speedup of 1.45×. Additionally, SAVAgE

improves the performance from 1.40× to 3.20×, with an average speedup of 1.85×. DIPTA’s

speedups over 1GB pages range between 1.14× and 2.13×, with an average of 1.44×. DIPTA’s

speedups over SAVAgE range between 1.05× and 1.18×, with an average of 1.14×. Although

omitted for clarity, we also compare DIPTA against the baseline with 2MB pages, which performs

only slightly better than 4KB pages, and always worse than 1GB pages. As shown in the results,

DIPTA significantly outperforms conventional address translation hardware. Note that DIPTA

virtually eliminates the overhead of page walks, and hence our results are equal to an ideal MMU

with zero overhead for page walks.

Figure 5.9 shows the speedups over 4KB pages with 2MB pages, SAVAgE, and DIPTA, for

4- and 16-chip mesh and daisy chain topologies, for the server workloads. Similarly to the

data-structure kernels, the speedups usually grow as locality increases and with the size of the

memory network. This trend does not hold for TPC-H and TPC-DS for the reasons explained

in the previous section. The speedups on MySQL are fairly modest as the data cycles (and

not the translation cycles) dominate the execution time. DIPTA’s speedups over 4KB pages

range between 1.02× and 1.75×, with an average speedup of 1.25×, whereas the baseline with

2MB pages improves the performance from 1.01× to 1.41×, with an average speedup of 1.06×.

Additionally, SAVAgE improves the performance from 1.02× to 1.21×, with an average speedup

of 1.06×. DIPTA’s speedups over 2MB pages range between 1.01× and 1.23×, with an average

of 1.44×. DIPTA’s speedups over SAVAgE range between 1.007× and 1.07×, with an average

of 1.03×. For clarity, we omit the results with 1GB pages, which performs better than 4KB

pages, but always worse than 2MB pages. 1GB pages performs worse than 2MB pages because

the number of entries in the MMU for 1GB pages is significantly limited; there are only four

entries. As for the data-structure kernels, DIPTA clearly outperforms conventional translation

hardware and SAVAgE, while delivering the performance of an ideal MMU with zero overhead

for page walks.
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(a) Hash Table (b) Skip List

(c) BST External (d) BST Internal

Figure 5.8 – Speedup results over 4KB pages for the data-structure kernels.

Overall, DIPTA is effective at completely eliminating the overhead of page walks across the data-

structure kernels and server workloads. DIPTA and SAVAgE clearly outperform conventional

translation hardware (i.e., 4KB, 2MB, and 1GB pages) due to avoiding cross-chip page walk

operations. Additionally, DIPTA significantly outperforms SAVAgE for the workloads that exhibit

poor translation locality (e.g., Hash Table, Memcached), as a page walk within the vault, which

requires a memory access, is still required before fetching the data.

5.5.4 Comparison with Other Proposals

Two recent proposals on address translation for in-memory workloads are direct segments

(DS) [22] and redundant memory mappings (RMM) [69]. These approaches aim to increase the

reach of the TLB by exploiting the abundant contiguity available in the virtual address space by

mapping one (for DS) or a few (for RMM) virtual segments to contiguous page frames. As the

reach of the TLB increases, the frequency of page walks decreases.

A comparison of DIPTA with DS and RMM on ASCYLIB is trivial, as these microkernels have a

very simple memory layout where most of the data is mapped to a single virtual segment. Hence,

we perform the more challenging comparison of these techniques on our set of server workloads

by analyzing the maximum contiguity available in their virtual address space. We employ Linux’s

pmap tool to periodically scan their memory structure. The results are presented in Table 5.4.

Total segments represents the total number of virtual segments. 99% coverage indicates the

number of virtual segments required to cover 99% of the physical address space. Largest segment
shows the fraction of the physical address space covered with the largest virtual segment. Largest
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(a) Memcached (b) RocksDB

(c) TPC-H (d) TPC-DS

(e) MySQL (f) Cassandra

Figure 5.9 – Speedup results over 4KB pages for the server workloads.

32 segments shows the fraction of the physical space covered with the largest 32 segments. Note

that these results represent an ideal case for DS and RMM. We employ datasets of 8GB, 16GB,

and 32GB. For Neo4j, we use two graphs of 8GB [4] and 16GB [7], respectively.

Table 5.4 showcases several key points. First, for some applications, such as MySQL and

Memcached, a single large segment covers most of the physical memory, and therefore DS would

eliminate most TLB misses (page walks) [22]. Nevertheless, other applications, such as RocksDB

and MonetDB (running TPC-H and TPC-DS), exhibit a large number of segments, and hence

would expose the majority of the TLB misses, and hence page walk cycles.

Second, for most applications, the total number of segments and the number of segments needed

for 99% coverage are much higher than what the RMM work assumes. On average, even for the

small 8GB dataset, the total number of segments is 4× higher, and the number of segments for

99% coverage is almost an order of magnitude higher than the requirements for the applications

evaluated in [69]. The total number of segments places a burden on the capacity of the TLB]. For
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Table 5.4 – Analysis of virtual segments as dataset scales

Total segments 99% coverage Largest segment Largest 32 segments
8GB 16GB 32GB 8GB 16GB 32GB 8GB 16GB 32GB 8GB 16GB 32GB

RocksDB 210 370 690 160 320 640 0.62% 0.31% 0.16% 20% 9.9% 5.0%
TPC-H 280 280 290 45 45 52 24% 24% 23% 94% 94% 95%
TPC-DS 420 400 400 170 170 160 9% 3.3% 3.3% 61% 50% 50%
Cassandra 390 410 520 25 33 130 59% 33% 20% 99% 99% 68%
Neo4j 200 890 — 30 210 — 59% 40% — 100% 51% —
MySQL 150 150 150 2 2 2 97% 97% 97% 100% 100% 100%
Memcached 52 52 52 1 1 1 100% 100% 100% 100% 100% 100%

instance, Memcached, which exhibits a very simple memory layout, requires a TLB of 32 entries

to remove almost all the TLB misses, although there is a single segment that covers almost 100%

of the memory. The reason is that accesses to other segments evict the largest segment’s entry.

Hence, Table 5.4’s last column represents the best-case 32-entry TLB coverage for each workload.

The TLB used in RMM contains 32 entries and is a fully associative structure, because segment

sizes vary, making the standard indexing for set-associative structures hard. The area/energy

requirements of this fully associative structure alone could dwarf the area/energy footprint of

simple MPUs on the low-power logic die [10, 71, 146].

Third, although there could be hundreds of segments, the associativity requirements for Sec-

tion 5.1’s 8GB dataset indicate that associativity can be reduced to a small number. The reason

is that although segments are not fully contiguous, the OS tends to cluster the segments, and

therefore nearby segments do not conflict with each other.

Fourth, some applications, such as RocksDB and Cassandra, exhibit an increase in the number

of segments as the dataset grows, increasing the pressure in both the RMM TLB and the rest

of RMM structures. For DIPTA, we measure the sensitivity of page conflicts to associativity as

dataset scales, employing Section 5.1’s methodology and tuning the workloads to utilize 16GB

and 32GB. Identically to the 8GB case, conflicts drop more sharply between direct-mapped and

2-way associativity, whereas 8-way associativity practically removes all page conflicts. In all

cases—8GB, 16GB, and 32GB—8 ways make the page conflict overhead less than 0.1% of

a memory access in the worst case. The reason associativity requirements do not increase is

that the OS clusters segments around few places (e.g., heap and mmap areas). The increase

in nearby segments does not increase the conflicts. In other words, the number of conflicts is

more closely related to the number of clustered areas than to the number of segments. Note that

our experiments privilege DS and RMMs as we employ TCMalloc’s memory allocator, which

coalesces segments when possible. For instance, employing Glibc’s memory allocator generates

more than 800 segments for Memcached [138], while we only require a few tens of them (as also

corroborated by prior work [22, 107]).

Fifth, RMM replaces the conventional demand paging policy for eager paging to improve

contiguity in the physical memory. Additionally, the OS has to manage virtual memory at a

variable-sized granularity, which may create the external fragmentation problem that plagued the

first segment-based VM designs [55]. In contrast, DIPTA makes no disruptive changes to the OS
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Figure 5.10 – Example of removing page conflicts in a direct-mapped configuration.

operation as it employs conventional page sizes and the default demand-paging policy.

Last, these aforesaid techniques aim to increase the reach of conventional TLBs, whereas DIPTA

aims to eliminate page walk overhead, and hence the TLB miss penalty. Therefore, DS and RMM

and DIPTA and orthogonal techniques.

5.6 Removing Conflicts in Software

Organizing a part of virtual memory as set-associative may introduce page conflicts. In-memory

systems incur no capacity misses, and the conflicts there arise because the OS is unaware of the

set-associative organization. Fortunately, we could avoid such conflicts since the virtual address

space is huge (i.e., 48 bits in x86_64 [126]), and hence there is high flexibility to move segments

around so that they do not cause conflicts under a set-associative mapping.

Although relocating already populated virtual segments can be difficult (e.g., pointers), segments

can easily be aligned at initialization time. The OS could align any segments known at compile

time (e.g., .text, .rw) when the process starts. When the memory allocator initializes the heap

or the mmap segments for the first time, the OS could align them to start at non-conflicting

locations in the virtual space. Note that this alignment does not necessarily require contiguity.

Two segments can be placed far away from each other in the virtual space and yet be contiguous

or non-conflicting in the physical space. If we want to allocate segment B next to the already

allocated segment A in the physical address space, we can choose the starting virtual address for

segment B using simple math that only factors in the associativity, total memory capacity, and the

location of segment A. Figure 5.10 shows an example where the heap and mmap segments conflict

for a direct-mapped configuration, and how a simple relocation can remove the conflict. Hence, a

significant fraction of conflicts can be eliminated once the OS understands the set-associative

structure of memory, which is a direction that we plan to study in the future.

5.7 DIPTA Summary

This chapter introduced the Distributed Inverted Page Table (DIPTA), a new translation mecha-

nism that completely eliminates the overhead of page walks for in-memory workloads. DIPTA

builds on the observation that the associativity of VM can be virtually eliminated for in-memory

workloads. Limiting the associativity to a few ways allows for data fetch and translation opera-

tions to be performed independently, breaking the traditional translate-then-fetch serialization.
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Furthermore, we place the page table entries next to the data in the form of an inverted page table,

either in SRAM or embedded in DRAM, so that the data fetch and translation operations are

completely overlapped. Hence, achieving the performance of an ideal MMU with zero overhead

for page walks.
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6 Related work

6.1 Near-Memory Processing

Several efforts in the 1990s and early 2000s examined integrating DRAM and logic in the same

chip. EXECUBE [115], the first processing-in-memory (PIM) device, integrated SIMD/MIMD

cores and DRAM in the same chip. IRAM [118] advocated for dedicating the on-chip transistors

to DRAM in future billion-transistor chips. Active Pages [134] proposed a protocol to orchestrate

the execution of code on reconfigurable logic next DRAM. FlexRAM [104] and DIVA [59]

considered an array of microcontrollers next to DRAM, controlled by a host. However, these

ideas never became mainstream due to technological challenges, as logic and DRAM benefit

from significantly different process technologies, resulting in either sub-optimal logic or large

density gaps with respect to discrete logic and memory chips.

Recent advancements in three-dimensional integrated circuits and packaging technologies have

enabled memory vendors to vertically stack multiple DRAM dies on top of a logic chip within the

same package [127, 162]. Each die can be implemented in a different process technology, while

a plurality of Through Silicon Vias (TSVs) provide a low-latency and high-bandwidth interface

between the dies. Leveraging this technology, several domain-specific architectures have emerged.

NDC [146], Tesseract [10], and NDP [71] consider a network of MPU-capable memory chips

populated with micro-controllers. Neurocube [111] proposes the use of programmable custom

logic to accelerate neural networks. TETRIS [72] also tackles neural networks but focuses on

leveraging the proximity to data to devote most of the area for processing (minimizing SRAM

buffers). A few works aim to exploit the internal bandwidth of 3D memories to accelerate

database operators, namely the scan operator with GPUs [145] and custom ASICs [176], and the

join operator with microcontrollers [130].
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6.2 Increasing TLB reach

Direct segments [22] allows for an efficient mapping between a single virtual segment mapped

contiguously in physical memory. Direct segments reduces much of the pressure on TLBs for

applications that allocate most of their data in a single virtual segment. However, direct segments

imposes significant restrictions that limit its flexibility. First, page frames within a virtual segment

cannot be swapped out, performing poorly for out-of-memory scenarios. Second, direct segments

only maps a single segment, exposing most of the TLB misses for applications with complex

virtual memory layouts. Third, a direct segment has to be mapped contiguously in physical

memory, making the system prone to fragmentation issues.

Karakostas et al. [107] propose a fully-associative range-based TLB alongside the conventional

secondary TLB, and a page table to transparently exploit the available contiguity in the virtual

and physical address spaces. The technique suffers from similar limitations as direct segments;

except for transparency and its support for multiple segments. The system is prone to fragmenta-

tion issues especially after the traditional Linux lazy memory allocation system is replaced by

eager paging. Additionally, virtual memory is managed at a variable-sized granularity, which

complicates the conventional OS facilities which assume the OS base page size.

Several studies exploited the contiguity generated by the buddy allocator and the memory

compactor. CoLT [140], Clustered TLBs [139], and Sub-blocked TLBs [160] group multiple

PTEs into a single TLB entry. However, packing a small number of translations per entry provides

a one-time improvement, leaving the TLB reach still limited for large working sets. Huge pages

generated using Transparent Huge Pages [98] and libhugetlbfs [148] increase the TLB reach

by mapping very large regions to a single entry. Nevertheless, the effectiveness of huge pages

is limited by the size-aligned requirement, and hence the OS can only allocate them when the

available memory is size-aligned and contiguous [160]. Furthermore, if not fully utilized, huge

pages significantly increase the amount of I/O traffic and the page fault service time. Additionally,

huge pages are only beneficial if there is locality within the page, and may suffer in cases where

locality is limited, such as pointer-intensive code.

6.3 Reducing TLB penalty

Since resolving a TLB miss can be a long-latency operation, several processor architectures inte-

grate software or hardware structures to cache page table entries [18, 25, 89, 159]. UltraSPARC

employs software page table caches such as TSBs [159], which the MMU probes before walking

the page table. Page Walk Caches are dedicated caches commonly found in today’s MMUs

employed to cache intermediate levels of multi-level page tables, reducing the latency of page

walks [18, 25]. Last, almost all mainstream commercial processors allocate page table entries in

the data caches to minimize page walks referencing memory [89].

Prior work proposed prefetching page table entries into the TLBs in advance of their use to
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hide the TLB miss penalty [28, 102, 152]. Bhattacharjee et al. [28] showed redundancy in

TLB misses across CMP cores in multi-threaded workloads and proposed inter-core prefetching.

Past work [102, 152] evaluates the efficacy of prefetchers initially proposed for data caches

for prefetching page table entries into the TLB. SpecTLB [19] leverages the predictability of

reservation-based physical memory allocators to speculatively assume accesses to large pages on

not yet promoted pages.

6.4 Unified Virtual Memory

The most recent integrated GPUs [174] are fully complaint with the HSA specification and adopt

a unified virtual memory. Integrated GPUs reside in the CPU chip and employ a centralized I/O

memory management unit (IOMMU), recently introduced in commercial CPUs to allow devices

to handle virtual addresses. These IOMMU integrate I/O translation Look-aside buffers (IOTLBs)

and dedicated logic to walk the page table, providing support for address translation. Recent

academic work [141, 144] has proposed custom TLBs and page walking logic to sustain the high

translation throughput required by GPUs. Both approaches propose post-coalester TLBs. Pichai

et al. employ a highly-ported TLB and a smart page walk scheduling algorithm [141]. Power et

al. proposes a highly-threaded page walker to sustain bursts of TLB misses [144].

Recent integrated FPGAs have a basic form of address translation support. The recent prototype

of Intel-Altera Heterogeneous Architecture Research Platform (HARP) employs a static 1024-

entry TLB with 2MB pages to support virtual address for user-defined logic blocks [153]. Such a

static TLB approach—there is no page walker—requires pinning pages in memory and generating

large pages, while TLB refills require running an expensive kernel driver in the CPU. Spending a

significant fraction of the execution time in page walks when the memory is larger than the reach

of the TLB. Alternatively, FPGAs (or ASICs) could employ the IOMMU of the CPU to walk

the page table; much like the integrated GPUs mentioned above. While this approach removes

the overhead of running the kernel driver and eliminates the need for a custom API, page walks

would still be costly for large memory systems.

The current research wave on MPUs have payed little attention to address translation [10, 71,

72, 130, 145, 146, 176]. TRETIS [72] does not disclose details on their programming model.

JAFAR [176], Tesseract [10], and custom MPUs for databases [130] assume a unified address

space with physically addressed MPUs. Although a unified address space avoids data replication,

memory allocation requires a custom API. Custom APIs make the composability of source code

more difficult, as memory allocation is not a standard C or C++ allocation (e.g., new, malloc,

mmap). Furthermore, physical addressing requires pinning pages in memory, while CPUs and

MPUs cannot share pointer-based data structures. Both NDC [146] and recent work integrating

GPUs in 3D memories [145] assume an HSA-complaint unified virtual memory, although details

on how translation is supported are not disclosed. NDP [71] also supports a unified virtual

memory, with a similar implementation to that of Intel-Altera HARP. Each MPU core integrates

a static 16-entry TLB with 2MB pages. A TLB miss triggers an OS kernel driver in the CPU to
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resolve and refill the TLB, performing poorly when MPUs access a large memory. Alternatively,

NDP could employ an IOMMU on the CPU to walk the page table and resolve TLB misses.

However, as discussed earlier, misses in the IOTLB trigger page walks that are an order of

magnitude higher than in CPU cores. Additionally, IOMMUs and MPUs are located in different

chips, creating frequency cross-chip traffic which can account for hundreds of nanoseconds,

dramatically increasing the overhead of page walks.

6.5 Page Tables

A page table stores translation, protection, attributes, and status information for one or several

virtual address spaces [88, 94]. Page tables generally present the following three organizations:

linear, hierarchical, and inverted. A linear page table conceptually stores all page table entries for

a process in a single array. The array is indexed by the virtual page number (VPN). As they cover

the whole address space, these page tables tend to be pretty large, and therefore usually reside in

the virtual address space. Page faults populate the page table on demand (e.g., MIPS R4000 [103],

DEC VAX-11 [120]). Hierarchical page tables store page table entries in a multilevel radix tree,

with each level indexed using fixed address fields in the virtual page number. The leaf nodes store

the page table entries while the intermediate node store pointers to the next level (e.g., SPARC’s

MMU [171], Intel Haswell [89]). Inverted page tables comprise one page table entry per physical

slot in memory. Since the page frame of a virtual address is not known in advance, either an

associative search [67] or a hash table is required. The most common implementation—a hash

table—heavily differs from architecture to architecture. HP PA-RISC employs a single-level hash

table, whereas IBM RS/6000 introduces a hash anchor table to reduce the number of conflicts

at the expense of an extra memory reference. These hash tables use chaining to handle page

conflicts. PowerPC 601’s inverted page table packs several page table entries within a hash table’s

bucket, linearly searching the bucket and applying a second hash function if the search is not

successful. SAVAgE and DIPTA are examples of inverted page tables.

6.6 Reducing VM Associativity

We are not the first to exploit reducing the associativity of VM. Several degrees of page coloring—

fixing a few bits from the virtual-to-physical map—were proposed in the past. The MIPS

R6000 used page coloring coupled with a small TLB to index the cache under tight latency

constraints [161]. Page coloring has also been used for virtually-indexed physically-tagged

caches [42] as an alternative to large cache associativities [76] or page sizes [99]. Alan Jay

Smith [155] advocated the usage of set-associative mappings for main memory—much like

another cache level—to simplify page placement and replacement.

88



6.7. Virtual Caches

6.7 Virtual Caches

Virtual caches are attractive as they avoid the need for address translation; addresses are only

translated upon cache misses. Unfortunately, synonyms in virtual caches create multiple cache

blocks for the same physical block, creating an inconsistency problem if a virtual cache block is

updated (as the other virtual cache blocks will contain stale data).

There is a body of work on implementing virtual caches, which is summarized by Cekleov and

Dubois [37, 38]. Software and hardware techniques have been proposed in order to deal with

virtual address synonyms. On the software side, forcing shared data to reside at virtual addresses

that align in the cache [41], software consistency protocols [39], flushing caches on context

switches (Intel i860), lazy cache block flushing of synonyms [173], segment-level sharing [80],

or single address space operating systems [40, 116] constitute the most significant approaches.

On the hardware side, dual-tag stores for finding reverse translations [74], and back-pointers in

L2 physical caches for finding synonyms in L1 virtual caches [170] have been proposed.

Two recent proposals provide practical implementations of virtual cache hierarchies [138, 178].

Yoon and Sohi [178] remap synonym pages of the same page frame to a leading virtual page. A

table placed before the L1 access, detects and remaps the virtual address before the L1 virtual

cache access. Park et al. [138] employs a synonym detector mechanism implemented as a

bloom filter populated by the operating system. For non-synonym accesses, virtual addresses are

employed throughout the hierarchy, while uncommon synonym addresses are translated before

accessing the L1 cache. Recently, Opportunistic Virtual Caching (OVC) [23] reduces the energy

of L1 references by caching safe cache blocks (e.g., no read-write synonyms) with virtual address,

to avoid accessing the energy-hungry TLBs.

6.8 DRAM Caches

Prior work has shown that DRAM caches are a promising approach to bridge the latency gap

between processor and memory, and to break the memory bandwidth wall [96, 97, 122, 123, 147].

Most of the approaches considered DRAM caches as a large hardware-managed cache, targeting

maximizing hit rates [96, 97] and minimizing the off-chip bandwidth consumption [97, 122,

123, 147]. There are also several studies that optimize for the latency of DRAM caches. One

approach is two employ a small SRAM structure to avoid exposing the tag look-up latency in

case of a miss [97, 123, 147]. Additionally, to avoid the large area overhead of the tags, several

approaches co-locate data and tags in the same DRAM row [96, 123, 147]. Furthermore, other

designs optimize the layout of data and tags within the DRAM row to fetch both in a single

DRAM access [96, 147]. Alternatively, software-managed DRAM caches either in industry

products [149] and academia [135] have emerged. Software caches either expose a software API

for explicit migration of pages between the cache and memory [149], or let the OS dynamically

migrate the pages [135].
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Essentially, SAVAgE turns memory into a virtually addressed software-managed cache. In

contrast, DIPTA turns memory into a virtually addressed hardware-managed cache. In DIPTA,

the cache’s tag array is implemented as a distributed inverted page table and is accessed in parallel

with the data array [96, 147]. Indeed, one can think of memory as a cache, where the data array

is the set of page frames, and the tag array is the page table.
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This chapter presents interesting directions for future work.

7.1 Memory Allocation

The page placement flexibility provided by full associativity can be a burden for memory

allocators (e.g., buddy allocator in Linux [126]). Limiting the VM associativity simplifies

the memory allocator’s job, which now has to select a page frame from a smaller pool of pages.

Thus, greatly simplifying the data structures and algorithms used by memory allocators to track

the free/occupied space and making the allocation/replacement process faster [8]. We believe

that an interesting direction at the OS level is to understand the implications of a set-associative

VM for the data structures and algorithms employed in memory allocation.

7.2 Minor page faults

In this work, we conservatively assume that page conflicts always generate a major page fault

(i.e., a page fault that involves accessing secondary storage). Alternatively, and inspired by

direct-mapped hardware cache designs [100], SAVAgE and DIPTA could employ a small fully

associative software victim cache to store recently evicted pages. Furthermore, we could virtualize

the victim cache in the data structures that the OS uses for memory allocation. Essentially, we

could adopt a best-effort set-associative VM system, in which the OS tries to map virtual pages

and page frames into the same memory set. If that is not possible, virtual pages are mapped to

any page frame. DIPTA and SAVAgE will speculatively access the memory, and upon a page

fault, the page fault handler will determine whether the page is not mapped anywhere in the

memory (i.e., a major page fault) or just not mapped in the appropriate memory set (i.e., a minor

page fault). Reducing the overhead of page conflicts in a set-associative VM has the potential to

further reduce the associativity requirements and improve the overall performance. We believe

that investigating directions for reducing the overhead of resolving page conflicts is interesting.
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7.3 Non Volatile Memory (NVM)

Next-generation of emerging byte-addressable NVM technologies such as Micron’s 3D XPoint [1]

have the potential to increase the memory density while delivering much faster access times

than high-performance secondary storage (i.e., SSDs). Consequently, NVM technologies are

expected to employ the virtual memory subsystem instead of the block-based Virtual File System

layer (VFS) [105]. In such systems, the number of ways provided by a fully associative VM

will increase by at least an order of magnitude, widening the gap between the provided and the

required VM associativity. At the same time, larger memory densities will put more pressure

on the TLB, as the reach of contemporary TLBs will capture a smaller fraction of the memory,

likely increasing the frequency of page walks. We believe that in such systems—an order of

magnitude more associativity and more memory capacity to be covered by TLBs—reducing the

associativity of VM has the potential to uncover large insights and optimization opportunities for

address translation.

7.4 SAVAgE and DIPTA for CPUs

Though this thesis focuses on computer systems with MPU-capable memory chips, CPUs could

also employ SAVAgE or DIPTA for systems where page walks are particularly expensive. For

instance, in server systems that integrate TBs of memory and multiple sockets such as the HP

DragonHawk [84], IBM Power9 [31], Oracle SPARC M7 [133], or Huawei KunLun [133].

SAVAgE and DIPTA are near-memory structures that are independent of any control flow; these

structures just observe requests. However, CPUs integrate deep and large cache hierarchies,

complicating the task of deciding when to employ SAVAgE or DIPTA, instead of the conventional

page walker. The reason is that there could be page table entries and data cached along the cache

hierarchy, which could be resolved faster with the conventional translation structures. In contrast,

MPUs integrate shallow (i.e., single level) and small cache hierarchies that are well within the

reach of contemporary TLBs, making every TLB miss also a cache miss. Hence, in this case,

all the page walks are resolved by SAVAgE or DIPTA. Nevertheless, following recent work that

shows that almost all (i.e., 98%) of page walks that access memory, the data pointed by the

translation is also in memory [26], a plausible approach is to employ SAVAgE or DIPTA for page

walk operations (of the conventional page walker) that miss in the last-level cache (LLC). In other

words, translations and data that exhibit reuse and stay in the CPU caches are accessed with the

conventional translation mechanisms, whereas the rest are handled by SAVAgE or DIPTA.

7.5 Different workloads and design environments

This thesis focuses on server systems and workloads. A different and interesting domain which

is becoming increasingly popular is edge computing: the computation performed in handheld

or IoT devices. These systems are likely to stress a set-associative virtual memory system as

they integrate much lower memory capacities (e.g., a few GBs at most) and exhibit a very
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dynamic execution environment, both in terms of the number of processes and virtual memory

layouts [58]. Furthermore, as these devices are usually managed by the user, they are more

susceptible to malicious applications that could exploit the associativity of virtual memory

to create artificial page faults, and degrade the performance of the system. Investigating the

associativity requirements of such environments is definitively an interesting future direction.
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8 Conclusion

In light of computing demands growing at a pace comparable to Moore’s law, the end of Dennard

and slowdown of silicon density scaling have pushed system designers towards specialized

architectures to boost computing efficiency. The proliferation of heterogeneous computing

platforms has to be followed by an efficient and simple programming model to ensure widespread

adoption. Industry initiatives such as the Heterogeneous System Architecture (HSA) Foundation

are proposing to unify virtual memory (VM) between CPUs and any other computing element in

the system for an efficient and easy to use programming model. The continuous demand for faster

memory accesses calls for fast translations to terabytes of memory for any computing element

in the system. Unfortunately, conventional translation mechanisms fall short of providing fast

translations as contemporary memories exceed the reach of today’s translation caches, such as

TLBs, making TLB misses or page walks a severe performance bottleneck.

This thesis identifies page walks as a critical performance bottleneck in unified virtual memory

implementations and proposes mechanisms to eliminate the aforesaid overhead. We provide

fundamental insights into the reason why address translation sits on the critical path of accessing

memory. We observe that the traditional fully associative flexibility to map any virtual page

to any page frame precludes accessing memory before translating. We first study the VM

associativity using the 3C model to classify misses (i.e., page faults) and show that conventional

full associativity in virtual memory is a largely unnecessary feature, as the majority of misses are

either classified as compulsory or capacity, hence insensitive to associativity.

Building on the modest associativity requirements of VM, we propose SAVAgE, a translation

mechanism that largely reduces the overhead of page walks. SAVAgE restricts the associativity

so that a virtual address identifies a memory chip and memory partition uniquely. An MMU in

the memory partition, translates the virtual address and fetches the data. As a result, SAVAgE

achieves low-overhead page walks as the page walk and data fetch operation overlap almost

entirely. Furthermore, for the important class of first-party in-memory workloads, we propose

DIPTA, a translation mechanism that completely eliminates the overhead of page walks. This

mechanism builds on the observation that the associativity in VM can be virtually eliminated for
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single-process memory-resident workloads. DIPTA restricts the associativity so that a page can

only reside in a few number of physically adjacent locations. Hence, all but a few bits remain

invariant in the virtual and physical addresses, and we speculatively predict the rest using a way

predictor, decoupling address translation from data fetch. To ensure that data fetch and address

translation fully overlap, we place the page table entries next to the data, completely eliminating

the overhead of page walks for in-memory workloads.

In summary, reducing the associativity of virtual memory nearly eliminates the translation

overhead enabling a scalable unified virtual address space.
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